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ABSTRACT
GRAFPHS AND THEIR ASSOCIATED LINE-GRAPHS
by Gary Theodore Chartrand

With every crdinary graph G there is assoclated a
graph L{(G), called the line-graph of G, whose vertices
are 1n one-to-one correspondence with the edges of G and
having the property that aciacency 1s preserved. The con-
cept of the lins-graph was coriginated in 1932 by H. Whitney.
In the 32 years which have elapsed since then, the litera-
ture on this subject hzs been quite sparse. The purpose of
this thesis 1s to add to the knowledge of line-graphs.

Section 1 consists cf the introduction in which the
origin of the thesis problem is presented and in which are
outlined the topics treated in the sections which follow.
Section 2 contains definitions of the technical terms which
are basic to graph theory and which are used throughout the
thesis. In this sare section we also establish some of the
notatlion to be used. A brief history of the literature on
line-graphs of ordinary graphs is presented in Section 3.

Numerous preliminary and elementary results are given
in Section 4. Among these are: (1) the only graphs which
are 1isomorphic to thelr line-graphs are the regular graphs

bf degree two; (2) a necessary and sufficient condition
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that the sequence {Ln(})} of repeated line-graphs of &
graph G be infinite 1s that at least one component of G be
other than an arc; (3) for every connected graph G which is
not an arc, there exists 2 nonnegative interger N such that
for all p > N, LP(G) is nonseparable. (The exact value of N
is given for every such graph.)

Connectedness relations between graphs and their line-
graphs are investigated 1in Section 5. In particular, it is
shown that: (1) if a graph G is m-edge connected, then L{(G)
is (2m-2)-edge connected; and (2) if G is m-connected, then
L(G) is m-connected. Examples are given to show that in
general these results cannot be improved.

Section 6 1is devoted to Euler graphs. It is shown that
the line-graph of an Euler graph is an Euler graph; however,
the main theorem is: A necessary and sufficient condition
that some repeated line-graph of a connected graph G be
Euler is that every edge of G have the same parity. In par-
ticular, 1f a graph G has this property, then L2(G) is an
Euler graph.

In Section 7 the notion of sequential graphs is intro-
duced, and the relationship between such graphs and Hamilton
line-graphs 1is given. It is in this section that the major
theorem of the thesis 1is presented, namely: Let G be any
connected graph of order n which is not an arc. Then there
exists a unique nonnegative integer h(G), called the Hamilton

index of G, such that for all p > h(G), LP(G) 1s a Hamilton
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graph; furthermore, h(CG) <« n-3, and the upper bound n-3
cannot, in general, be improved.

Triangle relations in repeated line-graphs of regulzar
graphs G of degree r>2 are given in Section 8. It is shown
there that the probability approaches one as n approaches
infinity that 1f three vertices are selected at random from
L"(G), then these will be the vertices of an "empty"
triangle in L"(G).

The thesis 1s concluded with Section 9 in which are
presented some miscellaneous results dealing with line-graphs.
The chief theorems of the section are: (1) a necessary and
sufficient conditicn that a graph be the line-graph of a tree
is that 1t be a completed Husimi tree, all of whose vertices
have connective index at most two; (2) the only bipartite
line-graphs are arcs and circuits of even length; (3) the

line-graph of a nonplanar graph 1is nonplanar.
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SECTION 1
INTRODUCTION

In 1932 the paper "Congruent Graphs and the Connec-
tivity of Graphs" by H. Whitney appeared in the American

Journal of Mathematics [15]. This paper contained a

theorem which led to the definition of "line-graph'" we

are about to give, and 1t is the development of this con-
cept with which we are concerned. The problem of investil-
gating the properties of repeated line-graphs was suggested

by Ore (see [11], page 21, problem 7).

Definition 1.1 The line-graph L(G) of an ordinary graph

G 1s that graph whose vertex set can be put in one-to-one
correspondence with the edges of G 1n such a way that two
vertices of L(G) are joined by an edge 1if and only if the
corresponding edges of G have a vertex in common.

By L°(G) we shall mean L(L(G)), and, in general,
L) = L(Ln-l(G)) for n > 2. For L(G) we shall sometimes
write Ll(G), and L°(G) will mean G itself. The graphs

L"(G), n=2, will be referred to as the repeated line-graphs

of G.
The term "line-graph" employed by Harary [6], is

alternatively referred to as "interchange graph" by Ore [11]
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and "derivative" by Sabidussi [12]; however, we shall uge
"line-graph" throughout the paper.

Definitions of technical terms which are basic to
graph theory and which are used in this thecis are presentea
in Section 2, as well as a few remarks regarding notation.
In Section 3, we glve a survey of the known literature on
line-graphs.

Several preliminary and furdamental results concerning
line-graphs are given in Section 4. Many of these results
are used throughout ~he thesis.

In Section 5 we discuss the relationship between the
connectivity of a graph and that of 1ts line-graph. The
corresponding relaticnship with edge connectivity is also
investigated.

Sections 6 and 7 deal with the problems of line-graphs
containing Euler paths and Hamilton circuifs, respectively.
In particular, conditiors are given under whicn repeated
line-graphs of a given graph contaln Euler paths or Hamilton
circuits.

In Section 8 we investigate some numerical results
involving the number of vertices, edges, and the various
types of triangles which occur in repeated linc-graphs of
regular graophs of degree rs 2.

The concluding Section § contains a number of miscel-
laneous results on line-graphs dealing with trees, bigraphs,

and planar and nonplanar graphs.



SECTION 2

NOTATION AND BASIC DEFINITIONS

The subject of graph theory is presently in the posi-
tion of having many different terms used for the same con-
cept. It therefore seems advisable to define those terms
which are fundamental to graph theory and which are used 1in
this thesis. These definitions are presented in this sec-
tion, as 1s some of the notation which 1s used later.

In order to give a definition of a graph, we begin

with a finite nonempty set V, whose elements we call points

or vertices. We refer to V as the vertex set. A graph G
with vertex set V 1s a set (possibly empty) of pairs of

elements of V. The elements of G are called lines or edges.

To emphasize the fact that G has vertex set V, we often

write G(V) for G. If E = (a,b) is an edge of G(V), then we
say E joins a and b. An edge of the type (a,a) is called a
loop. We shall omit loops entirely from our consideration.

If a graph G = G(V) consists of ordered palrs of vertices,

then G is called a directed graph (or simply a digraph) and

the edges of G are referred to as directed edges. If G con-

sists of unordered palrs of vertices, then G 1s an undirected

graph. An undirected graph without loops 1s called an

ordinary graph, and with the one exception noted in Section

3



7, the word "graph" in this thesis is understood to mean
"ordinary graph."

With regard to language, when we speak of the vertices
of the graph G = G(V), we shall be referring to the vertices
in V.

If two vertices a and b are jolned by an edge E, then
a and b are said to be adjacent. Similarly, if two distinct
edges El and E2 have a vertex 1n common, they are adjacent.
If E = (a,b) is an edge of some graph, then E and a are said
to be incident to each other, as are E and b. A vertex
adjacent to no other vertex in a graph is called an isolated
vertex. If a graph G consists only of isolated vertices,

then G 1s called an empty graph. A trivial graph consists

of one (isolated) vertex; thus, a nontrivial graph must nec-

essarily contain at least two vertices. 1In contradistinction

to an empty graph is a complete graph, in which all pairs of

distinct vertices are adjacent. A complete graph with n
vertices has n(n-1)/2 edges and is denoted by K,. The graph
K3 is called a triangle. The number of elements in the
vertex set of a graph is referred to as the order of that
graph.

The number of vertices to which a vertex a 1s adjacent
is called the degree of a and is denoted by pP(a). If a is
an isolated vertex, then f(a) = 0; while if G = G(V) 1s a
complete graph of order n, then P(v) = n-1 for every v e V.

An edge E = (a,b) 1s called a terminal edge if either pP(a)=1




or P(b)=l. If P(a)=1l, then a is a terminal vertex.

A fundamental theorem states:

If G = G(V) has m edges, then = P(v) = 2m. From this
result it follows that every gZ:bX contains an even number
of vertices having odd degrees.

A graph H 1s called a subgraph of the graph G = G(V)
if the vertex set of H is a nonempty subset of V, and if
every edge of H 1s an edge of G. If a subgraph H of a
graph G = G(V) is defined as a certain nonempty subset of
the edges of G and the vertex set of H is not otherwise
specified, then the vertex set of H shall be those vertices
which are incident with at least one edge of H. If A is a
nonempty subset of the vertex set V, then the subgraph G(A),

whose vertex set is A and whose edges are all those edges 1n

G which join two vertices of A, 1s called the section graph

of G determined by A or the subgraph of G generated by A.
If A =V, then the section graph G(V) is G itself, which
agrees with our earlier notation.

If G 1s a graph having at least one edge and H is a
proper subgraph of G (that i1s, G contains at least one more
edge than H), then we can speak of the complement of H in G,
denoted by G-H, which 1s that subgraph of G consisting of
those edges of G which are not in H. Under this definition,
it 1is never possible for G-H to contain isolated vertices.

Similar to this 1is the concept of the complementary graph G

of a graph G = G(V). G is that graph whose vertex set 1s V



and which contains all edges 1n the complete graph having
vertex set V which are not in the graph G. G may very well
contaln 1solated vertices; indeed, the complementary graph
of a complete graph 1s an empty graph, and vice versa.

Two graphs G and G' with vertex sets V and V',

rgspectively, are lsomorphic 1f there exists a one-to-one

correspondence between V and V' such that two vertices are
Jolned by an edge 1in one graph 1f and only 1f the corre-
sponding vertices are jolned by an edge 1n the other graph.
A path in a graph G = G(V) is a sequence P of dis-
tinct edges from G : E; = (a,al), E, = (al, an)s « .+ .«
E, = (ap-1sb), where the vertices need not be distinct. We
say P is a path from a to b (or from b to a). If in the
sequence P above, a = b (and so n > 3), then P is called a

cyclic path. If all vertices in a path are distinct, then

the path 1s called an arc. If a = b, but all other vertices
are distinct, then the cyclic path is called a circult or a
cycle. For the path P above, we often write P : (a,aj,an,

. + «sap-1,b). If P is a cyclic path, we write P : (a,aj,ap,

f a circult C

. + .s8,.7,b=a). By the section graph [C]
(ao,al,...,an_l,an=ao) in G, we mean the section graph G(A),
where A = {?O,al,...,an_¥} . A diagonal of a circult C is
an edge in [C] which 1s not in C.

It 1s well known and not difficult to prove that 1if
there 1s a path from a to b, a #£ b, in a graph G, then there
is also an arc in G from a to b. Two vertices a and b are

connected if a = b or if a # b and there is an arc from a to



b. A conrected graph 1s a graph in which every pair of 1its

vertices is connected. The relation "is connected to" 1is an
equivalence relation on V; therefore, there exists a decom-
position of fthe vertex set V = LjVi into disjoint sets such
that in each Vs, each pair of vertices 1is connected, while
if a € V; and b e Vi i # j, then a is not connected to b.

G can then be decomposed into disjoint connected section

graphs G(Vi), called the connected components or simply the

components of G. We write G = 3=, G(Vi), and say G is

expressed as the direct sum of its components indicating that

every vertex and every edge of G is 1n precisely one of the

G(Vy). We say that G is expressed as the edge direct sum of

the subgraphs, G, Gos...5Gy, and write again G = = Gy if
every vertex and every edge of G is 1n some Gi but no edge

1s in more than one G;. Two subgraphs which have no vertex
in common are called disjoint, and two subgraphs which have

no edge 1in common are called edge disjoint. It therefore

f6llows that the sumrands of a direct sum are pairwise dis-
Jolnt and the summands of an edge direct sum are pairwise
edge disjolnt. Clearly, disjoint subgraphs are edge disjoint,
and a direct sum 1s also an edge direct sum, but the converse
of neither is true; indeed, a graph G and its complementary
graph G are always edge disjoint but never disjoint.

The definitions of a few speclal types of graphs will
be useful. A connected graph which contains no circuits 1is

a tree.



A graph G = G(V) 1s called regular of degree r 1if

f(v) = r for all veV. A circuit is regular of degree
two, and Kp 1s regular of degree n-1.

If we write V =V, (J V, as a disjoint union of non-
empty subsets of V, and G = G(V) 1s such that no two vertices
of V4, 1 = 1, 2, are adjacent, then G 1is called a bipartite
graph or a bigraph. If V, contains m vertices and V, con-
tains n vertices, then the bigraph in which all mn edges

are present 1s called a complete bigraph and 1s denoted by

Km,n or Kn,m' A complete bigraph of the type Kl,n is

referred to as a star graph.




SECTION 3
A SURVEY OF KNOWN RESULTS

This section will be devoted to a brief history of
the literature on line-graphs, which .s guite sparse. We
shall also menticn here some easlly verified elementary
results.

From the definition of"line-graph," it follows at
once that the line-graph L(G) of a graph G depends only on
the edges of G and the way they are related to one another.

This leads to the following.

Theorem 2.1 Let G and G' be two nonempty graphs, and let

H and H' be those subgraphs of G and G', respectively, ob-
tained by deleting all isolated vertices of G and G'. If H
and H' are isomorphic, then L(G) and L(G') are isomorphic.
According to the preceding theorem, if we are given a
line-graph J, we can always find a graph G having no isolated
vertices such that L(G) = J. We shall make use of this fact.
Whether two nonisomorphic graphs, neither having isolated
vertices, can have 1scmorphic line-graphs 1is the essence
of the first theorem on line-graphs given by Whitney [15] in
1g932.
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Theorem of Whitney If the line-graphs L(G) and L(G') of the

connected graphs G and G' are isomorphic but different from
K3, then G and G' are isomorphic.

It is an easy exercise to show that L(K3) and L(Kl,3)
are both K3 and that no other graph has the line-graph K3;
thus, Whitney's theorem implies the existence of a one-to-one
correspondence between connected graphs and line-graphs of
connected graphs if the line-graph K3 i1s not considered.
Since 1932, other prcofs of Whitney's theorem have been
given. One of these made use of the following interesting

characterization of line-graphs given by Krausz (see [6]).

Theorem of Krausz A graph is a line-graph 1if and only 1if

it can be expressed as an edge direct sum of complete sub-
graphs in such a way that no vertex is contained in more than
two of these subgraphs.

It is net difficult to show that a line-graph L(G) can
be expressed as an edge direct sum of complete subgraphs
in such a way that every vertex belongs to exactly two of
these subgraphs unless G has terminal edges, so, in pérticular,
this result holds if G is a regular graph of degree r = 2.

With the aid of Krausz' theorem, the following result

is easlly established.

Theorem 3.2 There exist graphs which are not line-graphs.

Proof. Consider the star graph Kl,3‘ The only complete

subgraphs in Kl,3 are edges, so 1if Kl 3 is expressed as an
3
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edge direct sum of complete subgraphs, then necessarily one
vertex will be contained in three such subgraphs. Hence,

K1,3 1s not a line-graph.

As Ore [11] pointed out, with every graph G = G(V)

one can assoclate various matrices called incidence matrices.

One such matrix 1s the so-called vertex incidence matrix

which we shall denote by MV(G). The usual way of constructing
this square matrix 1is as follows. Every edge of G can be con-
sidered as an element of the product space V x V. The elements
of V x V can be represented in a square array with the

elements of V serving as coordinates along the two axes (Fig-

ure 3.1).
V]eoeooo VJ' ...... Vn
V1 .
Figure 3.1 ?i veveenaaa(Vy, vj)
v

It 1s customary to take the elements of V in the same order
along each axis. At the position with coordinates (Vvy, VJ)
we place 1 or O depending on whether there 1is or 1s not a
corresponding edge in G. We thus obtain the matrix MV(G).
The matrix M,(G) 1s a symmetric matrix having all disgonal

éntries equal to O. Another matrix is the edge incidence

matrix My (G) of G where bcth rows and columns correspond %o
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the edges of G, the edges taken in the same order along both
row and column. At a position (E;, E;) we place 1 or O de-
pending on whether E; and E, are or are not adjacent. As

with My(G), M.(G) is a square symmetric matrix all of whose
diagonal entries are 0. It 1s possible to consider Me(G)

as the vertex incildence matrix of a new graph Gl whose
vertices are in one-to-ore correspondenze with the edges of

G. It is then easlily seen that the graph Gl is the line-graph
I(G). Figure 2.2 gives an example.

In recent years investigations have been made to deter-
mine how closely various properties of line-graphs of special
graphs seem to characterize these graphs. The first theorem
along this 1ine is given next (see [3], [8], and [13]). It

was proved in parts and completed in 1960.

Theorem of Conner, Hoffman, and Shrikhande If G is a graph

of order n(n-1)/2, n > U4, having the following three
properties:
(1) every vertex of G has degree 2(n-2),
(11) every two adjacent vertices are mutually adjacent
to n-2 other vertices,
(11i) every two nonadjacent vertices are mutually adjacent
to four vertices,
then G 1is isomorphic to L(K,) except when n = 8, in which
case there are precisely three counter examples.

The corresponding theorem for complete bigraphs appeared

In 1963 [9].
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My (G):

Me(G) = My(L(G)):

L(G)

m

1
1 0
2 1

0
4 1

A
A 0
B 1
C 1
D 0
E 1

Figure 3.2

o O

—

|

o O
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Theorem of J. W. Moon If G is a graph of order mn, m =2 n=

1, having the following three properties:

(1) every vertex of G has degree m + n - 2,

(11) there are nm (m-1)/2 pairs of adjacent vertices
mutually adjacent to m-2 other vertices, and the
remaining mn(n-1)/2 pairs of adjacent vertices
are mutually adjacent to n-2 other vertices,

(11i) every two nonadjacent vertices are mutually
adjacent to two vertices,
then G is isomorphic to L(Km,n) except possibly when (m,n)
= (4,4), (4,3), or (5,4).

Shrikhande [14] has shown there is precisely one counter
example for (m,n) = (4,4), and from a discussion with Profes-
sor Harary, I have learned that A. J. Hoffman has now verified
Moon's theorem for (m, n) = (4,3) and (5,4); hence, the
result 1s now complete.

There 1s one other result in the literature which deals
wlth line-graphs of ordinary graphs. This theorem falls
wlthin the realm of algebrailc graph theory, a topic not con-
sidered in this thesis. For the sake of completeness, however,
we shall also state this result. A few introductory remarks
are in order.

With every graph G = G(V) there corresponds a group of

automorphisms [ = ["(G) consisting of all isomorphisms of G

onto G, i.e., [" consists of all one-to-one correspondences f

of V onto V such that when E = (a,b) 1is an edge in G,



15

E' = (f(a), f(b)) is also an edge in G, and conversely. ' may
thus be considered as a permutation group on V. The auto-
morphism group of K, is S, , the symmetric group of order n!,
while the automorphism group of a circult of length n is the
dihedral group of order 2n. Perhaps the best known theorem

in this area is due to Frucht (see [11]): For any finite
group [ there exists a graph G such that I = ['(G). The

result on line-graphs [12] can now be given.

Theorem of Sabildussi If G is a connected nontrivial graph

not lsomorphic to Ko, Ky, Q (the graph of order four having
four edges and a vertex of degree three), or to L(Q), then

M (G) is isomorphic to [ (L(G)).



SECTION 4

FUNDAMENTAL PRCPERTIES COF AND PRELIMINARY

RESULTS CONCERNING LINE-GRAPHS

In this section we present several basic results which
are fundamental in understanding the relationship between a
graph and 1ts line-graph. Many of these results will be

used numerous times in the sections which follow.

Theorem 4.1 Let G = G(V) be a graph with m edges and T

triangles. Then the line-graph L(G) of G contains m vertices,

v
;221 (P(§2)edges, and T + ;Zi: (ﬁ(;)) triangles. Also, if e
v eV vV EV 3
is the vertex in L(G) which corresponds to the edge E = (2,b)

of G, then f(e) has the value P(a) + P(b) - 2.

Proof. Since there 1s a one-to-one correspondence
between the edges of G and the vertices of L(G) and G has m
edges, L(G) has m vertices.

Two vertices are joined by an edge in L(G) if and only
if the corresponding edges in G are adjacent. The number of

edges in L(G) is therefore the number of pairs of adjacent

edges in G, which 1is ;ZE: (P(%)) .

vevV
As we have seen, a triangle in a line-graph L(G) can be

generated in one of two ways, namely, by a triangle in G or
by three edges in G having a common vertex; the number cf

these types of subgraphs in G 1s given by T and Z (ng)):
vev
16
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respectively, thereby producing the desired result.
If the vertex e in L(G) corresponds to the edge E = (a,b)
of G, then E is adjacent to [ P(a) - 1] + [ P(b) - 1]
= P(a) + P(b) - 2 edges of G implying that e is adjacent to
P(a) + P (b) - 2 vertices in L(G) or thatA(e)=A(a)+(bv)-2.
Q.E.D.
With the ald of the preceding theorem, 1t 1s now an easy
matter to give a characterization of regular line-graphs. We

precede this, however, with two definitions and a lemma.

Definition 4.1  The degree of an edge E = (a,b) in a graph

G 1s defined to be the number P(E) = P(a) + P (b) -2, and

1s the number of edges in G adjacent to E.

Definition 4.2 A graph G 1is said to be edge regular of

degree r 1if every edge has the same degree r.

Lemma 4.2 A vertex e in the line-graph L(G) of the
graph G has the same degree as the degree of 1ts corresponding
edge 1in G.

Proof. The proof is a direct consequence of Definition

4.1 and Theorem 4.1.
Q.E.D.

Theorem 4.3 A line-graph L(G) 1is regular of degree r 1if

and only 1f G 1s edge regular of degree r.
Proof. The proof follows immediately from Lemma 4.2.
Q.E.D.
An edge regular graph need not be regular as can be seen

by considering star graphs having order three or more, but
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every regular graph 1s edge regular implying that the line-
graph of a regular graph 1is regular. We state this in the

following theorem.

Theorem 4.4 If G is a nonempty regular graph of degree r,

then L(G) is a regular graph of degree 2r - 2, and if r = 2,
then forn =1, 2, 3, . . . , L(G) is a regular graph of
degree 2"(r-2) + 2.

Proof. If G is regular of degree r=1, then G 1s seen
to be edge regulzr of degree 2r - 2, and L(G) is regular of
degree 2r - 2 by Theorem 4.3. The remaining part of the
theorem follows by a routine application of mathematical

induction.
Q.E.D.

Before continuing with regular graphs, we present some

facts which will be useful in the sequel.

Theorem 4.5 If G is a nontrivial connected graph, then

L(G) is connected. Conversely, i1f L(G) 1s connected (and
G has no isolated vertices) then G 1s connected.

Proof. Let G be a nontrivial connected graph. If G
consists of a single edge, then L(G) 1s a single vertex and
so 1s connected; otherwlse, let a and b be any two vertices
in L(G), and let A = (a1, ap) and B = (by, b2) be the edges
in G which correspond to a and b; respectively. If A and B
are adjacent in G, then a and b are adjacent in L(G) and are

connected; otherwise, since G 1s connected, a; and by are
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Jolned by an arc Q: Ei, Eoy « o o, Ex. Let ey, ey, « o o,
ey be the corresponding vertices in L(G). If A = E; and
B =Ey, then P = (a, ep, . . . , epr_y, b) is an arc in L(G)

joining a and b. If A # E, but B =E then Py = (2, e1,

K’
€0, + .« ., €g-1s b) 1is an arc in L(G) joining a and b. Ths
cases A = E1, B £ Eyx and A # E], B # Ey are handled similzrly,
and we see that a and b are ccnnected so that L(G) 1s con-
nected.

Conversely, let L(G) be connected, and let u and v be
any two vertices of G. Since there ars no isclated vertices
in G eilther there 1is an edge (u, v) in G, in which case u
and v are connected, or else there are two edges E = (u, ul)
and F = (v, vy) in G. In the latter case let e and f be the

two vertices in L(G) which correspond tc E and F, respectively.

Since L(G) 1s connected, e and f are connected by an arc S:

(e, e7)s(eq5 ep)s - - - , (eg-1» f) which corresponds to &
path T : E, E1, Ep, . . . , Eg-1, F In G from u to v so that
u and v are connected.
Q.E.D.
Theorem 4.5 immediately implies the following:
Corollary 4.5.1 Ir > Gy 1s the direct sum decomposition

of a graph G into 1ts components, none of which are isolated
vertices, then the line-graph L(G) can be expressed as the
direct sum 2, L(Gi) of its components.

One may ask if a statement analogous to Corollary 4.5.1
can be made when a graph 1s expressed as an edge direct sun.

An answer 1s given 1n the negative by the following.
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Theorem 4.6 If G is expressed as the edge direct sum H + K,

neither H nor K having isolated vertices, then L(H) and L(X)
are disjoint, hence edge disjoint, and L(G) can be expressed
as the edge direct sum L(H) + L(K) + J, where J is a subgraph
of L(G), each edge of which joins a vertex of L(H) to a vertex
of L(K). J is an empty graph if and only if the edge direct
sum H + K is direct.

Proof. The fact that L(H) and L(K) are disjoint follows
by noticing that if some vertex were simultanesously in L(H)
and in L(K), then there would exist an edge in G common to H
and K contradicting the hypothesis that H and K are edge dis-
Jjoint.

Since every edge of G lies either in H or in K, every
vertex of L(G) 1s contained in either L(H) or L(K). An edge
of L(G) is determined by two adjacent edges in G, and two
such edges may lie both 1n H, beth 1n K, or else one of the
two adjacent edges must lie in H and the other in K resulting
in an edge of L(H), an edge of L(K), or an edge neither in
L(H) nor in L(K) but rather an edge joining a vertex of L(H)
to a vertex cf L(K), respectively. Let J dencte the collec-
tion of all edges in L(G) jolning a vertex of L(H) to a vertex
of L(K). We shall refer to an edge contained in a subgraph
such as J as a '"cross edge." It is now seen that L(G) can be
expressed as the edge direct sum L(H) + L(K) + J.

If H + K is a direct sum, then the fact that J 1s an

empty graph is a simple consequence of Corollary 4.5.1. On
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the other hand, 1f H + K 1s an edge direct sum but not a
direct sum, then since H and K have no isolated vertices
and are both nontrivial, it is easily seen that an edge of
H must be adjacent to an edge of K producing an edge in J.
Q.-E.D.
Immediate consequences of this theorem will be given

next.

Corollary 4.6.1 If H is a nonempty subgraph of G, then

L(H) is a subgraph of L(G).

Corollary 4.6.2 If H is a nonempty section graph of G,

then L(H) is a section graph of L(G).

Corollary 4.6.3 If H is a nonempty subgraph of G and

G - H is the complement of H in G, then L(G-H) is the com-
plement of L(H) in L(G) if and only if H and G-H are disjoint,
i.e., 1f and only if H is the sum of components of G.

Corollary 4.6.4 If G 1s expressed as the edge direct sum

23 IHi, where the H; are without isolated vertices, then

the L(Hy) are pairwise disjoint, and L(G) can be expressed as
the edge direct sum >, L(Hi) + J, where J .s a subgraph of
L(G), each edge of which Joins a vertex of some L(Hjy) to a
vertex of some L(HJ), 1 # j. J is an empty graph if and
only if the edge direct sum :Z:Hi is direct.

We now return to regular graphs in order to present a
theorem which solves the problem proposed by Ore of deter-
mining all graphs isomorphic to their line-graphs (see [11],
page 21, problem 5). The proof we give 1s chcsen as an

application of Theorem 4.1.
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Theorem 4.7 The only graphs which are isomorphic to their

line-graphs are the regular graphs of degree two.

Proof. 1ILet G be regular of degree two. By Corollary
4.5.1, we may assume G to be connected. Let the verftices of
G be 815 85, « . ., ap, ordered 1n such a way that the
resulting n edges are (ay, ap), (ap, a3), e e e (an—l’ ap) s
(an, a1), whose ccrresponding vertices in L(G) are by, to,

.» bp-1, bp, respectively. Ths one-to-one correspondence
aje—>b; (1 =1, 2, . . ., n) is then easily seen to be
an isomorphism between G and L(G).

Conversely, let G be a graph which is isomorphic to
its line-graph I(G). Let G have n vertices, say vy, Vo, .

»Vn, and m edges. Hence, L(G) has m vertices, and since G
and L(G) are isomorphic, m = n. If G has T trlangles, then L(G)

too must have T triangles implying that T = T + . ( ‘)

P(vi)
(from Theorem 4.1) or that ;%: < = 0, so that

1=1 3
P(vi) < 2 foralli=1, 2, . . . , n. Sincem = n,
(v v
n = ﬁ: ('o ) , but P(vi) < 2 so /0( 1) =1 or O
i=1 2 - 2

depending on whether P(vi) = 2 or P(vi) < 2. However,
0 (p(v,)
the sum ?: has the value n and has n terms, so
=1 2
for each 1 =1, 2, . . . , n, we must have f’(vi) = 2; there-

fore, G 1s regular of degree two
QR.E.D.

Since a connected regular graph of degree two is simply
a circuit, the graphs which are isomorphic to thelr line-graphs

are those graphs whose components are simple circuits. In a
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like manner one can shcw that if G contains a circuil%, then
L(G) contains an isomorphic circuit. We consider the repezted

line-graphs of another special type of graph next.

Theorem 4.8 If G is an arc of length n (n > 1), then L(GQ)

is an arc of length n-1.
Proof. Let E; = (e2,, ay), Ex = (a1, a5) . . .,

En = (an-1, ap) be the edges of G and let e1, ey, . . .,€p

be the corresponding vertices in L{(G). Then the edges in L(G)

are Fy = (&1, ep), Fo = {ep: ez3), « . . , Fo1 = (ep-15 €n)s
and so L(G) is &n arc of length n-1.

QR.E.L.
Corollary 4.8.1 If G is an arc cf lzngth n (n > 1), then

L" (G) consists of an isolated vertzx (an arc cf length zero),
while for k > n, there exists no grzagh Lk(G).

It should be clear that the arcs and the circuifs are
the only connected graphs all of whhse vertices have degree
not exceeding two, so any other connected graph has one or

more vertices of degree three or more.

Theorem 4.9 A nzcessary and sufficient ccndition thzt the

sequence {Iﬁ(G)} be infinite 1is that at least one component
of G be other than an arc.

Procf. Let G be a graph such that the sequence { Ln(G)}
is infinite. If the components of G were 211l arcs and the
maximum length of these arcs were N, then by Corollary 4.6.1,
L¥(G) for k > N would not exist. On the cther hand, 1f a com-

ponent G1 of G were not an arc, then either G; would be a
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circuit or would contain a vertex v having degree three or
more. If Gy were a circuit, L(G;) ard so Lk(Gl) for all k
would be a circuit. 1If G, contained a vertex v incident

with three =dg=ss, then L(Gl) and so Lk(Gl) for all k would

contain a triangle. Hence, Lk(G) exists for all k.
Q.E.D.

Definition 4.3 Let G be a graph for which the sequence

{ L"(G)} is infinite. The sequence { L™(6)} is said to

have a limit graph 1f there exi1sts a positive integer N such

that if m > N and p > N, then L"(G) is isomorphic to

LP(c). 1N(G) is then called the limit graph of { L7G) }

Theorem 4.10 A necessary and sufficient condition that

the sequence { L"(G)} have a lirmit graph is that G contain
one or more ccmponents which are either simple circuits or
star grapns of the type K1,3 while any cother compcnents of

G be arcs.

Preccof. From Thecrem 4.7 the cnly possible lirit
graphs are graphs whose ccmpcnents are simple circuilts. It
follows by the theorem of Whitney that with the exception
of triangles, the cnly graph whose line-grzrgh is & circuit
is an 1somorphic circuit. In th=2 case of a triangle, it 1is
the line-graph of both a triangle and the star graph Kl,Be
In addition to Kl,3 and circuits, G may contaln arcs as com-
ponents, for by Corollary 4.8.1, after taking a finite number
of line-graphs, we arrive at a graph containing no arcs.

R-E.D.
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Corollary 4.10.1 Let G be a graph which contalins at least

one component different from a circult, the star graph K1,3,
or an arc. Then if m and p are any two nonnegative integers
(m # p), L™(G) and LP(G) are nonisomorphic.

Just as we found it useful to decompose a graph into
its connected components, we find it useful to decompose con-
nected graphs into special types of pairwlse edge disjoint
connected subgraphs and to investigate the relationships of
such subgraphs with these types of subgraphs in the line-graph.
We now introduce the following definitions, many of which may

be found in Ore [11].

Definition 4.4 An edge E of agraphG is called a circuit

edge of G if E belongs to some circult of G.

Definition 4.5 An edge E = (a, b) of a graph G is a

separating edge or cut edge of G if the removal of E from G

results 1n a graph G; 1n which a and b are not connected,
l.e., 1f a and b are not connected 1n the graph Gl whose
vertex set 1s that of G and which has all edges of G with
the exception of E.

It 1s then a routine matter to verify the assertation:
Theorem. An edge E 1s a circult edge of a graph G if and only

if it is not a separating edge of G.

Definition 4.6 A vertex v of a graph G = G(V) 1is called

a separating vertex or cut point of G if the removal of v

(and necessarily then all edges in G incident with v) results
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in a graph having a greater number of components than that
of G, i.e., if G(U), where U=V - {v} , has more compon-
ents than G.

If G 1s connected, ths removal of a separating
vertex results in a disconnected graph. For example, cir-
cults and complete graphs contain no separating vertices,
while, on the other hand, every vertex of degree two in an

arc 1s a separating vertex.

Definition 4.7 For any edge E of a graph G, the set of

edges conglisting of E and all edges F of G such that E and
F both belong to some circuit in G forms a connected subgraph

of G called the blcck (also lobe graph, member, or minimal

plece) of G determined by E.

We state without proof the following well known
results.
Theorem. Every edge of a graph G lies in one and only cne
block of G.
Theorem. Every block of a graph G is a section graph of G,
but not conversely.
Thecrem. Every block of a graph G is a maximal connected
subgraph of G containing no separating vertices.

Theorem. Every graph 1s the edge direct sum of 1its blocks.

Definition 4.8 The number of blocks to which a vertex v

belongs 1s called the connective index of v and 1s denoted by

1(v). It follows from the definition that a vertex v of a

graph G 1s a separating vertex of G if and only if i(v) >1.
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Definition 4.9 A nontrivial graph containing a single

block 1s called a nonseparable graph.

We now resume our investigations of line-graphs.

Theorem 4.11 If a is any vertex in the line-graph L(G) of

the graph G, then either i(a) = 1 or i(a) = 2.

Proof. By Krausz' theorem, any line-graph 1is charac-
terized by the fact that'it can be expressed as an edge direct
sum of complete subgraphs in such a way that every vertex
belongs to at most two of these complete subgraphs. Clearly,
any complete subgraph must lie wholly in some block, so any
vertex a in a line-graph is contained in at most two blocks;

hence i(a) = 1 or i(a) = 2.
QR.-E.D.

Theorem 4.12 A necessary and sufficient condition that

a vertex e in the line-graph L(G) of a graph G be a separating
vertex 1s that the corresponding edge E iIn G be a nonterminal
separating edge of G.

Proof. Without loss of generallity we may assume G and
therefore L(G) ﬁo be connected graphs. Let E be a nonterminal
separating edge of G, and let e be the corresponding vertex
in L(G). If G, 1s the graph obtained from G by deleting E,
then we see that L(G;) 1s the graph obtained from L(G) by
deleting e. Since E is nonterminal, neither of the two com-
ponents of G can be 1soclated vertices; hence L(Gl) is a dis-
connected graph implying that e 1s a separating vertex of
L(G). If E were a terminal separating edge, Gl would consist

of two components, one of which would be an isolated vertex,
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so L(Gy) would be connected. If E were a clrcult edge, then

G, would be connected as would L(Gy)-
Q.E.D.

Theorem 4.13 A necessary and sufficient condition that an

edge E = (a, b) be a separating edge of the line-graph L(G)
of the graph G 1s that the edges A and B in G, which corre-
spond to the vertices a and b, respectively, be separating
edges of G which meet in a vertex of degree two.

Proof. Again, we may take G to be connected. Suppose
A and B are two separating edges of G meeting in a vertex v
of degree two. If the edge B is deleted from G, we obtain a
disconnected graph consisting of two components; let G
denote that component containing v. Similarly, if the edge
A is removed from G, we obtain a disconnected graph, one
component of which contains v; call this component 62.
Since Gj and G2 are connected, nontrivial, and edge disjoint,
L(G1) and L(Gp) are connected and disjoint subgraphs of
L(G). It is now easy to see that L(Gy) + L(Gp) 1is precisely
the subgraph of L(G) obtained by deleting the edge E = (a,b)
from L(G), where a and b are the vertices of L(G) which
correspond to A and B, respectively; hence, E 1s a separating
edge of L(G).

Conversely, let E = (a, b) be a separating edge in
L(G), and let A and B be edges in G which correspond to the
vertices a and b, respectively. Since 1t is obvious that A
and B are adjacent, let v be the vertex in G common to A and

B. P(v) = 2, for if another edge C were incident with v and
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¢ were the corresponding vertex in L(G), the vertices a, b,
and c¢ would form the vertices of a triangle in L(G) contra-
dicting the fact that E is a separating edge. If A or B
were a cilrcult edge, then necessarily there would exlist a
circuit in G containing both A and B as adjacent edges in
the circuit, but a circult in a graph produces an isomorphic
circuit in 1ts line-graph; however, this resulting circult
in L(G) would contain E as a circult edge, agaln leading to

a contradiction.
Q.E.D.

We see then that the only way of producing a separating
edge in a line-graph L(G) 1s to have two separating edges in
G which meet in a vertex of degree two. By carrying the argu-
ment one step further, we see that in order to have two
separating edges 1n a line-graph L(G) meeting in a vertex of
degree two, the graph G must contaln an arc of three separat-
ing edges, each adjacent palr meeting in a vertex of degree
two. It 1s also seen that G must have thils property in order
“(

that L°(G) contain a separating edge. Let us state some con-

sequences of Theorem 4.13 in a more formal way.

Corollary 4.13.1 The line-graph L(G) of the graph G has

m palrwise disjoint arcs of lengths nj, np, . . . , np

(ny > 1) consisting only of separating edges if and only if

G has m palrwise edge disjoint arcs of lengths ny + 1, np + 1,
.s Nnp + 1 consisting only of separating edges, where any

two adjacent separating edges in an arc meet 1In a vertex of

degree two.
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Proof. By arguments analogous to those used in the
proof of Theorem 4.13, one sees dlrectly that if G has an arc
of length ny + 1 consisting only of separating edges, each
adjacent palr of which has a vertex of degree two in common,
then this results in an arc of n; separating edges, and two
such arcs in G which are edge disjoint produce two disjoint
arcs in L(G). The converse follows, again, by repeated ap-
plication of the methods set forth in the proof of Theorem

4.13.
Q.E.D.

Corollary 4.13.2 If G is a graph containing k separating

edges, k > 1, then L(G) has fewer than k separating edges.
Proof. An arc of m separating edges, m > 2, in G,
each adjacent pair having a vertex of degree two in common,
produces an arc of m - 1 separating edges in L(G), and such
an arc 1in L(G) can be obtained 1in no other way; hence, the
number of separating edges decreases as we pass from G to

L(c).
Q.E.D.

Corollary 4.13.3 A necessary and sufficient condition

that the graph L™(G) contain a separating edge is that G
contain an arc of m + 1 separating edges, each adjacent pair

of which has a vertex of degree two in common.

Corollary 4.13.4 Let the separating edges of L™(G) be

denoted by El’ E2, e e ey Ek’ and assume that no two of
these edges are adjacent. Then 1n G, there are k edge dis-

Joint arcs of length m + 1, each arc consisting only of
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separating edges, and each pair of adjacent separating edges
in any such arc has a vertex of degree two in common.
We conclude this section with a theorem which will be

greatly strengthened in Section 7.

Theorem 4.14 For any connected graph G which is not an

arc, there exists a nonnegative integer N such that for all
p > N, LP(G) is a nonseparable graph, where the smallest
value of N is (1) N = O if G is nonseparable, (ii) N = 1 if
G contains separating vertices but no separating edges, and
(1iii) N =m + 1 if G contains separating edges, and m is the
length of the longest arc in G consisting entirely of separat-
ing edges, each adjacent pair of edges in the arc having a
vertex of degree two in common.

Proof. (1) follows as a direct result of Theorem 4.12,
(11) from Theorem 4.13, and (11i) follows from Theorem 4.13

and Corollary 4.13.3.
Q.E.D.



SECTION 5
THE CONNECTIVITY CF LINE-GRAPHS

In Section 4 it was shown that if G is a graph with-
out isolated vertices, then the line-graph L(G) is connected
if and only 1if G is connected. This and other results in
the preceding section imply that if G is a connected graph
which is not an arc, then {L’(G)} is an infinite sequence
of connected graphs. In this section the twin topilcs of
edge connectivity and (vertex) connectivity are considered.

We begin by giving a definition due to Ore [11].

Definition 5.1 A nontrivial graph G = G (V) is m-edge

connected 1if there exists no nonempty proper subset A of V
such that the total number of edges jolning a vertex of A to
a vertex of A =V - A is less than m.

According to this definition, every nontrivial graph

1s 0-edge connected.

Definition 5.2 The largest value of m for which a graph G

is m-edge connected 1s called the edge connectivity of G and

is denoted by ko = k, (G).
Theorems stated by Ore dealing with edge connectivity

include:

32
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Theorem. A nontrivial graph is connected 1f and only 1if it
has edge connectivity ko = 1.
Theorem. For any graph G = G(V) with edge connectlvity k.,
kKo = min pP(v).
vevV

Theorem. A connected graph G has edge connectivity kg, = 1
if and only i1f G has a separating edge.

The next two theorems will show that the concept of

edge connectivity can be approached from a different direc-

tion if we 1limit our discussion to connected graphs.

Theorem 5.1 A nontrivial graph G = G(V) is m-edge connected,

m >1, 1f and only 1if the removal of any k edges, 0= k< m,
from G results in a connected graph.

Proof. Let G be a graph which is m-edge connected,
where m =Z 1. G 1s therefore connected. Assume, to the
contrary, that there 1s some set of k edges, 0 < k < m, which,
when deleted from G, disconnects 1it. If G is the graph ob-
tained from G by removing these k edges, then 1t follows that
G1 can be expressed as a dlrect sum: H; + Hy. If the vertex
set of H] 1s A and that of H, 1is A =V - A, then the number
of edges 1In G Jolining a vertex of A to a vertex of A 1is at
most k, but k<m, and thils contradilicts the fact that G 1s
m - edge connected.

Let G be a graph having the property that the removal
of any k edges, where 0 = k < m, from G results in a connected
graph. Suppose that G 1s not m - edge connected. Then there

is a proper subset A of V such that only £ edges, £<m, join
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a vertex of A to a vertex of A = V - A. However, the dele-
tion of these J edges clearly results in a disconnected

subgraph of G, and this 1s a contradiction.
Q.E.D.

Theorem 5.2 A graph G = G (V) has edge connectivity k,

if and only if ko is the minimal number of edges required to
be deleted from G in order that the resulting graph be dis-
connected.

Proof. If G is a disconnected graph, then ko = 0, and
the result follows in a trivial manner.

Let G be a graph having edge connectivity k, = 1. Then
G 1s k, - edge connected but not (ky + 1) - edge connected.
By Theorem 5.1, it follows that the deletion of any k edges
from G, where k < kg, results in a connected subgraph of G;
however, since G is not (k, + 1) - edge connected, the removal
of some set of k, edges from G must produce a disconnected
subgraph of G. Therefore, ko is the minimal number of edges,

which, when removed from G, results in a disconnected graph.

Conversely, suppose kg, k Z 1, 1s the minimal number

o
of edges required to be eliminated from G in order that the
resulting graph be disconnected. This immediately implies
that G 1is ko - edge connected but not (ko + 1) - edge con-

nected and so has edge connectlvity k.
Q.E.D.

An important thecrem and corollary are stated next

(see Berge [2]).
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Theorem. A necessary and sufficient condition that a graph
G be m-edge connected 1is that every two vertices of G be

Joilned by at least m arcs which are pairwise edge disjoint.

Corollary. A necessary and sufficient condition that a
graph G have edge connectivity m 1s that every two vertices
of G be jolned by at least m arcs which are pairwise edge
disjoint, while there are at least two vertices of G which
are joined by no more than m pailrwise edge disjoint arcs.

As we stated earlier, Ore showed that for any graph
G = G(V) with edge connectivity kg, ko = mig P(v). We

Ve

shall give a condition under which equality will hold, a

fact which we shall use later. A lemma 1s needed here.

Lemma 5.3 Let G = G(V) be a graph of order n. If

P(v) = Qé—l for all veV, then G is connected.

Proof. If G were not connected and a and b were

vertices 1n two different components of G, then each com-

ponent would contain at least 1 + Eél = Q%l vertices,

contradicting the fact that G has order n.
Q.E.D.

Theorem 5.4 Let G = G(V) be a graph of order n. If
n-1

Plv)= 5~ for all veV, then G has edge connectivity
kKo = r, where r = min P (v).
veV
Proof. Because kg, < r, it suffices to show that the

assumption k, < r leads to a contradiction. Since G has
edge connectivity kg (and kg # O by Lemma 5.3), there is a

nonempty proper subset A of V such that precisely k, edges
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join A to A =V - A. Assume that these k, edges are incident

wlth m vertices of A. Certainly, m =k If A contains only

o°

m vertices, then the number of edges in G incident with two
1

vertices of A is at least 7 (mr - k. ) > % (mr - r) =

1 1 m
s} -A-l >"— - —_
zr(m-1)>Zm (m- 1) = (3

the maximum number of edges 1n the section graph G(A) is

), but this 1s impossible since

(g). Likewise, a ccntradiction is reached if A contained
only vertices adjacent to vertices of A. Suppose, then,
that both A and A contain some vertices adjacent only to
vertices in their respective subsets. Then A and A must
both contain at least r + 1 vertices; G would have 2r + 2

vertices; however, 2r + 2 > 2r + 1 Z n, which is a contra-

diction.
Q.E.D.

We next investigate the relationship between the edge

connectlvity of a graph and that of its line-graph.

Theorem 5.5 If a graph G = G(V) 1is m-edge connected, then

its line-graph L(G) is (2m - 2) - edge connected.

Proof. The result 1is trivial 1if m = 0. If G 1is l-edge
connected, then G is connected, as is L(G), so L(G) is in
fact l-edge connected.

Suppose, then, that G is m-edge connected, where
m Z 2. We shall show that L(G) 1s (2m -2) - edge connected.
Let the vertex set of L(G) be denoted by W. It sufficles to
show that 1f W; 1s any nonempty proper subset of W, then
these are at least 2m - 2 edges of L(G) Joining vertices of

wl to vertices of w2 =W - wl.
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Since G is certainly connected, L(G) is also connected.
Thus, there must be at least one edge of L(G) jolnlng a vertex
of W1 to a vertex of Wy; let this edge be E = (a,b), where
a € Wp and b € Wo. Also, let A and B denote those edges in
G which correspond to a and b, respectively. Since a and b
are adjacent in L(G), A and B are adjacent in G; so let
A = (up, u) and B = (vy, u). From a previously merntioned
theorem, P (u) = m because k, = m, where k_  denotes the
edge connectivity of G. Hence, there are at least m edges
in G incident with u. Consider the star subgraph S of G
made up of A, B, and any other m-2 edges which are incident
with u. L(S) is a complete subgraph C of L(G), where the
vertex set U of C consists of m vertices of W. Now, a €U
and b € U; so the vertex decomposition W = wl U w2 induces
the vertex decomposition U = U; U U2, where Uy C W; and
Up C Wp, and where both Uj and U2 are nonempty proper sub-
sets of U.

Let the vertices of Ul be denoted by a = aj, a2, e e e s
axy and the vertices of U2 be denoted by b = bl’ b2, o e e
bm—k° Also, let the corresponding edges in G (the edges of S)
be denoted by Al, A2, .+« « 5 Agpand By, Bp, . . ., Bm-k‘
There 1s no loss of generality in assuming k < m-k. Since C
is complete, all edses (aj, bj), 1=1,2, . . ., k3 J=1,
2, . . . , m-k are present; hence, there are at least k(m-k)
edges joining W; with w2.
Now there are at least m palrwise edge disjoint arcs in

G joining uy to vy, say:
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Pl H Ell, Elg’ . . . 5] Elnl
2 : Egl, E22, . . . 5) E2n2

Pm . Eml, Em2) . . . 5] Emnmo

If the edge A appears in such an arc, it can only
appear in one, and if it does, then it must be some Ej;.
Similarly, B can only appear once and only then as some

Ejnj' Hence, except for the one possible Ei which may be

1

A itself, all edges Ei are adjacent to A. Similarly, all

1
edges Ejnj are adjacent to B, with one possible exceptilon.
Clearly, none of the edges Eil can be any of the edges Bl’
Bo, - . ., Bp_y. All this shows that in L(G) there are at
least m arcs joining a to b which are disjoint except at

the vertices a and b. If we eliminate these arcs among Pq,
P2, . . ., Pp which contain any of the edges A1, A,,

« +« « 5, Ay, there stlll remain at least m-k arcs. We have
already seen that the line-graph of an arc is an arc (of
length one less than the original). Hence, corresponding

to the m-k (or more) arcs just mentioned are m-k (or more)
arcs in L(G), none of which contain any of the vertices

al, aps . . . 5 ayp. Also, aj is adjacent to the initial
vertex of each of these arcs; however, no initial vertex

is one of the vertices bj, bg, e e e bm-k‘ Moreover, the
terminal vertex of each of the m-k (or more) arcs in L(G) s

either b; or 1s adjacent to b;. Clearly, each such arc must

contain at least one edge joinlng a vertex of Wy to a vertex
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of w2, and none of these edges can coincide. Also such
edges cannot possibly be of the fomr (aj, bj), for this
situatioﬁ has been eliminated. Thus, there must be at
least m-k edges Jjoining a vertex of wl to a vertex of w2
in addition to the k( m-k) edges (ay, bj) giving k(m-k)
+ (m-k) = (k + 1) (m-k) edges in all joining a vertex of
Wy to a vertex of W,. However, for k =1, 2, . . .,[%],
(k + 1) (m-k) assumes its minimum value when k = 1. There-
fore, at least 2(m-1) = 2m-2 edges join a vertex of Wy to
a vertex of Wp, and so L(G) is (2m-2) - edge connected.
Q.E.D.

Corollary 5.5.1 Let G be a graph having edge connectivity

Ky, andlet ki denote the edge connectivity of i1ts line-graph
L(G). Then k] = 2kg - 2.

Proof. If G has edge connectivity ko, then G 1s
ko - edge connected, and byTheorem 5.5, L(G) is (2k, -2) -

edge connected. Hence, k] = 2k, - 2.
R.E.D.

Corollary 5.5.2 If G is regular of degree r, r 22, and

ko = r, and k, denotes the edge connectivity of 1(G), then
kn = 2"(r-2) + 2. In particular, if G is a regular graph
of degree r and order n, where r = Q%L, then k, = 2n(r-2)
+ 2.

Proof. If the graph G, regular of degree r, has edge
connectivity ko = r, then Theorem 5.5 implies that L(G) has

edge connectivity k; = 2r - 2; however, L(G) i1s regular of

degree 2r - 2 and so k; = 2r - 2. Therefore, k; = 2r - 2.
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If G is a regular graph of degree r and order n, where

r = 0=l

» then Theorem 5.4 shows that k, = r and k] = 2r -2
as before. The last statement follows by induction.
Q.E.D.
Analogous to the concept of edge connectivity is that
of vertex connectivity. The definition we give 1is a slight

variation of that given by Ore.

Definition 5.3 ILet G = G(V) be a nontrivial graph and let

A be a nonempty proper subset of V. A vertex a of A is

called an interior vertex of G(A) if a is adjacent only to

vertices of A. A vertex of A adjacent to vertices both in

A and A =V - A is called a vertex of attachment of G(A).

Definition 5.4 A nontrivial graph G = G(V) 1s m-vertex

connected, or simply m-connected, if either (1) G ls a

complete graph of order n > m, or (2) there exists no non-
empty proper subset A of V with G(A) having at least one
interior vertex such that the total number of vertices of
attachment is less than m.

It is not difficult to show that a necessary and suf-
ficient condition that a nontrivial graph G = G(V) contain a
nonempty proper subset A of V such that the section graph
G(A) have at least one interior vertex is that G be not com-
plete. For this reason an alternative definition of "m-
connected" was given for complete graphs.

A graph which 1s 2-connected 1s often called doubly

connected or biconnected. A 3-connected graph 1s also
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referred to as a triply connected graph.

Definition 5.5 The largest value of m for which a graph G

is m-connected 1is called the vertex connectivity or simply

the connectivity of G and is denoted by fg = fg(G).

We next state without proof the following simple con-
sequences of the definition of connectivity of a graph (see
Oore [11]).

Theorem. A nontrivial graph is connected if and only 1if 1t
has connectivity 4o > 1.
Theorem. A connected graph G has connectivity ,ﬁo =1 1if
and only 1if G consists of a single edge or G has a separating
vertex.
Corollary. A necessary and sufficient condition that a con-
nected graph G consistinz of more than an edge be nonseparable
Is that G be blconnected.
Theorem. If Zo is the connectivity of a graph G = G(V),
then foé_min pv).

veV

Another consequence of the definitlon of connectivity

is presented next.

Theorem 5.6 Let G be a graph of order n having connectivity

‘[o‘ If G is complete, then fo = n-1, while if G is not
complete, then ‘Io < n-2.

Proof. If G 1s complete, then the largest value of m
for which n > m is clearly n-1, and so ,ﬂo =n-1. If G
is not complete, then ‘fo~§ n-2 by the preceding theorem.

Q.E.D.
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We present an alternative approach to m-connectedness
and connectivity, analogous to that given for m-edge con-

nectedness and edge connectivity.

Theorem 5.7 A graph G = G(V) is m-connected, m =21, if

and only if the removal of any k vertices, 0 < k<m,
results in a nontrivial connected graph.

Proof. Let G = G(V) be a graph which is m-connected,
where m 2 1. Clearly, G is connected. Assume, to the
contrary, that there exist k vertices, 0 € k < m, which,
when deleted, results in either an isolated vertex or a dis-
connected graph. If the removal of k vertices results in an
isolated vertex, then evidently G is of order k + 1, but
Theorem 5.6 implies G is at most k-connected. However, k<m,
and this 1s a contradiction. Suppose, then, that the elimin-
ation of some k vertices produces a disconnected graph H.

Let us write H = Hp + Ho, where Hi and Hy are nonempty dis-
Joint subgraphs of H, and where the vertex sets of H, and H,
are denoted by A and Ap, respectively.Let A be the union of
Ay and the previously deleted k vertices. Any vertex of Ag
is clearly an interior vertex of the section graph G(A) of G,
and G(A) has at most k vertices of attachment, but k < m,

and this contradicts the fact that G is m-connected.

Let G = G(V) be a graph having the property that the
removal of any k vertices, O< k <m, results in a nontrivial
connected graph. We shall show that G is m-connected. Assume

that G 1s not m-connected. If G were complete and not
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m-connected, then the order n of G would satisfy the inequal-
ity n < m. However, then, n-1 =m-1, and the deletion of any
n-1 vertices would leave an 1solated vertex, and this would
contradict the property wh.ch G enjoys. On the other hand,
if G 1s both not complete and not m-connected, then there
exists a monempty proper subset A of V such that G(A) con-
tains interior vertices and k vertices of attachment, where
O< k< m. Clearly, though, the removal of these k vertices
of attachment will produce a disconnected subgraph of G and

again leads us to a contradict.on.
Q-E.D.

Theorem 5.8 A nontrivial graph G = G(V) has connectivity

[(3 if and only if ‘ﬂo is the minimal number of vertices
required to be deleted from G in order that the resulting
graph be disconnected or consist of a single vertex.

Proof. If G is a disconnected graph, then ,(70 = 0, and
the result 1s obvious.

Let G be a graph having connectivity 4/, = 1. Then
G is 4, - connected but not ( jo + 1) - connected. By
Theorem 5.7, 1t follows that the removal of any k vertices
from G, where k < [o’ produces a nontrivial connected subgraph
of G; however, since G 1s not ( fo + 1) - connected, there
must exlist some set of ‘10 vertices, which, when removed from
G results in either a disconnected graph or an 1isolated
vertex, and so ‘[o is the minimal number of vertices with

this property.
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Conversely, assume ‘Eo’ ‘fo > 1, is the minimal
number of vertices required to be eliminated from G in
order that the newly-acquired graph be disconnected or con-
sist of an 1isolated vertex. This implies that G is ﬁg -

connected but not ( ﬁo + 1) - connected; hence, G has con-

nectivity [g.
QR-E.D.

Perhaps the best known theorem on separation in graph
theory is one due to Menger (see Berge [2]). We state some
consequences of this theorem as well as some additional
results.

Theorem. A necessary and sufficient condition that a graph
G be m-connected 1s that every two vertices of G be joined
by at least m arcs which are pairwise disjoint except for
the two vertices.

Theorem. A necessary and sufficient condition that a graph
G have connectivity -ﬁo is that every two vertices of G be
Joined by at least fo arcs which are pairwise disjoint
except for the two vertices while there are at least two
vertices of G which are Jolned by at most Qo such arcs.

We are now in a position to prove the theorems in
which we are interested. We first give a proof of a known
simple result.

Theorem. An m-connected graph 1s m-edge connected.

Proof. If every two vertices of a graph are Jolned

by at least m arcs which are pairwise disjoint except for

the end-vertilces, then every two vertices are obviously
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Jjoined by at least m arcs which are pairwise edge disjoint.
Q.E.D.
Corollary. If G is a graph having edge connectivity ko and
connectivity ’go’ then kg = [o‘
The converse of the preceding theorem is not valid.
To show this, consider a zZraph H which is the sum of two

complete graphs of the type Km , m > 1, having precisely

+1
one vertex in common. With the aid of Theorem 5.4, 1t is
easily seen that H has edge connectivity m and connectivity
one (H is therefore m-edge connected but not m-connected).

For the case where m = 5, see Figure 5.1.

Figure 5.1
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We do have the following result, however, in the case

of line-graphs.

Theorem 5.9 If G is an m-edge connected graph, then the

line-graph L(G) is m-connected.

Proof. Let a and b be two arbitrary d stinct vertices
of the line-graph L{G) of the m-edge connected zZraph G. Let
A = (u, u;) and B = (v, vy) be the edges of G which corre-
spond to the vertices a and b, respectively. Consider the
vertices u and v (or u and vj, should u = v). Since G 1is
m-edge connected, there exist m arcs Py, i=1,2, . . . , m,
every two of which are edge disjoint, which join u to v.

At most one P; contains Aj; however, those arcs which fail to
contain A have their first edge adjacent to A. Similarly,
at most one such arc contains B, but any arc not containlng
B has its last edze adjacent to B. Corresponding to the arcs
P; in G are then m arcs Q;, 1 =1, 2, . . . , m, in L(G),
which are pairwise disjoint. a lies 1in at most one Qi, as
does b, but any arc not containing a has its flrst vertex
adjacent to a. Similarly, any arc Qi not containing b has
its last vertex adjacent to b. This implies, then, that
there exist m arcs in L(G) joining a and b, which are dis-
joint except for a and b. Hence, L(G) is m-connected.
Q.E.D.

Corollary 5.9.1 If G has edge connectivity ko and L(G)

has connectivity ﬁl’ then k :5‘21.
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Corollary 5.9.2 If G is m-connected, then L(G) is m-

connected.

Proof. If G 1is m-connected, then G is also m-edge
connected; thus, by Theorem 5.9, L(G) is m-connected.

Q.-E.D.

One might expect a result for m-connectedness
analogous to that obtained for m-edge connectedness (see
Theorem 5.5); however, the following example shows that
Corollary 5.9.2 cannot be improved. Let the graph J con-

sist of two disjoint graphs of the type K m =1, the

m+1’

vertices of which are denoted by u; and vy respectively,

l}
i=0,1, . . . , m, where, in addition, the m edges Ei
= (uys vy4), 1 =1, 2, . . ., mare inserted. J has con-

nectivity m (and so is m - connected); however, L(J) also
has connectivity m (and so 1s not (m+l)-connected) since

the deletion of the vertices €y (where ey corresponds to

Ey) from L(J) disconnects it. Figure 5.2 shows the case

where m = 3.

It thus follows that the results obtained in Corol-
laries 5.5.1 and 5.9.1 are the best possible, and this
constitutes a solution to the problem proposed by Ore of
determining the relations between the connectivities and
the edge connectivities for a graph and its line-graph (see

[11], page 81, problem 2). We have the following extension.

Theorem 5.10 If G 1s m-connected, then LQ(G) is (2m-2) -

connected.
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Proof. Since G is m-connected, it is m-edge connected.

By Theorem 5.5, L(G) is (2m -2) - edge connected. From

Theorem 5.9, it then follows that L2(G) is (2m - 2) - connected.

Q.E.D.
Corollary 5.10.1 If G is m-connected, then Lk(
k-1 k

G) is

[2 (m-2) + 2] - connected and is [2 (m-2) + 2] - edge
connected for k = 1.

Proof. This follows by induction on k.
- Q.E.D.

We conclude this section with two corollaries to

Corollary 5.10.1.

Corollary 5.10.2 If G 1s a graph whose edge and vertex

connectedness exceed two, then the edge connectedness and
vertex connectedness of Lk(G) are unbounded as k becomes

infinite.

Corollary 5.10.3 Let G be a graph with k, = £ = 2.

Then 1lim k., [L(G)] = 1im  Z, [L*(G)] = oo .
N—»00 N —>00



SECTION 6

LINE-GRAPHS AND EULER PATHS

In this section we prove that the line-graph of a
graph which contains an Euler path also contains an Euler
path. Necessary and sufficient conditions are derived in

order that some repeated line-graph contain an Euler path.

Definition 6.1 A graph G without isolated vertices 1is

sald to contain an Euler path if there exists a cyclic
path in G contalning every edge of G, and every such cyclic

path is called an Euler path. A graph containing an Euler

path 1is called an Euler graph.

Definitions of a few other terms will be useful here.

Definition 6.2 A vertex 1is called even or odd according to

whether 1ts degree 1s an even or odd integer. An edge 1is

called even or odd depending on whether 1ts degree 1s even

or odd.

Euler graphs have been of interest to graph theorists,
both professionals and amateurs alike; however, the question
of whether a given graph 1s an Euler graph was answered by

Euler in the following way.

Theorem (Euler). A necessary and sufficient condition that
a nontrivial graph G be an Euler graph is that G be
50



51
connected and every vertex of G be even.

Lemma 6.1 Every edge of an Euler graph is even.
Proof. If E = (a, b) is an edge of an Euler graph,
then P(E) = P(a) + P(b) - 2 is even since P(a) and

P (b) are both even by Euler's theorem.
Q.E.D.

Theorem 6.2. The line-graph of an Euler graph is an Euler

graph.

Proof. Let G be an Euler graph and L(G) its line-
graph. The degree of a vertex in L(G) has the same value as
the degree of its corresponding edge in G by Lemma 4.2, which
is even by Lemma 6.1. Since G is connected, L(G) 1s connected;

hence, L(G) is an Euler graph by Euler's theorem.
QR.E.D.

Corollary 6.2.1 If G is an Euler graph, then {L"(G)}1is

an infinite sequence of Euler graphs.

Corollary 6.2.2 If G 1s an Euler graph which 1s not a

circuit, then L™(G) and L™(G), m # n, are nonisomorphic Euler
graphs.
Proof. This is simply a combination of Corollaries

4.10.1 and 6.2.1.
Q.E.D.

We now determine conditions for a graph G in order that
there exlsts a nonnegative integer k such that Lk(G) contains
an Euler path. The only possiblilities are given 1in the

following theorem.
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Theorem 6.3 Let G be a connected graph which is not an arc.

Then exactly one of the following four situations must occur:

(1) G is an Euler graph,

(11) L(G) is an Euler graph but G is not,

(1i1) L2(G) is an Euler graph but L(G) is not,
(iv) there exists no n =0 such that L"(G) is an
Euler graph?
where
(1) occurs if and only if every vertex of G is even,
(ii1) occurs if and only if every vertex of G 1is odd,
(iii) occurs if and only if every edge of G is odd, and

(iv) occurs otherwise.

Proof. Since G is connected and not an arc, the fact
that G 1s an Euler graph if and only if every vertex of G 1is
even 1s Just a restatement of Euler's theorem.

If every vertex of G 1s odd, then G cannot be an Euler
graph (again, by Euler's theorem), but every edge of G must
be even, so every vertex of L(G) is even; therefore, L(G) is
an Euler graph. Conversely, suppose L(G) is an Euler graph
but G is not. It follows, then, that every vertex of L(G),
and hence every edge of G, 1is even; thus, if E = (a, b) 1is
an edge in G, the number A(a) + A(b) - 2 is even. This
implies, of course, that P(a) + P(b) is even, or that the
two vertices incident with any edge of G are either both even
or both odd. Because G is not an Euler graph, though, there'

must be at least one edge in G incident with two odd vertices;
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call the edge F = (u, v). We must have all vertices of G odd
then, for if w is any vertex of G either w = v and w 1s odd,
or w # v and there is an arc P : (v, Vis Vps o+ e ey V1 W)
between v and w (since G 1s connected). However, since Vv 1is
odd, v, must also be odd (recalling that two vertices incident
with an edge must be of the same parity), but (vy, v,) is an
edge 1mplying that v, 1s odd, etc. Finally, we arrive at w,
which must be odd.

If every edge of G is odd, then every vertex of L(G)
is odd, and L(G) is not an Euler graph. If, however, every
vertex of L(G) 1s odd, then every edge of L(G) is even, so
every vertex of LQ(G) is even, and LQ(G) is an Euler graph.
Conversely, let G be a graph such that L2(G) is an Euler
graph but L(G) is not an Euler graph. Whereas L°(G) is an
Euler graph, the vertices of LE(G) are even, and the edges
of L(G) are even. Seeing that L(G) is not an Euler graph,
we can argue as 1in the preceding paragraph to conclude that
every vertex of L(G) 1s necessarily odd. From this 1t follows
that every edge of G 1is odd.

It remains to show that if (i), (ii), or (iii) is not
satisfied by a graph G, then there is no n =0 such that
L"(G) is an Euler graph. Let us assume, then, that G, L(G),
and L2(G) are not Euler graphs, but that there does exist an
n = 3 such that I"(G) is an Euler graph. Let m be the
smallest value of n for which Ln(G) is an Euler graph. Then

1f 0 €k <m, LX) is not an Euler graph. Let G = L™3(G);



54
then G1,L(G;), and L2(Gl) are not Euler graphs while L3(Gl)
is an Euler graph. Every vertex of L3(G1) is consequently
even, and by the arguments used in the two preceding para-
graphs, it follows that every vertex of L2(G1) is odd and
every edge of L(Gj) is odd. Because every edge of L(Gj) is
odd, each pair of adjacent vertices in L(G71) is of opposite
parity, but this means that every two adjacent edges in Gj
have opposite parity. No vertex in Gj can have degree
exceeding two, for 1f three edges of Gl had a common vertex,
then there would exist two adjacent edges of G; having the
same parity. Hence, Gl is either a circult or an arc; how-
ever, a circuit contains no odd edges, and G; cannot be an

arc by hypothesis. We have thus arrived at a contradiction,

and there can exist no such graph.
QR.-E.D.

We conclude this section with three corollaries to

the foregoing theorem.

Corollary 6.3.1 Let G be a connected graph which 1s not an

arc. A necessary and sufficient condition that there exist
a nonnegative integer N such that Ln(G) is an Euler graph for
all n =N 1s that every edge of G be of the same parity. If

such an N exlists, then N < 2.

Corollary 6.3.2 Let G be a graph such that Lk(G) is an

Euler graph, where k 2 3. Then for all n=2, L*(G) 1s an

Euler graph.
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Corollary 6.3.3 Let G be a graph, connected or not. A nec-

essary and sufficlent condition that there exists an n such
that L™(G) is an Euler graph is that G contain one component
which is not an arc and of which every edge has the same

parity while all other components are arcs.



SECTION 7

SEQUENTIAL GRAPHS; LINE-GRAPHS

AND HAMILTCON CIRCUITS

In this section 1t is shown that if a graph contains
a Hamilton circuit, then its line-graph also contains a
Hamilton circuit. In addition, necessary and sufficient
conditions are glven for a graph in order that 1ts line-
graph contain a Hamilton circult. The main result of this
section is that for nearly all connected graphs, some re-

peated line-graph must contain a Hamilton circuit.

Definition 7.1 A graph G 1s said to contain a Hamilton

clrcuit 1f there exlsts a circuit in G passing through every
vertex of G, and every such circuit is called a Hamilton
clrcuit. A graph containing a Hamilton circuilt 1s called a
Hamllton graph.

It follows directly from the definition that every
Hamlilton graph 1s connected, in fact, biconnected. In spite
of the strong similarities in the definitions of Euler graphs
and Hamilton graphs, the differences in the two are so great
that no useful characterization of Hamilton graphs has yet
been found. The independence of these two definitions 1is
illustrated in Figures 7.1 through 7.4, where all graphs are

of order eight and have twelve edges.

56
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Fig. 7.1 Fig. 7.2

Hamilton Neither Euler nor Hamilton

but not Euler

Flig. 7.3

Fig. 7.4
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If G is a connected graph which is regular of degree
two, then G is a Hamilton graph. This fact is trivial since
G 1s then a circuit; however, on the other extreme, 1f the
degrees of the vertices are large enough in comparison with
the order of the graph, then G must also contain a Hamilton

circuit. A well-known theorem of this type is the following.

Theorem of Dirac If G = G(V) is a graph of order n and

P (v) = n/2 for all v e V, then G is a Hamilton graph.

This result was slightly strengthened by Ore [1l1].

Theorem of Qre If G = G(V) is a graph of order n and

Py + Po = n, where /; and p, denote the two smallest
degrees in G, then G is a Hamilton graph.
We find the following definition of considerable use

to us 1in this section.

Definition 7.2 A graph G having m edges, where m = 3, 1is

called a sequential graph 1f the edges of G can be ordered

in such a way, say Eqg, E1, Ep, . o . 5, Ej_q, Em = Eo, that

the edges E1 and E1+1’ 1=0,1, . . . , m-1l, are adjacent.
Although a sequential graph has its edges arranged in

a certain cyclic order, this does not imply the existence of

circults, for the star graphs K, , n =3, are sequential

1,n
graphs. Two 1mportant classes of connected graphs, the Euler
graphs and the Hamilton graphs, are sequential graphs. We

verify these facts below.



59

Theorem 7.1 An Euler graph is a sequential graph.

Proof. If G is an Euler graph, then G has a cyclic
path P containing all the edges of G, say P : Eg, E1, Eop,

» Eq-15 Ep = E5, where Ey and E;,q are adjacent for

alli=0,1, . . ., m-1. Hence, G is sequential.
Q.E.D.
Theorem 7.2 A Hamilton graph is a sequential graph.
Proof. Let C = (apg, a1, ap, . . . ap-1, a8n = a,) be

a Hamilton circuit of the graph G. It is clear that every
edge of G Joins two vertices lying on C. In order to show

G 1s sequential, we must exhibit an ordering of the edges

of G which satisfies the property stated in Definition 7.2.
Begin the ordering of the edges of G with all edges incident
with ay not lying on C (there may be none). These may be
taken in any order and are clearly adjacent to one another.
We follow these with the edge (ag, a1) of C. The next edges
in the sequence are the edges incident with aj; which are not
in C (again, there may be none). Once again, they may be
permuted in any way among themselves. Thils 1s followed by
(a;, ap) and all edges incident with a, which are not on C
and which have not been previously considered. We continue
in this way until we finally arrive at the edge (a .1, ap)

= (ap-15 @p), which is adjacent to the first edge in the
sequence. It 1s now a routine matter to check that every
edse of G appears In the sequence once and only once and
that every two consecutive edges in the sequence are adjacent,

so G 1s a sequential graph.
Q.E.D.
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The chief reason for introducing sequential graphs is

the following theorem.

Theorem 7.3 A necessary and sufficient condition that the

line-graph L(G) of a graph G be a Hamilton graph is that G
be a sequential graph.

Proof. Let G be a sequential graph having m edges.
Then the edges can be ordered, say EO, El’ E2, e e e
Ep-15 Ep = Egs such that consecutive edges in the sequence
are adjacent. Let eg, €15 €os + + . 5, €p 15 €y = €9 be the
corresponding vertices in L(G). Since E; and E;,, are
adjacent for 1 =0, 1, . . . , m-1, (ei, ei+l> is an edge
in L(G) for 1 =0, 1, . . . ,m-1, and so C = (egy, €15 €p,

. s €p_1s ©p = €45) 1s a circuit in L(G) which contains

all vertices of L(G); hence, C is a Hamilton circuit of L(G),
and L(G) is a Hamlilton graph. |

Conversely, suppose the line-graph L(G) of the graph
G i1s a Hamllton graph. This means that there 1is a circuilt
C = (ags @15 + - « 5 @px-1s &n = 3y) in L(G) containing every
vertex of L(G). Let A_, Ay, . . ., A _1, Ay = A, be the
edges 1in G which correspond to the vertices ag, a;, . . . ,
a,_1s 8n = 2gy respectively. Consider the edges of G in the
order just given. Since (aji, aj, 1) 1s an edge of L(G) for

i=0,1, . . . ,n-1, Ai and A are adjacent for 1 = 0, 1,

i+1
. . , n-1, and therefore G is a sequential graph.

QR.E.D.
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Theorem 7.4 If G is a Hamilton graph, then L(G) 1is a

Hamilton graph.
Proof. If G is a Hamilton Zraph, then G is also a
sequential graph by Theorem 7.2. By Theorem 7.3, 1t then

follows that L(G) is a Hamilton graph.
Q.E'D.

Corollary 7.4.1 If G is a Hamllton graph, then LP(G) is

a Hamilton graph for all p =0.

Theorem 7.5 If G 1is a sequential graph, then L(G) 1is a

sequential graph.
Proof. By Theorem 7.3, if G 1s a sequential graph,
then L(G) is a Hamilton graph, and by Theorem 7.2, L(G) is

a sequentlal graph.
Q.E.D.

Theorem 7.6 If G is an Euler graph, then L(G) is an Euler

graph which contains a Hamlilton circuit.

Proof. By Theorem 6.2, if G is an Euler graph, then
L(G) is an Euler graph. However, by Theorem 7.1, G is also
a sequential graph, and so L(G) is a Hamilton graph.

Q.E.D.

As Theorem 7.4 indicates, if G is a graph having a
Hamilton circult, then L(G) has at least one Hamilton circuilt.
Although there are examples of Hamilton graphs (namely,
circuits) whose line-graphs have exactly one Hamilton circuilt,
for the most part, the line-graphs of such graphs contain
more than one Hamilton circuit. (Two Hamilton circults are

called different 1f there 1s at least one edge in one not in
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the other and vice versa). We shall obtain next a lower
bound for the number of Hamilton circuits in the line-graph
L(G) of a Hamilton graph G. To do this, we shall make use

of directed graphs.

Theorem 7.7 Let G = G(V), where V.= {vg, Vi, « . . ,

Vn-1} » be a Hamilton graph of order n, and let C be a

fixed Hamilton circuit of G. Assume G has d diagnoals so

that G has m = n + d edges. Let S denote the set of the od
directions for G obtained by directing all edges of C in one
of the two possible cyclic manners and directing the diagonals
in an arbitrary manner. For each s € S let /%S (v) denote
the number of outgoing edges at v when the edges of G are
directed according to s. It then follows that the number of
Hamilton circuits in L(G), denoted by HC (L(G)), satisfies

the following inequality:

-1
HC (L(G)) = 2. {r"lrr [( /"Os(vj) - 1) ! J}

s € S J:O

-1
= 2d { min r_i_r [ (/DOS(VJ) -1) ! ]}

s&€ S J=o
= o4,

Proof. First, we notice that for any s € S and every
vertex v in G, f%s(v) = 1, since there 1s a circuit edge
of C which 1s 1ncldent wlth v and directed away from v. A
Hamilton circuit in L(G) 1is produced from each sequence of

all the edges of G which can be constructed so that consecu-

tive edges 1in the sequence are adjacent as well as the first
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and last edges in the sequence being adjacent. Two sequences
will be called different if there exist two edges which are
consecutive (or first and last) in one sequence but are not
consecutive in the other sequence. Two such "different'" se-
quences in G correspond to two different Hamilton circuits

in L(G). We now derive the first inequallity given in the
conclusion of the theorem, the others following directly
from the first. Let C = (vg, vy, . . . , Vv, = Vy), and let
s be a fixed direction in the set S. The /zs (VJ) -1
outgoling edges at V3 not lying on C may be permuted in

( fzs (vj) - 1) ! ways, so as we proceed around C in a
fashion similar to that in the proof of Theorem 7.2--only
this time considering only outgolng edges--we see that

q:# [( f%s (VJ) - 1) !] different sequences are obtained,
gggh one satisfying the property required of sequentilal
graphs. Since we may do thils for each s € S obtaining se-

quences not previously encountered, we arrive at the first

inequality.
Q.E.D.

Although the first 1nequality in the preceding theorem
can easily be seen to be an equality in the case where a
Hamilton graph G contains only a s.ngle Hamilton circult, 1if
1t should occur that G contains two or more Hamilton circuilts,
the procedure employed in Theorem 7.7 may be used for each
Hamilton circuit, thereby obtaining a strict inequality.
Since duplication of previous sequences may arise when using

different Hamllton circults of G, the lower bound in the first
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inequality of Theorem 7.7 cannot be replaced by summing
this expression for the bound over all Hamilton circults
in G.
It 1s a straightforward problem to show that 1if C is
a Hamilton circult in a graph G such that G contains at
least one dilagonal, then the number of diagonals in the
graphs in the sequence { Ln(G)} of Hamilton graphs forms
a strictly increasing sequence. Combining this property with
the last inequality involved in the conclusion of Theorem 7.7,

we are led directly to a corollary.

Corollary 7.7.1 Let G be a Hamilton graph containing at

least one diagonal. Then 1lim [ HC (L™(G) ] = o0 .
N— s oo
Before presenting the main theorem of this section,

we state two lemmas.

Lemma 7.8 If G 1s a graph containing a circuit C such that
every edge of G is 1incident with at least one vertex on C,
then L(G) 1s a Hamilton graph.

Proof. We show that the graph G having the properties
stated in the lemma 1s sequential. To produce the desired
ordering of the edges of G we use the same procedure as that
employed in the proof of Theorem 7.2 except that after con-
sidering the diagonals at a given vertex of C, we 1insert in
the sequence all edges whi:h are incident with that vertex
but with no other vertex of C and follow these edges, as

before, by the appropriate circult edge of C and continue 1n
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this way. The sequence of edges of G so produced 1s seen
to have the desired properties, and G is sequential. The

result now follows by Theorem 7.3.

QR.E.D.
Lemma 7.9 Iet G be a graph consisting of the section graph
[C] of a circuit C and m arcs P1, Pp, . . . , P, where each

arc has preclsely one endpoint iIn common with C while for

1 #4173, Py

1 and Pj are disjoint except possibly having an

endpoint in common 1f it is also common to C. If M 1is the
maximum of the lengths of the arcs Pj, then L°(G) is a
Hamilton graph for all p = M.

Proof. It is easily observed that L(G) has the same
properties as G except that the lengths of the m resulting
arcs will have decreased by one so that the maximum length
among the remaining arcs is M-1 and that LM(G) consists of
a section graph of a circuit (hence is a Hamilton graph), and
LP(G) 1s a Hamilton graph for all p =M by Corollary 7.4.1.

Q-E.D.

Theorem 7.10 If G 1s a connected graph of order n which

1s not an arc (then necessarily n = 3), then LP(G) 1is a
Hamilton graph for every p = n-3.

Proof. We proceed by induction on n. Later develop-
ments in the proof make it necessary for us to investigate
the graphs having order 3, 4, or 5. We do this now. The
only connected graph of order 3 which is not an arc 1is the
trilangle, and this 1s already a Hamilton graph, so the result

follows (with the aid of Corollary T7.4.1). For n = 4, there
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are only two connected graphs which are not arcs and which
are not already Hamllton graphs. These graphs are shown 1in

Figure 7.5.

Gyt Gypt

Figure 7.5

We readily see that L(G,,) and L(Gy,) are both Hamilton
graphs, and the result 1s established for n = 4. There are
twelve connected graphs of order 5 which are not arcs and
which do not already contain Hamilton c¢ircults. These are
presented in Figure 7.6. It 1s then a routine matter to

%

verify that L ) and L2(G52) contain Hamilton circuits

G51
and that L(G5i), i=23,4, . . . , 12, contain Hamilton
circults. Thils establishes the theorem for the case when
n = 5.

Let us assume then that for all connected graphs G'
which are not arcs and which have order s, where s < n and

n =6, LP(G') 1s a Hamilton graph for every p =s - 3. Let

G be a connected graph of order n which 1s other than an arc.
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G5 10:

G53: X G54: ; G55: % G56:
Go7 $ Gog: $ G59‘é

G5,ll: G5,12:

Figure 7.6
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n—
We shall show that L 3(G) is a Hamilton graph which, with

the use of Corollary 7.4.1, will provide a proof of the
theorem.

The theorem is clearly true if G is a circuit, so,
wlthout any loss 1n generality, we may assume that G is
not a circult and that G contalns at least one vertex v of
degree three or more. Let H denote the subgraph of G con-
sisting of v and those edges of G which are incident with v.
We denote the vertex set of G by V and let U =V - {v}.
Denote the section graph G(U) of G by Q. We then can write
G =H + Q, where H and Q are edge disjoint. (If G is a
star graph, then Q consists only of isolated vertices.) Let

the connected components of Q be denoted by Gy, Gp, « . .

Gy, where Gi’ i=1, 2, . . . , k, is of order ny . Then
Kk
i=1

If Gy 1s an arc, then Lni(Gi) is an empty set while
if Gi{ 1s other than an arc, then Lp(Gi), for p = ny - 3,
contains a Hamilton circult by the inductive hypothesis.

The line-graph Hy = L(H) of H is a complete subgraph
of L(G) which, considered as a graph by itself, contains a
Hamilton circult. Let Jq denote the subgraph of L(G) con-
sisting of H; and all the "cross edges" from H, to the
I(Gy), 1 =1, 2, . . . , k. Therefore, L(G) can be expressed
as the edge direct sum J; + L(Gy) + L(Go) + . . . + L(Gy),
where for 1 # j, L(Gy) and L(GJ) are disjoint. Observe that

any arc joilning a vertex of L(Gi) to a vertex of L(GJ) must
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necessarily contain at least twoedges of Jj. Let H2 = L(Jl)

and let J, denote the subgraph of L2(G) consisting of H, and

2 2
all the cross edges from Ho to the L2(Gi), i=1,2, ...,
k. Then L2(G) = J, + L2(Gy) + L2(Gp) + . . . + L2(Gy). Since

J1 satisfies the hypotheses of Lemma 7.8, Hy, contains a
Hamilton circulit. In general, let I denote the subgraph of
Lm(G) consisting of Hp plus all the cross edges joinilng Hm
to the L™(Gy), and let Hy 1 = L(J,). L™(G) can then be
expressed as the edge direct sum J, + L™(Gy) + L™(Gp) + .
+ L™(Gyg). By Lemma 7.8, it also follows that H_ (considered
as a graph itself) contains a Hamilton circuit.

We now consider two cases.

Case 1. Suppose the components Gq, Gg, e« o 5 Gy of
Q are all arcs (which includes the possibility of isolated
vertices). If the number of components k 1s at least three,
then no ny can exceed n - 3, and Ln-3(G) = Hp-3, which con-
tains a Hamllton circult. If k = 2 and the orders of G; and
Go do not exceed n - 3, then, as before, Ln_3(G) = Hp-3. If,
on the other hand, k = 2, and one component, say Gl’ has
order n - 2 while Gp 1s an 1solated vertex, then H and Gj
have at least two vertices in common, and G consists of a
section graph of a circult and j palrwise disjoint arcs,
1 €3 < 3, each having precisely one endpoint in common
with the circuit. Since none of these arcs has length ex-
ceeding n - 4, 1t follows by Lemma 7.9 that Ln_u(G) (and so

also Ln-3(G)) contains a Hamilton circuit.
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If k = 1, then Q 1s an arc G1 having at least three
vertlices 1In common with H so that G consists of a section
graph of a circult and j palrwise disjoint arcs, 0 < j < 2,
each arc having exactly one endpoint in common with the
cilrcuit. If J =0, G contains a Hamilton circuit while 1if
J >0, no arc extending from the aforementioned circuit can
have length exceeding n - 4, and by Lemma 7.9, L ) (G) con-
tains a Hamilton circuit as does Ln°3(G).

Case 2. Assume the first £ components, 1 ¢ J < k,

of Gy, Gpo, . . ., Gy are not arcs. Clearly, each of the

components Gy, Gpo, « . . , Gﬁ must have order at least three.
/

1f <k, then Gyoy, Ggips - « . , G are arcs, each having

an order not exceeding n - 4, so LP"H(G) = Jn-4 + Ln-A(Gl) +
R LN_A(GZ). Since each Gy, 1 =1, 2, . . . , £, has
order not exceeding n - 1, the subgraphs Ln_u(Gi), considered
as graphs, each contalns a Hamlilton circult by the 1nductilve
hypothesls. There 1s clearly at least one edge from Hn-5 to
each of the subgraphs Ln-5(Gl), . e e Ln'S(G-Q). We next
show that there 1s at least one cross edge from Hn—S adjacent
to at least two edges of L'"2(Gy) for each 1 =1, 2, . . . , 4.
If £=1, then Gy 1s the only component of Q which is
not an arc. If k > 1, Gy has order at most n - 2, so
Ln—5(G1) contains a Hamilton circuit and clearly such a cross
edge exists. If k = 1, then Q = G, and all edges of H are
Incident with vertices of Gj. Since a cross edge to a sub-

graph which 1s not an arc results 1in one or more new cross

edges 1In the following line-graph, there are at least three
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cross edges from Hy_g to L"=5(Gy). If no such cross edge
were adjacent to at least two edges of Ln'5(Gl), then

clearly each of the three or more cross edges 1s adjacent

to precisely one edge of Ln'5(Gl). This implies that
Ln-5(G1) contains three or more separating edges, which
implies, by Corollary 4.13.3, that Gy contains three arcs,
each having n - 4 separating edges, meaning that Gj; contains
at least 3(n-4) + 1 vertices, but forn = 6, 3(n-4) +1 > n-1
contradicting the order of G;.

Suppose 4>1, i.e., suppose Q contains two or more
components which are not arcs. Therefore, G; and G, are
not arcs and have orders at most n - 4. If there is a cross
edge from Hy.g adjacent to only one edge of Ln-5(G1), say,
then LP"2(G1) contains a separating edge, and by Corollary
4.13.3, G, must contaln an arc of n - L separating edges
which contradicts the order of G;.

We can thus conclude that there exlsts a cross edge
from Hy_g to Ln-S(Gi) adjacent to two edged of Ln—B(Gi) for
each 1 =1, 2, . . ., ﬁ . This implies that for each 1 = 1,
25 « o o L , there is a vertex ujy in Ho_y adJacent to both
endpoints of an edge 1in Ln-u(Gi).

We now claim that Ln-u(G) is a sequential graph so
that L""3(G) contains a Hamilton circuit. To show this we
order the edges of Ln'u(G) as follows. Since H__, itself
contains a Hamilton circult C, we start at some vertex v of

C. If the vertex v 1s not one of the uj, we begin with the



72

dilagonals of C at v, the edges incident with v but with no
other vertex on C, and then take an edge of C incident with
v leading us to a new vertex of C. We continue with this
method, proceedling around C, until one of the vertices us is
encountered. At such a vertex uj, we begin with the
diagonals of C at ujy not previously taken (as before), all
the edges 1incident with uy but incident with no other
vertex on C except those two edges previously singled out,

say Ej; and E, _ , which lead to the endpoints of an edge Fi

i2

n-M(Gi). Next, take Ejj, say, leading us into Ln'u(Gi),

in L
which, by the inductive hypothesls, contains a Hamilton cir-
cult Ciy. If Fy is on Ci, we proceed around Cy 1n the
customary way (i.e., taking diagonals and a circult edge of
Cy in that order), taking Fy last and then taking Ej, back to
uj. If Fy 1s not on Cy, 1l.e., 1f Fy 1s a diagonal of Cj,
then as we proceed around Cy, leave out Fy until all other
edges 1in Ln—u(Gi) have been taken, then take Fy, and then

Eip back to uy on C. We then continue around C following

one of the two procedures outlined depending on whether the
vertex encountered 1s or 1s not one of the uj. It 1s easlily
seen that the sequence has the properties necessary for

Ln-u(G) to be a sequential graph.

Q.E.D.
The preceding theorem now permits us to make the

followlng definition.

Definition 7.3 Let G be a connected graph which 1s not an

arc. The Hamilton index of G, denoted by h(G), 1s the
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smallest nonegative integer p such that LP(G) contains a

Hamilton circuit.

We can now restate Theorem 7.10 in the followlng way:

If G is a connected graph of order n which is not an arc,

then h(G) exists and h(G) < n-3.

To show that the bound given in Theorem 7.10 cannot

be improved, we note that for every n = 3, there are graphs

whose Hamilton 1ndex is n - 3.

The graphs Gi and Gp shown

in Figure 7.7 have Hamilton indices n - 3.

. . . . n
* * * » » enzu,
2/
1
G. 3 LI' 5 . . . . n
2 > » * . -~ >~— 4 n 5 3
e
Figure 7.7

We conclude this sectlion with a conJecture.

Conjecture. Let G be a connected graph of order n, n = 4,

containing a vertex v with pP(v)

Then h(G) < n - r.

= r, where 3 < r < n - 1.



SECTION 8

TRIANGLE RELATIONS IN REPEATED

LINE-GRAPHS OF REGULAR GRAPHS

In this section we 1investigate some numerical results
concerning the number of vertices and edges 1in repeated
line-graphs of arbiltrary regular graphs having degree r,
where r > 2, as well as some related triangle relations in
such graphs. We show that in spite of the ever-increasing
maze of edges which appears in repeated line-graphs of such
graphs G, the more probable it becomes as n approaches
infinity that if three vertices are selected at random from
L'(G), no two of the three vertices will be adjacent.

Let G, be an arbltrary regular graph of degree ro, > 2
having n, vertlices, my edges, and T3o triangles. Let
G1 = L(Gy) and, 1in general, define G; 1 = L(Gy) = Li+l(Go)
for each 1 =0, 1, 2, . . . . As we proved in Section 4,
each Gy 1s regular. To fix the notation, let Gy be of order
ny and regular of degree rj having m; edges and Téi triangles.
For the graph Gi+1 the following relations are a direct
consequence of Theorems 4.1 and 4.4,

(1) nyq =my

(2) ry,, =2 (ri—l)

ni(gi)

Il

(3) myy)

T4
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i+l 1 ry
(4) T3 = T3 + ni (3 ).

We introduce the even integers Qi+l’ i=20,1, 2,

, by means of the following equation.
2

(5) Q341 = nyy1 Ty
We find it useful to repeat a result of Tneorem 4.4
here which was derived using mathematical induction and (2).
(6) ry =2l(r,-2) + 2.
Because of the fact that
(7) 2my =03 Ty
it follows by (1) and (2) that
(8) myy1 = (ry-1) my ,
and by repeated application of (8), we find, using (6), that
“

1 1
(9) my,q = mg ;:L (ry-1) = mg TT [2%(r-2) + 1].

k=0

Lemma 8.1 Qy.) =my ) Tyy) =My + My o

Proof. By (5) and (7), it follows that Qiy1 = My 1Tq47-

Rewrlting, Qg1 = my q + myq(ry q-1) = my , + My, by (3).

QR.E.D.
We define the quantity Ai’ i=0,1, 2, . . . , as
follows.
i
Lemma 8.2 Ay = Ay, l.e., Ay is independent of 1.
Proof. By (10) we have
i+1
(1) Ay = 6 T3 T Myyo
1 ri
(11) =6 T37 +6ny (37) - myyp - Mmyyy + My

by (4) and by subtraction and addition of my,,. By (10)

again, 1t follows that
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(111) Ay = Ay + 6ny (31) + my g - myys

r
(1v) Ay +ny (1) - 2 (ry-2) + My - My

ite

It 1s now sufficient to show that (iv) has the value Aj.
By (3) and (2), myy; = ny (31) and 2 (r3-2) = 2(r;-1) -

2 =ry,q7 - 2 so that (iv) can now be written as

(v) Ay +myyy (rypq - 2) + Mi1 ~ Myip

= Ay +myy vy - (myy +my o) = Ay

by Lemma 8.1. Q.E.D.

Corollary 8.2.1 6T3i = my ., + A

In any graph the section graph determined by three

vertices may consist of three edges (thereby resulting in
a triangle) two edges, one edge, or no edges at all.
Using the terminology originated by Nordhaus and Stewart
[10], we say that a subgraph consisting of three vertices
and the J edges, J =0, 1, 2, 3, which they determlne 1s a

triangle of type Ei' A triangle of type T3 is simply a

triangle while a triangle of type To is a subgraph consist-

ing of three 1solated vertices, i.e., an "empty" triangle.
i

We denote the number of trilangles of type TJ in Gy by TJ
Since any three vertices 1In Gi determine a triangle

of type To, T T,, or T3, it follows that:

l)

1 i 1 i ny
11) T- + T + T + T = s
(1) 7t et e gt e nt < (OY), or
i i i 1
T
(12) o T1 Tp T3 = 1

CONCIRNCTIIANGS
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We state two relations given in [10], which may

readlily be derived from elementary considerations:

(13) Tt 431t - -my

i
1+2Qi‘min-.

1
(14) 3737 = T :

Eliminating T3i

i i
+ T2 = (ni-l) my - Ql

in (13) and (14), we obtain

(15) T,

Lemma 8.3 2 Tob = my,; - A

Proof. From (13), we have

i
3

I

2Tyt =2Q  -2m -6T

= 2(my + myy1) - 2my - (myyy + Ag)

= mj4] - Ag
by Lemma 8.1 and Corollary 8.2.1.
Q.E.D.
It 1is now possible to compute Tli and Toi using

Corollary 8.2.1 and equations (14) and (11); however, in
order to conslder limiting cases 1t is convenient to obtainex-

plicit expressions for these values.

Lemma 8.4 2Tli = Ao + 2my_1 my - Mmi - 3my 4

Proof. From (15) we can write

1

2T " = 2(ni—l) my - 2Qy - 2T,

From (1) and Lemma 8.1, it follows that

1 i

2717 = 2(my_1-1) my - 2(my + my_ q) - 2T,

- - - i
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and by Lemme 8.3, we have

i - - - -

+ 2 - 4m, - .
fo ¥ Bl My T A T My Q.E.D.

i ny
Lemma 8.5 6 TO =6 (3 ) - 6mi‘l mi + 12mi + 5mi+1 - AO.
Proof. By (11) we have

61t -6 (31)-6r1

i i i
5 -6 1, -6 11

1 2 3

n.:
(37) -3 (g +2my g my - bmy -3 m,))

(myq = Ag) = (my ) +AJ)

!
A W [0

Ne
(1) -6 m_, my +12my + 5my g - Ag

3 1M

by Lemmas 8.3 and 8.4 and Corollary 8.2.1.
QR.E.D.

It is convenlent to introduce the numbers z; ,

1=0,1, 2, . . . , by the equation:
m - .
(16) Zi = —i = (I"i_l l) mi‘l = mi_l
Ty E(Pi-l - 1) 2

From (9) and the fact that r, > 2, 1t follows that:

(17) 1im zy =o0

i—=>co

Lemma 8.6 lim ry

i —0c0

- = 0.
21

Proof. By (2) and (3), we can write

Ei _ 8 (l-l/ri_l)
z4 ni-1
and so 1im Xt - o. Q.E.D.

100 24
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Lemma 8.7 (ni) = 2z, (22i - 1) (zy -1) /3.

Proof. (gi) = n;(ny-1) (ny-2) /6, and from (7),

ni = 2mi s
ri
ni" l = 2mi - rl 3
ri
ni_ 2 — 2 (mi-r'i) ,
Ty
so then
n
=2z (2zy - 1) (zy - 1) /3 Q-E.D

We are now in a position to present one of the main

results of thils section.

i i
Theorem 8.8 lim T lim T T 1
n 1= n -
(31) (1) g
N 3 3 3
lim To =1
1w (51
3

Proof. By Corollary 8.2.1 and Lemma 8.7, we have

i
13.1210 3 lnm T+l * Ao
(gi) 1—eo uzi(QZi-l)(zi-l)

lim (ry -1) my + Ag

tweo Thzy(2z-1) (z1-1) 8)

1im (ri/z1) (ry1/z21-1/z1) + Ao/zi3

T imeo I (2 - 1/z1) (1 - 1/z1)

= 0

by (17) and Lemma 8.6.
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With regard to i}fﬁl To , we can first use
n
(31)

Corollary 8.2.1 and Lemma 8.3 to eliminate m;,, and write

i 1 _
T2 =3 T3 Ao
so that
i
EET =3 - e ,

and by Corollary 8.2.1, it follows that

1im Tgi
i—+00 —— = 3.
T i
3
Hence,
i i i
1im T2© _ 1im T2 o 1im T3 -0
i =00 N i—»>co i i —~o0 n
(31) T3 (3i)

With the aid of Lemma 8.4, we have

1
1im 2 Tp 1im Ao 1im 2my_ymy  11p 4my o 3yn 3Mig)

1200 =i-oc ) T {-»oo

- j—>oe

ni _;1_ ni ni ni
(3) (3%) (3%) (3%) (3%)
A
1lim o = 0.
Clearly, -
L= (5
1im 2M-1 ™ | g4p 12z4 my by (16)
_ lim 6 my _ lim 6ri/2;
iwea (2z3-1)(z-1) I>eo “(2l1/2) (1-1/7)
Now,
Um ou 717 - oup
lim 1 - lim 3 0 = 0,

P gy e (5%)
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and

lim  3M+1 _ 1im 18 T3 - 3 A,
1> 00 i w00

(21) (31)

with the aid of Corollary 8.2.1 and the first part of this

theorem; therefore,

i
lim Ty

1—-)00 = o.

(519)

By (12) it now follows immediately that

11 Tt

m

1> 0o 2 = 1. Q.E.D.
(31)

Theorem 8.8 says, then, that for large 1, Gy resembles
an empty graph in the sense that nearly all triangles are
empty triangles despite the fact that the orders of the com-
plete subgraphs of G; become unbounded as 1 approaches

infinity.



SECTION 9

MISCELLANEOUS RESULTS ON LINE-GRAPHS

The purpose of thils concluding section is to present
a few results dealing with line-graphs and some specilal
types of graphs, namely, trees, bipartite graphs, and planar

and nonplanar graph.

I. Trees and Line-Graphs

The line-graph of a graph containing vertices of
degree three or more clearly contains triangles. The only
graphs not having such vertices are arcs and clrcults. We
have already seen that the line-graph of an arc 1s an arc
(and 1is therefore a tree) while the line-graph of a circuit
is an 1somorphic circuit. This leads us at once to the

following.

Theorem 9.1 The only line-graphs which are trees are the

arcs.

Definition 9.1 A connected graph in which every block 1s

elther a single edge or a single circuit i1s called a Husimi
tree.

A concept related to the Husimi tree (see [7]) 1s the
following, whose connection with trees and line-graphs will
be evident shortly.

82
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Definition 9.2 A connected graph in which every block 1s

a complete graph 1s called a completed Husimi tree.

The next definition and theorem are due to Harary [4].

Definitlon 9.3 With every graph G there 1s assoclated a

graph B(G), called the block-graph of G, whose vertex set

can be put 1In one-to-one correspondence with the blocks of
G in such a way that two vertices of B(G) are joined by an
edge 1if and only if the corresponding blocks of G have a
(separating) vertex in common.

Unlike line-graphs, there is no '"near'" one-to-one
correspondence between graphs and block-graphs. We shall
see, however, that there 1s a one-to-one correspondence
between trees and certaln types of block-graphs. We state

the aforementloned result of Harary using our terminology.

Theorem of Harary A necessary and suffliclent condition

that a graph be a block-graph 1s that it be a completed

Husimi tree.

Theorem 9.2 A necessary and sufficient condltion that a

graph be the line-graph of a tree 1s that it be a completed
Husimi tree 1n which all vertices have connective index at
most two.

Proof. If G is a tree, then the line-graph L(G) and
the block-graph B(G) are clearly isomorphic since the blocks
of G are simply the edges of G. Harary's theorem then impliles

that L(G) 1s a completed Husimi tree. That the connective
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indices of the vertices in L(G) are at most two follows
since L(G) 1s a line-graph.

Conversely, let H be a completed Husimi tree, all
of whose vertices have connective index one or two. By
Krausz' theorem, there exists a graph G such that L(G) = H.
We shall show that G can be taken to be a tree. If G were
not a tree, then G would contain a circuit. If G consists
only of a circuit, then L(G) is an isomorphic circuit.
Since L(G) is a completed Husimi tree, L(G) is a triangle,
and we can take G to be K1,3, which is a tree. If G con-
slsts of more than a circuit, then it 1s easily seen that G
contains an edge E adjacent to two edges of a circult C in
G but not adjacent to some edge F of C. The corresponding
vertices e and f of L(G) must lie on a circuilt of L(G), and
they are not adjacent. This contradicts the fact that L(G)
1s a completed Husimi tree.

Q.E.D.

II. Bipartite Graphs and Line-Graphs

As already mentioned, Moon (with the aid of Hoffman)
has characterized the line-graph of nearly all complete bi-
graphs. The problem of dealing with the line-graphs of bi-
graphs 1n general does not seem to be particularly easy. We
next determine the class of all connected bipartite line-
graphs. The proof of the theorem which we shall give depends
heavily on the followling well-known theorem whilch can be

found in Ore [11].
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Theorem. A graph G 1s a bigraph 1f and only if all circults

contalned in G are of even length.

Theorem 9.3 The only connected bipartite line-graphs are

arcs and cilrcults of even length.

Proof. Let G be a connected graph and L(G) a bigraph.
If G contalns a vertex of degree three or more, then L(G)
contains a triangle, and by the previous theorem, L(G) is
not bipartite. Thus, G 1s either an arc or a circuit. If
G is an arc, then L(G) 1s an arc, thus contains no circults
of any kind and 1s a bigraph. If G is a circuit, then L(G)
is an isomorphic circuit, so L(G) will be bipartite if and
only 1f G is a circult of even length.

Q.E.D.

III. Planar and Nonplanar Graphs and Line-Graphs

One of the most 1mportant concepts in all of graph

theory 1s that of the planar graph.

Definition 9.4 A graph 1s called planar if 1t can be drawn

in the plane in such a way that no two of 1ts edges inter-
sect except at a vertex.

A result of Kuratowskl which may very well be termed
"the fundamental theorem" of topological graph theory com-
pletely determines whether a graph is planar (see, for
example, Harary [5]). One more definition 1s required before

stating this result.
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Definition 9.5 Two graphs are homeomorphic if it is

posslible to insert new vertices of degree two into thelr
edges 1n such a way that the two resulting graphs are

isomorphic.

Theorem of Kuratowski A graph G 1is planar if and only

if 1t has no subgraph homeomorphic to the complete graph
K5 or the complete bigraph K3’3.

If G is planar, it 1s quickly seen, by examples, that
L(G) may or may not be planar. If G has a vertex of degree
five or more, then certainly L(G) is nonplanar since L(G)
contains the subgraph K5. However, planar graphs exist in
which every vertex has degree less than five but whose line-
graph 1s nonplanar. What conditions must be placed on a
planar graph in order to assure that 1ts line-graph be planar
also 1s, at present, not clear. We do present, however, the

following result.

Theorem 9.4 The line-graph of a nonplanar graph 1is non-

planar.
Proof. Let G be a nonplanar graph. Then elther G
contains K. or K3

5
phic to K5 or K3 3 We shall show that under any circum-

3 as a subgraph or some subgraph homeomor-
3
stance, L(G) contalns a subgraph homeomorphic to K3 3 and
hence 1s nonplanar by the Theorem of Kuratowski.

If G contalns the subgraph K5, then let us denote the

vertices of K5 by 1, 2, 3, 4, and 5, and the edges by Eij’
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where Eij Jolns vertex 1 to vertex j, 1 < j. Let eij denote
the vertex in L(G) corresponding to Eij‘ The following graph

1s then seen to be a subgraph of L(G).

eq1p €1y €25
613

€35
el €15 eys

Figure 9.1

This subgraph H 1s homeomorphic to K3,3. Suppose that G
does not contailn K5 as a subgraph but only a subgraph homeo-
morphic to it. Then thils subgraph differs from K5 only 1in
that 1t has additional vertices of degree two inserted in
the edges. Suppose that G contains a subgraph homeomorphic
to K5 having only one more vertex than K5. If the additional
vertex 1s 1nserted 1in an edge of K5 whose corresponding
vertex 1is not in H, then H is a subgraph of L(G) in this
case also. Suppose, however, that the vertex k 1s placed

in the edge EiJ in K5 and that the corresponding vertex eij
1s a vertex of H. If the degree of eij in H is two, then
let EiJ now denote the edge which joins vertex 1 and vertex
k and let Ejk be the edge Jjolning vertex k and vertex jJ.

If we now place the corresponding vertex ejk of L(G) 1n the
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appropriate edge of H, we obtaln a subgraph of L(G) which
1s homeomorphic to H and to K3’3. If, on the other hand,
the degree of 13 in H is three, we proceed somewhat dif-
ferently. We observe that 1in H’eij is elther adjacent to
exactly one vertex of the type €1ip (or epi) or adjacent to
exactly one vertex of the type ® g (or eqj)‘ (For example,
in the case of the vertex ejy, 1 =1 and j = 4, and eqy) 1s

15 130
1s adjacent to exactly one vertex of the type

adjacent to e but adjacent to neither €)1, nor e

Assume eij

eip, say ejp (or ey, 1f r < 1). Now 1f the vertex k is

inserted 1in the edge Eij of K we let Eij denote the edge

5
Joining vertex 1 and vertex k, and we let Ejk denote the
edge Joining vertex k and vertex Jj. It 1s now seen that
L(G) contains a subgraph which differs from H only by the
addition of a vertex of degree two in the edge Jjoining eij

and ey,. Thils subgraph is homeomorphic to K If addi-

3,3°
tional vertices of degree two are now inserted in the edges
of K5, 1t 1s possible to continue the above procedure, each
time arriving at a subgraph of L(G) which 1s homeomorphic

to K3,3.

Should G actually contain K3,3 as a subgraph then the
vertex set U of this subgraph can be expressed as U = U'UU",
where U' = {1, 2, 3} and U" = {4, 5, 6‘} and where Ejj,
1 € U', J eU", denotes the edge joining vertex i and
vertex J. Let ejy be the corresponding vertex in L(G). A

subgraph of.L(G) is shown 1in Figure 9.2.
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€14 e35 eos eog
% N\
"15 €16 e24

Figure 9.2

This subgraph 1s homeomorphic to K3’3. If G contalns only
a subgraph homeomorphic to K3,3, then the graph of Figure
9.2 has the desirable properties which allow us to proceed
in a completely analogous way to that in the preceding case
to show L(G) must have a subgraph homeomorphic to K3,3.
Q.E.D.
We conclude this topic, this section, and thils thesis
with a conjecture after giving a definition (see [1]) and a

remark.

Definition 9.6  The thickness t(G) of a graph G having at

least one edge 1s the minimum number of palrwise edge dis-
Joint planar subgraphs of G whose sum 1s G.
Theorem 9.4 may now be stated as follows: If t(G)=Z2,

then t(L(G)) = 2.

Conjecture. If t(G) = n, then t(L(G)) = n.
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