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ABSTRACT

Non-linear Time-Dependent Loss-Analysis of Transformers
By

Tufan Batan

In this thesis the copper and the iron losses in a single-phase small-size
transformer are analyzed taking all the harmonics of the current in the windings
and the magnetizing flux in the iron core into consideration. The analysis is
started by separating the iron losses into hysteresis and eddy-current losses because
of the fact that the hysteresis loss is only a function of maximum flux density. In
the analysis of the current and the flux density, which are the variables needed to
calculate the copper and iron losses, two different method are used. The first is to
combine the two-dimensional non-linear time-dependent field equation, describing
the magnetic vector potential in everywhere in the transformer, with the circuit
equations, including the external loads and sources, and solve them by the finite
element method. The second method is to solve a set of non-linear first-order
differential equations derived from lumped-parameter model and describing the
transformer. The results of the current and flux analysis of two methods are
presented and compared. The copper losses is calculated by the joule loss for-
mula considering all current harmonics and the changes in the winding resistances
for higher harmonics due to skin effect. Finally, the eddy current losses are calcu-
lated by analyzing of the flux density in harmonics in iron core, whereas the calcu-

lation of the hysteresis losses is performed using a non-recursive formula.
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CHAPTER I

INTRODUCTION

The advantages of the electronic-power-switching circuits lead to a rapid
increase of the use of electrical drives such as inverters equipped with such cir-
cuits. Because of the non-linear characteristics of these devices, harmonics are
introduced to the power systems. The effects of these harmonics on the transform-
ers connected to such power systems cause an increase both in the copper losses,
due to the current harmonics in the windings, and in the iron losses, due to the

harmonics in the magnetizing flux.

In this thesis, the copper and the iron losses analysis is presented for a single
phase small size transformer connected to a power system which has current and

voltage harmonics.

Losses in transformers may originate in the windings, in the magnetic core or
in the dielectric. For practical purposes at power frequencies the dielectric losses
are small and usually included in the iron-losses. For convenience in calculations
and testing, it is common to divide losses into core losses, which are independent
of the load, and into copper losses, which increase with the load. It is, at the same

time, common to study of two groups loosely as iron and copper losses .

1.1 IRON LOSSES IN MAGNETIC CORES
In magnetic devices operating with constant flux, no heating occurs in the
core materials. A direct-current lifting magnet or a direct current relay, for exam-

ple, has almost no energy loss in its magnetic circuit unless it is energized and



de-energized very frequently. But power and audio frequency transformers and
devices actuated by alternating currents have alternating fluxes in their magnetic

circuits, and these fluxes give rise to currents which produce heat in the iron core.

The losses that occur in the material arise from two causes: (a) the tendency
of material to retain magnetism or to oppose a change in magnetism, often referred
to as magnetic hysteresis; and (b) the I 2R heating which appears in the material
as a result of the voltages and consequent circulatory currents induced in it by the
time variation of flux. The first of these contributions to the energy dissipation is
known as hysteresis loss and the second as eddy—current loss. The hysteresis
loss is the result of the tendency for the saturation characteristic (B (H)) of the
material to involve a loop when the material is subjected to a cyclic magnetizing
force. The distinction between hysteresis and hysteresis loss is important. The
phenomenon known as hysteresis is the result of the material’s property of retain-
ing magnetism or opposing a change in magnetic state. The hysteresis loss is the
energy converted into heat because of the hysteresis phenomenon and, as usually
interpreted, is associated only with a cyclic variation of magnetomotive force. This
interpretation is the result of the extensive engineering use of the material under
cyclic magnetizing forces, and the relatively large importance of loss data
representative of this manner of use. The eddy—current loss is produced by the
currents in the magnetic material, and these currents are caused by electromotive
forces set up by the varying fluxes. The sum of the hysteresis and eddy-current

losses is called the total core loss.

1.2 COPPER LOSSES






It is evident from well-known principles that the primary copper loss in a
given transformer is proportional to the square of the primary current. The secon-
dary current or load current can be referred to the primary, so that the secondary
copper loss will also vary with the same way. The effect of the no-load component
on the total copper loss is small in transformers of any size, but in small
transformers for a few hundred watts or less it may be appreciable. In those cases
where account is taken of this loss, it must of course be reckoned as a no-load
loss, but to do so complicates the picture because the loss depends upon the power
factor of the secondary load. The subject will therefore be dealt with on the

assumption that the copper loss increases in proportional to the output current.

Another loss which varies with the load current is .that arising from eddy-
currents in the conductors due to the fields produced by alternating currents
flowing in them. These losses are also proportional to the square of the current and
can be conveniently added to those due to the normal copper loss. If this is done,
the total copper loss is equivalent to that which would occur if the winding were
assumed to have a higher resistance than its true value, and it is very often con-
venient to regard the effect in this light. From this point of view the winding is
said to have a higher resistance to alternating current than to direct current. This
effect is known as skin effect and much more pronounced at the higher frequen-
cies. The ratio of a.c. resistance to d.c. resistance is greater for large section con-
ductors than for thin ones and it is also greater in coils than straight conductors;
consequently it is appreciable even at power-frequencies in the very large conduc-
tors used in the low voltage windings of large transformer. The skin effect can be
reduced by using a number of separately insulated small section conductors instead

of a solid bar.






Although the eddy-current losses in the copper can be grouped with the resis-
tance losses due to an apparent increase in resistance to A.C., it should not be for-
gotten that they are really distinct. One instance of when this should be borne in
mind is in considering the effect of the temperature on the resistance. The true
ohmic resistance of copper conductors increase with temperature at the rate of 0.38
per cent per 1 °C. Whereas the eddy current loss decreases at the same rate with
rising temperature, because the magnitude of the circulating current is reduced by
the higher resistance of the path around which it flows. Therefore the loss, being
proportional to the square of the current, decreases more rapidly on this account
than it increases on account of high resistance of the path. The ratio of a.c resis-
tance to d.c. resistance, thus, decreases at higher temperatures because of the
lower contribution of eddy current losses to the total copper loss, and apparent
temperature coefficient of a.c. resistance is lower than the normal figure. The
extent of this reduction is, of course, dependent on the proportion of the eddy-
current to the true ohmic loss.

The current harmonics in the primary and secondary windings introduce addi-

tional copper losses to the total copper losses as well. These additional losses will
be analyzed in chapter III.






CHAPTER I

IRON LOSSES AND DERIVATION OF ITS RELATED PARAMETERS

2.1 INTRODUCTION

As earlier mentioned, the iron losses can be divided into two groups which
are the hysteresis loss and the eddy-current losses. The focus of this chapter will
be on the derivation of some parameters to calculate these losses and the separa-

tion of the given iron losses into the hysteresis and the eddy current losses.

2.2 HYSTERISIS LOSS AND ITS PARAMETERS

The occurrence of hysteresis loss is a matter intimately associated with the
phenomenon whereby energy is absorbed by a region which is permeated by a
magnetic field. If the region is other than vacuum, only a portion of the energy
taken from the electric circuit is stored and wholly recoverable from the region
when magnetizing force is removed. The rest of the energy is converted into heat
as a result of work done on the material in the medium when it responds to the
magnetization. When the flux density in a region is increased from a value By to a
value B,, energy is absorbed by the region. The magnitude of the energy absorbed
by per unit volume can be given by:

w = [HdB (1)

The integral of Eq. 1 is proportional to the area bounded by the B (H) curve for
the region, the B axis, and the lines parallel to the H axis representing constant

B, and B, respectively. Hence, its magnitude depends on the values B, and B,

5



and the shape of the curve between B, and B,. If the flux density is decreased
from any specified value to a smaller value, the algebraic sign of w is negative
and energy is given up by the material.

When the region considered consists of ferromagnetic material, the magneti-
zation curve between any two values B, and B,, corresponding to a decreasing
value of H, is different from the curve corresponding to an increasing value of H.
The values of flux density in a ferromagnetic material are larger for a given mag-
netizing force H when H is decreasing than when H is increasing, even though,
for a cyclic variation in H, the extreme values of B are the same for each cycle
when the material reaches its steady-state condition. On account of the difference
in two curves, which for cyclic condition actually form the two sides of a closed
loop, the energy absorbed by the material when the flux density is increased from
B, to B, is larger than the energy returned when the flux density is decreased
from B, to B;. The difference in these energies is the magnitude of the
hysteresis loss. By the evaluation of the integral Eq. 1 over a complete cycle of
magnetization, the energy loss per cycle caused by magnetic hysteresis can be

determined.

As an illustration of the integration process, the energy stored per cycle, a
magnetic core having an exciting coil carrying an alternating current is to be con-
sidered. In this case, the magnetizing force is reversing cyclically between the
limits +H; and —H ;. The relation between B and H is as shown Fig 1. During the

part of the cycle ab, the magnetic energy absorbed by the core per unit volume is

B

wy= £ H dB = (area abea shaded in Fig. 1a) )






(b)

)

Figure 1. Hysteresis loop. Shaded areas in (a) and (c) show energy absorbed;

in (b) and (d) energy returned by steel. (2]



The area would be determined either by numerical integration or through counting

squares by the use of a planimeter.

During the part of the cycle bc the energy absorbed magnetically per unit of
volume is, by Eq. 1,

B,

wy= [ H dB =—(area bceb shaded in Fig. 1.b). 3)
Bom

Since B, < B,,, and H is positive, this integral is negative; that is, energy is

being given up by the magnetic field and returned to the exciting circuit.

Similarly, during the part of the cycle cd, the energy absorbed magnetically is
equal to

B s

wi = j H dB = (area cdfc shaded in Fig. 1c). 4)
B,

During the part of the cycle da energy is given up by magnetic field and returned

to the electric circuit. The absorbed energy is therefore negative and given by

-B,
wy= | H dB =—(area dafd shaded in Fig. 1d). (5)
-B

The net energy w,, absorbed by the magnetic field per unit of volume for one com-

plete cycle is

Wh=W1+W2+W3+W4. (6)






This energy is dissipated as heat in the material each cycle. The dissipation is
called the hysteresis loss. Its occurrence has an important effect in the efficiency,
the tcmpcramfc rise, and hence the rating of electromagnetic devices such as

transformers.

Although the area of a closed hysteresis loop indicates how much energy is
dissipated in the core per unit volume per unit cycle because of hysteresis, it does
not indicate at what part of the cycle the dissipation occurs. For example, during
the part of the cycle ab, an amount of energy w,, Eq. 2, is absorbed by unit
volume of the core. However, this analysis does not indicate how much of this

absorbed energy is dissipated as heat later during the part of the cycle bc.

If the volume V of the magnetic material, throughout which the flux distribu-
tion is uniform and for which the hysteresis loop is known, is subjected to a cyclic
change at a frequency of f cycle per second, the rate at which energy is dissipated
because of hysteresis (hysteresis power loss) is

P,=V fw=V f (area of the loop ) )]

The hysteresis power loss per cycle can be calculated by means of the forego-
ing relations if the hysteresis loop for given maximum flux density B ., is known,
but the manner in which this loss varies as a function of B,, can be determined
only through repeating the calculations for the hysteresis loops having various
values of B ,,. Empirically, Steinmetz[2] found from the results of a large number
of measurements that the area of the normal hysteresis loop of specimens of vari-
ous irons and steels commonly used in the construction of electromagnetic
apparatus of his time was approximately proportional to the 1.6¢th power of the
maximum flux density throughout the range of flux densities from about 0.1 to 1.2

T. As a result of research on ferromagnetic materials, numerous magnetic steels
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having widely varying properties have been made available since Steinmentz per-
formed his measurements. The exponent 1.6 fails nowadays to give the area of
the loops with a sufficient degree of accuracy to be useful. The empirical expres-

sion for the energy loss per unit volume per cycle is more properly given as:

W, =GBl » (W kg cycle) (8)

where n, ¢ are the constants which depend on the magnetic material. Equation 8
should be used with caution since the value for n, which may vary between 1.5
and 2.5 for present-day materials, may not be constant for a given material. For
some material, an expression of the form of Eq.8 is not sufficiently accurate to be
generally useful. Hence, these constants should be evaluated for a certain range of

B . and then subsequently used for values of B ,,, only within this range.

If Eq.8 is written in its logarithmic form,
logwy, = n logB .« + logc )

a straight-line relationship between logw, and logB,. is indicated. From test
data, several values of logw, can be plotted as ordinates corresponding to the
different values of logB ., as abscissas. These points should lie along a straight
line having a slope equal to the exponent n and having an intercept on the vertical
axis equal to logo. Obviously two points would be sufficient to determine the
values of n and o, but, if several points are used, the straightness of the curve
joining them indicates how well the resulting Eq.8 fits the data in the range under-
consideration. If the points do not lie along a straight line, the constant-exponent
type of equation is not appropriate[3].

Any convenient system of units can be used for w, and B_,, in Eq.8 of the

corresponding value if the coefficient ¢ is used. The total hysteresis loss in a
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volume V in which the flux density is everywhere uniform and carrying cyclically
at a frequency f second can then be expressed empirically as:

The equations given here can only be used for the symmetrical hysteresis
loop in which B ranges between equal positive and negative values and in which

there are no re-entrant loops.
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2.3 THE EDDY-CURRENT LOSS AND ITS PARAMETERS

Whenever the magnetic flux in a medium is changing, an electric field appears
within the medium as a result of the time variation of the flux. The line integral of
this electric field £ taken around any closed path that bounds the flux is given by
'Faraday induction law as

__d
daEdl_ H;J'Bnds (11)

where abcda is the path bounding the area crossed by the flux @ or IB nds. When
the medium is conducting, a current is set up around this path by the induced electro-
motive force e resulting from the line integral of the electric field. These currents are
called eddy currents. Their presence results in an energy loss in the material propor-
tional to i2R, called eddy —current loss , the energy being absorbed from the circuit

that sets up the field and being dissipated as heat in the medium.

Since the flux density in ferromagnetic materials is usually relatively large, and
since the resistivity of the materials is not extremely large, the induced electromotive
forces, the eddy currents and the eddy-current loss may become appreciable if means
to minimize them are not taken. This loss is of considerable importance in determin-
ing the efficiency, the temperature rise, and the rating, of electromagnetic apparatus
in which the flux density varies.

To illustrate the conditions typical of those that occur in an iron core, the thin
metal slab shown in Fig. 2 is considered to be permeated by an alternating flux ®.
From Eq. 11, the electromotive force e induced around a boundary abcda of the area

through which a flux is changing is given by:



e = — ——, (17)

Figure 2. Cross section of lamination showing a current path. 4]

This voltage acting around the circuit abcda causes a current i to circulate around the
boundary and to set up a magnetomotive force in such a direction as to oppose any
change in ®. The effect of such currents is to screen or to shield the material from

the flux, and to bring about a smaller flux density near the center of the slab than at
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the surface for a specified total flux varying periodically, the maximum flux density
at the center is smaller than the value obtained from dividing the total maximum flux
by the area. Another way to describe this effect is to say that the total flux tends to be
crowded toward the surface of the slab. This phenomenon is known as skin ef fect.
A similar skin-effect phenomenon occurs in an electric conductor that has a varying
current, even when it is composed of materials having unit relative permeability. In
such conductor, the electric current density is larger at the surface. Since magnetic
and electric skin effects are similar in nature, they are subject to the same type of

analysis.

An analysis of eddy-current loss that arbitrarily ignores skin effect is useful and
relatively simple, and gives results that are sufficiently accurate for many applica-

tions, especially in devices having laminated cores.

The analysis is developed for a thin plane slab of electrically conducting
material having a thickness t as shown in Fig. 2. In this slab, it is assumed a uni-
formly distributed magnetic field whose magnitude is varying with time and whose
direction is everywhere parallel to the arrow. The assumption of uniform magnetic-
field distribution means that the magnetomotive forces of the eddy currents have
negligible effect on the flux distribution, and that the current paths such as abcda are
symmetrical about the center line through zero as shown. Also, because of the great
height as compared with the thickness, the voltage gradient is practically uniform
along the vertical current paths except near the top and bottom of the slab. For this
reason, any horizontal slice of unit height very close to the top or the bottom has
practically the same configuration of voltage gradients and current densities as any
other horizontal slice. The portion of the slab considered is shown in Fig 3; It is a

rectangular parallelepiped which has unit height, unit weight, and thickness t and is
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symmetrical about the OY axis which passes though the center of the slab. The nar-
row face containing points a, b, ¢, and 4 is normal to direction of the flux. The
decrease in the magnitude of the flux density with time through the area abcd in the

direction shown induces a voltage around the path in the direction abcd .

i thickness |

3

Figure 3. Unit element of lamination for calculation of eddy-curreent loss.
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The application of the Faraday’s induction law to the path abcda in the XZ

plane normal to the direction of B gives

L Ex.d1=-F [Bnads (13)

where E; is the vertical voltage gradient at a horizontal distance x from the XY
plane. In accordance with the above argument, the value of the line integral

AJ“E, .dl taken around the closed loop is 2E,, since the parallelepiped is of unit

height. The surface integral jB.nds, evaluated over the plane abcd, is 2 x B; hence

Eq.13 can be written
__d
2Ex = -2;(23 X) (14)

If the conducting material has a volume resistivity p, the current density J,

along bc or da is

Jo=2x=-ldm ) (1)
=(-£ dB
p’dr

since x is not a function of t. Along the two planes parallel to the extended faces and

containing lines bc and da respectively the instantaneous power per unit volume is
2 x%| dB 2 .

This power loss occurs at the distance x from the central YZ plane of the slab. The

instantaneous power loss in the differential slab dx thick is

2
szpdx=%[%€-] x2dx . an
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The instantaneous loss in the volume of slab having unit width and unit height and

thickness T = 2d is

_ 2| dB|? _2d3 2
211,2pdx-3[-3,-} Ixzdx--g-—p—[-at-] . (18)

A unit cube of the laminated material made up of similar slab contains -213 such

volumes; hence the instantaneous eddy-current loss per unit cube of laminated
material with perfect insulation between the slab so that no current exists across the

lamination is
1| 2d3| aB|? _ a2| dB|> (19)
2|35 | 3| | = 3| @& |

Equation 19 gives the instantaneous power loss caused by the time variation of
B. In the alternating-current-machinery practice, the variation of B is usually

sinusoidal. If b is its instantaneous value,

b = B gy COSWE, (20)
from which
%’;-:—mamsinmz, Q1
ab|?
2| = w? B2 sinox, (22)

and therefore the instantaneous power loss is

d? 0? B2«

5 sin2ax. (23)
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Since the average value of a sine-squared function over any integral number of
cycles, or over any long-time interval is one-half the maximum, the average eddy-
current power loss per unit volume when the flux density is varying sinusoidally at a

frequency f is

_d22n2f2B2, mf2t2B2,
pe"‘ 3p - 6p ’

(24)

where 7 is the thickness of the individual slab, or lamination.

In the magnetic circuit containing a volume V' of laminated core material sub-
jected to the same magnetic condition as the foregoing unit volume, the average

eddy-current power loss is

2 2B 2
Pt =Vp¢ = nﬁfzf:;mx.v . 25

when V is expressed in cubic meters, f in cycles per second, T in meters, B pax in
webers per square meter, and p in ohms per meter cube, P, is expressed in watts in

Eq. 25.

The loss for any specific material is preferably written as:

Pe=k¢f21283nx (26)
and, although theoretically
. <
ke = Bp (27

the effect of finite volume of material, low resistance between laminations, and air
gaps within the core make the eddy-current calculation more accurate if k, is deter-

mined from power measurements performed on a sample of the material and used for
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Eq. 26.

In above eddy-current loss analysis, the magnetic flux is considered as
sinusoidal, however in some applications the magnetic flux would not be sinusoidal.

In this case, the magnetic flux can be expressed as:

b= Bp max cosn ot (28)

n=

then,
%?— = ﬁl (=n®) B, max Sinn e (29)

and the instantaneous power loss per volume becomes,
d? [ n? 6 B pay sin?n m:] (30)
3'5- i~ n,max .

from which, the average power loss is

L7 n2 02 B,? 1ax sinnoxe d(wr) @31
Pe= 55| T § H e Bom

2
=.§§. 'Zlf 2n2d8n%m fsinznmt d(we)
n=

_d¥]1
-3-6{-2-"% nzo)zB,.zm} .

Where w=2rf and the average eddy-current loss for non-sinusoidal flux density can

be given as:
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2 £242
P, ='2§_£Td'ng"23"z'm“ . (32)
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2.4 TOTAL CORE LOSS

The total power loss occurring in iron cores subjected to an alternating magnet-
izing force is the sum of the hysteresis and the eddy-current losses. From Eq. 1 the
total area of the hysteresis loop and Eq. 24, the total power loss p. per unit volume is

expressed by

Pc = Pn + Pe
or
2,2-2R2
pc=f Jpadﬁ+&6tp_89_’i (33)

where the symbols have the significance previously given. If the core material is such
that the hysteresis loss follows the empirical relation given by Eq. 8, this loss can be

written as

Pc =0 f Bha % (34)

If the average flux density is the same throughout the volume V of core, the total loss

P. in this volume is

P.=V p. (35)

Devices in which ferromagnetic materials carry alternating fluxes practically
always have associated electric circuits which interlink the magnetic circuits.

Transformers for example, have laminated ferromagnetic cores around which are
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wound the turns of one or more coils of wire. The core losses are related to the elec-
tromotive force induced in such a coil by the changing flux. The maximum flux
@nax in terms of the effective value of the induced electromotive force E in a coil of

N turns is

_ E

when the flux and consequently the electromotive force vary sinusoidally. If the flux

density is uniform over the cross-sectional area A of the core,

Bux=3= T E —. 37)

For a given transformer the number of turns and the core area are fixed by the design.
Then,

B =K % (38)

by substituting into Eq. 34, gives
= K E n2 f212K2E?
=C y +
pe=0f( f 6pf

=Kl-—rfE:_ + K, E? (39)
Equation 39 applies only when the waveform is sinusoidal. Although the hysteresis
loss is dependent on the maximum flux density and is independent of the waveform

of the flux as long as the hysteresis cycle is symmetrical and without loops, the rela-

tion between the maximum value of flux density and the effective value of the
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generated electromotive force does depend upon the waveform. Thus, when
expressed in terms of effective electromotive force, the hysteresis loss is correctly
given by the first term of the right hand side of the Eq. 39 only when the waveform is

sinusoidal.

In contrast, the second term in the core-loss expression, Eq. 39, gives the
correct eddy-current loss regardless of the waveform provided the frequencies
involved in the non-sinusoidal wave are not high enough to produce a considerable
skin effect. When the flux wave is made up of components as discussed in previous
section, each of these components induces eddy currents in the core. The eddy-
current loss produced by each harmonic component in the flux is proportional to
square of the same harmonic component of the electromotive force generated in the
winding. Then if E,, Es, E5,.... are the effective values of the fundamental and har-
monic components of the generated electromotive force, the total eddy-current loss

is, according to the second term of Eq. 39,

Pe=Ky(ER +E2 +E? +.....)). (40)

But the sumof E¢ ,E¢ ,E# ,....... equals the square of the effective value E of the
generated electromotive force. Note also that the eddy-current loss, when expressed

in terms of E , is independent of frequency.

Changes in temperature such as are encountered in practice have a negligible
effect on hysteresis loss. The eddy current loss decreases somewhat with increase in
temperature. For a given flux variation, the eddy current loss is inversely propor-
tional to the resistivity of the core material as indicated in Eq. 25. The resistivity

increases with temperature.
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Since Egs. 33 and 34 are derived on the basis of several assumptions that in
practice may not be fulfilled. Therefore, these equations are not so much for the cal-
culation of the loss in particular cases rather they serve effectively as guides to the
analysis of experimental data and also indicate the possible ways of modifying the
loss. Since the validity of the assumptions depends on the condition of use of the
materials, a restatement of these assumptions should be serviceable. The derivation
of the hysteresis-loss term in Eq. 33 assumes that:

(a) Each lamination is homogeneous magnetically; that is, each element of its

volume has the same magnetic characteristics.

(b) The flux density is uniform throughout each lamination; that is, the effect of the

eddy currents on the flux distribution is negligible.

Furthermore, the empirical expression for the hysteresis term of Eq. 34 is sub-

ject to the additional assumptions that:

(c) The hysteresis loop is of the normal symmetrical shape with no re-entrant loops.
Provided this condition is satisfied, no restriction is placed on the manner in

which B varies with time throughout a cycle of magnetization.
(d) The material, the range of maximum flux density, and the manner of flux-
density variations are such that an empirical exponent n can be used with rea-

sonable accuracy.
The derivation of the eddy-current loss term of Eq. 33 or 34 assumes that:

(a) The material is magnetically and electrically homogeneous. In practice, this
condition is not perfectly fulfilled, since such factors as grain size, the direction
of the grain produced by rolling, and the relatively poorer magnetic properties

of the surface layers have an appreciable effect, especially in thin laminations.



(b)

(c)

(d)

(e)

®
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The thickness of the lamination is constant and very small compared with its

other dimensions. This condition is usually realized in practice.

The flux density is uniform throughout the thickness of the lamination; that is,
the eddy-current magnetomotive force is negligible compared with the magnet-

izing magnetomotive force acting on the core.

The volume of core involved is subjected to a uniform field so that at any

instant the flux density is the same in the different laminations.

The laminations are perfectly insulated from each other. This assumption is sel-
dom fulfilled in commercial apparatus on account of the considerable pressures

under which the laminations are clamped together.

The flux density undergoes a sinusoidal time variation and is always directed
parallel to the plane of the lamination. The assumption of a sinusoidal time vari-
ation is not a restriction, however, since it was shown that the factor (f B pay)?
can be replaced by E2 times a constant, where E is the root- mean-square vol-
tage induced in a coil linked by the alternating core flux which may have any

waveform.
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2.5 SEPARATION OF HYSTERESIS AND EDDY-CURRENT LOSSES

Any direct measurement of the power loss in the iron necessarily gives the total
loss, but the division into the two components can be determined through the dif-
ferent ways in which the two are related to the variables. Equations 33 and 34 indi-
cate that, when the flux density is a sinusoidal function of time, each component of
loss is a different function of frequency and maximum ﬂﬁx density. In addition, the
eddy-current loss is a function of laminaton thickness and of the resistivity; but,
since these quantities cannot be changed in an actual sample of material, they are not

available as variables.

A method of separating the hysteresis and eddy-current components of core loss
depends on the fact that the hysteresis component varies linearly and the eddy-
current component varies as the square of the frequency. Stated differently, the hys-
teresis component of the rotal energy per cycle , P./f , is independent of frequency
and the eddy-current component is a linear function of frequency. If the loss is
measured at a given constant maximum flux density and the frequency is varied, then
a plot of the loss per cycle as a function of the frequency, if it follows the theoreti-

cal relation

24202
%‘.—'.:kLHdB + [T—“ L g““"] f (41)
=ky +k. f,

should be a straight line. The ordinate where the line intercepts the P./f axis at zero

frequency gives the hysteresis loss per cycle k, and the slope of the line is the
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parenthetical coefficient of f in Eq. 41, namely

nz 128 2
k. =7T’_"£ . (42)



CHAPTER III

ANALYTICAL CALCULATION OF (ADDITIONAL) TRANSFORMER LOSSES
DUE TO HARMONICS

3.1 INTRODUCTION

The harmonics of the terminal voltage (current) introduce joule losses in the

windings and iron losses in the core.

Voltage harmonics cause harmonic currents in the primary and secondary
windings and, depending upon conductor size and the order of harmonic frequency
v, the skin effect may cause an increase of the a.c. winding resistances R,, and

R;,.

Usually the load impedance ( e.g. resistor and inductor )

Zioady = RioadytiVOL 50q 43)

is dependent upon frequency. This increase of the impedance may decrease the

harmonic currents significantly.

The precence of harmonics in the terminal voltage also cause additional iron
losses. Some experimental results have shown that these losses are largest within
the iron stack portions which are in the vicinity of the harmonic current-carrying
windings and smallest in the iron portions that are farther away from such wind-
ings. Thus, the presence of harmonics result in a locally varying loss that results in
a locally-varying temperature rise.[S]

In the following analytical part, average iron and copper harmonic losses

will be calculated as functions of harmonic frequency and amplitude.

28






29

3.2 EQUIVALENT CIRCUIT

The harmonic losses of transformers can be calculated from the equivalent

circuit shown for the vzh harmonic in Figure 4,

Hz{oad. y

Vs,» L

Figure 4, Equivalent circuit of a transformer for the vth harmonic

where

R

p.v is the resistance of primary winding for veh harmonic current,

R;'v is the resistance of secondary winding for the vzh harmonic current referred
to primary,

Rg, is the core-loss resistance for vth harmonic flux density,
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X,y is the leakage reactance of primary winding for vk harmonic,
X','v is the leakage reactance of secondary winding for vzh harmonic referred to
primary,

X, v is the magnetizing reactance for vth harmonic

VP'V 3 Ipnu are the voltage and the current of primary winding of vth harmonic

order,
V','v ;i; nu are the voltage and the current of secondary winding of vtk harmonic

order,

-~

Env; i,'v are the emf and no-load current of parallel branch of vth harmonic

order, respectively,

-

I,y is the magnetizing current of vzh harmonic order, and

I, is the core-loss current of vzi harmonic order.

For the calculaton of the ohmic losses the above equivalent circuit may be
simplified by neglecting the parallel branch ( see fig. 5), since the magnetizing

current is negligible as compared to the load current.

Ipo' ’ ’
._..Rp,p xp.y xs.v RS.V
O A\ preeeed Y\ — o AAAs ’e) -y
— -} Licad, o
\79'” Is.y \’s.vi
o O

Figure 5, Approximate equivalent circuit of a transformer
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Neglecting the magnetizing current, the load current can be written as:

IV,

VR, v R s+ R 10aayHV) Ly +Lo A+ Lo )

liload.vl = lip.vl = (44)

Ripaay and Xjpp4y = me;md.v represents the resistance and reactance of the load
which is connected across the terminals of the secondary winding. i,wd'v is the v

harmonic current of the load.

3.3 CALCULATION OF OHMIC LOSSES DUE TO HARMONICS

The ohmic losses of a transformer are given for the vth harmonic by

Pomicy = PR,y + U, R, 45)
= lIload.vIz(Rp,v‘*R.'\'.v)

substituting the expression of i,,,ad‘v of equation 44 into equation 45 one obtains

_ IV, (R, v +R)
(R Roy R1oad P HVOY Ly L+ Linad )

P ohmic,v (46)

This relationship may be used for the calculation of the ohmic losses at any angu-
lar frequency v, where ® = 2nf and v is an integer. However, at higher frequen-
cies where the depth of penetration becomes comparable to the diameters of the
transformer’s wires of the primary and secondary, the winding resistance and reac-

tances must be corrected.

3.4 CALCULATION OF IRON LOSSES DUE TO HARMONICS
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The iron losses consists of eddy current losses (P,) and hysteresis losses (P,).

In Ref [6] these losses are given by the following relations:

5
P,y =0(——= 100 Bouy)?  (Wantsikg) 47)
Py, = ef—”(B 2 (Warslkg) (48)
hv 100 max.,v

where:

Constants ¢ and € depend upon the core material [7]. f, is the frequency in Hz,

B, is the flux density in Tesla and can be calculated from the applied voltage as

follows :
Dy = Yomary (Weber) (49)
VT 2N
using the effective value of applied voltage, B ,,, , can be given by :
Braxv = ‘/_V (Tesla) (50)
’ 211;vaA

The total iron losses per unit weight, P;,,,, is given by the sum of the above

relations:

K

A
Pyony =Poy + Ppy = {0‘( 00 B,)? + e—

v)2} (Wartslkg) (51)

Note that this relation can be used directly for low frequencies at which the reac-
tion of the eddy currents in the laminations can be neglected. At higher frequen-
cies the relations for P, and P;,,, must be modified by coefficient k,, which takes

the reaction of the eddy currents [8] into account. Thus,

L BY%Z,  (Wansikg) (52)

Pev_o'(
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and

5
100

2
5 (B,) } (Wattslkg) (53)

Piony = {o( S Bk + €

The asterisk denotes that the eddy currents is taken into account;

Where
A o
and
(=aA (55)
with

\ /u,fv
=2 1/ 56
o =2n 0% (/cm) (56)

A in cm the thickness of the laminations,
p is the resistivity in Qmm?%/m of the core material, and

W, represents the relative permeability of the core material.

Since k,, is smaller than one, the modified expression for P, indicates that at
higher frequencies the eddy current iron losses are reduced in the iron regions near
the conductors while it is greatly reduced in the iron regions farther away from the

conductors.

3.5 SAMPLE CALCULATION
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In this section, the copper losses of a transformer model, whose finite element
analysis is done in the next chapter as well, is calculated for a six-step applied
(primary) voltage.

In reference 9, the change in resistance of a cylindrical conductor is dis-
cussed; If R is the effective resistance of a linear cylindrical conductor to
sinusoidal alternating current of given frequency and R is the true resistance with
continuous current, then

’

R = KR 37)

where K is determined from Table 4-6 of reference 9 in terms of x. The value of x

x = zna\/%& (58)

is given by

where :
a the radius of conductor in centimeters,
f frequency in cycles per second,
H, relative magnetic permeability of conductor,
p resistivity in abohm-centimeters (abohm=107°Q).
The relative permeability of non-magnetic materials ( copper, aluminum) is 1.

The six-step applied voltage shown in Figure. 6 can be expressed in the form

of equation 59 after applying the fourier series analysis.

20 VT« .
= — 1+ — 9
vV = EI [ COsS 3 ] sin (V () t) (5 )

The effective and non-zero harmonics of such wave form are 1, §, 7, 11, 13.

For these harmonics, the additional copper losses is given in Table 1. In this
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calculation, It is assumed that the load resistance is changing with frequency but
not the load reactance. It should be noted that the leakage resistance is not chang-

ing with the frequencies whose harmonics are given above.
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vivy A
20
10
wt
n3 w3 a3 Sm3 . 2 £ 7 B £ 7K x 10r/3 i3 pr
M
-20
Figure 6. Six-step applied voltage

v Vov (V) Rpv+ Ry () Ricaav () Licadv (H) | Ponmicyv W)
1 6.75 0.2351 3.0 0.01 0.4
5 1.35 0.2351 3.15 0.01 162x 1073
7 0.96 0.2351 3.20 0.01 0.308 x 10°}
11 0.61 0.2351 3.23 0.01 . 5.109 x 10°9
13 0.52 0.2351 3.25 0.01 2.625x 10

Table 1. The additional copper losses for six-step applied voltage.




CHAPTER IV

NON-LINEAR TIME DEPENDENT FINITE ELEMENT METHOD ANALYSIS OF
TRANSFORMERS

4.1 INTRODUCTION

The standard procedure of using finite element analysis is to approximate
magnetic field quantities within a fixed device or region. The user describes the
problem geometry and material characteristics, sets boundary conditions, and
specifies numerically all current densities, which act as the source of the magnetic
field. The region of interest is then discretized in space into mesh, and the finite
clement field approximation equations are set up and solved. The solution consists

of a set of approximations for the field at each node of the mesh.

Hovewer, such a procedure is inadequate for a large class of practical prob-
lems, for example, in the transient analysis of an electromagnetic devices which is

activated by a voltage source, such as transformers, and motors.

The voltage source for such devices is time-dependent; therefore, one cannot
specify a priori the numerical value of the current density in the conductive
regions of the device, because skin effect and eddy currents cause the current den-
sity to vary with time and position the standard finite element procedure, however,
requires current current density as a known input to the analysis.

In addition, it may be necessary to attach lumped circuit components, such as
resistance or inductance, between the voltage source and the region to be modelled
by finite elements. The lumped components may represent the internal impedance

of the voltage source, or they may be used to approximate the effects of the parts

37
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of the device which are outside the region modelled by finite elements. Proper
coupling of circuit equations with the finite element field equation cannot be

achived with conventional finite element analysis procedures.
Therefore, modification to the procedure must be made so that:

(a) Only terminal voltage applied to the device is required as a known input
quantity, and total terminal current is calculated as an unkown;

(b) The external circuit equations that model electrical sources and circuit com-
ponents are coupled to the finite element field equations.
Moreover, the advantages of this method to analyze the electromagnetic dev-

ices are:

(a) Deviation from the traditional and cumbersome equivalent circuit and lumped
parameter models;

(b) Better model of the device can be achieved using this method;

(c) Effect of the non-linearity of the iron and other parameters can be easily

incorporated in the model close to the actual.

In this chapter, the ﬁeld and circuit equations of a transformer are coupled
giving a time dependent set of non-linear equations, the solution of which gives
the magnetic vector potential at every point in the cross section of the transformer
and the electric field intensity together with the primary and secondary currents at

the cross section of the conductors.

4.2 ANALYSIS

It is common to solve for the electric field at the cross-section of a

transformer with the assumptions given below:
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1. The problem is two dimensional, i.e., considering zero non-axial components of

the current density and the magnetic vector potential.
2. The permeability is a function of the flux density.
3. No eddy currents are present in the iron.

4. The magnetic field is contained in the geometry.

In this case, an equation that describes the field in the transformers

can be given as [10,11]:

3 104, d laAz 0A,
ot

-OE, =0 (60)

where A, and E, are the axial components respectively of the magnetic vector

potential and of an "applied” electric field, such that:

E, = === 61)

0 _ v
0z l

where [ is the length of the model and ® is an electric potential.

It is the circuit equations that provide the boundary conditions at the two planes
perpendicular to transformer axis that define the length of the model. The follow-
ing equations are obtained from (60) using Crank-Nicolson-Galerkin method.

SA+KA-NE=0 (62)
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[(1-e)s + —E-]AM‘ - (1-9)NE™**! = [—es + %]A" + ONE" (63)

where 1 <0 < 0 and S, K come from local matrices with entries ;

§ oeal = ﬁ [(0150;. + 01,03, cdy (64)

Kixd=0 ‘Il (9;9; )dxdy (65)

When using the same elements and shape functions for E as A, the entries of

N are the same as K.

Equation (63) will be augmented with circuit equations that relate the A or E

to currents and external applied voltage.

Besides (60), dropping the subscript z, we can write at every node on a coil

side:
—-6(A -E)=J , (66)

since J and o are considered zero everywhere except the conductor cross-sections.
One need only calculate values of £ and write (66) only for these regions. There,

due to many thin wires carrying the same current, one can consider J uniform.

Taking two sides of the a coil and establishing for each coil a positive direc-

tion of current, one can write for the current density in the cross-section of coil
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side i:

d; = +1 67)

where the value of d; is the reference direction of the current establishing with the
help of Figure 7, n; is the number of wires in this coil side, and Q; the cross-

section of this coil side.

Figure 7. Reference directions and the circuit for a coil.

Writing (66) for each node of elements of conductors in primary and secon-

dary, and premultiplying the resulting system of equation by NT We obtain:
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M n
-NjA + NLE - _-Ea'Ng;‘dlp,,- =0 (68)

and as a difference equation:

n
“NpA™! + NpAr (1-0)E™! - —=ArNgrdlot! =

n
NprA” — NpGAr6E™ + — ~ArNgdiz, (69)
From Kirchoff equations, one can write for primary and secondary:
dl,;
24; [EIE ,-] + R AL— = = Vg (70)
pri |€%

where the inner sum extends over all the wires of the coil side i and the outer sum
over all the coil sides in the primary. In this equation it is recognized that the elec-
tric field is not necessary uniform over a winding cross-section, while the current

is. R and L can be written as follows:

R = Rm + Rend—turn

L =Ly + Leng—rurn

where
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R_; is the external resistance with the coil.
L,y is the external inductance with the coil.
R pnd—turn 1s the winding resistance.
L pg—wurn is the winding inductance.

Replacing the inner sum with an integral (70) takes the form ;

n .
IQO NP’i dTE + Rlprl' + upri = Vezx,pri 1)

which becomes a difference equation:

n Tn+l 1 1 o
Q—Gm(l—e)Np'id E + -l- [At(l—e)R+L]I:,f =
-AI‘—V,,rx - QLoAz 6N, dTE" - % [A: R —L] s (72)

Combining (63),(69),(72) for single phase transformer one obtains an equation

system in the following form:

Co Coyun  Cosee - -A"” -
C},',,., Ciori Copri El',‘,'.'il
| —CX Cepri | =
Clec Cagec  Cossec Ex!
—Cssec Cosec I
C(; Copri Cosec TA" Bl
—Copri Capri Cspri Epni 0
- ~CEi Ceprt i |+ |Fori (73)
—Cec Casec  Cssec Eg. 0
_ Clec Choee | |12c] e
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4.3 TIME DEPENDENCE AND SOLUTION METHOD

Besides V., the matrices Cy and C 6 depend on time through the nonlinear-
ity of permeability of transformer. To account for nonlinearity, Newton’s
Method[12] was utilized at every time step to provide the values of the permeabil-
ity in the iron. Iterations at every step and time stepping require the repeated solu-
tion of systems with slightly non-symmetric coefficient matrices, where neither the

coefficient matrices nor the solution change much in time.
4.4 CALCULATION OF IRON LOSSES

4.4.1 CALCULATION OF EDDY-CURRENT LOSSES

The use of triangular first order elements allows only one value of the flux
density and one value of the iron loss density in each element. The eddy current
iron loss density is often known as a function of maximum flux density and the
resistivity as well as the thickness of laminations for a given type of magnetic
steel as mentioned in the previous section. The effect of the frequency is included
in this function when skin effect is taken into account. Generally, Eddy-current

loss density can be written for a harmonic of frequency f; as[13]:

Pe = X fkeBumaxi) (74)

where i varies over the number of harmonics of the flux, and &, is a function

obtained in the previous chapter.
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4.42 CALCULATION OF HYSTERESIS LOSSES

The hysteresis loss density when there are no minor loops in the B—-H curve

can be found as[13]:

Pr = f kn(Bmax) (75)

where again k, is obtained as described previous chapter in the section of the

separation of losses and f is the frequency.

The calculation of eddy-current losses in iron requires the analysis of the flux
density in each element in harmonics, while the calculation of the hysteresis is per-

formed using a simple algorithm.



CHAPTER V

APPLICATIONS

5.1 INTRODUCTION

In this chapter, the results of the current and the flux density analysis of a
single-phase transformer are presented. The analysis done by two different

methods which are;

(1) combining the non-linear field and the current equation by the finite element
method and solving them by Newton’s Method as introduced in chapter IV

for a single-phase transformer,

(2) solving the same field and current equations but in the simplified forms, so
that can be coded in the ASCL (Advanced Continuous Simulation Language)
for the same transformer. ACSL is a language designed for modeling and
evaluating the performance of continuous systems described by time depen-

dent, non-linear differential equations.

Besides the current and the flux density, the equipotential lines and the vari-
ables like voltages induced in primary and secondary windings are included in the

analysis done by the finite element method.

In this chapter, different applied voltages and load conditions are assumed

and the results of analysis of each case are introduced in separate subsections.
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5.2 THE MODEL

The model chosen for the analysis is a small-size single-phase transformer
which is very similar to the ones which are widely used in radio sets and home
appliances. Figure 8 shows the cross section of the model and figure 9 shows a

simple grid of the model for the finite element method analysis.

A
\ 5cm.
Y

Figure 8. Cross-section of the transformer model
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5.3 TRANSIENT FIELD ANALYSIS

The change of the geometries of the equipotential lines (magnetic vector
potential) of the model is analyzed by the time change using the finite element
method.

Figure 10 shows the equipotential lines of model at 1 msec after the
sinusoidal input was applied and figure 11 shows the equipotential lines at

10 msec. for the same input.

it is can easily be observed from Figure 10 that the equipotential lines of the
magnetic vector potential is starting from the windings which is source and
penetrating to the iron thru the windows. Later on, the equipotential lines are seen

in the iron core because of the low resistivity of the core compared with the air.
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5.4 THE RESULTS OF NON-LINEAR TIME-DEPENDENT CURRENT, FLUX
DENSITY AND VOLTAGE ANALYSIS

The current, the flux density, and induced voltage analysis of the model, whose
equivalent curcuit is given in figure 12, is done by both the finite element method

and the ACSL for the cases given below.

R ’ R L

T
N §

Figure 12. Equivalent circuit of the model
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5.4.1 CASE 1: SINUSOIDAL INPUT AND RESISTIVE LOAD

In this case, a resistive load of 3 Q is connected to the secondary and 0.3 Q
resistance is connected in serial to the primary winding. The maximum value of
the applied voltage to the primary is 5 volts and the frequency is 60 Hz. The
results of both the finite element method and the ACSL analysis are given below.

5.4.1.1 THE RESULTS OF THE FINITE ELEMENT METHOD FOR CASE 1.

In this subsection, the plots of the primary and secondary current of the
model are given in figure 14 and 15 respectively in response of the applied voltage
shown in figure 13 for the load condition stated above. The absolute flux density
for each element is calculated in the finite element method. Therefore, the plot of
the flux density of the 166th element is given in figure 16. The plots of the
induced voltages of the primary and secondary together with the reluctivity of the
166 th element are given in figure 17, figure 18 and figure 19 respectively. The
difference between the induced voltages is the voltage drop because of the leakage

inductances and the resistances of the windings.
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Figure 15. Secondary current of the model connected to resistive load.
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Figure 18. Induced voltage in the secondary windings for case 1.
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5.4.1.2 THE RESULTS OF THE ACSL FOR CASE 1
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Figure 23. Flux density of the model for case 1.
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5.4.2 CASE 2: SINUSOIDAL INPUT AND INDUCTIVE LOAD

In this case, the model is connected to an inductive load. The value of the
inductance of the load is 0.01 H., and of the resistance is 3 Q. A 0.3 Q resistance
is connected to to the primary winding resistance in series. The maximum value
of the applied voltage to the primary is S volts with 60 Hz. frequency. The results
of the finite element method and the ACSL are given below.

5.4.2.1 THE RESULTS OF THE FINITE ELEMENT METHOD FOR CASE 2.

In this subsection, the plots of the primary current and secondary current of
the model are given in figure 25 and figure 26 in response of the applied voltage
shown in figure 24 for the load condition stated above. The essence of this experi-
ment would be that the external inductances together with the derivative of the
currents can be included in the finite element method. The absolute flux density
for each element is calculated in the finite element method. Therefore, the plot of
the flux density of the 166th element is given in figure 27. The induced voltage of
the primary and secondary plots together with the reluctivity of the 166 th element
are given in figure 28 and 29 and figure 30. The difference between these induced
voltages is the voltage drop because of the leakage inductances and the resistances

of the windings.
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Figure 24. Applied voltage for the second case.
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Figure 25. Primary current of the model connected to inductive load.
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Figure 26. Secondary current of the model connected to inductive load.



f I xdenl166

152130 1

13302 A

114234 1

09S30S

076357

i

0S7409

038461

019313 A

69

000S64
000000

012625 025250 037875 0S0S00 063125 075750 088373

time

Figure 27. Flux density of the 166" element for case 2.
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Figure 29. Induced voltage in the secondary windings for case 2.
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5.4.2.2 THE RESULTS OF THE ACSL FOR CASE 2
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Figure 31. Applied Voltage for case 2.
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Figure 32. Primary current of the model connected to inductive load.
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Figure 33. Secondary current of the model connected to inductive load.
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5.4.3 CASE 3: SINUSOIDAL INPUT AND RESISTIVE LOAD
WITH A ONE-WAY RECTIFIER CIRCUIT

In this case, the model is connected to a one-way rectifier circuit together
with a resistive load of is 3 Q. At the same time, 0.3 Q resistance is connected to
the primary winding resistance in series. The maximum value of the applied vol-

tage to the primary is 5 volts with 60 Hz. frequency.

5.4.3.1 THE RESULTS OF THE FINITE ELEMENT METHOD FOR CASE 3.

In this subsection, the plots of the primary and secondary current of the
model are given in figure 36 and figure 37 in response of the applied voltage
shown in figure 35 for the load conditions stated above. It should be noted in the
current plots that the currents do not go to zero directly when a diode is connected
to the secondary because of the inductances in the windings. The absolute flux
density for each elements is calculated in the finite element method. Therefore, the
plot of the flux density of the 166th element is given in figure 38. The steady flux
increase of this experiment is because saturation is not included well into the
finite element method. It should be stated that the flux density increase of the finite
element method is in the cases where the average flux density do not sum up the
zero. The plots of the induced voltage of the primary and secondary plots together
with the reluctivity are given in figure 39, figure 40 and figure 41. The difference
between the induced voltages is the voltage drop because of the leakage induc-

tances and the resistances of the windings.
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5.4.3.2 THE RESULTS OF THE ACSL FOR CASE 3
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Figure 42. Applied Voltage for case 3.
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Figure 43. Primary current of the model connected to a one-way rectifier

circuit together with a resistive load.
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5.44 CASE 4: SINUSOIDAL INPUT AND INDUCTIVE LOAD IN SERIES
WITH A ONE-WAY RECTIFIER CIRCUIT

In this case, the model is connected to a one-way rectifier circuit together
with an inductive load which has an inductance of 0.01 H. and a resistance of
3.0 Q. At the same time, 0.3 Q resistance is connected to to the primary winding
resistance in series. The maximum value of the applied voltage to the primary is 5

volts with 60 Hz. frequency.

5.4.4.1 THE RESULTS OF THE FINITE ELEMENT METHOD FOR CASE 4.

In this subsection, the plots of the primary and secondary current of the
model are given in figure 47 and 48 respectively in response of the applied voltage
shown in figure 46 for the load conditions stated above. It should be noted in the
current plots that the currents do not go to zero directly when a diode is connected
to the secondary because of the inductances in the windings and the load. The
absolute flux density for each element is calculated in this method. Therefore, the
plot of the absolute flux density of the 166th element is given in figure 49. The
steady flux increase of this experiment is because saturation is not included well
into the finite element method. It should be stated that the flux density increase of
the finite element method is in the cases where the average flux density do not
sum up to zero. The plots of the induced voltage of the primary and secondary
together with the reluctivity are given in figure 50, figure 51 and figure 52 respec-
tively. The difference between these induced voltages is the voltage drop because

of the leakage inductances and the resistances of the windings.
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5.4.42 THE RESULTS OF THE ACSL FOR CASE 4
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Figure 53. Applied Voltage for case 4.
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Figure 54. Primary current of the model connected to a one-way rectifier

circuit together with a inductive load.
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5.4.5 CASE 5: SIX-STEP VOLTAGE INPUT (INVERTER)
AND AN INDUCTIVE LOAD

In this case, the model fed is by a six-step voltage source which could be an
inverter, and is connected to an inductive load which has a inductance of 0.01 H.
and a resistance of 3.0 Q. At the same time, 0.3 Q resistance is connected to to

the primary winding resistance in series.

5.4.5.1 THE RESULTS OF THE FINITE ELEMENT METHOD FOR CASE 5.

In this subsection, the plots of the primary and secondary current of the
model are given in figure S8 and 59 respectively in response of the applied voltage
shown in figure 57 for thc. load conditions stated above. The notice should be
taken in the current plots that the currents do not change at the step points as sud-
denly as voltage because of the inductance in the primary and secondary circuits.
'The absolute flux density the 166th element is given in figure 60. The plots of the
induced voltages of the primary and secondary together with the reluctivity of the
166 th are given in figure 61, figure 62 and figure 63 respectively. The difference
between these induced voltages is the voltage drop because of the leakage induc-

tances and the resistance of the windings.
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Figure 59. Secondary current of the model connected to inductive load

and fed by six-step voltage.
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Figure 61. Induced voltage in the primary windings for case 5.
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CHAPTER VI

CONCLUSIONS

In this thesis the copper and the iron losses in a transformer are analyzed
considering all the harmonics of the currents in the conductors and the flux density

in the iron core of a single-phase transformer.

In the analysis of the current and the flux density, two different methods are
used. The first is coupling the non-linear time-dependent field and the circuit
equations and solve them by the finite element method, and the second the solu-
tion of a system of differential equations derived from lumped parameter model of
the transformer by ACSL, which is a language designed for modeling and evaluat-
ing the performance of continuous systems described by time dependent, non-
linear differential equations.

In the analysis of the copper losses, a method to calculate the additional
copper losses due to the harmonics in the current is presented and a sample calcu-

lation is given for a single-phase small size transformer fed by an inverter.

In the iron losses analysis, first the derivation of loss related iron parameters
is introduced and then a simple method to separate the total iron losses into hys-
teresis and the eddy current losses from the experimental data is given. The experi-
mental coefficients of the hysteresis and the eddy current loss parameters are
obtained from the separation of the iron losses for the use of the iron loss calcula-

tions.

The eddy current losses are calculated by analyzing of the flux density in har-
monics in the iron core, whereas the calculation of the hysteresis losses is per-

formed using a simple, non-recursive algorithm.
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The results of the primary and secondary current values, needed for the calcu-
lation of copper losses, using the finite element method and ACSL are closely
matching both, for the linear and non-linear load conditions. Whereas, the results
of the flux density values, used for the iron-loss calculation of the finite element
method and the ACSL are differing from each other for the cases where the non-
linear loads are connected to the secondary circuit. The explanation of this situa-
tion would be the finite element method does not allow easily for the saturation in

the iron.

Relating these losses with the design parameters of a transformer has been

left for future work.
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