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ABSTRACT

GRAPHS AND THEIR ASSOCIATED LINE—GRAPES

by Gary Theodore Chartrand

With every ordinary graph G there is associated a

graph L(G), called the line—graph of G) whose vertices

are in one-to~one correspondence with the edges of G and

having the property that adjacency is preserved. The con-

cept of the line-graph was originated in 1932 by H. Whitney,

In the 32 years which have elapsed since then, the litera-

ture on this subject has been quite sparse. The purpose of

this thesis is to add to the knowledge of line-graphs.

Sectionl_consists of the introduction in which the

origin of the thesis problem is presented and in which are

outlined the tOpics treated in the sections which followt

Section 2 contains definitions of the technical terms which

are basic to graph theory and which are used throughout the

thesis. In this same section we also establish some of the

notation to be used“ A brief history of the literature on

-line-graphs of ordinary graphs is presented in Section 3.

Numerous preliminary and elementary results are given

in Section 4. Among these are: (l) the only graphs which

are isomorphic to their line-graphs are the regular graphs

of degree two; (2) a necessary and sufficient condition



Gary Theodore Chartrand

that the sequence {Ln(3)} of repeated line-graphs of a

graph G be infinite is that at least one component of G be

other than an arc; (3) for every connected graph G which is

not an arc, there exists a nonnegative interger N such that

for all ij N, Lp(G) is nonseparable. (The exact value of N

is given for every such graph.)

Connectedness relations between graphs and their line-

graphs are investigated in Section 5. In particular, it is

shown that: (I) if a graph G is m-edge connected, then L(G)

is (2m-2)-edge connected; and (2) if G is m-connected, then

L(G) is m-connected. Examples are given to show that in

general these results cannot be improved.

Section 6 is devoted to Euler graphs. It is shown that

the line-graph of an Euler graph is an Euler graph; however,

the main theorem is: A necessary and sufficient condition

that some repeated line-graph of a connected graph G be

Euler is that every edge of G have the same parity. In par—

ticular, if a graph G has this property, then L2(G) is an

Euler graph.

In Section 7 the notion of sequential graphs is intro-

duced, and the relationship between such graphs and Hamilton

line-graphs is given. It is in this section that the major

theorem of the thesis is presented, namely: Let G be any

connected graph of order n which is not an arc. Then there

exists a unique nonnegative integer h(G), called the Hamilton

index of G, such that for all p 2;h(G), Lp(G) is a Hamilton
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graph; furthermore, h(G).£:n-3, and the upper bound n—3

cannot, in general, be improved.

Triangle relations in repeated line-graphs of regular

graphs G of degree r:>2 are given in Section 8. It is shown

there that the probability approaches one as n approaches

infinity that if three vertices are selected at random from

Ln(G), then these will be the vertices of an "empty”

triangle in Ln(G).

The thesis is concluded with Section 9 in which are

presented some miscellaneous results dealing with line-graphs.

The chief theorems of the section are: (l) a necessary and

sufficient condition that a graph be the line-graph of a tree

is that it be a completed Husimi tree, all of whose vertices

have connective index at most two; (2) the only bipartite

line-graphs are arcs and circuits of even length; (3) the

line—graph of a nonplanar graph is nonplanar.
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SECTION I

INTRODUCTION

In 1932 the paper ”Congruent Graphs and the Connec-

tivity of Graphs” by H. Whitney appeared in the American

Journal of Mathematics [15]. This paper contained a
 

theorem which led to the definition of ”line-graph” we

are about to give, and it is the development of this con—

cept with which we are concerned. The problem of investi—

gating the properties of repeated line-graphs was suggested

by Ore (see [11], page 21, problem 7).

Definition 1.1 The line—graph L(G) of an ordinary graph
  

G is that graph whose vertex set can be put in one—to-one

correspondence with the edges of G in such a way that two

vertices of L(G) are joined by an edge if and only if the

corresponding edges of G have a vertex in common.

By L2(G) we shall mean L(L(G)), and, in general,

n(G) = L(Ln-1(G)) for h 332. For L(G) we shall sometimes

1

(

L

write L G), and LO(G) will mean G itself. The graphs

Ln(G), n522, will be referred to as the repeated line-graphs

of G.

The term ”line-graph” employed by Harary [6], is

alternatively referred to as ”interchange graph" by Ore [ll]
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and derivativeH by Sabidussi [12]; however, we shall use

"line-graph” throughout the paper.

Definitions of technical terms which are basic to

graph theory and which are used in this thesis are presented

in Section 2, as well as a few remarks regarding notation.

In Section 3, we give a survey of the known literature on

line-graphs.

Several preliminary and furdamental results concerning

line-graphs are given in Section A. Many of these results

are used throughout the thesis.

In Section 5 we discuss the relationship between the

connectivity of a graph and that of its line-graph. The

corresponding relationship with edge connectivity is also

investigated.

Sections 6 and 7 deal with the problems of line~graphs

containing Euler paths and Hamilton circuits, respectively.

In particular, conditions are given under which repeated

line-graphs of a given graph contain Euler paths or Hamilton

circuits.

In Section 8 we investigate some numerical results

involving the number of vertices, edges, and the various

types of triangles which occur in repeated line-graphs of

regular graphs of degree r;.2.

The concluding Section 9 contains a number of miscel~

laneous results on linowgraphs dealing with trees, bigraphs,

and planar and nonplanar graphs.



SECTION 2

NOTATION AND BASIC DEFINITIONS

The subject of graph theory is presently in the posi—

tion of having many different terms used for the same con-

cept. It therefore seems advisable to define those terms

which are fundamental to graph theory and which are used in

this thesis. These definitions are presented in this sec-

tion, as is some of the notation which is used later.

In order to give a definition of a graph, we begin

with a finite nonempty set V, whose elements we call points

or vertices. We refer to V as the vertex set. A graph G
 

with vertex set V is a set (possibly empty) of pairs of

elements of V. The elements of G are called lipgp or gdgpp.

To emphasize the fact that G has vertex set V, we often

write G(V) for G. If E = (a,b) is an edge of G(V), then we

say E joins a and b. An edge of the type (a,a) is called a

lppp. We shall omit loops entirely from our consideration.

If a graph G = G(V) consists of ordered pairs of vertices,

 

then G is called a directed graph (or simply a digraph) and

the edges of G are referred to as directed edges. If G con-
 

sists of unordered pairs of vertices, then G is an undirected
 

graph. An undirected graph without 100ps is called an

ordinary graph, and with the one exception noted in Section

3



7, the word "graph” in this thesis is understood to mean

"ordinary graph.”

With regard to language, when we speak of the vertices

of the graph G = G(V), we shall be referring to the vertices

in V.

If two vertices a and b are joined by an edge E, then

a and b are said to be adjacent. Similarly, if two distinct

edges El and E2 have a vertex in common, they are adjacent.

If E = (a,b) is an edge of some graph, then E and a are said

to be incident to each other, as are E and b. A vertex

adjacent to no other vertex in a graph is called an isolated

vertex. If a graph G consists only of isolated vertices,

then G is called an empty graph. A trivial graph consists
  

of one (isolated) vertex; thus, a nontrivial graph must nec-
 

essarily contain at least two vertices. In contradistinction

to an empty graph is a complete graph, in which all pairs of
 

distinct vertices are adjacent. A complete graph with n

vertices has n(n-l)/2 edges and is denoted by Kn: The graph

K3 is called a triangle. The number of elements in the

vertex set of a graph is referred to as the pgdgp of that

graph.

The number of vertices to which a vertex a is adjacent

is called the degree pf_g and is denoted by )9(a). If a is

an isolated vertex, then /0(a) = 0; while if G = G(V) is a

complete graph of order n, then ,p(v) = n-l for every v 5 V3

An edge E = (a,b) is called a terminal edge if either f3(a)=l
 



or /9(b)=l. If /9(a)=l, then a is a terminal vertex.
 

A fundamental theorem states:

If G = G(V) has m edges, then £23,F(v) = 2m. From this

result it follows that every grdzx contains an even number

of vertices having odd degrees.

A graph H is called a subgraph of the graph G = G(V)

if the vertex set of H is a nonempty subset of V, and if

every edge of H is an edge of G. If a subgraph H of a

graph G = G(V) is defined as a certain nonempty subset of

the edges of G and the vertex set of H is not otherwise

specified, then the vertex set of H shall be those vertices

which are incident with at least one edge of H. If A is a

nonempty subset of the vertex set V, then the subgraph G(A),

whose vertex set is A and whose edges are all those edges in

G which join two vertices of A, is called the section graph
 

of G determined_py A or the subgraph of G generated py A.
  

If A = V, then the section graph G(V) is G itself, which

agrees with our earlier notation.

If G is a graph having at least one edge and H is a

proper subgraph of G (that is, G contains at least one more

edge than H), then we can speak of the complement pf‘H 3p g,
 

denoted by G-H, which is that subgraph of G consisting of

those edges of G which are not in H. Under this definition,

it is never possible for G-H to contain isolated vertices.

0
|

Similar to this is the concept of the complementary graph
 

Of a graph G = G(V). G'is that graph whose vertex set is V



and which contains all edges in the complete graph having

vertex set V which are not in the graph G. ‘5 may very well

contain isolated vertices; indeed, the complementary graph

of a complete graph is an empty graph, and vice versa.

Two graphs G and G' with vertex sets V and V',

respectively, are isomorphic if there exists a one-to-one
 

correspondence between V and V' such that two vertices are

joined by an edge in one graph if and only if the corre-

sponding vertices are joined by an edge in the other graph.

A pgph in a graph G = G(V) is a sequence P of dis-

tinct edges from G : E1 = (a,al), E2 = (a1, a2), . . . ,

En = (an_l,b), where the vertices need not be distinct. We

say P is a path from a to b (or from b to a). If in the

sequence P above, a = b (and so n 533), then P is called a

cyplic path. If all vertices in a path are distinct, then
 

the path is called an app. If a = b, but all other vertices

are distinct, then the cyclic path is called a circuit or a

pyplg. For the path P above, we often write P : (a,al,a2,

. °:an~l:b)' If P is a cyclic path, we write P : (a,al,a2,

. . .,an_l,b=a). By the section graph [0] f‘g circuit c

(ao,al,...,an_l,an=ao) in G, we mean the section graph G(A),

where A = {ao,al,...,an_¥3 . A diagonal of a circuit c is

an edge in [C] which is not in C.

It is well known and not difficult to prove that if

there is a path from a to b, a £ b, in a graph G, then there

is also an arc in G from a to b. Two vertices a and b are

gppnected if a = b or if a £ b and there is an arc from a to
 



b. A connected graph is a graph in which every pair of its
 

vertices is connected. The relation ”is connected to” is an

equivalence relation on V; therefore, there exists a decom-

position of the vertex set V = LJVi into disjoint sets such

that in each Vi, each pair of vertices is connected, while

if a 5 Vi and b 6 VJ, i e j, then a is not connected to b.

G can then be decomposed into disjoint connected section

graphs G(Vi), called the connected components or simply the
 

components of G. We write G = Z G(Vi), and say G is
 

expressed as the direct sum of its components indicating that
 

every vertex and every edge of G is in precisely one of the

G(Vi). We say that G is expressed as the edge direct sum of
 

the subgraphs, G1, G2,...,Gk, and write again G = 23 Gi’ if

every vertex and every edge of G is in some Gi but no edge

is in more than one Gi' Two subgraphs which have no vertex

in common are called disjoint, and two subgraphs which have

no edge in common are called edge disjoint. It therefore
 

follows that the summands of a direct sum are pairwise dis-

joint and the summands of an edge direct sum are pairwise

edge disjoint. Clearly, disjoint subgraphs are edge disjoint,

and a direct sum is also an edge direct sum, but the converse

of neither is true; indeed, a graph G and its complementary

graph G are always edge disjoint but never disjoint.

The definitions of a few special types of graphs will

be useful. A connected graph which contains no circuits is

a tree.



A graph G = G(V) is called regular pf degree §_if

f7(v) = r for all ve V. A circuit is regular of degree

two, and KD is regular of degree n-l.

If we write V = Vl LS} V2 as a disjoint union of non—

empty subsets of V, and G = G(V) is such that no two vertices

of V1, 1 = l, 2, are adjacent, then G is called a bipartite
 

graph or a bigraph. If V1 contains m vertices and V2 con-

tains n vertices, then the bigraph in which all mn edges

are present is called a complete bigraph and is denoted by
 

Km,n or Kn,m' A complete bigraph of the type Kl,n is

referred to as a star graph.
 



SECTION 3

A SURVEY OF KNOWN RESULTS

This section will be devoted to a brief history of

the literature on line-graphs, which is quite sparse. We

shall also mention here some easily verified elementary

results.

From the definition of”1ine-graph,” it follows at

once that the line—graph L(G) of a graph G depends only on

the edges of G and the way they are related to one another.

This leads to the following.

Theorem 3.1 Let G and G' be two nonempty graphs, and let
 

H and H‘ be those subgraphs of G and G', respectively, ob-

tained by deleting all isolated vertices of G and G'. If H

and H' are isomorphic, then L(G) and L(G‘) are isomorphic.

According to the preceding theorem, if we are given a

linevgraph J, we can always find a graph G having no isolated

vertices such that L(G) = J. We shall make use of this fact.

Whether two nonisomorphic graphs, neither having isolated

vertices, can have isomorphic line-graphs is the essence

of the first theorem on line-graphs given by Whitney [15] in

1932.
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Theorem of Whitney If the line-graphs L(G) and L(G') of the
 

connected graphs G and G' are isomorphic but different from

K3, then G and G' are isomorphic.

It is an easy exercise to show that L(K3) and L(Kl,3)

are both K3 and that no other graph has the line-graph K3;

thus, Whitney's theorem implies the existence of a one-to-one

correspondence between connected graphs and line-graphs of

connected graphs if the line—graph K3 is not considered.

Since 1932, other proofs of Whitney's theorem have been

given. One of these made use of the following interesting

characterization of line-graphs given by Krausz (see [6]).

Theorem of Krausz A graph is a line-graph if and only if
 

it can be expressed as an edge direct sum of complete sub-

graphs in such a way that no vertex is contained in more than

two of these subgraphs.

It is not difficult to show that a line-graph L(G) can

be expressed as an edge direct sum of complete subgraphs

in such a way that every vertex belongs to exactly two of

these subgraphs unless G has terminal edges, so, in particular,

this result holds if G is a regular graph of degree r E?2.

With the aid of Krausz‘ theorem, the following result

is easily established.

Theorem 3.2 There exist graphs which are not line—graphs.
 

Proof. Consider the star graph Kl,3° The only complete

subgraphs in K1,3 are edges, so if K1 3 is expressed as an

)
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edge direct sum of complete subgraphs, then necessarily one

vertex will be contained in three such subgraphs. Hence,

Kl,3 is not a line-graph.

As Ore [11] pointed out, with every graph G = G(V)

one can associate various matrices called incidence matrices.

One such matrix is the so-called vertex incidence matrix

which we shall denote by MV(G). The usual way of constructing

this square matrix is as follows. Every edge of G can be con-

sidered as an element of the product space V x V. The elements

of V x V can be represented in a square array with the

elements of V serving as coordinates along the two axes (Fig—

 

ure 3.1).

V1 ooooo Vj oooooo Vn

V1 ;

Figure 3.1 vi ........ ;(Vi’ v3)

Vn  

It is customary to take the elements of V in the same order

along each axis. At the position wimacoordinates(vi, VJ)

we place 1 or 0 depending on whether there is or is not a

corresponding edge in G. We thus obtain the matrix MV(G).

The matrix MV(G) is a symmetric matrix having all diagonal

entries equal to O. Another matrix is the edge incidence

matrix N%(G) of G where both rows and columns correspond to
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the edges of G, the edges taken in the same order along both

row and column. At a position (El’ E2) we place 1 or G de-

pending on whether E1 and E2 are or are not adjacent. As

with MV(G), MG(G) is a square symmetric matrix all of whose

diagonal entries are O. It is possible to consider Me(G)

as the vertex incidence matrix of a new graph G1 whose

vertices are in one-to—one correspondence with the edges of

G. It is then easily seen that the graph G1 is the line-graph

L(G). Figure 3.2 gives an example.

In recent years investigations have been made to deter—

mine how closely various properties of line-graphs of special

graphs seem to characterize these graphs. The first theorem

along this line is given next (see [3], [8], and [13]). It

was proved in parts and completed in 1960.

Theorem of Conner, offman, and Shrikhande If G is a graph
 

of order n(n-1)/2, n 2'4, having the following three

properties:

(i) every vertex of G has degree 2(n-2),

(ii) every two adjacent vertices are mutually adjacent

to n—2 other vertices,

(iii) every two nonadjacent vertices are mutually adjacent

to four vertices,

then G is isomorphic to L(Kn) except when n = 8, in which

case there are precisely three counter examples.

The corresponding theorem for complete bigraphs appeared

in 1963 [9]~
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1

A c A c
G L(G)

E

2 A

B B D

3

1 2 3 A

1 o 1 o 1

2 1 o 1 1

Mv(G):

o 1 o 1

LL 1 1 1 o

A B C D E

A o 1 1 o 1

B 1 o o 1 1

Me(G) .—. MV(L(G)) c 1 o o 1 1

D o 1 1 o 1

E 1 1 1 1 0

Figure 3.2
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Theorem of J. W. Moon If G is a graph of order mn, m 2:n2:
 

1, having the following three properties:

(i) every vertex of G has degree m + n - 2,

(ii) there are nm (m-l)/2 pairs of adjacent vertices

mutually adjacent to m—2 other vertices, and the

remaining mn(n-l)/2 pairs of adjacent vertices

are mutually adjacent to n-2 other vertices,

(iii) every two nonadjacent vertices are mutually

adjacent to two vertices,

then G is isomorphic to L(Km,n) except possibly when (m,n)

= (4,4), (4,3), or (5,4).

Shrikhande [14] has shown there is precisely one counter

example for (m,n) = (4,4), and from a discussion with Profes-

sor Harary, I have learned that A. J. Hoffman has now verified

Moon's theorem for (m, n) = (4,3) and (5,4); hence, the

result is now complete.

There is one other result in the literature which deals

with line-graphs of ordinary graphs. This theorem falls

within the realm of algebraic graph theory, a topic not con-

sidered in this thesis. For the sake of completeness, however,

we shall also state this result. A few introductory remarks

are in order.

With every graph G = G(V) there corresponds a group of

automorphisms {“ = F"(G) consisting of all isomorphisms of G
 

onto G, i.e., r" consists of all one-to-one correspondences f

of V onto V such that when E = (a,b) is an edge in G,
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E‘ = (f(a), f(b)) is also an edge in G, and conversely. (1 may

thus be considered as a permutation group on V. The auto-

morphism group of Kn is Sn’ the symmetric group of order n1,

while the automorphism group of a circuit of length n is the

dihedral group of order 2n. Perhaps the best known theorem

in this area is due to Frucht (see [11]): For any finite

group I"1 there exists a graph G such that F = F(G). The

result on line—graphs [12] can now be given.

Theorem of Sabidussi If G is a connected nontrivial graph
 

not isomorphic to K2, K4, Q (the graph of order four having

four edges and a vertex of degree three), or to L(Q), then

I" (G) is isomorphic to F(L(G)).



SECTION 4

FUNDAMENTAL PROPERTIES OF AND PRELIMINARY

RESULTS CONCERNING LINE-GRAPES

In this section we present several basic results which

are fundamental in understanding the relationship between a

graph and its line-graph. Many of these results will be

used numerous times in the sections which follow.

Theorem 4.1 Let G = G(V) be a graph with m edges and T
 

triangles. Then the line-graph L(G) of G contains m vertices,

v

2 ('0(\2]))edges, and T + Z (10(1)) triangles. Also, if e

V 6 V v e V ”

is the vertex in L(G) which corresponds to the edge E = (a,b)

of G, then [0(e) has the value ,0(a) + [9(b) — 2.

grggf. Since there is a one-to-one correspondence

between the edges of G and the vertices of L(G) and G has m

edges, L(G) has m vertices.

Two vertices are joined by an edge in L(G) if and only

if the corresponding edges in G are adjacent. The number of

edges in L(G) is therefore the number of pairs of adjacent

edges in G, which is 22:: (P(g))

v e V

As we have seen, a triangle in a line-graph L(G) can be

Generated in one of two ways, namely, by a triangle in G or

by three edges in G having a common vertex; the number of

these types of subgraphs in G is given by T and Z. ((091)),

v 61]

16
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respectively, thereby producing the desired result.

If the vertex e in L(G) corresponds to the edge E = (a,b)

of G, then B is adjacent to [ f’(a) - l] + [ /’(b) — l]

= ,0(a) + flb) - 2 edges of G implying that e is adjacent to

F(a) + ,0 (b) - 2 vertices in L(G) or that/(e)=/(a)+fl(b)—2.

Q.E.D.

With the aid of the preceding theorem, it is now an easy

matter to give a characterization of regular line-graphs. We

precede this, however, with two definitions and a lemma.

Definition 4.1 The degree gf_an edge E = (a,b) in a graph
 

G is defined to be the number )0(E) = ,0(a) + )0(b) —2, and

is the number of edges in G adjacent to E.

Definition 4.2 A graph G is said to be edge regular of
  

degree r if every edge has the same degree r.

Lemma 4.2 A vertex e in the line-graph L(G) of the
 

graph G has the same degree as the degree of its corresponding

edge in G.

Proof. The proof is a direct consequence of Definition

4.1 and Theorem 4.1.

Q.E.D.

Theorem 4.3 A line-graph L(G) is regular of degree r if
 

and only if G is edge regular of degree r.

Proof. The proof follows immediately from Lemma 4.2.

Q.E.D.

An edge regular graph need not be regular as can be seen

by considering star graphs having order three or more, but
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every regular graph is edge regular implying that the line-

graph of a regular graph is regular. We state this in the

following theorem.

Theorem 4.4 If G is a nonempty regular graph of degree r,
 

then L(G) is a regular graph of degree 2r - 2, and if r.2:2,

then for n = l, 2, 3, . . . , Ln(G) is a regular graph of

degree 2n(r-2) + 2.

m. If G is regular of degree r21, then G is seen

to be edge regular of degree 2r - 2, and L(G) is regular of

degree 2r - 2 by Theorem 4.3. The remaining part of the

theorem follows by a routine application of mathematical

(induction.

Q.E.D.

Before continuing with regular graphs, we present some

facts which will be useful in the sequel.

Theorem 4.5 If G is a nontrivial connected graph, then
 

L(G) is connected. Conversely, if L(G) is connected (and

G has no isolated vertices) then G is connected.

.grggf. Let G be a nontrivial connected graph. If G

consists of a single edge, then L(G) is a single vertex and

so is connected; otherwise, let a and b be any two vertices

in L(G), and let A = (a1, a2) and B = (b1, be) be the edges

in G which correspond to a and b, respectively. If A and B

are adjacent in G, then a and b are adjacent in L(G) and are

connected; otherwise, since G is connected, a1 and b1 are
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joined by an arc Q: E1, E2, . . ., Ek' Let e1, e2, . . .,

8k be the corresponding vertices in L( ). If A = El and

B = Ek’ then P = (a, e2, . . . , ek-l’ b) is an arc in L(G)

joining a and b. If A £ El but B = Ek’

e2, . . ., ek-l’ b) is an arc in L(G) joining a and b. The

then P1 = (a, el,

cases A = E], B e ER and A 2 E1, B a Ek are handled similarly,

and we see that a and b are connected so that L(G) is con-

nected.

Conversely, let L(G) be connected, and let u and v be

any two vertices of G. Since there are no isolated vertices

in G either there is an edge (u, v) in G, in which case u

and v are connected, or else there are two edges E = (u, ul)

and F = (v, v1) in G. In the latter case let e and f be the

two vertices in L(G) which correspond to E and F, respectively.

Since L(G) is connected, e and f are connected by an arc S:

{
D

(e, e1),(el, e2), . . . , (es-1’ f) which corresponds to

path T : E, E1, E2, . . . , Es-l: F in G from u to v so that

u and v are connected.

Q.E.D.

Theorem 4.5 immediately implies the following:

Corollary 4.5.1 If 23 G1 is the direct sum decomposition
 

of a graph G into its components, none of which are isolated

vertices, then the line—graph L(G) can be expressed as the

direct sum :3 L(Gi) of its components.

One may ask if a statement analogous to Corollary 4.5.1

can be made when a graph is expressed as an edge direct sum.

An answer is given in the negative by the following.
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Theorem 4.6 If G is expressed as the edge direct sum H + K,
 

neither H nor K having isolated vertices, then L(H) and L(K)

are disjoint, hence edge disjoint, and L(G) can be expressed

as the edge direct sum L(H) + L(K) + J, where J is a subgraph

of L(G), each edge of which joins a vertex of L(H) to a vertex

of L(K). J is an empty graph if and only if the edge direct

sum H + K is direct.

Pooof. The fact that L(H) and L(K) are disjoint follows

by noticing that if some vertex were simultaneously in L(H)

and in L(K), then there would exist an edge in G common to H

and K contradicting the hypothesis that H and K are edge dis-

joint.

Sinceeverwredge of G lies either in H or in K, every

vertex of L(G) is contained in either L(H) or L(K). An edge

of L(G) is determined by two adjacent edges in G, and two

such edges may lie both in H, both in K, or else one of the

two adjacent edges must lie in H and the other in K resulting

in an edge of L(H), an edge of L(K), or an edge neither in

L(H) nor in L(K) but rather an edge joining a vertex of L(H)

to a vertex of L(K), respectively. Let J denote the collec-

tion of all edges in L(G) joining a vertex of L(H) to a vertex

of L(K). We shall refer to an edge contained in a subgraph

such as J as a ”cross edge.” It is now seen that L(G) can be

expressed as the edge direct sum L(H) + L(K) + J.

If H + K is a direct sum, then the fact that J is an

empty graph is a simple consequence of Corollary 4.5.1. On
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the other hand, if H + K is an edge direct sum but not a

direct sum, then since H and K have no isolated vertices

and are both nontrivial, it is easily seen that an edge of

H must be adjacent to an edge of K producing an edge in J.

Q.E.D.

Immediate consequences of this theorem will be given

next.

Corollary 4.6.1 If H is a nonempty subgraph of G, then
 

L(H) is a subgraph of L(G).

Corollary 4.6.2 If H is a nonempty section graph of G,
 

then L(H) is a section graph of L(G).

Corollary 4.6.3 If H is a nonempty subgraph of G and
 

G - H is the complement of H in G, then L(G-H) is the com-

plement of L(H) in L(G) if and only if H and G-H are disjoint,

i.e., if and only if H is the sum of components of G.

Corollary 4.6.4 If G is expressed as the edge direct sum
 

:2: Hi, where the Hi are without isolated vertices, then

the L(Hi) are pairwise disjoint, and L(G) can be expressed as

the edge direct sum 2: L(Hi) + J, where J is a subgraph of

L(G), each edge of which joins a vertex of some L(Hi) to a

vertex of some L(HJ), i £ j. J is an empty graph if and

only if the edge direct sum 2 H1 is direct.

We now return to regular graphs in order to present a

theorem which solves the problem proposed by Ore of deter—

mining all graphs isomorphic to their line-graphs (see [11],

page 21, problem 5). The proof we give is chosen as an

application of Theorem 4.1.
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Theorem 4.7 The only graphs which are isomorphic to their
 

line—graphs are the regular graphs of degree two.

Proof. Let G be regular of degree two. By Corollary

4.5.1, we may assume G to be connected. Let the vertices of

G be al, a2, . . ., an, ordered in such a way that the

resulting n edges are (al, a2), (a2, a3), . . . , (an_l, an),

(an, a1), whose corresponding vertices in L(G) are b1, b2,

., bn-l: bn, respectively. The one-to-one correspondence

ai<———e>bi (i = l, 2, . . ., n) is then easily seen to be

an isomorphism between G and L(G).

Conversely, let G be a graph which is isomorphic to

its line-graph L(G). Let G have n vertices, say v1, v2,

,vn, and m edges. Hence, L(G) has m vertices, and since G

and L(G) are isomorphic, m = n. If G has T triangles, then L(G)

I"! .(V')

too must have T triangles implying that T = T + :(F f)

1:4. 3

F(Vi)

(from Theorem 4.1) or that ;%% = 0, so that

1.: 3

flvi) g 2 for all i = 1, 2,... ., n. Since m .—. n,

(v-) (V >

n: i: ID 1 ,but P(vi) < 2so ,0 i =lorO

i=1 2 _ 2

depending on whether [G(Vi) = 2 or /0(Vi) < 2. However,

n pm)
the sum has the value n and has n terms, so

i=1 2

for each i = l, 2, . . . , n, we must have f9(vi) = 2; there-

fore, G is regular of degree two.

Q.E.D.

Since a connected regular graph of degree two is simply

a circuit, the graphs which are isomorphic to their line-graphs

are those graphs whose components are simple circuits. In a
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like manner one can show that if G contains a circuit, then

L(G) contains an isomorphic circuit. We consider the repeated

line-graphs of another special type of graph next.

Theorem 4.8 If G is an arc of length n (n 2:1), then L(G)
 

is an arc of length n-l.

Proof. Let E1 = (a0, a1), E2 2 (a1, a2) . . . ,

En = (an-l: an) be the edges of G and let e1, e2, . . .,en

be the corresponding vertices in L(G). Then the edges in L(G)

are Fl = (e1, e2), F2 2 (e2, e3), . . . , Fn-l = (en_l, en),

and so L(G) is an arc of length n-l.

Q.E.D.

Corollary 4.8.1 If G is an arc of length n (n 271), then
 

Ln (G) consists of an isolated vertex (an arc of length zero),

while for k >'n, there exists no graph Lk(G).

It should be clear that the arcs and the circuits are

the only connected graphs all of whose vertices have degree

not exceeding two, so any other connected graph has one or

more vertices of degree three or more.

Theorem 4.9 A necessary and sufficient condition that the
 

sequence ‘(IF(G)} be infinite is that at least one component

of G be other than an arc.

Proof. Let G be a graph such that the sequence {;Ln(G)}

is infinite. If the components of G were all arcs and the

maximum length of these arcs were N, then by Corollary 4.6.1,

Lk(G) for k > N would not exist. On the other hand, if a com-

ponent G1 of G were not an arc, then either G1 would be a
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circuit or would contain a vertex v having degree three or

more. If Gl were a circuit, L(Gl) and so Lk(Gl) for all k

would be a circuit. If G1 contained a vertex v incident

with three edges, then L(G and so Lk(Gl) for all k would1)

contain a triangle. Hence, Lk(G) exists for all k.

Q.E.D.

Definition 4.3 Let G be a graph for which the sequence
 

{ Ln(G)} is infinite. The sequence { Ln(G)} is said to

have a limit graph if there ex1sts a positive integer N such
 

that if m 27 N and p 27 N, then Lm(G) is isomorphic to

Lp(G). LN(G) is then called the limit graph of { Ln(G) }

Theorem 4.10 A necessary and sufficient condition that
 

the sequence { Ln(G)} have a limit fraph is that G contain

one or more components which are either simple circuits or

star graphs of the type K1,3 while any other components of

G be arcs.

Proof. From Theorem 4.7 the only possible limit

graphs are graphs whose components are simple circuits. It

follows by the theorem of Whitney that with the exception

of triangles, the only graph whose line-graph is a circuit

is an isomorphic circuit. In the case of a triangle, it is

the line-graph of both a triangle and the star graph K1,3°

In addition to Kl,3 and circuits, G may contain arcs as com-

ponents, for by Corollary 4.8.1, after taking a finite number

of line-graphs, we arrive at a graph containing no arcs.

Q.E.D.
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Corollary 4.10.1 Let G be a graph which contains at least

one component different from a circuit, the star graph K1,3,

or an arc. Then if m and p are any two nonnegative integers

(m £ p), Lm(G) and Lp(G) are nonisomorphic.

Just as we found it useful to decompose a graph into

its connected components, we find it useful to decompose con-

nected graphs into special types of pairwise edge disjoint

connected subgraphs and to investigate the relationships of

such subgraphs with these types of subgraphs in the line—graph.

We now introduce the following definitions, many of which may

be found in Ore [11].

Definition 4.4 An edge E of agxemfliG is called a circuit
 

edge of G if E belongs to some circuit of G.

Definition 4.5 An edge E = (a, b) of a graph G is a
 

separating edge or oof_oogo of G if the removal of E from G

results in a graph G1 in which a and b are not connected,

i.e., if a and b are not connected in the graph G1 whose

vertex set is that of G and which has all edges of G with

the exception of E.

It is then a routine matter to verify the assertation:

Theorem. An edge E is a circuit edge of a graph G if and only

if it is not a separating edge of G.

Definition 4.6 A vertex v of a graph G = G(V) is called
 

a separating vertex or cut point of G if the removal of v
  

(and necessarily then all edges in G incident with v) results
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in a graph having a greater number of components than that

of G, i.e., if G(U), where U = V - {Iv} , has more compon-

ents than G.

If G is connected, the removal of a separating

vertex results in a disconnected graph. For example, cir-

cuits and complete graphs contain no separating vertices,

while, on the other hand, every vertex of degree two in an

arc is a separating vertex.

Definition 4.7 For any edge E of a graph G, the set of
 

edges consisting of E and all edges F of G such that E and

F both belong to some circuit in G forms a connected subgraph

of G called the block (also lobe graph, member, or minimal
 

piooo) of G determined by E.

We state without proof the following well known

results.

Theorem. Every edge of a graph G lies in one and only one

block of G.

Theorem. Every block of a graph G is a section graph of G,

but not conversely.

Theorem. Every block of a graph G is a maximal connected

subgraph of G containing no separating vertices.

Theorem. Every graph is the edge direct sum of its blocks.

Definition 4.8 The number of blocks to which a vertex v
 

belongs is called the connective index of v and is denoted by
 

i(v). It follows from the definition that a vertex v of a

graph G is a separating vertex of G if and only if i(v):>l.
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Definition 4.9 A nontrivial graph containing a single
 

block is called a nonseparable graph.
 

We now resume our investigations of line-graphs.

Theorem 4.11 If a is any vertex in the line—graph L(G) of
 

the graph G, then either i(a) = l or i(a) = 2.

Proof. By Krausz' theorem, any line-graph is charac-

terized by the fact that it can be expressed as an edge direct

sum of complete subgraphs in such a way that every vertex

belongs to at most two of these complete subgraphs. Clearly,

any complete subgraph must lie wholly in some block, so any

vertex a in a line-graph is contained in at most two blocks;

hence i(a) = l or i(a) = 2.

Q.E.D.

Theorem 4.12 A necessary and sufficient condition that
 

a vertex e in the line-graph L(G) of a graph G be a separating

vertex is that the corresponding edge E in G be a nonterminal

separating edge of G.

IEEEE} Without loss of generality we may assume G and

therefore L(G) to be connected graphs. Let E be a nonterminal

separating edge of G, and let e be the corresponding vertex

in L(G). If G1 is the graph obtained from G by deleting E,

then we see that L(Gl) is the graph obtained from L(G) by

deleting e. Since E is nonterminal, neither of the two com-

ponents of G1 can be isolated vertices; hence L(Gl) is a dis-

connected graph implying that e is a separating vertex of

L(G). If E were a terminal separating edge, Gl would consist

Of two components, one of which would be an isolated vertex,
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so L(Gl) would be connected. If E were a circuit edge, then

G1 would be connected as would L(Gl).

Q.E.D.

Theorem 4.13 A necessary and sufficient condition that an
 

edge E = (a, b) be a separating edge of the line-graph L(G)

of the graph G is that the edges A and B in G, which corre-

spond to the vertices a and b, respectively, be separating

edges of G which meet in a vertex of degree two.

Proof. Again, we may take G to be connected. Suppose

A and B are two separating edges of G meeting in a vertex v

of degree two. If the edge B is deleted from G, we obtain a

disconnected graph consisting of two components; let G1

denote that component containing v. Similarly, if the edge

A is removed from G, we obtain a disconnected graph, one

component of which contains v; call this component 62‘

Since G1 and G2 are connected, nontrivial, and edge disjoint,

L(Gl) and L(Go) are connected and disjoint subgraphs of

L(G). It is now easy to see that L(Gl) + L(G2) is precisely

the subgraph of L(G) obtained by deleting the edge E = (a,b)

from L(G), where a and b are the vertices of L(G) which

correspond to A and B, respectively; hence, E is a separating

edge of L(G).

Conversely, let E = (a, b) be a separating edge in

L(G), and let A and B be edges in G which correspond to the

vertices a and b, respectively. Since it is obvious that A

and B are adjacent, let v be the vertex in G common to A and

B. /9(v) = 2, for if another edge C were incident with v and
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c were the corresponding vertex in L(G), the vertices a, b,

and c would form the vertices of a triangle in L(G) contra-

dicting the fact that E is a separating edge. If A or B

were a circuit edge, then necessarily there would exist a

circuit in G containing both A and B as adjacent edges in

the circuit, but a circuit in a graph produces an isomorphic

circuit in its line-graph; however, this resulting circuit

in L(G) would contain E as a circuit edge, again leading to

a contradiction.

Q.E.D.

We see then that the only way of producing a separating

edge in a line-graph L(G) is to have two separating edges in

G which meet in a vertex of degree two. By carrying the argu-

ment one step further, we see that in order to have two

separating edges in a line-graph L(G) meeting in a vertex of

degree two, the graph G must contain an arc of three separat—

ing edges, each adjacent pair meeting in a vertex of degree

two. It is also seen that G must have this property in order

that L2(G) contain a separating edge. Let us state some con—

sequences of Theorem 4.13 in a more formal way.

Corollary 4.13.1 The line-graph L(G) of the graph G has
 

m pairwise disjoint arcs of lengths n1, n2, . . . , nm

(ni 27 1) consisting only of separating edges if and only if

G has m pairwise edge disjoint arcs of lengths nl + 1, n2 + l,

., nm + 1 consisting only of separating edges, where any

two adjacent separating edges in an arc meet in a vertex of

degree two.
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Proof. By arguments analogous to those used in the

proof of Theorem 4.13, one sees directly that if G has an arc

of length ni + 1 consisting only of separating edges, each

adjacent pair of which has a vertex of degree two in common,

then this results in an arc of ni separating edges, and two

such arcs in G which are edge disjoint produce two disjoint

arcs in L(G). The converse follows, again, by repeated ap—

plication of the methods set forth in the proof of Theorem

4.13.

Q.E.D.

Corollary 4.13.2 If G is a graph containing k separating
 

edges, k 27 1, then L(G) has fewer than k separating edges.

.Proof. An arc of m separating edges, m 2: 2, in G,

each adjacent pair having a vertex of degree two in common,

produces an arc of m - l separating edges in L(G), and such

an arc in L(G) can be obtained in no other way; hence, the

number of separating edges decreases as we pass from G to

L(G).

Q.E.D.

Corollary 4.13.3 A necessary and sufficient condition
 

that the graph Lm(G) contain a separating edge is that G

contain an arc of m + l separating edges, each adjacent pair

of which has a vertex of degree two in common.

Corollary 4.13.4 Let the separating edges of Lm(G) be
 

denoted by El’ E2, . . . , Ek’ and assume that no two of

these edges are adjacent. Then in G, there are k edge dis-

joint arcs of length m + 1, each arc consisting only of
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separating edges, and each pair of adjacent separating edges

in any such arc has a vertex of degree two in common.

We conclude this section witheatheorem which will be

greatly strengthened in Section 7.

Theorem 4.14 For any connected graph G which is not an
 

arc, there exists a nonnegative integer N such that for all

p 2: N, Lp(G) is a nonseparable graph, where the smallest

value of N is (i) N = O if G is nonseparable, (ii) N = 1 if

G contains separating vertices but no separating edges, and

(iii) N = m + 1 if G contains separating edges, and m is the

length of the longest arc in G consisting entirely of separat-

ing edges, each adjacent pair of edges in the arc having a

vertex of degree two in common.

Proof. (i) follows as a direct result of Theorem 4.12,

(ii) from Theorem 4.13, and (iii) follows from Theorem 4.13

and Corollary 4.13.3.

Q.E.D.



SECTION 5

THE CONNECTIVITY OF LINE-GRAPHS

In Section 4 it was shown that if G is a graph with-

out isolated vertices, then the line—graph L(G) is connected

if and only if G is connected. This and other results in

the preceding section imply that if G is a connected graph

which is not an arc, then ‘(IP(G)} is an infinite sequence

of connected graphs. In this section the twin tOpics of

edge connectivity and (vertex) connectivity are considered.

We begin by giving a definition due to Ore [11].

Definition 5.1 A nontrivial graph G = G (V) is m-edge
 

connected if there exists no nonempty proper subset A of V
 

such that the total number of edges joining a vertex of A to

a vertex of A'= V - A is less than m.

According to this definition, every nontrivial graph

is O-edge connected.

Definition 5.2 The largest value of m for which a graph G
 

is m-edge connected is called the edge connectivity of G and

is denoted by k0 = kO (G).

Theorems stated by Ore dealing with edge connectivity

include:

32
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Theorem. A nontrivial graph is connected if and only if it

has edge connectivity kO E: 1.

Theorem. For any graph G = G(V) with edge connectivity k0,

kO f3 min/9(v).

velJ

Theorem. A connected graph G has edge connectivity k0 = 1

if and only if G has a separating edge.

The next two theorems will show that the concept of

edge connectivity can be approached from a different direc-

tion if we limit our discussion to connected graphs.

Theorem_5.l A nontrivial graph G = G(V) is m-edge connected,
 

m 24, if and only if the removal of any k edges, OS.k<1n,

from G results in a connected graph.

Proof. Let G be a graph which is m-edge connected,

where H1211” Gris therefore connected. Assume, to the

contrary, that there is some set of k edges, O-< ki< m, which,

when deleted from G, disconnects it. If G1 is the graph ob-

tained from G by removing these k edges, then it follows that

G1 can be expressed as a direct sum: H1 + H2. If the vertex

set of H1 is A and that of H2 is A = v - A, then the number

of edges in G joining a vertex of A to a vertex of A is at

most k, but k<Lm, and this contradicts the fact that G is

m - edge connected.

Let G be a graph having the property that the removal

of any k edges, where O.E:kw< m, from G results in a connected

graph. Suppose that G is not m - edge connected. Then there

is a proper subset A of V such that only 2 edges, [<1m, join
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a vertex of A to a vertex of.A = V - A. However, the dele-

tion of these .2 edges clearly results in a disconnected

subgraph of G, and this is a contradiction.

Q.E.D.

Theorem 5.2 A graph G = G (V) has edge connectivity kO
 

if and only if k0 is the minimal number of edges required to

be deleted from G in order that the resulting graph be dis-

connected.

Proof. If G is a disconnected graph, then k0 = O, and

the result follows in a trivial manner.

Let G be a graph having edge connectivity kOEZ 1. Then

G is kO - edge connected but not (k0 + l) - edge connected.

By Theorem 5.1, it follows that the deletion of any k edges

from G, where kw< k0, results in a connected subgraph of G;

however, since G is not (k0 + l) - edge connected, the removal

of some set of k0 edges from G must produce a disconnected

subgraph of G. Therefore, k0 is the minimal number of edges,

which, when removed from G, results in a disconnected graph.

Conversely, suppose k0, k: 2:13 is the minimal number
0

of edges required to be eliminated from G in order that the

resulting graph be disconnected. This immediately implies

that G is kO - edge connected but not (k0 + l) - edge con-

nected and so has edge connectivity k0.

Q.E.D.

An important theorem and corollary are stated next

(see Berge [2]).
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Theorem. A necessary and sufficient condition that a graph

G be m-edge connected is that every two vertices of G be

joined by at least m arcs which are pairwise edge disjoint.

Corollary. A necessary and sufficient condition that a
 

graph G have edge connectivity H1 is that every two vertices

of G be joined by at least m arcs which are pairwise edge

disjoint, while there are at least two vertices of G which

are joined by no more than m pairwise edge disjoint arcs.

As we stated earlier, Ore showed that for any graph

G = G(V) with edge connectivity k0, kO :3 Ed? /0(v). We

ve

shall give a condition under which equality will hold, a

fact which we shall use later. A lemma is needed here.

Lemma 5.3 Let G = G(V) be a graph of order n. If
 

[0(v) 2 E for all veV, then G is connected.

Proof. If G were not connected and a and b were

vertices in two different components of G, then each com-

n-l _ n+1

2 _ 2

contradicting the fact that G has order n.

ponent would contain at least 1 + vertices,

Q.E.D.

Theorem 5.4 Let G = G(V) be a graph of order n. If
 

F(v)?. n_-_l_ for all veV, then G has edge connectivity

2

k0 = r, where r = min f’(v).

veaV

Proof. Because kO S;r, it suffices to show that the

assumption ko‘< r leads to a contradiction. Since G has

edge connectivity kO (and k0 £ 0 by Lemma 5.3), there is a

nonempty proper subset A of V such that precisely kO edges
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join A to A = V - A. Assume that these kO edges are incident

with m vertices of A. Certainly, m:S.k If A contains only0'

m vertices, then the number of edges in G incident with two

vertices of A is at least % (mr - kO)Z>‘% (mr - r) =

'% r(m-l):> % m (m - l) = (3), but this is impossible since

the maximum number of edges in the section graph G(A) is

(g). Likewise, a contradiction is reached if A contained

only vertices adjacent to vertices of A. Suppose, then,

that both A and A contain some vertices adjacent only to

vertices in their respective subsets. Then A and A must

both contain at least r + 1 vertices; G would have 2r + 2

vertices; however, 2r + 2 >-2r + l Ztn, which is a contra-

diction.

Q.E.D.

We next investigate the relationship between the edge

connectivity of a graph and that of its line-graph.

Theorem 5.5 If a graph G = G(V) is m—edge connected, then
 

its line-graph L(G) is (2m - 2) - edge connected.

Proof. The result is trivial if m = 0. If G is l-edge

connected, then G is connected, as is L(G), so L(G) is in

fact l-edge connected.

Suppose, then, that G is m-edge connected, where

m 2:2. We shall show that L(G) is (2m -2) - edge connected.

Let the vertex set of L(G) be denoted by W. It sufficies to

show that if W1 is any nonempty proper subset of W, then

these are at least 2m - 2 edges of L(G) joining vertices of

W1 to vertices of W2 = W - W1.
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Since G is certainly connected, L(G) is also connected.

Thus, there must be at least one edge of L(G) joining a vertex

of W1 to a vertex of W2; let this edge be E = (a,b), where

a 6 W1 and b 6 W2. Also, let A and B denote those edges in

G which correspond to a and b, respectively. Since a and b

are adjacent in L(G), A and B are adjacent in G; so let

A = (ul, u) and B = (v1, u). From a previously mentioned

theorem, ,0 (u) _>_ m because kO 2 m, where kO denotes the

edge connectivity of G. Hence, there are at least m edges

in G incident with u. Consider the star subgraph S of G

made up of A, B, and any other m-2 edges which are incident

with u. L(S) is a complete subgraph C of L(G), where the

vertex set U of C consists of m vertices of W. Now, a e U

and b e U; so the vertex decomposition W = W1 L) We induces

the vertex decomposition U = U1 L) U2, where U1 CI W1 and

U2 (1 W2, and where both U1 and U are nonempty proper sub-
2

sets of U.

Let the vertices of U1 be denoted by a = a1, a2, . . . ,

ak and the vertices of U2 be denoted by b = bl, b2, . . . ,

bm—k' Also, let the corresponding edges in G (the edges of S)

be denoted by Al, A2, . . . , Ak and B1, B2, . . . , Bm-k'

There is no loss of generality in assuming k:S;m-k. Since C

is complete, all edges (ai, b3), i = 1, 2, . . ., k ; j = 1,

2, . . . , m-k are present; hence, there are at least k(m-k)

edges joining wl with w2.

Now there are at least m pairwise edge disjoint arcs in

G joining ul to v1, say:
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Pl : E11, E12, . . . , Blnl

Pm : Em], Emg, . . . , anm.

If the edge A appears in such an arc, it can only

appear in one, and if it does, then it must be some E11.

Similarly, B can only appear once and only then as some

Ejnj‘ Hence, except for the one possible Ei which may be

I

A itself, all edges Ei are adjacent to A. Similarly, all

1

edges Eon are adjacent to B, with one possible exception.

J J

Clearly, none of the edges E11 can be any of the edges Bl’

B2, . . . , Bm_k. All this shows that in L(G) there are at

least m arcs joining a to b which are disjoint except at

the vertices a and b. If we eliminate these arcs among Pl’

P2, . . . , Pm which contain any of the edges Al, A2,

, Ak’ there still remain at least m-k arcs. We have

already seen that the line-graph of an arc is an arc (of

length one less than the original). Hence, corresponding

to the m-k (or more) arcs just mentioned are m-k (or more)

arcs in L(G), none of which contain any of the vertices

a1, a2, . . . , ak. Also, a1 is adjacent to the initial

vertex of each of these arcs; however, no initial vertex

is one of the vertices b1, b2, . . . , bm-k' Moreover, the

terminal vertex of each of the m-k (or more) arcs in L(G) is

either bl or is adjacent to b1. Clearly, each such arc must

contain at least one edge joining a vertex of W1 to a vertex
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of W2, and none of these edges can coincide. Also such

edges cannot possibly be of the fomr (a1, b3), for this

situation has been eliminated. Thus, there must be at

least m-k edges joining a vertex of Wl to a vertex of W2

in addition to theLd_m—k) edges (ai’lbj) giving k(m-k)

+ (m-k) = (k + l) (m-k) edges in all joining a vertex of

W1 to a vertex of W2. However, for k = l, 2, . . .,[%],

(k + l) (m-k) assumes its minimum value when k = 1. There-

fore, at least 2(m-l) = 2m-2 edges join a vertex of Wl to

a vertex of W2, and so L(G) is (2m-2) - edge connected.

Q.E.D.

Corollary 5.5.1 Let G be a graph having edge connectivity
 

k0, andlet kl denote the edge connectivity of its line-graph

L(G). Then k1 E: 2kO - 2.

Proof. If G has edge connectivity k0, then G is

k0 - edge connected, and byTheorem 5.5, L(G) is (2kO -2) -

edge connected. Hence, k1 Z 2kO - 2.

Q.E.D.

Corollary 5.5.2 If G is regular of degree r, r 222, and
 

k0 = r, and kn denotes the edge connectivity of Ln(G), then

kn = 2n(r-2) + 2. In particular, if G is a regular graph

of degree r and order n, where r E: nél, then kn = 2n(r-2) 

+ 2.

Proof. If the graph G, regular of degree r, has edge

connectivity k0 = r, then Theorem 5.5 implies that L(G) has

edge connectivity kl 2:2r - 2; however, L(G) is regular of

degree 2r - 2 and so klfi 2r - 2. Therefore, kl = 2r - 2.
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If G is a regular graph of degree r and order n, where

Farl'l
 , then Theorem 5.4 shows that k0 = r and kl = 2r -2

as before. The last statement follows by induction.

Q.E.D.

Analogous to the concept of edge connectivity is that

of vertex connectivity. The definition we give is a slight

variation of that given by Ore.

Definition 5.3 Let G = G(V) be a nontrivial graph and let
 

A be a nonempty proper subset of V. A vertex a of A is

called an interior vertex of G(A) if a is adjacent only to
 

vertices of A. A vertex of A adjacent to vertices both in

A and A = V - A is called a vertex of attachment of G(A).
 

Definition 5.4 A nontrivial graph G = G(V) is m-vertex
 

connected, or simply m—connected, if either (1) G is a
  

complete graph of order n >tm, or (2) there exists no non-

empty proper subset A of V with G(A) having at least one

interior vertex such that the total number of vertices of

attachment is less than m.

It is not difficult to show that a necessary and suf-

ficient condition that a nontrivial graph G = G(V) contain a

nonempty prOper subset A of V such that the section graph

G(A) have at least one interior vertex is that G be not com-

plete. For this reason an alternative definition of "m-

connected” was given for complete graphs.

A graph which is 2-connected is often called doubly

gonnected or oiconnected. A 3-connected graph is also
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referred to as a triply connected graph.
 

Definition 5.5 The largest value of m for which a graph G
 

is m-connected is called the vertex connectivity or simply
 

the connectivity of G and is denoted by (B = 1g(G).
 

We next state without proof the following simple con-

sequences of the definition of connectivity of a graph (see

Ore [11]).

Theorem. A nontrivial graph is connected if and only if it

has connectivity .10 221.

Theorem. A connected graph G has connectivityflO = 1 if

and only if G consists of a single edge or G has a separating

vertex.

Corollary. A necessary and sufficient condition that a con-
 

nected graph G consisting of more than an edge be nonseparable

is that G be biconnected.

Theorem. If .20 is the connectivity of a graph G = G(V),

then [03min [0(v).

veaV

Another consequence of the definition of connectivity

is presented next.

Theoremy5.6 Let G be a graph of order n having connectivity
 

“[0. If G is complete, then ‘[o = n-l, while if G is not

complete, then Io gn-2.

'Proof. If G is complete, then the largest value of m

for which n > m is clearly n—1, and so £0 = n-l. If G

is not complete, then ‘IO‘S n-2 by the preceding theorem.

Q.E.D.
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We present an alternative approach to m-connectedness

and connectivity, analogous to that given for m-edge con-

nectedness and edge connectivity.

Theorem 5.7 A graph G = G(V) is m-connected, m 2:1, if
 

and only if the removal of any k vertices, O S k<m,

results in a nontrivial connected graph.

Proof. Let G = G(V) be a graph which is m-connected,

where m E: 1. Clearly, G is connected. Assume, to the

contrary, that there exist k vertices, O'< ki< m, which,

when deleted, results in either an isolated vertex or a dis-

connected graph. If the removal of k vertices results in an

isolated vertex, then evidently G is of order k + 1, but

Theorem 5.6 implies G is at most k-connected. However, k<:m,

and this is a contradiction. Suppose, then, that the elimin-

ation of some k vertices produces a disconnected graph H.

Let us write H = H1 + H2, where H1 and H2 are nonempty dis-

joint subgraphs of H, and where the vertex sets of H1 and H2

are denoted by Al and A2,respectively.Let A be the union of

Al and the previously deleted k vertices. Any vertex of Al

is clearly an interior vertex of the section graph G(A) of G,

and G(A) has at most k vertices of attachment, but k«< m,

and this contradicts the fact that G is m-connected.

Let G = G(V) be a graph having the property that the

removal of any k vertices, O _<_ k < m, results in a nontrivial

connected graph. We shall show that G is m-connected. Assume

that G is not m-connected. If G were complete and not
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m-connected, then the order n of G would satisfy the inequal-

ity n S. m. However, then, n-l ._<_m-l, and the deletion of any

n—l vertices would leave an isolated vertex, and this would

contradict the property which G enjoys. On the other hand,

if G is both not complete and not m-connected, then there

exists a monempty proper subset A of V such that G(A) con-

tains interior vertices and k vertices of attachment, where

O‘< ki< m. Clearly, though, the removal of these k vertices

of attachment will produce a disconnected subgraph of G and

again leads us to a contradiction.

Q.E.D.

Theorem 5.8 A nontrivial graph G = G(V) has connectivity
 

gCDii‘and only if 'flo is the minimal number of vertices

required to be deleted from G in order that the resulting

graph be disconnected or consist of a single vertex.

.Proof. If G is a disconnected graph, then 20 = O, and

the result is obvious.

Let G be a graph having connectivity 'I0 .2: 1. Then

G is .20 - connected but not (‘20 + l) — connected. By

Theorem 5.7, it follows that the removal of any k vertices

from G, where k < [0, produces a nontrivial connected subgraph

of G; however, since G is not ( £0 + l) - connected, there

must exist some set of ‘10 vertices, which, when removed from

G results in either a disconnected graph or an isolated

vertex, and so ‘[o is the minimal number of vertices with

this property.
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Conversely, assume .20, ,[O :3 l, is the minimal

number of vertices required to be eliminated from G in

order that the newly-acquired graph be disconnected or con-

sist of an isolated vertex. This implies that G is 1% -

connected but not ( [o + l) - connected; hence, G has con-

nectivity.[o.

Q.E.D.

Perhaps the best known theorem on separation in graph

theory is one due to Menger (see Berge [2]). We state some

consequences of this theorem as well as some additional

results.

Theorem. A necessary and sufficient condition that a graph

G be m-connected is that every two vertices of G be joined

by at least m arcs which are pairwise disjoint except for

the two vertices.

Theorem. A necessary and sufficient condition that a graph

G have connectivity 420 is that every two vertices of G be

joined by at least [0 arcs which are pairwise disjoint

except for the two vertices while there are at least two

vertices of G which are joined by at most .20 such arcs.

We are now in a position to prove the theorems in

which we are interested. We first give a proof of a known

simple result.

Theorem. An m-connected graph is m-edge connected.

Proof. If every two vertices of a graph are joined

by at least m arcs which are pairwise disjoint except for

the end-vertices, then every two vertices are obviously
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joined by at least m arcs which are pairwise edge disjoint.

Q.E.D.

Corollary. If G is a graph having edge connectivity kO and
 

connectivity 2 , then k 2,? .
o o o

The converse of the preceding theorem is not valid.

To show this, consider a graph H which is the sum of two

complete graphs of the type Km , m >-1, having precisely

+1

one vertex in common. With the aid of Theorem 5.4, it is

easily seen that H has edge connectivity m and connectivity

one (H is therefore m-edge connected but not m-connected).

For the case where m = 5, see Figure 5.1.

 

 

 

 

 

  
Figure 5.1
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We do have the following result, however, in the case

of line-graphs.

Theorem 5.9 If G is an m-edge connected graph, then the
 

line-graph L(G) is m—connected.

.EEQQQ- Let a and b be two arbitrary d stinct vertices

of the line-graph L(G) of the m-edge connected graph G. Let

A = (u, ul) and B = (v, V1) be the edges of G which corre-

spond to the vertices a and b, respectively. Consider the

vertices u and v (or u and v1, should u = v). Since G is

m-edge connected, there exist m arcs Pi’ i = l, 2, . . . , m,

every two of which are edge disjoint, which join u to v.

At most one Pi contains A; however, those arcs which fail to

contain A have their first edge adjacent to A. Similarly,

at most one such arc contains B, but any arc not containing

B has its last edge adjacent to B. Corresponding to the arcs

Pi in G are then m arcs Qi’ i = l, 2, . . . , m, in L(G),

which are pairwise disjoint. a. lies in at most one Q1, as

does b, but any arc not containing a has its first vertex

adjacent to a. Similarly, any arc Qi not containing b has

its last vertex adjacent to b. This implies, then, that

there exist m arcs in L(G) joining a and b, which are dis-

joint except for a and b. Hence, L(G) is m-connected.

Q.E.D.

Corollary 5.9.1 If G has edge connectivity kO and L(G)
 

has connectivity .21, then kO _‘_<_ [1.
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Corollary 5.9.2 If G is m-connected, then L(G) is m-
 

connected.

Proof. If G is m-connected, then G is also m-edge

connected; thus, by Theorem 5.9, L(G) is m-connected.

Q.E.D.

One might expect a result for m-connectedness

analogous to that obtained for m-edge connectedness (see

Theorem 5.5); however, the following example shows that

Corollary 5.9.2 cannot be improved. Let the graph J con—

sist of two disjoint graphs of the type K m.2:l, the
m+l’

vertices of which are denoted by ui and Vi’ respectively,

i = O, l, . . . , m, where, in addition, the m edges E1

= (ui, vi), i = l, 2, . . ., m are inserted. J has con-

nectivity m (and so is m - connected); however, L(J) also

has connectivity m (and so is not (m+l)—connected) since

the deletion of the vertices ei (where ei corresponds to

E1) from L(J) disconnects it. Figure 5.2 shows the case

where m = 3.

It thus follows that the results obtained in Corol-

laries 5.5.1 and 5.9.1 are the best possible, and this

constitutes a solution to the problem proposed by Ore of

determining the relations between the connectivities and

the edge connectivities for a graph and its line-graph (see

[11], page 81, problem 2). We have the following extension.

Theorem 5.10 If G is m-connected, then L2(G) is (2m-2) -
 

connected.
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Proof. Since G is m-connected, it is m-edge connected.

By Theorem 5.5, L(G) is (2m -2) - edge connected. From

Theorem 5.9, it then follows that L2(G) is (2m - 2) - connected.

Q.E.D.

Corollary 5.10.1 If G is m-connected, then Lk(G) is

k-l k

 

[2 (m-2) + 2] - connected and is [2 (m-2) + 2] - edge

connected for k 2 1.

Proof. This follows by induction on k.

Q.E.D.

We conclude this section with two corollaries to

Corollary 5.10.1.

Corollary 5o10.2 If G is a graph whose edge and vertex
 

connectedness exceed two, then the edge connectedness and

vertex connectedness of Lk(G) are unbounded as k becomes

infinite.

Corollary 5.10.: Let G be a graph with k0 2: £0 5: 2.
 

Then lim k0 [Ln(G)] = lim ,[O [Ln(G)] = oo .

n—+oo f1——ewo



SECTION 6

LINE-GRAPHS AND EULER PATHS

In this section we prove that the line-graph of a

graph which contains an Euler path also contains an Euler

path. Necessary and sufficient conditions are derived in

order that some repeated line-graph contain an Euler path.

Definition 6.1 A graph G without isolated vertices is
 

said to contain an Euler path if there exists a cyclic

path in G containing every edge of G, and every such cyclic

path is called an Euler path. A graph containing an Euler
 

path is called an Euler graph.
 

Definitions of a few other terms will be useful here.

Definition 6.2 A vertex is called even or odd according to
 

whether its degree is an even or odd integer. An edge is

called oyoo_or ooo depending on whether its degree is even

or odd.

Euler graphs have been of interest to graph theorists,

both professionals and amateurs alike; however, the question

of whether a given graph is an Euler graph was answered by

Euler in the following way.

Theorem (Euler). A necessary and sufficient condition that

a nontrivial graph G be an Euler graph is that G be

50
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connected and every vertex of G be even.

Lemma 6.1 Every edge of an Euler graph is even.
 

Proof. If E = (a, b) is an edge of an Euler graph,

then )0(E) = F(a) + F(b) - 2 is even since [0(a) and

b are bOth even by EUISP'S theorem.

3,.EOD.

Theorem 6.2. The line-graph of an Euler graph is an Euler
 

graph.

_Proof. Let G be an Euler graph and L(G) its line-

graph. The degree of a vertex in L(G) has the same value as

the degree of its corresponding edge in G by Lemma 4.2, which

is even by Lemma 6.1. Since G is connected, L(G) is connected;

hence, L(G) is an Euler graph by Euler's theorem.

Q.E.D.

 
Corollary 6.2.1 If G is an Euler graph, then {L“(G)} is

an infinite sequence of Euler graphs.

Corollary_6.2.2 If G is an Euler graph which is not a
 

circuit, then Lm(G) and Ln(G), m £ n, are nonisomorphic Euler

graphs.

Proof. This is simply a combination of Corollaries

4.10.1 and 6.2.1.

Q.E.D.

We now determine conditions for a graph G in order that

there exists a nonnegative integer k such that Lk(G) contains

an Euler path. The only possibilities are given in the

following theorem.
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Theorem 6.3 Let G be a connected graph which is not an arc.
 

Then exactly one of the following four situations must occur:

( ) G is an Euler graph,

(ii) L(G) is an Euler graph but G is not,

) L2(G) is an Euler graph but L(G) is not,

) there exists no n 2:0 such that Ln(G) is an

Euler graph,

where

(i) occurs if and only if every vertex of G is even,

(ii) occurs if and only if every vertex of G is odd,

(iii) occurs if and only if every edge of G is odd, and

(iv) occurs otherwise.

Proof. Since G is connected and not an arc, the fact

that G is an Euler graph if and only if every vertex of G is

even is just a restatement of Euler's theorem.

If every vertex of G is odd, then G cannot be an Euler

graph (again, by Euler's theorem), but every edge of G must

be even, so every vertex of L(G) is even; therefore, L(G) is

an Euler graph. Conversely, suppose L(G) is an Euler graph

but G is not. It follows, then, that every vertex of L(G),

and hence every edge of G, is even; thus, if E = (a, b) is

an edge in G, the number /0(a) + /9(b) - 2 is even. This

implies, of course, that /0(a) + f(b) is even, or that the

two vertices incident with any edge of G are either both even

or both odd. Because G is not an Euler graph, though, there.

must be at least one edge in G incident with two odd vertices;
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call the edge F = (u, v). We must have all vertices of G odd

then, for if w is any vertex of G either w = v and w is odd,

or w £ v and there is an arc P : (v, v1, v2, . . . , Vk-l’ w)

between v and w (since G is connected). However, since v is

odd, vl must also be odd (recalling that two vertices incident

with an edge must be of the same parity), but (v1, v2) is an

edge implying that v2 is odd, etc. Finally, we arrive at w,

which must be odd.

If every edge of G is odd, then every vertex of L(G)

is odd, and L(G) is not an Euler graph. If, however, every

vertex of L(G) is odd, then every edge of L(G) is even, so

every vertex of L2(G) is even, and L2(G) is an Euler graph.

Conversely, let G be a graph such that L2(G) is an Euler

graph but L(G) is not an Euler graph. Whereas L2(G) is an

Euler graph, the vertices of L2(G) are even, and the edges

of L(G) are even. Seeing that L(G) is not an Euler graph,

we can argue as in the preceding paragraph to conclude that

every vertex of L(G) is necessarily odd. From this it follows

that every edge of G is odd.

It remains to show that if (i), (ii), or (iii) is not

satisfied by a graph G, then there is no n 2:0 such that

Ln(G) is an Euler graph. Let us assume, then, that G, L(G),

and L2(G) are not Euler graphs, but that there does exist an

n E: 3 such that Ln(G) is an Euler graph. Let m be the

smallest value of n for which Ln(G) is an Euler graph. Then

ifCD£ELc<znn IX(G) is not an Euler graph. Let G1 = Lm-3(G);
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then G1,L(Gl), and L2(Gl) are not Euler graphs while L3(G1)

is an Euler graph. Every vertex of L3(Gl) is consequently

even, and by the arguments used in the two preceding para-

graphs, it follows that every vertex of L2(Gl) is odd and

every edge of L(Gl) is odd. Because every edge of L(Gl) is

odd, each pair of adjacent vertices in L(Gl) is of opposite

parity, but this means that every two adjacent edges in G1

have opposite parity. No vertex in G1 can have degree

exceeding two, for if three edges of 01 had a common vertex,

then there would exist two adjacent edges of G1 having the

same parity. Hence, G1 is either a circuit or an arc; how-

ever, a circuit contains no odd edges, and G1 cannot be an

arc by hypothesis. We have thus arrived at a contradiction,

and there can exist no such graph.

Q.E.D.

We conclude this section with three corollaries to

the foregoing theorem.

Corollary 6.3.1 Let G be a connected graph which is not an
 

arc. A necessary and sufficient condition that there exist

a nonnegative integer N such that Ln(G) is an Euler graph for

all n.2:N is that every edge of G be of the same parity. If

such an N exists, then N E 2.

Corollary 6.3.2 Let G be a graph such that Lk(G) is an
 

Euler graph, where k 2 3. Then for all n _>_ 2, Ln(G) is an

Euler graph.
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Corollary 6.3.3 Let G be a graph, connected or not. A nec-
 

essary and sufficient condition that there exists an n such

that Ln(G) is an Euler graph is that G contain one component

which is not an arc and of which every edge has the same

parity while all other components are arcs.



SECTION 7

SEQUENTIAL GRAPHS; LINE-GRAPHS

AND HAMILTON CIRCUITS

In this section it is shown that if a graph contains

a Hamilton circuit, then its line-graph also contains a

Hamilton circuit. In addition, necessary and sufficient

conditions are given for a graph in order that its line-

graph contain a Hamilton circuit. The main result of this

section is that for nearly all connected graphs, some re-

peated line-graph must contain a Hamilton circuit.

Definition 7.1 A graph G is said to contain a Hamilton
 

circuit if there exists a circuit in G passing through every

vertex of G, and every such circuit is called a Hamilton

circuit. A graph containing a Hamilton circuit is called a

Hamilton grapp.
 

It follows directly from the definition that every

Hamilton graph is connected, in fact, biconnected. In spite

of the strong similarities in the definitions of Euler graphs

and Hamilton graphs, the differences in the two are so great

that no useful characterization of Hamilton graphs has yet

been found. The independence of these two definitions is

illustrated in Figures 7.1 through 7.4, where all graphs are

of order eight and have twelve edges.
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If G is a connected graph which is regular of degree

two, then G is a Hamilton graph. This fact is trivial since

0 is then a circuit; however, on the other extreme, if the

degrees of the vertices are large enough in comparison with

the order of the graph, then G must also contain a Hamilton

circuit. A well-known theorem of this type is the following.

Theorem of Dirac If G = G(V) is a graph of order n and
 

/0 (v) E: n/2 for all v e V, then G is a Hamilton graph.

This result was slightly strengthened by Ore [11].

Theorem of Ore If G = G(V) is a graph of order n and
 

’01 + P2 2 n, where ’01 and [02 denote the two smallest

degrees in G, then G is a Hamilton graph.

We find the following definition of considerable use

to us in this section.

Definition 7.2 A graph G having m edges, where m 52 3, is
 

called a sequential graph if the edges of G can be ordered
 

in SUCh a way, say E0, E1, E2, 0 o o , Em_l, Em = E that
O)

the edges E1 and E.1+1, 1 = O, l, . . . , m-l, are adjacent.

Although a sequential graph has its edges arranged in

a certain cyclic order, this does not imply the existence of

circuits, for the star graphs K , n 5:3, are sequential
l,n

graphs. Two important classes of connected graphs, the Euler

graphs and the Hamilton graphs, are sequential graphs. We

verify these facts below.
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Theorem 7.1 An Euler graph is a sequential graph.
 

Proof. If G is an Euler graph, then G has a cyclic

path P containing all the edges of G, say P : E0, E1, E2,

, Em-l’ Em = E0, where E1 and Ei+l are adjacent for

 

all i = 0, l, . . ., m-l. Hence, G is sequential.

Q.E.D.

Theorem 7.2 A Hamilton graph is a sequential graph.

Proof. Let C = (a0, a1, a2, . . . an_l, an = a0) be

a Hamilton circuit of the graph G. It is clear that every

edge of G joins two vertices lying on C. In order to show

G is sequential, we must exhibit an ordering of the edges

of G which satisfies the property stated in Definition 7.2.

Begin the ordering of the edges of G with all edges incident

with aO not lying on C (there may be none). These may be

taken in any order and are clearly adjacent to one another.

We follow these with the edge (a0, al) of C. The next edges

in the sequence are the edges incident with al which are not

in C (again, there may be none). Once again, they may be

permuted in any way among themselves. This is followed by

(a1, a2) and all edges incident with a2 which are not on C

and which have not been previously considered. We continue

in this way until we finally arrive at the edge (an_l, an)

= (an_1, a0), which is adjacent to the first edge in the

sequence. It is now a routine matter to check that every

edge of G appears in the sequence once and only once and

that every two consecutive edges in the sequence are adjacent,

so G is a sequential graph.

Q.E.D.
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The chief reason for introducing sequential graphs is

the following theorem.

Theorem 7.3 A necessary and sufficient condition that the
 

line-graph L(G) of a graph G be a Hamilton graph is that G

be a sequential graph.

Proof. Let G be a sequential graph having m edges.

Then the edges can be ordered, say E0, E1’ E2, . . . ,

Em-1, Em = E0, such that consecutive edges in the sequence

are adjacent. Let e0, e1, e2, . . . , em-l’ em = eO be the

corresponding vertices in L(G). Since Bi and Ei+l are

adjacent for i = O, l, . . . , m-l, (ei, ei+l) is an edge

in L(G) for i = o, 1, . . . ,m—l, and so c = (e0, e1, e2,

, em—l’ em = e0) is a circuit in L(G) which contains

all vertices of L(G); hence, C is a Hamilton circuit of L(G),

and L(G) is a Hamilton graph. .

Conversely, suppose the line-graph L(G) of the graph

G is a Hamilton graph. This means that there is a circuit

C = (a0, a1, . . . , an—ls an = a0) in L(G) containing every

vertex of L(G). Let A0, A1, . . ., An_l, An = A0 be the

edges in G which correspond to the vertices a0, a1, . . . ,

an-l’ an = a0, respectively. Consider the edges of G in the

order just given. Since (a1, ai+1) is an edge of L(G) for

i = 0, l, . . . ,n-l, A1 and A1+1 are adjacent for i = 0, l,

, n-1, and therefore G is a sequential graph.

Q.E.D.
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Theorem 7.4 If G is a Hamilton graph, then L(G) is a
 

Hamilton graph.

Proof. If G is a Hamilton graph, then G is also a

sequential graph by Theorem 7.2. By Theorem 7.3, it then

follows that L(G) is a Hamilton graph.

Q.E.D.

Corollary 7.4.1 If G is a Hamilton graph, then Lp(G) is
 

a Hamilton graph for all p 2.0.

Theorem 7.57 If G is a sequential graph, then L(G) is a
 

sequential graph.

Proof. By Theorem 7.3, if G is a sequential graph,

then L(G) is a Hamilton graph, and by Theorem 7.2, L(G) is

a sequential graph.

Q.E.D.

Theorem 7.6 If G is an Euler graph, then L(G) is an Euler
 

graph which contains a Hamilton circuit.

.Proof. By Theorem 6.2, if G is an Euler graph, then

L(G) is an Euler graph. However, by Theorem 7.1, G is also

a sequential graph, and so L(G) is a Hamilton graph.

Q.E.D.

As Theorem 7.4 indicates, if G is a graph having a

Hamilton circuit, then L(G) has at least one Hamilton circuit.

Although there are examples of Hamilton graphs (namely,

circuits) whose line-graphs have exactly one Hamilton circuit,

for the most part, the line-graphs of such graphs contain

more than one Hamilton circuit. (Two Hamilton circuits are

called different if there is at least one edge in one not in
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the other and vice versa). We shall obtain next a lower

bound for the number of Hamilton circuits in the line-graph

L(G) of a Hamilton graph G. To do this, we shall make use

of directed graphs.

Theorem 7.7 Let G = G(V), where V = {Vo’ v1, . . . ,
 

Vn-l} , be a Hamilton graph of order n, and let C be a

fixed Hamilton circuit of G. Assume G has d diagnoals so

that G has m = n + d edges. Let S denote the set of the 2d

directions for G obtained by directing all edges of C in one

of the two possible cyclic manners and directing the diagonals

in an arbitrary manner. For each s e S let /%s (v) denote

the number of outgoing edges at v when the edges of G are

directed according to s. It then follows that the number of

Hamilton circuits in L(G), denoted by HG (L(G)), satisfies

the following inequality:

n-l

Hc (L(G)) E: Z {Tr [( f’oSm) — 1) I 1]
s e S j=o

-1

2 2d { min {[17 [(IDOS(vj)-l)1]}

s e S j=o

3: 21.

_Proof. First, we notice that for any 8 5 S and every

vertex v in G, /%S(vj 2:14 since there is a circuit edge

of C which is incident with v and directed away from v. A

Hamilton circuit in L(G) is produced from each sequence of

all the edges of G which can be constructed so that consecu-

tive edges in the sequence are adjacent as well as the first
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and last edges in the sequence being adjacent. Two sequences

will be called different if there exist two edges which are

consecutive (or first and last) in one sequence but are not

consecutive in the other sequence. Two such ”different” se-

quences in G correspond to two different Hamilton circuits

in L(G). We now derive the first inequality given in the

conclusion of the theorem, the others following directly

from the first. Let C = (v v1, . . . , v = v0), and let
0’ n

s be a fixed direction in the set S. The ,F28 (VJ) - l

outgoing edges at VJ not lying on C may be permuted in

( fzs (v3) — l) 1 ways, so as we proceed around C in a

fashion similar to that in the proof of Theorem 7.2--only

this time considering only outgoing edges--we see that

QF% [( fo (VJ) - l) 1] different sequences are obtained,

eggh one satisfying the property required of sequential

graphs. ince we may do this for each 8 ea S obtaining se-

quences not previously encountered, we arrive at the first

inequality.

Q.E.D.

Although the first inequality in the preceding theorem

can easily be seen to be an equality in the case where a

Hamilton graph G contains only a single Hamilton circuit, if

it should occur that G contains two or more Hamilton circuits,

the procedure employed in Theorem 7.7 may be used for each

Hamilton circuit, thereby obtaining a strict inequality.

Since duplication of previous sequences may arise when using

different Hamilton circuits of G, the lower bound in the first
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inequality of Theorem 7.7 cannot be replaced by summing

this expression for the bound over all Hamilton circuits

in G.

It is a straightforward problem to show that if C is

a Hamilton circuit in a graph G such that G contains at

least one diagonal, then the number of diagonals in the

graphs in the sequence { Ln(G)} of Hamilton graphs forms

a strictly increasing sequence. Combining this property with

the last inequality involved in the conclusion of Theorem 7.7,

we are led directly to a corollary.

Corollary 7.7.1 Let G be a Hamilton graph containing at
 

least one diagonal. Then lim [ HC (Ln(G) ] =<x3

n——>oo

Before presenting the main theorem of this section,

we state two lemmas.

Lemma 7.8 If G is a graph containing a circuit C such that
 

every edge of G is incident with at least one vertex on C,

then L(G) is a Hamilton graph.

_Proof. We show that the graph G having the properties

stated in the lemma is sequential. To produce the desired

ordering of the edges of G we use the same procedure as that

employed in the proof of Theorem 7.2 except that after con-

sidering the diagonals at a given vertex of C, we insert in

the sequence all edges which are incident with that vertex

but with no other vertex of C and follow these edges, as

before, by the appropriate circuit edge of C and continue in
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this way. The sequence of edges of G so produced is seen

to have the desired properties, and G is sequential. The

result now follows by Theorem 7.3.

Q.E.D.

Lemma 7.9 Let G be a graph consisting of the section graph
 

[C] of a circuit C and m arcs P1, P2, . . . , P where eachm’

arc has precisely one endpoint in common with C while for

i £ j, Pi and P3 are disjoint except possibly having an

endpoint in common if it is also common to C. If M is the

maximum of the lengths of the arcs Pi, then Lp(G) is a

Hamilton graph for all pZM.

Proof. It is easily observed that L(G) has the same

properties as G except that the lengths of the m resulting

arcs Will have decreased by one so that the maximum length

among the remaining arcs is M-1 and that LM(G) consists of

a section graph of a circuit (hence is a Hamilton graph), and

LP(G) is a Hamilton graph for all p _>_M by Corollary 7.4.1.

Q.E.D.

Theoremp7.10 If G is a connected graph of order n which
 

is not an arc (then necessarily n52 3), then Lp(G) is a

Hamilton graph for every p E: n—3.

Proof. We proceed by induction on n. Later develop-

ments in the proof make it necessary for us to investigate

the graphs having order 3, 4, or 5. We do this now. The

only connected graph of order 3 which is not an arc is the

triangle, and this is already a Hamilton graph, so the result

follows (with the aid of Corollary 7.4.1). For n = 4, there
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are only two connected graphs which are not arcs and which

are not already Hamilton graphs. These graphs are shown in

Figure 7.5.

 

G41: GA2‘

Figure 7.5

We readily see that L(G4l) and L(G42) are both Hamilton

graphs, and the result is established for n = 4. There are

twelve connected graphs of order 5 which are not arcs and

which do not already contain Hamilton Circuits. These are

presented in Figure 7.6. It is then a routine matter to

verify that L2(G51) and L2(G52) contain Hamilton circuits

and that L(GSi), i = 3, A, . . . , 12, contain Hamilton

circuits. This establishes the theorem for the case when

n = 5.

Let us assume then that for all connected graphs G'

which are not arcs and which have order s, where s‘< n and

n 26, Lp(G') is a Hamilton graph for every p as - 3. Let

G be a connected graph of order n which is other than an arc.



G5, ll:

GSA:
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Figure 7.6

G56:

G5,10:

G5.12=A
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We shall show that Ln‘3(G) is a Hamilton graph which, with

the use of Corollary 7.4.1, will provide a proof of the

theorem.

The theorem is clearly true if G is a circuit, so,

without any loss in generality, we may assume that G is

not a circuit and that G contains at least one vertex v of

degree three or more. Let H denote the subgraph of G con-

sisting of v and those edges of G which are incident with v.

We denote the vertex set of G by V and let U = V - '{v] .

Denote the section graph G(U) of G by Q. We then can write

G = H + Q, where H and Q are edge disjoint. (If G is a

star graph, then Q consists only of isolated vertices.) Let

the connected components of Q be denoted by G1, G2, . . . ,

Gk: where Gi, i = l, 2, . . . , k, is of order ni. Then

k

E n1 = I’l’l.

i=1

If G1 is an arc, then Lni(Gi) is an empty set while

if G1 is other than an arc, then Lp(Gi), for p 2: n1 - 3,

contains a Hamilton circuit by the inductive hypothesis.

The line-graph H1 = L(H) of H is a complete subgraph

of L(G) which, considered as a graph by itself, contains a

Hamilton circuit. Let Jl denote the subgraph of L(G) con-

sisting of H1 and all the ”cross edges” from Hl to the

L(Gi), i = l, 2, . . . , k. Therefore, L(G) can be expressed

as the edge direct sum J1 + L(Gl) + L(G2) + . . . + L(Gk),

where for 1 £ j, L(Gi) and L(Gj) are disjoint. Observe that

any arc joining a vertex of L(Gi) to a vertex of L(GJ) must
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necessarily contain at leastinwpedges of J1. Let H2 = L(Jl)

and let J2 denote the subgraph of L2(G) consisting of H2 and

all the cross edges from H2 to the L2(Gi), i = l, 2, . . . ,

k. Then L2(G) = J2 + L2(Gl) + L2(G2) + . . . + L2(Gk). since

J1 satisfies the hypotheses of Lemma 7.8, H2 contains a

Hamilton circuit. In general, let Jm denote the subgraph of

Lm( G) consisting of Hm plus all the cross edges joining Hm

to the Lm(Gi), and let Hm+l = L(Jm). Lm(G) can then be

expressed as the edge direct sum Jm + Lm(Gl) + Lm(G2) + .

+ Lm(Gk). By Lemma 7.8, it also follows that Hm (considered

as a graph itself) contains a Hamilton circuit.

We now consider two cases.

Case 1. Suppose the components G1, G2, . . . , Gk of

Q are all arcs (which includes the possibility of isolated

vertices). If the number of components k is at least three,

then no hi can exceed n - 3, and Ln-3(G) = Hn-3’ which con-

tains a Hamilton circuit. If k = 2 and the orders of G1 and

G2 do not exceed n - 3, then, as before, Ln_3(G) = Hn—3' If,

on the other hand, k = 2, and one component, say G1, has

order n - 2 while G2 is an isolated vertex, then H and G1

have at least two vertices in common, and G consists of a

section graph of a circuit and j pairwise disjoint arcs,

l gzj g_ 3, each having precisely one endpoint in common

with the circuit. Since none of these arcs has length ex-

ceeding n - 4, it follows by Lemma 7.9 that Ln-4(G) (and so

also Ln-3(G)) contains a Hamilton circuit.
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If k = 1, then Q is an arc Gl having at least three

vertices in common with H so that G consists of a section

graph of a circuit and j pairwise disjoint arcs, 0 ff j is 2,

each arc having exactly one endpoint in common with the

circuit. If j = O, G contains a Hamilton circuit while if

j >‘0: no arc extending from the aforementioned circuit can

have length exceeding n - 4, and by Lemma 7.9, L _ (G) con-

tains a Hamilton circuit as does Ln_3(G).

Case 2. Assume the first ,2 components, 1 g [5 k,

of 91: G2, . . . , Gk are not arcs. Clearly, each of the

components G1, G2, . . . , G1 must have order at least three.

I

If ,€<:k, then G£+l, G£+2, . . . , Gk are arcs, each having

an order not exceeding n - 4, so Ln'4(G) = Jn_4 + Ln_4(Gl) +

. . . + Ln’4(G2). Since each G1, i = 1, 2, . . . , E , has

order not exceeding n - l, the subgraphs Ln-4(Gi), considered

as graphs, each contains a Hamilton circuit by the inductive

hypothesis. There is clearly at least one edge from Hn_5 to

each of the subgraphs Ln-5(Gl), . . . , IP—EKGoQ). We next

show that there is at least one cross edge from Hn-5 adjacent

to at least two edges of Ln_5(Gi) for each i = l, 2, . . . , fl.

117,Z==l, then G1 is the only component of Q which is

not an arc. If k > 1, 01 has order at most n - 2, so

Ln-5(Gl) contains a Hamilton circuit and clearly such a cross

edge exists. If k = 1, then Q = G1 and all edges of H are

incident with vertices of 01. Since a cross edge to a sub-

graph which is not an arc results in one or more new cross

edges in the following line-graph, there are at least three
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cross edges from Hn-5 to Ln’5(Gl). If no such cross edge

were adjacent to at least two edges of Ln—5(Gl), then

clearly each of the three or more cross edges is adjacent

to precisely one edge of Ln-5(Gl). This implies that

Ln'5(Gl) contains three or more separating edges, which

implies, by Corollary 4.13.3, that G1 contains three arcs,

each having n - 4 separating edges, meaning that G1 contains

at least 3(n-4) + 1 vertices, but for n E: 6, 3(n-4) +1 >»n-1

contradicting the order of G1.

Suppose [:>l, i.e., suppose Q contains two or more

components which are not arcs. Therefore, G1 and G2 are

not arcs and have orders at most n - 4. If there is a cross

edge from Hn-5 adjacent to only one edge of Ln—5(Gl), say,

then Ln-5(Gl) contains a separating edge, and by Corollary

4.13.3, G1 must contain an arc of n — 4 separating edges

which contradicts the order of G1.

We can thus conclude that there exists a cross edge

from Hn-5 to Ln-5(Gi) adjacent to two edged of Ln_5(Gi) for

each i = l, 2, . . ., E . This implies that for each i = l,

2, . . . , .1 , there is a vertex ui in Hn-4 adjacent to both

A

endpoints of an edge in Ln— (G
i)'

We now claim that Ln-u(G) is a sequential graph so

that Ln'3(G) contains a Hamilton circuit. To show this we

order the edges of Ln‘u(G) as follows. Since Hn-4 itself

contains a Hamilton circuit C, we start at some vertex v of

C. If the vertex v is not one of the ui, we begin with the
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diagonals of C at v, the edges incident with v but with no

other vertex on C, and then take an edge of C incident with

v leading us to a new vertex of C. We continue with this

method, proceeding around C, until one of the vertices ui is

encountered. At such a vertex u~, we begin with the
1

diagonals of C at ui not previously taken (as before), all

the edges incident with ui but incident with no other

vertex on C except those two edges previously singled out,

say Eil and Bi which lead to the endpoints of an edge F12,

in Ln'4(Gi). Next, take Bil, say, leading us into Ln‘4(Gi),

which, by the inductive hypothesis, contains a Hamilton cir-

cuit Ci. If Fi is on Ci, we proceed around Ci in the

customary way (i.e., taking diagonals and a circuit edge of

Ci in that order), taking F1 last and then taking E12 back to

ui. If F1 is not on Ci: i.e., if Pi is a diagonal of C1,

then as we proceed around Ci: leave out F1 until all other

edges in Ln-4(Gi) have been taken, then take F1, and then

E12 back to ui on C. We then continue around C following

one of the two procedures outlined depending on whether the

vertex encountered is or is not one of the ui. It is easily

seen that the sequence has the properties necessary for

Ln_4(G) to be a sequential graph.

QOEODO

The preceding theorem now permits us to make the

following definition.

Definition47.3 Let G be a connected graph which is not an
 

arc. The Hamilton index of G, denoted by h(G), is the
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smallest nonegative integer p such that Lp(G) contains a

Hamilton circuit.

We can now restate Theorem 7.10 in the following way:

If G is a connected graph of order n which is not an arc,

then h(G) exists and h(G) S n-3.

To show that the bound given in Theorem 7.10 cannot

be improved, we note that for every n 2:3, there are graphs

whose Hamilton index is n - 3. The graphs G1 and G2 shown

in Figure 7.7 have Hamilton indices n - 3.
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Figure 7.7

We conclude this section with a conjecture.

Conjecture. Let G be a connected graph of order n, n 2:4,
 

containing a vertex v with )0(v) = r, where 3 g r <_ n - 1.

Then h(G) f} n - r.



SECTION 8

TRIANGLE RELATIONS IN REPEATED

LINE-GRAPHS OF REGULAR GRAPHS

In this section we investigate some numerical results

concerning the number of vertices and edges in repeated

line-graphs of arbitrary regular graphs having degree r,

where r > 2, as well as some related triangle relations in

such graphs. We show that in spite of the ever-increasing

maze of edges which appears in repeated line-graphs of such

graphs G, the more probable it becomes as n approaches

infinity that if three vertices are selected at random from

Ln(G), no two of the three vertices will be adjacent.

Let GO be an arbitrary regular graph of degree rO‘> 2

having nO vertices, mO edges, and T30 triangles. Let

G1 = L(GO) and, in general, define Gi+l = L(Gi) = Li+1(GO)

for each i = 0, l, 2, . . . . As we proved in Section 4,

each G1 is regular. To fix the notation, let G1 be of order

hi and regular of degree ri having mi edges and T31 triangles.

For the graph Gi+l the following relations are a direct

consequence of Theorems 4.1 and 4.4.

(1) r1i+1 = mi

( ) r1+1 =
2

(3) m1+1 = “i(2l)

74
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1+]. _ 1 Pi

(11) T3 .. T3 +n1 (3 ).

We introduce the even integers Qi+l’ i = O, l, 2,

, by means of the following equation.

2

(5) 29i+1 = ni+1 ri+l

We find it useful to repeat a result of Theorem 4.4

here which was derived using mathematical induction and (2).

(6) r1 = 21(rO-2) + 2.

Because of the fact that

(7) 2m1+1 = ni+l r1+1 ,

it follows by (l) and (2) that

(8) mi+l = (ri-l) mi ,

and by repeated application of (8), we find, using (6), that

(9) mi+1 = mO TE. (rk-l) = mO 23; [2k( r -2 + l .

Lemma 8'1 Qi+l = mi+1 ri+l = mi+l + mi+2

Proof. By (5) and (7), it follows that Qi+l = mi+lri+l‘

Rewriting, Qi+l = mi+1 + mi+l(ri+l-l) = mi+l + m1+2 by (8).

 

Q.E.D.

We define the quantity Ai, i = 0, l, 2, . . . , as

follows. I

1

Lemma 8.2 Ai+l = Ai’ i.e., A1 is independent of 1.

Proof. By (10) we have

1+1

(1) Ai+l = 6 T3 ‘ mi+2

i r1 _

(ii) = 6 T3 + 6n1 (3 ) - mi+2 mi+l + mi+l )

by (4) and by subtraction and addition of mi+l° By (10)

again, it follows that
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. I"

(iii) A1+1 = Ai + 6ni (31) + mi+l - mi+2

P.

It is now sufficient to show that (iv) has the value Ai.

By (3) and (2), m1+1 = ni (g1) and 2 (ri—2) = 2(ri-l) -

2 = ri+1 - 2 so that (iv) can now be written as

(v) A1 + mi+l (ri+l - 2) + m1+1 - mi+2

= A1 + m1+1 Iji+l ' (mi+1 + mi+2) = A1

by Lemma 8.1. Q.E.D.

1

Corollary 8.2.1 6T3 = mi+1 + AO

In any graph the section graph determined by three

 

vertices may consist of three edges (thereby resulting in

a triangle) two edges, one edge, or no edges at all.

Using the terminology originated by Nordhaus and Stewart

[10], we say that a subgraph consisting of three vertices

and the j edges, j = O, l, 2, 3, which they determine is a

triangle of type fl. A triangle of type T3 is simply a
 

triangle while a triangle of type TO is a subgraph consist-

ing of three isolated vertices, i.e., an ”empty” triangle.

We denote the number of triangles of type Tj in G1 by TJi.

Since any three vertices in G1 determine a triangle

T2, or T3, it follows that:of type To’ T1’

(11) T: + T11 + T21 + T31 _ ( i), or

i i i i

T T T T

 

(31) ($1) (“1) ($1)
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We state two relations given in [10], which may

readily be derived from elementary considerations:

(13) T21 + 3 T3i = Q1 - mi

(14) 3T3l 2 T11 + 2Qi ‘ mi ni'

Eliminating T l in (13) and (14), we obtain
3

(15) T11 + T21 = (“i-l) mi - Qi

Lemma 8.3 2 T21 = mi+l - AO
 

Proof. From (13), we have

2Qi-2m0-6Ti

i

2 T2 1 3

= 2(mi + mi+l) ' 2mi ‘ (mi+1 + A0)

= mi+l ' Ao

by Lemma 8.1 and Corollary 8.2.1.

Q.E.D.

It is now possible to compute T11 and TO1 using

Corollary 8.2.1 and equations (14) and (11); however, in

order to consider limiting cases it is convenient to obtainex-

plicit eXpressions for these values.

Lemma 8.4 2Tli = A0 + 2mi-l mi - “mi ‘ 3mi+1
 

Proof. From (15) we can write

1
2T = 2(ni-l) mi - 2Qi - 2T2

From (1) and Lemma 8.1, it follows that

i
2T1i = 2(mi_l-l) mi - 2(mi + mi+l) - 2T2

_ - - 1



and by Lemme

i _
2Tl —

Lemma 8.5
 

Proof.

i
6T0

by Lemmas 8.

It is
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8.3, we have

2mi-l mi ‘ 4mi ‘ 2mi+1 ‘ (mi+l ’ A0)

A0 + 2mi_l m1 — Ami - 3mi+l

Q.E.D.

6 T i 6 (n1) 6 12 -o = 3 - mi-l mi + mi + 5mi+l A0.

By (11) we have

= 6 (E1) - 6 T11 - 6 T21 — 6 T31

{1 .

= 6 (31) - 3 (A0 + 2mi—l mi - 4 mi - 3 mi+l)

' 3 (mi+l ’ A0) ' (mi+l + A0)

= 6 (31) - 6 mi-l mi + 12mi + 5 mi+l - A

3 and 8.4 and Corollary 8.2.1.

convenient to introduce the numbers 21 ,

, by the equation:

m1 = (Pi—1 '1) ' mi-l m

ri 2(r1_1 ' 1) 2

 
 

Q.E.D.

From (9) and the fact that rO >»2, it follows that:

 

 

(l7) lim Zi =00

i—voo

Lemma 8.6 lim r1 _ 0

i~+°0 ‘__ _ '

Zi

Proof By (2) and (3), we can write

El. _ 8 (l-l/ri_l)

Zi ni-l

and so lim .32 = 0.

i-vm: Zi



Lemma 8.7 (n1) _ 221 (2

Proof. (31) = ni(n
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Zi - l ) (21 '1) /3.

1-1) (hi-2) /6, and from (7),

 

1’11 = 21111 ’

r1

ni_ l = 21111 ' r’i ,

r1

n1- 2 = 2 (mi-r1) ,

ri

so then

<§i> = 2 m- <2

We are now in a po

results of this section.
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= O

by (17) and Lemma 8.6.

ry 8.2.1 and Lemma 8.7, we have

mi+l + Ao

421(2zi-l)(zi-l)

 

(P1 ‘1) mi + Ao

421(221-1> (Zr—1)

(vi/21> (vi/zi-l/zi> + Ao/Zi3

A (2 - l/zi) (1 - l/zi)

by (8)
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With regard to 1:323 T2 , we can first use

n

(31)

Corollary 8.2.1 and Lemma 8.3 to eliminate mi+l and write

i _ i _
T2 — 3 T3 A0

so that

i

3; = 3 - A.
l '_——T ’

T3 T3].

and by Corollary 8.2.1, it follows that

 

  

lim T2i

1400 , = 3.

T l

3

Hence,

1 i i

lim T2 = lim T2 , lim T3 = o

i~§OO n- i—‘W i—‘OO no

(31> T3i (31>

With the aid of Lemma 8.4, we have

1

lim 2 T1 lim Ao lim 2m1-1m1 lim ”m1 _lim 3m1+1
 

 

  

 

1...... —— =1...» ———+1_..° —_ i*°°_ 1“” °
(3 ) (3 ) (3 ) (3 ) (3 )

A
11m 0 = 0.

Clearly, i-voo _—Ui

(3 )

m w lim 1221 mi by (16)
n1 11—900 (3 ) _’°° 221 (221-1) (Zi’l)

_ lim 6 mi lim 501?3 O

1...... (in-l)(zi-l) 1"” (2-1/21‘) (1-1/21)

Now,

um 24 T 1‘1 - 4A
lim .2_ = lim 3 O = 0 ’

1-900 i-‘
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and

lim 3mi+l = lim 18 T31 - 3 A0 = o

1900 Hi 11—.”

(3 ) (gi)

with the aid of Corollary 8.2.1 and the first part of this

theorem; therefore,

1

lim T1

1400 2 0.

(gm

 

By (12) it now follows immediately that

 

11 T im

1%” i = 1. Q.E.D.

(31)

Theorem 8.8 says, then, that for large i, Gi resembles

an empty graph in the sense that nearly all triangles are

empty triangles despite the fact that the orders of the com-

plete subgraphs of G1 become unbounded as i approaches

infinity.



SECTION 9

MISCELLANEOUS RESULTS ON LINE-GRAPHS

The purpose of this concluding section is to present

a few results dealing with line-graphs and some special

types of graphs, namely, trees, bipartite graphs, and planar

and nonplanar graph.

I. Trees and Line-Graphs
 

The line-graph of a graph containing vertices of

degree three or more clearly contains triangles. The only

graphs not having such vertices are arcs and circuits. We

have already seen that the line-graph of an arc is an arc

(and is therefore a tree) while the line-graph of a circuit

is an isomorphic circuit. This leads us at once to the

following.

Theorem 9.1 The only line—graphs which are trees are the
 

arcs.

Definition 9.1 A connected graph in which every block is
 

either a single edge or a single circuit is called a Husimi

t_re_e_-

A concept related to the Husimi tree (see [7]) is the

following, whose connection with trees and line-graphs will

be evident shortly.

82
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Definition 9.2 A connected graph in which every block is
 

a complete graph is called a completed Husimi tree.

The next definition and theorem are due to Harary [4].

Definition 9.3 With every graph G there is associated a
 

graph B(G), called the block-graph of G, whose vertex set
 

can be put in one-to-one correspondence with the blocks of

G in such a way that two vertices of B(G) are Joined by an

edge if and only if the corresponding blocks of G have a

(separating) vertex in common.

Unlike line-graphs, there is no ”near” one-to-one

correspondence between graphs and block-graphs. We shall

see, however, that there is a one-to-one correspondence

between trees and certain types of block—graphs. We state

the aforementioned result of Harary using our terminology.

Theorem of Harary A necessary and sufficient condition
 

that a graph be a block-graph is that it be a completed

Husimi tree.

Theorem 9.2 A necessary and sufficient condition that a
 

graph be the line-graph of a tree is that it be a completed

Husimi tree in which all vertices have connective index at

most two.

3322;. If G is a tree, then the line—graph L(G) and

the block-graph B(G) are clearly isomorphic since the blocks

of G are simply the edges of G. Harary's theorem then implies

that L(G) is a completed Husimi tree. That the connective
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indices of the vertices in L(G) are at most two follows

since L(G) is a line-graph.

Conversely, let H be a completed Husimi tree, all

of whose vertices have connective index one or two. By

Krausz' theorem, there exists a graph G such that L(G) = H.

We shall show that G can be taken to be a tree. If G were

not a tree, then G would contain a circuit. If G consists

only of a circuit, then L(G) is an isomorphic circuit.

Since L(G) is a completed Husimi tree, L(G) is a triangle,

and we can take G to be Kl,3’ which is a tree. If G con—

sists of more than a circuit, then it is easily seen that G

contains an edge E adjacent to two edges of a circuit C in

G but not adjacent to some edge F of C. The corresponding

vertices e and f of L(G) must lie on a circuit of L(G), and

they are not adjacent. This contradicts the fact that L(G)

is a completed Husimi tree.

Q.E.D.

II. Bipartite Graphs and Line-Graphs

As already mentioned, Moon (with the aid of Hoffman)

has characterized the line-graph of nearly all complete bi-

graphs. The problem of dealing with the line-graphs of bi-

graphs in general does not seem to be particularly easy. We

next determine the class of all connected bipartite line-

graphs. The proof of the theorem which we shall give depends

heavily on the following well-known theorem which can be

found in Ore [ll].
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Theorem. A graph G is a bigraph if and only if all circuits

contained in G are of even length.

Theorem_9.; The only connected bipartite line-graphs are
 

arcs and circuits of even length.

23993. Let G be a connected graph and L(G) a bigraph.

If G contains a vertex of degree three or more, then L(G)

contains a triangle, and by the previous theorem, L(G) is

not bipartite. Thus, G is either an arc or a circuit. If

G is an arc, then L(G) is an arc, thus contains no circuits

of any kind and is a bigraph. If G is a circuit, then L(G)

is an isomorphic circuit, so L(G) will be bipartite if and

only if G is a circuit of even length.

Q.E.D.

III. Planar and Nonplanar Graphs and Line-Graphs

One of the most important concepts in all of graph

theory is that of the planar graph.

Definition 9.4 A graph is called planar if it can be drawn
 

in the plane in such a way that no two of its edges inter-

sect except at a vertex.

A result of Kuratowski which may very well be termed

”the fundamental theorem” of topological graph theory com-

pletely determines whether a graph is planar (see, for

example, Harary [5]). One more definition is required before

stating this result.
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Definition 9.5 Two graphs are homeomorphic if it is
 

 

possible to insert new vertices of degree two into their

edges in such a way that the two resulting graphs are

isomorphic.

Theorem of Kuratowski A graph G is planar if and only
 

if it has no subgraph homeomorphic to the complete graph

K5 or the complete bigraph K3’3.

If G is planar, it is quickly seen, by examples, that

L(G) may or may not be planar. If G has a vertex of degree

five or more, then certainly L(G) is nonplanar since L(G)

contains the subgraph K5. However, planar graphs exist in

which every vertex has degree less than five but whose line-

graph is nonplanar. What conditions must be placed on a

planar graph in order to assure that its line—graph be planar

also is, at present, not clear. We do present, however, the

following result.

Theorem 9.4 The line-graph of a nonplanar graph is non-
 

planar.

Proof. Let G be a nonplanar graph. Then either G

contains K or K3

5

phic to K5 or K3 3. We shall show that under any circum-

.9

3 as a subgraph or some subgraph homeomor-

)

stance, L(G) contains a subgraph homeomorphic to K3 3 and

hence is nonplanar by the Theorem of Kuratowski.

If G contains the subgraph K then let us denote the
5)

vertices of K5 by l, 2, 3, 4, and 5, and the edges by Eij’
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where Eij joins vertex i to vertex j, i < j. Let eij denote

the vertex in L(G) corresponding to Eij' The following graph

is then seen to be a subgraph of L(G).

€12 elbr €25

€13

   €35

e24 e15 'e45

Figure 9.1

This subgraph H is homeomorphic to Suppose that GK3,3.

does not contain K5 as a subgraph but only a subgraph homeo-

morphic to it. Then this subgraph differs from K5 only in

that it has additional vertices of degree two inserted in

the edges. Suppose that G contains a subgraph homeomorphic

to K5 having only one more vertex than K5. If the additional

vertex is inserted in an edge of K5 whose corresponding

vertex is not in H, then H is a subgraph of L(G) in this

case also. Suppose, however, that the vertex k is placed

in the edge Eij in K5 and that the corresponding vertex eij

is a vertex of H. If the degree of eij in H is two, then

let E now denote the edge which joins vertex i and vertex

1J

k and let Ejk be the edge joining vertex k and vertex j.

If we now place the corresponding vertex ejk of L(G) in the
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appropriate edge of H, we obtain a subgraph of L(G) which

is homeomorphic to H and to K3,3. If, on the other hand,

the degree of e13 in H is three, we proceed somewhat dif-

ferently. We observe that in H’eij is either adjacent to

exactly one vertex of the type eip (or epi) or adjacent to

exactly one vertex of the type eiq (or eqj)‘ (For example,

in the case of the vertex e14, 1 = l and j = 4, and e14 is

).adjacent to e but adjacent to neither el2 nor e
l5

13

Assume eij is adjacent to exactly one vertex of the type

eip, say eir (or eri’ if r < i). Now if the vertex k is

inserted in the edge Eij of K we let Eij denote the edge5,

joining vertex i and vertex k, and we let Ejk denote the

edge joining vertex k and vertex j. It is now seen that

L(G) contains a subgraph which differs from H only by the

addition of a vertex of degree two in the edge joining e13

and eir‘ This subgraph is homeomorphic to K If addi—

3:3.

tional vertices of degree two are now inserted in the edges

of K5, it is possible to continue the above procedure, each

time arriving at a subgraph of L(G) which is homeomorphic

to K3,3.

Should G actually contain K3)3 as a subgraph then the

vertex set U of this subgraph can be expressed as U = U'LJU",

where U' ==‘{l, 2, 3‘} and U” = {4, 5, 6'} and where Eij:

i 6 U', j e U”, denotes the edge joining vertex i and

vertex j. Let e1J be the corresponding vertex in L(G). A

subgraph of L(G) is shown in Figure 9.2.
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€14 €35 €25 e26.

. . 634

815 eio 624

Figure 9.2

This subgraph is homeomorphic to K3’3. If G contains only

a subgraph homeomorphic to K3,3, then the graph of Figure

9.2 has the desirable properties which allow us to proceed

in a completely analogous way to that in the preceding case

to show L(G) must have a subgraph homeomorphic to K3,3.

Q.E.D.

We conclude this topic, this section, and this thesis

with a conjecture after giving a definition (see [1]) and a

remark.

Definition 9.6 The thickness t(G) of a graph G having at
  

least one edge is the minimum number of pairwise edge dis-

joint planar subgraphs of G whose sum is G.

Theorem 9.4 may now be stated as follows: If t(G)3:2,

then t(L(G))_>_ 2.

Conjecture. If t(G) _>_ n, then t(L(G)) _>_ n.
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