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ABSTRACT

0N PROPERTIES OF THE APPROXIMATE

PEANO DERIVATIVE

By

Bruce Scott Babcock

The ordinary derivative has been studied extensively

and many properties of it have been discovered. Although an

ordinary derivative need not be continuous, it does possess

certain properties worth investigating. The following four

properties, defined here for an arbitrary function 9, have

been shown to hold for an ordinary derivative:

1. g is in the first class of Baire.

2. g has the Darboux property.

3. g has the Denjoy property.

4. g has the Zahorski property.

C. E. Neil has recently introduced a new property

which he calls property Z. He has shown that property Z is

stronger than the Zahorski property in the class of functions

having the Darboux property. In addition he has shown that

an ordinary derivative has property 2-

H. w. Oliver showed more generally that if a function

f has a kth Peano derivative fk then fk has properties 1, 2,

and 3 listed above. C. E. Weil showed, furthermore, that fk

also has property 4 and property Z.  
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Bruce Scott Babcock

A. P. Calderon and A. Zygmund have generalized the

kth Peano derivative by means of the kth Lp derivative, where

0 < p 5 w. M. J. Evans has recently shown that if a function

h
f has a kt Lp derivative fk p’ where 1 f p f m, then f

k,p

has the four properties listed above.

h
The notion of kt Lp differentiation, where O < p 5 w,

is contained in one that is more general. It is called kth

approximate Peano differentiation. M. J. Evans was the first

to investigate this type of differentiation and has further

shown that if a function f has a kth approximate Peano deriv-

 

ative f(k) then f(k) has property 1 given above.

In this paper we first examine the concepts discussed

above. We then proceed to prove our main result that when a

function f has a kth approximate Peano derivative f(k) and if

_ fm
_ a

f(k) is bounded above or below on an interval then f(k)

the ordinary kth derivative. From our main result the proper-

ties 2 and 3 given above are then easily shown to hold for a

kth approximate Peano derivative from known theorems. As our

final result we prove that a kth approximate Peano derivative

th .
has Property 4 by verifying that a k approx1mate Peano

derivative satisfies the stronger property Z.
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CHAPTER I

INTRODUCTION AND DEFINITIONS

All of the functions in this paper are assumed to be

real-valued, measurable functions defined on a nondegenerate

closed interval I = [a,b], unless specified otherwise. Also

whenever we write x+h (x E I) our assumption is that x+h E I.

Furthermore, the notation E-lim will denote that the limit is

computed only for those valuzs of y in E. Finally, if E is a

measurable set then we denote the measure of E by either m(E)

or IE].

Since the turn of the century the ordinary derivative

has been studied extensively and many properties of it have

been discovered. Although an ordinary derivative need not

be continuous, it does possess certain properties worth

investigating. The simplest of these properties is that

every ordinary derivative is a function of Baire class one.

Definition 1.1. A function f, defined on I, is

said to be a function of Baire class one on I if there is

a SEQUence {fn}:=1 of continuous functions, each defined on

I, such that

AwmfnU)= HxL

for each x in I.

 



   



Perhaps the best known property for an ordinary

derivative is the Darboux property or intermediate value

property.

Definition 1.2. A function f, defined on I, is

said to have the Darboux property if whenever x1 and x2

are distinct points of I and y is a number between f(x1)

and f(x2), there is an x3 between x1 and x2 such that

f(x3) = y.

In 1916, A. Denjoy [2] proved that an ordinary

derivative has what we shall call the Denjoy property.

Definition 1.3. A function f, defined on I, is

said to have the Denjoy property on I if for every open

interval (a,8), f‘1((a,8)) either is empty or has positive

measure.

The Denjoy property was further strengthened by

Z. Zahorski in 1950 [12]. We call this property the

Zahorski property and define it in the following manner.

Definition 1.4. A sequence of closed intervals

{In}:_1 is said to converge to a point x if x is not in

the union of the In's and if every neighborhood of x

contains all but a finite number of the intervals In‘

Definition 1.5. A function f, defined on I, is

said to have the Zahorski property on I if for every open

 



   



interval (a,6), x in f'1((o,8)) and {In}:=1, a sequence of

closed subintervals of I converging to x with

m(f'1((a.e)) n1") = 0

for every n, implies

m(I )

lim n

n-em - .
dist.(x,In)

 

where dist.(x,In) = ianIx-yl : y e In}.

Zahorski showed that an ordinary derivative also

possesses the above property.

Recently C. E. Neil [11] has introduced a new

property, property Z, which is stronger than the Zahorski

property.

Definition 1.6. A function f, defined on I, has

property Z on I if for each x E I, each 6 > 0 and each

seQuence {In}:=1 of closed subintervals of I converging to

x such that for each n, f(y) 3 f(X) on In or f(y) S TIX)

on In,

m{y E In : If(y)-f(x)l 3 5}

lim = O.

”T“ mun)+dim.U,%)

In addition Neil has shown that an ordinary

derivative has the stronger property Z.

These five properties, however, do not classify

derivatives. Indeed, they are possessed by more general

types of derivatives.

  



   



Suppose a function f, defined on I, possesses an

ordinary derivative f’(x) at a point x E I. Then

f(x+h)-f(x)

 

lim

h-O h

or equivalently,

as h-O.

This last equation motivates a more general first

order derivative in terms of the Lm-norm. In order to

understand this definition, recall that if g is a function

defined on an interval J then [[9 Hm’J is defined by

= 9(t)lH9 Hm,J essesgpl

where ess sup|g(t)l = inf{M : m{t E J : |g(t)| > M} = O}.

t E J

Definition 1.7. A function f, defined on I, is said

to have a first LCD derivative at a point x E I if there

exists a number f1 0°(x) such that if

g<t> = f<x+t>-f<x>-tf1,m(x>

then

IIg “w,(0,h) = 0(h)a

where (0,h) = [0,h] if h > O and (0,h) = [h,O] if h < O.

The number f1,m(x) is called the first Lco derivative of f

at x.

  



   



Replacing the Lm-norm by the Lp-norm where

o < p < m, suitably normalized so that the function iden-

tically 1 has Lp-norm 1, gives the following definition.

Definition 1.8. A function f, defined on I, is

said to have a first Lp derivative at a point x e I,

0 < p < m, if there exists a number f (x) such that
l,p

(x)|pdt

]1/P = 0(h)

[%f3|f(x+t)—f(x)-tf1,p

as h ~ 0. The number f1 p(x) is called the first Lp

derivative of f at x.

For its application to Fourier analysis it suffices

to consider p 3 1, but for establishing properties of the

derivatives that arise, O < p < 1 may also be considered.

All of these methods for the first order

differentiation are contained in one that is more general.

It is called approximate differentiation and is defined in

the following manner.

Definition 1.9. Let E be a measurable set and let

x be a real number. Define

m(E n [x-h,x+h])

 ,E = lim ,

d(x ) h-«O 2h

m(E n [x,x+h])

,E = lim ———————-——--»

d+(x ) h-*0+ h

  



 

 



m(E n [x-h,x])

d_(x,E) = Iim +\ .

h-0 h

If d(x,E) = 1 then x is called a point of density of E; if

d(x,E) = 0 then x is called a point of dispersion of E. If

d+(x,E) = 1 then x is called a right-hand point of density

of E; if d+(x,E) = 0 then x is called a right-hand point of

dispersion of E. Similarly, if d_(x,E) = 1 (0) then x is

called a left-hand point of density (dispersion) of E.

Definition 1.10. A function f, defined on I = [a,b],

is said to have an approximate derivative at a point x E I if

there exists a number fép(x) and a measurable set E having 0

as a point of denstiy such that

f(x+h)-f(x)

E-lim —— = f5p(X)-

h-oO h

Ne call fép(x) the approximate derivative of f at x.

Remark. In Definition 1.10 if x = a (x = b) then the

expression, there exists a measurable set E having 0 as a point

of density, is understood to mean that E E [0,w) (E E (-w,x])

and 0 is a right-hand (left-hand) point of density of E.

This same convention will be adopted in Definition 1.13

Since approximate differentiation is more general

' ' ‘ ' tiation,than ordinary differentiation and first Lp differen

0 < P < w, every property possessed by the approximate deriv-

atives is also possessed by the ordinary derivatives and the

first Lp derivatives, 0 < P S ”'

 



 

 

 



In 1960, C. Goffman and C. J. Neugebauer [4] gave

concise proofs of the facts that every approximate deriv-

ative is a fuction of Baire class one and possesses the

Darboux property. These facts were first established by

G. Tolstoff [8]. The Denjoy property for an approximate

derivative was established by S. Marcus [5] and C. E. Neil

[10]. Neil, in addition, verified the Zahorski property in

[10] and property Z in [11] for approximate derivatives.

Another important property of an approximate derivative,

a proof of which can be found in the paper of Goffman and

 

Neugebauer, is that if an approximate derivative is bounded

above or below on an interval, then it is an ordinary

derivative on that interval.

Even more can be said for kth order differentiation.

If a function f has a kth ordinary derivative at a point x,

then by Taylor's theorem

k _
f(x+h)-f(x)—hf’(x)-...-Ejf( )(x) — o(h

as h-oO. In many instances it was only the existence of

such a polynomial that was ever needed, even though the

function was assumed to have k derivatives at x. This led

th
to the introduction of the following so called k Peano

derivative.

Definition 1.11. A function f, defined on I, is

said to have a kth Peano derivative at a point x E I,



 
  



k = 1,2,..., if there exist numbers f1(x), f2(x),..., fk(x),

such that

f(x+h)-f(x)-hf1(x)-...-—.fk(x) = 0(hk)

as h-rO. The number fk(x) is called the kth Peano derivative

of f at x.

That every kth Peano derivative has the Darboux

property, is a function of Baire class one, and possesses

the Denjoy property was first proved by H. N. Oliver [7].

Neil in [10] also gave an independent proof of the Denjoy

property together with a proof of the Zahorski property;

and in [11], he gave a proof of property Z for the kth

Peano derivative. Oliver also showed in his paper that if

a kth Peano derivative is bounded above or below on an

th
interval, then it is an ordinary k derivative. Recently,

S. Verblunsky [9] showed how to prove this last property

from the definition without using the Darboux property or

other properties as Oliver had done.

Proceeding in the same fashion, as in the case of

. th - -
the first ordinary derivative, the k Peano derivative may

be generalized by means of the Lp-norm, 0 < p g m. Ne thus

have the following definition.

Definition 1.12. Let f be a function defined on I.

LEt X E I and let k be a positive integer. If there exist

(x), f2 m(x),..., fk,m(x) such thatnumbers f1 w ,

 



 

  



k
ess sup|f(x+t)-f(x)—tf1

0°(x)-...-E—,fk 0°(x)| = o(h k)
t e <0,h)

then f is said to have a kth Lon derivative at x. The number

fk,m(x) is called the kth L0° derivative of f at x.

If th 'ere eXIst numbers f1,p(x)’ f2,p(x), , fk,p(x),

where O < p < m, such that

k 1/pI h
t p _ k[hf0[f(x+t)-f(x)-tf1’p(x)-...-k—!fk,p(x)|

at] — 0(h)

then f is said to have a kth L derivative at x. The number

f th
k,p(x) is called the k

Lp derivative of f at x.

This concept was first introduced by A. P. Calderén

and A. Zygmund [I] but their interest was only in the case

p 3 1.

In a manner analogous to the way the approximate

derivative was introduced, the kth approximate Peano deriv-

ative may be defined. This type of differentiation is more

general than kth Peano differentiation and kth Lp differ—

entiation where 0 < P S ”-

Definition 1.13. A function f, defined on I, is

h approximate Peano derivative at a point

= f(x),

said to have a kt

X E I, k = 1,2,..., if there exist numbers f(0)(x)

f(1)(X),..., f(k)(x), and a measurable set E having 0 as a

point of density such that

hk k
f(x+h)‘f(X)'hf(1)(X)—..."k—!'f(k)(X) )
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as h-o and h e E. The number f(k)(x) is called the kth

approximate Peano derivative of f at x.

This latter generalized derivative was first studied

by M. J. Evans [3] where he showed that every such derivative

is a function of Baire class one. He was also able to estab-

lish the other properties (Darboux, Denjoy, and Zahorski) but

only for the kth

th

Lp derivatives with p 3 1. Property Z for

the k Lp derivatives can be established in the same way as

Evans established the Zahorski property for these derivatives.

h

 

In Chapter II we prove that kt approximate Peano

differentiation is a true generalization by giving an example

of a function having a kth approximate Peano derivative at 0

but no kth Lp derivative for 0 < p 5 m, at 0. Ne also show,

given two real numbers p,q, with O < p < q f w, how to con-

th th
struct a function having a k Lp derivative at 0 but no k

Lq derivative at 0.

In Chapter III we prove that if 0 is a point of

density of a measurable set E then there exists a sequence

of positive real numbers {An}:=1, strictly increasing to 1

(strictly decreasing to I), so that O is a point of density

of the set H:=1AnE, where AnE = {Anx x 6 E}, n = 1,2,....

This result will play a key role in Chapter IV where we

th .

prove our major theorem that when a k apprOXImate Peano

' ‘ is an
derivative is bounded above or below on an interval, 1t



 

 

 



ordinary kth derivative. The Darboux and Denjoy properties

follow easily then from known theorems.

In Chapter V, our final chapter, we give a proof of

property 2 for the kth approximate Peano derivatives. The

weaker Zahorski property then follows for the kth approx-

imate Peano derivatives.

  



 

 

 



CHAPTER II

EXAMPLES

Let f be a function, defined on I, possessing a kth

approximate Peano derivative at a point x E I. Then there

exist numbers f(1)(x), f(2)(x),..., f(k)(x), and a measurable

set E having 0 as a point of density such that

(2 1) f(x+h)-f(x)-hf(1)(x)-...-E7f(k)(x) = o(h

as h-aO and h E E.

..., , easilThe numbers f(1)(x), f(2)(x), f(k)(x) can y

be shown to be unique and for each n, n = 1,2,...,k, (2.1)

can be rewritten as

f(x+h)-f(x)-hf(1)(x)-...-hh-!f(n)(x) = o(h").

Thus f has an nth approximate Peano derivative f(n)(x) at x

for n = 1,2,...,(k-1), and f(1)(x) = fép(x), the first

. th

approximate derivative. Moreover, if f has a k Peano

derivative at x then f1(x) = f’(x), the ordinary first

. th . .
derivative. Notice that if f has an ordinary k derivative

f(k)(x), at x, then Taylor’s theorem Shows that f(k)(x)

exists and equals f(k)(x). However, as we shall show,

. - ' x existing forf(k)(x) may exist at a POIOt X WithOUt fk,p( )

any P O < p < m, at x. In [3], M. J. Evans has shown that

12  



 

 

 



13

if a function f, defined on 1, possesses a kth Lp derivative

fk,p(x) at a point x E I, where 0 < p f m, then f has a kth

approximate Peano derivative f(k)(x) at x and furthermore,

fk,p(x) = f(k)(x).

Let k be a positive integer and let p be a positive

real number. Ne now show how to construct a function which

th
has a k Lp derivative at 0 but not a kth L derivative at

q

0, where p < q 5 w.

Example 2.2. Let k be a positive integer and let p

 

be a positive real number. Suppose q is a real number such

that p < q < w. Set c = 1+k+% and M = é¥% . Let

1 1 1
I = {—3 _' + _] a

n 2n 2n 2qu

n = 1,2,..., and E = I-u:=lin, where I = [0.1]. Let us first

show d+(0,E) = 1. Let 0 < h < 1, and choose the positive

integer N so that

 

Now it can be easily shown that

[E 0 [0,h]|

< <

ZNIMq-1)(2Mq,1) - h
 

As h-°0+, N-+w, and since Mq-l > 0 it follows that

IE n [0,hll

im + —-——-—-—~——'= 1

h-o h

Thus, d+(0,E) = 1.
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Define a function f on I as follows:

2"" . if x e 1 ,
f(x) = n

0 , if x 6 E.

Since

_ k

f(h) - 0(h )

as h-O+, h E E, f has a kth approximate Peano derivative

f
o

g
= ) = 9 9‘0"°

(k)(0) at 0 Furthermore f(n)(0) O for n 0 1 k

If f has a kth Lr derivative at 0, fk r(0)’ where

O < r f m, then as was mentioned in the beginning of this

k,P(0)

(0) does not exist. To show

chapter fk,r(0) = f(k)(0) = 0. Ne first show that f

exists then we show that fk q

fk p(O) = 0 it suffices to show

I/p
. 1 1 h P _

lim ——[—] |f(t)| at] _ 0.
h-*0+ hk h 0

LBt O < h < I, and choose the nonnegative integer N so that

 < h < —— .

2N+1 ‘ 2N

, 1

For notational convenience set am — 2fii+ 2qu a m

Then

1/p a 1/

flatware] _2mm)[zrlmrenpdtl

A

1
2k(N+1)[2N+IZ:=N IInITIt)lpdtI

Mpn l/p

k N+1 N+1 w Z___S 2 ( )[2 Xn=N Zqu J
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S 2k(N+I)[2N+1Zoo 1 ]1/p

2k(N+1)[2N+1 2Cp Jl/P

2cpN(2cp_1)

1
2c+p +k 1

< o

' (2Cp-1)”p 2N(c-k-p-1)

 

2C+p-1+k 1
<§ o _

- (2cp_1)1/p 2N

As h-oo+, N-w, and Jfi-o. Thus fk (0) = o.

2 ’p

 

Ne now show that fk q(O) does not exist. Assume to

the contrary that f (0) exists. Then fn (O) = O. for

k,q 9q

n = O,1,...,k. Thus,

1/9
. 1 1 0 q _

(2 3) Iim ——[—j lf(t)l dt] — o.
h'*0+ hk h 0

However, if we let 0 < h < 1, and choose the nonnegative

integer N so that

 

then

l/q
2Nk[2Nf:N+2lf(t)qut]

I
V

1

J; 1 h qhk[hf0|f(t)| at]

I
V

Nk N w q l/q
2 [2 2...... iinwtn dt]

1/q

Nk N w qu ]2 2 [2 2n=N+2 [In 2 dt
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> 2Nk 2N2“ gig: l/q
- n=N+2 2qu

This contradicts (2.3) and thus fk q(0) does not exist.

Remark. From the nonexistence of f (0) we further
k,q

have the nonexistence of fk(0) and fk 0°(0).

Thus, kth Lp differentiation is more general than kth

Lq differentiation, where 0 < p < q f w, and kth Peano dif-

ferentiation.

 

Example 2.4. Let k be a positive integer. Here we

construct a function having a kth approximate Peano deriva-

tive at 0 but no kth Lp derivative at 0, for O < p f w, and

no kth Peano derivative at 0.

Let

1 1 1

I=[-9_+—]9
n n n 2n

n = 2,3,.... Define a function f on I = [0,1] as follows:

2

n , if x E In,

f(X) =

where E = I-Un=21n'

Again it can be shown that d+(0,E) = 1 and that

f( )(0) = O, for n = 0,1,...,k. Let p be a real number such

Let 0 < h < 1 and choose N a positive integer

n

that o < p < w.

so that

1 l
WEh<N.



 

  



 

 

For notational convenience set bm = 5%? + ZNTZ , m = 1,2.

Then

fir%3|f(t)|pdt]1/p 3 Nk[Nf:N|f(t)lpdt]1/p

2 k[NZ:=N+2 IInIIItIIpdtJI/p

Z NkN zn=0°—N+2 II” 2p" Zil/p

3 Ln N+2(:1n.2pn2)]1/P
Nk[Nf

2
k pn -n

3 N (Wn= N+2 I

Thus, fk p(0) f 0. Hence fk p(O) does not exist. Thus for

each P, 0 < p < m, fk p(O) does not exist. From the non—

existence of fk p(0) we further have that fk 0°(0) and fk(0)

do not exist.

Remarks. 1. This last example shows that indeed the

notion of kth approximate Peano differentiation is a true

th
generalization of k Lp differentiation for 0 < p f w, and

kth Peano differentiation.

2. In the examples given it would be possible to

construct the function f so that it is infinitely differen—

tiable on (0.1].

 



 

 

 

 



CHAPTER III

A PRELIMINARY RESULT

In general, if one has a sequence of measurable sets,

say {En}n=1’ such that d+(0,En) = 0 for n = 1,2, .., then lt

is not necessarily true that d+(0,u::1En) = 0. For example,

- _ l = =if one takes En - [n,1] then d+(O,En) 0 for n 1,2,...,

yEt d+(0vUn=1En) :1.

Suppose E is a measurable set such that d+(0,E) = 0.

Furthermore, let {an}:=1 and {8n}:=1 be two sequences of

positive real numbers, with the an's strictly increasing to

1 and the Bn's strictly decreasing to 1. (It will be shown

in Lemma 3.3 that if A is a positive real number then

d+(0,AE) = 0 where AE = {Ax : x e El.) 15 it necessarily

true that

m m = 7d+(0’Un=1anE) = O or d+(0’Un=18nE) 0.

In this chapter we will give an example showing that

this need not be true. We then prove a theorem, which will

play a key role in the next chapter, showing that it is

possible to choose sequences for which it is true. Before

constructing the example a few lemmas are required.

18  
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Lemma 3.1. Let E be a measurable set and let A be a

positive real number. Then

1m = AlEl.

Lemma 3.2. Let E and F be subsets of the real

numbers and let A be a real number, A f 0. Then

AEle=A(En%F).

Proof. Let x E AE n F. Then x E F and x = Ae, where

e E E. Hence e = %-x e %—F and e e E H %.F. Therefore,

x = Ae 6 A(E H 1-F). Since all the above arguments are
A

reversible the proof is complete.

Lemma 3.3. Let E be a measurable set and let A be

H

Oa positive real number. If d+(0,E) = 0 then d+(O,AE)

Proof. By Lemma 3.2 and Lemma 3.1 we have

1 1
IAE n [0,h]] IA(ET1[0,Xh])|_ |ET1 07ml _. 0[

1

h h Ah

as h-0+. Therefore d+(0,AE) = 0.

Lemma 3.4. Let E be a measurable set. Then a

necessary and sufficient condition for d+(O,E) = 0 is that

IE 0 [0%]!
lim —————jf——-— =

m-ow __

Ill

Proof. The necessity of the condition is obvious.

Thus, to establish the sufficiency, let 8 > 0 be given.

Choose N, a positive integer, such that for every m 2 N
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1
E n —I [0.m]I<E

1 2

m

_ 1
Set 6 — W and let 0 < h < 6. Choose n 3 N such that

1 1

n+1 E h < R

Then

IEMOMI IEn[0.%1I

h 5 _1_
n+

1 1
IE n [0,3]! H

- l 1

n n+

[E n [0.%]l

f 2 l

n

< 8.

Hence d+(O,E) = 0.

Example 3.5. We now construct a measurable set E

and a sequence {an}:=1 of positive real numbers, strictly

increasing to 1, such that d+(0,E) = O and

d (o,u°on=1anE) = 1.

Let E = u”=7([

+

1,1 + l ]). We first show that
n n n 2n

d+(0,E) = 0. Now for m 3 7

 

1 w 1 1 1 1

IE 0 [0,511 = l(Un=7[;,fi + EH]) 0 [0,EII

w 1

= Zn=m 2n+1

= J;

2m
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Therefore

1

IE 0 [o’r—n—JI - . m

‘—_—_i‘_““ — lim —— = 0.
m—ow _ mfim 2m

m

Thus by Lemma 3.4, d+(O,E) = 0.

Define for n g 7

- n n

anl ' n+1 + 2n+1

Then the sequence {anl}:=7 is strictly increasing to 1.

For n fixed define for j = 2,3,...,

N

Note there are only a finite number of j's for which

3
|
’
—
‘

1 1

anj(Il_ + ‘21—)<

Let kn be the positive integer so that for 1 f j 5 kn

1 l

anj(n + EH) <

3
|
0
—
a

and for j = kn+1

k

1 1 n l L +.l_

[n+1 + 2n+1’n] E Uj=1anj[n’n 2n]

Now consider the sequence

,...,a .----
(3.6) 071,072,...,a7k7ga819082 8k8

It is obvious that we can relabel the sequence (3-5)’ say

“1,62 a in such a way that the an's are strictly
s--~, n,...,
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increasing to 1. Now it is easy to see that

1 00

(0.7] E Un=1anE'

(2)

Therefore d+(0,un:1anE) = 1.

A similar example can be constructed for a sequence

of positive real numbers strictly decreasing to 1.

In order to prove the theorem mentioned at the

beginning of this chapter we will need a few technical lemmas.

Lemma 3.7. Let E be a subset of the real numbers and

let A be a positive real number. Then (AE)C = A(Ec), where

EC is the complement of E.

c
Proof. x e (AE)C <=> 5 6 EC <=> x e A(E ).

Lemma 3.8. Let E and F be two measurable sets.

(i) If d+(0,E) = 0 and d+(0,F) = 0 then

d+(0,E 11 F) = 0.

- C

(ii) d+(0,E) = o if and only 1f d+(0,E ) — 1.

Proof. Follows easily from Definition 1.9.

Lemma 3.9. Let E be a measurable set and let A be

a real number, A > 0. If d+(0,E) = 0 then there exists a

co . .

sequence of positive integers {an}n=1’ increaSing to ”’ SUCh

that for every A 3 A

|AE n [0,h]] 1
__________——-< ——

2
h n

whenever 0 < h <-l-.

an
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Proof. Let c > 0 be given. Since d+(0,E) = 0

there exists a 6 > 0 such that

[En [0.1:]!

h

whenever O < h < 6. For 0 < h < A6 and A 3 A

 

IAE n [0,h]| |E n [o.%h]|
= 1 < e

h Ah

. 1 h

Since X—h 5 K < 6. The proof of the lemma may now be com—

pleted by letting a progress through the numbers 1/n2 and

choosing an so that 1/an is smaller than the corresponding

A6 and also the an's increase to m.

Lemma 3.10. Let E be a set of finite measure and

let 6 > 0 be given. Then there exists a 6 > 0 such that

IAE-EI < 8

whenever |1—A| < 6.

Proof. If [E] = 0 then the result is obvious. Thus

assume |E| > 0. First assume E = (a,b). Then it is easy to

see that there exists a 6 > 0 such that

|A(a,b)—(a,b)| < 5

whenever ll—Al < 6. Assuming E = U:=1(an’bn)’ then again it

is obvious that there exists a 6 > 0 such that

IAE-El < 6

whenever |1-A| < 6.

Now assume E = U:=1(an’bn)' Choose N such that

E

IUn=N+1(an’bn)l < 4

 



  

 



24

Sett' = N - ”ing F Un=1(an,bn) and H — Un=N+1(an’bn) we have

E = F U H. Choose 0 < 6 < 1 so that for all A, ll-AI < 6,

_ 2[AF F] < 2 .

Since AE-E E AE-F = (AF U AH)-F E (AF-F) U AH, and 0 < A < 2

lAE-El 5 |AF-F| + IAHI < § + 11H] < 5

whenever |1-A| < 6.

Finally, assume E is a set of finite measure and let

G be an open set such that E E G and lG—El < % . Choose 6,

0 < 6 < 1, so that for all A, ll-Al < 6,

lAG-G| < g .

Since (AE-E) g AG-E g (AG-G) u (G-E)

m
mlAE—El 5 [AG-GI + |G-E| < E +

whenever ll-Al < 6.

Lemma 3.11. Let E be a set of finite measure. Let

{an}::1 be a sequence of positive integers such that

lim an = w. Then there exist two sequences of positive

n-om

(X) 00 . I .

real numbers {an}n=1 and {8n}n=1’ with the an s strictly

increasing to 1 and the Bn's strictly decreasing to 1, such

that for each n, n = 1,2,...,

1 1 1 1
_ _ ___ - n o,— < ———

[(anE E) n [0,m]l < m2" and [(BnE E) [ mll m2"

whenever 1 < m < an.

Proof. We first show the existence of the sequence

{an}n=1' By Lemma 3.10 choose a1, 0 < a1 < 1, such that
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_ _L_lalE E] < a12 .

Then for each m, 1 < m < a1,

[(a E-E) fl 0,1 < - —l— 11 [ m]l - l0‘1": 5' < a12 5 a? ‘

B Lem .y ma 3 10 choose a2 such that max{a1,1—%} < 02 < 1 and

a22

 

Then for each m, 1 f m < a2,

1

2

 5_1_.l(a2£—E) n 10%]! s lazE-El < 2
m2

2

a2

Inductively define an as follows: By Lemma 3.10 choose a
n

such that max{an_1,1-%} < on < 1 and

1

an2

 [anE-El <

Then for each m, 1 5 m f a
n

151.

an2n m2n

 [(anE-E) n [o,%]] 5 lanE-El <

The existence of the sequence {an};1 thus follows by

induction.

A proof similar to the one given above can be given

to show the existence of the sequence {8n}:=1.

Theorem 3.12. Let E be a measurable set and let

d+(0,E) = 0. Then there exist two sequences of positive

real numbers {01"}n:1 and {8n}n=1’ With the an s strictly

increasing to 1 and the Bn's strictly decreasing to 1, such

that

(X)

d+(0,Un=1anE) = o and d+(0,un=18nE)
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Proof. We first prove the existence of the sequence

{an}:=1. Set F = E n J, where J = [0.1); then d+(0,F) = o.

By Lemma 3.9, there exists a sequence of positive integers

{an}:=1, where the an's increase to m, such that for each A,

1
f E A < 1

[AF n [0,h]]

(3.13) ———————————-< J?

h n

whenever 0 < h < 5L: By Lemma 3.11 there exists a sequence

n

of positive numbers {an}n=1’ where we may assume that for

each n, % 5 an < 1, strictly increasing to 1 and correspond-

co

_ , such that for each n
n-l

ing to the sequence {an}

|( F-F) n [0 1—]| < ~1—(3.14) an ’m m2n

whenever I < m < an. Given an e > 0, choose a positive

integer k so that

 

1 1
+ —— < a

E 2k

Set 6 = aL-and let 0 < %-< 6. Choose j, j 3 k, so that

k

1.1.51.
aj+1 1

Now

A

' 1
l[U:=1(anF-F)] n [o.%]l - Ifi=1|(anF-F) n [0.fiil

+ X:=j+1|(anF-F) n [0.%]l.

Moreover by (3.13) 1 |

[01 F n [O’I‘fi’] ' 1

j _]_-, l J __i__—————— < —-‘lz = —.-

Zn=1l(anF‘F) n [0am]l S mzn=1 % mj m3
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and by (3.14)

 

 

2m - I(a F-F) n 0 l m 1

n=3+1 n I .m]| < 2 =. ___ = ___

n 3+1 m2" [112‘]

Therefore,

” 1

|[Un=1(“nF’F)] n [o’fi]| < 1 + 1 1 1

1 T _T S — + —- < e.

a
J 2.] k 2k

Thus,

” 1

11m IIUn=1(anF-F)] n [0,fill _ 0

m-ocx)
l

—

I'll

Therefore by Lemma 3.4, d+(0,U::1(anF-F)) = 0. Furthermore,

Since F n [U:=1anF] E F we have

00

n=1anF]) = 0‘
d+(0,F n [u

Therefore, by Lemma 3.8(i),

d+(0,Un=1anF) = 0.

Now anE n alJ E anE n anJ, for n = 1,2,...; and since

(Un=1anE) n [0,a1) = Un:1(anE n alJ)

Un=1(anE n anJ)

I
fl

Un=1

l
f
l

anF

it follows that d+(0,Un=1anE) = 0-

The proof for the existence of the en's is analogous

except we take J = [0,%), and we choose the Bn's so that

1 < 8n f % for each n. This completes the proof of the

theorem.
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By Lemma 3.7 and Lemma 3.8(ii), Theorem 3.12 can be

stated in the following form which will play a key role in

the next chapter.

Theorem 3.15. Let E be a measurable set. If

d+(0,E) = 1 then there exist two sequences of positive real

numbers {an}n=1 and {8n}n=1’ with the an s strictly increaSing

to 1 and the Bn's strictly decreasing to 1, such that

d+(0,nn=1anE) = d+(0,fln=lsnE) = 1.

 





CHAPTER IV

THE MAJOR THEOREM

In this chapter we deduce the fundamental result

stated in the following theorem.

Theorem. Suppose f possesses a kth approximate

Peano derivative f(k) everywhere on the interval [a,b].

(i) If f(k) > O on [a,b], then f(k-l) lS

continuous and increasing on [a,b].

(ii) If f(k is bounded either above or below on

[a,b], then f(k) = f(k) on [a,b].

The proof of this theorem will require some

additional definitions and lemmas.

Lemma 4.1. Assume f to have a kth approximate

Peano derivative f(k) for each point in [a,b] and that f(l)

is increasing in [a,b]. If k > 2 furthermore assume

— = : : 0.
f(2)(a) — f(3)(a) ... f(k_l)(a)

Then (f(1))(k_1)(a) = f(k)(a), that is, there exists a

measurable set E E [0,1] having 0 as a point of right-hand

density such that

E-lim f(1)(a+h)'f(1)(a) = 11121531 _

h-'0 hk‘1 (MM

29  
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Proof. By subtracting from f a multiple of x, we

may assume that f(1)(a) = 0. By hypothesis there exists a

measurable set F E [0.1] having 0 as a point of right-hand

density and such that

(4.2) F-lim -l;{f(a+h)-f(a)-Ahk} = 0.

= lwhere A f(k)(a)/k..

By Theorem 3.15 there exist two sequences of positive

real numbers {9E}m=1 and {6n}n=1 such that

. * = . = 0

$wm6m hymen

 

and

m - = ” F = 1.d+(0’”m (1 6;)F) d+(0,n (1+en) )
:1 nzl

{00

Let E = F n [lm:1(1-6;)F] n [nn=1(1+en)F]. By Lemma 3.8

d+(0,E) = 1. To complete the proof of the lemma we show

f 1 :th) = Ak 3 f(k)(a) .

J-l—r_E-l'

th (k-l)!0

Let 6 > 0 be given. Choose an and a; such that if

 

 

6n 3 _ 6;

= 9 " _ *
“ 1+9n 1 am

then

‘+ k ’-1 e k k j-l < E .

AX§=2(’1)J 1(j)aJ > ’2 and AXJ=2(J)B 2

Set

58 60.

 

E. = min 21(1+s)k+11 ’ 21(1-a)k+11

By (4.2) there exists a 6' > 0 such that
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|f(a+h)-f(a)-Ahk| < e'hk whenever 0 < h < 6‘, h 6 F.

  

If t1 and t2 are values of h such that 0 < t1 < t2 < 6' and

t1,t2 6 F then

k k . k k
I[f(a+t2)-f(a+t1)]-A(t2-t1)[ < e (t2+t1).

Hence

k k k k k k k k

(t -t ) (t +t ) f(a+t )-f(a+t ) (t -t ) (t +t )
A 2 l _ C. 2 1 < 2 1 < A 2 1 + €.__§__l_

t2"1 t2"‘1 t2"1 t2't1 t2‘t1

Since f(l) is increasing on [a,b] and f(1) = fap we have

f(1) = f' on [a,b] (see [4]) and hence

f(a+t2)-f(a+t1)

___________————— f +t .f(1)(a+t1) 5 t _t S (1)(a 2)

2 1

Thus, whenever 0 < t1 < t2 < 6' and t1,t2 E F

(t -tf) (t§+tf)
(4 3) f(1)(a+t1) < A + e'

t2-t1 tZ-tl

and

(t;_t§> (t§+tf)

(4.4) f(1)(a+t2) > A-—————— — e'————;—— .

t2"1 t2“ 1

Set 6 = min{6'/(1+B),6'(1-a)} and let h 6 E such that

0 < h < 6. Since h E (1-6;)F, there exists a t2 6 F such

that h = (1-e;)t2. Hence

*

em h
.. = +

t2 — (1 + 1'9$)h (1 B)

 

and h < t2 < 6'. Thus from (4.3) we have
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f ( +h hk 1 k_ k k k k

(4.5)
(I):1 ) < A[ ( +8) h ] + e'[h (1+8) +h ]

h Bhk Bhk

[(1+B)k-1] [(1+8)k+1]

< A
+ E.

8 B

< Ak + A2§=2(§)83‘1 + g

< Ak + 6.

Moreover, since h C (1+en)F, there exists a t1 6 F such that

 

 

 

 

 

 

h = (1+6n)t1. Hence

en
t1 = (1-1+e )h = (1—a)h

n

and t1 < h < 6'. Thus from (4.4) we have

k

f(l)(a+h) [hk-hk(1-a)k] [hk+hk(1-a) 1

(4,5) k-l > A k _ e' k

h
ah

ah

k
k

[1-(1-G) I [1+(1-G) I

> A - E'

a a

.+ ._1

> Ak + Az§=2(-1>J 1<§ia3

N
|
m

> Ak - 5.

Thus from (4.5) and (4.6) we have

f 1 (a+h)

Ak - e < —i)k 1 < Ak + e

h

 

whenever O < h < 6 and h E E. Hence

 

f(l) 6+h) Ak f(k)(a)

E-lim __, 44— = = .

h—oo hk_1 (k-l)!
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Corollary 4.7. Assume f to have a kth approximate

Peano derivative f(k) for each x 6 [a,b], and that f(l)

is increasing on [a,b]. If k > 2 furthermore assume

f(2)(b) = f(3)(b) = ... = f(k-1)(b) = 0.

Then (f(1))(k-1)(b) = f(k)(b).

Proof. Define a function g on [—b,-a] as follows:

g(x) = f(-x) for each x e [-b,-a].

Then g(k)(x) exists for each x E [-b,—a] and

_ _ n _

g(n)(x) ‘ ( 1) f(n)( X)

for n = 0,1,...,k. where f(0)(—x) = f(-x). Now it is easily

shown that 9(1) is increasing on [-b,-a]. Also, if n > 2 then

9(2)('b) = 9(3)(‘b) = --~ = 9(k_1)(‘b) = 0-

By Lemma 4.1 there exists a measurable set E E [0,1] such

that 0 is a point of right-hand density of E and

(-b+h)-g (-b) 9 (-b)
E_,,m 911) k 111. z 1E1
 

 

h~0 h'1 (bIH

Hence

E_]im f(l)(b—h)-f(1)(b) : f(k)<b>

h-oo (-h)k‘1 (k-l)!

that is, (f(1))(k_1)(b) = f(k)(b)-

Corollar 4 8 Assume f to have a second approximatey . .

a . f

Peano derivative f(z) for each pOint in [a,b], and that (1)

= foris increasing on [a,b]. Then, (f(1))(1)(x) f(2)(x)

each x 6 [a,b].
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Proof. Follows immediately from Lemma 4.1 and

Corollary 4.7.

Lemma 4.9. Suppose f has (k-l) derivatives at the

point x, then for each sufficiently small non-zero h, there

is a 6, 0 < 0 < 1, depending on h such that

 

“£32 {f(x+h)-Z:;é 2:f(n)(x)} = f(k'2)(x+eh)—f(k'2)(x)

— 0hf(k'1)(x)

where f(0)(x) = f(x).

3599:; Let

(4.10) g(t) = f(x+t)-z:;$ %;f(n)(x).

Then 9 is (k-2) times differentiable around 0 and

. . ._ n .

(4,11) g(J)(t) = f(J)(X+t)'Z:_—-_g 1 fijf(n+J)(x)

for j = 0,1,...,(k-2). By the extended mean value theorem

for each sufficiently small h there exists a 6, 0 < e < 1,

depending on h so that

hk-2
k-2

g(h) = 2:;3 h—.g‘"'<0) + k., ,g‘ )<eh)

(j) =

where 9(0)(0) = 9(0). By (4.11) it follows that g (0) 0

for j = 0,1,...,(k-3); hence

k-2

(4.12) g(h) = E_2 lg(k'2)<eh).

Thus, by replacing the left—hand side of (4.10) by (4.12) we

have

k-2 _2

f(x+h)-2:;3 %;f(n)(x) = T%:§T19(k )(eh).
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If h f 0 then this last equation together with (4.11) yields

5———%—{f<<x+h)-Zk$ £1"’(x)}

= g‘k‘2’(eh>

= f(k-2)(x+8h)-X:“=O .142?”f(k+n'2)(x)

= f(k’2)(x+eh)—f(k'2)(X)-6hf(k-l)(X)~

Definition 4.13. A function f defined on an interval
 

is said to be convex if for every pair of points P1, P2 on

the curve y = f(x) the points of the arc P1P2 are below, or

 

on, the chord P1P2.

The following lemma is due to S. Verblunsky [9].

Lemma 4.14. Let f have a finite derivative at each

point of (a,b). Suppose that, for each x0 6 (a,b) there are,

in every neighborhood of (xo,f(xo)), points of the graph of

f above the line y = f(xo)+f'(xo)(x-xo). Then f is convex

in (a,b).

Proof. If possible suppose that there are points

c,d, a < c < d < b, such that the arc y = f(x) (c f x f d)

has points above the chord joining (c,f(c)) and (d,f(d)).

Let

f(d)-f(c)

d-c

K—

Now the function f(x)-f(c)—K(x-c) is continuous and

so it will attain its maximum at some point v in [c,d]. By

our assumption c < y < d. Let
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f(Y)-f(C)

y-c

u :

Then u > K. Since (f(x)-f(c))/(x-c) is a continuous function

on [Y.d] it will attain all the values between H and K some-

where between y and d. Let T be such that K < T < u. Then

there exists a w, y < w < d, such that

f(w)-f(C)
T =._________

w—c

Now the function

(4.15) g(x) = f(x)-f(c)-T(x—c)

 

is continuous and so it will attain a maximum at some point

5 in [C,w]. Since u > T, we conclude c < E < w. Also from

(4.15), T = f’(E).

Now choose 6 > 0 such that for each x E (E-6,E+6),

g(x) 5 g(g). This implies using (4.15) that

1’(X) f f(€)+f'(£)(X-€)

for x E (E-6,E+6). Hence the line y = f(E)+f’(E)(x—£) has

the property that there exists a neighborhood of the point

(E,f(E)) such that no point of the graph of f is above the

line. This, however, contradicts our hypothesis.

Definition 4.16. Let f be a function defined in a

 

neighborhood of x. Then define

f(x+h)+f(x-h)-2f(x)

 0 f(x) = lim sup 2

2 h-oo h

5f(x) is called the upper symmetric second derivative of

f at x.



 

  



37

Remark. It can easily be shown that if f"(x)

exists then sz(x) = f"(x). However, the upper symmetric

second derivative may exist without the second derivative

existing.

A proof of the following lemma can be found in [13].

Lemma 4.17. A necessary and sufficient condition

for a continuous function f to be convex in (a,b) is that

sz(x) 3 0 for each x in (a,b).

Lemma 4.18. Suppose f has a second approximate Peano

 

derivative f(z) at a point x 6 (a,b). Then there exists a

measurable set E E [0,1] such that 0 is a point of right-hand

density of E and

f(x+h)+f(x-h)-2f(x) f ( )

E-l' — x .

hTO h2 (H

 

Proof. By hypothesis there exists a measurable set

F having 0 as a point of density and such that

2

h =
F—lim l—2{f(x+h)-f(x)-hf(l)(x)-§—f(2)(x)} 0.

h-90 h

Set F1 = F m [0,1]. Then 0 is a point of right-hand density

of F1. Also, 0 is a point of left-hand density of F 0 [-1,0].

Setting F2 = {h —h e F n [—1,0]}, then 0 is a right-hand

point of density of F2. It follows from Lemma 3.8 that 0 is

a point of right-hand density of E = F1 0 F2.

Let c > 0 be given. Then there exists a 0 < 6 < 1

such that
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f(x+h)—f(x)-hf (x) f (X)

(1) 2h? __(_:_

  

m
u
m

whenever h E F and |h| < 6. Let h E E so that 0 < h < 6.

Then h e F1; thus

 

 

 

 

   

 

 

 

 

 

 

 

f(x+h)—f(x)—hf(1)(x) _ f(2)(x) < E

h2 2 2 ’

and h 6 F2, that is, -h 6 F; thus

f(x-h)-f(x)+hf(1)(x) _ £12)(X) < E .

h2 2 2

Hence for 0 < h < 6, h E E

f(x+h)-f(x-h)—2f(x) ( )

- f

h2 (2) X

f(x+h)—f(x)—hf(1)(x) f(2)(x)l

< _

- h2 2

f(X-h)-f(X)+hf(1)(X) f(2)(x)

+ _

h2 2

< % + g = 8

Thus

f(x+h)+f(x-h)-2f(X)

E-lim 2 = f(2)(x)i
h-*0 h

Suppose f has a second approximate
Corollar 4.19.

Peano derivative f(z) at each point in (a,b), and f(2) 3 0

0" (a,b). Then sz(x) 3 0 for each x 6 (a,b).

Proof. Follows immediately from Lemma 4.18.
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In what follows we shall use without specific

reference several well known results. We list these results

here without proof.

Let g be a function defined on an interval J and

let 9 have an ordinary derivative 9’ on J. If g is convex

on J then 9’ is increasing on J.

Let g be a function defined on [a,b]. If g is

monotone on (a,b) and has the Darboux property on [a,b]

then 9 is monotone on [a,b].

Let g be a function defined on an interval J. If g

is monotone on J and has the Darboux property on J, then 9

is continuous on J.

Let g be a function of Baire class one on [a,b].

Then every non-empty closed set F, contained in [a,b],

contains points of continuity of 9 relative to F.

Let g be a function defined on an interval J and

assume gap exists at each point in J. Then the following

are true (see [4]):

1) g' is a function of Baire class one on J,

ap

2) g’ has the Darboux property on J,

ap

3) if g’ is bounded above or below on J then

a

 

.
4
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Lemma 4.20. Let f be a function satisfying the

following two conditions on [a,b]:

(i) fép(x) exists for each x in [a,b],

(ll) 52f(x) 3 0 for each x in (a,b).

Then fép is continuous and increasing on [a,b].

Proof. Let G be the set of all points x in [a,b]

with the property that there is a neighborhood of x on which

fép is bounded. Then G is an open set. Let (c,d) E G.

Then a simple compactness argument shows fép is bounded on

[c',d'], where c < c' < d' < d. Hence fép = f’ on [c',d'].

Therefore it follows that fép = f’ on (c,d). Since f is

 

continuous on (c,d) and 02f(x) 3 0 for each x E (c,d), f is

convex on (c,d) by Lemma 4.17. Hence fép is increasing on

(c,d). Moreover since fép has the Darboux property on [c,d]

it follows that fép is continuous and increasing on [c,d].

In particular, fép is continuous and increasing in the

closure of each component of G.

To complete the proof of the lemma we show G - [a,b].

Let H = [a,b]-G. From above H is a closed set having no

isolated points. Suppose H is non—empty. Then H is a

perfect set. Since f5 is a function of Baire class one on

. . . s at

[a,b] there eXists an x0 6 H such that fép lS continuou

Hence there exist numbers M 3 0 and 6 > 0

Let

x0 relative to H.

so that lfép(x)| f M for each x 6 [xo—G,Xo+5] “ H-

a' = min{x : x E [xO—6,x0] 0 H},

b' = max{x : x E [xo,xo+6] n H}.
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Note that since H is perfect a',b' E H and a‘ < b'. Also,

if x E [a'.b'] H H then |fép(x)| 5 M. Let x E (a',b')-H.

Then there exists a component of G, say (6,8), where o,B E H,

such that x 6 (o,8) E (a',b'). From the first part of the

proof fé is increasing on [0,8]. Hence
P

-M 5 fap(a) 5 fap(x) 5 fap(8) s M.

Thus for each x 6 (a',b'), |f;p(x)| f M and so (a',b') E G.

First assume x0 6 (a',b'). Then from above x0 6 G,

which contradicts xO being contained in H. Secondly, assume

X

0

M I

a'. Then (x0-6,x0) E G and there exists a number M',

 I
V 0, so that fép is bounded by M on [x0-6,xo]. In the

last paragraph we showed f’ was bounded by M on (xo,b').

aP

Thus fép is bounded by the max{M,M'} on (xO-6,b'), and again

XO 6 G which is a contradiction. In a similar fashion a

contradiction is obtained, if x0 = b'. Thus H must be empty.

Therefore G = [a,b] and the proof of the lemma is complete.

h approximate
t

Theorem 4.21. Suppose f possesses a k

Peano derivative f(k) everywhere on an interval [a,b].

(i) If f(k) > 0 at each point in [a,b], then

f(k-l) is continuous and increasing on [a,b].

(ii) If f k is bounded either above or below on

[a,b], then f(k) = f(k) on [a,b].

Recall that
Proof. Consider first the case k — 1.

= ’ ' > 0 on a,b then f = f’ on

1) fap. Thus, if f(l) [ l (1)

[a,b]. Thus, f(o)

f<

= f is continuous and increasing on [a,b]-

Moreover, if f(l) is bounded either above or below on [a,b]
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then f(1) = f’ on [a,b]. Thus the theorem holds when k = 1.

Secondly, consider k = 2. By Corollary 4.19 and

Lemma 4.20 the proof of (i) is immediate. Turning to case

(ii), it is no loss of generality to assume f(z) > 0 on

[a,b]. From (i) it follows that f(l) is increasing on [a,b];

hence f(1) = f’ on [a,b]. By Corollary 4.8, (f')(1) = f(2)

on [a,b]. Moreover by assumption (f’)(1) > 0 on [a,b];

hence (f')(1) = (f')' = f(z). Therefore f(2) = f(z) on [a,b].

We may now assume that k > 2, and we can complete

the proof by induction. We therefore assume the following:

If f possesses a (k-l)th approximate Peano derivative

everywhere on an interval [a,b], then for 1 g n f (k—l)

(i) if f(n) > 0 on [a,b], then f(n-l) is continuous

and increasing in [a,b],

(ii) if f(n is bounded either above or below on

[a,b], then f(n) = f(n) on [a,b].

Let k > 2 and assume f(k) > 0 at each point in [a,b].

Let G be the set of all points x of [a,b] with the property

that there is a neighborhood of x on which f(k-l) is bounded.

Obviously G is open. Let (c,d) E G. If c < a < B < d, then

a simple compactness argument shows f(k-l) is bounded o?k 1)

[a,B]. By (ii) of the induction hypothesis, f(k-l) = f

- (k-2) . M eover
0" [a,B] and therefore f(k-Z) — f on [a,B] or

= ' on
these relations hold on (c,d). Thus f(k-l) f (k—2)

(c,d) and f(k 2) is continuous on (c,d). If x 6 (c,d) then

. . ' f

there exists a measurable set E such that 0 is a pOint o
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density of E and

hk
k- h”f (

_T (n) x)+Ej(f(k)(X)+€(x,h))WW = 2.1.

where E-lim e(x,h) = 0. From Lemma 4.9 for each suffi-

h-0

ciently small non-zero h E E there is a 6, depending on h,

between 0 and 1 such that

g )
n

:k§2!{f(x+
h)'z:;é%1f

(n)(x)}= f(k_2)(X+6h
)'f(k_2)(X)

Hence

 

2
h

f(k_2)(x+eh) = f(k_2)(x)+6hf(k_1)(x)+ETI:T7{f(k)(x)+g(x,h)}

> f(k_2)(x)-+0hf(k_1)(x)

for all sufficiently small non—zero h E E. Thus, it follows

by Lemma 4.14 that f(k-Z) is convex on (c,d); hence f(k_1)

is increasing on (c,d). Choose y between c and d. Then

is bounded below on [y,d]. Applying (ii) of the

f(

on the interval

k-l)

induction hypothesis to the function f(k-l)

_ (k—l)

[i,d], it follows that f(k_1) — f on [y,d].

and has the Darboux property

Now since

f is increasing on (y,d)

(k-l)

.
0

on [y d] we have that f(k 1) is continuous and increaSing on

[Y,d]. Similarly, since f(k-l) is bounded above on [c,v],

' ‘ ‘ reasin on [c,v].

we deduce that f(k—l) is continuous and inc 9
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Thus it follows that f(k-l) is continuous and increasing on

[c,d]. In particular, f(k-l) is increasing and continuous in

the closure of each component of G.

To complete the proof of (i) we show G = [a,b]. Let

H = [a,b]-G. From above H is a closed set having no isolated

points. Suppose H is non-empty. Then H is a perfect set.

Since f(k-l) is a function of Baire class one on [a,b] (see

[3]), the same type of argument given in the proof of

Lemma 4.20 shows H is empty. Hence G = [a,b] and the proof

of (i) is complete.

Consider, finally, (ii) for k > 2. It is no loss of

generality to suppose that f(k) > 0 on [a,b]. By (1), f(k-l)

is increasing on [a,b] and by (ii) of the induction hyPOtheSiS

f(k-l) = f(k-l) on [a,b]. Thus it follows that f(1) = f'

on [a,b]. We shall prove that (f(1))(k-1) = f(k) 0” [a,b].

It will then follow by the induction hypothesis (ii) applied

: (f )(k'l) = f(k).

to f(l) that in [a,b], f(k) = (f(1))(k-1) (1)

th

It suffices to prove that in [a,b) the (k—l)

approximate Peano derivative of f(l) on the right, equals

f(k)‘ For’ applying Corollary 4.7, it will follow that in

(a,b] the (k-l)th approximate Peano derivative of f(l) on

the left equals f(k)‘ Without altering f(k) by adding to f

a suitable polynomial of degree less than n, we may assume

that f(.)(a) = 0, for j = 2,3,...,(k-1). Note, since

J
k-l)

f(k'1)(a) = 0 and f(k'l) is increasing on [a,b], f( 2 0

on [a,b], Now for each h, 0 < h < (b-a), there exists by

+

the extended mean value theorem a number 5, a < E < a h
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such that

k-3

f(2)(a+h) z (ELSTif

Hence f(z) 3 O in (a,b). Thus f(l) is increasing on [a,b].

(k'l'm.

By Lemma 4.1, (f(1))(k_1)(a) = f(k)(a). Since a may be

replaced throughout by any a 6 [a,b) the proof of the

theorem is complete.

In [6], C. J. Neugebauer proved that if g is a

function of Baire class one on an interval J, then 9 has the

Darboux property on J if and only if for each real number A,

the sets EA = {x : g(x) 3 A} and EA = {x : g(x) f A} have

closed connected components.

We thus have the following corollary to the last

theorem.

Corollary 4.22. If f possesses a kth approximate

Peano derivative at each point of an interval [a,b], then

f(k) has the Darboux property on [a,b].

Proof. Since f(k) is of Baire class one on [a,b]

(See [3]), in order to show f(k) has the Darboux property

we need only show that the connected components of the sets

A
E = {x : f(

A} are closed

I
A

k)(x) 3 A} and EA = {x : f(k)(x)

for every real number A. So suppose f(k)(x) 3 A for all x

in the interval (a,8). We must show that f(k)(a) 3 A and

' ' bounded below on (a,B), f

f(k)(B) 3 A. Now Since f(k) is

is bounded below on [a,B]. ThUS by Theorem 4'21’ f(k) =

on [a,B]. Since f(k) has the Darboux property on [a,B],
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k
f( )(a) 3 A and f(k)(8) 3 A. Hence, f(k)(a) 3 A and also

f(k)(B) 3 A. Thus the connected components of EA are closed.

Similarly the connected components of EA are closed. Thus,

f(k) has the Darboux property on [a,b].

In [10], C. E. Weil proved that a function g of Baire

class one has the Denjoy property on an interval J if, for

every subinterval L of J on which 9 is bounded either above

or below, 9 restricted to L has the Denjoy property.

Using this result along with the facts that a kth

 

approximate Peano derivative is a function of Baire class

one and that an ordinary kth derivative has the Denjoy prop-

erty, we also have the following corollary to the last

theorem.

h approximateCorollary 4.23. If f possesses a kt

Peano derivative at each point of an interval [a,b], then

f(k) has the Denjoy property on [a,b).
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CHAPTER V

PROPERTY Z FOR APPROXIMATE PEANO DERIVATIVES

In this our final chapter we prove property Z for

the kth

th

approximate Peano derivatives. To prove that every

k approximate Peano derivative has property Z we first

prove a lemma, which is a modification of a lemma proved by

C. E. Weil [11]. Before proving the lemma some facts are

established that will be needed.

Let A be a measurable set and [c,d] a closed interval.

Define a function on [c,d] as follows:

F(x) = m(A n [c,x]) = f: x(s)ds

where X denotes the characteristic function of A. Then F is

absolutely continuous and F’(x) = x(x) a.e. on [c,d]. More-

over, almost everywhere

6")? Fj+1= (1+1)F'x s N+1)”-

Consequently,

' 1 j+1

12mm [c.s1)>~"ds zWWA n [c.dm .

Likewise if we define on [c,d]

d

G(X) = m(A n Ix,d]) = [X x(S)ds,

then G is absolutely continuous and G’(x) = -x(x) a.e. on

[c,d]. In addition almost everywhere
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d '+1 . ' , ~

3; 63 = (3+1)GJ(-x) z -(1+1)GJ.

Therefore,

Iii-(m(A n [5,d]))‘jdsf 37,11 (m(A n1c.d1>)j+1.

Lemma 5.1. Suppose f is a function whose kth

derivative exists and is nonnegative on the interval [a,b],

and let

A = {x 6 [a,b] : f(k)(x) 3 e}

where c is a fixed positive number. Then there exists a

partition {a = t0 < t1 < ... < tg = b} of the interval

[a,b] with z 5 2k and such that for each i = 1,2,...,k,

 

with x,y E [ti-l’ti] and x f y

k

|f(y)-f(X)| 2 (6%)(m(A n [x,y])) .

Proof. It will be shown by induction that for each

integer j = 1,2,...,k, there is a partition of [a,b]

{6:12 r<t -<...<t£(j),j—b}

with £(j) f 2j and such that for each i = 1,2,...,£(J), one

of the following holds for each x,y in [ti-1,j’ti,j] With

x f y

1(1): f(k'j)(y)-f(k‘j)(x) z (fl-Hm n1x,y1))j

and f(k'j)(x) 3 0.

2(1): f(k‘j)<y)-f‘k'j)(x> 2 <§%)<m<A n [x.y1>)j

and f(k'j)(y) 5 0.
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;

v

A ‘
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v

I
V <i%>(m(A n [x,y1)>j

L
4

and f(k'j)(x) 5 0.

4(1): f(k‘“(x)-f“"j)(y) > (—%—)<m(A n [x,y]))j

I

(
_
a

and f(k-j)(y) 3 O.

The desired partition is then the one corresponding to

j = k and the desired inequality is obtained by taking

absolute values, where, of course f(0) = f.

The induction assertion is first proved for j = 1.

(k-l)
Since f(k)(x) 3 0 for all x 6 [a,b], f is nondecreasing

and continuous on [a,b]. Let |f(k-1)| attain its minimum

value on [a,b] at t E [a,b]. There are three cases to

consider: t = a, t = b, and a < t < b.

If t = a, then since f(k'l) is nondecreasing on

[a,b], f(k’1)(a) 3 0 and for each x,y E [a,b] with x f y,

f(k-1)(x) 3 0 and

f<k-1)(y)_f(k-1>(x) = If f(k)(s)d5

3 cm(A fl [x,y]).

In this case 1(1) holds for each x,y E [a,b] with X E Y

if we take t = a and t1 = b.

0

If t = b, then since f(k—l) is nondecreasing on

[a,b], f(k'1)(b) f O and for each x,y E [a,b] with x f y,

f(k‘1)(y) 5 o and

f(k‘1’<y)-f("")<x) =11f‘k’mds

3 €m(A fl [XSYIl-

 

,
4
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In this case 2(1) holds for each x,y E [a,b] with x < y

if we take t0 = a and t1 = b.

If a < t < b, then Since f(k'l) is nondecreasing on

[a,b], f(k-1)(t) = 0. Arguments like the two just presented

Show that 2(1) holds on [a,t] and 1(1) holds on [t,b]. In

this case take t0 = a, t1 = t, and t2 = b. The induction

assertion is established for j = 1. (Note that only cases

1 and 2 occurred. In the induction step it will be seen

that 3 and 4 arise from 2.)

Assume the assertion true for j, and let i be an

 integer between 1 and £(j). As a notational convenience

-1,j’ti,j] by [c,d] and the function

f(k_(3+1)) by 9 so that g’ = f(k-J). It must be shown that

denote the interval [ti

111(1), 2(1).3(1). or 4(1) holds on [c,d], the" [Cad] can

be divided into no more that two subintervals so that on

each subinterval 1(j+1), 2(j+1), 3(J+1), 0P 4(j+1) holds.

First assume that 1(j) holds for each x,y E [c,d]

with x f y. Then

1(1) 2 (fl—)(mmr) (x,y1))j+ g'(x)

2 (354mm (1 [x,y)))j

> 0

since g'(x) > 0. Hence 9 is nondecreasing and continuous

on [c,d]. Let |g| attain its minimum value on [c,d] at

t E [c,d]. There are as before three cases to consider:

t = c, t = d, and c < t < d.

,
4

 



  



If t = c, then g(c) 3 0 and for each x,y E [c,d]

with x 5 y, g(x) 3 0 and

g(y)-9(X) = I; 9'(S)ds

I
V If (§%)(m(A n (x.s)))jds

2 (fi—mmw n [x,y1))j'1.

(The last step was made by using one of the facts established

previous to the lemma.) Thus, 1(j+1) holds for each x,y in

[c,d] with x 5 y.

If t = d, then g(d) 5 0 and for each x,y E [c,d]

 

with x 5 y, g(y) 5 o and

g(y)-g(X) = f; g’(slds

1i (5%)(m(A n (x.s1))jdsI
V

L
4

2 (TgffyT)(m(A n [x.y1))J+1.

Thus, 2(j+1) holds for each x,y in [c,d] with x 5 y.

If c < t < d, then g(t) = 0 and it can be Shown by

arguments like the two just given that 2(j+1) holds for each

x,y E [c,t] with x 5 y, and that 1(j+1) holds for each

x,y E [t,d] with x 5 y.

Second, assume that 2(j) holds for all x,y E [c,d]

with x 5 y. Then

g'(x) s (3%)(m(A n [x.y1))j + g'(y)

3%)(m(A n (x.y1))j

I
A

0

I
A
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since g'(y) 5 0. Thus, 9 is nonincreasing and continuous

on [c,d]. Let lg) attain its minimum value on [c,d] at t.

There are three cases.

If t = c, then g(c) 5 0 and for each x,y E [c,d]

with x 5 y, g(x) 5 0 and

9(y)-9(X) = fy g’(s)ds

5 1i (3%)(m(1 n [S,y]))jds

_ (Hajj—now) r) [x,y])rl”.

Thus,

1+1.
g(X)-g(y) (WHMA fl [x,y] ))

Therefore, 3(j+1) holds for each x,y in [c,d] with x 5 y.

If t = d, then g(d) 3 O and for each x,y E [c,d]

with x 5 y, g(y) 3 0 and

g(y)-g(X) = If: g’(s)ds

51% (gr-EMMA 1‘) 1s.y1))st

_ (finmw n [x,y])r'”.

Thus,

1+1.
(WHMA I) IXaYIH

Therefore, 4(j+1) holds for each x,y in [c,d] with x 5 y.

9(X)-g(y)

If c < t < d, then g(t) = 0 and using the same

reasoning as above it can be established that 4(j+1) holds

for all x,y E [c,t] with x 5 y, while 3(j+1) holds for all

x,y E [t,d] with x < y. (It should be observed that cases

3 and 4 arise from 2 and thus are essential.)

 

.
.
4
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Third assume that 3(j) holds for all x,y E [c,d]

with x 5 y. Then

g'(y)

I
A (4%)(m(A n (x,y)))j + g'(x)(

.
1

5 (;%)(m(A fl [x,YIllj

L
4

5 0

since g’(x) 5 0. Hence 9 is nonincreasing and continuous

on [c,d]. Let lg) attain its minimum value on [c,d] at t.

If t = c, then g(c) 5 0 and for all x,y E [c,d] with x 5 y,

g(x) 5 0 and

g(y)-g(X) = If g'(S)ds

1y (;%)(m(A n (x.s1))jdsI
A

(
.
.
1

1+1
(WWW) n [x,y]))

Thus,

1+1
g(x)-g(y)

.Ccféfyf)(m(A O [x,Y]))

Therefore, 3(j+1) holds for each x,y E [c,d] with x 5 y.

If t = d, then g(d) 3 0 and for all x,y E [c,d]

with x 5 y, g(y) 3 0 and

g(y)-g(X) = If: g’(S)ds

5 If (3%)(m(A n [x.s)))jds

- (ijii71)<m<4 n [x.y1))j+1.

Thus,

6 j+1

9(X)-g(y) _ (13:17T)(m(4 0 [x,y])) .

Therefore, 4(j+1) holds for each x,y E [c,d] with X S Y~

 

(
.
4
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If c < t < d, then g(t) = 0. By using the same

reasoning as above it can be established that 4(j+1) holds

on [c,t] and 3(j+1) on [t,d].

Finally, assume 4(j) holds for all x,y in [c,d] with

x 5 y. Then since g’(y) 3 0 it follows that g'(x) 3 0.

Hence 9 is nondecreasing and continuous on [c,d]. Now let

[9) attain its minumum value on [c,d] at t. If t = c, then

g(c) z 0 and for all x,y e [c,d] with x 5 y, g(x) 5 o and

g(y)-g(X) = jyg ’(s)ds

> 1’((£001) (A n (s 11))jds

3+1

I
V (qu )(m (An [x.y1))

Thus, 1(j+1) holds for each x,y E [c,d] with x 5 y.

If t = d, then g(d) 5 0 and for all x,y E [c,d]

X S y, g(y) s 0 and

g(y)-9(X) = [i g'(S)ds

I; (le(m(A 0 [5,YI))jds

I
V

e j+l

Z (TFITTT)(m(A n [x,YI))

Thus, 2(j+1) holds for each x,y E [c,d] with x 5 y.

If c < t < d, then g(t) = 0, and proceeding as has

already been demonstrated it can be established that 2(j+1)

holds on [c,t] and 1(j+1) on [t,d]. This completes the

proof of the lemma.
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Theorem 5.2. If f has a kth approximate Peano

derivative f(k) everywhere on [a,b] then f(k) has property Z

on [a,b].

Proof. Let x be contained in [a,b] and e > 0. It

suffices to Show that if given an n > 0 there exists a 6 > 0

such that if the closed interval [a,B] is contained in

(x-6,x+6) 0 [a,b], x E [6,8] and f(k)(y) 3 f(k)(x) for each

y E [a,B] or f(k)(y) 5 f(k)(x) for each y E [a,B] then

m{y 6 [6,8] 3 Ika)(Y)'ka)(X)| > E}

- < n.

(B-a) + dist.(x,[a,B])

 (5.3)

Let n > 0 be given and set

U

g(y) = for)" Lill— 1mm.
n=0 n!

Then g(k)(y) exists for each y E [a,b] and furthermore

g(k)(Y) = f(k)(YI‘f(k)(X)-

From the existence of f(k)’ there exists a 6 > 0 and a meas-

urable set E E [a,b] such that x is a point of density of E,

 

and so that

k

6(0/2) k

(5-4) [9(Y)) E k(k+1). ly-XI

k!-2

for |y-x| < 6 and y E E,

(5,5) m(J (1 EC) 5 m(J)°12'-

) 0 [a,b] and x E J,

where EC = [a,b]—E.

Let [a,B] be a closed interval contained in

(X-6,x+6) 0 [a,b] such that x E [a,B]. First assume that
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f(k)(Y)

f(

% :(k)(x) for each y E [a,B]. By Theorem 4.21,

k

k) f 0" [0,8]. Applying Lemma 5.1 to the function

g, which satisfies

(“(y) = f(k)(y)-f(k)(x)

for each y E [a,B], there exists a partition of [a,B]

{a = to < t1 < ... < t£ = B}

with 2 5 2k such that for each i = 1,2,...,1, and each

s,w E [ti-l’ti] with s 5 w

(5.6) |g(w)-g(s)l 3-5%(m(A O [51W]))k

where A = {y E [a,B] : [g

If f(k)(y) 5 f(k)(x) for each y E [a,B], then consider -g

and apply Lemma 5.1 to obtain precisely the same inequality

(5.6).

We first obtain an estimate for m(A 0 E). For this

purpose assume [ti-l’ti] 0 E f 0. Let

t 5 t. < t9 < t.
I

i-l l - i - l

with t;.t} e E. Then by (5.6) and (5.4)

m(A 01t[,t'11])5 ("E—H1”)<1(t';.)-g(1;.)I“k \

“fig—)1” ()g(t';)l“" + )g(t;))“")

I
/
\ (lg—)1”(e(12‘-)k/k!~2k(k+1))“"‘(lt';-xl+lt;-xl)

—”— [dist.(x.[a,81) + (B-aH

2-2k

I
A

< %% [dist.(x,[a,B]) + (B-a)]-

 

.
.
1
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If

V
) I
I

lanCi : t! e [ti-l’ti] 0 E}

and

M

I
I

supIti : ti E [ti-l’ti] n E}

then it follows from the above inequality that

m(A n E n [ti_1,ti]) m(A n E n [51,53])

I
A m(A n1s;.s';))

I
A %% [dist.(x,[a,8]) + (B-a)].

Clearly the same estimate holds if [ti-1’ti] n E = 0. Hence

= ile m(A n E n [ti_1,ti])

< Z§=1 %% [dist.(x,[a,B]) + (B-o)]

I
A % [dist.(x,[a,8]) + (B-o)].

Secondly, we obtain an estimate of m(A 0 EC). Let J

be the smallest closed interval in [a,b] containing both x

and [a,B]. Using (5.5) we have the following estimate

(5.8) m(A n EC) 5 m(J n EC) 5 rum-121.

Note that m(J) = dist.(x,[a,B]) + (B-a).

Therefore by (5.7) and (5.8)

m(A) = m(A n E) + m(A n EC)

5 m(A n E) + m(J n EC)

5 [dist (x,[a,Bl) + (B-a)]°% + m(J)-%

= [dist.(xa[a,8]) + (B-a)]°n ,
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and (5.3) holds. Thus f(k) has pr0perty Z on [a,b] and the

proof is complete.

As was mentioned in the introduction, C. E. Weil

introduced property Z in [11]. He further showed in [11]

that if a function g has the Darboux property and property Z

on an interval J then 9 has the Zahorski property on J (an

example of a function having the Darboux property and the

Zahorski property but not pr0perty Z can also be found in

[11]). Thus in the class of functions having the Darboux

property, property Z is strictly stronger that the Zahorski

property.

Thus, by Corollary 4.22 and the previous paragraph,

we have the following corollary to the last theorem.

Corollary 5.9. If f possesses a kth approximate
 

Peano derivative f(k) everywhere on [a,b], then f(k) has the

Zahorski property on [a,b].
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