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ABSTRACT

ON PROPERTIES OF THE APPROXIMATE
PEANO DERIVATIVE

By

Bruce Scott Babcock

The ordinary derivative has been studied extensively
and many properties of it have been discovered. Although an
ordinary derivative need not be continuous, it does possess
certain properties worth investigating. The following four
properties, defined here for an arbitrary function g, have

been shown to hold for an ordinary derivative:

1. g is in the first class of Baire.
2. g has the Darboux property.
3. g has the Denjoy property.

4. g has the Zahorski property.

C. E. Weil has recently introduced a new property
which he calls property Z. He has shown that property Z is
stronger than the Zahorski property in the class of functions
having the Darboux property. In addition he has shown that

an ordinary derivative has property Z.

H. W. Oliver showed more generally that if a function
f has a kth Peano derivative fk then fk has properties 1, 2,
and 3 listed above. C. E. Weil showed, furthermore, that fk

also has property 4 and property Z.







Bruce Scott Babcock

A. P. Calder6n and A. Zygmund have generalized the

kth

Peano derivative by means of the kth Lp derivative, where

0 <p<w M. J. Evans has recently shown that if a function
th . .

f has a k Lp derivative fk,p’ where 1 < p < =, then fk,p

has the four properties listed above.

The notion of kth

Lp differentiation, where 0 < p < o,
is contained in one that is more general. It is called kth
approximate Peano differentiation. M. J. Evans was the first
to investigate this type of differentiation and has further

shown that if a function f has a kth approximate Peano deriv-

ative f(k) then f(k) has property 1 given above.

In this paper we first examine the concepts discussed
above. We then proceed to prove our main result that when a
function f has a kth approximate Peano derivative f(k) and if
. S )
f(k) is bounded above or below on an interval then (k) ~ s
the ordinary kth derivative. From our main result the proper-
ties 2 and 3 given above are then easily shown to hold for a
kth approximate Peano derivative from known theorems. As our

final result we prove that a kth approximate Peano derivative

th 3
has property 4 by verifying that a k approximate Peano

derivative satisfies the stronger property Z.
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CHAPTER 1

INTRODUCTION AND DEFINITIONS

A1l of the functions in this paper are assumed to be
real-valued, measurable functions defined on a nondegenerate
closed interval I = [a,b], unless specified otherwise. Also
whenever we write x+h (x € I) our assumption is that x+h ¢ I.
Furthermore, the notation E-]iT will denote that the limit is
computed only for those va]qu of ¥ In €. - Finally, It E 152
measurable set then we denote the measure of E by either m(E)

or |E|.

Since the turn of the century the ordinary derivative
has been studied extensively and many properties of it have
been discovered. Although an ordinary derivative need not
be continuous, it does possess certain properties worth
investigating. The simplest of these properties is that

every ordinary derivative is a function of Baire class one.

Definition 1.1. A function f, defined on I, is

said to be a function of Baire class one on I if there is

a sequence {f }: 1 of continuous functions, each defined on
n‘n=

I, such that
Tim fn(x) = f(x),
n=w

for each x in I.







Perhaps the best known property for an ordinary
derivative is the Darboux property or intermediate value

property.

Definition 1.2. A function f, defined on I, is
said to have the Darboux property if whenever X and X,
are distinct points of I and Y is a number between f(xl)
and f(xz), there is an X3 between x, and X, such that
f(x3) = y.

In 1916, A. Denjoy [2] proved that an ordinary

derivative has what we shall call the Denjoy property.

Definition 1.3. A function f, defined on I, is
said to have the Denjoy property on I if for every open
interval (a,B), f'l((a,s)) either is empty or has positive

measure.

The Denjoy property was further strengthened by
Z. Zahorski in 1950 [12]. We call this property the

Zahorski property and define it in the following manner.

Definition 1.4. A sequence of closed intervals
(In}:=1 is said to converge to a point x if x is not in
the union of the In‘s and if every neighborhood of x

contains all but a finite number of the intervals In.

Definition 1.5. A function f, defined on I, is

said to have the Zahorski property on I if for every open




[




o

interval (a,B), x in f'l((u,e)) and {1} ;> a sequence of
closed subintervals of I converging to x with

m(f (e8)) n 1) = o
for every n, implies

m(I )
lim —— N .

e dist.(x,In)

where dist.(x,In) s Infllxay] ¥ 3.8 In).

Zahorski showed that an ordinary derivative also

possesses the above property.

Recently C. E. Weil [11] has introduced a new
property, property Z, which is stronger than the Zahorski

property.

Definition 1.6. A function f, defined on I, has
property Z on I if for each x € I, each € > 0 and each

sequence (In):=l of closed subintervals of I converging to
X such that for each n, f(y) > f(x) on In or f(y) < f(x)
on In,

Nepe Ly ¢ (MO B e . o

48 :
B m(In) + d1st,(x,1n)

In addition Weil has shown that an ordinary

derivative has the stronger property Z.

These five properties, however, do not classify

derivatives. Indeed, they are possessed by more general

types of derivatives.







Suppose a function f, defined on I, possesses an
ordinary derivative f’(x) at a point x € 1I. Then
f(x+h)-f(x)
im — = fri(x:)

h-0 h
or equivalently,
f(x+h)-f(x)-hf’(x) = o(h)

as h=-0.

This last equation motivates a more general first

order derivative in terms of the L,-norm. In order to

understand this definition, recall that if g is a function

defined on an interval J then | g Il g 1s defined by

llgll, 5 = ess suplg(t)]
T teg

where ess sup|g(t)| = inf{M : m{t € J : |g(t)| > M} = 0}.
teg

Definition 1.7. A function f, defined on I, is said
to have a first L, derivative at a point x € I if there

(x) such that if

o

exists a number fl
g(t) = Flx+t)-fx)-tf) _(x)

then

19 1l qo,ny = O(M)s

where <0,h) = [0,h] if h > 0 and (0,h) = [h,0] if h < O.

The number f1 (x) is called the first L_ derivative of f

atixs






Replacing the L,-norm by the Lp-norm where
0 < p < o, suitably normalized so that the function iden-

tically 1 has Lp-norm 1, gives the following definition.

Definition 1.8. A function f, defined on I, is
said to have a first Lp derivative at a point x ¢ I,

0 < p < o, if there exists a number f (x) such that

1,p
1/p
[%fglf(ﬁt)-f(x)—tfl)p(x)[pdt) = o(h)

as h = 0. The number fl p(x) is called the first Lp

derivative of f at x.

For its application to Fourier analysis it suffices
to consider p > 1, but for establishing properties of the

derivatives that arise, 0 < p < 1 may also be considered.

A1l of these methods for the first order
differentiation are contained in one that is more general.
It is called approximate differentiation and is defined in

the following manner.

Definition 1.9. Let E be a measurable set and let

X be a real number. Define
m(E N [x-h,x+h])

d(x,E) = 1im ———————,
PeeRlr i 2h
m(E N [x,x+h])
d,(x,E) = lim , ——— 8,
+ h-o h







m(E N [x-h,x])

diSEREEY, =i s ST
h=-o0* h

If d(x,E) = 1 then x is called a point of density of E; if
d(x,E) = 0 then x is called a point of dispersion of E. If
d,(x,E) =1 then x is called a right-hand point of density
of ‘E; A d,(x,E) = 0 then x is called a right-hand point of
dispersion of E. Similarly, if d_(x,E) =1 (0) then x is

called a left-hand point of density (dispersion) of E.

Definition 1.10. A function f, defined on I = [a,b],

is said to have an approximate derivative at a point x € I if

there exists a number fép(x) and a measurable set E having 0
as a point of denstiy such that
f(x+h)-f(x)
E-1im —m7m8 — = fép(x)'
h-0 h

We call fép(x) the approximate derivative of f at x.

Remark. In Definition 1.10 if x = a (x = b) then the
expression, there exists a measurable set E having 0 as a point
of density, is understood to mean that E € [0,o) (E € (-«,x])
and 0 is a right-hand (left-hand) point of density of E.

This same convention will be adopted in Definition 1.13

Since approximate differentiation is more general

s : $ F2ESony
than ordinary differentiation and first Lp differentiatio
0 < p < w, every property possessed by the approximate deriv-

atives is also possessed by the ordinary derivatives and the

First Lp derivatives, 0 < p < «.






In 1960, C. Goffman and C. J. Neugebauer [4] gave
concise proofs of the facts that every approximate derijv-
ative is a fuction of Baire class one and possesses the
Darboux property. These facts were first established by
G. Tolstoff [8]. The Denjoy property for an approximate
derivative was established by S. Marcus [5] and C. E. Weil
[10]. Weil, in addition, verified the Zahorski property in
[10] and property Z in [11] for approximate derivatives.
Another important property of an approximate derivative,

a proof of which can be found in the paper of Goffman and
Neugebauer, is that if an approximate derivative is bounded
above or below on an interval, then it is an ordinary

derivative on that interval.

Even more can be said for kth order differentiation.

If a function f has a ktN ordinary derivative at a point x,

then by Taylor's theorem
k
k
£(xrh)-F (x)-nf 7 (x)-... - e (KD () = o(nk)

as h=0. 1In many instances it was only the existence of
such a polynomial that was ever needed, even though the
function was assumed to have k derivatives at x. This led

th
to the introduction of the following so called k Peano
derivative.
Definition 1.11. A function f, defined on I, is

said to have a kth Peano derivative at a point x € I,







k= 1,24.505 1f there exist numbers fl(x), fz(x),‘.., fk(x),
such that

k
f(X+h)-f(x)-hf1(x)-...-—.fk(x) = o(h¥)

as h-0. The number fk(x) is called the kth Peano derivative

o) i - A

That every kth Peano derivative has the Darboux
property, is a function of Baire class one, and possesses
the Denjoy property was first proved by H. W. Oliver [7].
Weil in [10] also gave an independent proof of the Denjoy
property together with a proof of the Zahorski property;
and in [11], he gave a proof of property Z for the kth
Peano derivative. O0liver also showed in his paper that if

th Peano derivative is bounded above or below on an

a k
interval, then it is an ordinary kth derivative. Recently,
S. Verblunsky [9] showed how to prove this last property
from the definition without using the Darboux property or

other properties as Oliver had done.

Proceeding in the same fashion, as in the case of

t " :
the first ordinary derivative, the k " peano derivative may

be generalized by means of the Lp-norm, 0 <p< = We thus

have the following definition.
Definition 1.12. Let f be a function defined on I.

Let x € I and let k be a positive integer. If there exist

numbers fl SHexs)s f, I 5 PP fk,m(x) such that







k

k
ess SUBIF(x+t)-F(x)-tf) _(x)-...-51f, _(x)] = o(nk)

t € <0,h)
then f is said to have a kth L, derivative at x. The number

fk’m(x) is called the kth L, derivative of f at x.

If there exist numbers fl’p(x), fz’p(x), 5 fk’p(x),
where 0 < p < w, such that
1h ’ £k p 1/p B K
[hfolf(x+t) f(x)-tfl)p(x)-...-Ejfk,p(x)| dt = o(h")

then f is said to have a kth Lp derivative at x. The number

£, (x) is called the ktM L, derivative of f at x.

ks p
This concept was first introduced by A. P. Calderé6n
and A. Zygmund [1] but their interest was only in the case

T B

In a manner analogous to the way the approximate
derivative was introduced, the kth approximate Peano deriv-
ative may be defined. This type of differentiation is more
general than kth Peano differentiation and kth Lp differ-

entiation where 0 < p < =,

Definition 1.13. A function f, defined on I, is
said to have a kth approximate Peano derivative at a point
x €l, k=1,2,..., if there exist numbers f(o)(x) =)
f(l)(x),..., f(k)(x), and a measurable set E having 0 as a
point of density such that

f(x+h)—f(x)-hf(1)(x)‘---'Ejf(k)(x)







10

as h=0 and h € E. The number fk)(x) is called the kM

approximate Peano derivative of f at x.

This latter generalized derivative was first studied
by M. J. Evans [3] where he showed that every such derivative
is a function of Baire class one. He was also able to estab-
lish the other properties (Darboux, Denjoy, and Zahorski) but

only for the kth

Lp derivatives with p > 1. Property Z for
the kth Lp derivatives can be established in the same way as

Evans established the Zahorski property for these derivatives.

th

In Chapter II we prove that k approximate Peano

differentiation is a true generalization by giving an example

of a function having a kth approximate Peano derivative at 0

th

but no k Lp derivative for 0 < p < », at 0. We also show,

given two real numbers p,q, with 0 < p < q < =, how to con-

8 : th
struct a function having a kth Lp derivative at 0 but no k

Lq derivative at 0.

In Chapter III we prove that if 0 is a point of
density of a measurable set E then there exists a sequence

of positive real numbers {An}::l, strictly increasing to 1

(strictly decreasing to 1), so that 0 is a point of density

kel X € E}y ni= 1525 v

n=1An
This result will play a key role in Chapter IV where we

of the set N E, where A E = X

th :
prove our major theorem that when a k approximate Peano

i it is an
derivative is bounded above or below on an interval, it is






ordinary k':h derivative. The Darboux and Denjoy properties

follow easily then from known theorems.

In Chapter V, our final chapter, we give a proof of
property Z for the kth approximate Peano derivatives. The
weaker Zahorski property then follows for the kth approx-

imate Peano derivatives.







CHAPTER 11

EXAMPLES

Let f be a function, defined on I, possessing a kth

approximate Peano derivative at a point x € I. Then there

i f B PR 5
exist numbers (1)(x) f(z)(x) f(k)(x) and a measurable
set E having 0 as a point of density such that
h* K
(i2z10) f(x+h)-f(x)-hf(1)(x)-...-nf(k)(x) = o(h")

as h-0 and h ¢ E.

Blacrs hH " n sil
The numbers f(l)(x), f(z)(x), (k)(x) can easily
be shown to be unique and for each n, n = 1,2,...,k, (2.1)

can be rewritten as

A" - n
f(x+h)-f(x)-hf(l)(x)-...-mf(n)(x) =o(h").

Thus f has an nth approximate Peano derivative f(n)(x) at x
for n = 1,2,...,(k-1), and f(l)(x) = fép(x), the first
approximate derivative. Moreover, if f has a kth Peano
derivative at x then fl(x) = f’(x), the ordinary first
derivative. Notice that if f has an ordinary kth derivative
f(k)(x), at x, then Taylor's theorem shows that f(k)(x)
exists and equals f(k)(x). However, as we shall show,
f(k)(x) may exist at a point x without fk’p(x) existing for

t
any p, 0 < p <, at x. In [3], M. J. Evans has shown tha

12







13

if a function f, defined on I, possesses a kth

Lp derivative
fk,p(x) at a point x € I, where 0 <p<wo, then f has a kth

approximate Peano derivative f(k)(x) at x and furthermore,

Let k be a positive integer and let p be a positive
real number. We now show how to construct a function which
has a kth Lp derivative at 0 but not a kth Lq derivative at

0, where p < q < .

Example 2.2. Let k be a positive integer and let p

be a positive real number. Suppose q is a real number such

that p < q < =. Set c = 1+k+%»and M= EE . et
| 1
o= [, —+ o],
n on’ on 2qu
n=1,2,..., and £ = I-U’_;1 , where I = [0,1]. Let us first

show d+(0,E) = 1. Let 0 < h <1, and choose the positive

integer N so that

Now it can be easily shown that

|E N [0,h]
s 1 < <
2N(Mq—l)(qu_l) - h

As h=0%, N~=, and since Mg-1 > 0 it follows that

|[E n [0,h]] .
Tim e
h-o" h

Thus, d,(0,E) = 1.
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Define a function f on I as follows:

2 31 AT XE In’
0 ,» if x € E.
Since

£(h) = o(h¥)

as h ~0+, h € E, f has a kth approximate Peano derivative

f(k)(O) at 0. Furthermore, f(n)(O) =105  For N E050 rdk k alkn
If f has a k™" L derivative at 0, f,__(0), where

0 <r < o, then as was mentioned in the beginning of this

chapter fk,r(o) = f(k)(o) = 0. We first show that fk‘p(o)

exists then we show that f (0) does not exist. To show

k,q
f (0) = 0 it suffices to show

1/p
4 1(1ch p =
lim | ol F(t)|Fdt = 0.
hsiof hk hJ0
Let 0 < h < 1, and choose the nonnegative integer N so that

1 1

it 2

. 1 1 &
For notational convenience set aeis Eﬁ + ;WEH o iMeSN2 A

Then

1/p N+1) [,N+1 2N i
;Ik—%jglf(t)]pdt] X bk )[z Jo 18] dt]

1
g £ e

A

Mpn y1/p
k(N+1 N+1ge 2
<2 ( )[2 Ln=n oMan ]
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< 2k(N+1)[2N+12m 1 ]l/p

> n=N 2CPN

zk(N+1)[2N+1 2¢P ]I/P
ZcpN(ch_l)

<

2c+p'1+k
ST i/p =1
(277-1) oN(c-k-p™7)

2c+p 4k 1
€ —m——— s
- (ZCP-I)I/D 2N
0N i S =
As h=0", N , and ZN 0. Thus fk,p(O) 0.

We now show that f (0) does not exist. Assume to

k,q
the contrary that fr q(0) exists. Then f q(0) = 0, for
ni=105 500Ky “Thus;s
1/q
: 1(1ch q =
(2.3) vim , L e(e)) dt] = 0.
h ~0+ hk hJ0
However, if we let 0 < h < 1, and choose the nonnegative

integer N so that

1 1
< Thisr o=
oN+T - oN
then
1/q a +2 1
DI CRCI R AN
1/q
Nk, Nye q
> 2 {2 Zn=N+2 J‘Inlf(t)I dt}
1/q
Nk ([, Ny Mgn
22 [2 Tn-nez J1, 2 dt]
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> 2Mk[pNge 2Man 1179
= n=N+2 qun

= o,

This contradicts (2.3) and thus fk q(0) does not exist.

Remark. From the nonexistence of f (0) we further

ksq
have the nonexistence of fk(O) and f, 203
th

Thus, k Lp differentiation is more general than k

Lq differentiation, where 0 < p < q < =, and kth Peano dif-

th

ferentiation.

Example 2.4. Let k be a positive integer. Here we
construct a function having a kth approximate Peano deriva-

tive at 0 but no kth Lp derivative at 0, for 0 < p < =, and
kth

no Peano derivative at 0.
Let
)L | 1
o e Rl
n n"-n 2n
n=2,3,.... Define a function f on I = [0,1] as follows:
2
U £ 8 S8
f(x) =
o 1f % € E;

where E = I-U 1

Again it can be shown that d+(0,E) =1 and that

f( )(0) =0, for n = 0,1,...,k. Let p be a real number such
n 5 R

that 0 < p < w, Let 0 < h < 1 and choose N a positive integer
so that

1 1
N+ T < h < N -






For notational convenience set b = —L1_ 4
m m+2

Then

1/p

b
(t)]at] 3Nk{njo“|f(t>|Pdt]1/p

v

K[ yre 1/p
N [NZn=N+2 f1n|f(t)|pdt]

2 \1/p
k © n
2N {Nzn=N+2 flnzp ]

1/p

1 .zpnz)
211

(3%

k @
s [Nzn=N+2(

[

2
k © pn©-n
i [Nzn=N+2 2 J
.

Thus, f (0) # 0. Hence f, p(0) does not exist. Thus for

k,p
each p, 0 < p < =, fk p(0) does not exist. From the non-

existence of fr p(O) we further have that f, ,(0) and fk(O)

do not exist.

Remarks. 1. This last example shows that indeed the

notion of ktP approximate Peano differentiation is a true

generalization of kth Lp differentiation for 0 < p < =, and

k*" Peano differentiation.
2. In the examples given it would be possible to

construct the function f so that it is infinitely differen-

tiable on (0,1].







CHAPTER III

A PRELIMINARY RESULT

In general, if one has a sequence of measurable sets,
say {En}n=l’ such that d+(0‘En) =500 Fforun = 052504 (then it
is not necessarily true that d+(0’U:=1En) = 0. For example,
’ e ¢ o A
if one takes En = [n,ll then d+(O,En) =10 Forvin =051525006.

yet d (0,u _;E ) = 1.

Suppose E is a measurable set such that d, (0,E) = 0.
Furthermore, let (“n)n=l and (Bn)n=1 be two sequences of
positive real numbers, with the un's strictly increasing to
1 and the Bn‘s strictly decreasing to 1. (It will be shown
in Lemma 3.3 that if A is a positive real number then
d,(0,AE) = 0 where AE = {Ax : x € E}.) [Is it necessarily
true that

ad & W = 0?
d,(0,U7_ja E) = 0 or d,(0,U _1B,E) = 07
In this chapter we will give an example showing that

this need not be true. We then prove a theorem, which will

play a key role in the next chapter, showing that it is
possible to choose sequences for which it is true. Before

constructing the example a few lemmas are required.

18
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Lemma 3.1. Let E be a measurable set and let X be a
positive real number. Then

[AE|] = A|E].

Lemma 3.2. Let E and F be subsets of the real

numbers and let X be a real number, A # 0. Then

AENF =a(EnlF).

A
Proof. Let x € AE N F. Then x € F and x = Ae, where
e € E. Hence e = %x € %F and e € E N %F. Therefore,

x = e € A(E N %—F)‘ Since all the above arguments are

reversible the proof is complete.

Lemma 3.3. Let E be a measurable set and let A be
a positive real number. If d,(0,E) = 0 then d (0,XE) = 0.

Proof. By Lemma 3.2 and Lemma 3.1 we have

-

[XE n [0,h]] |A(E N [0,§h])i _lEn 10, ny]

h h Lh
as h=0". Therefore d,(0,AE) = 0.

Lemma 3.4. Let E be a measurable set. Then a

necessary and sufficient condition for d+(0,E) = 0 is that

e Qo]
aine, T i
m

Proof. The necessity of the condition is obvious.

Thus, to establish the sufficiency, let € > 0 be given.

Choose N, a positive integer, such that for every m 2 N
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1
E e
[Entogll
1 2
m
8]
Set 6 = g and let 0 < h < §. Choose n > N such that
1 1
fiel 2 ey
Then
[En (o.h)] [E 0 [0}y
b - S
n+l
lEn ok 1
PR ke e Rl
= 3 1
n n+l
lE n [0,y
< n
= 1
n

< e

Hence d (0,E) = 0.

Example 3.5. We now construct a measurable set E
and a sequence (an):=1 of positive real numbers, strictly

increasing to 1, such that d,(0,E) = 0 and

Let E = Un=7([ n])’ We first show that

d,(0,E) = 0. Now form >7

o Tl 1 1
[En (03] = (0,05 * 27]) N0l
o 1
=17
n=m 2n+l
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Therefore

1
€0 0.3

14 b e
L 1 g oM 0
m
Thus by Lemma 3.4, d+(0,E) = 0.
Define for n > 7
L Jin n
%n1 T et PLE!

Then the sequence {“nl}:=7 is strictly increasing to 1.

For n fixed define for j = 2,3,...,

= n,y3-1
apj = a1+ 2") :
Note there are only a finite number of j's for which
1 1 1
a (= + =) <= .
nj'n 2n n
Let k, be the positive integer so that for 1 < J < ko

o (be iyl

nj P
and for j = kn+1
1 1 15
“ng(ﬁ i Eﬁ) Zh

Observe that for each n

k
1 A | n 11 _L_.
T ¥ 2n+1’ﬁ] = Uj=1anj[n’n 2 2n]
Now consider the sequence
(3.6) u71’u72""‘a7k7’“81’a82"‘"“Bks""‘
It is obvious that we can relabel the sequence (3.6), say

G1s0p5.eesa s..., N such a way that the an‘s are strictly
n
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increasing to 1. Now it is easy to see that
(0 l] €U atE
272 i=eme i
Therefore d+(0,Un:1mnE) 3

A similar example can be constructed for a sequence

of positive real numbers strictly decreasing to 1.

In order to prove the theorem mentioned at the

beginning of this chapter we will need a few technical Temmas.

Lemma 3.7. Let E be a subset of the real numbers and

let X be a positive real number. Then (AE)€ = A(E®), where

E€ is the complement of E.

Proof. x € (AE)® <=> ¥ € E® <=> x € A(E°).

Lemma 3.8. Let E and F be two measurable sets.

(439) I d+(O,E) = 0 and d+(0,F) = 0 then
d,(0,E U F) = 0.

(ii) d,(0,E) = 0 if and only if d (0,E¢) = 1.

Proof. Follows easily from Definition 1.9.
Lemma 3.9. Let E be a measurable set and let A be

a real number, A > 0. If d+(0,E) = 0 then there exists a

® ; ’
sequence of positive integers {a } _;, increasing to =, such

that for every x > A
|xE n [0,h]] 2o
h n?

whenever 0 < h < g—.
n
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Proof. Let € > 0 be given. Since d, (0,E) =0
there exists a 6 > 0 such that
[E n [0,h]]
S
h

whenever 0 < h < 6. For 0 < h < A8 and A > A

IAE n [0,h]] |En [0,ln
= 5 PR
h xh
since %—h < % < 8. The proof of the lemma may now be com-

pleted by letting e progress through the numbers l/n2 and

choosing a, so that l/an is smaller than the corresponding

A§ and also the an's increase to «.

Lemma 3.10. Let E be a set of finite measure and

let € > 0 be given. Then there exists a § > 0 such that
|AE=-E] < &
whenever |[1-i| < §.

Proof. If |E|] = 0 then the result is obvious. Thus
assume |[E| > 0. First assume E = (a,b). Then it is easy to
see that there exists a § > 0 such that

|x(a,b)-(a,b)| < ¢
whenever |1-A| < 6. Assuming E = Uﬁ=l(an,bn), then again it
is obvious that there exists a § > 0 such that
|AE-E| < €
whenever |1-A| < 6.
Now assume E = U:=1(an’bn)' Choose N such that

€

IU:ID=N+1(an’bn)| <7
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" = 1N
Setting F = Un=1(a,sb.) and H = U:=N+1(an’bn) we have
E=F UH. Choose 0 < 6 <1 so that for all X, |1-a] < &,

>
|AF-F| < 5

Since AE-E C XE-F = (AF U AH)-F < (AF-F) U AH, and 0 < A < 2

|XE-E| < |AF-F] + |AH| < % + AH| < e

whenever [1-i| < &.
Finally, assume E is a set of finite measure and let
G be an open set such that E € G and |G-E| < % . Choose &,

0 <6 <1, so that for all A, |1-A] < &,

[26-G| < 5 .
Since (AE-E) € AG-E < (AG-G) U (G-E)
[XE-E| < [AG-G] + [G-E] <5+ 5 =¢
whenever |1-x| < 6.

Lemma 3.11. Let E be a set of finite measure. Let
(an}:=1 be a sequence of positive integers such that

Tim a2 FSey Then there exist two sequences of positive
n-o

© © 2 . it
real numbers {un)n=1 and {Bn}nzl, with the o,'s strictly

increasing to 1 and the s"'s strictly decreasing to 1, such
that for each n, n = 1,2,...,

L 1 -£) n 0.4y < Lo
[(a,E-E) n [0,5]] < = and | (B,E-E) N [0,3]] o
whenever 1 < m < a,-

Proof. We first show the existence of the sequence

= , such that
o} _;- By Lemma 3.10 choose a;, 0 < aj < 1, suc
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s i
]alE El < e

Then for each m, 1 <m < a,
1
E-E) n [o,L < 11
agEE) 010,01 < loEnt] < gy b
By Lemma 3.10 choose a, such that max(ul,l-%) < a, <1 and

1

la,E-E| <
2 22

a2
Then for each m, 1 <m<a,,

1
2

bl

1
[(a E-E) 0 [0,27] < Jo,E-E| < gy

2
42

Inductively define ap as follows: By Lemma 3.10 choose o)

such that max{an_l,l-%J <a_ <1 and

n
1
|a E-E] <
n n
an2
Then for eachm, 1 <m Sags
1 1 1

|(a E-E) 0 [0,7]| < |a E-E| < < —
L i e sl] anZn m2"

The existence of the sequence {un):=1 thus follows by

induction.

A proof similar to the one given above can be given

to show the existence of the sequence {Bn):=l'

Theorem 3.12. Let E be a measurable set and let
d+(0,E) = 0. Then there exist two sequences of positive
o % i ' ictl
real numbers {a } _, and {g } _;, with the a 's strictly
increasing to 1 and the Bn's strictly decreasing to 1, such

that
d,(0,Uy_ja E) = 0 and d,(0,U;_8.E) = 0.
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Proof. We first prove the existence of the sequence

oY)+ Set F = EnJ, where g = [0,1); then d (0,F) = 0.

By Lemma 3.9, there exists a sequence of positive integers

{an}:=l’ where the an's increase to =, such that for each A,

Fea<n
AF 0 [0,h

(3.13) Ih”<iz

h n

whenever 0 < h < ELn By Lemma 3.11 there exists a sequence
n

of positive numbers {a, :=1’ where we may assume that for
each n, % < a, < 1, strictly increasing to 1 and correspond-
ing to the sequence (an}

o

n=1> Such that for each n

(3.14) [agf-F) 0 0001 < 25

whenever 1 < m < a,. Given an e > 0, choose a positive

integer k so that

1 1 ‘
+ =< ¢
K 2k
Set 6§ = g; and let 0 < % < &. Choose j, j > k, so that
k
b pleg e,
441 " i

Now

A

j 1
[TU7y (apF=F)1 0 (0,211 < ol (agF=F) 0 (0.3

pos

o 1
Zn=j+1|(anF'F) B 10511

Moreover by (3.13) 1
. Ja.F 0 [0,2]] i 1
j 1¢J n m = =
1 e F-F) noroh) < dpd ) T 82
m
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and by (3.14)

Tneserl (apF-F) 0ol < 57 L
=j+1 n il < I s —_— = =,
" n=3tl o pon ol
Therefore,
o
1
[[Up=q (@ F-F)T 0 [0,37] | 1 1
1 FhRer o il L
2 23 2k
Thus,
@ 1
i [ [Up=p (@ F-F)1 0 [0,27] g
m-ow i B

m

Therefore by Lemma 3.4, d+(0,U:=l(anF-F)) = 0. Furthermore,

©

since F N [U o F] S F we have

d,(0,F 0 [U7_ja,F]) = 0.

Therefore, by Lemma 3.8(i),
d+(0’un=lanF) = 0.

Now a £ N a;J S apf 0 ayJd, for n = 1,2,...; and since

(U7y@pE) N [0:0;) = Upg(9gE 0 0q3)

n

Un=l(anE n unJ)

Un=1

n

anF

it follows that d+(0,Un=1anE) = 0.

The proof for the existence of the Bn's is analogous

except we take J = [0,%), and we choose the Bn's so that

1< B, < % for each n. This completes the proof of the

theorem.
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By Lemma 3.7 and Lemma 3.8(ii), Theorem 3.12 can be
stated in the following form which will play a key role in

the next chapter.

Theorem 3.15. Let E be a measurable set. If
d+(0,E) = 1 then there exist two sequences of positive real
numbers {oa } _, and {8 } _;, with the o 's strictly increasing
to 1 and the Bn's strictly decreasing to 1, such that

d,(0,n7_ja E) = d (0,7 8 E) = 1.







CHAPTER IV

THE MAJOR THEOREM

In this chapter we deduce the fundamental result

stated in the following theorem.

Theorem. Suppose f possesses a kth approximate
Peano derivative f(k) everywhere on the interval [a,b].

(i) If f(k) > 0 on [a,b], then f(k—l) is
continuous and increasing on [a,b].

is bounded either above or below on
k)

(43 “If f(k)

[a,b], then f ) = £(k) on [a,b].

The proof of this theorem will require some

additional definitions and lemmas.

Lemma 4.1. Assume f to have a kth approximate
Peano derivative f(k) for each point in [a,b] and that f(l)
If k > 2 furthermore assume

(a) = 0.

is increasing in [a,b].
f(z)(a) = f(3)(a) = ... = f(k-l)

Then (f(l))(k-l)(a) = f(k)(a), that is, there exists a

measurable set E < [0,1] having 0 as a point of right-hand

density such that
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Proof. By subtracting from f a multiple of x, we
may assume that f(l)(a) = 0. By hypothesis there exists a
measurable set F < [0,1] having 0 as a point of right-hand

density and such that
(4.2) F-lim -1 {(f(a+h)-f(a)-An%} = 0,
where A = f(k)(a)/k!.

By Theorem 3.15 there exist two sequences of positive

e ®
real numbers {em}m=1 and (en}n=1 such that

i * = 14 =
r]n1_r‘n(m o J,U."m 6, 0

and

d, (0,0, _;(1-6%)F) = d, (0,0 _;(1+6 )F) = 1.

Let E = Fn [n:=1(1-ea)F] N[0, (140 )F]. By Lemma 3.8

d,(0,E) = 1. To complete the proof of the lTemma we show

&
E-Tim il Lt Ak = Shegis)
RESTON & ah e (k-1)!

Let € > 0 be given. Choose 6, and ea such that if

P
0= 5 = —a%
1+6, I-6%
then
j j-1 ko ky.i-1 . €
AZ§=2(-1)J+1(§)aJ > -% and Azj=2(j)s G
Set
eB €0
"= pin|l—mp— sy Tk .
) 2r(1e) 411 20(1-a)%41)

By (4.2) there exists a &' > 0 such that
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If(a*h)-f(a)-Ahk| < e'h® whenever 0 < h < &0, hoeiF

If tl and t2 are values of h such that 0 < t, < t, < &' and

1 2

tl,tz € F then

k .k ’
[[F(a+ty)-Flavt))]-A(t5-tf)| < e'(thetk).
Hence
k K k, .k k ,k k, k
(ty-t;) (to+ty)  fla+t,)-f(a+t,) (£5=t5) (ta+ts)
pacic o KA 7 s 2 1L I L 5|
ty-t) t,-t) ty-t t,-ty ty-t

Since f(l) is increasing on [a,b] and f(l) = fap we have

f(l) = f’ on [a,b] (see [4]) and hence

f(a+t2)-f(a+t1)

Sl e i It

Thus, whenever 0 < t; < t, < §' and t),t, € F

) | e
(4.3) fiq (a+t1) < A—"—+ g'——
i t-t ty-t
and
T e
(4.4) f(l)(a+t2) > A= - gt ——"— .
ty-t, ty-t

Set & = min{&'/(1+8),8'(1-a)} and let h € E such that
0<h< 6. Since h € (l—ea)F, there exists a t, € F such
that h = (l—ea)tz. Hence

*

em Yh
P = +
t, = (1 + 1_%)h (1+8

and h < t, < §'. Thus from (4.3) we have
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) )
‘ k-1 te!
h Bhk Bhk
k
[(1+8)"-1 1+g)K
<A I e'[( B) +1]
B B

< Ak + k 3-1 £

AZJ ()87 7+ 3
< Ak + €.

Moreover, since h ¢ (1+6n)F, there exists a t; ¢ F such that

h = (1+6n)tl. Hence
8
t, = (1- 1+6 —")h = (1-a)h
and t] < h < &'. Thus from (4.4) we have
f(ll(a+h) [hk-hk(l-a)k] [hk+hk(1—a)k]
(4.6) T > A K - ¢ K
h ah oah
[1—(1-a)k] [1+(1-a)k]
>A—————————-£'——————‘—‘
[0 a
> Ak + AT )3 (el - 5
J
> Ak - €.

Thus from (4.5) and (4.6) we have

ath

f ( )
AK - € < —illf—f—— < Ak + ¢

h

whenever 0 < h < & and h € E. Hence

(a+h) f

h-0 hK (k -1)!
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Coro]]arz 4.7. Assume f to have a kth approximate
Peano derivative f(k) for each x ¢ [a,b], and that f(l)
is increasing on [a,b]. If k > 2 furthermore assume
fa)y(b) = f3y(b) = ... = flko1)(P) = 0.
Then (f(l))(k-l)(b) = f(k)(b).
Proof. Define a function g on [-b,-a] as follows:
g(x) = f(-x) for each x ¢ [-b,-a].

Then g (x) exists for each x ¢ [-b,-a] and
(k)

g(n)(x) = (-l)nf(n)(-x)

for n = 0,1,...,k, where f(o)(-x) = f(-x). Now it is easily
shown that 9(1) is increasing on [-b,-a]. Also, if n > 2 then
-b) = <b) = = -b) = 0.
9(2)( b) 9(3)( b) . g(k-l)( )
By Lemma 4.1 there exists a measurable set E < [0,1] such

that 0 is a point of right-hand density of E and

9(1)('b+h)'9(1)('b) } g(k)(—b)

E-Tim

h-0 pk-1 (k-1)!
Hence
£ an(b=h) =F aab) . “Frus(h)
E-1im (1) k_fl) - (k) :
h-0 (-h) (k-1)!

that is, (f(1))(,-1)(b) = fyy(b)

Corollary 4.8. Assume f to have a second approximate
Peano derivative f(2) for each point in [a,b], and that f(l)

is increasing on [a,b]. Then, (f(l))(l)(x) = f(z)(x) for

each x € [a,b].
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Proof. Follows immediately from Lemma 4.1 and

Corollary 4.7.

Lemma 4.9. Suppose f has (k-1) derivatives at the
point x, then for each sufficiently small non-zero h, there
is a 6, 0 < 8 < 1, depending on h such that

:;le{f(x+h) TRl MM () = 1062 (eaon) ¢ (k72D ()
- onf(k 1) (x)
where f(O)(x) =5l )
Proof. Let

{2 £(n)
(4.10) g(t) = Fx+t)-IKD et (x).

Then g is (k-2) times differentiable around 0 and
x N ey
(4.11) g(J)( ) = f(J) (x+t)- Xk J=1 t!f(" ‘])(x)

for j = 0,1,...,(k-2). By the extended mean value theorem
for each sufficiently small h there exists a 6, 0 < 6 < 1
depending on h so that

h" (k- 2)(eh)

oth) = 1523 s ("o + ghigps
where 9(0)(0) = g(0). By (4.11) it follows that g(j)(O) 2150
for § = 0,1,...5(k-3); hence

KEZ: i
(4.12) g(h) = Agrpatk-2 en).

Thus, by replacing the left-hand side of (4.10) by (4.12) we

have

k-2
h (k-2)
f(e+h)-IN20 Z.f(")( ) = tkem? L
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If h # 0 then this last equation together with (4.11) yields

h
= ¢¢2)(on)
= f(k-Z)(X+eh)-zi=0 (g?)nf(k+n-2)(x)

= £0k2) (eapn)-£(K-2) () gnf (k1) ()

Definition 4.13. A function f defined on an interval
is said to be convex if for every pair of points Pl’ P2 on
the curve y = f(x) the points of the arc P1P2 are below, or

on, the chord pIPZ’

The following lemma is due to S. Verblunsky [9].

Lemma 4.14. Let f have a finite derivative at each
point of (a,b). Suppose that, for each X, € (a,b) there are,
in every neighborhood of (xo,f(xo)), points of the graph of
f above the line y = f(x0)+f’(xo)(x-xo). Then f is convex
in (a,b).

Proof. If possible suppose that there are points
c,d, a <c<d < b, such that the arc y = f(x) (c < x < d)

has points above the chord joining (c,f(c)) and (d,f(d)).

Let
f(d)-f(c)

d-c

K =

Now the function f(x)-f(c)-k(x-c) is continuous and

so it will attain its maximum at some point y in [c,d]. By

our assumption ¢ < y < d. Let
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fy)-f(c)
MR el
Y-c
Then u > k. Since (f(x)-f(c))/(x-c) is a continuous function
on [y,d] it will attain all the values between u and k some-
where between y and d. Let T be such that k < 1 < u. Then
there exists a w, y < w < d, such that
fw)-f(c)
w=C
Now the function
(4.15) g(x) = f(x)-f(c)-t(x-c)
is continuous and so it will attain a maximum at some point
£ in [c,w]. Since y > t, we conclude ¢ < £ < w. Also from
(8.18), % o #2(E)s
Now choose & > 0 such that for each x € (£-8,£+8),
g(x) < g(g). This implies using (4.15) that
f(x) < f(E)+f" (&) (x-¢)
for x € (E-6,£+8). Hence the Tine y = f(£)+f'(£)(x-£) has
the property that there exists a neighborhood of the point
(£,f(£)) such that no point of the graph of f is above the

line. This, however, contradicts our hypothesis.

Definition 4.16. Let f be a function defined in a

neighborhood of x. Then define
f(x+h)+f(x-h)-2f(x)
2f(x) = EiTosup ~—————‘—;?——~——*—
ﬁzf(x) is called the upper symmetric second derivative of

fat x.
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Remark. It can easily be shown that if 2% (%)
exists then ﬁzf(x) = f”(x). However, the upper symmetric
second derivative may exist without the second derivative

existing.
A proof of the following lemma can be found in [1:3) =

Lemma 4.17. A necessary and sufficient condition
for a continuous function f to be convex in (a,b) is that

ﬁzf(x) > 0 for each x in (a,b).

Lemma 4.18. Suppose f has a second approximate Peano
derivative f(z) at a point x € (a,b). Then there exists a
measurable set E < [0,1] such that 0 is a point of right-hand
density of E and

f(x+h)+f(x-h)-2f(x)

E-Tim = f (x).
h=0 n? (2)

Proof. By hypothesis there exists a measurable set

F having 0 as a point of density and such that

2
h -
F-Tim L (F (x+h)-F (x)-hf (1) (x) -5 F () (X)) = 0.
h=0 h
Set F1 = Fn [0,1]. Then 0 is a point of right-hand density
of Fl' Also, 0 is a point of left-hand density of F 0 [-1,0].

Setting F, = {h : -h € F N [-1,0]}, then 0 is a right-hand

point of density of Fz. It follows from Lemma 3.8 that 0 is
a point of right-hand density of E = F1 n FZ'

Let ¢ > 0 be given. Then there exists a 0 < § <1

such that
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f(x+h)- (l}(x [ ) . e
2
whenever h € F and |h| < 6. Let h € E so that 0 < h < 4.
Then h ¢ Fl; thus
f(x+h)-f(x)-hf(l)(x) i f(z)(x) -
n2 2 e
and h € F,, that is, -h € F; thus
Fl-h)-Flx)+hf gy () fipy(x) s
n? 2 2
Hence for 0 < h < 6§, h € E
f(x+h)-f(x-h)-2f(x) (x)
- f X
2 (2)
Flxth)-F(x)-hf ) (X)) F ) (x)
P £
< "2 2
f
i (x=h)-FO)+hF (1) (x) F(5)(x)
h? 2
< % + % = |
Thus
f(x+h)+f(x-h)-2f(x) o i)
E-Tim 5 Xl
h0 h? el

Suppose f has a second approximate

Corollary 4.19.
Peano derivative f,) at each point in (a,b), and f(,y > 0

on (a,b). Then D,f(x) > 0 for each x € (@%b

Proof. Follows immediately from Lemma 35185
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In what follows we shall use without specific
reference several well known results. We Tist these results

here without proof.

Let g be a function defined on an interval J and
let g have an ordinary derivative g’ on Jg. If g is convex

on J then g’ is increasing on J.

Let g be a function defined on [a,b]. If g is
monotone on (a,b) and has the Darboux property on [a,b]

then g is monotone on [a,b].

Let g be a function defined on an interval J. If g

is monotone on J and has the Darboux property on J, then g

is continuous on J.

Let g be a function of Baire class one on [a,b].
Then every non-empty closed set F, contained in [a,b],

contains points of continuity of g relative to F.

Let g be a function defined on an interval J and

assume gép exists at each point in J. Then the following

are true (see [4]):

1) g’ s a function of Baire class one on J,
ap
2) gép has the Darboux property on J,
3) if g’ _ is bounded above or below on J then
a
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Lemma 4.20. Let f be a function satisfying the
following two conditions on [a,b]:

(1) fip(x) exists for each x in [a,b],

(i1) D,f(x) > 0 for each x in (a,b).

Then fép is continuous and increasing on [a,b].

Proof. Let G be the set of all points x in [a,b]
with the property that there is a neighborhood of x on which
fép is bounded. Then G is an open set. Let (c,d) (SN
Then a simple compactness argument shows f;p is bounded on
[c',d'], where ¢ < ¢' < d' < d. Hence fép =6t ion feydt] s
Therefore it follows that fép = f’ on (c,d). Since f is
continuous on (c,d) and ﬁéf(x) > 0 for each x € (c,d), f is
convex on (c,d) by Lemma 4.17. Hence fép is increasing on
(c,d). Moreover since fép has the Darboux property on [c,d]
it follows that fép is continuous and increasing on [c,d].
In particular, fép is continuous and increasing in the
closure of each component of G.

To complete the proof of the lemma we show G = [a,b].
Let H = [a,b]-G. From above H is a closed set having no
isolated points. Suppose H is non-empty. Then H is a
is a function of Baire class one on

perfect set. Since fap

[a,b] there exists an X, € H such that fép is continuous at
Hence there exist numbers M > 0 and & > 0

Let

X relative to H.

so that |fép(x)| < M for each x € [xo-d,x0+6] nH.
a' =min{x : x € [xo-s,xo] n H},

b' = max{x : x € [xo,x0+6] nHYs
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Note that since H is perfect a',b' ¢ H and a' < b'. Also,

if x ¢ [a',b'] (1 H then |fép(x)| <M. Let x € (a',b"')-H.
Then there exists a component of G, say (a,B), where o,B8 ¢ H,
such that x ¢ (a,B) < (a',b'). From the first part of the

proof f’

ap is increasing on [a,B]. Hence

-M < f! ' r
< Fapla) < Fl (k) < £1 (8) < M.

Thus for each x ¢ (a',b'), [fép(x)] < M and so (a',b') < G.
First assume Xy € (a',b'). Then from above X, € G,

which contradicts Xo being contained in H. Secondly, assume

X
0

M '

a'. Then (x_ -8,x ) < G and there exists a number M',

(V4

0, so that fap is bounded by M' on [xo-d,xo]. In the

last paragraph we showed f’ _ was bounded by M on (xo,b').

ap
Thus fép is bounded by the max{M,M'} on (xo-a,b'), and again
Xo € G which is a contradiction. In a similar fashion a

contradiction is obtained, if Xo = b'. Thus H must be empty.

Therefore G = [a,b] and the proof of the lemma is complete.

Theorem 4.21. Suppose f possesses a kth approximate

Peano derivative f(k) everywhere on an interval [a,b].
(i) If f(k) > 0 at each point in [a,b], then

fk-1) 15 continuous and increasing on [a,b].
(ii) If f is bounded either above or below on

[a,b], then f \ = £(k) on [a.b].

Proof. Consider first the case k = 1. Recall that

= f7 1 , th f = f’ on
1) fap. Thus, if f(l) > 0 on [a b] en (1)

[a,b]. Thus, f(O)

f(
= f is continuous and increasing on [a,b].

Moreover, if f(l) is bounded either above or below on [a,b]
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then f(l) = f’ on [a,b]. Thus the theorem holds when k = 1z

Secondly, consider k = 2. By Corollary 4.19 and
Lemma 4.20 the proof of (i) is immediate. Turning to case
(ii), it is no loss of generality to assume f(z) > 0 on
[a,b]. From (i) it follows that f(l) is increasing on [a,b];
hence f(l) = f’ on [a,b]. By Corollary 4.8, (f')(l) = f(z)
on [a,b]. Moreover by assumption (f’)(l) > 0 on [a,b];

hence (f’) I S Ragt! f(z). Therefore f(z) = f(z) on [a,b].

(1)

We may now assume that k > 2, and we can complete

the proof by induction. We therefore assume the following:

If f possesses a (k—l)th approximate Peano derivative
everywhere on an interval [a,b], then for 1 < n < (k-1)

(i) if f( > 0 on [a,b], then f(n—l) is continuous

n)
and increasing in [a,b],

(i), it f(n is bounded either above or below on

(a,b], then f  \ = £(n) on [a,b).

Let k > 2 and assume f(k) > 0 at each point in [a,b].
Let G be the set of all points x of [a,b] with the property
that there is a neighborhood of x on which f(k-l) is bounded.
Obviously G is open. Let (c,d) € G. If c <a < B <d, then

a simple compactness argument shows f(k-l) is bounded on

, o - (k1)
[a,B]. By (ii) of the induction hypothesis, (k-1)
k-2
on [a,B] and therefore f(k-Z) . f( ) on [a,B]. Moreover
on

these relations hold on (c,d). Thus f( 1) = ' (k-2)

(c,d) and f(k 2) is continuous on (c,d). If x € (c,d) then

there exists a measurable set E such that 0 is a point of
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density of E and
hk

n
K’ h_' )(X)+k—!(f(k)(X)+€(x,h))

Flx+h) = zn=é n f(n

where E-1im e(x,h) = 0. From Lemma 4.9 for each suffi-
h-0
ciently small non-zero h € E there is a @, depending on h,

between 0 and 1 such that

Hence

2
h
f(k_z)(x+8h) = f(k-Z)(X)+ehf(k-1)(x)+ET?:T3{f(k)(x)+€(x’h)}
> f(k-Z)(X) +6hf(k_1)(x)

for all sufficiently small non-zero h € E. Thus, it follows

by Lemma 4.14 that f _,) is convex on (c,d)s; hence £, ;)

is increasing on (c,d). Choose y between c and d. Then

f(k 1) is bounded below on [y,d]. Applying (ii) of the
induction hypothesis to the function f(k-l)

k-1) on [y,d]. Now since

on the interval

_ el
[y,d], it follows that f(k-l) = f
f(k 1) is increasing on (y,d) and has the Darboux property

i i increasing on
on [y,d] we have that f(k—l) js continuous and i

i i on [Cc,Y],
[y,d]. Similarly, since f(k-l) ijs bounded above [c,y

i i i easing on [c,Y].
we deduce that f(k-l) is continuous and incr g
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Thus it follows that f(k-l) is continuous and increasing on
[c,d]. In particular, f(k-l) is increasing and continuous in
the closure of each component of G.

To complete the proof of (i) we show G = [a,b]. Let
H = [a,b]-G. From above H is a closed set having no isolated
points. Suppose H is non-empty. Then H is a perfect set.
Since f(k-l) is a function of Baire class one on [a,b] (see
[3]), the same type of argument given in the proof of
Lemma 4.20 shows H is empty. Hence G = [a,b] and the proof
of (i) is complete.

Consider, finally, (ii) for k > 2. It is no loss of
generality to suppose that fiky > 0 on [a,b]. By (i), Fk-1)
is increasing on [a,b] and by (ii) of the induction hypothesis

f(k-l) = f(k’l) on [a,b]. Thus it follows that f(l) = f’

on [a,b]. We shall prove that (f(l))(k-l) = f(k) on [a,b].

It will then follow by the induction hypothesis (ii) applied

y(k=1) - (k).

to f(l) that in [a,b], f(k) = (f(l))(k-l) ) (f(l)

th
It suffices to prove that in [a,b) the (k-1)

approximate Peano derivative of f(l) on the right, equals

f(k)‘ For, applying Corollary 4.7, it will follow that in

(a,b] the (k-l)th approximate Peano derivative of f(l) on
the left equals f(k)‘ Without altering f(k) by adding to f

a suitable polynomial of degree less than n, we may assume

that f,.,(a) = 0, for j = 2,3,...,(k-1). Note, since
J

k-1
f(k’l)(a) = 0 and f(k'l) js increasing on [a,b], f( ) >0

on [a,b]. Now for each h, 0 < h < (b-a), there exists by

the extended mean value theorem a number &, a < £ < ath
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such that
k-3

AN P

£(2) (aen) =

2 .
Hence f( ) >0 in (a,b). Thus f(l) is increasing on [a,b].
By Lemma 4.1, (f(l))(k-l)(a) = f(k)(a). Since a may be
replaced throughout by any o € [a,b) the proof of the

theorem is complete.

In [6], C. J. Neugebauer proved that if g is a
function of Baire class one on an interval J, then g has the
Darboux property on J if and only if for each real number A,
the sets £A = {x : g(x) > A} and Ey = {x : g(x) < X} have

closed connected components.

We thus have the following corollary to the last

theorem.

Corollary 4.22. [If f possesses a kth approximate

Peano derivative at each point of an interval [a,b], then

f(k) has the Darboux property on [a,b].

Proof. Since f(k) is of Baire class one on [a,b]

(see [3]), in order to show f(k) has the Darboux property

we need only show that the connected components of the sets

A

E™ = {x : f( A} are closed

1A

k)(x) > A} and E, = {x : f(k)(x)

for every real number A. S0 suppose f(k)(x) > A for all x

in the interval (a,B). We must show that f(k)(a) > X and

is bounded below on (a,B), f(k)

f,.\(B) > A. Now since f
(k) - (k) ()

is bounded below on [a,B]. Thus by Theorem 4.21, f(k)

on [a,B]. Since f(k) has the Darboux property on [asB],
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k
f( )(a) > X and f(k)(e) > A. Hence, f(k)(a) > X and also
f(k)(S) > A. Thus the connected components of E* are closed.
Similarly the connected components of EA are closed. Thus,

f(k) has the Darboux property on [a,b].

In [10], C. E. Weil proved that a function g of Baire
class one has the Denjoy property on an interval J if, for
every subinterval L of J on which g is bounded either above

or below, g restricted to L has the Denjoy property.

Using this result along with the facts that a kth

approximate Peano derivative is a function of Baire class

one and that an ordinary kth derivative has the Denjoy prop-
erty, we also have the following corollary to the last

theorem.

Corollary 4.23. If f possesses a kth approximate
Peano derivative at each point of an interval [a,b], then
f(k) has the Denjoy property on [a,b].
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CHAPTER V

PROPERTY Z FOR APPROXIMATE PEANO DERIVATIVES

In this our final chapter we prove property Z for
the kth approximate Peano derivatives. To prove that every
kth approximate Peano derivative has property Z we first
prove a lemma, which is a modification of a lemma proved by
C. E. Weil [11]. Before proving the lemma some facts are

established that will be needed.

Let A be a measurable set and [c,d] a closed interval.
Define a function on [c,d] as follows:
F(x) = m(A n [c,x]) = % x(s)ds
where y denotes the characteristic function of A. Then F is
absolutely continuous and F’(x) = x(x) a.e. on [c,d]. More-
over, almost everywhere

N P MR ¢ L

Consequently,
j il Jj+1
J4m(a 0 [e,51))9ds > ghry (A 0 [e,d]))PTh
Likewise if we define on [c,d]
d
6(x) = m(A n [x,d]) = [, x(s)ds,

then G is absolutely continuous and G'(x) = -x(x) a.e. on

[c,d]. 1In addition almost everywhere
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d j+ 2 j 5
ax 87 = e (0 > -(gened.
Therefore,

Je-(ma n [s,¢1))3as < oy (A 0 fe,a1)) it

Lemma 5.1. Suppose f is a function whose kth

derivative exists and is nonnegative on the interval [a,b],
and let

A= ix e [a,b] : £ (x) > )
where € is a fixed positive number. Then there exists a
<t <. <ty = b} of the interval
and such that for each i = 1,2,...,2%,

partition {a = t

0
[a,b] with 2 < 2k
with x,y € [ti-l’ti] and x <y
k
[F()-F()] > GE (A 0 [x,y1)).
Proof. It will be shown by induction that for each
integer j = 1,2,...,k, there is a partition of [a,b]

= : .= b
B SRS g R A Y B

with 2(j) < 2J and such that for each i = 1,2,...,2(Jj), one
of the following holds for each x,y in [ti-l,j’ti,j] with
X3

1(5): £33 () > (E)(mA 0 [x,y1))?

[

and f(k'j)(x) 2403

k=3 () oD () 5 (A 0 1oy

and £&3)(y) < 0.
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3050 £ 00 e 9N ) 5 (a0 (xay1))?
and f(k'j)(x) < 0.

a(3): £ 00 (90 () 5 (o mia 1 [xay1))?

and £(k=3)(y) 5 0.
The desired partition is then the one corresponding to
J = k and the desired inequality is obtained by taking
absolute values, where, of course f(o) = f.

The induction assertion is first proved for j = 1.

k-1)

Since f(k)(x) > 0 for all x € [a,b], f( is nondecreasing

k'l)l attain its minimum

and continuous on [a,b]. Let lf(

value on [a,b] at t € [a,b]. There are three cases to

consider: t =a, t =b, and a < t < b.

If t (k-1) is nondecreasing on

a, then since f
[a,b], f(k'l)(a) > 0 and for each x,y € [a,b] with x <y,
f(k-l)(x) > 0 and

(k1) gy D) (o = ¢ (K () s

> em(A N [x,y]).
In this case 1(1) holds for each x,y € [a,b] with x <y
if we take t; = a and t; = b. .
If t = b, then since f(k'l) is nondecreasing on '

[a,b], f(k_l)(b) < 0 and for each x,y € [a,b] with x < ¥,

f(k'l)(y) < 0 and

(k1) gy (kD) ) = pY ¢ KD (5)as

em(A N [x,y])-

Vv
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In this case 2(1) holds for each X,y € [a,b] with x <y

if we take t, = a and t, = b.

0 1

If a <t < b, then since f(k'l) is nondecreasing on
[a,b], f(k'l)(t) = 0. Arguments like the two just presented
show that 2(1) holds on [a,t] and 1(1) holds on [t,b]. In
this case take to = a, t1 = t, and t, = b. The induction
assertion is established for j = 1. (Note that only cases
1 and 2 occurred. In the induction step it will be seen
that 3 and 4 arise from 2.)

Assume the assertion true for j, and let i be an

integer between 1 and 2(j). As a notational convenience
-l,j’ti,j].by [c,d] and the function
f(k'(3+1)) by g so that g’ = f(k'J). It must be shown that

denote the interval [ti
if 1(3), 2(j), 3(j), or 4(j) holds on [c,d], then [c,d] can
be divided into no more that two subintervals so that on
each subinterval 1(j+1), 2(j+1), 3(j+1), or 4(j+1) holds.
First assume that 1(j) holds for each x,y € [c,d]

with x < y. Then

6*(y) > (F)(n(A 0 [x.y1))7 + 97 (x)
> (F)(m(A 1 [x.y1))?
>0

since g’(x) > 0. Hence g is nondecreasing and continuous

on [c,d]. Let |g| attain its minimum value on [c,d] at

t € [c,d]. There are as before three cases to consider:

t=c¢, t=4d, and c < t < d.
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If t = c, then g(c) > 0 and for each x,y € [c,d]
with x <y, g(x) > 0 and
9(y)-9(x) = ¥ g'(s)ds

[

Jy (P (m(A 0 1x,51))dds
j+

> (o) (m(A 0 1x,y1))3*

(The last step was made by using one of the facts established

previous to the lemma.) Thus, 1(j+1) holds for each x,y in

[c,d] with x < y.

If t = d, then g(d) < 0 and for each x,y € [c,d]

with x <y, g(y) < 0 and
g(y)-g(x) = [¥ g7(s)ds

> [¥ (F) (A 0 [x,s])) ds

> () (A 0 x.y1)
Thus, 2(j+1) holds for each x,y in [c,d] with x < y.

If ¢ <t <d, then g(t) = 0 and it can be shown by
arguments like the two just given that 2(j+1) holds for each
X,y € [c,t] with x < y, and that 1(j+1) holds for each
X,y € [t,d] with x < y.

Second, assume that 2(j) holds for all x,y € [c,d]
with x < y. Then

g (x) ¢ G 0 ey +ar(y)

A

) n [x,y1))

0

A






since g'(y) < 0. Thus, g is nonincreasing and continuous
on [c,d]. Llet |g| attain its minimum value on [c,d] at t.
There are three cases.

If t = c, then g(c) < 0 and for each x,y € [c,d]
with x <y, g(x) < 0 and

g(y)-9(x) = [¥ g'(s)ds

J:
< (r3aryr) (m(A 0 1x,y) )L
Thus,
J*+1

g(x)-g(y)

(5T (n(A 0 1x,y1)

Therefore, 3(j+1) holds for each x,y in [c,d] with x < y.

(Y2

If t =d, then g(d) > 0 and for each x,y € [c,d]

with x <y, g(y) > 0 and
9(y)-9(x) = [¥ g’ (s)ds

<y GRm(A 0 [s.y1))7ds
< (rr) (A 0 xy )3T
Thus,
J*l

(D) (m(A 0 1x,¥]1))

Therefore, 4(j+1) holds for each x,y in [c,d] with x < Y.

g(x)-g(y)

If c <t <d, then g(t) = 0 and using the same
reasoning as above it can be established that 4(j+1) holds

for all x,y € [c,t] with x < y, while 3(j+1) holds for all

X,y € [t,d] with x < y. (It should be observed that cases

3 and 4 arise from 2 and thus are essential.)
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Third assume that 3(j) holds for all X,y € [c,d]
with x < y. Then

™

9°(¥) < (FP(m(A N [x,y1))3 + g7 (x)

(&)

< (FHm(A n [x,y]))3

(&)

IA

0

since g’ (x) < 0. Hence g is nonincreasing and continuous
on [c,d]. Let |g| attain its minimum value on [c,d] at t.
If t = c, then g(c) < 0 and for all x,y € [c,d] with x <Y,
g(x) < 0 and

9(y)-g(x) = [¥ g7 (s)ds

I GH (e n [x,s1))dds

1A
(&)

J+l

(GFryT) (n(A 0 [x,y1))

Thus,

1
(G (m(A 0 [x,91))770
Therefore, 3(j+1) holds for each x,y € [c,d] with x < y.

g(x)-g(y)

A4

If t = d, then g(d) > 0 and for all x,y € [c,d]

with x <y, g(y) > 0 and

9(y)-g(x) = ¥ g’ (s)ds .
< [ GPm(A 0 [x.5]))ds
< (Tj—;%)—!)(m(l\ N [x,y1))9*L.
Thus,
9(x)-9(y) 2 (rrgyr) (n(A 0 [x,91))7*L

Therefore, 4(j+1) holds for each x,y € [c,d] with x < V.
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If ¢ <t <d, then g(t) = 0. By using the same
reasoning as above it can be established that 4(j+1) holds
on [c,t] and 3(j+1) on [t,d].

Finally, assume 4(j) holds for all x,y in [c,d] with
x < y. Then since g’(y) > 0 it follows that g’(x) > 0.
Hence g is nondecreasing and continuous on [c,d]. Now let
|g| attain its minumum value on [c,d] at t. If t = c, then

g(c) > 0 and for all x,y € [c,d] with x <y, g(x) > 0 and

[

a(y)-g(x) = [¥ g’ (s)ds

(A%

B @A n [s.y1)) s

P41
> (e (A 0 Doy
Thus, 1(j+1) holds for each x,y € [c,d] with x < y.
If t = d, then g(d) < 0 and for all x,y € [c,d]

x <y, g(y) <0 and

g(y)-9(x) = [¥ g’ (s)ds

(%

() man (s,y1))3ds

S ILILYL N DA

[

Thus, 2(j+1) holds for each x,y € [c,d] with x < ¥.

If c <t <d, then g(t) = 0, and proceeding as has
already been demonstrated it can be established that 2(j+1)
holds on [c,t] and 1(j+1) on [t,d]. This completes the

proof of the lemma.
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Theorem 5.2. If f has a kth approximate Peano

derivative f(k) everywhere on [a,b] then f(k) has property Z
on [a,b].

Proof. Let x be contained in [a,b] and € > 0. It
suffices to show that if given an n > 0 there exists a 6 > 0
such that if the closed interval [a,B] is contained in
(x-8,x+8) n [a,b], x ¢ [a,B] and f(k)(y) > f(k)(x) for each

y € [a,B] or f(k)(y) < f(k)(x) for each y € [a,B] then

m{y € [a,B] : lf(k)(Y)-f(k)(X)| > el
(B-a) + dist.(x,[a,B])

(5.3) <.

Let n > 0 be given and set

n
9(y) = Fly)-Ik o e (x).

n=0 n!
Then g(k)(y) exists for each y € [a,b] and furthermore
g(k)(Y) = f<k)(Y)‘f(k)(X)-
From the existence of f(k)’ there exists a 8 > 0 and a meas-
urable set E < [a,b] such that x is a point of density of E,

and so that

e(n/2)¥ )
(5.4) lg(y)] < LGN |y-x]| |
for |y-x| < 6§ and y € E,
(5.5) m(g 0 ES) < m(3)3

for J an interval contained in (x-6,x+8) N [a,b] and x € J,

where E€ = [a,b] -E.
Let [a,B] be a closed interval contained 1in

(x-8,x+8) N [a,b] such that x ¢ [a,B]. First assume that
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f(k)(Y)

(
f

f(k)(x) for each y ¢ [a,B]. By Theorem 4.21,
)

k

k) = f on [a,B]. Applying Lemma 5.1 to the function

g, which satisfies

(k) -
g (y) = f(k)(Y)‘f(k)(X)

for each y ¢ [a,B], there exists a partition of [a,B]
{a = tO < t1 < ... < tz = B}
with 2 < 25 such that for each i = 1,2,....2. and each

S,W € [t 1,t ] with s < w

(5.6) [g(w)-g(s)] > & (m(A 0 [s,w1)

where A = {y ¢ [a,B] : | g
If f(k)(Y) < f(k)(x) for each y € [a,B], then consider -g
and apply Lemma 5.1 to obtain precisely the same inequality
(5.6).

We first obtain an estimate for m(A N E). For this

purpose assume [ti-l’ti] NEeE¢#pP. Let

t < ti< t" < t.

)
i-1 i- 71 = 7

with t%,tq € E. Then by (5.6) and (5.4)

SR RANFICETEIRL

m(A N [t%,t%]) < .

S NANIFICHINARNEICHIRAS

€ 1

LA
—

1A

(KL (e k2R (e e erx])

—lL— [dist.(x,[a,B]) *+ (B-a)]

1A
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If

[72]
1}

inf{t: : t: ¢ [t;_1>t;] N E}

-

and

wn
"

. sup{tq : tq € [ti-l’ti] n e}

then it follows from the above inequality that
m(A 1 E N [ti-l’ti]) =m(ANEN [s%,s?])

<m(An [sf,s1])

< f% [dist.(x,[a,B]) + (B-a)].

Clearly the same estimate holds if [ti-l’ti] NE=0. Hence

(5.7) m(ANE)=m(ANENn (uf=1[ti_1,ti]))

_ ok
= Ijp AN EDN [t {,t])

< I3, % [dist.(x,[a,B]) + (B-a)]

1A

7 [dist.(x,[a,8]) + (B-a)].

Secondly, we obtain an estimate of m(A N E€). Let J
be the smallest closed interval in [a,b] containing both x
and [a,B]. Using (5.5) we have the following estimate

(5.8) m(A N ES) <m(3 nES) <m(3)] .

Note that m(J) = dist.(x,[a,B]) + (B-a).
Therefore by (5.7) and (5.8)

m(A) = m(A N E) +m(AnES)
<m(ANE)+m3nE")
< [dist.(x,[a,B]) + (B-a)]-F + m(3)-3

[diSt-(X,[a,B]) + (B'a)]°n ’
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and (5.3) holds. Thus f(k) has property Z on [a,b] and the

proof is complete.

As was mentioned in the introduction, C. E. Weil
introduced property Z in [11]. He further showed in [11]
that if a function g has the Darboux property and property Z
on an interval J then g has the Zahorski property on J (an
example of a function having the Darboux property and the
Zahorski property but not property Z can also be found in
[11]). Thus in the class of functions having the Darboux
property, property Z is strictly stronger that the Zahorski

property.

Thus, by Corollary 4.22 and the previous paragraph,

we have the following corollary to the last theorem.

Corollary 5.9. If f possesses a kth approximate

Peano derivative f(k) everywhere on [a,b], then f(k) has the

Zahorski property on [a,b].
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