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ABSTRACT

A MODEL OF THE HUMAN UPPER EXTREMITY

AND ITS APPLICATION TO A BASEBALL

PITCHING MOTION

By

Byeong Hwa Ahn

The purposes of the study were to create a mathematical

model of the human upper extremity and to apply the model to

the acceleration phase of the fast baseball pitching motion.

Angular trajectories at the elbow and wrist joints in the

fast baseball pitching were generated experimentally by a

three-dimensional cinematographic technique and

theoretically by simulation and optimization techniques.

The mathematical model was applied to generate

a) angular trajectories that closely matched the

experimental trajectories at the elbow and wrist joint and

b) optimal angular trajectories that maximize the velocity

of the hand at the release of the ball. The mathematical

model was also used to investigate the roles of elbow and

wrist joint muscles in baseball pitching.

The model of the human upper extremity, created in this

study was considered to closely simulate the experimental

angular trajectories at the elbow and wrist joint in the

pitching motion.



The hand velocity at the release of the ball was

approximately 80 percent of the experimental result when the

resultant elbow joint torque was set to zero, approximately

95 percent of the experimental result when the resultant

wrist joint torque was set to zero, and approximately 75

percent of the experimental result when both the resultant

elbow and wrist joint torques were set to zero.

Velocity of the ball at release in pitching was

primarily generated by body parts other than the upper

extremity. Therefore, the optimal angular trajectory of

the pitching arm that can be obtained from simulation and/or

optimization is not the true optimal angular trajectory

unless the motion of the other body parts is optimal.



Dedicated to my mom and dad who modeled for me

the importance of hardwork toward

a far-reaching goal.
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CHAPTER I

INTRODUCTION

Biomechanics is the application of mechanics to biology

(Fung, 1981). Biomechanics as an area common to

mechanics, materials, physical medicine, orthopaedic

surgery, dentistry, prosthetics, rehabilitation, injury

prevention, ergonomics, sports, and others is interwoven and

thus difficult to define (Fung, 1972; Huiskes, 1982).

It is colored differently by its many fields of

application and the backgrounds of its disciplinaries.

It partly overlaps sciences such as biomaterials,

medical physics and biophysics, physiology, and

functional anatomy. It can be regarded as a sub-

branch of biomedical engineering (or bioengineering)

and a branch of biomechanical engineering. What

biomechanics is or becomes depends on the spirits and

efforts of those who sail under its flag, rather than a

rigid application of definitions. (Huiskes, 1982,

p. ix)

Biomechanics applied to the analysis of gross human

motions such as walking, running, and sports activities can

be studied by the principle of rigid-body dynamics, that is

typically solved by the inverse dynamics or direct dynamics

approach (Crowninshield, 1980: King, 1984). The inverse

dynamics problem computes resultant muscular forces and

moments from observed kinematics and/or measured external

forces (Zatsiorsky, 1978; Crowninshield and Brand, 1980;

Zajac and Gordon, 1989). This inverse dynamics problem

1



2

has been applied extensively to the study of sports skills

since the studies of Plagenhoef (1966, 1968, 1971) and

Dillman (1970, 1971). The application of this inverse

dynamics approach to sport motions, however, has a serious

drawback. It is descriptive. It analyzes only existing

movement patterns because the input is the data that are

recorded from existing motions.

The direct dynamics approach computes kinematics, with

muscular forces or moments prescribed. It is predictive.

The predictive approach of modeling is stronger or better

than the descriptive approach since it is especially useful

for identifying and examining causal factors influencing

human performance and finding the best movement pattern

(Redfield and Hull, 1986). The direct dynamics problem

that is theory-oriented can be solved by simulation or

optimization.'

Currently, most of the research in sports biomechanics,

for training and coaching high performance athletes, is

conducted in a descriptive or comparative manner (Nigg,

1982). Dillman (1985) stated that:

present biomechanical evaluations are generally

conducted by comparing an athlete's style to the best

in the world. The assumption of these comparative

analyses is that elite athletes through years and years

of practice have optimized their performance and that

their techniques can serve as criteria in the

evaluation of skill. (p. 108)

Sprigings (1986) pointed out the limitation of this

comparative approach as follows:
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The biomechanist would be in a very good position to

help up-and-coming athletes by comparing their movement

patterns to those that are successfully employed by

highly skilled performers. But, when it came to

trying to help the elite athlete, he would be at a

loss. The biomechanist would have no way of knowing

whether the elite athlete's technique could be

improved, since his present analytical methods require

comparison with someone of significantly higher skill

level in order to provide the insight into what is

possible. The only solution to this very real

problem in present-day sport biomechanics is

mathematically to model the human body so that

subsequent forward dynamic computer simulation can be

performed. (p. 5)

Hatze (1984) also raised criticism of the research approach

currently being employed. He stated that the vast majority

of motion analyses carried out today should be called

'motion descriptions' or 'motion comparisons'. True

motion analysis would imply that inferences can be made

based on neural control processes and performance

criteria that generated the observed motion.

Recently, biomechanical studies in sports have become

more directed toward modeling (Hubbard and Barlow, 1980;

Nigg, 1982). However, most studies of the optimization or

simulation of human movements, including sports skills, have

used resultant muscular torques as input without directly

considering muscle mechanics as part of the model (Ghosh and

Boykin, 1976; Hubbard and Barlow, 1980). The optimization

or simulation of human motion, without considering

individual muscles that may be able to explain individual

differences in movement patterns in sports skills, may not

be enough to improve the highly skilled athlete's

performance though it is suitable for the gross motion
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studies such as automobile crash response, aerospace related

problems, and other engineering applications.

Variations in human motion stem from both anatomical

and physiological differences. These variations may be

very important factors in determining individual differences

in movement patterns associated with performances of sports

skills. Amis (1978) and Amis et al. (1979), in their

studies of four cadaver limbs, reported wide variations in

the size ratios of muscles from limb to limb, while the

musculo-skeletal geometry was basically similar from limb to

limb. Very few investigators, however, have included the

muscular control mechanisms in their models because of the

difficulties in constructing control models of skeletal

muscle (Hatze, 1980).

In order to gain insight into how to improve the highly

skilled athlete's performance, sports biomechanics badly

needs delicate control models of skeletal muscle. Hatze

has pioneered this area of study with the development of a

mathematical model of the human musculo-skeletal system and

a control model of skeletal muscle behavior based upon

physiological phenomena (Dillman, 1985). His model

successfully optimized or simulated the kicking motion and

the take-off phase of the long jump (Hatze, 1975, 1976,

1977, 1981, 1983).

The human body is the most sophisticated and dynamic

system in the world. Formulation of a dynamic model that

acts as a real human being may be beyond human ability.
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It is also theoretically impoSsible to validate completely a

model under all test conditions because the purpose of a

mathematical model is the prediction of behavior in unknown

situations (Panjabi, 1979). There is, however, no doubt

that dynamic mathematical models of the human body will play

a very significant role in understanding how the body moves

(Peindl and Engin, 1987).

Dynamic modeling is one of the most interesting and

challenging areas of biomechanics. With improvements in

models of skeletal muscle and the musculo-skeletal system

and the development of biomedical instrumentation, dynamic

modeling is getting closer to the simulation of human

motion. The development of biomedical instrumentation,

such as nuclear magnetic resonance (NMR), that can measure

individual-specific anatomical and physiological

characteristics, will play a very important role in

practically supporting the application of a theoretical

model to the coaching and training of athletes.

Dynamic modeling of baseball pitching, one of the most

dynamic and fascinating human motions, may be useful for

training and coaching baseball pitchers to improve pitching

ability and to study injury prevention, if it can be done.

Baseball pitching is accomplished by a sequential

interaction of the body segments, through a link system from

the foot to the throwing hand (Pappas et al., 1985; Moynes

et al., 1986). A mathematical model of a baseball pitcher

could represent the whole body or be restricted to the
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throwing arm (Hubbard and Barlow, 1980). A mathematical

model of the whole body, including individual muscles, is

incredibly complicated and lengthy (Hatze, 1981). It is

beyond the scope of this study.

The shoulder complex is the most complicated and least

successfully modeled among the major joints of the human

body. It is composed of four joints (sternoclavicular,

acromioclavicular, scapulothoracic, and glenohumeral) (Kent,

1971; Dvir and Berme, 1978; Engin and Chen, 1986). Twenty-

one muscles act on the shoulder complex. Among these

muscles, twelve are connected to the body from the scapula

(Hngors et al., 1987). The glenohumeral joint, the so-

called shoulder joint, is the most mobile of all joints in

the body. Its movements can not be separated from those

of the shoulder complex because all joints and bones in the

shoulder complex function interdependently to generate arm

movement. There is also a paucity of information on the

dynamic modeling of the shoulder complex. Therefore, the

scope of this study will be limited to the motion of the

elbow and wrist joints of the pitching arm, under the

condition that the influence of other parts of body on

pitching is considered as input data and can be obtained by

three-dimensional cinematographic techniques.

The application of optimization theory to find optimal

trajectory of a sport motion, that is essential for training

an athlete, is one of the major objectives of sports

biomechanics (Hatze, 1981). However, dynamic optimization
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theory is still in the develbping stage because of the

limitations of optimization methods currently applied in

analyzing such complex systems as human motions that are

highly nonlinear and large in dimension (Zatsiorsky, 1978;

Hatze, 1981, 1984).

STATEMENT OF THE PROBLEM

The purposes of this study were to a) create a

mathematical model of the human upper extremity that is

applicable to most gross human upper extremity motions and

b) apply the model to the baseball pitching motion, trying

to find the optimal angular trajectories of the elbow and

wrist joints to maximize the velocity of the pitching hand

at the release of the ball.

DEFINITIONS OF TERMS

The following terms, that are frequently used in this

dissertation, are defined to assist the reader.

Accelepation phase of the beseball pitching motion — A

movement of the pitching arm from the maximum external

rotation of the upper arm to the release of the ball.

Apetomicel posigiep - A position in which the body is

erect, facing the observer, and arms are at the side with

the palms of the hands facing forward.

'ect - A changing pattern of the angle of

the elbow or wrist with respect to time.
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C 'n a e - A angle formed between the

longitudinal axis of the humerus and the longitudinal axis

of the forearm when the upper extremity is in the anatomical

position.

Elbow angle - $2 in Figure 1-1.

 

 
Figure 1-1. Elbow angle.

Elbow extension - A movement that increases the angle

between the upper arm and the forearm.

Elbow flexipn - A movement that decreases the angle

between the upper arm and the forearm.

WWW- An angular trajectory

obtained experimentally from the subject.
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Eopearm ppopation - An inward rotation of the forearm.

Forearm supinatiop - An outward rotation of the

forearm.

Instantaneous cente; of rotation - The immovable point

generated at an instant time by one segment of a rigid-body

rotating about an adjacent segment.

Optimal apgplar trajecpppy - An angular trajectory

generated by simulation or optimization so that the velocity

of the pitching hand at the release of the ball is

maximized.

Predicted angular trajectory — An angular trajectory

obtained from simulation.

Radio-ulna deviation - A movement of the hand from

anatomical position either away from the body (thumb side

leading) or toward the body (little finger side leading).

Simulated angular trajectopy - An angular trajectory

generated so that a predicted angular trajectory closely

matches the experimental angular trajectory.

Tracking parameteps - Distances, velocities, and the

accelerations of the upper arm that were obtained from the

cinematographic analyses to describe the subject's pitching

motion.

er a - The humerus bone and its surrounding soft

tissue between the shoulder and elbow. It should be noted

that the 'arm', technically meaning the humerus bone and its

surrounding soft tissue in medical terminology, is called

the upper arm in this dissertation.



10

Eri§_t_aQ_a.l_e - up, in Figure 1-2.

 

 

 

Figure 1-2. Wrist angle.

Wrist extension - A return movement from the wrist

flexion.

Wrist flexiop - A movement in which the palmar surface

of the hand approaches the anterior surface of the forearm.



CHAPTER II

REVIEW OF RELATED LITERATURE

I. BIOMECHANICAL ASPECTS OF THE UPPER EXTREMITY

A. Elbow Joint and Forearm

13 Analysis pf mepiop

The forearm has two degrees of freedom:

flexion-extension and pronation-supination (Morrey et al.,

1976; Chao et al., 1980; Cochran, 1982; Torzilli, 1982;

Engin and Chen, 1987). The axis of rotation of elbow

flexion-extension (see Figure 3-2) passes through the

centers of the humeral trochlea and capitulum (Morrey et

al., 1976; Chao and Morrey, 1978; London and Pedro, 1981;

Torzilli, 1982).

The instantaneous centers of rotation for elbow

flexion-extension lies within an area 3 mm in diameter

(Morrey et al., 1976; Chao and Morrey, 1978; London, 1981).

The curved portions of the trochlea and capitulum are

considered to be circular in cross section (Youm et al.,

1979; Shiba and Sorbie, 1985). Therefore, the concept of

the single axis of rotation for elbow flexion-extension is

supported by most investigators (Morrey et al., 1976; Chao

and Morrey, 1978; Youm et al., 1979; London, 1981: Cochran,

1982; Torzilli, 1982).

11



12

The axis of rotation for elbow flexion-extension is

slightly oblique to the longitudinal axis of the humerus.

The long axis of the ulna deviates laterally and distally

from the long axis of the humerus as the elbow joint is

fully extended. The carrying angle formed between the

long axis of the humerus and the long axis of the forearm

varies during flexion-extension. It has been

controversely reported that the carrying angle varies

linearly (Morrey and Chao, 1976; Chao and Morrey, 1978; Youm

et al., 1979) or sinusoidally (Amis et al., 1977; Youm,

1980) during elbow flexion-extension. On the other hand,

London (1981) stated that the carrying angle remains

constant throughout the whole range of elbow flexion.

The carrying angle may depend on individual variation.

The carrying angle lies within 15 degrees in males (Morrey

and Chao, 1976; Amis et al., 1977; London, 1981; An et al.,

1985). The range of elbow flexion-extension is limited by

the geometry of the joint surfaces and surrounding bone, by

passive supporting structures represented by the collateral,

capsular and other ligaments and by the active muscular

structures represented by muscles and tendons (Cochran,

1982). The range of elbow flexion-extension is

approximately 150 degrees (Rasch and Burke, 1978; Boone and

Azen, 1979; Youm et al., 1979; Cochran, 1982).

The axis of rotation for forearm pronation-supination

(see Figure 3-3) passes through the centers of the head of
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radius and the head of the ulna (Youm et al., 1979;

Cochran, 1982; Tajima, 1985). The range of forearm

pronation-supination has been reported to be between 115

degrees and 175 degrees (Youm et al., 1979; Kapanji, 1982;

Torzilli, 1982).

The motion of forearm pronation-supination is

independent of elbow flexion-extension (Chao and Morrey,

1978; Youm et al., 1979; Torzilli, 1982). The axes of

elbow flexion-extension and forearm pronation-supination are

not orthogonal to each other except when the carrying angle

is zero (Chao et al., 1980).

Though the two motions, elbow flexion-extension and

forearm pronation-supination, do not interfere with each

other, the long axis of the forearm rotates about five

degrees internally during early flexion of the elbow joint

and about five degrees externally during terminal flexion of

the elbow joint (Morrey and Chao, 1976).

2. Prime flexors and extensops 9: Lee elbow and pronators

and supinapors of the fopeepm

Among elbow joint muscles, the biceps brachii,

brachialis, and brachioradialis are considered to be the

major flexors and most studies on the role of elbow flexors

are concentrated on these muscles (Basmajan and Latif, 1957;

Logan, 1970; Bouisset et al., 1976; Rasch and Burke, 1978;

Youm, 1980; Cochran, 1982; An et al., 1983; Van Zuylen et

al., 1988). Braune and Fischer (1889) cited by Bouisset
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et al. (1976) stated that theSe three prime elbow flexors

represent approximately 85 percent of the total flexion

torque. On the other hand, based on moment arm

measurements, An et al. (1981) demonstrated that the biceps

brachii, brachialis, brachioradialis, and extensor carpi

radialis are the major elbow flexors. However, Cnockaert

et al. (1975) considered the biceps brachii, brachialis,

brachioradialis, pronator teres, and extensor carpi radialis

longus as the elbow flexor group.

The main elbow extensor is the triceps brachii muscle

(Travill, 1962; Logan, 1970; Rasch and Burke, 1978; Cochran,

1982). On the other hand, the anconeus muscle initiates

and maintains elbow extension, and is responsible for the

fine control of movement (Pauly et al., 1967). Based on

the moment arm measurements, An et al. (1981) showed that

the triceps brachii, flexor carpi ulnaris, and anconeus are

the major elbow extensors.

The main pronator muscle of the forearm is the pronator

quadratus (Rasch and Burke, 1978). Supination of the

forearm is primarily performed by the supinator muscle

(Basmajian and Latif, 1957; Rasch and Burke, 1978).

Basmajian and Latif (1957) showed that the short and

long heads of the biceps have similar electromyographic

(EMG) activity during elbow flexion-extension although the

long head is more active than the short head during the

various movements.

The length of the biceps brachii increases as the
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forearm moves from supination to pronation (Provins and

Salter, 1967; Cnockaert et al., 1975). This muscle

contributes to the elbow flexion in a range from 60 to 150

degrees (Ismail and Ranatunga, 1978).

The brachialis is the workhorse for elbow joint flexion

(Basmajian and Latif, 1957). This muscle is consistently

active during flexion of the elbow joint in most movements

(Basmajian and Latif, 1957; An et al., 1983). It was also

reported to be markedly active during quick flexion at the

elbow joint (Basmajian and Latif, 1957). Among the major

elbow joint flexors (biceps, brachialis, and

brachioradialis), the brachialis is the only muscle that is

not changed in length during the pronation-supination of the

forearm (Provins and Salter, 1954).

The brachioradialis has a small cross sectional area

but a large moment arm (Amis et al., 1979). This muscle

can produce fast movement such as a rapid whip-like action

(Basmajian and Latif, 1957; Pauly et al., 1967; Youm, 1980).

The length of the brachioradialis also varies during

pronation-supination of the forearm (Cnockaert et al.,

1975).

The anconeus and three heads of the triceps brachii

contract simultaneously when elbow joint extension is

performed rapidly (Pauly et al., 1967). The triceps

brachii is a very powerful muscle in the upper extremity

(Amis et al., 1979).
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B. Wrist Joint

1. Analysis of motion

The axes of rotation for flexion-extension and for

radio-ulna deviation of the hand relative to the forearm

pass through the head of capitate bone (MacConail, 1941;

Andrews and Youm, 1979; Volz, 1979; Brumbaugh et al., 1982).

The loci of the instantaneous centers for both flexion-

extension and radio-ulna deviation remain within a circle

with about a 1 mm radius (Andrews and Youm, 1979).

Therefore, the wrist joint is considered to be a simple

hinge joint. According to Brumbaugh et al. (1982), these

axes are nearly perpendicular and intersected at the center

of wrist motion.

2. Prime flexpps ang expepsops of the wrist

Prime muscles for wrist flexion are the flexor carpi

ulnaris and flexor carpi radialis and for wrist extension

are the extensor carpi ulnaris, extensor carpi radialis

longus, and extensor carpi radialis brevis (Youm et al.,

1976, 1978; Rasch and Burke, 1978; Ekenstam et al., 1984;

Tolbert et al., 1985).

II. OPTIMIZATION AND SIMULATION IN BIOMECHANICS

A. Optimization in Biomechanics

Optimization technique has been applied to gross human

motions since the 1970's. Among human motions, the gait

pattern has been extensively studied via optimization
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technique (Chao and Rim, 1973; Chow and Jacobson, 1971,

1974; Seireg and Arvikar, 1975; Hardt, 1978; Pedotti et al.,

1978; Crowninshield and Brand, 1981; Patriarco et al., 1981;

Davy and Audu, 1987).

Gait, associated with normal daily activity, does not

require maximum effort. Therefore, the purpose of

optimization techniques, applied to gait patterns, is to

minimize objective functions such as mechanical energy (Chow

and Jacobson, 1971, 1974), the sum of muscle forces, and

joint moments (Seireg and Arvikar, 1975; Pedotti et al.,

1978; Patriarco et al., 1981). In this kind of

optimization problem, the most important matter is to define

a physiologically rationalized optimal criterion in order

that an optimal solution is biologically meaningful (Hardt,

1978; Peotti et al., 1978; Crowninshield and Brand, 1981).

On the other hand, many sports activities need a

maximum effort from athletes to minimize time or maximize

distance. Therefore, the objective function depends upon

the goal of each sport event. Optimization problems

presented by Hatze (1975) and Ghosh and Boykin (1976) were

directed at minimizing execution time in a kicking action

and performance time in a kip-up maneuver on a horizontal

bar, respectively. The flight distance of a ski jumper,

after take-off, was maximized by Remizov (1984). The

objective function that Hatze (1981) maximized for the long

jumper was velocity at the take-off.

Some optimization studies have employed linear
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programming technique (Seireg and Arvikar, 1975; Hardt,

1978), but most studies were formulated by non-linear

optimization techniques (Chow and Jacobson, 1971, 1974; Chao

and Rim, 1973; Ghosh and Boykin, 1976; Hatze, 1976;

Crowninshield and Brand, 1981; Remizov, 1984; Davy and Audu,

1987). Hardt (1978), who investigated walking patterns,

studied leg muscle forces by a linear programming technique.

He concluded that discrepancies between computed results and

experimental data may be due to the simplistic treatment of

the muscle and the inherent limitations of the linear

programming algorithm.

Gross human motions, in daily activities as well as in

sports activities, can be characterized as a mathematically

non-linear and physically dynamic system. In order to

describe human motion with non-linear and dynamic

properties, non-linear dynamic optimization techniques are

considered to be the most proper theory (Chow and Jacobson,

1971, 1974; Ghosh and Boykin, 1976; Hatze, 1976; Davy and

Audu, 1987).

B. Simulation in Biomechanics

The major advantage of using simulation of motion to

study sport skills is that one can experiment with

variations of the maneuver before attempting to teach it to

an athlete (Ramey and Yang, 1981).

Simulation studies, that have been published, may be

classified into three categories: type of model, application
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of model, and muscle involvement. The types of models

that have been presented are: three segment rigid-body model

(Hubbard and Barlow, 1980), nine segment rigid-body model

(Ramey and Yang, 1981), 12 segment rigid-body model (Young,

1970), and 15 segment rigid-body model (Gallenstein, 1973;

Aleshinsky and Zatsiorsky, 1978; Hatze, 1981). Simulation

has been applied to various sports skills: free-fall phase

of the long jump (Ramey and Yang, 1981), kick patterns in

swimming (Gallenstein, 1973), walking pattern (Aleshinsky

and Zatsiorsky, 1978), bar clearing maneuver in pole

vaulting (Hubbard and Barlow, 1980), and take-off phase of

the long jump (Hatze, 1981). Muscular dynamics was not an

integral part of these simulation studies except for the

study by Hatze (1981). Hatze's model was two-dimensional.

Currently, a three-dimensional model of the entire human

body, including all prime muscles, has not been seen because

of its extreme complexity.

III. THROWING

There exists a common pattern among most overarm

throwing motions such as baseball pitching and throwing,

tennis serving, water polo throwing, handball throwing,

volleyball spiking, javelin throwing, and football throwing,

(Lindner, 1971; Cooper and Glassow, 1976; Anderson, 1979;

Atwater, 1979; Toyoshima and Hoshikawa, 1983; Whiting et

al.,1985; Jéris et al., 1985; Elliott et al., 1986).

The so-called "kinetic link" principle governing
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throwing motions is very clearly described by Kreighbaum and

Barthels (1985) (p. 594-599). The delicate difference of

each throwing pattern in various sport skills may be due to

the difference in the size of the object being thrown,

object weight, purpose of throwing, and rules of the sport.

In order to contrast and to compare various overhand

throwing pattens, the movement is often divided into common

phases: preparatory phase, cocking phase, acceleration

phase, and follow-thrOugh (Richardson, 1983; Pappas et al.,

1985; Moyness et al., 1986; Gowan et al., 1987).

A. Baseball Pitching

Baseball pitching is initiated by swinging the hand

upward to an overhead position while turning the trunk away

from the throwing direction and shifting the body weight

from the striding foot to the pivot foot. Preparatory

phase or wind-up begins with these initial movements of the

pitcher and ends when the ball leaves the gloved hand.

This wind-up motion varies from pitcher to pitcher (Hay,

1978; Atwater, 1979; Wickstrom, 1983; Pappas et al., 1985;

Jobe et al., 1986).

The cocking phase starts as the ball leaves the gloved

hand and ends when the maximum external rotation of the

shoulder is reached. After the ball is released from the

gloved hand, the pitching arm is swung backward and

downward. From the instant the striding foot contacts the

ground, the upper arm is abducted, horizontally adducted,
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and externally rotated until the maximum external rotation

is reached. Maximum external rotation of the shoulder is

limited by the passive restraints of the glenohumeral

capsule and ligaments (Moynes, 1986; Gowan et al., 1987).

The forearm is forced to rotate backward and downward until

it is nearly horizontal in the backward direction and the

elbow joint is extended to approximately a right angle as

the angular velocity of the trunk reaches its peak

(Hay, 1978; Atwater, 1979; Wickstrom, 1983; Pappas et al.,

1985; Feltner and Dapena, 1986; Moynes et al., 1986; Gowan

et al., 1987). During this cocking phase, the forward

rotation of the pelvis is followed by the forward rotation

of the upper trunk (Atwater, 1979; Pappas et al., 1985).

The acceleration phase starts with the forward movement

of throwing arm from the maximum external rotation of the

shoulder and ends with ball release from the hand. This

phase is begun by three actions: continuing trunk rotation,

rapid elbow extension, and shoulder medial rotation

(Atwater, 1979). The upper arm is internally rotated,

slightly adducted and horizontally abducted. The forearm

is pronated and finally the wrist is flexed just before ball

release (Atwater, 1979; Felter and Dapena, 1986; Gowan et

al., 1987). The angular velocities of the pelvis, upper

trunk, upper arm, forearm, and hand reached their peak in a

sequential order (Atwater, 1979).

Follow-through starts with ball release and ends as all

motion is terminated (Jobe et al., 1983; Jobe et al., 1984;
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Pappas et al., 1985). After ball release, the upper arm

continues to rotate internally and begins to abduct and

adduct horizontally (Feltner and Dapena, 1986). The

follow-through is important for control, and the prevention

of injury (Gibson and Elliott, 1987). The follow-through

phase varies, depending on the techniques of the pitchers

(Moynes et al., 1986; Gowan et al., 1987).

B. Electromyographic Study of Elbow and Wrist Joint

Muscles in the Throwing Motion

EMG patterns give information regarding which muscles

are activated in a certain phase of the throwing motion.

EMG patterns also can be used to estimate muscle control

parameters as input to simulation and optimization study.

The biceps brachii muscle showed peak activity with

flexion of the elbow joint during the late phase of cocking

(Moynes et al., 1986; Gowan et al., 1987). The biceps

showed low activation during acceleration. Triceps

activity was strong throughout the acceleration phase that

is accompanied by rapid elbow extension (Jobe et al., 1984).

Peak biceps activity occurred during the follow-through

phase to decelerate the rapidly extending elbow (Jobe et

al., 1984). The biceps brachii muscle, contributed

primarily to position the throwing arm for the delivery of

the pitch, with greater activity during the cocking phase

and less activity during acceleration phase. The triceps

muscle served primarily to accelerate the throwing arm
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forward with stronger EMG activity evident during the

acceleration phase and less activity during the cocking

phase (Gowan et al., 1987).

Forearm muscles including the brachioradialis, flexor

carpi radialis, extensor carpi radialis longus, extensor

carpi radialis brevis, and supinator demonstrated low to

moderate EMG activity during all phases of pitching (Sisto

et al., 1987).



CHAPTER III

METHODS

This chapter is divided into two parts, rigid-body

dynamics of the upper extremity and muscular dynamics of the

upper extremity.

I. RIGID-BODY DYNAMICS OF THE UPPER EXTREMITY

The upper arm, forearm, and hand, consisting of soft

tissues and body fluids as well as bones, are considered as

rigid-bodies. In this study, the radius and ulna are

treated as separate rigid-bodies. Therefore, the upper

extremity is modeled as a four segment rigid-body dynamic

system.

A. Bones of Upper Extremity

Before proceeding with modeling, the bony structure of

the human upper extremity is briefly reviewed. A similar

review may be found in various anatomy books.

The bones of upper extremity consist of the humerus in

the upper arm, the ulna and radius in the forearm, the eight

carpals in the wrist, the five metacarpals in the palm, and

the 14 phalanges in the five digits (see Figure 3-1). The

upper arm is supported by the two bones of the shoulder

24
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Figure 3-1. Anterior view of the skeletal system of

the right upper extremity.



26

girdle, the scapula and claviCle.

The humerus is the longest and largest bone of the upper

extremity. It articulates proximally with the glenoid

fossa of the scapula at the shoulder and distally with the

radius and ulna at the elbow (see Figure 3-2).

The radius, which is the shorter and more lateral of

the two bones of the forearm, articulates with the capitulum

of the humerus proximally, the carpal bones distally, and

the radial notch of the ulna medially (see Figures 3-2 and

3-3) .

The ulna is the longer and more medial bone of the two

in the forearm. The proximal end of the ulna consists of

the trochlear notch, that fits over the trochlea of the

humerus and the radial notch, that articulates with the head

of the radius (see Figure 3-3). The distal end of the

ulna includes a small rounded head and a small conical

styloid process that projects downward.

B. Axes of Rotation for Upper Extremity Segments

The axis of rotation of the humerus passes through the

center of the humeral head and the center of the trochlea

(Morrey, 1976; Youm, 1980) (see Figure 3-2). The axis of

rotation for flexion-extension at the elbow passes through

the centers of the capitulum and the trochlea (Chao et al.,

1980; Torzilli, 1982) (see Figure 3-2). The axis of

rotation for forearm pronation-supination is directed along

a line joining the center of the head of the radius and the
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Figure 3-2. Anterior view of the skeletal system of

the right upper arm.
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Figure 3-3. Anterior view of the skeletal system of

the right forearm and hand.
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distal end of the ulna (Morrey and Chao, 1976; Torzilli,

1982; Tajima, 1985) (see Figure 3-3). The axis of

rotation for wrist flexion-extension that passes through the

head of the capitate may be considered to be at a right

angle to the axis of rotation for forearm pronation-

supination. Note that in this current study the wrist

joint has been assumed not to have radial-ulna deviation

since in the baseball pitching motion being considered, such

a deviation is negligible.

C. Geometry of the Human Upper Extremity

The human upper extremity has been commonly modeled as

a three component rigid-body system (upper arm, forearm, and

hand) when the model does not involve muscles (Chao et al.,

1980; Langrana, 1981) or when only two-dimensional motions

involving muscles are considered (Hatze,1981). Three-

dimensional motion, involving muscular activity, may not be

accurately modeled by three segments consisting of the upper

arm, forearm, and hand; forearm rotation should not be

considered as a single rigid-body motion. Therefore, in

this study, the human upper extremity was modeled as a four

segment rigid-body system consisting of the upper arm,

forearm without radius, radius, and hand (see Figure 3-4).

The cartesian coordinate system OXYZ is taken as the

inertial frame with the origin O located at some fixed point

as shown in Figure 3-4. The cartesian coordinate axes Oi

Xi 3!i 2i (i = 1 to 4) whose origins are located at the mass
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Figure 3-4. Mathematical model of the upper extremity.
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center of each segment are the body-fixed coordinate systems

of the upper arm, the forearm without radius, the radius,

and the hand, respectively. Subscripts i = 1, 2, 3, and 4

represent the upper arm, forearm without radius, radius, and

hand, respectively. The vectors R, (i = 1 to 4) are

position vectors from the origin of the inertial frame to

the respective origins of the body-fixed coordinate axes.

The vectors Pi cj== 1 to 6) are internal position vectors

with components along the body-fixed axes of the individual

segments as shown in Figure 3-4.

In this model, the rotational motions permitted are

elbow flexion-extension; forearm pronation-supination; wrist

flexion-extension; and axial rotation, adduction-abduction,

and flexion-extension of the upper arm. In addition, each

segment will have a translation of its center of mass.

Therefore, each segment will have linear and angular

kinematic components, in general. In this study, however,

the upper extremity motion was tracked by experimental data

obtained from high speed film. Therefore, the linear and

angular kinematic components of this segment are considered

to be known.

D . Euler's Angles and Transformation Matrices

In order to describe the orientation of each segment,

ZYX convention of Euler's angle is employed as shown in the

Figure 3-5 (Goldstein, 1980). Transformation matrices

[E,] (i = 1 to 4), relating any set of body axes to its
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Figure 3-5. Euler angles.
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neighboring set in terms of Euler's angles, are defined as

follows.

The transformation matrix [E1] of the upper arm segment

relative to the inertial frame is [E1] = [C][B][A], so that

components of any vectors (A1) expressed in the body-fixed

reference 01, X1, Y1, 21 are given in the inertial frame (A,)

by A, = [E1]°1 A1, where [E1] =

coselcosd)1 cosOlsind)1 -sin6l

sintplsinelcosdn-cos¢1sin¢1 sintlrlsinelsin<l>1+cosqllcos<l>1 cosBlsimp1

coswltlsinelcostbl+sim|tlsin¢1 coat|tlsinfilsin¢1—sim|:1cos<l>1 coselcosq:1

(3‘1)

Transformation matrices, [E2], [E3] and [E,.], are defined

similarly to [E1]. Transformation matrix [E2] of the

forearm without radius relative to the upper arm segment can

be reduced since the ulna doesn't rotate with respect to the

it1 and Z1 axes. This means that 02 and cpz are zero.

Therefore, 02 and 4:2 are constants and

c1 c2 C3

[E2] - C',,sin‘|:2-C5c03\|12 C,,sin1|tz+c:,cosqt2 Casinqy2

. . (3-2)

C4COS||12+CSSlnl|12 C'.‘6c031|12-C,S:Ln\|t2 C'acosq:2
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where

C1- cosezcos¢z, Cz- c030281ntbz, C3— -Sln62,

C4— sin62cosd>2,Cs- sintbz, CG- sinezsintbz,

C7- cos¢2, Ca- c0362.

The radius segment relative to the forearm without

radius has only a single degree of freedom, rotation with

respect to the Z2 axis. Thus, 03 and $3 are zero because

03 and $3 are constants and the transformation matrix [E3]

can be reduced as follows:

Cgcostb3 C9sin¢l>3 —C10

[E3] - Cncostb3-Cnsimb3 C'nsintl>3+Cucos<l>3 C13

Cucos<l>3+(.‘1._.,sind>3 C.‘1,sin<|>3-C15cosd>3 016 (3'3)

where

C9 - c0363, C10 - 811163, C11 - 31n6331nt|t3, Cm - cosw3,

C13 - c036331nw3, C14 - Sin03cosw3, C15 - Slnlll3,

C16 - cosfi3cosw3.

The hand actually has two degrees of freedom (flexion-

extension and radio-ulna deviation). However, in

fastball pitching in baseball, radio-ulna deviation may be

ignored (O'Brien, 1990). With this assumption, ¢4 and 0,

are zero. Therefore, 45,. and 0,. are constants and the
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transformation matrix:[E§] of the hand's motion can be

defined as follows:

C17 , C18 C19

[5,] - C',,,sim|r,-C'mcosnlr,| C,,sim|r,,+(l',3cosw4 Cusimp,

Czocosqu-rcnsimlr, szcos¢,-C23sin\|:4 Cucosw4 (3'4)

where

C17- cosmcosd)“ C1a' cosmsincbu C19- -sin64,

Czo- sin64cosd>4, C21- sind)“ 022- sin64sin¢4,

C23- coed)“ Cu- c036,.

Inverses and transposes of these matrices are equal

since all are orthogonal transformations.

Thus, [Ei]'1 = [3,1' (1 = 1 to 4).

E. Position Vectors, Linear Velocities, and Linear

Accelerations

The position vectors R, (i = 1 to 4) for each segment

relative to the inertial coordinate frame (see Figure 3-4)

may be given as follows: R, = in I + Ryi J + Rzi H, where I,

3, and K are respective unit vectors of inertial X, Y, and Z

axes and R“, R”, and Rzi are components of position vector

R, (i = 1 to 4). Matrix notation of each position vector
1

is given here.
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fi1" [’9' Y3! Z117!

1'22 = §1-+ [15:11" '5, + [12:11" [1321" 52,

7i} = '15, + [311" $1 + [21]" [E21'1 (32 + 53)

+ [E1]'1 [E2]'1 [E311 3,, and

E, = ii, + [211" '51 + my1 [1321'1 ($2 + 133)

+ [131]" [321-1 [231" ('13,, + is)

+ um" [321'1 IE3)" [13.1“ 5,. (3-5)

From Figure 3-4, the components of the internal

position vectors, 5] Cj== 1 to 6), can be represented as

follows:

E, = [ o, 0, p12 1',

52 = [ o, 0, p22 1',

133 = [ P3X, 0, P32 1',

E, = [ P“, o, o 1',

55 = [ o, 0, P52 1', and

E6 = [ o, 0, P62 1'. (3-6)

Non-zero components of the internal position vectors in

equations 3-6 are constants that can be measured from

subjects and will be described in the following section.

Linear velocities and linear accelerations, R“,Ig (i = 1

to 4), of the segments can be obtained from the first time

derivative and the second time derivative of position

vectors, R} (i = 1 to 4), can be expressed in the inertial

coordinate system, respectively.
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F. Angular Velocities

Angular velocities (5“,(i = 1 to 4)) along the respective

body—fixed coordinate axes are given in terms of Euler's

angles (Goldstein, 1980). However, in the motion

considered here, the angular velocity components can be

reduced on the basis of the restrictions explained in

section D.

d’l-é13inel

alb.- 61C08¢1+$1C08613in¢1
,

-6131nqt1+<b1c0861cos\|11
(3-9)

Ema-[1112. o, 017,

(3-10)

63”- {—C104’3' C1345: 0159317.

(3-11)

64b- [‘i’4l 0: 011,

(3-12)

where

C10 = 511163 , C13 = c0503 Sln¢3 , and C16 = c0593 cos¢3.

Angular velocities (5} (i = 1 to 4)) of segments, that

are generated by the whole system, relative to body-fixed

axes, are given as follows:

1 ”1b!

2 ‘ [Ea] “’1 + wa'

«>3 = [E3] “’2 + ”3b' and

w, = [E,] 63 + 3“. (3-13)
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G. Lagrange's Equations for Upper Extremity Motion

The total kinetic energy (KB) and potential energy (PE)

of a system of four rigid-bodies (see Figure 3-4) are given

respectively by:

1 D . 1 n _

IG' - —;m,§} + _;m§[11]w,, n-1,4 .

2 -1 2 -1 (3-14)

where [1,] is moment of inertia matrix at the respective

center of mass (an) about body-fixed coordinate axes and

:2

PE - 2:15an, n-1,4

"1 (3-15)

where in are Z - components of position vectors (R9

relative to the inertial coordinate system.

Among nine generalized coordinates for translation and

orientation of the system of four rigid-bodies, six

generalized coordinates (x1, y,, z,, (p1, 0,, $1) for the upper

arm motion are tracked by experimental data. The

remaining three generalized coordinates ($2 for elbow

flexion-extension, ¢3 for forearm pronation-supination, and

$4 for wrist flexion-extension) are considered as variables.

By definition, the Lagrangian function L equals KE -

PB, from which Lagrange's equations of motion are

defined by:
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aqa (3-16)

where qh Cm = 1 to 3) are generalized coordinates and Qm

are generalized forces (see section H for a discussion on

generalized forces). The generalized coordinates are

assigned as q1 = (1:2, q2 = 4:3, and q3 = 11),.

Lagrange's equation can be written in matrix form as

tufi=§+6 man

in which [A] is the matrix of coefficients for the

generalized acceleration E, B is a column vector containing

all remaining terms with signs reversed, and Q is column

vector of generalized forces. Coefficient matrix [A] is a

function of E and B is a function of a and 3.

Finally, three second-order differential equations can

be obtained by computing the inverse matrix [A]’1 of the

coefficient matrix [A].

3 = [ar‘ti + '61 <3-18)

The actual derivation of these equations is easy but

extremely lengthy as commonly observed in multi-body

dynamics (Young, 1970). Therefore, this derivation will

be omitted here. Instead, these equations were entered
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into the computer algorithm fer simulation and optimization.

H. Generalized Forces

Generalized forces in equation 3-16 may be classified

into two categories, active muscular torques and passive

joint torques (Hatze, 1977). In three-dimensional

analysis, the components of muscular torques are, in

general, not directed along the respective angular velocity

vectors (Hatze, 1981). In this case, the components of

torques need to be decomposed to the directions of the

angular velocity vectors.

In this study, the elbow and wrist joints were assumed

to have one degree of freedom. The lines of pull of 12

prime muscles, that cross the elbow or the wrist joint, are

reasonably parallel to both the upper arm and forearm

segments. Therefore, it was assumed that the actual

components of muscular torques are the generalized

components of generalized forces of Lagrange's equation.

"The passive joint moment arises from the deformation

of all tissues which surround the joint including skin,

ligaments, tendons, relaxed muscles, etc." (Mansour and

Audu, 1986). The passive joint torque consists of the

passive elastic and the passive viscous component (Hayes and

Hatze, 1977; Yoon and Mansour, 1982). The passive elastic

torque (PET) provides the natural limit of joint movements

in a dynamic simulation of the mathematical model of human

body (Hatze, 1975, 1976; Hayes and Hatze, 1977). Throughout
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the mid-range of the motion, the passive elastic joint

torque is very small and approximately constant. On the

other hand, as the limit of the joint is approached at both

ends, the torque increases sharply. Researchers (Hatze,

1981; Yoon and Mansour, 1982; Elgin and Chen, 1987) have

proposed different functions to mathematically express the

passive elastic joint torque. In this dissertation, a

double exponential function that was proposed by Audu and

Davy (1985) was adopted.

pET(6) - Clexp( ~ 02(9 ‘ 91)) ’ 039*“ ' 04(02 ' 6)) (3-19)

where

0 = joint angle (rad),

C1, C2, C3, C, = constants and

a“ 02 = angular constants (rad).

The passive viscous joint torque (PVT), that is a

function of both the joint angle and angular velocity, was

adopted from the function proposed by Hayes and Hatze

(1977). The function is given by:

PVT(0, i) = C(o) é (Nm) (3-20)

where

a
s ll joint angle (rad) and

C(0) angular damping coefficient (Nms/rad).
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I. Location of Center of Mass and Mass Distribution

Human segmental mass distribution and the location of

the center of a segmental mass have been studied for over a

century. Tables 3-1 and 3-2 are summaries of studies on

segmental mass distribution and the location of the center

of mass.

Table 3-1. Segmental mass distribution as ratios to total

body mass.

 

 

 

 

 

 

 

 

 

     
 

Investigator Sample Segment

arm forearm hand

Harless(1860) 2 cadavers 0.032 0.017 0.009

Braune and~ 3 cadavers 0.033 0.021 0.0085

Fischer(1889)

Braune and 2 cadavers 0.0293

Fischer(1892)

Dempster(1955) 8 cadavers 0.027 0.016 0.006

Dempster(1955) 39 living 0.0342 0.0182 0.0059

males

Clauser 14 cadavers 0.026 0.016 0.007

McConville and

Young(1969)

Zatsiorsky and 100 living 0.0271 0.0163 0.006

Seluyanov(1985) males

Among the studies listed in the Tables 3-1 and 3-2, the

regression equation proposed by Zatsiorsky and Seluyanov in

1985 was adopted for the current research because

anthropometric dimensions needed in their regression

equation could be easily obtained from measurements on a

living subject. In order to use their regression
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equation, anthropometric measurement of the subject was

conducted. Anthropometric data are given in Chapter IV.

Table 3-2. Location of the center of segmental mass from the

proximal end as ratios of total segment lengths.

 

 

 

 

 

 

 

 

 

    

Investigator Sample Segment

arm. forearm hand

Harless(1860) 1 cadavers 0.427 0.417 0.361

Braune and 3 cadavers 0.47 0.421

Fischer(1889)

Bernstein(1936) 76 living 0.466 0.412

males

Dempster(1955) 8 cadavers 0.436 0.43 0.506

Clauser, l3 cadavers 0.513 0.39 0.48

McConville and

Young(1969)

Zatsiorsky and 100 living 0.45 0.427 0.369

Seluyanov(1983) males

Martin,Mungiole, 2 arms 0.45 0.434

Marzke and 4 forearms

Longhill(1989a) (cadavers)   
 

The regression equation proposed by Zatsiorsky and

Seluyanov (1983, 1985) is given by:

y = b0+ b1x1+ b2 x2+ b3 x3 (3-21)

where for the upper arm

x1 = length of the upper arm (cm),

X
N

ll circumference of the relaxed arm (cm), and

X
0
:

II (01+021/2



D1 = lower diameter of upper arm (cm) and

D2 = lower diameter of the forearm (cm)

and where for the forearm

x1 = length of the forearm (cm),

x2 = width of the hand (cm), and

x3 = (D1 + D2 + 03) / 3,

where

D1 = the least circumference of the distal forearm,

D2 = middle circumference of the forearm (cm), and

D3 = maximum circumference of the proximal

forearm (cm).

Regression coefficients b0, b1, b2, and b3 for the

center of mass and segmental mass distribution are given in

Table 3-3.

Table 3-3. Coefficients for the center of segmental mass

and mass distribution.

 

 

 

     

Segments b0 b1 b2 b3

upper arm m. * - 2.580, 0.0471 0.1040 0.0651

C.M. ** - 2.004 0.5660 0.0560 - 0.0160

forearm m. - 2.040 0.0500 - 0.0049 0.0870

C.M. 0.732 0.5880 - 0.0857 - 0.0187

 

* m = mass

** C.M. = center of mass
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J. Computation of Moments of Inertia

1. Moments of inertia of the upper arm

The regression equation for moments of inertia of the

upper arm is the same as equation 3-21. Regression

coefficients b0, b1, b2, and b3 for Ixx, Iw” and Izz are given

in the Table 3-4.

Table 3-4. Coefficients for the moments of inertia of the

upper arm.

 

 

  

Inertia ° b0 b1 b2 b3

Ixx - 331 10.3 5.5 5.6

IW - 359 10.2 6.4 8.5

In - 106 0.4 3.8 4.6    
 

2. Moment of inertia of forearm

The form of the regression equation for the forearm is

the same as equation 3-21. Regression coefficients b0,

b1, b2 , and b3 for Im,IW, and In of the forearm are given

in Table 3-5. Moments of inertia of the forearm without

radius can be computed from moments of inertia of the

forearm and moments of inertia of the radius bone described

in the following section.

Table 3-5. Coefficients for the moments of inertia of

the forearm.

 

Inertia b0 b1 b2 b3

 

I“ - 220.0 7.06 - 0.082 4.544

Iyy - 229.0 7.12 - 0.049 5.066

IL - 39.2 0.56 - 0.972 1.996     
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3. Moments of inertia of the :adius bone

Moments of inertia for the radius bone are currently

not available. The radius bone is shaped like a narrow

right frustum. Therefore, it may be assumed that the

radius is a frustum of a right circular cone (see Figure

3-6). The centroid of the frustum is located at a

distance d from the bottom.

_}_3_ Rf+2RLRs+3R§

4 R§+RLRS+R§

d-
 

(3-22)

where

h = height of the frustum,

lg = proximal radius of the frustum, and

RL
distal radius of the frustum.

Moments of inertia about the axes X, Y, and Z through

the center of mass are given by Hanavan (1964) as:

Im,-;nW-nn-£LIn-+tfirsi

 

 

9h (3-23)

where

2 3 4

TA.- 9 1 +ea+-a 4+aa + a .

20s b2

2 3 4

TB_31+4a+10a +4a+a

80 b2 ’
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A

HZ

h

x/ '7
d

    
 

Figure 3-6. Frustum of right circular cone.
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where

a=R./R,.

b = 1 + a + a2,

h = height of the frustum,

density,b

ll

m = mass

and

_ 3m 82 - RE
82 10 R2 - R;

 

(3—24)

Mass (m) can be computed by equation 3-25. According

to Rodrigue and Gagnon (1983), the density (p) of radius

bone measured from 12 male cadavers was 1.43 g/cm3.

2

m— M (1 + E + (&)2)

3 RI. RI. (3_25)

These moments of inertia are written with respect to the

principal axes of the frustum. The axis of rotation of

the radius, however, passes through the center of the distal

end of the ulna and the center of the proximal end of the

radius. The moments of inertia of the radius about the

principal axes can be transformed to the axis that is

parallel to the rotational axis by the following equation

(Pletta and Frederick, 1964):



49

I - a 'a 11"
(21 r 1,1 (3-26)

direction cosines and9’ u

H

II moments of inertia about the principal axes.

If it may be assumed that the longitudinal axes of the

forearm pronation-supination and the radius bone are in the

same plane, direction cosines can be obtained from the

rotation about the y3-axis. The elements a“. are given as

follows:

cost) 0 —sin6

[afil- 0 1 0

sine 0 cosO (3_27)

where

0 inclination between the longitudinal axes of the

radius and the forearm pronation-supination.

4. Moments of inerpla of hand and ball

One approximation for determining the moment of inertia

of the hand is that it may be considered as a sphere

(Hanavan, 1964). Moments of inertia, I I and Ill of a
xx' )N'

sphere are given by
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2
In " Iyy - Izz -(-§)m12

(3-28)

where

m = mass of the sphere and

r = radius of the sphere.

It was assumed that the sphere of a baseball placed in

the hand intersects at approximately one half of the radius

of the sphere formed by the hand (see Figure 3-7). The

portion of the hand in contact with the ball is considered

as an ellipsoid. Moments of inertia of this ellipsoid

will be extremely small. Therefore, the sphere assumption

may still be valid. Moments of inertia at the center of

mass of the combined hand and ball can be computed by the

parallel axis theorem. These moments of inertia are not

principal moments of inertia as easily seen from Figure 3-7.

Products of inertia, with respect to some axes, however, are

nearly zero. Therefore, it may be reasonably assumed that

these moments of inertia are the principal moments of

inertia.

II. MUSCULAR DYNAMICS OF THE UPPER EXTREMITY

In the muscular dynamics of the upper extremity, the

muscular system as a force generator was studied.



51

Rb Ball

.Hand

Figure 3-7. Model of the hand and ball.
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A. Prime Muscles

Based on the review of literature, the following 14

muscles are considered to be prime muscles for elbow

flexion-extension, forearm pronation-supination, and wrist

flexion-extension: 1. Prime muscles for elbow flexion -

long head of biceps, short head of biceps, brachialis, and

brachioradialis; 2. Prime muscles for elbow extension -

long head of triceps, lateral head of triceps, and medial

head of triceps; 3. Prime muscles for forearm pronation-

supination - pronator quadratus and supinator; 4. Prime

muscles for wrist flexion - flexor carpi ulnaris and flexor

carpi radialis; and 5. Prime muscles for wrist extension -

extensor carpi ulnaris, extensor carpi radialis longus, and

extensor carpi radialis brevis. Origins and insertions of

these 14 prime muscles are shown in the Figures 3-8 through

3-11. Each head of the biceps and triceps was treated

separately because each head of the biceps and triceps is

functionally different.

B. Selection of Muscle Model

Based on the sliding filament theory of muscle

contraction, size principle, and currently existing

physiological and biomechanical data on muscles, Hatze

(1981) derived five differential equations governing muscle

dynamics and successfully simulated the kicking motion and

the take-off phase of the long jump. His muscle model has

several significant advantages over other existing muscle
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Origin

Insertion

 

o:

i:

 

 Long head of the biceps

 
/

Short head of the biceps  
 

Origin area

Brachialis

 

 
Anterior view

Figure 3-8. Prime muscles for elbow flexion.



Long head of the triceps

Medial head of the triceps
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= Origin

=Insertion
 
 

Origin area
 

 
Lateral head of

the triceps

{

Origin area

Posterior view

Figure 3-9. Prime muscles for elbow extension.
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o = Origin

1 =Insertion

Origin area

Flexor carpi ulnaris

Brachioradialis      
 Flexor carpi radialis

Pronator quadratus

\  ...

 
I

7/0'7'

/

Insertion area Origin area

[40;],

(I

in
Anterior view

Figure 3--10. Prime muscles for elbow and wrist flexion

and forearm pronation.
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Origin area

Supinator

Extensor

carpi ulnaris

 

   

 

 

o = Origin

1 =Insertion
 

Extensor carpi

radialis longus

Insertion area

Extensor carpi

radialis brevis

Figure 3-11. Prime muscles for elbow and wrist extension

and forearm supination.
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models. First, his muscle model includes control

parameters, stimulation rate and the rate of motor unit

recruitment. Second, his model involves subject-specific

physiological parameters that may be able to explain

individual differences in movement patterns. Third, his

model has been used successfully to simulate human motion in

kicking and the take-off phase of the long jump.

In this author's opinion, Hatze's model is currently

the best-suited muscle model for the purpose of simulation

as studied in the present dissertation. Hatze's muscle

model, however, has one serious disadvantage, complexity of

its equations. Its equations are highly non-linear.

Therefore, Hatze's model brings problems related to

instability during simulation and/or optimization and

results in a great amount of computing time.

Hatze's five most recent equations (1981) are rewritten

here without any modification. Readers interested in

learning more about Hatze's muscle model should read his

book (1981) and articles on the topic.

Ii-.fiz

(3-29)

1f- -.62 ill—5:§--'(l + w”) .m(n,r)r
r + 6 10'3m(n,r) + ((p/kZC)2 (3-30)
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1 - exp{p.<&) (w - 4)}
- _ 0 '3II! m(n) [cv 'l'] + wzc p°(E) (1 _ expi _ En _ 3}) 

 

 

 

-(1.+ W’Lm(n.r)¢
(3'31)

. _ _ ’ _ - cv_ _ 1
0 mm IN) w [m(n)q>(‘l,+6 )

- gas 1 ' ”FMS.“ ”P ' 4)} (3-32)
90(5) (expicr + B - 1)

1 1 . 1
€ 3- l-a—a- arcs:.nh{- -a—2

1n ( k(£)e - a1)} - 1/2 J (3-33)

h, [F55 / {7+ b11905)!

The state variables in Hatze's equations are n, r, w, w

and 6. that denote respectively the normalized populations

of stimulated (n) and semi-active (r) motor units, Ca-

concentrations of stimulated (u) and semi-active (w)

populations, and the normalized length of the lumped

contractile element (5). The control parameters, z and v,

are the normalized rate of motor unit recruitment and the

normalized average stimulation rate, respectively.
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Functions in his equations, m(n,r), m(n), 100(5), k(§), and

k1(e) , are defined as follows:

  

 

 

 

m(n’r) ' 1 - exp1( - Fr) 8115:: /' ::(;C:(:)+ I“

- 2%i_;§l 811(542 / A3 - Em]. (3-34)

m(n) - expéfi _ 1 [-§§%611(542 / A. - 5n)

_ 811(52/ A3) 1’
(3-35)

100(6) - 53300 (E 586:1 1:
(3-36)

k(E) - exp{ - [Ll—12}.

5k (3-37)

13(5) - 2 - exp{é.<£ — 1)}.

(3-38)

Function 6 is given by:

e - 8,, + eJr + 80

(3-39)

where

8,, - q(E.tl:) [exp(5’n) - 1] / [exp(E)-1] .

(3-40)

8, - q(£.¢o) [eXp(E'n + Er) - exp(&'n)]

/ [exp(E) - 1]. (3—41)
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1% -<n[exp(5)-exp(én++E&)]/’[exp(5)-1]

and where

q. + [p(£)¢]2
I )-

q“ 4 1 + [pmw

 

I

q.+ [p(£)(p]2

1 + [M6012 '

 

q(E.¢) -

Function 8 is given as follows:

S - (enS(n) + e,S(n,r) + 805,) / e

where

éz a3

n -— ——n 0.568+0.2307n ,S() B B < )

a a

S(n,r) - 792' - .3341: + 0.5681- + 0.23071'2),

é é

So-%-%[n+r+0.568(1-n-r)

+ 0.2307(1 - n - {)2].

Functions w+ and w' are defined as follows:

w*(z) = 1, w'(z) 0, for z > 0;

w"(z) = 0, w‘(z) 0, for z = 0; and

w*(z) = 0, w'(z) for z < 0.H l

|
'
-
'

(3—42)

(3-43)

(3-44)

(3-45)

(3-46)

(3-47)

(3-48)

(3-49)
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Detailed derivations and explanations of these equations,

functions, and nomenclature can be found Hatze's book

"Myocybernatic control models of skeletal muscle", and

numerous articles and technical reports.

C. Moment Arms

Based on graphs from Amis' dissertation (1978), moment

arm functions of prime muscles with respect to joint angles

were derived by the method of least squares. This method

seeks to minimize the sum of the squares of the difference

between the function and the tabulated data values.

The size of the cadaver arm used in Amis' study is

different from that of the subject in this study. Width

between trochlea and capitulum and the length of radius seen

clearly from both Amis' scaled figure and x-rays taken from

the subject for this study were measured to find a scaling

factor. The scaling ratios for width and length were 1.26

and 1.24, respectively. Therefore, an average scaling

factor of 1.25 was used to multiply Amis' data before

adopting these values for this study.

Moment arm data were divided into a few separate

regions depending on characteristics of data such as

periodicity, exponential tendency, and symmetry. Then,

several orders of polynomials were tried to find the closest

polynomial function to the tabulated data. Cholesky's

method (Shoup, 1984) with partial pivoting was adopted to

solve the system of linear equations.
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The followings are polynbmial equations for prime

muscles. Moment arms and joint angles are given in meters

and degrees.

l. Momepp apps (TA) wipn respeep to elbow joint angle(pzl

in degreee.

Biceps:

TA(¢2) = 0.025 for 0 5 02 g 35 (3-50)

TAwZ) = - 6.192E-03 + 8.845E-04 42 + 1.279E-06 422

- 3.418E-08 423 for 42 > 35 (3-51)

Brachialis:

TA(¢2) = 0.02 for 0 5 42 g 47 (3-52)

1‘sz) = - 8.027E-03 + 6.57lE-O4 42 - 9.274e-07 42’-

- 1.170E-08 423 for 42 > 47 (3-53)

Brachioradialis:

TA(1/>2) = 0.027 for 0 g 42 _<_ 20 (3-54)

TAMZ) = 1.301e-02 + 5.973e-04 42

for 20 < 02 5 130 (3-55)

TA(¢2) = 0.092 + 8.929E-05 up, for 42 > 130 (3-56)

Triceps:

TA(¢2) = 2.942E-02 + 1.946E-04 42

- 4.048E-06 422 for 0 5 42 g 60 (3—57)

TA(¢2) = 2.229e-02 + 1.849E-04 42

- 1.760E-06 422 for 60 < 42 g 115 (3-58)

Tsz) = 0.020 for 42 > 115 (3-59)
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om t s w' e wr's 'oint an 1e .1

Merges;

Amis (1978) considered moment arms of the flexor carpi

ulnaris, flexor carpi radialis, extensor carpi radialis

longus, extensor carpi radialis brevis, and extensor carpi

ulnaris muscles as constants. On the other hand, Brand

(1985) reported that moment arms of these muscles at the

wrist vary depending on not only joint angle but also the

position of the hand. According to Brand (1985), the

moment arm of the extensor carpi ulnaris of the pronated

hand is smaller than that of the supinated hand. However,

reported variations in moment arms, depending on joint angle

and the position of hand, are very small. Therefore, it

may be reasonably assumed, for simulation purposes, that

moment arms of muscles crossing the wrist joint are

constants for all wrist angles. Constant moment arms

scaled from Amis' dissertation (1978) are given as follows.

Flexor carpi radialis:

TA(¢,.) = 0.013 (3-60)

Flexor carpi ulnaris:

Tum) = 0.020 (3-61)

Extensor carpi radialis longus:

TA(¢,) = 0.01 (3-62)

Extensor carpi radialis brevis:

TA(¢,.) = 0.015 (3-63)
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Extensor carpi ulnaris:

TA(¢,) = 0.007 (3-64)

D. Muscle Length

Muscle length can be represented as a function of the

joint angle. In general, a muscle length function is

computed from the simple geometry of a joint structure, with

assumptions of a straight line of pull of the muscle and a

circular shape of the joint structure (Frigo and Pedotti,

1978; Youm, 1980; Torzilli, 1982; Audu, 1985; Seireg and

Arvikar, 1989). The muscle paths, however, are not

generally in a straight line (Jensen and Davy, 1975; Amis et

al., 1979; Hatze, 1980; An et al., 1984). The curved

nature of the muscle lines may be able to provide the best

estimation of the line of muscle action and be more accurate

than a straight line in approximating muscle length (An et

al., 1981). Hatze (1981) computed a muscle length

function of the triceps muscle based on sequential x-ray

pictures taken from a subject at various angles of the elbow

joint.

In the present study, based on Amis' scaled figure

representing muscle lines, the origins and the insertions of

muscles, muscle lengths were measured at various joint

angles. Polynomial equations for muscle length variations

as functions of joint angles were derived by the method of

least squares. Muscle length variations in meters and

degrees, depending on joint angle, are given as follows:
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1. Length of muscles (ML) with respect to elbow joint

angle (#32);

Long head of triceps :

11144,) = 0.276 + 5.30593-04 42 - 9.0322E-O7 422 (3-65)

Lateral head of triceps :

14144,) = 0.251 + 5.4609E-O4 42 - 1.1430E-O6 422 (3-66)

Medial head of triceps :

MLwZ) = 0.102 + 4.8016E-04 42 - 6.4858E-07 42?- (3-67)

Brachioradialis :

MLwZ) = 0.370 - 3.7650E-04 42 - 4.107lE-06 422 (3-68)

Biceps :

14144,)

Brachiais :

0.382 - 4.6377E-04 42 - 1.7969E-O6 427- (3-69)

Msz) = 0.137 - 2.1631E-04 42 - 1.7113E-06 42?- (3-70)

Le t o mus s w'th 5 act 0 elbow 'oint an 1e

122W);

Lengths of muscles that cross the wrist joint were

determined by combining Amis' figure and measurements taken

from x-rays of the subject because Amis' figure didn't

include the hand.

Flexor carpi ulnaris :

ML(¢,) = 0.305 + 2.4412E-O4 4, - 6.8369E-07 4,2 (3-71)

Flexor carpi radialis :

11144,.) = 0.3385 + 2.4412E-04 4, - 6.8369E-07 4,2 (3-72)
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Extensor carpi radialis longus :

ML(42, 4,) = 0.355 - 3.25035—04 42 - 1.0968E-06 42?-

- 3.7843E-04 4, - 1.4190E-06 4,2 (3-73)

Extensor carpi radialis brevis :

ML(4,) = 0.3188 - 3.7843E-04 4, - 1.4190E-06 4,7- (3-74)

Extensor carpi ulnaris :

ML(4,) = 0.3013 - 3.7843E-04 4, - 1.4190E-06 4,2 (3-75)

Pronator quadratus :

ML(4,) = 0.047 + 1.6813E-04 4, (3-76)

Among the 14 muscles, the long and short head of

biceps, long head of triceps, flexor carpi ulnaris, flexor

carpi radialis, extensor carpi radialis longus and brevis,

and extensor carpi ulnaris cross two joints. These joints

are either the gleno-humeral and elbow joints or the elbow

and wrist joints. Thus, these are called two joint

muscles. The locations of origins of the two heads of the

biceps and the long head of triceps are very close to the

gleno-humeral joint. Therefore, muscle length variations

of these muscles, depending on gleno-humeral joint motion,

may be very small because the gleno-humeral joint is

relatively stationary during the acceleration phase of the

baseball pitching motion that was being studied. For

these reasons, these two joint muscles are considered in

this study to be one joint muscles (considered to only cross

the elbow joint).
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The flexor carpi radialis and flexor carpi ulnaris

muscles arise by the common flexor tendon from the medial

epicondyle of the humerus (see Figure 3-10). The extensor

carpi radialis brevis and extensor carpi ulnaris take their

origin from the lateral epicondyle of the humerus by the

common extensor tendon (see Figure 3-11). These common

flexor and extensor tendons are located lateral and close to

the elbow joint. In the literature, these four muscles

are commonly regarded as the wrist joint flexors and

extensors. Because the origins of these four muscles are

located close to the elbow joint, they may be able to be

considered as a one joint muscle (considered to only cross

the wrist joint) without a loss of accuracy.

The extensor carpi radialis longus, however, arises

from the distal one-third of the lateral supracondylar ridge

of the humerus and from the intermuscular septum (see Figure

3-11). This origin is far from the elbow joint.

Therefore, the extensor carpi radialis longus muscle was

treated as a two-joint muscle (considered to cross both the

elbow and the wrist joint) and is appropriately represented

in equation 3-73.

It is difficult to measure the length variation of the

supinator muscle from x-ray or Amis' (1978) scaled figure

because this muscle is obliquely wound around the shaft of

radius bone. Therefore, based on the geometrical shape of

the ulna and radius as seen in Figure 3-12, the length

variations of supinator muscle in meters was approximated as
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Figure 3-12. Model for approximating supinator muscle

length variations.
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follows:

supinator :

11144,) = 0.0763 - 0.017343 (3-77)

where

¢3== forearm pronation-supination angle in radians.

Currently, the centroids of muscle paths are

approximated from the study of cadavers. The error

inherent in substituting data from cadavers for living

subjects may be resolved in the near future if non-invasive

computerized scanning techniques such as NMR become

available for use.



CHAPTER IV

SIMULATION AND OPTIMIZATION

In Chapter III, three second-order differential

equations were derived to describe a four segment rigid-body

dynamics system. In order to simulate the acceleration

phase of the baseball pitching motion with these three

differential equations and Hatze's muscle equations, all

parameters needed as input to these equations were

determined prior to simulation and optimization. In this

chapter, anthropometric, anatomical, motion-related, and

muscular parameters, that were not presented in Chapter III,

are described. Based on these parameters, simulation and

optimization were performed.

I. DETERMINATION OF CONSTANTS AND PARAMETER VALUES

A. Anthropometric Measurements

The primary purpose of anthropometric measurements in

simulation of human motion is the calculation of moments of

inertia, centers of segmental masses, and segmental mass

distributions.

Using a sliding and a spreading calipers and an

inelastic tape measure, various anatomical dimensions were

measured as recommended in the Anthropometric

70
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Standardization Reference Manual (Lehman, et al., 1988).

Tables 4-1 through 4-3 contain anthropometric data obtained

from the subject in the current study.

Table 4-1. Length and weight measurements from the subject.

 

Weight(kg) Height(cm) lArm(cm) Forearm(cm) Hand(cm)

90.05 94.05 I 38.3 33.1 21.2

 

     
 

* Landmarks for determining length :

arm length : from superiolateral aspect of the acromion

process of the scapula to posterior surface

of the olecranon process of the ulna

forearm length : from the most posterior point overlying

the olecranon process to the most distal

palpable point of the styloid process of

the radius

hand length : from styloid process of the radius to the

tip of the middle finger

Table 4-2. Width measurements from the subject.

 

 

 

 

 

Portion of Body Upper Arm(cm) Forearm(cm) Hand(cm)

Segment

proximal m-l * 10.8 7.8 11.6

a-p** 13.1 7.6 4.6

middle m-l 8.7 9.3 8.5

a-p 9.7 6.8 2.6

distal m-l 7.8 5.8 7.8

a-p 7.8 4.3 2.0     
* m-l: medial-lateral

** a-p : anterior-posterior
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Table 4-3. Circumference measurements from the subject.

 

 

 

 

 

     

Portion of Upper Arm(cm) Forearm(cm) Hand(cm)

Body Segment

proximal 42.2(below axilla) 30.0 27.5

middle 33.3 20.4

distal 28.2 17.4 17.8
 

Regression equations proposed by Zatsiorsky and

Seluyanov (1983, 1985) were used to calculate segmental

parameters of the subject. Computed segmental masses of

the upper arm and the forearm were 3.16 kg and 1.6 kg,

respectively. The locations of mass centers of the upper

arm and the forearm were 21.42 cm and 19.36 cm from the

distal end of their segment, respectively. Principal

moments of inertia of the upper arm at the center of mass

about the body-fixed coordinate system were

I = 0.02873 kg.mz, 1 = 0.03065 kg.mz, and
xx W

In = 0.00685 kg.m?. Principal moments of inertia of the

forearm at the center of mass about the body-fixed

0.0121 kg.mz,coordinate system were Ixx

Iyy = 0.0126 kg.mz, and In = 0.00222 kg.mz. Moments of

inertia at the center of mass of the combined hand and ball

_ _ 2 _ 2
were In - IW — 0.00125 kg.m and In - 0.00121 kg.m .

B. Anatomical Parameters

Four x-ray pictures, consisting of an anterior and a

lateral view of the upper arm and the forearm, were taken at
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the Clinical Center of Michigan State University.

Subject-specific anatomical dimensions of the upper arm and

the forearm, that were needed as input data in the study,

were measured from x-ray pictures as shown in the Figure

4-1. Cartesian coordinate of internal position vectors

(see Figure3-4) in centimeters were p1== (0, 0, 21.1),

p2 = (0, 0, 12.2), p3 = (-1.7, 0, 7.4), p, = (1.4, 0, 0),

p5 = (O, 0, 11.4), and Pa = (0, 0, 11.0). Angle values

(see Figure 3-5) in degrees as defined in the Chapter III

were (p2 = 0.0, 02 = 8.0, 03 = 7.0, 43 = 0.0, «p, = 0.0, and

a, = 7.0.

Cadaver measurements were also conducted to obtain

muscle-tendon length ratios of the prime muscles studied

because these values could not be obtained from the subject.

The lengths of muscles and tendons from two male cadaver

arms (one arm dissected from the anterior view and the other

arm dissected from the posterior view) were measured with a

steel tape measure. From these two cadavers, muscle-

tendon ratios of the long head of the biceps, short head of

the biceps, brachialis, brachioradialis, flexor carpi

radialis, flexor carpi ulnaris, extensor carpi radialis

longus, extensor carpi radialis brevis, and extensor carpi

ulnaris were O.28/0.72, 0.66/0.31, 0.37/0.07, 0.60/0.30,

0.59/0.49, 0.90/0.18, 0.36/0.81, 0.38/0.79, and 0.60/0.47,

respectively. It should be mentioned that it is not known

how appropriate the anthropometric measurements from the two

cadaver arms were with respect to the subject used in this
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Figure 4-1. Anatomical geometry of the subject's forearm.
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Based on fiber length and layer thickness data, fiber

angles of pennate muscles relative to line of pull were

computed using the following formula as suggested by Amis

(1978):

fiber 1 - sin’ 
layer thickness)

fiber length

Fiber structures, fiber angles and cross—sectional areas of

four muscular cadaver limbs adopted from Amis' dissertation

(1978) are shown in the Table 4-4, Table 4-5, and Table 4—6.

Table 4-4. Muscle structure (From Amis' dissertation(1978),

"Biomechanics of the upper limb, and design of an elbow

prosthesis").

 

 

     
 

Muscle Cadaver Cadaver Cadaver Cadaver

1 2 3 4

BI(long) PF * PF PF PF

BI(short) UP ** UP UP UP

BRR PF PF PF PF

TR(long) UP UP UP UP

TR(medial) UP UP UP UP

TR(lateral) UP UP UP UP

BR PF PF PF PF

FCU BP *** UP BP UP

FCR UP UP UP UP

ECU BP BP BP BP

ECRL BP BP BP BP

ECRB UP UP BP UP

PQ PF PF PF PF

SP PF PF PF PF

* PF = parallel fiber

** UP = unipennate muscle

*** BP = bipennate muscle
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Each muscle of four cadavers studied by Amis (1978) had the

same fiber structure except for the flexor carpi ulnaris and

the extensor carpi radialis brevis. In the present study,

the flexor carpi ulnaris and the extensor carpi radialis

brevis were treated as unipennate and bipennate,

respectively. Other muscles were treated as being the

same fiber structure as shown in Table 4-4.

Table {-5. Fiber angle (rad)(From Amis' dissertation(1978),

"Biomechanics of the upper limb, and design of an elbow

prosthesis").

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Muscle Cadaver Cadaver Cadaver Cadaver Average

1 2 3 4

BI(long) 0.0 0.0 0.0 0.0 0.0

BI(short) 2.5 3.0 4.7 2.9 3.3

BRR 0.0 0.0 0.0 0.0 0.0

TR(long) 18.5 17.8 15.7 17.1 17.3

TR(medial) 10.9 8.6 13.2 9.6 10.6

TR(lateral) 10.8 14.2 11.9/ 20.9 14.5/

8.5 2.1

BR 0.0 0.0 0.0 0.0 0.0

FCU 5.7/5.7 2.9 9.6/1.8 10.2 7.1/1.9

FCR 13.0 6.8 8.6 13.7 10.5

ECU 5.0/3.9 4.0/5.2 8.5/6.8 3.4/6.2 5.2/5.5

ECRL 4.9/1.9 3.9/1.5 6.4/3.7 5.5/2.2 5.2/2.3

ECRB 7.8 6.4 9.4/3.5 7.9 7.9/0.9

PQ 0.0 0.0 0.0 0.0 0.0

SP 0.0 0.0 0.0 0.0 0.0        
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Maximum muscle fiber angle of the long fibers and minimum

muscle fiber angle of the short fibers are needed in Hatze's

muscle model if the muscle considered is a pennate muscle.

These angles, however, are very difficult to measure without

the help of dissection specialists and several fresh

cadavers. Additionally, there is no guarantee that these

values would match that of the living subject used in this

study. Therefore, under the guideline of the average

fiber angles reported in Table 4-5, maximum and minimum

fiber angles of pennate muscles were estimated from actual

photographs of dissected muscles shown in anatomy books

(Vidic and Suarez, 1984; Clemente, 1987). Respective

maximum and minumum angles, in radians, of the long head of

the triceps, medial head of the triceps, lateral head of the

triceps, flexor carpi ulnaris, flexor carpi radialis,

extensor carpi ulnaris, extensor carpi radialis longus, and

extensor carpi radialis brevis were 1.40/1.13, 1.53/1.24,

1.46/1.18, 1.501/1.396, 1.449/1.344, 1.518/1.449,

1.553/1.449, and 1.536/1.466, respectively.

Physiological cross-sectional areas of muscles were

needed to estimate the initial guesses of muscular forces in

the optimization algorithm for muscular parameter estimation

that is explained in section E of this chapter.

Physiological cross-sectional areas of muscles, muscle-

tendon length ratios, and fiber angles for pennate or multi-

pennate muscles may be obtained by Nuclear Magnetic

Resonance (NMR) directly from a living subject (Freimanis,



1989).

Table 4-6.
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Physiological cross-sectional area (mm?) of

muscles (From Amis' dissertation (1978), "Biomechanics of

the upper limb, and design of an elbow prosthesis").

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Muscle Cadaver Cadaver Cadaver Cadaver Average

1 2 3 4

BI(long) 297 244 413 305 315

BI(short) 178 178 396 256 252

BRR 140 76 322 158 174

TR(long) 1563 1418 2044 1760 1696

TR(medial) 1491 712 1446 1283 1233

TR(lateral) 1237 1061 1542 1055 1233

BR 269 405 949 602 556

FCU 537 361 497 662 539

FCR 242 178 294 377 273

ECU 283 228 472 316 325

ECRL 239 196 330 326 273

ECRB 434 237 472 244 347

PQ 252 333 280 288 288

SP 247 200 395 222 266
 

Magnetic Resonance Imaging (MRI): a) offers a direct

visualization of soft tissue structures, (It has recently

been recognized as a significant contribution to the

evaluation of the musculoskeletal system.)

more convenient planes of view, such as transverse,

b) provides

sagittal, coronal, and oblique, than other methods for

evaluating the structure of muscle. c) is completely non-

invasive with no known health risks because it does not
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require exposing subjects to ionizing radiation (Roth, 1984;

Hillman et al., 1986; Bloem et al., 1988; Harms and

Greenvay, 1988; Kieft and Bloem, 1988). NMR, however, was

not available for this current study.

C. Motion-Related Parameters

1. rac ' arameters

As mentioned in the Chapter I, the baseball pitching

motion is accomplished by a sequential interaction of all

body segments, through a link system from the foot to the

throwing hand. This project was restricted to the

pitching arm. Therefore, the influence of other parts of

body on the pitching motion was taken into account as input

parameters to simulate the actual pitching motion performed

by the whole body. These parameters are called tracking

parameters in this project.

The contribution of other body segments to the pitching

motion is transmitted to the pitching hand through the upper

arm, connected to the trunk at the gleno-humeral joint.

Tracking parameters of the upper arm are translational and

rotational position vectors and their first and second time

derivatives at the center of mass relative to the inertial

coordinate system. To determine these tracking

parameters, a three-dimensional cinematographic experiment

was conducted at the Center for the Study of Human

Performance at Michigan State University.

A calibration structure consisting of four aluminum
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poles with surveyor's cord on which three ping pong balls

per cord was set up in the pitching area (see Figure 4-2).

A calibration space was determined by the locations of the

ping pong balls placed on each corner of a rectangle.

Distances between the ping pong balls were adjusted so that

the pitching arm motion could be viewed from two cameras and

filmed as large as possible within the calibration space.

Then, distances of the edges of the rectangle and distances

between ping pong balls were measured (see Figure 4-2).

The calibration structure was filmed. The digitized

coordinates of the calibration structure became the

calibration file.

One half inch (1.27 cm) pompom balls were placed on

bony landmarks of the pitching arm of the subject as targets

for digitization. Bony landmarks were identified by

palpation. Targets, forming an arbitrary triangle, were

placed on the upper arm, forearm, and hand to determine a

segment-fixed reference frame (see Figure 4-3). This is

hereafter called a film coordinate system. These triads

were placed on either side of the joints. Joint targets

were also placed on the center of both ends of each segment

(see Figure 4-3).

In order to film the pitching motion in the laboratory,

a portable pitching mound was prepared. One camera was

placed lateral and one placed lateral-posterior to the plane

of the pitching motion for a better viewing of targets (see

Figure 4-2). The inclusion angle of the optical axes of
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Figure 4-3. Targets on the upper extremity.
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the two cameras was about 60 degrees. After several warm-

up pitches by the subject, overhand fast ball pitching

motions were filmed by the two high speed 16 mm cine LOCAM

cameras using Kodak 400 ASA color film and operating at 400

frames per second with 120 degree shutter angle. Both

cameras were set identically and operated simultaneously to

obtain time-matched position data. Filmed images were

digitized using an Altek Datatab rear-projection system,

coupled with an IBM personal computer to obtain planar

position data from each camera. Slight time-unmatched

data that may be mechanically generated in spite of

identical setting and simultaneous Operation of both cameras

were time-matched by a linear interpolation method.

Walton's program (JSW3D) was used to convert two sets of

synchronized planar position data to three-dimensional

position data (Walton, 1981). Raw three-dimensional

position data were smoothed using Walton's program FILTER,

which applies a low-pass Butterworth filtering technique.

Theoretically, angular orientation of a rigid body may

be determined by three known targets placed on a rigid body.

Even though human body segments contain soft tissues, they

are commonly treated as rigid bodies. In situations

where, body targets must be placed on the soft tissues,

soft tissue motion may cause errors in the digitization of

position data. Tracing targets from film showed that the

relative locations of the upper arm and forearm targets

placed on the proximal end were recognized to change
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slightly during the pitching motion because a relatively

large amount of muscle tissue exists in these areas.

Three targets (Du! D“, and D"), placed on relatively

immobile locations that formed a triangle as large as

possible, were chosen to minimize the effects of soft tissue

motion on the analysis of position data. Based on these

three targets, two vectors, 7, and V2 and their vector

product VY (VY = V, x V!) , that was normal to both vectors,

were formed (see Figure 4-4). One more vector'fifl, the

product (7y x V!) of VY crossed into V: was defined so that a

film coordinate (X3, Y1f, and 21') could have 7", Vy, and VI

axes at the origin D“ as an orthogonal coordinate system.

The directions of axes of the film coordinate system

were different from the directions of the axes of the body-

fixed coordinate system defined in Chapter III. It was

necessary to rotate the film coordinate axes to the body-

fixed coordinate axes to compare simulation results with

experimental results. A transformation matrix [E,] of the

direction cosines, relating film coordinate axes to the

inertial coordinate axes, could be easily computed by scalar

products between axes of the inertial coordinates and the

axes of the film coordinates. A transformation matrix

[is] of Euler angles relating the film coordinate to the

body-fixed coordinate can be computed from the locations of

the targets on the upper arm and the geometry of the upper

arm as seen in Figures 4-4 and 4-5. Euler angles a, B,

and 1 in the order of rotation of ZYX convention are
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Figure 4-4. Geometry of the upper arm targets.
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Figure 4-5. Spatial geometry of the upper arm targets.



87

a = 139, B = - 7.2, and 1 = 0.03 degrees. Any position

vector i;, relative to the film coordinate, can be converted

to a position vector i, relative to the inertial coordinate

or to a position vector is relative to the body-fixed

coordinate system by

“
x

I

ll

[3,] 3?, . (4-1)

F [EB] X3. (4-2)N
I

II

From equations 4-1 and 4-2, position vector it! relative to

the body-fixed coordinate system, was computed from the

position vector i1, relative to the inertial coordinate

system, and transformation matrix [EM], directly relating

the body-fixed coordinate system to the inertial coordinate

system as follows:

is = [88,] 7, (4-3)

where

[1:3,] = [E,1"[E,J.

The transformation matrix relating a rotating

coordinate system to a non-rotating reference frame may be

formed in terms of Euler's angles or direction cosines.

The transformation matrix [E1]iof Euler's angles defined in

Chapter III should be equivalent to the transformation

matrix [En] of direction cosines. Then, Euler's angles
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may be computed by equalizing respective terms of two

transformation matrices (Nikravesh, 1988; Wittenburg,1977)

as in equation 4-4:

Sine - -113,

 

cosO - :1/1 - sin20,

111

“S" ' m'

133

cosw cosG' (4-4)

where

l", l”, and I“ are respective elements of

transformation matrix [EM] of direction cosines.

More practically, Euler angles can be computed by the

two-argument tangent function that is an intrinsic function

form of the FORTRAN language (Craig, 1986) as follows:

4) - ATAN2(112, 111) ,

0 - ATAN2( - 1,3. 131 + 1122) .

4 - ATANZU”, 133)

(4-5)
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where

l", 112, 113, 123, and 1,3 are respective elements of

transformation matrix [Eul°

If the rotation angle (a) about y-axis is i n / 2, a

condition known as gimbal lock exists and the other Euler

angles are undefined. The gimbal lock problem can be

solved by setting one of the remaining angles equal to zero

(Craig, 1986).

Polynomial equations for angular positions, velocities,

and accelerations with respect to time were obtained from

the least squares curve fitting method. The following are

polynomial equations in radians and seconds for Euler

angles, and their velocities and accelerations.

Derivation of these polynomial equations for tracking

parameters was needed in simulation and optimization because

the integration step size may be different from the film

frame time interval.

Angular positions:

4(T) = - 0.08889 + 13.98126T - 19.81561'1'2 - 5657.01T3

0(T) = 0.7597811 - 1.776727T + 764.9278T2- 10512.12T3

4(T) = 1.029547 - 0.29093221 + 158.9582'1'2 - 6282.549T3

(4‘6)

Angular velocities:

0(T)

0(T)

12.5373 + 379.3696T - 44958.6513 + 431054.5T3

4.954282 - 73.77206T + 90123.87T2'- 3536002.0T5

+ 3.401166E+07T*



90

4(T) = - 1.147039 + 662.0113T - 42593.05'r2

+ 370858.31?3 (4-7)

Angular accelerations:

$(T) = 319.1234 - 217352.1T + 1.937653E+07T2

- 7.2884418+08'r3 + 8.828221E+09T‘

5(T) = 155.5996 + 148582.1T - 9787578.0'r2

+ 1.317554E+08'13

4(T) = 559.0472 - 200943.4T + 1.841427E+07T2

- 7.109204E+081§ + 8.697636E+09T* (4-8)

The position vector of the mass center of the upper arm

(53), that was also the origin of body-fixed coordinates,

relative to the inertial frame, was easily computed as

follows:

01> - [83,1315 (4-9)0 0 fl

CP = internal position vector of D16 from the origin

of the body-fixed coordinate, relative to the

body-fixed coordinate and

OP = position vector of D16 from the origin of the

inertial coordinate, relative to the inertial

frame.

Polynomial equations for the x, y, and 2 components of the

position vector of the center of mass of the upper arm were
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also obtained from the least squares curve fitting method.

The following polynomial equations are linear positions,

linear velocities, and linear accelerations of the upper arm

in metric units.

Linear positions:

X(T) = 1.120815 + 6.959321T - 9.703201TZ- 1451.042T3

+ 15060.851‘

Y(T) = 0.9062545 + 1.390025T + 26.57316T2 - 943.8699T3

+ 8098.7581*

Z(T) = 0.5310546 + 0.7901497T - 36.677315 - 86.63342T3

+ 8063.2371‘ (4-10)

Linear velocities:

X(T) = 6.850571 - 52.93292T - 3217.349T2-+ 50774.791'3

Y(T) = 1.596527 + 47.5819T - 3167.259T2-+ 38831.24T3

2(T) = 0.5353068 - 35.83658T - 4642.521T2-+ 192936.4T3

- 1.744909E+06T‘ (4-11)

Linear accelerations:

X(T) = - 55.06328 - 3395.438T - 351517.0T2

+ 2.238366E+07T3 - 2.845943E+081*

.Y(T) = 34.73928 - 3154.1734T - 199530.1'2

+ 1.1460628+0713 - 1.305747E+08T*

2(T) = — 45.85297 - 7537.729T + 493753.61'2

- 4.4320618+06'1'3 - 3.199947E+07T4 (4—12)
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Experimental trajectories of the forearm and hand of

the pitching arm were obtained from film analysis to compare

with predicted angular trajectories that were determined by

simulation and optimization in this chapter. Film

coordinates of the forearm without radius, radius, and hand

were rotated to the directions of respective body-fixed

coordinates and moved to the respective origins of body-

fixed coordinates in the same manner as described in the

computation of the tracking parameters.

The flexion-extension angle at the elbow joint was the

angle between the longitudinal axis, 21, of the body-fixed

coordinate system of the upper arm and the longitudinal

axis, 22, of the forearm as seen in Figure 3-4. The axis,

21, however, was not on the plane that was normal to the

angular velocity vector of the elbow motion. The axis

'zf, that was normal to the angular velocity vector, was

obtained by a rotation of -8 degrees of the 21.axis about

the ya axis. Now, the angle of flexion-extension at the

elbow joint was computed from the scalar product between

axis 21' and 2., axis.

The angle of forearm pronation-supination was obtained

from the scalar product between the y} axis and the y3 axis

(see Figure 3-4).

The hand is very small in size relative to other body

segments and moves fast in the baseball pitching motion.

It was reasoned that error might have occurred in obtaining
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a body-fixed coordinate at the hand because the triad of

targets was very close together and not clearly seen due to

its size and speed. Therefore, only one target ([5), that

presented the best view point during the whole acceleration

phase of the baseball pitching motion, was digitized.

A vector, Vh, that was obtained by subtracting D20 from

I5, can be easily decomposed into a sum of two terms, the

vector component of V“ along the X3 axis and the vector

component of Vh orthogonal to the X3 axis. The wrist

joint angle was computed by the scalar product between the

Z3 axis and a vector having a component of Vb orthogonal to

the X3 axis.

D. Muscular Parameters

In order to incorporate Hatze's muscle model (1981) in

the simulation of the acceleration phase of the baseball

pitching motion, muscular parameters were determined prior

to simulation and optimization. Hatze's muscle parameters

may be categorized into three sets for convenience. The

first set contains parameters that are common to human

skeletal muscle and easily obtained from the literature.

These are a = 1.531, k = 0.0306, c = 1.373 x 10", 6 = 108,

s = 1, k2 = 10", A0 = 0.372, B = 0.297, and A0' = 3.60.

The second set includes parameters that may have slightly

different values from person to person. Because subject

specific values are difficult to obtain and experimental

equipment and facilities were not available to the current
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study, subject values were based on parameter values

suggested by Hatze (1981). Reasonable values for these

parameters in human skeletal muscle are F‘,/ F = 1.33,

q0 = 0.005, a3 = 3.2, 2 é 1, n -'= 14.3, az' -- 0.14, c = 3.7,

a3h= 0.105, and v = 2.9. The third set is composed of

parameters that are highly individual-oriented and must be

directly measured from the subject. These are maximum

isometric force (F), optimal muscle length (3), maximum

isometric extension of the tendinous series-elastic

component (5), and the spread of the length-tension curve

(sk).

To determine F, 3“, E, and i for the third set of

muscle parameters, maximum isometric torques were measured

with a simple instrument having a force transducer connected

to an IBM personal computer and a frame designed to pull

nearly at a right angle at any angular position of a joint.

A 35 mm single lense reflex camera (Nikon N2020) and a video

camera (Sony CCD-F70) were placed at a right angle to the

intended joint motion. Maximum isometric torques, at

various angles of flexion-extension at the elbow and the

wrist joint and angles of pronation-supination of the

forearm, were measured from the subject. Moment arms for

experimental torques were measured fromphotographs taken at

every measurement. Based on muscle moment arm, muscle

length, muscle cross-sectional area derived from Amis'

dissertation (1978), and the measured maximum isometric

torque data, a computer program (ELPEST) written by Hatze



95

(1981) was modified. Also, the sum of squares of

differences between predicted torques and measured torques

was minimized by the Gauss-Newton-Marquardt method (Kuester

and Mize, 1973) to determine parameter values F, Sk,<x,

and ;.

An experimental apparatus was designed to measure

passive elastic joint torques for elbow and wrist joint

flexion-extension and forearm pronation-supination as a

function of respective joint angles. The measuring frame

consisted of a force transducer and an electric goniometer

connected to an IBM personal computer and a circular plate

that freely rotated in the horizontal plane. The joint

center of the subject's arm was adjusted to the axis of

rotation of the plate. The subject's relaxed arm was

slowly rotated by an examiner so that the viscous component

of the passive joint torque was negligible. Based on

passive elastic joint torque patterns obtained from the

experiment, constants C1, C2, C3, C“ 01, and 02 for elbow

flexion-extension, wrist flexion-extension, and forearm

pronation-supination (see Equation 3-19) were estimated by

Marquardt's algorithm (Kuester and Mize, 1973) that

minimizes a least squares objective function. Values of

these constants are reported in Table 4-7.
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Table 4-7. Constants of passive joint torque functions.

 

 

 

 

       

Joint C1 C2 C3 C4 01 0 2

elbow 0.488 1.686 0.475 4.076 1.00 2.00

wrist 0.145 3.087 0.114 5.087 0.87 1.75

forearm 1.043 1.467 0.941 2.256 0.70 2.07
 

 

The coefficients of passive viscous torque at the elbow

joint was adopted from Hayes and Hatze (1977). The values

of the damping coefficient C(02) for elbow joint ranged from

0.274 Nms/rad at an angular position of 0.56 rad to 0.057

Nms/rad at 1.55 rad and the coefficient value is given by :

C(42) = 0.545 - 0.56242 + 0.165422 (Nms/rad)

where

¢2== elbow joint angle.

The coefficient value may be different from person to

person. However, the passive viscous torques at the elbow

joint is relatively small within the middle range of passive

motion compared to active muscular torque. Also note that

the moment of inertia of the hand is very small and that the

angular velocity of the hand in the baseball pitching motion

is less than that of the forearm as reported in Chapter V.

Therefore, passive viscous torque at the wrist joint may be

ignored without much loss of accuracy.
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II. SIMULATION

All anatomical, physiological, and motion-related

constants and parameters were determined through

experimentation or currently existing data gathered from the

related literature. Initial values of 02, 413, 04, 21:2, (223,

and 0,. were obtained from film analysis.

Theoretically, 76 first-order differential equations

(70 for the muscular system and 6 for the skeletal system)

can be simultaneOusly integrated by predicting 28 control

parameters (14 for rates of motor unit recruitment and 14

for motor unit stimulation rates) based on EMG data obtained

from the literature.

In Hatze's analysis of a kicking motion (1975),

however, the control parameters of rate of motor unit

recruitment and rate of motor unit stimulation provided

identical results. Based on Hatze's result, Audu (1985)

derived his muscle equations with one control parameter

(rate of motor unit stimulation) under the assumption that

both the rate of motor unit recruitment and the rate of

motor unit stimulation are identical. The angular

trajectories of the hip and knee in the kicking motion

optimized by Audu's model, with the same parameter values

and constants as in Hatze's kickinq study (1975), turned

out to be very similar to the results obtained by Hatze.

Although it has not been proved whether or not the results

from the rate of motor unit recruitment and the rate of

motor unit stimulation in Hatze's muscle model are
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identical, these two control parameters (between 0 and 1)

were assumed to be the same in the current simulation study

for simplification. Also, the angle of forearm pronation-

supination was set to a constant as explained in Chapter V.

These assumptions resulted in 64 first-order differential

equations with 12 control parameters.

Simulation was performed in two ways: a) simulation of

the skeletal system and b) simulation of the combined

skeletal and muscular system. Simulation of the skeletal

system, separated from the muscular system, was performed by

predicting resultant joint torque patterns to find existing

angular trajectories of the elbow and wrist joint and to

investigate the roles of muscular torques at the elbow and

wrist joint. This approach is common to most simulation

studies (Gallenstein, 1973: Hubbard and Barlow, 1980: Ramey

and Yang, 1981).

The muscular system adopted from Hatze's model (1981)

is interrelated to the mathematical model of the

musculoskeletal system used in this study through

generalized forces (torques in this case), 6, in equation 3-

17 or 3-18. These generalized torques are equivalent to

the respective summations of the active muscular torques

computed from a) the active muscular forces, F“, in

equation 3-33 and respective function of moment arms in

equations 3-50 through 3-64, b) passive elastic torques,

PET, in equation 3-19, and c) passive viscous torques, PVT,

in equation 3-20.
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In order to explain this interrelation between the

muscular system and the skeletal system, a block diagram of

the simulation with one muscle is shown in the Figure 4-6.

The simulation of whole system, consisting of 12 prime

muscles can be simply done by respective summation of

gereralized forces to the respective generalized coordinates

so that the final generalized forces can enter into the

skeletal system.

The combined muscular and skeletal system was

simultaneously simulated by predicting the patterns of

control parameters that maximized the velocity of the hand

at the release of the ball. These patterns of control

parameters are used in optimization as starting values.

This simulation was performed to avoid instability problems

and to reduce the computing time in optimization as

explained in the following section.

Fourth-order Runge-Kutta-Merson numerical method

(Lance, 1960: Bull, 1966; Hatze, 1981) was employed to

simultaneously integrate the system of differential

equations. The Runge-Kutta-Merson method is the one of

several modifications of Runge-Kutta method which is known

to be inherently stable for any type of differential

equations (Young, 1970: Mathews, 1987). The algorithm is

given as follows:

Y
n+1

- Y5+-€%(k1+-4k,+-k5)

(4-13)
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where

_1.

3

%hf(x,, + gay. + k1).

g
r I

hf(xn. ya) .
t
o
”

t
o
»

I
I

-;-'-hf(xn + é’hIYn + %k1 + é‘kz) ’

%hf(xn + éhIYn + %k1 + %k3) ’

3 .2

2 2

j
? I

[<5 - %hf(xn + my” +

f(xI.Y) - dY/ dxl

h - integration step size.

19 - fiq-rskq),

Simulation is a trial and error approach in predicting

the input values for the best simulation results.

Simulation was performed again and again with different

input patterns until the velocity of the hand at the release

of the ball was considered to reach the peak.

III. OPTIMIZATION

The optimization problem in this study was to find the

patterns of muscular control parameters that maximize the

velocity (E) of the hand at the release of the ball,

subject to differential constraints for muscular and

skeletal dynamics described in the previous chapter and

constraints for angles and time. The final goal was to

generate optimal angular trajectories of the elbow and wrist

joint using these optimal patterns of control parameters.

The computer optimization software OPTDES.BYU
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(developed at Brigham Young University) available at the

engineering Hewlett-Packard (HP) Workstation (HP 9000/340

computer) of Michigan State University was used to solve

this optimization problem. In order to implement this

optimization problem utilizing OPTDES.BYU, reduce the

computing time, and avoid instability problems, the

optimization problem was considerably modified.

Control parameters in Hatze's muscle equations are on-

off control (so-called bang-bang control). According to

Audu (1985), Hatze's muscle equations are unstable during

optimization and take enormous computing time. The

preliminary optimization run for this study showed the

lengthy computing time and instability problem.

Therefore, it was assumed that the patterns of control

parameters may be approximated by polynomial equations.

The acceleration phase of the baseball pitching motion

occurs in one steady maximum effort within a very short

period of time (less than 0.05 sec.). From the result of

simulation and Audu's previous results (1985), it was

decided that the patterns of control parameters for elbow

flexors and extensors, and for wrist flexors and extensors

may be approximated by the second or third order polynomial

equations. Moreover, the patterns of control parameters

within respective functional groups were considered to be

similar. Therefore, in order to reduce the computing time,

four elbow flexors and three wrist extensors that don't

directly participate in the increase of the velocity of the
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pitching hand were assumed to'have the same control patterns

within respective functional groups.

The total number of design variables was 28. These

are the polynomial constants of the third order equations

describing the seven muscles or muscle groups. The total

number of design functions was 17. Fourteen design

functions were needed to set the limit of magnitudes of

control parameters. The remaining three design functions

were final angles at the elbow and wrist joint, and the

velocity of the hand that becomes an objective function.

The final optimization problem was to find the patterns

of muscular control parameters that maximize the velocity

(fig) of the pitching hand at the release of the ball,

subject to 16 constraints. These constraints represent 16

of the design functions mentioned above. A generalized

reduced gradient (GRG) algorithm was employed in this

optimization study. The Runge-Kutta-Merson method for

numerical integration was used as in simulation. Starting

values were estimated from the simulation to reduce

computing time and to avoid instability problems as

mentioned in the previous section.



CHIP!!! V

RESULTS AND DISCUSSION

I. EXPERIMENTAL RESULTS

A. Velocities of the Ball and Hand at the Release of

the Ball

The velocity of the fast ball at release was 28.0 m/s.

This velocity was slower than those of previous studies

(average of 33.5 m/s from eight college pitchers, Feltner

(1987); average of 33.8 m/s from 21 college varsity baseball

team candidates, Logan, et al (1966)). The velocity of

the hand of the subject in this study at the release of the

ball was 19.60 m/s. Hereafter, the velocity of the hand

at the release of the ball is used instead of the velocity

of the ball at release because the velocity of the hand at

the release of the ball could be easily computed from the

model of the upper extremity during simulation and

optimization.

There were several reasons that might explain why the

velocity of the ball at its release was slower than those

reported in other studies. The subject in this study was

a retired major league baseball pitcher who was not

currently active as a competitive pitcher. The laboratory

setting, filming, body targets, and portable pitching mound

104
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may also have influenced his pitching motion. It should be

noted, however, that the purposes of this study were to

mathematically model the upper extremity and to apply the

model to the baseball pitching motion and not to

kinematically analyze the pitching arm motion. Therefore,

it was not very important whether pitching was performed by

maximal effort or not because the pitching motion was to be

examined in simulation and optimization.

B. Kinematics of the Elbow and Wrist Joints during

the Acceleration Phase

From the start of the acceleration phase until the

release of the ball, the elbow joint angle changed from

-l.53 radians to -0.64 radians as shown in Figure 5-1 (see

Figure 1-1 for an interpretation of elbow joint angle).

The total change of the elbow joint angle, during the

acceleration phase of fastball pitching, was 0.89 radians.

This change in angle coincided with the average change in

eight male intercollegiate varsity baseball pitchers

reported by Feltner (1987). In Feltner's study, however,

the average elbow joint angle changed from -1.24 radians,

with 0.3 radians of standard deviation, to -0.35 radian,

with 0.12 radians of standard deviation.

The experimental angular trajectory of the wrist joint‘

motion is given in Figure 5-2. During the acceleration

phase, the wrist joint angle changed 1.08 radians, from 0.90

radians to -0.18 radians. It should be noted by
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Figure 5-1. Experimental angular trajectory of the

elbow joint during the acceleration phase.
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wrist joint during the acceleration phase.
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definition (see definition of terms, Chapter I) that the

wrist joint angle was beyond the neutral position.

However, the hand was nearly in straight alignment with the

forearm at the release of the ball.

The patterns of angles and angular velocities at the

elbow and wrist joints, in this study, were different than

those reported in previous studies (Feltner, 1987; Gibson

and Elliott, 1987). The elbow joint angle, in this study,

increased relatively slowly throughout the acceleration

phase. In the studies by Feltner (1987) and Gibson and

Elliott (1987), the elbow joint angle sharply increased

through the middle half of the acceleration phase. This

sharp increase in the elbow joint angle resulted in the

occurrence of the peak angular velocity at the middle of the

acceleration phase; whereas, the angular velocity in the

current study increased slowly until just before the release

of the ball. This can be seen in Figure 5-3.

The angular velocity at the wrist joint of the subject

reached its maximum when nearly three fourth of the

acceleration phase had been completed, then decreased until

the release of the ball (see Figure 5—4). In the study by

Gibson and Elliott (1987), the wrist joint angle of their

subjects (Junior baseball pitchers) sharply increased in the

second half of the acceleration phase and the angular

velocity at the wrist joint increased nearly until the ball

was released. Obviously, patterns of angles and angular

velocities at the elbow and wrist joints in the studies by
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Figure 5-3. Experimental angular velocity at the elbow

during the acceleration phase.
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Feltner (1987) and Gibson and Elliott (1987) agree more

closely to the so-called kinetic link principle mentioned in

the Chapter II than the kinematic pattern obtained in the

current study.

Another difference between the current study and

Feltner's study (1987) was the performance time for the

acceleration phase. The performance time for the

acceleration phase in the current study was 0.05 seconds;

whereas, the average time for the acceleration phase in

Feltner's study was 0.032 seconds with a standard deviation

of 0.008 seconds. Because there was a longer time period

for the acceleration phase and because the patterns of

angles and angular velocities at the elbow and wrist joints

did not replicate the typical pattern of the kinetic link

principle, it was inferred that the pitching arm of the

subject was not fully accelerated. For these reasons, the

subject's pitching motion may not have been well-

coordinated. In the section on simulation and

optimization results, patterns that may increase the

velocity of the ball at release are generated by simulation

and optimization.

An interesting point is that the maximum angular

velocity at the wrist joint was lower than that of the elbow

joint. This result is in agreement with the findings of

Gibson and Elliott (1987) in their junior baseball pitchers.

The hand can be quickly rotated at the wrist joint because

the moment of inertia of the hand is relatively small.
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However, Atwater (1979) pointed out that the so-called

'wrist snap', as a main contributor to the velocity of the

ball at release, is a misconception. The primary role of

wrist joint motion should be studied in the future because

it is very important to know about how the wrist joint

motion contributes to both the accuracy and the speed of the

pitched ball.

C. Kinematics of the Forearm during the Acceleration

Phase

The forearm was at -1.8 radians at the start of the

acceleration phase and supinated by 0.1 radians during the

initial stage of the acceleration phase (see Figure 5-5).
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It should be mentioned again that the locations of the

body targets were measured from projected film images.

In an attempt to accurately locate body targets, many

projected images from the film of the subject's pitching

motion were repeatedly measured and averaged.

Measurement error was likely to have been associated with

the relatively small projected images and resulting vectors

and the locations of body targets on soft tissue. With

respect to the small range of forearm pronation-supination

(approximately 0.1 radians), the proportion of measurement

error was considered to be relatively large. Therefore,

this author was uncertain whether or not 0.1 radians of

forearm rotation actually occurred in the acceleration phase

of the baseball pitching motion. According to O'Brien

(1990), the forearm pronation-supination may be negligible

in the overhand fast ball pitching motion. Therefore,

analysis of the angle of forearm pronation-supination was

omitted in this study. Instead, the angle was treated as

a constant (-1.85 radians). This was the average angle for

the subject for forearm pronation-supination throughout the

acceleration phase.

II. SIMULATION AND OPTIMIZATION RESULTS

The simulated angular trajectories of the elbow and

wrist joints, which closely matched the respective

experimental angular trajectories of the baseball pitching

motion of the subject were generated from the mathematical
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model of the upper extremity (see Figures 5-6, 5-7).

The experimental and the simulated angular trajectories for

the elbow joint and for wrist joint were somewhat different,

even though numerous simulations were performed to find

simulated angular trajectories that closely matched their

experimental trajectories. The hand velocity, obtained

from the simulated angular trajectories of the elbow and

wrist, was 16.45 m/s, about 3 m/s slower than that obtained

from the experiment.

There were several possible sources of error that may

have caused differences between experimental and simulated

trajectories. a) The differences may have been from

undetected computer coding errors. The computer program

developed for this study was extremely lengthy (78 pages,

with 25 lines per page). Use of computer software for

symbolic mathematical manipulation, such as MATHEMATICA or

MACSYMA, to remove the computer coding errors is

recommended. b) Errors may have also been the result of

the differences between the actual data obtained from the

film and polynomial approximation in the process of

computing tracking parameters. c) Errors may have been

generated from the determination of the body-fixed

coordinates computed from body targets placed on the upper

extremity. The locations of these targets were measured

from relatively small images of projected film. d) Some

soft tissue and accompanying body target motion occurred

during filming. e) Errors may have resulted from
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Figure 5-7. Simulated (x) and experimental (*) angular

trajectories of the wrist joint during

the acceleration phase.
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assumptions made in this study to determine constants and

parameters. f) Differences may have resulted from

accumulated computer rounding error. Addition and

multiplication were numerously repeated.

In light of the fact that it is nearly impossible to

model the upper extremity without assumptions,

approximations, and measurement error, it is similarly

unlikely that simulation will produce the exact patterns of

experimental angular trajectories at the elbow and wrist

joints. Therefore, the mathematical model of the human

upper extremity created in this study is considered to

reasonably simulate the experimental angular trajectories at

the elbow and wrist in the pitching motion.

Figure 5-8 shows the resultant joint torque that was

generated to predict the simulated angular trajectory at the

elbow joint. By combining information from Figures 5-1

and 5-8, it is evident that the resultant elbow joint torque

reached a maximum value of 36 Nm when the elbow angle was at

-1.08 radians. This approximates the elbow angle of -1.18

radians where the subject had experimentally demonstrated a

maximum isometric elbow extension torque of 40.7 Nm. This

torque pattern also agreed with the results of Hunsicker

(1955) and Elkins et al., (1951) who measured the isometric

elbow extension strength from 55 male subjects, and 10 male

and 14 female subjects, respectively. According to

studies of arm strength reported by Amis (1978), the maximum

isometric elbow joint torques published occurred at the
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elbow angles between -1.05 radians and -l.57 radians

(Provins, 1955; Currier, 1972).

Figure 5-9 shows the resultant joint torque that was

generated to predict the simulated angular trajectory of

the wrist joint. By combining information from Figures

5-2 and 5-9, it is evident that the resultant wrist joint

torque reached a maximum value of 3.8 Nm when the wrist

joint angle was at 0.64 radians. This approximates the

wrist angle of 0.55 radians where the subject had

previously demonstrated a maximum isometric wrist flexion

torque of 11.7 Nm.

After reaching maximum torque, the resultant wrist

joint torque sharply decreased until the release of the

ball. As the point of release of the ball was approached,

the simulated resultant wrist joint torque approached zero.

It can be interpreted that the antagonistic muscle action by

the wrist extensor muscles caused a decrease in resultant

torque and a decrease in wrist joint angular velocity at

release (see Figure 5-4 and 5-9). This may result in an

increase in accuracy of the pitched ball and a prevention of

injury.

Figures 5-10 and 5-11 contain the optimal angular

trajectories for the elbow and wrist joints obtained from

simulation and optimization. Similarly, Figures 5-12 and

5-13 contain the resultant torque patterns that generated

these optimal angular trajectories. Control parameters

for the elbow extensor, elbow flexor, wrist flexor, and
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Figure 5-10. Optimal (D) and simulated (x) angular

trajectories of the elbow joint during

the acceleration phase.
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the acceleration phase.



118

 

60

t
o
r
q
u
e
(
N
m
)

    0'. L l l

O 5 1O 15 20

time x 0.0025(sec)

Figure 5-12. Simulated resultant elbow joint torque (x)

and optimal resultant elbow joint torque (D)

for optimal angular trajectory of the elbow

joint during the acceleration phase.

 

   

5

‘1—

A 3..

E

2
V

33. 2’
H

O 1

A) I

O

_1 ' 1 A

O 5 1O 15 20

time x 0.0025(sec)

Figure 5—13. Simulated resultant wrist joint torque (x)

and optimal resultant wrist joint torque (D)

for optimal angular trajectory of the wrist

joint during the acceleration phase.



119

wrist extensor muscles are shown in the Figure 5-14 through

5-17. The patterns of control parameters of each

functional group for the elbow flexion—extension and wrist

'flexion-extension were nearly identical.

Theoretically, there may exist only one optimal

trajectory of the pitching arm that maximizes the velocity

of the ball at release. Hatze (1975), who studied the

kicking motion, however, stated that there are near-optimal

trajectories in the vicinity of the exact optimal

trajectory. Therefore, the optimal trajectory is somewhat

arbitrary in a complex system and should encompass a certain

range of trajectories.

Under the condition that the tracking parameters,

initial and final angles and performance time (0.05 sec),

are predetermined, this author was unable to obtain dramatic

changes in the angular trajectory of the elbow joint and

accompanying ball velocity, from the experimental angular

trajectory toward an angular trajectory that resulted in

increased hand velocity at the release of the ball.

As seen in Figure 5-10, as long as the initial and the

final angles and performance time were preset to the values

obtained from the experiment, the optimal angular trajectory

of the elbow joint was very similar. The hand velocity at

the release of the ball from the optimal trajectory of the

elbow joint was only 1.0 m/s faster than that of the

experimental angular trajectory.
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From simulation and optimization, it was possible to

find an optimal angular trajectory of the wrist joint that

was different from the experimental angular trajectory of

the wrist joint. The hand velocity at the release of the

ball from the optimal angular trajectory of the wrist joint

was 2.0 m/s faster than that of the experimental angular

trajectory. Obviously, the hand segment was influenced

less from tracking parameters than the forearm segment that

is directly connected to the upper arm.

As mentioned earlier, the angular velocity of the hand

was slower than that of the forearm, even though the hand

can theoretically have a higher angular velocity than the

forearm. For these reasons, it was possible to obtain an

optimal angular trajectory of the wrist joint that was quite

different from the experimental angular trajectory of the

wrist joint. However, the primary role of the hand in the

overhand fastball pitch has not been clearly determined

whether it is to control the accuracy of the pitch or it is

to impart speed to the ball. In baseball pitching, the

ball accuracy and the ball speed are both very important.

According to Hatze (1975), accuracy and speed of motion are

incompatible, or at least very difficult to achieve

simultaneously. Controlling of the ball in baseball

pitching is a very complicated phenomenon governed by the

neural system. It should be investigated further.

In addition to elbow and wrist joint trajectories, the

contributions of other body parts and the performance time
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may function to influence the optimal angular trajectory of

the pitching arm in baseball. The tracking parameters

that described the contributions of other body parts to the

velocity of the ball were obtained from high speed three-

dimensional cinematography and used as input to the

simulation and optimization. Thus, the remaining variable

that could be manipulated was performance time.

It was decided to test the acceleration phase time of

0.0325 seconds, that had been obtained by Feltner (1987) as

an average for eight collegiate pitchers. Figures 5-18

and 5-19 are angular trajectories of the elbow and wrist

joints, simulated with an acceleration phase time of 0.0325

seconds. Figure 5-20 and 5-21 are the resultant joint

torques that generated these angular trajectories. The

shorter performance time (0.0325 sec.), using the same

tracking parameters, needed considerably greater joint

torque to match the final angle of the hand at the release

of the ball to that of the experimental angular trajectory

(see Figures 5-12,5-13,5-20 and 5—21). The hand velocity

at the release of the ball was increased by approximately 2

m/sec from that obtained from the experimental angular

trajectory.

In order to investigate the roles of the elbow and

wrist joint muscles on the angular trajectory of the

pitching arm, it was hypothesized that if the resultant

joint torques at the elbow and/or wrist joints were set to

zero, their angular trajectories would be only due to the
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Figure 5-19. Predicted angular trajectory of the wrist joint

during an acceleration phase of 0.0325 seconds.
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contribution of other body parts and the ballistic movement

of the pitching arm itself. Figures 5-22 and 5-23 are the

simulation results when the respective resultant joint

torques at the elbow and at the wrist joint were set to

zero. Figures 5-24 and 5-25 are the angular trajectories

of the elbow and wrist when the resultant joint torques of

both the elbow and the wrist joints were set to zero.

In the case when only the elbow joint resultant torque

was set to zero, the total change of the elbow angle was

0.47 radians, from -1.53 radians to -1.06 radians, and the

hand velocity at the release of the ball was 13 m/s. In

the case where only the resultant wrist joint torque was set

to zero, the wrist joint angle changed 0.19 radians, from

0.9 radians to 0.71 radians, and the hand velocity at the

release of the ball was approximately 16 m/s. With both

the elbow and wrist joint resultant torques set to zero, the

elbow and wrist joint angles changed respectively 0.5

radians, from -1.53 radians to -1.03 radians, and 0.21

radians, from 0.9 radians to 0.69 radians and the hand

velocity at the release of the ball was 12 m/s.

From these simulation results, it was thought that the

elbow extensor muscles and/or the wrist flexor muscles were

not the major contributors to the hand velocity. With the

resultant elbow joint torque set to zero, the forearm was

flexed about the half of the total angle obtained in the

experimental results. With the resultant wrist joint

torque set to zero, the hand was flexed about one sixth of
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torque set to zero.
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Figure 5-25.Simulated angular trajectory (x) of the wrist

joint and predicted angular trajectory (+) of

the wrist joint with the resultant joint torques

of both the elbow and wrist joints set to zero.
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the total angle obtained in the experimental results. The

hand velocity at the release of the ball, however, was

approximately 80 percent of the experimental result with the

resultant elbow joint torque set to zero, approximately 95

percent of the experimental result with the resultant wrist

joint torque set to zero, and approximately 75 percent with

both the resultant elbow and wrist joint torques set to

zero.

The baseball pitching motion is accomplished by a

sequential interaction of the all body parts, through a link

system from the foot to the pitching hand. The current

study fully supported the findings of Feltner (1987).

Through his detailed kinematic analysis he concluded that

elbow extension in the acceleration phase was due mainly to

the trunk rotation, and not to the activity of the elbow

extensor muscles.

Mien

The purposes of the study were to create a mathematical

model of the human upper extremity and to apply the model to

the acceleration phase of the fast baseball pitching motion.

Angular trajectories at the elbow and wrist joints in the

fast baseball pitching were generated experimentally by a

three-dimensional cinematographic technique and

theoretically by simulation and optimization techniques.

The mathematical model was applied to generate

a) angular trajectories that closely matched the
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experimental trajectories at the elbow and wrist joint and

b) optimal angular trajectories that maximize the velocity

of the hand at the release of the ball. The mathematical

model was also used to investigate the roles of elbow and

wrist joint muscles in baseball pitching. The model of

the human upper extremity, created in this study was

considered to closely simulate the experimental angular

trajectories at the elbow and wrist joint in the pitching

motion.

Under the condition that the tracking parameters,

initial and final angles, and performance time were

predetermined, this author was unable to obtain dramatic

changes in the experimental angular trajectory of the elbow

joint toward an angular trajectory that resulted in

increased hand velocity at the release of the ball. From

simulation and optimization, it was possible to find an

optimal angular trajectory of the wrist joint that was

different from its experimental angular trajectory.

With the resultant elbow joint torque set to zero, the

forearm flexed to about the half of the total flexion

obtained in the experimental results. With the resultant

wrist joint torque set to zero, the hand flexed to about one

sixth of the total flexion obtained in the experimental

results. The hand velocity at the release of the ball,

however, was approximately 80 percent of the experimental

result when the resultant elbow joint torque was set to

zero, approximately 95 percent of the experimental result
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when the resultant wrist joint torque was set to zero, and

approximately 75 percent of the experimental result when

both the resultant elbow and wrist joint torques were set to

zero.

Velocity of the ball at release in pitching is

primarily generated by body parts other than the upper

extremity. From the results of this study, it was

concluded that the primary contribution of the elbow and

wrist joints were to position the hand so that the velocity

and accuracy of the pitched ball could be maximized. The

optimal angular trajectory of the pitching arm depends

heavily on the motion of the other body parts connected to

the upper arm through the gleno-humeral joint. Therefore,

the optimal angular trajectory of the pitching arm that can

be obtained from simulation and/or optimization is not the

true optimal angular trajectory unless the motion of the

other body parts is optimal.

III.RECOMMENDATIONS

Simulation and/or optimization as a method of solving

the direct dynamics problem can be theoretically applied to

open the black box that has not been opened via the inverse

dynamics approach. In this study, however, many things

remained untouched because of the limitations of time,

financial support, experimental equipment, and accumulated

knowledge. Further simulation and/or optimization

research should be carried out to discover the causes of
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individual differences in the performances of sports skills

and ways to maximize an athlete's ability. The following

are recommendations to assist in this process.

1. Anatomical parameters such as muscle fiber angle,

muscle cross-sectional area, and muscle-tendon length should

be measured directly from living subjects, using advanced

medical instruments such as NMR.

2. Data collection via three-dimensional filming should

be investigated to find out the range of error associated

with soft tissue motion that may largely influence position

data.

3. All muscles(prime and secondary) should be included

in the muscular system to determine their roles in a model

before developing a simplified model.

4. Tolerances of errors in the approximations of the

insertions of muscles that occupy a broad area should be

investigated.

5. Various pitching motions should be studied.

6. Joint stability should be investigated to prevent

injuries that commonly occur in the baseball pitching.

7. A muscle model that can recognize individual

differences of motor control should be developed.
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