

LIBRARY Michigan State University

2835483

This is to certify that the

dissertation entitled

WATER TABLE MANAGEMENT TO

MAXIMIZE THE ECONOMIC EFFICIENCY

OF BIOMASS PRODUCTION

presented by

Harold Walter Belcher

has been accepted towards fulfillment of the requirements for

Ph.D. degree in <u>Ag. Engineering</u>

Mern eora Major professor

Date February 22, 1990

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE
MAR 1 9 100F		
OCT 0 8 2001		

MSU Is An Affirmative Action/Equal Opportunity Institution c:circidatedue.pm3-p.1

WATER TABLE MANAGEMENT TO MAXIMIZE THE ECONOMIC EFFICIENCY OF BIOMASS PRODUCTION

Bу

Harold Walter Belcher

A DISSERTATION

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

ABSTRACT

WATER TABLE MANAGEMENT TO MAXIMIZE THE ECONOMIC EFFICIENCY OF BIOMASS PRODUCTION

Вy

Harold Walter Belcher

For hundreds of years throughout the world, agricultural producers have used underground drainage pipe systems to improve crop production by removing excess soil water from the soil profile within the root zone (Weaver, 1964). Agricultural producers and scientists have recently shown underground drainage pipe systems can also be used as water table management systems to provide water to crops during rainfall deficit periods.

The objectives of this research are to: 1) quantify water table management operation parameters that influence plant biomass production and 2) develop a model for the efficient design of water table management systems that will allow the systems to be operated for maximum plant biomass production economic efficiency.

Through field research it was confirmed that corn and soybean production is sensitive to mean water table depth and water table fluctuation. The field research results suggest the best operation strategy for subirrigating field crops is: (1) establish a water table depth immediately following seeding, (2) for soybean production maintain that depth until crop maturity and for corn production raise the water periodically for short time periods during the growing season, (3) at crop maturity put the system into the subsurface drainage mode and maintain it in that mode until after harvest and (4) repeat the cycle the next spring.

For the second objective, a mathematical model for determining water table management system design proportions and efficiently transforming those design proportions to system installation requirements was developed and tested. The model establishes the optimum lateral spacing for both the subsurface drainage and subirrigation modes. A steady state saturated groundwater flow formulation is used to determine lateral spacing needed for subsurface drainage and to maintain the water table at design depth during peak evapotranspiration without rainfall during subirrigation. A nonsteady, falling water table analysis is made to adjust the lateral spacing, if needed, to handle precipitation events that occur during subirrigation operation. Copyright by

HAROLD WALTER BELCHER

1990

.

Approved By:

Dr. G. E. Merva

Agricul Engineering A L

Major Professor

Committee:

- Dr. T. L. Loudon Agricultural Engineering Committee Member
- Dr. J. T. Ritchie Crop and Soil Sciences Committee Member
- Dr. J. R. Crum Crop and Soil Sciences Committee Member
- Dr. R. B. Wallace Civil and Envir. Engineering Committee Member
- Mr. S. S. Davis USDA Soil Conservation Service Outside Examiner

TABLE OF CONTENTS

INTRODUCTI	ON .	••	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Subsu	rface 1	Dr a i	nag	е	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Water	Table	Man	age	men	nt	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
Resea	rch Ob.	j e ct	ive	8	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
LITERATURE	REVIE	W .	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
FIELD STUD	IES .	••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
Metho	dology	•	••	•	•	•	•	•	· • •	•	•	•	•	•	•	•	•	•	•	16
	Bannis	ter	Sit	е	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
	St. Jol	hns	Sit	е	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	Meteor	olog	ica	1 D	at	a	•	•	•	•	•	•	•	•	•	•	•	•	•	24
	Agronoi	nic	Dat	a	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25
	System	Ope	rat	ion	D	at)	a	•	•	•	•	•	•	•	•	•	•	•	•	26
	Ground	Wat	er	Dat	a	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	Observa	atio	n W	ell	D)at	a	An	al	ys.	sie	6	•	•	•	•	•	•	•	32
	Statis	tica	1 A	nal	ya.	es		•	•	•	•	•	•	•	•	•	•	•	•	36
Resul	ts.	•••	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
	Meteor	olog	ica	1 C)at	a	•	•	•	•	•	•	•	•	•	•	•	•	•	39
	Agronoi	nic	Dat	a	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45
	System	Ope	rat	ion	n D	at)	8	•	•	•	•	•	•	•	•	•	•	•	•	48
	Ground	Wat	er	Dat	.8.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	48
	Statis	tica	1 A	n a l	ya.	es		•	•	•	•	•	•	•	•	•	•	•	•	56
Discu	ssion	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	60

Meteorological Data	٠	•	•	60
Agronomic Data	•	•	•	61
System Operation Data	•	•	•	63
Ground Water Data	•	•	•	65
Statistical Analyses	•	•	•	67
One Dependent Variable Regressions	•	•	•	67
Two Dependent Variable Regressions	•	•	•	71
Corn Yield - Two Dependent Variables .	•	•	•	73
Soybean Yield - Two Depend ent Vari abl es	•	•	•	78
Regression Without Outliers	•	•	•	81
Conclusions	•	•	•	81
WATER TABLE MANAGEMENT SYSTEM DESIGN	•	•	•	87
Methodology	•	٠	•	87
System Components	•	•	•	87
System Operation	•	٠	•	88
SIDESIGN Computer Model	•	•	•	89
MODEL FORMAT	•	•	•	9 0
SIRAIN DESCRIPTION	•	•	•	9 0
Data Input	•	•	•	91
Calculations	•	•	•	92
Example	•	•	•	93
SILSPACE DESCRIPTION	•	•	•	95
Data Input	•	•	•	96
System Variables	•	•	•	96

	Soil	Var	riab	les	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	97
	Initi	al	Cal	cul	lat	io	ns	6	•	•	•	•	•	•	•	•	•	•	•	•	98
	Stead	ly S	Stat	e A	Ana	ly	si	. S	•	•	•	•	•	•	•	•	•	•	•	•	100
	Trans	ier	nt A	nal	l y s	is	5	•	•	•	•	•	•	•	•	•	•	•	•	•	104
	Calcu	ılat	ed	Cro	p	Yi	el	d	Pa	re	me	ete	ere	5	•	•	•	•	•	•	108
	Resul	ts	Out	put	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	111
	Model	. Ev	alu	ati	lon	1	•	•	•		•	•	•	•	•	•	•	•	•	•	111
	Resul	ts		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	112
	Discu	8 8 1	on	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	1 12
SIMAI	IN DES	CRI	PTI	ON		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	115
SIECO	ON DES	CRI	PTI	ON	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	117
	Modul	.e A	lgo	rit	:hm	1	•	•	•	•		•	•	•	•	•	•	•	•	•	117
	Data	Inr	out	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	120
	Discu	ssi	on	•			•								•	•	•	•		•	121
EXAM	PLE AF	PLI	CAT		1									•	•	•	•	•		•	123
CONCI	USTON	19				•			•	•	•	•								•	124
conor	SILSE		••••		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	124
	SILOP	N N	lodu	lo	Le	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	124
	SIECC				•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	124
	SIDES	IGN	i mo	aeı	L.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	125
2011/11/11/1																					100
CONCLUSION	15	•	••	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	120
APPENDIX A	¥	•	• •	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	127
APPENDIX H	3	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	129

APPENDIX	С	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.131
APPENDIX	D	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.146
APPENDIX	E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.179
APPENDIX	F	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.188
APPENDIX	G	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.20 6
REFERENCI	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.211

LIST OF APPENDICES

APPENDIX	Α	-	BANNI	STER	SITE	SOIL	DATA	A. .	•	•	••	•	•	•	•	127
APPENDIX	B	-	ST.	Johns	SITE	SOIL	DATA	A	•	•	••	•	•	•	•	129
APPENDIX	С	-	WATER	R TABI	LE EL	EVATI	ON VS	5. T	IME	PI	LOT	s.	•	•	•	131
APPENDIX	D	-	FIELI	D DATA	A SCA	TTER	PLOTS	5	•	•	•••	•	•	•	•	146
APPENDIX	Ε	-	FIELI	DATA	S TA'	TISTI	CAL S	SUMM	ARI	ES.	•••	•	•	•	•	179
APPENDIX	F	-	SIDES	BIGN 1	PROGR	AM SO	URCE	COD	Ε.	•	•••	•	•	•	•	188
APPENDIX	G	-	WATE	R TABI	LE MGI	MT SY	STEM	DES	IGN	E	KAM	PLI	Ε.	•	•	206

LIST OF FIGURES

Figure 1. Cross sectional schematic of a water table	
management system operating in a subirrigation	
mode.	6
Figure 2. Bannister site topographic map with contours	
in meters	17
Figure 3. Bannister site water management zones (A	
through H), subsurface drainage pipe layout	
(lateral spacing 6, 12, 18 m) and treatments $(1 + 1)$	
within each zone (for example A40Cl)	19
Figure 4. St. Johns site topographic map with contours	
in meters	21
Figure 5. St. Johns site water management zones (A	
through E), subsurface drainage pipe layout	
(lateral spacing 12, 17, 24 m) and treatments	_
within each zone (for example A50C1)	2 3
Figure 6. Bannister site well locations. Groups of	
three within a set of laterals equally spaced are	
located 1 m from the lateral. midway between the	
laterals and at the upper end of the water	
management zone, midway between laterals	27
Figure 7. St. Johns site well locations. Groups of two	
within a set of laterals equally spaced are	
the laterals and at the upper and of the upter	
management zone, midway between laterals.	29
management zone, midway between interaist i i i i	20
Figure 8. Bannister site accumulated rainfall for 1986	
and 1987 growing seasons in mm	40
Figure 9. St. Johns site accumulated rainfall for 1987	40
and 1988 growing seasons in mm	40
Figure 10. Bannister site 1986 growing season daily low	
and high air temperatures in degrees C	41
Figure 11. Bannister site 1987 growing season daily low	
and high air temperatures in degrees C	41
Figure 12. St. Johns site 1987 growing season daily low	
and high air temperatures in degrees C	42
Figure 13. St. Johns site 1988 growing season daily low	
and high air temperatures in degrees C	42

Figure 14. Bannister site accumulated solar irradiance for 1986 and 1987 growing season in W'h/m ²	43
Figure 15. St. Johns site accumulated solar irradiance for 1988 growing season in W'h/m ²	43
Figure 16. Bannister site accumulated heat units in degree C-days for 1986 and 1987 growing seasons	44
Figure 17. St. Johns accumulated heat units in degree C-days for 1987 and 1988 growing seasons	44
Figure 18. Subsurface drainage/subirrigation lateral spacing design notation	102
Figure 19. Schematic showing change in water table (WT) with time (t) following a rainfall event through water table drawdown with the subirrigation system initially in a subirrigation mode	108
Figure 20. Schematic of assumed water table elevation vs. time following a rainfall event	110

LIST OF TABLES

Table	1.	Mult	;ipl	ica	tic	on	fa	cto	o r	fc	r	wat	ter	t	ab)	le					
	mana	gene	ent	8V9	ter	n]	at.	er	a]	sr	ac	ing	t a	. s	a	fur	oct.	ion		f	
1	USDA	soi	ll c	las	sif	fic	at	io	n .	- F	•	•	•	•	•	• •	•	•	•	•	8
m - 1- 1 -	•	D				L _	10	00			•								_		
Table	, Z .	Banr	list	er	811	te	19	80	g	row	lin.	gs	зеа	SO	n	agr	one	נשכ	C		
	data	. sui	mar	у.	٠	•	٠	•	•	• •	•	•	•	•	•	• •	•	•	•	•	45
Table	3	Renr	t	or	oit		19	87	đ	rou	in	đ	200	90	n	a of v	on	mi	0		
Table	data	8u	mar	v t	ab]	le.	15	•			· I II,	Б *					0	, m 1			46
								•	•		•	•	•	•	•	•••	•	•	•	•	
Table	4.	St.	Joh	ns	sit	te	19	87	g	row	in.	gs	зеа	80	na	agr	ono	omi	c		
(data	. su	n mar	y t	ab]	Le.		•	•		•	•	•	•	•	• •	•	•	•	•	47
Table	5.	St.	Joh	ns	sit	te	19	8 8	g	COM	in	g s	зеа	80	n a	agr	ono	om i	С		
(data	. su	nmar	y t	$[\mathbf{a}\mathbf{b}]$	le.		•	•	• •	٠	٠	٠	•	•	• •	•	•	٠	•	47
	~	-	• •		• •						1										
Table	6.	Banr	118t	er	811	te	wa	tei	r 1	tat	le	me	ana	.gei	me	nt	8 y 8	ste	m		40
(oper	atio	on s	umm	ary		•	•	• •	• •	•	٠	٠	•	•	• •	•	٠	٠	•	49
Table	7	S+	Ich	na			1.10	+ A 1	n f	- o b	ما	m	na	đo	mo	nt	e v	ot c	m		
Table	() Oner	otic	1001 9 9	113 11 7 0 m	or 1 or 1	, e	wa	Le.				шс	2110	.ge	me:		b j:		- 111		49
	oper	atit	011 0	um	ar j	•	•	•	•	••	•	•	•	•	•	•••	•	•	•	•	10
Table	8.	Regi	ress	ion	e	aua	ti	ons	s 1	for	g	roi	und	W	at	er					
	obse	rvat	ion	we	118	3 U	se	dε	at	Ba	nn	ist	ter	8	nd	St		Joh	ns		
:	site	s.	•	• •	•	•	•	•	•		•	•	•	•	•		•	•	•	•	51
Table	9.	Summ	nary	of	'yi	iel	ds	a	nd	bl	OW	tι	Jbe	m	ea	вur	·ed	wa	te	r	
	tabl	e de	epth	s b	у 2	zon	е	and	d 2	lat	er	al	sp	ac	in	g.	•	٠	•	•	54
									_		_	_									
Table	10.	Rel	lati	ve	yie	eld	r	esı	11	ts	by	tı	rea	tm	en	t a	ind				
(obse	ervat	tion	we	11	da	ta	81	na.	lys	es	re	esu	It	s .	•	•	•	٠	•	55
መ-ኑነ-	11	0					£	a	• ~ •				~ ~	1-	0 \			• • •	n d		
labre	11. fnom		111	CIE	en us d no	3 0	ia	ue n	lei	r II a	na	ιI(on of	da.	4) t a	re fr	su.		ng		
	l roi	i III	iear	nd	84 81.6	288 T		n a	3112 	31 3 ito	80	8 ((da da	La Dei	ıı ada	nt.	CI.	le		
	veri	ahla	51 a 51 .	nu	500							(01	16	ue	per	iue	in c				61
	V (A 1 1	aort	- , •	•••	•	•	•	•	•	•••	•	•	•	•	•	•••	•	•	•	•	• •
Table	12.	Coe	effi	cie	nte	3 0	f	det	tei	cmi	na	tid	on	(r)	2)	re	su	lti	ng		
	from	lir	near	re	gre	288	io	n e	ane	aly	'se	8 (of	da	ta	fr	om	th	ie [–]		
]	Bann	iste	er a	nd	St.	. J	oh	ns	s	ite	8	(tı	40	de	pe	nde	ent				
	vari	able	es).	•	٠	•	•	•	•		•	•	•	•	•	• •	•	•	•	•	63
Table	13.	Con	npar	is 0	n c	of	wa	tei	r 1	tat	le	dı	raw	do	wn	вi	mu.	lat	io	n	
	resu	ilts	to	fie	ld	ob	se	rva	at:	ion			•	•	•		•	•	•	•	113

LIST OF SYMBOLS

- adfi water table fluctuation dry stress index for August, m*h/h
- ANEV the net annual equivalent monetary value of an economic analysis alternate
- ASI economic analysis annual system monetary income
- ASC economic analysis annual system monetary cost
- atimea percentage of time water table is above the mean water table during month of August, %
- atimeb percentage of time water table is below the mean water table during month of August, %
- awfi water table fluctuation wet stress index for August, m*h/h
- awtd mean depth to the water table during month of August, m
- cyield relative corn yield, %
- jdfi water table fluctuation dry stress index for July, m*h/h
- jtimea percentage of time water table is above the mean water table during month of July, %
- jtimeb percentage of time water table is below the mean water table during month of July, %
- jwfi water table fluctuation wet stress index for July, m*h/h
- jwtd mean depth to the water table during month of July, m
- MARR economic analysis interest rate that represents the minimum attractive rate of return required by the investor
- P the monetary installed cost of a water table management system used for economic analysis
- p probability that linear regression equation result is due to chance as determined by a single tailed F statistic test for significance

- r² linear regression correlation coefficient squared
- sdfi water table fluctuation dry stress index for the season, m*h/h
- spacing distance between parallel subsurface drain pipes,
 m
- stimea percentage of time water table is above the mean water table from start of monitoring period to end of monitoring period, %
- stimeb percentage of time water table is below the mean water table from start of annual monitoring period to end of annual monitoring period, %
- swfi water table fluctuation wet stress index for the season, m*h/h
- swtd mean depth to the water table from start of annual monitoring period to end of annual monitoring period, m
- syield relative soybean yield, %

INTRODUCTION

Many agriculturally productive soils in the United States and the world have a naturally occurring shallow water table that fluctuates during the growing season.

Subsurface Drainage

Underground subsurface drainage pipe is used to lower the water table. In the United States the subsurface drainage systems are installed at about 1 m depth. The agricultural benefits of removing excess water from the soil profile using below ground drainage pipe systems (i.e. subsurface drainage) are well documented (Pavelis, 1987). Agricultural producers install below ground drainage pipe systems for many reasons: to remove excess soil water, to reduce diseases of crops, livestock and people, to remove excess accumulations of undesirable salts, to reduce erosion and to reduce delays in seeding and harvesting. The soil surface warms earlier in the spring and field operations can be performed earlier without soil structure damage.

Over the years, subsurface drainage system variables such as pipe depth, pipe spacing and flow capacity have been determined by one of three methods: past experience in similar soils, drainage equations and computer simulation models.

Today, in the United States, the most common method of designing subsurface drainage system variables for a site is to evaluate the site soils and topography and then use design dimensions that have been used in the region for similar soil and topography situations. Generally, the soil at the site is evaluated by combining information received from the site owner with a United States Department of Agriculture Soil Conservation Service (SCS) soil survey map and narrative information for the site. Occasionally this is supplemented with on-site soil investigation (to approximately 1 m) by borings using hand operated soil augers or test pits excavated with a backhoe. The topography of the site is evaluated by topographic surveying and mapping techniques.

Using this information, the system designer establishes design proportions based upon his or her past experience in similar situations and/or information provided by drainage guides for the area.

The second most popular procedure for designing subsurface drainage systems is by using drainage equations. These relatively simple equations relate pipe spacing and depth to water table elevation or drainage rate. Drainage equations

based upon a fixed water table profile assume steady state conditions. The best known steady state equations were developed by Hooghoudt and Ernst (Van Beers, 1976). Drainage equations that relate design variables to the rate of fall of the water table are commonly called transient method equations. These equations were developed by Glover (Dumm, 1954), Bouwer and van Schilfgaarde (1963) and others. Both type equations, steady state and transient, require a knowledge of the hydraulic conductivity of the soil and depth from the surface to the restricting layer. The steady state equations also require knowledge of the appropriate steady state drainage rate for the crops to be drained and the site location. The transient equations require knowledge of the appropriate rate of water table drawdown for the crops to be drained and the site location.

In actual practice the steady state method is used more often than transient analysis. Drainage guides provide recommended drain pipe spacing based upon soil type. Those spacings have been established using a steady state equation. Also, the pipes that deliver the drainage water from the parallel pipes (laterals) to the site outlet are sized for a steady state design drainage rate.

Recently, computer programs to simulate subsurface drainage system performance have been developed and been shown to be

applicable to the design process. The simulation models vary in complexity, input data requirements and ease of use. Examples of computer simulation models being used for subsurface drainage system design are DRAINMOD (Skaggs, 1978), the SWATRE model (Feddes et al. 1978; Belmans et al. 1983) and the WATRCOM model (Parsons, 1987).

DRAINMOD is based on a one dimensional (vertical) water balance within the soil profile and at the soil surface.

The SWATRE model is based on solving the Richard's equation (Richards, 1931) for combined saturated-unsaturated flow in the vertical direction only. For drainage system design, the SWATRE model is linked with other models to predict trafficability, germination, emergence, crop growth and production (van Wijk and Feddes, 1986).

The WATRCOM model links a finite element solution of the two-dimensional Boussinesq equation for the saturated zone below the water table with a vertical water balance for the unsaturated zone above the water table. The Boussinesq equation as used in the WATRCOM model is defined by Parsons, 1987.

Water Table Management

For many crops and soil textures, experience and research has shown a constant 0.8 to 1.2 m depth to the water table is near the optimum for corn production (Goins et al., 1966; Williamson and Kriz, 1970). However, when rainfall during the growing season is less than the volume needed by the crop, the water table falls below the 1.2 m depth and water deficit stress can reduce plant biomass production. This deficiency may be overcome by irrigation; however, the economic return on irrigation system investment via traditional sprinkler type systems is limited due to the fact that relatively high average yields are obtained without irrigation.

Skaggs (1978) has shown that underground pipe used for drainage can often be used to provide water to the soil profile during rainfall deficit times at very little increased cost. This practice is called subirrigation and the field system is a water table management system (see Figure 1).

A water table management system that combines subirrigation with subsurface drainage potentially provides an ideal root zone soil water regime. The system operating in the subsurface drainage mode drains excess water from the root

Figure 1. Cross sectional schematic of a water table management system operating in a subirrigation mode.

zone following rainfall events. The system operating in the subirrigation mode establishes and maintains a water table near the bottom of the crop root zone from which water moves by capillarity into the root zone thus preventing stress due to a deficit matrix potential. Because capillarity is a function of soil water potential, a function of the soil water content, the plant controls the irrigation rate and timing. Thus, for a constant depth to the water table, the plants schedule the irrigation based upon physiological needs. This reasoning leads to the obvious conclusion that the optimum water table management system for plant biomass production is one in which the water table is: a) maintained near the soil surface from seeding to germination, b) lowered at the optimum root length development rate, to an optimum depth for the crop and c) maintained at that depth until the crop matures. Thus the system for maximum production would have pipe sizes large enough to drain excess water at the maximum rainfall rate and provide subirrigation water at the maximum evapotranspiration rate. In addition the pipe laterals would be spaced so as to allow for saturated flow between the pipe to midway between pipes at maximum rainfall rate and maximum evapotranspiration rate with only a slight water table surface elevation difference.

A water table management system is operated in a subsurface drainage mode during tillage and harvest times. This causes the water table to be at or near the pipe depth and thus reduces the potential for soil compaction due to field operations. During the growing season, a properly designed system allows the water table to be maintained at the desired depth for optimum crop production. During this time period, the system will be in a drainage mode during times of excess rainfall and in an irrigation mode when rainfall does not meet the evapotranspiration needs of the crop.

At the present time, the design methods used to establish water table management system pipe depth, spacing and flow capacity are established for a specific site by one or a combination of three methods. For the most part the parallel pipe spacings are established by modifying the spacing that would be used at the site for subsurface drainage. The factor most often used is to multiply the recommended drainage spacing by 0.7. The multiplication factor may be adjusted based upon the United States Department of Agricultural (USDA) classification for the soil in the profile as shown in Table 1 (Doty et al., 1986).

Table 1. Multiplication factor for water table management system lateral spacing as a function of USDA soil classification.

SOIL	HYDRAULIC	MULTIPLICATION
TYPE	CONDUCTIVITY	FACTOR
C-SiL SCL & L SL LS	$\begin{array}{r} 0 & - & 0.5 \text{ m/d} \\ 0.5 & - & 1.5 \text{ m/d} \\ 1.5 & - & 3.0 \text{ m/d} \\ 3.0 & - & 6.0 \text{ m/d} \end{array}$	$\begin{array}{r} 0 & - & 0.61 \\ 0.61 & - & 0.77 \\ 0.77 & - & 0.85 \\ 0.85 & - & 0.91 \end{array}$

A second method of determining lateral spacing is to calculate the spacing using a modification of a steady state equation developed by Hooghoudt and Ernst (Van Beers, 1976).

The third method is to simulate the performance of water table management systems. By varying the system design

variables, the simulation model may be used to determine the best combination of those variables. The simulation models for subsurface drainage (DRAINMOD and WATRCOM) have the capability of modeling drainage, controlled drainage and subirrigation. Often the first two design methods are used to establish the initial system proportions for subsequent simulation. The simulation model DRAINMOD is most frequently used for water table management system design. The applicability of the model for that purpose has been documented by Mostaghimi et al. (1985), Evans and Skaggs (1987) and others.

Recently, attention has been given to using the simulation models to develop water table management system design dimension guidelines for benchmark soils within a given region (Skaggs and Tabrizi, 1986).

It is likely the key element of a water table management system design is to economically control the fluctuation of the water table following rainfall events. For this the system designer must determine the lateral spacing and pipe sizes that will limit yield reduction due to water table rise. The cost of limiting water table fluctuation and thus reduced yield must be balanced against the cost of the system. Thus we need to determine how close should the laterals be spaced to obtain the maximum return

on the system cost when a rainfall event occurs while in the subirrigation mode.

The computer simulation models available have the capability of assisting with the design for a site on the basis of transient system operation and economic return on investment. However, because their use requires multiple runs and detailed soil and weather data often not available, application of the models for water table management system design has been limited.

Research Objectives

The overall goal of this research is to develop a water table management system design process suitable for use by system designers with limited technical training in porous media flow and in computer simulation modeling. The design process should be site specific, should provide realistic output using input data that is readily available, and should be operational on computing systems not exceeding personal computer capability.

The specific research objectives are to:

- 1. Quantify water table management operation parameters that influence plant biomass production.
- 2. Develop a model for the efficient design of water

table management systems that will allow the system to be operated for maximum plant biomass production economic efficiency.

To arrive at the design process that follows, it was necessary to quantify the effect on yield of a fluctuating water table. A field study, described subsequently, contributed to that process. The data from the field study were used to establish relationships between corn and soybean yield vs. water table depth and fluctuation. This allowed the formulation of water table management parameters (design water table depth and time limits to return the water table to design depth following rainfall events that caused soil profile saturation) in terms of economic benefit. A computer model was then developed to translate these parameters to system installation requirements.

LITERATURE REVIEW

The adverse effects of excess soil water on corn and sorghum production has been widely studied and reported: Williamson and van Schilfgaarde (1965), Goins et al. (1966), Ritter and Beer (1969), Lal and Taylor (1969; 1970), DeBoer and Ritter (1970), Williamson and Carreker (1970), Purvis and Williamson (1972), Follett et al. (1974), Chaudhary et al. (1975), Howell and Hiler (1974), Howell et al. (1976), Zolezzi et al. (1978), Benz et al. (1978), Singh and Ghildyal (1980), Fausey et al. (1985) and Fausey and McDonald, Jr. (1985). These studies assume either a flooded condition or a constant depth to the water table during the study period. Generally, the studies confirm that extended flooding reduces grain yield and that reduction is greatest during emergence and early growth stages.

Zolezzi et al. (1978) found that flooding of grain sorghum in field lysimeters for three durations during the early productive growth stage reduced yield by 2.5 percent, 12.9 percent and 21.9 percent for 7, 12 and 17 day flooding periods, respectively. Purvis and Williamson (1972) concluded that 12 day old corn is severely injured if flooded for more than one day. Lal and Taylor (1969; 1970) concluded that intermittent flooding early in the growing season reduced yield of corn more than did constant water tables of 0.15 m and 0.30 m depth. Other studies have shown that a period of flooding for 48 to 96 h at the four to six leaf vegetative growth stage retarded the growth of corn hybrids (Singh and Ghildyal, 1980). Fausey and McDonald, Jr. (1985) report that a very short period of flooding (48 h to 96 h) reduced field emergence of both hybrid and inbred cultivars.

Constant water table depths giving maximum yields have been reported to be 0.76 m to 0.86 m for corn (Williamson and van Schilfgaarde, 1965). The constant water table studies show that lower water tables with surface irrigation provide better yields than higher water tables when surface water is not applied or applied sparingly (Williamson and Kriz, 1970). Benz et al. (1978) maintained a water table at three depths (between 1 m and 3 m) in a sandy loam soil and applied sprinkler irrigation amounts from 0 (precipitation only) to 1.5 times calculated irrigation requirements. For each of the three years studied, the production of corn grain and total dry weight was highest from the shallow water table (which varied from 1.2 m depth at the start of the growing season to 1.8 m depth at the end of the growing season) and with no irrigation.

The corn studies that address a fluctuating water table (Follett et al., 1974; Chaudhary et al., 1975; Howell and

Hiler, 1974; Howell et al., 1976; Zolezzi et al., 1978) provide useful information but do not lend themselves to development of algorithms suitable to crop growth simulation modeling of fluctuating water table conditions. For those algorithms, quantitative information of the effect of a fluctuating water table on root and shoot growth is needed. Kanwar et al. (1988) provide quantitative data on the effect of a fluctuating water table on corn yield at five different growth stages. They reported yields were significantly reduced when the sum of the daily values of the amount the water table depth was less than 0.30 m exceeded 0.40 m'days during the first growth stage.

The effect of excess water on soybean production has not received much research attention. Williamson and van Schilfgaarde (1965) report constant water table depths from 0.46 m to 0.61 m provide maximum soybean yield. A recent lysimeter study of soybean responses to excess water (VanToai et al., 1987) shows flooding for 10 days at the early vegetative, rapid flowering and early pod filling stages affects the soil oxygen diffusion rate, canopy temperature, photosynthetic rate, leaf water potential, plant height, total leaf area, stem and leaf growth rates and seed yield. Flooding at the rapid flowering and early pod filling stages reduced yield.

The mechanisms of yield reduction due to excess soil water have been the subject of many studies. Patwardhan et al. (1988) provided an excellent review of the research and concepts related to aeration requirements of crops in terms of oxygen diffusion rates and oxygen content as affected by excess soil water conditions. Hiler et al. (1971), McCree (1982) and Grable and Siemer (1968) have shown excess soil water within the root zone affects the respiration capability of the roots by limiting the oxygen uptake and carbon dioxide release and that the reduced respiration capability may reduce plant biomass production. In addition, Wesseling (1974) and Miller and Johnson (1964) point out excessive soil water also affects microbial activity, carbon dioxide evolution, nitrification and nitrogen mineralization. VanToai et al. (1988) found a positive correlation between tolerance of corn to flooding and its ability to produce, or conserve, metabolic energy under stress. They also found that the fluctuation between high and low O₂ levels was more damaging to germination and seedling growth than a constant low O2 level.

FIELD STUDIES

The literature review indicates field crop biomass production under artificially drained shallow water table conditions is influenced by the average depth to the water table during the growing season. The literature also suggests the growing season fluctuation of the water table may affect biomass production. However, the study of systems that maintain the growing season water table above pipe depth has largely been limited to computer simulation with very little supporting field research.

To quantify the effect of water table depth and fluctuation on field crop yield, field studies were conducted at two sites for two growing seasons to relate water table depth and fluctuation to corn and soybean biomass production.

Methodology

The field study sites are privately owned and operated agricultural fields located in the south central area of the lower peninsula of Michigan.

Bannister Site:

In August 1985, a combination subsurface drainage and

Figure 2. Bannister site topographic map with contours in meters.

subirrigation system in a privately owned 16.2 ha field near Bannister in Gratiot County Michigan (a part of the S.W. 1/4, N.W. 1/4, Section 34, T.9 N., R.1 W.) was installed. The Bannister site is relatively level with the predominant slope toward the northwest (see Figure 2). The soil is mapped as Lenawee series, however, on-site investigation and laboratory analysis by SCS and Michigan State University (MSU) soil scientists resulted in revising the classification to Ziegenfuss for the entire 16.2 ha. The soil investigation results are given in Appendix A.

The Ziegenfuss series consists of deep, poorly drained soils formed in loamy and clayey calcareous glacial till on till plains and moraines. The surface layer is black silty clay loam 0.15 m deep. The subsoil is dark gray and gray mottled clay 1.15 m thick. The substratum is gray clay and extends to a very dense compacted clay layer at approximately 1.5 m below the surface.

Saturated lateral hydraulic conductivity, by the auger hole method, varied from 10 mm/h to 25 mm/h. The dominate saturated lateral hydraulic conductivity for the site was determined to be 17 mm/h. The auger holes used for hydraulic conductivity testing were 0.1 m diameter, 1.5 m depth and bottomed in the dense clay layer determined to be the impermeable barrier.

The topography of the site allowed subdivision of the area into eight water table management zones in which the surface elevation variance within a zone did not exceed 0.30 m. The subsurface drainage / subirrigation system consists of 102 mm inside diameter (ID) corrugated plastic tubing laterals discharging into corrugated plastic submains and mains

Figure 3. Bannister site water management zones (A through H), subsurface drainage pipe layout (lateral spacing 6, 12, 18 m) and treatments within each zone (for example A40C1).

ranging in size from 127 mm through 305 mm ID. The system was installed August 5-9, 1985 by members of the Michigan Land Improvement Contractors Association. The submains and mains were installed by a trenching machine. The laterals were installed by drainage plows. The laterals are at 6, 12 and 18 m spacing as shown by Figure 3. The depths to the inverts of the laterals vary from 1.1 m to 1.4 m below the ground surface. The system, as installed, provides 8 water table management zones (A through H) and a maximum of 32 irregularly shaped treatment plots that vary in size. The surface elevation (from an arbitrary datum) of the water table management zones is from 29.75 m to 30.18 m for zone A, 29.87 m to 30.18 m for zone B, 30.18 m to 30.48 m for zones C and D, 30.48 m to 30.78 m for zones E and H, and 30.78 m to 31.03 m for zones F an G.

St. Johns Site:

In August 1986, a combination subsurface drainage and subirrigation system was installed in a privately owned 22.2 ha field near St. Johns in Clinton County Michigan (a part of the W. 1/2, S.E. 1/4, Section 30, T.7 N., R.2 W.). The St. Johns site is relatively level with the predominant slope toward the northwest (see Figure 4). The soil in the north half of the site is mapped as Wasepi series and in the south half as Gilford. The on-site investigations and laboratory analysis by SCS and MSU soil scientists resulted in determining the entire research area is Wasepi. The soil investigation results are given in Appendix B.

The Wasepi series consists of somewhat poorly drained soils formed in loamy deposits underlain by sand and gravel at 0.5

Figure 4. St. Johns site topographic map with contours in meters.

m to 1.0 m. The soils are formed in loamy and sandy glaciofluvial deposits on uplands and have a very dark grayish-brown sandy loam surface layer 0.20 m thick and brown sandy loam subsurface layers 0.13 m thick. The subsoil is mottled yellowish-brown very friable loamy sand to mottled brown sandy clay loam. The underlying material is light brownish-grey and fine gravel and extends to a very dense compacted fine sand layer at approximately 6.0 m below the surface.

Saturated lateral hydraulic conductivity was determined by the auger hole method with the auger hole extending to 0.9 m during the spring of 1986. The results ranged from 30 mm/h to 70 mm/h. In October 1986 further hydraulic conductivity investigations were made using the velocity head permeameter (Merva, 1987) in five backhoe excavations. The velocity head permeameter results ranged from 20 mm/h to 460 mm/h with the 460 mm/h being located in a gravel layer just below drain pipe depth.

The topography of the site allowed subdivision of the St Johns site into five water table management zones, A through E, in which the surface variance within a zone did not exceed 0.30 m. The surface elevation of the zones (from an arbitrary datum) vary from 30.14 m to 30.45 m for zone A, 29.90 m to 30.14 m for zone B, 29.59 m to 29.90 m for Zone C and 29.29 m to 29.59 m for Zones D and E. The subsurface drainage / subirrigation system consists of 102 mm inside diameter (ID) corrugated plastic tubing laterals discharging into corrugated plastic submains and mains ranging in size from 127 mm through 305 mm ID. The system was installed August 11-13, 1986 by members of the Michigan Land

Figure 5. St. Johns site water management zones (A through E), subsurface drainage pipe layout (lateral spacing 12, 17, 24 m) and treatments within each zone (for example A50C1).

Improvement Contractors Association. The submains and mains were installed by a trenching machine. The laterals were installed by drainage plows. The laterals are at 12, 17 and 24 m spacing as shown by Figure 5. The depths to the lateral inverts vary from 1.1 m to 1.4 m below the ground surface. The installed system provides up to 18 irregularly shaped treatment plots that vary in size.

Meteorological Data:

At the Bannister site during the 1986 and 1987 growing season and at the St. Johns site during the 1988 growing season, the minimum daily meteorological data set defined by the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) program of the United States Agency for International Development (Jones, 1984) was collected throughout the growing season. The data collected consists of the date, total daily solar irradiance, minimum daily air temperature, maximum daily air temperature, mean daily air temperature and total daily precipitation. A pyranometer at each site was used to sense solar irradiance. Air temperature data was measured with a linear thermistor at each site. Daily precipitation was measured with a tipping bucket rain gauge and the hourly precipitation was from a bubbler system rain gauge using the technique reported by Goebel (1986).

For the St. Johns site 1987 growing season, the maximum and minimum air temperatures and daily precipitation data collected at the National Weather Service Cooperative

Observer Station Index No. 20-7280-9 (Section 9, T.7 N., R.2 W.) were used for subsequent analyses. That station is 6 km NE of the St. Johns site.

Agronomic Data:

The agronomic data collected at each site included seeding date, emergence date, harvest date, seed cultivar identification, population seeded, population after emergence, nutrients and pesticides applied and crop yield.

At the end of each growing season each treatment plot was harvested and the harvested weight measured using a weigh wagon. The harvest moisture content was determined using an electronic moisture meter (Hydroprobe Model 503 DR manufactured by CPN Corp., Pacheco, CA). During the harvest operation, the boundaries of each yield plot were flagged and field measurements made following harvest to determine plot area.

The relative yield was calculated by dividing the measured yield (corrected to 15.5% moisture for corn and 13% moisture for soybeans) by the management goal for the crops (12,120 kg/ha for corn and 4,300 kg/ha for soybeans). System Operation Data:

A record of the operation of each water table management system was maintained by recording the dates the pumps were started or stopped and recording any change in the setting of water table controls during the growing season. The electrical power required for operation of each system was also recorded. During the 1988 growing season, the rate of irrigation water flow into each water management zone was monitored and recorded.

Ground Water Data:

To meet the research objectives, it is essential the elevation of the water table be closely monitored for each treatment plot throughout the growing season. The water table is defined as the upper surface of ground water or that level in the soil where the water is at atmospheric pressure (Soil Sci. Soc. Am. 1978). To achieve that capability, observation wells were installed at the approximate locations shown by Figures 6 and 7. For each treatment plot, a well was installed midway between the laterals approximately in the center of the plot and another 1 m from an adjacent lateral. In many of the plots a third observation well was installed midway between the laterals approximately 20 m from the upper end of the plot.

Figure 6. Bannister site well locations. Groups of three within a set of laterals equally spaced are located 1 m from the lateral, midway between the laterals and at the upper end of the water management zone, midway between laterals.

For the 1986 growing season, all wells were constructed of 1.5 m length, 19 mm diameter polyvinyl-chloride (PVC) pipe with holes drilled throughout their length. The wells were

wrapped with a thin spun fiberglass material to prevent soil movement into the well. The wells were fabricated so that the top 0.40 m could be removed to allow field operations. The wells were installed using a 100 mm diameter bucket soil auger and backfilled with soil from the site. After the 1986 growing season field operations were completed, the PVC wells were replaced with 1.5 m length, 19 mm diameter galvanized steel electrical conduit with holes drilled throughout the length and with a fiberglass material wrap as above. Using galvanized steel greatly assisted in locating the observation wells using a magnetic locator device when the top portion of the wells were removed. The observation wells at the St. Johns site are galvanized steel with dimensions similar to the Bannister site wells. The St. Johns site wells were installed prior to seeding for the 1987 growing season.

The value of open auger holes for the measurement of water table position has been questioned by many researchers (for example Hinson et al. 1970; Anonymous, 1978; Bouma et al. 1980). Further, potential errors in water table measurements due to soil inhomogeneity and anisotropy using water table wells are discussed by Merva and Fausey (1986). However for structured clays, Armstrong (1983) shows that water table differences between sites can be detected with confidence using open auger hole techniques. Also, earlier

work by Merva and Fausey (1984) indicates that the small diameter (19 mm) casing used at the Bannister site is sufficiently responsive to water table fluctuation to

Figure 7. St. Johns site well locations. Groups of two within a set of laterals equally spaced are located at 1 m from the lateral, midway between the laterals and at the upper end of the water management zone, midway between laterals.

provide an accurate hourly measurement of the water table

location.

At both sites the data acquisition system for the observation wells is a modification of the bubbler system described by Goebel and Merva (1985) and Goebel (1986). The modification consists of adding a switching mechanism to allow the number of wells to be increased from a maximum of 8 to a maximum of 64. All components of the data acquisition system are off-the-shelf items and are relatively inexpensive. The pressure transducers used at Bannister during the 1986 growing season had a range of 0 to 700 mm of water with an accuracy of 0.4 mm. To improve the range of water table rise and fall that could be monitored during the 1987 growing season, the 1986 growing season Bannister site pressure transducers were replaced with pressure transducers having a range of 0 to 1400 mm of water and an accuracy of 0.7 mm. The pressure transducers at the St. Johns site had a range of 0 to 1400 mm and an accuracy of 0.7 mm for the 1987 and 1988 growing seasons.

The power source for operation of the data acquisition hardware consists of two deep cycle marine type 12 volt batteries. At the start of the 1988 growing season, commercial electrical service was installed at the St. Johns site. The commercial electrical service was used to charge the system 12 volt batteries by a commercial battery

charger. Using batteries to power the system allows the system to operate when the commercial electrical service fails or is interrupted.

The water table data acquisition system was made operational following seeding and cultivating operations and maintained in an operational mode until near harvest time. For the 1986 growing season, data acquisition at the Bannister site began June 9 and ended October 27. For the 1987 growing season, data acquisition at the Bannister site began July 2 and ended September 16 and at the St. Johns site began July 1 and ended September 18. For 1988, data acquisition at the St. Johns site began June 20 and ended October 27.

Operation of the observation well / data acquisition system requires one time installation of the observation wells and data acquisition components, removal and replacement of observation well tops for each field operation (tillage, seeding, cultivating and harvesting), a one time determination of observation well top elevations, periodic blow tube readings to calibrate the wells and to provide a check on the data acquisition results, and periodic replacement of the nitrogen supply tank and system batteries. A 6,500 l nitrogen supply tank lasts approximately one month and one of the two 12 v batteries must be replaced with a fully charged battery on a 10 to 14

day schedule.

The output from the data acquisition system consists of well identification, date, time and digital representation of the pressure transducer for each reading. These data were automatically dumped to a cassette tape. The cassettes were replaced approximately weekly. The data on cassettes is transferred to an IBM compatible computer in the office for further transformation and analysis.

Observation Well Data Analysis:

The observation wells and data acquisition systems at the two sites were used to monitor, on an hourly basis, the water table elevation in each treatment plot. The resultant data were then used to evaluate water table response to precipitation events, water table control changes, subirrigation pump startup and shutdown, crop use effects on water table elevation on hourly, daily, weekly, monthly and seasonal time basis for variable lateral spacings and water table management strategies. In addition, hourly water table elevation is an output variable provided by the computer simulation model DRAINMOD (Skaggs, 1978) and thus is useful for model verification and/or calibration.

For analysis the observation well data were transformed as

follows:

- 1. Each well was identified by a code consisting of 6 characters. The first character is always a 'W' for well. The second character designates the water management zone location ('A' to 'H' for Bannister, 'A' to 'E' for St. Johns). Character 3 is for lateral spacing (2, 4 or 6 for 6, 12 and 18 m respectively - Bannister; 4, 5 or 8 for 12, 16 and 24 m respectively -St. Johns). The fourth character represents the location of the well within the plot - M' for Midpoint between laterals, 'L' for 1 m from Lateral and 'E' for midpoint between laterals at End of the plot. The last character is a number used to differentiate between wells within a plot that would otherwise have the same designation.
- The time was transformed from hour:minute:second to hour and decimal hour.
- The date was converted from month, day and year to day of year and decimal fraction of the day.
- 4. The numeric representations of pressure transducer voltage output were correlated with the blow tube

reading elevations for each observation. Only wells with a coefficient of determination (r^2) equal to or greater than 0.80 were used for subsequent analysis. For those wells the regression equation was used to convert the observations from a numeric representation of voltage to a water table elevation.

The hourly water table elevations were averaged for the months of July and August and for the growing season at each observation well location (jwtd, awtd and swtd). The resulting means were then used to 1) calculate the vertical distance above and below the mean water table elevation for each hourly water table observation at each observation well location and 2) calculate the mean water table depth within the zone by subtracting the mean water table elevation from the average surface elevation of the zone. The hourly vertical distance and time above and below the mean water table elevation was accumulated by day, week, month and growing season for each treatment, each crop and each season for both sites. The accumulated time above and below the mean water table elevation was then used to calculate the percent time the water table was above and below the mean water table elevation for each treatment for the months of July and August and the growing season (jtimea, atimea, stimea, jtimeb, atimeb and stimeb). The accumulated time

and accumulated distance the water table was above the mean water table elevation was used to calculate a water table fluctuation wet stress index and water table fluctuation dry stress index for July, August and the growing season for each treatment (jwfi,awfi,swfi,jdfi,adfi and sdfi) in accordance with the following equations:

 $\underline{\mathbf{x}}\mathbf{w}\mathbf{f}\mathbf{i} = \underline{\mathbf{x}}\mathbf{d}_{\mathbf{a}} * \underline{\mathbf{x}}\mathbf{t}_{\mathbf{a}} / \underline{\mathbf{x}}\mathbf{t}\mathbf{t}$ [1]

 $\underline{\mathbf{x}}d\mathbf{fi} = \underline{\mathbf{x}}d\mathbf{b} * \underline{\mathbf{x}}t\mathbf{b} / \underline{\mathbf{x}}t\mathbf{t}$ [2]

where

<u>x</u>	=	'j'	for	July,	'a'	for	August	and
		's' :	for g	growing	sea	son		

- wfi = water table fluctuation wet stress
 index
- dfi = water table fluctuation dry stress index
- da = accumulated vertical distance the water table is above the mean water table elevation during July, August or growing season
- ta = accumulated time the water table is
 above the mean water table
 elevation during July, August or
 growing season
 - tt = accumulated time the water table is above or below the mean water table elevation during July, August or growing season
- db = accumulated vertical distance the
 water table is below the mean water
 table elevation during July, August
 or growing season
- tb = accumulated time the water table is
 below the mean water table
 elevation during July, August or
 season

The water table fluctuation indices quantify both the extent

and duration of the water table fluctuation from the mean water table elevation for the water table data available. By including division by t_i in the calculation of wfi and dfi, a comparison of the indices by treatment has meaning even though the period of water table data record may differ slightly between treatments.

Statistical Analyses:

To investigate relationships between yield, the dependent variable, and the independent water table variables, the following linear regression analyses were performed:

I. Y = B0 + B1 * X

Α.	Y	=	relat	tive y:	ield, S	*			
	Х	=	mean	water	table	depth	for	the	growing
			seas	<u>on</u> , m					

- B. Y = relative yield, %
 X = percent time <u>below</u> the mean water table elevation for the growing season, %
- C. Y = relative yield, %
 X = percent time above the mean water table
 elevation for the growing season, %
- D. Y = relative yield, %
 X = water table fluctuation dry stress index
 for the growing season, m*h/h
- E. Y = relative yield, %
 X = water table fluctuation wet stress index
 for the growing season, m*h/h

II. Y = B0 + B1 * X

A. Y = relative yield, %
X = mean water table depth for July, m

Β. Y = relative yield, % X = percent time below the mean water table elevation for July, % C. Y = relative yield, % X = percent time above the mean water table elevation for July, % D. Y = relative yield, % X = water table fluctuation dry stress index for July, m*h/h Ε. Y = relative yield, % X = water table fluctuation wet stress index for July, m*h/h III. Y = BO + B1 * XΑ. Y = relative yield, % X = mean water table depth for August, m Β. Y = relative yield. % X = percent time below the mean water table elevation for August, % C. Y = relative yield, % percent time <u>above</u> the mean water table X = elevation for August, % D. Y = relative yield, % X = water table fluctuation dry stress index for August, m*h/h relative yield, % Ε. Y = water table fluctuation wet stress index X = for August, m*h/h

Recognizing the water table fluctuation effect is likely to be influenced by a combination of distance and time above and below mean water table elevation as well as the stage of plant development, multiple linear regression analyses using the forward stepping procedure were made on the following data sets:

IV. Y = B0 + B1 * X1 + B2 * X2

Y = relative yield, % Α. X1 = mean water table depth for the season, m X2 = percent time below the mean water table elevation for the season, % Β. Y = relative yield, % X1 = mean water table depth for the <u>season</u>, m X2 = percent time above the mean water table elevation for the season, % C. Y = relative yield, % X1 = mean water table depth for the season, m X2 = water table fluctuation dry stress index for the season, m*h/h Y = relative yield, % D. X1 = mean water table depth for the season, m X2 = water table fluctuation wet stress index for the season, m*h/h Ε. Y = relative yield, % X1 = mean water table depth during July, m X2 = percent time below the mean water table elevation during July, % F. Y = relative yield, % X1 = mean water table depth during July, m X2 = percent time above the mean water table elevation during July, % G. Y = relative yield, % X1 = mean water table depth for July, m X2 = water table fluctuation dry stress index for July, m*h/h н. Y = relative yield, % X1 = mean water table depth for July, m X2 = water table fluctuation wet stress index for July, m*h/h Y = relative yield, % I. X1 = mean water table depth during August, m X2 = percent time below the mean water table elevation during August, % J. Y = relative yield, % X1 = mean water table depth during August, m X2 = percent time above the mean water table elevation during August, %

Κ.

Y = relative yield, %

A set a deriver sone data son
 A set a deriver sone data son
 A set a s

and a second s Second second

an an 1997 an 1997

· · · · · ·

	X1 X2	<pre>= mean water table depth for <u>August</u>, m = water table fluctuation <u>dry</u> stress ind for August, m*h/h</pre>	ex
L.	Y	= relative vield. %	

To investigate the effect of water table management system physical proportions, the relative yield data were correlated with water management zone and lateral spacing for each site and each growing season as follows:

V. Y = B0 + B1 * X
A. Y = relative yield, %
X = lateral spacing, m
B. Y = relative yield, %
X = water management zone

Results

Meteorological Data:

The meteorological data collection efforts for the two sites provided: accumulated daily rainfall data (Figures 8 and 9); daily low, high (Figures 10 through 13) and mean air temperature; daily integrated solar irradiance (Figures 14 and 15); and accumulated degree days (Figures 16 and 17). System failure at St. Johns prevented obtaining good data for the latter part of the 1988 growing season.

Figure 8. Bannister site accumulated rainfall for 1986 and 1987 growing seasons in mm.

Figure 9. St. Johns site accumulated rainfall for 1987 and 1988 growing seasons in mm.

Figure 10. Bannister site 1986 growing season daily low and high air temperatures in degrees C.

Figure 11. Bannister site 1987 growing season daily low and high air temperatures in degrees C.

Figure 12. St. Johns site 1987 growing season daily low and high air temperatures in degrees C.

Figure 13. St. Johns site 1988 growing season daily low and high air temperatures in degrees C.

Figure 14. Bannister site accumulated solar irradiance for 1986 and 1987 growing season in $W'h/m^2$.

Figure 15. St. Johns site accumulated solar irradiance for 1988 growing season in W'h/m'.

Figure 16. Bannister site accumulated heat units in degree C-days for 1986 and 1987 growing seasons.

Figure 17. St. Johns accumulated heat units in degree Cdays for 1987 and 1988 growing seasons.

Agronomic Data:

The agronomic data for the Bannister site is presented in

Tables 2 and 3.

Table 2. Bannister site 1986 growing season agronomic data summary.

1986 COBN (Great La	ikes 579)	1986 801	BBANS (Hoytv	ille / Great	Lakes 2634)
VT	BMBRG'D	WT	VARIETY	BMBRG'D	
NGNT	POPUL'N	NGNT		POPUL'N	
ZONB	plants/ha	ZONB		plants/ha	
A	65460	Å	Noyt	871800	
-		_	GL 2634	551600	
B	65460	В	Hoyt	844700	
		-	GL 2634	738800	
C	66760	C	Hoyt		
		_	GL 2634	610700	
D	67200	D	Hoyt		
_			GL 2634	568800	
B	60850	B	Hoyt	651000	
-		_	GL 2634	331200	
P		F	Hoyt	572600	
			GL 2634	32 510 0	
H	66340	H	Hoyt	562700	
			GL 2634	402600	
				Ho y t	GL 2634
DATE SEEDED:	05/ 06 /86	DATE SE	BDBD:	05/29/86	05/29/86
DATE OF EMERGENCE:	05/12/86	DATE OF	BMBBGBNCB:	06/05/86	06/07/86
DATE OF HARVEST:	11/10/86	DATE OF	HARVEST:	10/06/86	10/06/86
FBRTILIZBR:		FERTILI	ZBR:		
55 kg/ha Potash		55 kg/	ha Potash		
31 L/ha 28% Nitrog	en	31 L/h	a 28% Nitrog e	D	
37 kg/ha 18-40-0 (starter)	28 kg/l	na 12.5-11-11	(starter)	
112 kg/ha 28% Nitr	ogen				
(sided)	ress)				
PESTICIDES:		PESTICI	DBS:		
0.8 L/ha Lasso		0.8 L/	ha Lasso		
0.3 kg/ha Atrax 90	1	0.1 kg	/ha Sencor		

1987 CORN (Great Lakes 579)	1987 SOYBBANS (Hoyt	ville/Great Lakes 2634)
WT BMBRG'D	WT	BMBRG'D
NGNT POPUL'N	NGNT	POPUL'N
ZONB plants/ha	ZONB	plants/ha
A 61240	A	479300
B 61490	В	486500
C 58900	C	501600
D 64080	D	483200
B 65670	B	411500
H 66040		
DATE SEEDED: 05/08/87	DATE SEEDED:	05/23/87
DATE OF EMERGENCE: 05/18/87	DATE OF EMBEGENCE:	
DATE OF TASSELING: 07/09/87	DATE OF FLOWEBING:	07/16/87
DATE OF HARVEST:	DATE OF HARVEST:	
PBRTILIZER:	FERTILIZER:	
55 kg/ha Potash	55 kg/ha Potash	
31 L/ha 28% Nitrogen		
37 kg/ha 18-46-0 (starter)		
37 kg/ha Anhydrous		
(sidedress)		
PESTICIDES:	PESTICIDES:	
0.8 L/ha Lasso	0.8 L/ha Lasso	
0.3 kg/ha Atrax 90	0.1 kg/ha Sencor	

Table 3. Bannister site 1987 growing season agronomic data summary table.

The agronomic data for the St. Johns site is presented in

Tables 4 and 5.

1987 COBN (Pioneer 3475)	1987 SOYBBANS (Pioneer 9771)
WT BMBRG'D	WT BMBRG'D
MGMT POPUL'N	MGMT POPUL'N
20NB plants/ha	ZONB plants/ha
A 73550	A 417200
B 58750	398600
C 715328	C 366500
D 70155	D 350800
B 71075	B 402000
DATE SEBDED: 04/28/87	DATE SEEDED: 05/20/87
DATE OF EMERGENCE: 05/08/87	DATE OF EMERCENCE: 05/28/87
DATE OF TASSELING: 07/09/87	DATE OF FLOWERING: 07/16/87
DATE OF HARVEST: 10/27/87	DATE OF HARVEST: 10/16/87
FBETILIZER: 55 kg/ha 0-0-60 (preplant) 49 kg/ha 7-28-18 (04/28/87) 1 kg/ha sulfer (04/28/87) 61 L/ha 28% N (05/12/87) 33 kg/ha 83% Anhydrous (06/09/87)	FERTILIZEE: 55 kg/ha 0-0-60 (preplant) 18 kg/ha 9-23-30 (05/20/87)
PBSTICIDBS:	PBSTICIDBS:
0.2 L/ha Lorox +	0.3 kg/ha Aatrex
0.3 L/ha Dual	0.4 L/ha Dual

Table 4. St. Johns site 1987 growing season agronomic data summary table.

Table 5. St. Johns site 1988 growing season agronomic data summary table.

1988 CORN (Pione	er 3475)	1988 SOYBEANS ()	Pioneer 9271)
WT NGMT ZONB	BNBRC'D POPUL'N piants/ha	NT NGMT ZCNB	EMERG'D POFUL'N plants/ha
A C D B	71200 66330 663680 101490	A B C D B	$\begin{array}{c} 3 & 1 & 0 & 0 & 0 \\ 2 & 9 & 2 & 0 & 0 \\ 2 & 5 & 8 & 1 & 0 & 0 \end{array}$
DATE SEBDED: DATE OF EMERGENC DATE OF TASSELIN DATE OF HARVEST:	04/30/88 B: 05/11/88 G: 07/09/88 10/27/88	DATE SEEDED: DATE OF EMERGEI DATE OF FLOWER DATE OF HABVES	NCE: 05/17/88 NCE: 05/24/88 ING: 07/20/88 F: 11/17/88
FBBTILIZBE: 37 kg/ha Urea 37 kg/ha Potash 37 kg/ha 25-7-2 33 kg/ha NH3 (si	(preplant) (preplant) 0 (04/30/88) upplemental)	FERTILIZEE: 37 kg/ba 7-14-{	80 {05/17/88}
PESTICIDES: 0.3 L/ha Aatrix 0.8 L/ha Lasso 0.4 L/ha Buctril		PESTICIDES: 0.8 L/ha Lasso 0.2 L/ha Lorax 0.2 L/ha Blaze: 0.4 L/ha Basag] 0.4 L/ha Crop ((Pre-emer.) + (Pre-emer.) ran (Post-emer.) Dil (Post-emer.)

The corn and soybean yields obtained for the Bannister and St. Johns sites are tabulated by treatment as a part of Table 9.

System Operation Data:

Operating the water table management systems at each site consisted of starting and stopping the irrigation supply pumps and adjusting the water table control for each water table management zone to set the system in subsurface drainage or subirrigation and to raise and lower the water table within each zone. Tables 6 and 7 are summaries of those operations for each site. The elevations refer to an arbitrary datum of 30.48 m set as a temporary benchmark at both the St. Johns and Bannister sites.

Ground Water Data:

For the Bannister site, during the 1986 growing season, water table measurements began June 9, 1986 and ended October 27, 1986. Water table measurements at 55 locations produced 29,965 water elevation observations during that time period. During the 1987 growing season the water table measurements began July 2, 1987 and continued through September 23, 1987 and resulted in 29,284 water table elevation observations. The output from each observation

1986 GROWING SEASON: ELEVATION OF WEIR (m) DATE ZONE ZONE ZONE ZONE ZONE A B D С ELH Dr.¹ Dr.¹ Dr.1 Dr.1 Dr.1 Dr.1 Dr.1 Dr.1 Dr.1 Dr .1 **D**r.¹ 05/01 06/01 29.79 30.22 30.51 30.08 07/05 29.93 29.89 30.07 30.41 08/01 29.93 30.09 30.07 30.31 29.99 Dr.¹ 29.93 Dr.¹ 30.07 Dr.¹ 09/07 30.61 Dr. 10/01 PUMP SCHEDULE: start 07/04 stop 09/06 1987 GROWING SEASON: ELEVATION OF WEIR (m) DATE ZONE ZONE ZONE ZONE ZONE ZONE ZONE A B С ELH D F G Dr.1 Dr.1 Dr.1 Dr.1 Dr.1 Dr.¹ pr.1 pr.1 pr.¹ Dr.¹ pr.1 05/01 06/12 28.17 28.90 29.00 29.90 29.36 29.62 06/15 29.72 29.78 29.83 30.54 30.46 30.98 29.80 06/22 29.70 29.78 30.69 30.15 30.62 29.69 29.78 06/26 30.69 30.43 30.46 Dr.1 Dr.1 Dr.1 Dr.1 07/07 29.69 29.78 29.86 30.69 29.94 29.42 29.18 Dr.¹ Dr.¹ **30.30 30.14 30.17 Dr. Dr. Dr.** 08/18 Dr.¹ 08/20 PUMP SCHEDULE: start 06/12 stop 07/01 start 07/02 stop 08/20 $^{
m l}$ Water table control set for subsurface drainage.

Table 6. Bannister site water table management system operation summary.

Table 7. St. Johns site water table management system operation summary.

1987 GROWING SEASON: ELEVATION OF WEIR (m) ZONE ZONE ZONE ZONE DATE ZONE A B С D R pr.1 Dr.¹ pr.¹ Dr .] 05/26 Dr.1 Dr.1 Dr.1 29.82 29.89 Dr. Dr. 05/27 29.69 Dr. 29.66 Dr. 08/27 PUNP SCHEDULE: start 06/22 stop 08/27 1988 GROWING SEASON: ELEVATION OF WEIR (m) DATE ZONE ZONE ZONE ZONE ZONE A B С D E Dr.1 Dr.1 Dr.1 Dr.¹ Dr.¹ pr.1 pr.1 03/28 29.82 Dr. 29.69 Dr. 29.66 Dr. 29.69 Dr. 03/29 09/15 PUMP SCREDULE: start 05/24 stop 09/15 ¹ Water table control set for subsurface drainage. well was compared to field measured depths to the water table by regression analyses. The regression coefficient of determination (r^2) exceeded 0.80 for 17 observation wells in 1986 and 13 observation wells in 1987 (see Table 8). For subsequent analyses the number of wells was further reduced to one well per treatment. The preferred well was a well located midway between laterals with the highest coefficient of determination (r^2) . Thus, for Bannister, the number of groundwater observations used for analyses reduced to 9,085 observations from 11 wells for 1986 and 4,001 observations from 7 wells for 1987.

At the St. Johns site, 7 of 36 observation wells produced regression coefficients of determination (r^2) greater than 0.80. Of these, 6 of 36 observation wells providing 9,085 useful hourly water table elevation observations (beginning July 1, 1987 and ending September 18, 1987), which were used for subsequent analyses. During the 1988 growing season, water table elevation monitoring began June 20, 1988 and continued until October 27, 1988 producing 14,032 observations from 7 observation wells all of which were used for subsequent analyses.

The observation wells used for subsequent analyses are listed in Table 8.

WELL ID	REGRESSION EQUATION	r 2	b
Bannister,	1986		
WA4M1	y = 28.22+.00680×x	0.936	3
WB2L2	y = 28.63+.00447×x	0.975	3
W B 2 M 2	y = 29.00+.00282*x	0.999	4
WB4L1	y = 28.99+.00295#x	1.000	3
WB4E1	y = 29.11+.00351#x	0.899	3
WB4N2	y=29.01+.00278#x	0.982	4
WB6L1	y = 2 9 . 1 7 + . 0 0 4 5 3 # x	0.983	3
WC2L1	y = 29.25+.00334*x	0.955	3
WC6M1	y = 29.17+.00356×x	0.996	3
W D 2 L 1	y = 2 9 . 2 8 + . 0 0 2 9 8 * x	0.883	4
WD6L1	y = 2 9 . 2 2 + . 0 0 2 8 2 # x	0.880	4
WD6M1	y = 29.38+.00214*x	0.973	3
WE2L1	y = 30,02+,00294*x	0.944	5
WE2M1	y = 29.65+.00234×x	0.937	3
W G 2 L 1	y = 29.97+.00265*x	0.933	3
W G 2 M 1	y=29.96+.00270xx	0.991	4
WE4M2	y = 29.43+.00220\$x	0.984	4
Bannister,	1987		
WB4L1	y=27.98+.00628×x	1.000	4
WC2L1	y = 28, 30+,00375*x	0.978	5
WC2M1	y = 28.55+.00355*x	0.967	5
WD2L1	y=28.58+.00434#x	0.814	5
WD4E1	y=29.09+.00193*x	0.956	5
WD6L1	y=28.89+.00309#x	0.838	6
WD6M1	y = 28.43+.00615*x	0.918	3
WE2M1	v=29,13+,00325*x	0.979	3
WE4L1	y=28.75+.00354×x	0.801	5
WE4M1	y = 29.11+.00399*x	0.976	5
WE4E1	y = 29.32+.00327*x	0.982	4
WF4M1	y = 28.54+.00402*x	0.972	5
WH4M2	y = 28.78+.00405*x	0.997	3
St. Johns.	1987		
WB4L2	y = 27.93+.00797*x	0.955	3
WB4M2	y=27.48+.00765#x	1.000	3
WC4L1	y = 27.71+.00514*x	0.957	3
WC4M1	y = 27.94+.00636*x	0.845	6
WC4M2	y=27.94+.00636*x	0.845	5
WC4N3	y = 28.14+.00642*x	0.972	5
WD8L1	y = 28.57+.00144×x	0.851	3
St. Johns.	1988		
WA5L1	y = 28.89+.00542×x	0.909	3
WA5N1	y=28.47+.00454*x	0.824	3
WA8M1	y=28.59+.00475*x	0.988	4
WB5L1	y=28.42+.00516*x	0.943	4
WC8M1	y = 28.41+.00532*x	0.964	3
WC4N3	y = 28.21+.00425*x	0.849	4
WD8L1	y = 28.54+.00551*x	0.968	3
where y	= water table elevation		
x	= pressure transducer rea(dout converted	to digital
г 2	= correlation coefficient	t squared	
D	= number of observations		

Table 8. Regression equations for ground water observation wells used at Bannister and St. Johns sites.

A summary of the blow tube measured water table elevations and a tabulation of the average relative yield and lateral spacing within each water management zone is provided by Table 9. For spacings within zones with more than a single treatment, the yields shown are the arithmetic average of the yields. For the 1986 season, the mean water table depths in Table 9 are the average of 6 measured elevations during the time period 6/25/86 through 7/30/86. For 1987 the Bannister mean water table depths are from 7 measurements taken between 7/01/87 and 8/24/87. The 1987 St. Johns mean depths are the average of 6 measurements between 7/14/87 and 8/17/87 and for 1988, 10 readings taken from 6/7/88 to 8/15/88.

For the 1986 growing season at Bannister the maximum water table depth (growing season, July and August) occurred in zone A, the zone without water table control. The least water table depth occurred in zone B, the zone with the water table control set nearest the soil surface. For 1987 automatically collected observation well data for zone A is not available because for most of the season the water table in zone A was below the lower capability of the instrumentation. For the other zones, the mean water table elevation differed from zone to zone. For zones A and B, the blow tube measured water table depths (for observation wells WA4M1 and WB4M2) show a mean water table depth of 1.38 m and 0.51 m.

The results of the analyses of the hourly observation well
observations for the Bannister and St. Johns sites are provided by Table 10. Table 10 also provides the relative yields measured for each treatment used in the analyses. The Table 10 treatment codes are provided as a part of Figures 3 and 5. The observation well codes were defined previously in the Observation Well Data Analysis part of the <u>Methodology</u> section of <u>FIELD_STUDIES</u>.

Trt.	Zone	Lateral Spacing	Corn Yield X	Soybean Yield X	WT	Hean Depth	Corn Yield X	Soybean Yield	WT	Nean Depth
				xx=86	•			xx=87-	-	
BXXAZO	A	6	85	65		0.95	86	89		1.44
BxxA40	Å	12	75	60		0.75	79	80		1.41
BXXA60	A	18	83	60		0.58	68	85		1.23
BxxB20	B	6	86	48		0.53	113	88		0.48
BxxB40) B	12		52		0.54	92			0.60
BxxB60	B	18	83	51			93	78		
BxxC20	C	6	75	63		0.77	86	79		1.06
BxxC40	C	12	79	60		0.38	79	88		
BxxC60) C	18	83	52		0.7 9	100	93		0.82
BxxD20	D		75	63		0.72	86	80		0.83
BxxD40	D	12	79	63		0.68	85	95		0.95
BxxD60	D	18	68	58		0.74	78	92		0.96
BxxB20	B	6	11			0.7 7		71		0.73
BxxB40	B	12	63			0.83		89		0.87
BxxB60	B	18	11	55			17	92		
BxxF40	P	12	78	60			83	74		1.58
BxxG20	G	6		58		0.73	69			0.63
BxxH20	H	6	11					71		
BxxH40		12	88	71		0.75	80	82		0.67
BxxH60	H	18	84			0.64		92		1.02
				vv=87				77=	 88	
SyyA40	A	12	72	49		0.89	84	52	-	1.01
ByyA50	A	17	84	45		0.91	97	71		0.90
SyyA80) A	24	68	45		0.98	80	53		1.06
SyyB40	В	12	11	39		1.02	75	65		1.08
SyyB50	B	17	94	42		0.89	99	68		-
3yyB80	B	24	80	47		0.90	87	78		0.89
SvvC40	, Ē	12	79	56		1.05	58	55		1.12
8vvC80	Ċ	24	12	66		1.16	49	65		1.12
SvvD40	D	12	81	82		0.92	83	83		0.70
SvvD80	D	24	84	80		0.86	91	80		0.71
SvvR50	R	17	87	72			92	70		

Table 9. Summary of yields and blow tube measured water table depths by zone and lateral spacing.

		Τε ot	bl se	e rv	1 'a'	0. ti	F or	Re.	la we	ti 1]	iv L	e da	te	у: 	ie an	ld al	l Lys	ı se	re s	su re	l es	ts u]	lts	ł s.	у		t	re	a	tm	er	nt		8	an	d	
	181 Et 1940	TIME	ath/h	auti			12.5		2.1	5.6	5.7	4.4	so.	9	3.6	2.	6.3			9.2	2.0	5.6	5. 8	9.1	F .3	6 5 6	2.87	9. G	~. ~	5.8			1.1	N.1			1.3
	URY	INDEX	ath/b	adfi				₹.	1.7	4.3	4.6	5.8	•	7.1	• .1	1.0	3.5		8.4	11.0	7	3.5	11.1		9.9	J 60	6.57].l	1.21	5.3		0 0 10 1	э. с	13.7	-	1.2	2.1
AUGUST	TINE	ABUVE NRAN UT	*	atinea			? 9	2	61	26	55	E ‡	38	61	5	[]	64	1	99	42	=	63	\$	32	C)	:	5	5	25	46	:	g :	21	<u>7</u>	= :	Ŧ	31
	TING	NRAN VT	-	atimeb			31	60	<u>6</u> [£3	1	51	19	13	52	58	36	:	7	54	62	36	55	5	5	:	;	56	25	25	:	5	2	2	22	34	51
		DRPTH	-	autd			1.02	.56	¥.	.45	15.	.95	-54	16.	96.	.93	.15		1.19	1.04	1.12		3.	1.78	1.39		8.1	1.39	1.21	.99	:	58.	R0.1	26.	1.47	1.24	1.09
••	URT ::	FUULT :	4/4	jufi :			12.7 :	8.3 :	ĩ.8 :	3.3 :	5.2 :	11.9	5.3 :	5.3 :	1.9	9.6	1.7 :		2.6	3.8	2.3	9.0 :	1.6 :	3.6	.0.			10.7 :		8.6		21.0:		46.5 :	 	1.6 :	1.3 :
	DRY	ruuti Indri	1/ 1	jdfi			8.4	1.1	4.8	5.1	10.6	14.5	8.3	1.2	14.8	17.0	8.6			1.3	2.2	14.8	1.2	5.8	8.		69.1	18.0	13.9	8.8	•	9.6	5.3	24.2	ee -	1.4	2.1
JULI	TING TING	ABUVE MRAN VT	-4	jtimea			57	99	51	34	30	\$	38	39	:	35	9	;	09	68	1	38	41	38	\$		2	92	3	67	;	69	[9	99	12	\$	31
		NRAN VT	-	jtimeb			89 99	33	35	54	61	54	90	53	63	62	52	:	IE	23	45	62	33	60	96		5	[]	20	51	:	2	E i	M	42	38	51
		DRPTH	-	jutd			.66	.45	.45	91-	69.	.12	.65	.66	.83	.75	8.	:	86.	.13	.82	1.01	.11	1.17	1.09		1.12	1.07	1.15	66.	:	5	1.05	58 .	1.46	1.24	1.09
••				eufi :			: 18	20 :	21 :	16 :	39:	34:	: 1	 87	5 2 :	31 :	: 91	:	54 :	35 :	I6 :	58 :	30:	12:	22 :		: 261	: 21	: ::	19:	:	: 68	: 55	125 :	 m	10:	12 :
	20	PLUCT TUNET		adfi			31	сл	11	61	55	4	31	21	45	52	61		17	2	21	30	2	22	30		119	61	12	24		188	53	2	12	2	22
SIRASON			-	stinea			67	89	5 9	1 3	Ħ	Ŧ	30	58	35	37	4		51	52	36	8	15	36	42		52	54	9	Ŧ		32	61	56	2	IE	52
		BRUON .		stimeb			31	29	33	61	89	54	89	H	63	2 3	23		15	14	19	15	45	64	57		11	46	43	54		1 9	39	42	61	29	99 90
		Li and		swtd			.81	.48	11.	.45	.58	11.	.61	.12	. 19	11.	.81		1.15	66.	1.03	.97	68.	1.76	I.30		1.29	1.26	1.30	1.02		.90	1.10	86.	1.45	1.23	1.09
••	ATTENL :	SPACEDNE :		pacing :			12:	9	12:	18:	 100	18:	 10	18:	 œ	 9	12 :		 9	 9	18:	: 9	12 :	12:	12:		: 71	12:	12:	24:		15 :	24 :	: 91	12:	24 :	24 :
	SUFBEAN I		-	syield			09	48	52	19	63	52	63	58		2 8	1		61	8	26	11	83	11	28		54	35	11	80		11	15	68	11	65	8
				cyield			15	98		83	15	3	15	89	11		88		9 8	86	18			8	80		83	81	11	84		97	11	6 5	82	51	66
	3		3			. 186	TAAN1	18282	184M2	1991	UC2L1	NCGHI	MD2L1	INDGM1	VR2M	HG2H1	2HPBM	18.	UC2NI	MD2L1	ND6LI	UR201	UB4M	UP4N1	2HPBM	18, 2	VIB 4M2	NCAN	NCANG	VD8L1	3,88	INSAU	WA8M1	UB 56.1	NCAN3	WCBM1	ND8L1
	TREATERNI The	a				Bannister	ANUCI	B20C2	B40CI	B60C1	C20C1	C6 0C1	D20C1	DEUCI	R20C1	G20C1	H40C1	Bannisten	C20C1	D20C1	D60C1	B2 0C1	B40C1	FIOCI	H40C2	St. Johns	B40C2	C40C1	C10C3	D80C1	St. John	A50C1	A8 001	BSOCI	C40C3	CBOCI	D80C1

Statistical Analyses:

Tables 11 and 12 provide the results of the linear regression analyses performed. The analyses codes (I.A. through V.B.) refer to the linear regression descriptions provided in the Statistical Analyses part of the <u>Methodology</u> section. The data used for the regression analyses are provided by Appendix C (scatter plots) and Appendix D (statistical summaries).

The field data produced the following water table depth and fluctuation linear regression equations (with the greatest r^2 's and least p statistic values) by site and by crop:

- a. Ban '86: cyield = 64.5 + 0.283 atimea $(r^2=0.442, p=0.015)$
- b. Ban '87: cyield = 49.8 + 9.47 jwtd + 0.437 jtimea (r⁴=0.985, p=0.015)
- d. SJ, '88: cyield = 71.9 + 197 adista $(r^2=0.447, p=0.147)$
- e. Ban '86: syield = 26.9 + 64.2 jwtd 1.11 jdfi (r⁴=0.825, p=0.002)
- f. Ban '87: syield = 98.8 9.68 jwtd -2.07 jwfi (r⁴=0.768, p=0.054)
- g. SJ '87: syield = 138 66.5 awtd (r²=0.360, p=0.400)
- h. SJ, '88: syield = 93.3 0.554 atimea (r²=0.883, p=0.005)

The field data produced the following water table depth and fluctuation linear regression equations (with the greatest r^2 , s and least p statistic values) by site and by independent variable:

timea: Ban '86: cyield = 64.1 + 0.283 atimea a. $(r^{2}=0.442, p=0.072)$ Ban '87: cyield = 49.8 + 9.47 jwtd + 0.437 jtimea ($r^2=0.985$, p=0.015) ь. SJ, '87: cyield = 63.9 + 0.452 jtimea с. $(r^4=0.566, p=0.248)$ SJ.'88 cyield = 149 - 43.7 awtd - 0.359 atimea d. $(r^{2}=0.445, p=0.413)$ Ban '86: syield = 34.4 + 39.0 jwtd - 0.033 jtimea е. $(r^4=0.618, p=0.034)$ Ban '87: syield = 133 + 19.8 awtd - 0.644 atimea f. $(r^2=0.711, p=0.084)$ SJ. '87 syield = 189 - 2.50 stimea g. $(r^2=0.317, p=0.437)$ SJ, '88: syield = 93.3 - 0.554 atimea h. $(r^2=0.883, p=0.005)$ _timeb: Bap '86: cyield = 92.9 - 0.296 atimeb а. $(r^4=0.367, p=0.111)$ ь. Ban '87: cyield = 86.7 + 9.94 jwtd - 0.349 jtimeb $(r^{4}=0.936, p=0.064)$ SJ, '87: cyield = 12 - 0.706 jtimeb с. $(r^2=0.547, p=0.260)$ SJ, '88: cyield = 54.0 + 0.794 atimeb d. $(r^{4}=0.384, p=0.189)$ Bap '86: syield = 32.2 + 40.0 jwtd + 0.002 jtimeb е. $(r^4=0.616, p=0.035)$

f. Ban '87: syield = 68.8 - 21.2 awtd + 0.707 atimeb

 $(r^2=0.634, p=0.134)$ SJ, '87: syield = 156 - 1.94 atimeb g. $(r^4=0.307, p=0.445)$ SJ '88 syield = -17.5 + 43.4 awtd + 0.981 h. atimeb $(r^2=0.867, p=0.049)$ _wfi: Ban '86: cyield = 83.3 - 0.139 swfi a. $(r^{2}=0.203, p=0.224)$ Bap '87: cyield = 76.3 + 1.19 awfi ь. $(r^{4}=0.797, p=0.041)$ с. SJ, '87: cyield = 148 - 70.2 jwtd + 0.930 jwfi $(r^2=0.841, p=0.399)$ d. SJ. '88: cyield = 77.1 + 0.530 jwfi $(r^{2}=0.362, p=0.206)$ Ban '86: syield = 35.0 + 45.6 jwtd - 0.812 jwfi е. $(r^{2}=0.729, p=0.010)$ f. Bap '87: syield = 98.8 - 9.68 jwtd - 2.07 jwfi $(r^2=0.768, p=0.054)$ SJ, '87: syield = 79.2 - 0.256 swfi g. $(r^{2}=0.330, p=0.426)$ SJ, '88: syield = 104 - 24.5 awtd - 1.38 awfi h. $(r^{4}=0.632, p=0.223)$ _dfi: Ban '86: cyield = 85.7 - 0.216 sdfi a. $(r^{4}=0.238, p=0.183)$ Ban '87: cyield = 78.1 + 0.639 adfi b. $(r^{2}=0.308, p=0.332)$ SJ, '87: cyield = 195 - 126 jwtd + 1.51 jdfi с. $(r^{2}=0.997, p=0.051)$ SJ, '88: cyield = 73.9 + 1.98 adfi d. $(r^{2}=0.415, p=0.167)$ Bap '86: syield = 26.9 + 64.2 jwtd - 1.11 jdfi е. $(r^{4}=0.825, p=0.002)$

- f. Ban '87: syield = 93.1 8.11 jwtd 0.872 jdfi (r'=0.619, p=0.145)
- g. SJ, '87: syield = 78.6 0.278 sdfi ($r^2=0.293$, p=0.459)
- h. SJ '88: syield = 81.1 9.2 awtd 0.52 adfi ($r^2=0.032$, p=0.952)

The field data produced the corn and soybean relative yield (cyield and syield) vs. lateral spacing and water management zone (spacing and zone) regression equations:

- a. Ban '86: cyield = 78.9 0.003 spacing (r²=0.000, p=0.995)
- b. Ban '87: cyield = 89.9 0.679 spacing (r²=0.907, p=0.012)
- c. SJ, '87: cyield = 76.7 + 0.306 spacing ($r^2=0.068$, p=0.740)
- d. SJ '88: cyield = 111 1.43 spacing (r²=0.254, p=0.308)
- e. Ban '86: syield = 61.3 0.324 spacing (r²=0.059, p=0.500)
- f. Ban '87: syield = 69.0 + 1.17 spacing (r²=0.494, p=0.078)
- g. SJ, '87: syield = 30.7 + 2.06 spacing (r²=0.340, p=0.417)
- h. SJ '88: syield = 75.2 0.372 spacing ($r^2=0.059$, p=0.643)
- i. Ban '86: cyield = 76.6 + 0.695 zone $(r^2=0.048, p=0.569)$
- j. Ban '87: cyield = 86.7 0.812 zone (r²=0.206, p=0.442)
- k. SJ '87: cyield = 79.8 + 0.500 zone $(r^2=0.003, p=0.942)$

- 1. SJ, '88: cyield = 89.7 2.36 zone (r²=0.033, p=0.732)
- m. Ban '86: syield = 50.5 + 1.97 zone
 (r²=0.407, p=0.047)
- n. Ban '87: syield = 84.1 0.62 zone (r²=0.018, p=0.772)
- o. SJ, '87: syield = 22.5 + 13.0 zone
 (r²=0.252, p=0.498)
- p. SJ, '88: syield = 57.1 + 4.73 zone
 (r²=0.447, p=0.147)

Discussion

Meteorological Data:

As can be seen from Figures 8 through 15, from 1986 through 1988 the growing seasons became progressively hotter and dryer. During 1986 the growing season rainfall was above normal for the area and area irrigation systems saw very little use. The 1987 growing season had much less rainfall beginning before planting until an extreme precipitation event in early September. Area producers with irrigation systems did irrigate in 1987. The 1988 growing season was extremely dry. As can be seen from Figure 9 practically no rainfall fell during May, June and July. Crops grown in the area without benefit of irrigation had greatly reduced yields in 1988.

ANAL'S	CROP	BAN'86	BAN'87	SJ'87	S],88	REGRESSION VARIABLES
 T.A.	00 FB	0.031	0.001	0.132	0.319	cvield.sutd
I.R.	0078	0.011	0.563	0.307	0.016	cvield.stimeb
L.C.	0070	0.000	0.653	0.095	0.017	cvield.stimes
I.D.	COPN	0.238	0.094	0.050	0.332	cvield.sdfi
I.B.	COPR	0.203	0.352	0.024	0.263	cvield.swfi
II.A.	COFN	0.015	0.000	0.000	0.324	cvield. iwtd
II.B.	corn	0.094	0.399	0.547	0.001	cvield.jtimeb
II.C.	COLU	0.142	0.455	0.566	0.107	cyield, jtimea
II.D.	COLD	0.015	0.146	0.032	0.357	cyield, jdfi
II.B.	COLD	0.031	0.042	0.066	0.362	cyield, jwfi
III.A.	corn	0.014	0.012	0.000	0.337	cyield, awtd
III.B.	corn	0.367	0.278	0.031	0.384	cyield, atimeb
III.C.	corn	0.442	0.476	0.051	0.092	cyield, atimea
III.D.	corn	0.041	0.308	0.067	0.415	cyield, adfi
III.B.	COFR	0.079	0.797	0.011	0.098	cyield, awfi
I.A.	soyb'n	0.329	0.170	0.231	0.000	syield, swtd
I.B.	soyb'n	0.220	0.000	0.101	0.224	syield, stimeb
I.C.	soyb'n	0.203	0.005	0.317	0.374	syield, stimea
I.D.	soyb'n	0.105	0.001	0.293	0.000	syield, sdfi
I.B.	soyb'n	0.009	0.001	0.330	0.181	syield, swfi
II.A.	soyb'n	0.616	0.329	0.059	0.007	syield, jwtd
II.B.	soyb'n	0.211	0.203	0.000	0.422	syield, jtimeb
II.C.	soyb'n	0.124	0.043	0.002	0.226	syield, jtimea
II.D.	Boyb'n	0.060	0.482	0.121	0.006	syield, jdfi
II.B.	soyb'n	0.006	0.556	0.092	0.008	syield, jwfi
III.A.	soyb'n	0.002	0.055	0.360	0.000	syield,awtd
III.B.	soyb'n	0.028	0.188	0.307	0.353	syield,atimeb
III.C.	soyb'n	0.018	0.273	0.282	0.883	syield, atimea
III.D.	soyb'n	0.003	0.016	0.002	0.015	sy ield, a dfi
III.B.	soyb'n	0.025	0.012	0.000	0.401	syield, awfi
V.A.	corn	0.000	0.907	0.068	0.254	cyield, spacing
V .B.	corn	0.048	0.206	0.003	0.033	cyield, zone
V.A.	soyb'n	0.059	0.494	0.340	0.059	syield, spacing
V. B.	soyb'n	0.407	0.018	0.252	0.447	вyield,zone

Table 11. Coefficients of determination (r2) resulting from linear regression analyses of data from the Bannister and St. Johns sites (one dependent variable).

--

Agronomic Data:

Each water table management zone and pipe lateral spacing treatment at each site was seeded to corn and soybeans. The

agronomic decisions were made by the agricultural producers who owned the sites. Those producers also performed all agronomic operations. Except for soybean seeding rate and method, the agronomic practices used at each site were typical for agricultural production in south-central Michigan.

The soybean seed was drilled at approximately 150 mm spacing at each site. This is customary for irrigated soybeans in many north central states but not typical for Michigan. Due to the producers not being familiar with soybean seed drilling operations, considerable variation in population rates were observed at each site.

Relative yield with yield goal as the denominator was used to compare treatments and for subsequent statistical analysis. Relative yield was chosen so that yield vs. water table variable relationships derived from the field data (from two sites and three growing seasons) are independent of site and climatic variables. The data suggests that none of the treatments can be considered as controls in which maximum yield possible is obtained. Therefore, it is felt yield goal is a more appropriate datum for calculating relative yield. Using relative yield with yield goal in the denominator also allows the relationships between yield and water table parameters to be used in a mathematical model

Table 12. Coefficients of determination (r2) resulting from linear regression analyses of data from the Bannister and St. Johns sites (two dependent variables).

ANAL'S	CROP	BAN'86	BAN'87	SJ'87	S],88	BEGRESSION VARIABLES
IV.A.	corn	0.039	0.806	0.560	0.359	cyield,swtd,stimeb
IV.B.	COLD	0.031	0.826	0.157	0.409	cyield,swtd,stimea
IV.C.	corn	0.238	0.117	0.442	0.373	cyield,swtd,sdfi
IV.D.	corn	0.203	0.599	0.461	0.337	cyield, s wtd,swfi
IV.B.	corn	0.096	0.936	0.567	0.391	cyield,jwtd,jtimeb
IV.F.	corn	0.142	0.985	0.596	0.393	cyield, jwtd, jtimea
IV.G.	corn	0.017	0.497	0.997	0.393	cyield, jwtd, jdfi
IV.H.	corn	0.064	0.048	0.841	0.394	cyield, jwtd, jwfi
IV.I.	corn	0.367	0.325	0.555	0.414	cyield, awtd, atimeb
IV.J.	corn	0.443	0.512	0.339	0.445	cyield, awtd, atimea
IV.K.	corn	0.087	0.367	0.088	0.423	cyield,awtd,adfi
IV.L.	COLU	0.112	0.825	0.014	0.341	cyield,awtd,awfi
IV.A.	soyb'n	0.451	0.292	0.410	0.317	syield, swtd, stimeb
IV.B.	soyb'n	0.457	0.318	0.375	0.646	syield, swtd, stimea
IV.C.	soyb'n	0.331	0.186	0.329	0.001	syield, swtd, sdfi
IV.D.	soyb'n	0.381	0.419	0.341	0.431	syield, swtd, swfi
IV.B.	soyb'n	0.616	0.337	0.061	0.477	syield, jwtd, jtimeb
IV.P.	soyb'n	0.618	0.346	0.059	0.540	syield, jwtd, jtimea
IV.G.	soyb'n	0.825	0.619	0.478	0.007	syield, jwtd, jdfi
IV.H.	soyb'n	0.729	0.768	0.125	0.009	syield, jwtd, jwfi
IV.I.	soyb'n	0.039	0.634	0.370	0.867	syield, awtd, atimeb
IV.J.	soyb'n	0.030	0.711	0.366	0.884	syield, awtd, atimea
IV.K.	soyb'n	0.007	0.083	0.465	0.032	svield.awtd.adfi
IV.L.	soyb'n	0.025	0.104	0.563	0.632	syield, awtd, awfi
						• • • • • • • • • • • • • • • • • • • •

that can be applied independently of site location and growing season year.

System Operation Data:

For the growing seasons studied, the water table controls at both sites were set to the desired water table elevation immediately following spring field operations. The initiation of irrigation water pumping to the site was

started at the point in time where rainfall was not maintaining or raising the water table. After start of pumping, pumping was continuous until the crop matured near the end of August.

The rate of irrigation water supply at the Bannister site was set at all times to cause water discharge at the water management zone outlet. Thus the supply of irrigation water to the Bannister site water table management zones was not limited to the maintenance of the water table depth within the zone. To better study the effect of water table fluctuation on plant biomass production, irrigation pumping was not stopped during or following rainfall events. At the Bannister site, the water table controls were varied during the growing season to cause water table fluctuation (see Table 6).

At the St. Johns site the soil profile allows high lateral seepage to occur. This resulted in the need to begin pumping at an early date (6/12/87 and 5/24/88). The high rate of lateral seepage also prohibited holding the water table in one water management zone at a different level than in adjacent zones. The level of the water table was controlled by the lateral seepage and crop use of the water in relation to the pumping rate to the field. An irrigation water pumping capacity of 0.9 L/(s'ha) was not sufficient to maintain the water table at design depths during the growing season. Thus during most of the growing season the elevation of the water table control weir had no effect on water table depth for any zone except zone D, the drainage only zone.

Ground Water Data:

At both sites many more observation wells were installed than were used. It was found the observation wells located nearest the center of the water management zone and midway between pipe laterals provided data that best represented the mean water table elevation within the zone. Those wells are identified by the letter 'M' in the fourth place of the well identification code.

At both sites instrumentation breakdowns and water tables above and below the capability of the instrumentation to measure resulted in occasional lapses of water table data. The wells chosen for subsequent analyses are those whose data omissions are relatively infrequent and thus do not influence the analyses results. To relate observation well system output to water table elevation, the digital output for each well was compared to manual measurements of the depth to the water table made during each growing season. Because the output resulted from pressure transducers which provide a linear measurement of the water column at the observation well, the relationship between water table depth or elevation at an observation well vs. digital output is linear. Thus, relating digital output to field measured water table elevation for an observation well results in a calibration equation (the Table 8 regression equation) and a measurement of the functioning of the well (the Table 8 r^2).

Table 8 presents the results of the regression analyses for the observation wells for the study period at both sites. The wells shown all have a correlation coefficient squared greater than 0.800. Observation wells not shown in Table 8 were not operable or had a correlation coefficient squared less than 0.800.

The Table 8 regression equation slope differences are the result of each pressure transducer having a unique slope. The constant value of the regression equations represent the pressure transducer intercept and the elevation of the bubbler exit port within each well.

Table 8 shows the regression equation for the same observation well differed from year to year. These differences resulted from changes to the system being made during the winter months. For example between the 1986 and 1987 growing seasons, 700 mm H2O capacity rated pressure

transducers were replaced with transducers with a 1400 mm H2O capacity rating. Other changes that caused year to year changes in the regression equation include changing the bubbler tube exit port elevation and changing the nitrogen tank pressure and bubbling rate.

Statistical Analyses:

The statistical analyses of the field data were made to evaluate the relationship between water table and relative yield for corn and soybeans for each of two soil types. The relationships explored include both depth and fluctuation of the water table.

Tables 9 and 10 provide the yield, water table depth and water table fluctuation data resulting from the field study. Table 11 provides the results of mean square linear regressions of yield vs. water table depth, water table variation and other variables.

One Dependent Variable Regressions:

From Table 11 it can be seen the following regression variables produced a coefficient of determination greater than 0.500 and a p statistic less than 0.200 for relative yield vs. either a mean water table depth or a water table

fluctuation variable:

- a. soybean yield vs. mean water table depth during July (Ban '86, r²=0.616, p=0.007, syield=32.3+40.09jwtd)
- b. corn yield vs. % time above mean water table depth for the season (Ban '87, r⁴=0.653, p=0.098, cyield=69.1+0.303stimea)
- c. soybean yield vs. % time above mean water table depth during August (SJ'88, r'=0.883, p=0.005, syield=93.3-0.554atimea)
- d. corn yield vs. % time below mean water table depth for the season (Ban '87, r'=0.563, p=0.144, cyield=98.1-0.287stimeb
- e. corn yield vs. wet stress fluctuation index for August (Ban '87, r²=0.797, p=0.041, cyield=76.3+1.19awfi)
- f. soybean yield vs. wet stress fluctuation index for July (Ban '87, r²=0.556, p=0.054, syield=89.9-2.30jwfi)

The regression analyses of yield vs. mean water table provided only one data set with an r^2 greater than 0.500. It is not surprising that the data shows few high single variable linear regression coefficients of determination. The literature suggests for corn and soybeans there is an optimum water table depth for yield (Goins et al., 1966 and Williamson and van Schilfgaarde, 1965). Thus the relationship between yield and mean water table depth should not be linear.

It has been shown (Williamson and Kriz, 1970; Howell and Hiler, 1974; Zolezzi et al., 1978; Fausey et al., 1985; VanToai et al., 1987) that saturation of corn and soybean roots for varying lengths of time reduces yields. The literature further suggests that the yield reduction is related to the duration and extent of root system saturation (Kanwar et al., 1988). Likewise, root zone water deficient conditions lead to reduced yields with the reduction being related to the duration and degree of the deficiency. Thus it is expected that water table fluctuation does impact yield and that the relationship will be more linear than the yield vs. mean water table depth relationship. The regression analyses of the field data do indicate the water table fluctuation parameters (% time above and below mean water table depth and wet/dry stress fluctuation index) are more linear than the yield vs. mean water table depth relationship. This is evidenced by the fact that of the six single dependent variable regression equations with r^2 greater than 0.500 and p statistic less than 0.200, five have water table fluctuation dependent variables (b through f).

Examination of the five water fluctuation parameter regression equations shows consistency. An increase in water table fluctuation above the mean water table (b and e) and a decrease in water table fluctuation below mean water table (d) would have resulted in increased corn yield. Thus the signs of the single independent variable corn yield regression equations with r^2 greater than 0.500 are

consistent and indicate corn yields at Bannister in 1987 would have been greater if the water table had risen into the root zone more often and/or for longer duration.

The soybean yield regression equations (a, c and f), while consistent, suggest the opposite. The negative coefficient of the % time above mean water table elevation regression equation (c) and the wet stress fluctuation index (f) both indicate the soybean yield at the St. John's site during 1988 was reduced due to the frequency and/or duration of the water table rising into the root zone during July and August. The regression coefficient for the mean depth to the water table during July, 1988 at the St. Johns site indicates a deeper water table (from less water table rise fluctuation) would have resulted in increased production.

The regression equations that best describe the effect of mean water table or water table fluctuation from the mean water table elevation on corn and soybean yield are:

- a. cyield = 76.3 + 1.19 awfi for the Bannister site during the 1987 growing season ($r^2=0.797$, p=0.041)
- b. syield = 32.3 + 40.9 jwtd for the Bannister site during the 1986 growing season (r²=0.616, p=0.007)
- c. syield = 93.3 0.554 atimea for the St. Johns site during the 1988 growing season (r²=0.883, p=0.005)

However, the single dependent variable regression analyses do not provide conclusive evidence that corn or soybean

yield is a function of either mean water table depth or water table fluctuation above and below the mean depth. This is not surprising because both mean water table depth and water table fluctuation parameters were treatment variables and thus neither were held constant. The single variable regression analyses results do indicate that the water table fluctuation parameters have a greater effect on corn and soybean yield than mean water table depth for the study location and time period. Further, the analyses results suggest that during 1987 at the Bannister site, the corn yield was reduced because of deficient soil water and at the St. Johns site in 1988, the soybean yield was reduced because the water table rose above the mean water table depth.

Two Dependent Variable Regressions:

Table 12 provides the results of least square linear regression analyses for data sets that include both mean water table depth and a water table fluctuation variable. The Table 12 results strongly indicate corn and soybean yield at the sites were influenced by both mean water table depth and water table fluctuation. This is reflected in the r^2 values obtained for the regression equations that included mean water table depth and one of the following water table fluctuation variables: % time below mean water

table elevation, % time above mean water table elevation, water table fluctuation wet and dry stress indices and percent time above and below the mean water table elevation.

From Table 12, those regression variables that produced r^2 , s greater than 0.500 with p statistics less than 0.200 are:

- a. corn yield vs. mean water table depth and percent of time below the mean water table elevation: (Ban'87, r'=0.806, p=0.194, cyield=96.7+6.92swtd-0.420stimeb) (Ban'87, r'=0.936, p=0.064, cyield=86.7+9.94jwtd-0.349jtimeb)
- b. corn yield vs. mean water table depth and dry stress fluctuation, index: (SJ '87, r²=0.997, p=0.051, cyield=195-126jwtd+1.51jdfi)
- c. corn yield vs. mean water table depth and percent of time above the mean water table elevation: (Ban'87, r²=0.826, p=0.174, cyield=58.4+5.46swtd+ 0.390stimea) (Ban'87, r²=0.985, p=0.015, cyield=49.8+9.47jwtd+ 0.437jtimea)
- d. soybean yield vs. mean water table depth and percent of time below the mean water table elevation: (Ban'86, r'=0.616, p=0.035, syield= 32.2+40.0jwtd+ 0.002jtimeb) (Ban'87, r'=0.634, p=0.134, syield= 68.8-21.2awtd+ 0.707atimeb) (SJ '88, r'=0.867, p=0.049, syield=-17.5+43.4awtd+ 0.981atimeb)
- e. soybean yield vs. mean water table depth and dry stress fluctuation index: (Ban'86, $r^2=0.825$, p=0.002, syield=26.9+64.2jwtd-1.11jdfi) (Ban'87, $r^2=0.619$, p=0.145, syield=93.1-8.11jwtd-0.872jdfi)

- f. soybean yield vs. mean water table depth and percent of time above the mean water table elevation: (Ban'86, $r^2=0.618$, p=0.034, syield=34.4+39.0jwtd-0.033jtimea) (Ban'87, $r^2=0.711$, p=0.084, syield=133 +19.8awtd-0.644atimea) (SJ '88, $r^2=0.884$, p=0.040, syield=94.1-0.72awtd-0.554atimea)
- g. soybean yield vs. mean water table depth and wet stress fluctuation index: (Ban'86, $r^2=0.729$, p=0.010, syield=35.0+45.6jwtd-0.812jwfi) (Ban'87, $r^2=0.768$, p=0.054, syield=98.8-9.68jwtd-2.07jwfi)

Corn Yield - Two Dependent Variables:

It can be concluded that during the 1987 growing season the corn yield at the Bannister site was strongly influenced by the combination: mean depth to the water table and fluctuation of the water table. The regression equations consistently show the 1987 Bannister corn yield was proportional to the mean depth to the water table and percent of time the water table is above the mean water table elevation (a and c). This suggests maximum yield would result from establishing a water table fairly deep within the soil profile, frequently raising the water table to the surface and immediately returning it to the original water table depth.

For the St. Johns site during 1987, the regression results are less conclusive but do indicate corn yield was inversely

proportional to the mean water table depth and proportional to the dry stress water table fluctuation index. Thus, to increase yields, the water table would be established at a depth less than the mean water table depth that occurred in 1987 and the water table maintained at or above the mean water table depth.

For both Bannister and St. Johns, the regression analyses indicate that corn yield will increase if the water table is not allowed to fall below the water table depth established early in the season.

The regression analyses did not produce r^{2} , s greater than 0.500 for corn yield during the 1986 season at the Bannister site nor the 1988 season at the St. Johns site. The yield differences observed at each site and for each season are influenced by both the experimental variables and other factors outside the control of the experiment such as spatial variability of soil properties, rainfall, tillage, planting, harvesting, plant health and hardiness, pesticide control, and fertilizer effectiveness as well as inaccuracies in measurement of the experiment variables. The lack of correlation of the Bannister site 1986 data is attributed to excessive disturbance of the clay soil during the installation of the subirrigation system in July, 1985 which persisted into 1986. This disturbance caused spatial

variation of the soil structure and soil properties thus affecting soil water movement, root penetration, fertilizer utilization, etc. The excessive disturbance of the soil during system installation resulted in affecting yield to a greater extent than the experimental variables, mean water table depth and water table fluctuation.

For the St. Johns site 1988 growing season, the lowest corn yield of 77% from treatment A80C1 (see Table 10) appears to be an outlier point (and in fact that treatment had a greater infestation of weeds than the other treatments). However, performing the regression analyses without treatment A80C1 data did not result in linear regression equations with r^2 greater than 0.500 and p less than 0.200.

The regression equations that best describe the effect of mean water table depth and water table fluctuation from the mean water table elevation on corn yield are:

cyield = 49.8 + 9.47 jwtd + 0.437 jtimea for 1987 Bannister data and jwtd from 0.73 m to 1.77 m and jtimea from 38 to 68 ($r^2=0.985$, p=0.015)

cyield = 195 - 126 jwtd + 1.51 jdfi for 1987 St. Johns data and jwtd from .99 m to 1.72 m and jdfi from 8.8 to 69.1 (r'=0.997, p=0.051)

Neither the 1986 Bannister site nor the 1988 St. Johns site provided data that related corn yield to mean water table depth and water table fluctuation from the mean water table elevation.

The two preceding regression equations for relative corn yield do accurately reflect the site conditions. The high clay content soil profile at the Bannister site allowed the water table to be maintained at a constant, but relatively shallow, depth throughout the growing season. Thus it is not surprising yield is improved by decreasing the percent time the water table fluctuates above the mean water table. The St. Johns site is characterized by difficulty in maintaining the water table at a shallow depth due to high lateral conductivity of the soil profile. The water table elevation achieved early in the season constantly dropped during the growing season. This appears to have resulted in the regression equation for the 1987 growing seasons showing crop yield improvement from decreasing the mean depth to the water table and increasing water table fluctuation. Thus for both sites, the 1987 data shows an increase in water table fluctuation would have resulted in increased corn yield.

Obviously, the preceding analyses of the corn yield regression equations suggest that factors other than mean depth and fluctuation of the water table are important to corn grain production. It is assumed for the 1986 and 1988 growing seasons the lack of corn yield correlation is the result of other factors masking the water table depth and

fluctuation factors. The analyses do show that site soil factors influence the maintenance of a water table and weather factors, including rainfall volumes and timing, strongly influence the relationship of both mean water table depth and water table fluctuation to corn yield. Further. the data supports the hypothesis that for a site in which a relative constant water table elevation can be maintained at a shallow depth, the subirrigation system should be operated to minimize fluctuation of the water table above the desired constant water table depth. For a site that will not allow the maintenance of a constant water table throughout the growing season, the subirrigation system should be operated to cause the water table to frequently raise for short time durations. In actual practice this means for a constant water table site the system operator would operate the system in a drainage mode following rainfall events that cause a rise in the water table. For a falling water table site the system operator would operate the system in a drainage mode following rainfall events only if the combination of event frequency, duration or volume cause the water table to rise for an extended period of time. The end result is that for a constant water table site, the operator has more control over the yield but much more work is required. For a falling water table site, the operator is more dependent upon rainfall but less work is involved.

The data suggests that at a site that has constant water table elevation depth capability, the best operation scenario is to allow the water table, over the season, to recede at a rate less than the rate of corn root elongation. This would allow an irrigation rate less than the rate of evapotranspiration plus deep and lateral seepage and reduce the work involved in operating the system. There is a need to study this concept further.

Certainly, the differences in the relative corn yield regression equations (Tables 11 and 12) illustrate the need to consider site, weather and crop factors in a design procedure for water table management systems.

Soybean Yield - Two Dependent Variables:

The Table 12 regression equations for soybean yield show that for both the 1986 and 1987 growing seasons at the Bannister site the yield was related to the combination of mean water table depth and water table fluctuation parameters.

The relative soybean yield regression equations show, generally for the 1986 season at Bannister, the yield was inversely proportional to the percent time above the mean water table elevation in July, the July wet stress water table fluctuation index and the July dry stress water table fluctuation index each along with a direct proportional relationship with the July mean depth to the water table.

The 1987 Bannister regression analyses show the water table fluctuation parameters (July percent time above the mean water table and July wet and dry stress water table fluctuation indices) all being inversely proportional to soybean relative yield as was the case for the 1986 Bannister data. However, opposite to the 1986 results, the 1987 Bannister regression analyses show the mean depth to the water table (during July) being inversely proportional to yield.

For the 1988 season at St. Johns, the two equations with r^2 greater than 0.500 and p less than 0.200 indicate increased soybean yield would have resulted if the mean depth to the water table was less in July with less fluctuation of the water table above the July mean water table elevation.

The St. Johns site 1987 growing season did not produce any water table depth/fluctuation regression equations with an r^2 greater than 0.500 and a p less than 0.200. Examination of the soybean yield data for that site and year (see Table 10) shows that the treatment C40C1 relative yield of 35 percent may be an outlier (the yield is much lower with the

water table parameters being similar to the other treatments). The weed infestation in treatment C40C1 was observed to be much greater than for the remainder of the field. However, because the deletion of treatment C40C1 data reduces the sets of data to three, regression equations with more than a single dependent variable are not meaningful.

Thus the analyses suggest for 1987 at the Bannister site and 1987 at the St. Johns site, the soybean yield would have benefited from a higher mean water table elevation and less fluctuation of the water table above and below the mean water table elevation. During 1986 at Bannister a lower mean water table elevation and less water table fluctuation would have improved soybean yield.

The soybean yield regression equations with both mean depth to the water table and water table fluctuation above the mean water table elevation with the best r^2 's are:

syield = 35.0 + 45.6 jwtd - 0.812 jwfi for 1986 Bannister data with jwtd from 0.45 m to .72 m and jwfi from 4.3 to 14.5 ($r^2=0.729$ p=0.010) syield = 98.8 - 9.68 jwtd - 2.07jwfi for 1987 Bannister

data with jwtd from 0.71 m to 1.77 m and jwfi from 1.6 to 9.0 ($r^2=0.768$, p=0.054)

syield = 94.1 - 0.72 awtd - 0.554 atimea for 1988 St. Johns data with awtd from 0.89 m to 1.47 m and atimea from 31% to 72% ($r^2=0.884$, p=0.040) **Regression Without Outliers:**

A close examination of the Table 10 data reveals that for the 1987 St. Johns data set, the treatment C40C1 relative soybean yield may be an outlier as is the 1988 St. Johns data set treatment A80C1 relative corn yield.

Performing the regression analyses without St. Johns 1987 treatment C40C1 and St. Johns 1988 treatment A80C1 data produces the following soybean yield regression equations with r^2 greater than 0.400 and p less than 0.250:

a.	syield	=	118 -	36	.9	jwtd,	r	=0.989,	p=0.066,	SJ	' 87
b.	syield	=	87.7 .	- 0	. 28	sdfi,	r	=0.995,	p=0.047,	SJ	' 87
с.	syield	Ξ	86.7 .	- 0	.241	l swfi,	r	=0.964,	p=0.122,	SJ	' 87
d.	syield	=	83.3 .	- 0	.425	5 jdfi,	r	=0.999,	p=0.019,	SJ	' 87
e.	syield	=	81.4 .	- 0	.455	5 jwfi,	r	² =0.972,	p=0.108,	SJ	' 87
f.	syield	=	90.6	- 1	.48	adfi,	r	=0.928,	p=0.172,	SJ	' 87
g.	syield	=	87.6 .	- 1	.19	awfi,	r	=0.997,	p=0.037,	SJ	'87
h.	syield	=	50.2 ·	+ .	531	jtimeb,	r	=0.544,	p=0.155,	SJ	' 88
i.	syield	=	96.9		647	atimea,	r	⁴ =0.678,	p=0.087,	SJ	' 88

The results show the same trends as resulted from the regression analyses using all of the data. The regression analyses for the St. Johns 1987 data without treatment C40C1 provides regression equations with r^2 's greater than 0.500 for soybean yield that were not obtained previously.

Conclusions

 The diurnal fluctuation of the water tables measured at each site and for each growing season indicates evaporated and transpired soil water was in part being replenished from the water table.

- 2. Comparing the r^2 and p statistics of the spacing and zone regression equations with the regression equations arranged by site and by crop and regression equation arranged by site and dependent variable, it is concluded that water table depth fluctuation parameters are better predictors of corn and soybean yield than lateral spacing or water table management zone for the sites and growing seasons studied.
- 3. The regression analyses of the field data from the Bannister and St. Johns field sites did not provide an equation for design that relates corn or soybean yield to mean water table depth or water table fluctuation above or below mean water table elevation consistent for both sites and/or all three years. However, the analyses did provide insight into the relative importance of those water table parameters in situations where the agricultural producer has the opportunity to provide a measure of water table control.
- 4. Examination of the field data scatter plots (AppendixD) coupled with the results of the single independent

variable regression analyses indicate water table fluctuation parameters have a greater effect on corn and soybean yield than does mean depth to the water table.

- 5. Two out of three years soybean yields at the field sites were more affected by the fluctuating water table parameters than were corn yields at the field sites.
- 6. For the research sites and study period, generally the water table fluctuation parameter regression coefficients were positive for fluctuation above the mean water table for corn yield and negative for soybean yield. Those coefficients were negative for fluctuation below the mean water table for corn yield and positive for soybean yield.
- 7. The water table fluctuation wet/dry stress index appears to be a valid procedure for quantifying the combined effect of time and accumulated distance the water table is above/below the mean water table elevation. However, the data did not show that the water stress fluctuation wet/dry stress index offers more prediction accuracy than the percent of time above/below the mean water table elevation parameter.

- 8. There is a need to continue studies of water table depth and fluctuation effects on corn and soybean production and other crops under a variety of soil and climatic conditions. For continued work, greater control of the water table within a treatment and other crop production variables other than water table depth and fluctuation is needed. Also, the treatments should be located randomly with three or more replications.
- 9. The data suggests that at a site that has constant water table elevation depth capability, the best operation scenario is to allow the water table, over the season, to recede at a rate less than the rate of corn root elongation. This would allow an irrigation rate less than the rate of evapotranspiration plus deep and lateral seepage and reduce the work involved in operating the system. There is a need to study this concept further.
- 10. The effect of water table depth and fluctuation on corn and soybean yield needs to be considered in the design process for water table management systems. The field data regression analyses results suggest the critical design parameter is to return the water table to the design depth following frequent water table raises for corn production and following rainfall events for

soybean production. To account for both the frequency and extent of water table rise, the system design criteria should utilize the water table fluctuation wet stress index.

11. The study did not produce design criteria in which relative corn and soybean yield is dependent upon only water table depth and/or fluctuation parameters. Thus the objective of quantifying water table management operation parameters that influence plant biomass production was not realized. A single mathematical model relating relative yield to water table depth and water table fluctuation independent of field location, soil profile and growing season could not be derived from the field data.

The study does suggest that for corn production at the Bannister and St. Johns sites and with a mean water table depth of 0.5 m the regression equation:

$$Y = BO + B1 * X$$
 [3]

can be used for water table management system design with:

```
Y = relative corn yield in %
X = jwfi in m*h/h
B0 = 77
0.5 <= B1 <= 1.2
```

Likewise, the data suggests that for soybean production

at the Bannister and St. Johns sites (also with the mean water table depth at 0.5 m) the regression equation:

$$Y = BO - B1 * X$$
 [3a]

would have:

Y = relative soybean yield in % X = awfi in m*h/h B0 = 92 1.4 <= B1 <= 2.1

Letting B1 be midway between the range given, for corn production the design equation with the water table fluctuation wet stress index as a variable is:

$$cyield = 77 + 0.85 awfi$$
 [4]

and for soybean production is:

both with the mean water table depth at 0.5 m.

WATER TABLE MANAGEMENT SYSTEM DESIGN

Methodology

System Components:

A water table management system consists of perforated underground pipe spaced at regular intervals. These pipe are called laterals and are arranged in zones determined by the elevation variance of the soil surface within the zone. The laterals within each zone discharge to an underground collector pipe called a submain. The submain for each zone outlets to an underground pipe called a main. The number and size of the zones, submains and mains is a function of the topography of the site.

Water table management systems provide the capability to lower the water table (subsurface drainage mode) or raise and maintain the water table at a given elevation (subirrigation modes). Each zone requires a water table control structure located in the submain immediately downstream of the zone. The water table control structure has the capability to be set to allow free drainage (subsurface drainage mode) or to establish a water table upstream of the structure at a desired elevation (controlled drainage and subirrigation modes). Irrigation intake structures, vertical pipes from the submain to the ground surface, are provided for irrigation water access to the underground system during times when rainfall does not maintain the water table at the desired elevation. The irrigation water is pumped from the source to the field through irrigation water supply pipes.

A water table management system thus consists of laterals, submains, mains, water table control structures, irrigation intake structures, irrigation water supply pipes, a pump and a power supply.

System Operation:

A water table management system has three modes of operation. The subsurface drainage operation mode is used to lower a water table that is above the elevation of the laterals by draining water from the soil profile via the underground pipe system. The controlled drainage operation mode is used to capture rainfall to raise or maintain a water table above the elevation of the laterals. The subirrigation mode is used to raise or maintain a water table above the elevation of the laterals by providing irrigation water to the soil profile via the underground pipe system.
The field research suggests system operation must consider both the depth to the water table during the growing season and the fluctuation of the water table. Further, the research suggests that water table fluctuation has a greater effect on yield than does mean water table depth.

SIDESIGN Computer Model:

An objective of this research was to develop a model for the efficient design of water table management systems that will allow the system to be operated for maximum plant biomass production economic efficiency. That objective was met by developing the computer module SIDESIGN.

The present version of the SIDESIGN computer model has the following requirements and attributes:

- 1. The model is operational on the following minimum system configuration:
 - a. IBM personal computer or compatible with a minimum of 256 k RAM memory and a single floppy disk.
 - b. CGA or higher resolution monitor, monochrome or color.

c. 80 character line printer.

2. Model operation is interactive with the user responding

to prompts displayed on the monitor.

- 3. The model does not require additional software other than the operating system software (MSDOS or PCDOS Version 2.11 or higher).
- The model is written in the QuickBASIC compiler language (Version 4.5) from Microsoft Corporation, Redmond, Washington, USA.

MODEL FORMAT

The model is in modular format. The present version of the model has the following modules:

- * SIRAIN
- * SILSPACE
- * SIMAIN
- * SIECON

A detailed description of each module follows.

SIRAIN DESCRIPTION

The SIRAIN module is used to calculate the design rainfall

event to be used for subsequent calculations. The module uses historic growing season rainfall records provided by the model user. The input data may be provided as a text file or by interactive keyboard input.

Data Input:

The model user inputs the number of years (NumberOfYears) to be analyzed, the growing season start date (SeasonStartDate) and end date (SeasonEndDate) and the daily rainfall for each day of the growing season (including 0.0 rainfall days) for each year {rain(y,d)}. The data input can be interactive with the user responding to screen prompts or by the user inputting the name of the data disk file.

For diskfile input, the data must follow the following format:

Line 1

NumberOfYears, SeasonStartDate, SeasonEndDate

```
year(n)
```

Line 3

rain(y,d)

Line 3 is followed by rainfall for each day of year 'n'

starting with the SeasonStartDate and ending with the SeasonEndDate. Lines 2 and 3 are repeated for each year of historic data.

Calculations:

The module uses the input data to calculate and output the 50% probability (2 year recurrence interval) and 10% probability (10 year recurrence interval) daily rainfalls by month and growing season. The module also calculates and outputs the number of rainfall events per month and growing season at the 50% probability level.

To calculate the 50% and 10% probability daily rainfalls, the historic daily rainfall data is ranked in decreasing order, excluding 0 rainfall days, and the recurrence interval calculated by the mathematical model (Schwab, et al., 1981):

$$T = \frac{N+1}{n}$$
 [5]

where: T = recurrence interval, yr
N = total number of daily rainfall events,
unitless

n = rank of rainfall events arranged in

order, unitless

descending

All of the rainfall events are ranked by month and by growing season. For the 2 year recurrence interval rainfall, equation 5 requires the rainfall that falls midpoint in each ranking be determined and provided as output. If at any time the number of ranked rainfall events is not odd, the smallest rainfall value is dropped from the ranking. This insures that the 2 year recurrence can always be calculated. The same rankings are used to determine the 10 year recurrence interval rainfall. That ranking of that rainfall is at 10% of the total number of rainfall events

Example:

A numeric example of the procedure for determining the 2 year recurrence rainfall follows:

Assume the historical daily rainfall (in mm) is from 1980 through 1982 and the growing season is June 1 through August 31. The daily rainfall amounts for the days rainfall occurred for those years and months is:

June July August

1980	18	3	9
	2	12	3
	11	4	5
			21
1981	5	7	11
	9	1	3
	12		4
	3		

To obtain the 50% probability rainfall (2 year recurrence interval) by month and growing season the above data is ranked as follows:

18, 14, 12, 11, 9, 5, 3, June: 2, 2, 1 12, 11, 7, 7, 6, 4, 4, 3. July: 1 August: 21, 21, 11, 9, 5, 5, 4. 3, 3, 1 Season: 21, 21, 18, 14, 12, 12, 11, 11, 11, 9. 9, 7, 7, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1

For the June and August data, the 1 mm rainfall is dropped from the ranking so as to have an odd number of rainfall events in each of the four rankings. This results in N values for equation 5 equal to 9, 9, 9 and 29 for June, July, August and the season, respectively. Applying equation 5 to the data produces 2 year recurrence values of daily rainfall equal to 9 mm, 6 mm, 5 mm and 6 mm for June, July, August and the season respectively.

The model uses a similar procedure to determine and output the number of rainfall occurrences for each month and the growing season. The example follows:

For June, 3 events occurred in 1980, 4 in 1981 and 3 in 1982. Likewise, for July 3, 2 and 4 events occurred for 1980, 1981 and 1982 respectively; for August 4, 3 and 3 occurred for 1989, 1981 and 1982 and for the season 10, 9 and 10 events occurred for those same three years. Ranking the number of events by year:

June: 4, 3, 3

July: 4, 3, 2

August: 4, 3, 3

Season: 10, 10, 9

Applying equation 5 to the data results in 50% probability for number of rainfall events at 3, 3, 3

and 10 events for June, July, August and the season, respectively.

The preceding example is to illustrate the procedure only. To determine recurrence interval rainfalls and number of events for design, the period of rainfall records should equal or exceed 20 years. The SIRAIN module has the capability to analyze up to 30 years of daily rainfall data for a 12 month growing season per year.

The procedure is a modification of a partial series duration analysis. For further information the reader is referred to Chow, 1964.

SILSPACE DESCRIPTION

The water table system components that limit control of depth to the water table and rate of fluctuation are the depth, spacing and hydraulic capacity of the laterals, the hydraulic capacity of the submains and mains, the operational capability of the water table control structures and the capacity of the water supply system.

The SILSPACE module allows the combined effects of those components on the operation of subirrigation systems to be investigated. The SILSPACE module allows the user to evaluate system design alternatives on system performance in

terms of water table depth and water table fluctuation.

SILSPACE consists of five sections: data input, initial calculations, steady state analysis, transient analysis and results output.

Data Input:

User input data describes the soil profile, the design rainfall event, the system components and the system operation. The model uses those data to compute and output the lateral spacing and discharge capacity required for steady state supply of irrigation water and steady state subsurface drainage. Next, the vertical rise of the water table due to infiltration of the design rainfall is calculated. This is followed by transient analysis to determine the time and discharge rates for the water table to return to the levels preceding the rainfall event.

A description of the data that must be provided by the model user follows:

System Variables:

depth to the lateral pipe.....TileDepth diameter of the lateral pipe....TileDiameter minimum grade of the lateral pipe....TileGrade length of the lateral pipe....TileLength

For Subirrigation:

depth to water table at lateral.....siWTdepthLateral depth to water table at midpoint.....siWTdepthMidpoint

For Subsurface Drainage:

depth to water table at lateral.....sdWTdepthLateral depth to water table at midpoint....sdWTdepthMidpoint design subirrigation rate.....sirate design subsurface drainage rate....drrate design storm runoff.....runoff design storm occurrences.....events depth to weir following rainfall.....WeirDepth

Soil Variables:

depth to barrier.....BarrierDepth number of soil layers.....nlayers

For Each Soil Layer:

layer thickness.....th saturated hydraulic conductivity....hydc water content at saturation.....sat water content at drained upper limit..dul

The input data required, for the most part, is self explanatory and easily obtained. The water content at saturation (sat) is the volumetric soil water content when the soil is saturated. The drained upper limit (dul) is the volumetric water content that results from complete soil water drainage from the soil layer without evaporation or transpiration. The 'sat' and 'dul' terms are further described by Ritchie et al., 1986.

The model allows data input from a diskfile or interactively. A data input diskfile requires the data to

98

be arranged in the following sequence:

Line 1

BarrierDepth, nlayers

Line 2 (Note: Line 2 data are provided for each soil layer in sequence beginning with the surface layer.)

th, hydc, sat, dul

Line 3

TileDepth, TileDiameter, TileGrade, TileLength, siWTdepthMidpoint, siWTdepthLateral, sdWTdepthMidpoint,

sdWTdepthLteral

Line 4

sirate, drrate, rainfall, rainfall occurrences, runoff curve number, WeirDepth

Initial Calculations:

SILSPACE first calculates the infiltration resulting from the user inputted rainfall and runoff curve number using the equation:

The runoff is calculated by the USDA Soil Conservation Service curve number method (USDA Soil Conservation Service, 1972):

$$Q = \frac{(P-0.2S)^2}{(P+0.8S)}$$
[7]

where

$$S = \frac{25400}{CN} - 254$$
 [8]

for units of P, Q and S in mm.

Next the model calculates and uses in subsequent calculations a weighted value for saturated hydraulic conductivity and the difference in the volumetric water contents at saturation and drained upper limit. The weighted values are calculated by:

weighted hyde =
$$\frac{\sum_{i=1}^{n} [hyde_{n}][th_{n}]}{\sum_{i=1}^{n} th_{n}}$$
[9]

weighted sat-dul =
$$\frac{\sum_{i=1}^{n} (sat-dul)_{n} (th)_{n}}{\sum_{i=1}^{n} th_{n}}$$
[10]

where n = layer number for layers from the soil surface to 0.6 m below the pipe depth hydc = user inputted values of the saturated lateral hydraulic conductivity, 1/t, for each soil layer. sat = user inputted values of the saturated volumetric water content for each layer 1/1.

dul = user inputted values of the drained upper limit volumetric water content for each layer, 1/1. th = user inputted thickness of each layer, 1.

Steady State Analysis:

SILSPACE calculates the lateral spacing required for subsurface drainage at the design subsurface drainage rate, drrate and subirrigation at the design subirrigation rate, sirate.

The lateral spacing algorithm used by the SILSPACE model is to calculate the spacing using a modification of a steady state equation developed by Hooghoudt and by Ernst (Van Beers, 1976). That method is described in detail by Skaggs, 1980. The modified Hooghoudt equations used are:

$$qd = \frac{8 \cdot k \cdot De \cdot M + 4 \cdot k \cdot M^2}{L^2}$$
 [11]

for subsurface drainage and

$$qs = \frac{4 \cdot k \cdot M \left(2 \cdot ho + \frac{ho}{Do} \cdot M\right)}{L^2}$$
 [12]

for subirrigation with the terms defined as follows:

- L = The design distance between drainage laterals, l.
 [ldr and lsi]
- k = The effective saturated lateral hydraulic conductivity, l/t. [hydc]
- M = The difference in water level as measured over the lateral pipe vs. midway between the lateral pipes, l. [sdWTdepthMidpoint-sdWTdepthLateral and siWTdepthMidpoint-siWTdepthLateral]
- de = The depth from the center of the lateral pipe to the equivalent impermeable layer, l. [dem]
- ho = The distance from the water level over the lateral
 pipe to the equivalent impermeable layer, l [dwtm dem].
- Do = The distance from the water level over the drain to the actual impermeable barrier, 1 [dwtm-dbm].
- qs = The steady state evapotranspiration rate, 1/t.
 [sirate]

Figure 18. Subsurface drainage/subirrigation lateral spacing design notation.

The equivalent depth, de, to the impermeable layer is introduced to account for losses incurred as water leaves the drain and flows outward during subirrigation mode and for the losses that occur as the flow converges to the drain openings during subsurface drainage. Hooghoudt (Hooghoudt, 1940 and van Schilfgaarde, 1974) evaluated that effect by comparing radial flow near the pipe with flow conforming to the Dupuit-Forchheimer assumptions away from the pipe. Hooghoudt's solutions were formulated by Moody (1966) as follows:

For 0 < d/L < 0.3

$$de = \frac{d}{1 + \frac{d}{L} \left[\frac{\theta}{\pi} \ln \left[\frac{d}{re} \right] - a \right]}$$
[13]

where

$$a = 3.55 - 1.6 \frac{d}{L} + 2 \left(\frac{d}{L}\right)^2$$
 [14]

For d/L > 0.3

$$de = \frac{L \cdot \pi}{\left(8 \cdot \ln \frac{L}{re} - 1.15\right)}$$
[15]

in which

L = Lateral Spacing, l. [ldr and lsi] de = equivalent depth to the barrier, l. [dem] d = actual depth to the barrier, l. [BarrierDepth] re = drain tube radius, l. [rem]

The effective drain radius is less than the actual drain radius to account for additional loss of hydraulic head due to convergence of the flow lines resulting from flow entering or leaving the pipe through a finite number of perforations. The values used for re are 3.5, 5.1 and 10.0 mm for pipe diameters 66, 102 and 127 mm respectively (USDA Soil Conservation Service, 1985).

The iterative method of solving for the lateral spacing, L includes calculating the depth to the equivalent impermeable layer.

For both drainage and subirrigation the lateral spacing, L, is solved by iteration using the hydraulic conductivities, depth to barrier, depth to tile and depth to water table values provided by the user.

The module thus computes two lateral spacings - one for subsurface drainage and the second for subirrigation. The design lateral spacing for further computations is set equal to the lessor of L for drainage and L for subirrigation. The model user has the option of choosing a different design lateral spacing for subsequent calculations.

Transient Analysis:

For the first step in the transient analysis, the model establishes the maximum flow capacity of a lateral pipe using Manning's equation and user inputted values for pipe diameter and grade. In terms of model variable names, Mannings equation is:

FullPipeQ =
$$\frac{1}{n} \left(\frac{\text{TileArea}}{\text{TilePerimeter}} \right)^{\frac{2}{3}} \left(\frac{\text{TileGrade}}{100} \right)^{\frac{1}{2}}$$
 TileArea [16]

where

FullPipeQ = full pipe flow discharge, 1³/t
n = Manning's roughness coefficient
TileArea = cross-sectional area of the pipe, 1²
TilePerimeter = wetted perimeter of the pipe, 1
TileGrade = grade of the pipe, %

The FullPipeQ is put in units of l/t by dividing FullPipeQ by the design lateral spacing and the length of the lateral. The user has the option of reducing FullPipeQ if desired.

Next the rise in the water table from infiltration of the design runoff is calculated. The initial condition is that the system is in the subirrigation mode with the water table at the user inputted depths at the lateral and midway between laterals. The initial water content is assumed to be at 80% of the drained upper limit water content. The rainfall infiltration is assumed to cause 1) an instantaneous leveling of the water table at a depth equal to the average depth at the lateral and depth midway between laterals and 2) an instantaneous rise in the level water table sufficient to store 100% of the infiltration based upon the weighted saturated - .80 * drained upper limit water contents.

Next, the modified Hooghoudt steady state equation is used to calculate the drainage flux (MaxEllipseQ) with the variable m being the difference between the depth to the pipe and the water table depth resulting from the rise in water table because of infiltration.

Calculation of the time for drawdown of the water table from the water table made shallower by infiltration to the design water table depth for steady state subirrigation proceeds in two phases.

For the first phase, the water table is assumed to vary from approximately horizontal to elliptical. At the first phase conclusion 1/2 the vertical height of the ellipse is equal to the difference in the pipe depth and the water table depth immediately following the rise in the water table due to runoff distribution. The horizontal width of the ellipse is equal to the lateral spacing. The ellipse at the conclusion of the first phase is defined by the curve designated WT @ t; > 0 in Figure 19. The time for phase 1 is calculated by varying the horizontal width of the water table ellipse curve from 0 to L/2 in 1000 steps, integrating the ellipse curve at each step and calculating the time to

drain the volume of soil between steps. The time for drainage between steps is calculated by dividing the volume drained between steps (the area between steps times the difference in soil water content at saturation and soil water content at drained upper limit) by the average of the drainage flux between steps. The drainage flux at each step (q) is calculated using the Hooghoudt equation as previously defined. The calculated drainage flux is not allowed to exceed FullPipeQ nor be less than the user inputted drainage coefficient (drrate) + the user inputted subirrigation rate (sirate).

For water table drawdown as shown in Figure 19 the control weir is lowered to drainage lateral depth at time $t_2 = 0$.

For phase 2 flow, the elliptical water table is dropped vertically in 30 mm midpoint increments from the midpoint height of the water table at the end of phase 1 to the midpoint depth of the water table in steady state subirrigation mode before the rainfall event. At each incremental drop, the ellipse curve is integrated and the time to drain the volume of soil within the increment is calculated. The time for drainage between increments is calculated by dividing the volume drained between increments (the area between steps times the difference in soil water content at saturation and soil water content at drained

Figure 19. Schematic showing change in water table (WT) with time (t) following a rainfall event through water table drawdown with the subirrigation system initially in a subirrigation mode.

upper limit) by the average of the drainage flux between steps. The drainage flux at each increment is computed by the Hooghoudt equation as previously described.

During the phase 1 and 2 calculation cycles, the time is accumulated and the elapsed time, water table depth at midpoint and drainage flux is shown on the monitor at each step.

Calculated Crop Yield Parameters:

The model uses the rise in water table, number of events and

elapsed drawdown time to calculate a crop yield parameter called the wet stress fluctuation index (wfi). The wfi is a parameter that may be used to estimate the mean crop yield that the subirrigation system described by the input data will produce. The wfi quantifies the fluctuation of the water table above the mean water table over the period of time represented by the number of events input by the program user. This provides a water table fluctuation parameter that can be used to estimate yield by comparing the computed wfi to wfi vs. yield relationships obtained through field studies and/or simulation models such as DRAINMOD.

The module computation of wfi is based upon a rise and fall of the water table resulting from the user inputted rainfall as follows:

The wfi parameter is calculated by the following mathematical equation:

wfi =
$$\frac{\frac{1}{2} \text{ dwfi twfi}^2 \text{ events}}{\text{TotalTime } 24}$$
 [17]

where events = number of rainfall events during the time period of interest (unitless)

TotalTime = Duration of time period of interest (days).

Figure 20. Schematic of assumed water table elevation vs. time following a rainfall event.

$$twfi = \frac{dwfi \left[24 + E lapsedTime \right]}{WTrise}$$
[19]

$$WTavg = \frac{WTstart a + \left[wtdRain + \frac{2}{3}WTrise\right] b}{24 TotalTime}$$
[21]

Results Output:

The following results of the analyses are shown on the monitor along with the input data the results are based upon:

* maximum lateral spacing for subirrigation * maximum lateral spacing for subsurface drainage * lateral spacing used for the transient analysis * time to return to the subirrigation water table depth * maximum discharge for drawdown * wfi

The user has the option of obtaining a printout of the input data and results.

Model Evaluation:

The model was evaluated by comparing calculated model subirrigation drawdown durations with observed drawdown durations for selected rainfall events that occurred during the 1986 and 1987 growing seasons at the Bannister site and the 1987 growing season at the St. Johns site. For each selected rainfall event, the differences in saturated and drained upper limit volumetric water contents (sat-dul) were calculated by dividing the observed rainfall by the observed vertical rise in the water table. The sat-dul values used are listed in Table 13. The runoff curve number was calculated by the USDA Soil Conservation Service curve number method (USDA,Soil Conservation Service, 1972). For the Bannister site a curve number of 82 was used (Hydrologic Soil Group C with contoured row crops in good hydrologic condition). The St. Johns site curve number is 75 (Hydrologic Soil Group B with contoured row crops in good hydrologic condition). The input data for each evaluation run simulates the operation of the field systems.

Results:

The results of comparing the observed water table rise and drawdown with simulated rise and drawdown are presented in Table 13.

Discussion:

The comparison of observed and simulated water table rise and water table drawdown shows SILSPACE does a reasonably good job simulating actual field conditions for soils with a

Table	13.	Comparison	of	water	table	drawdown	simulation
result	s to	field obse	rva	tion.			

SITB	OBS WELL	BAIN	WT DEPTH O Start	OBS DBPTH AFTBR BAIN	CALC sat-dul	OBS DBPTH TO WBIR	OBS PUMP BATE DUBING DRAWDOWN BB/d	OBS TIME To DBAWDOWN b	SIMUL DBPTH Q Start	SIMUL DBPTH AFTBR BAIN	SIMUL TIME TO DRAWDOWN b
BAN86	WA4H1	29	.62	.42	.15	1.22	0	17	.63	.47	59
BAN86	WB2M2	29	.43	.30	.22	.43	5	43	. 42	.31	61
BAN86	WC6N1	29	.78	.42	.08	1.22	8	72	. 75	.45	7 1
BAN86	WB2N1	29	.86	.52	.09	. 85	8	72	.86	.58	58
BAN86	WG2N1	29	.37	.29	.36	. 31	5	60	.38	.27	60
BAN87	WB4H1	11	1.16	.51	.02	1.19	8	53	1.16	.62	28
SJ87	WB 4 M 2	24	.92	.65	.09	.91	0	31	.93	.70	33
SJ87	WB4M2	23	1.22	.85	.06	1.22	8	58	1.24	. 79	50
SJ87	WC4N1	24	.99	.72	.09	.98	0	36	.96	.73	33
SJ87	WC4H1	23	1.14	.78	.06	1.13	8	75	1.12	.66	51

loamy clay texture and with a loamy sand texture. The differences in simulated and observed results are likely to be, in part, due to differences in hydraulic conductivity, differences in runoff curve number, differences in pipe flow limitations and approximations used for the simulation algorithms.

The SILSPACE module demonstrates dramatically that the balance between the various components must be considered in the design process. It is evident that reducing lateral spacing to decrease the time required to return the water table to the desired depth following a rainfall event may not be effective if the hydraulic capacity of the submains and mains is not increased.

The runs made with the module also show that the time to lower the water table is dependent upon the weir setting before and after the rainfall event.

Finally, the module shows that the difference between depth to the water table at the lateral and at the midpoint between laterals greatly affects the time required to return the water table to the design depth following a precipitation event.

The data required as input for the module is fairly easy to obtain. The lateral saturated hydraulic conductivity may be determined in situ (by auger hole and/or velocity permeameter) or by laboratory analysis on undisturbed cores. The depth to the barrier can be determined by soil borings or excavation of backhoe pits at the site. The volumetric water contents at saturation and drained upper limit can be easily determined in situ or in the laboratory on undisturbed cores. Historic daily rainfall records from location near the sites are readily available in the United States and most of the developed world.

The wfi parameter is analogous to the SEW30 parameter (Wesseling, 1974 and Bouwer, 1974) as originally defined by Sieben (1964) to evaluate the effect of fluctuating water tables on cereal crop production. The module uses the wfi

concept instead of SEW10 for two reasons. A meaningful value for SEW30 is not possible using a 50% probability rainfall event projected over the growing season. Also, the operational concept of subirrigation is to establish a constant water table at a depth that will provide the water needs of the plant. Under that situation, the plant will develop a root system as needed to utilize the ground water via capillarity from the water table. The performance criteria for the subirrigation system thus is "How well is the system maintaining the water table at the design depth?" The wfi parameter is a quantitative evaluation of how well the system maintains a constant water table. The wfi parameter can be determined from research data of water table depth or elevations with time as well as computer simulations that provide water table depth with time as an output. The field research shows crop yield can be related to the wfi parameter. It is expected those relationships are mostly independent of soil and climate (as is SEW30). This allows system designers to apply the crop yield results from limited field studies and/or computer simulations to a broad range of soil and climatic conditions through application of the SIDESIGN computer model.

SIMAIN DESCRIPTION

The SIMAIN module assists the system designer determine the

needed diameter for the submain and main collector pipes. The user enters the system design drainage coefficient, subirrigation rate, lateral spacing and the grade of mains and submains. The program uses Manning's equation

FullPipeQ =
$$\frac{1}{n} \left(\frac{\text{TileArea}}{\text{TilePerimeter}} \right)^{\frac{2}{8}} \left(\frac{\text{TileGrade}}{100} \right)^{\frac{1}{2}}$$
 TileArea [24]

where

to compute the maximum length of pipe and drainage area capable of providing pipe flow discharge at the design drainage and subirrigation rates for the lateral spacing and for pipe diameters from 102 mm through 457 mm.

Following the calculations the program shows the results on the monitor. The user is given the option to get a printout of the results and/or run the module again with different input data.

SIECON DESCRIPTION

A water table management system to maximize the economic efficiency of plant biomass production will involve tradeoffs. Reducing pipe size and/or lateral spacing will reduce system cost but will also reduce the ability of the system operator to maintain the ideal water table location. Rainfall events may increase plant stress from excess soil water which may reduce plant biomass production. Likewise deficit soil water conditions with plant biomass production reductions may result from the system operation not keeping up with crop water needs.

To evaluate field crop vs. water table depth and fluctuation relationships in economic terms, the economic analysis computer module (SIECON) was developed. The module compares water table management system annual benefit to annual cost.

Module Algorithm:

A properly designed, installed and operated subirrigation system will provide increased agricultural yield most years. It has been shown that system variables such as lateral spacing and depth, capacity of the mains and submains, irrigation water supply capability, etc. all affect the

magnitude of the yield increase. Likewise, those same system variables establish the system cost - installation cost, operation cost and replacement cost. Generally, an increased yield is accompanied by an increase in system cost.

Alternative levels of subirrigation system capability are mutually exclusive alternatives (Riggs and West, 1986). In other words, the selection is limited to the do-nothing option, or A, or B. To compare alternatives, the net annual equivalent value (ANEV) of each alternative is calculated and the alternatives ranked in order of net annual equivalent value (Potter, 1985). The positive contributors to the net annual equivalent value of an alternative consist of yield multiplied by (market value minus production cost) for the crop. The negative contributors consist of the system installation cost, the system operation and maintenance cost and the salvage value of the system all converted to an annual cost using an interest rate equal to a minimum attractive rate of return (MARR).

Variables such as future costs of production, market value, inflation, tax benefit and/or cost, value of land, etc. are not included in the analysis. Estimation of these variables are highly judgmental and their inclusion would not improve the accuracy of the comparisons.

A detailed description of each variable used in the economic analysis is as follows:

Installed Cost of the System (P): The installed cost of the system (P) is the sum of:

- the unit cost of the main times the total length of main
- the unit cost of laterals times the total length of laterals
- the unit cost of head control stands times the number of zones
- the unit cost of the water supply line times the total length of the water supply lines
- the cost of the well
- the cost of the pump
- the cost of the motor or engine
- the cost of providing energy to the site

To convert P to an annual cost, the following equation is used:

$$A = \frac{P \cdot i \cdot (1+i)^{n}}{(1+i)^{n} - 1}$$
[25]

where

P = installation cost
i = minimum attractive rate of return (%)
n = system life before replacement (y)

Total Annual System Cost (ASC):

The total annual system cost (ASC) is the sum of A and the annual cost of operating and maintaining the

system.

The SIECON module calculates the annual system benefit using user inputted values for with system and without system yield, production costs and product prices.

Annual System Income (ASI):

The annual system income (ASI) is equal to:

income from field w/ system - income from field
w/o system
[26]

where income from field w/ system is equal to:

field size*yield w/system*product price - field
size*production cost w/ system [27]

and income from field w/o system is equal to:

field size*yield w/o system*product price - field size*production cost w/o system [28]

Benefit/Cost Ratio:

The Benefit/Cost Ratio then is annual system income divided by the annual system cost (ASI/ASC).

Data Input:

The module user has the option of providing the input data interactively or by specifying a disk file. For the disk file the input data is on a single line, comma separated, in the following order.

* estimated installation cost of the system (\$)

* estimated cost of operating and maintaining the

system (\$)

- * expected life of the system (yr)
- * minimum attractive rate of return (%)
- * field size (area)
- * estimated yield without the system (vol/unit area)
- * estimated yield with the system (vol/unit area)
- * production cost without the system (\$/unit area)
- * production cost with the system (\$/unit area)
- * expected market value of the crop (\$/unit vol)

The module calculates and prints:

- * total installation cost
- * total annual system cost
- * total annual increase in income due to system
- * benefit/cost ratio

Discussion:

The design process for water table management systems must consider economics. The computer module SIECON provides a relatively easy way to relate economics to other aspects of the design process.

The installation cost of the system is the estimated cost of the system installed. The annual operation and maintenance cost is an estimate of the value of the time and expense to keep the system in good repair and operating. The rate of interest should be the rate considered to be the minimum acceptable rate of return from the investment in the water table management system. That interest should be at least as high as the return available on guaranteed investment opportunities. The production cost input is an estimate of the cost of seed, fertilizer, herbicide, tractor operation costs, combine operation costs for the field and crop on a unit area basis. The annual yield without the system comes from knowledge of past yields. The annual yield with the system is based upon the performance of the system in terms of water table fluctuation vs. yield.

The before tax benefit/cost ratio calculated by the module can be interpreted as follows:

The number 1 is the breakeven point. Any number greater than 1 shows the system will make money. The alternative with the largest benefit/cost ratio over 1 is the best alternative economically.

The SIECON module does not include depreciation, taxes, value of land, etc. which may also affect the economics of choosing an alternative. The before tax benefit/cost ratio is a summary of the economic analysis and is intended to be helpful in selecting an alternative. EXAMPLE APPLICATION

The SIDESIGN model can be used to relate operational characteristics of a water table management system or system alternatives to water table depth and water table fluctuation parameters by the following procedure:

- Step 1. Using historic growing season rainfall records from near the site location, run the SIRAIN module to determine the growing season rainfall amounts for the 2 and 10 year recurrence intervals and the 2 year recurrence interval number of rainfall events per season.
- Step 2. Apply the SIRAIN results to the SILSPACE module to obtain drawdown times and wfi parameters for a series of subirrigation system design alternatives (alternate lateral spacing and drainage rates).
- Step 3. Use the SIMAIN module to determine main sizes for each of the Step 2 alternatives.
- Step 4. For each alternative, estimate the system installation cost.
- Step 5. For each alternative, use the drawdown and wfi results from Step 2 to estimate the probable yield.
- Step 6. Use the SIECON module for each design alternative to estimate the benefit/cost ratio for each system alternative.
- Step 7. Select the system alternative with the greatest benefit/cost ratio.

An example of the application of the SIDESIGN model is provided as Appendix G.
CONCLUSIONS

SILSPACE Module:

- 1. The SILSPACE module does a reasonably good job of simulating the performance of a water table management system in the subirrigation mode using input data that is relatively easy to obtain.
- 2. The module provides water table management system designers with a procedure to design water table management systems that will meet current standards for subsurface drainage, will provide irrigation water to the root zone at a rate consistent with the crop needs and will limit fluctuation of the water table within limits established by the system designer.

SIECON Module:

1. The SIECON module includes the economic factors needed to evaluate the annual cost of a water table management system design alternative and the average annual increase in income estimated to result from the alternative. 2. The SIECON module, in conjunction with SILSPACE and yield vs. water table depth/fluctuation parameters relations provides the water table management system designer with the tools needed to design water table management systems that maximize the economic efficiency of plant biomass production.

SIDESIGN Model:

- The model is operational on micro-processor based computers, is interactive and does not require substantial calculation time even with minimal computational resources.
- 2. Application of the model shows that:
 - a. the management of the water table fluctuation is important to corn and soybean production and needs to be considered in the design of subirrigation systems.
 - b. additional research is needed to establish water table depth/fluctuation vs yield relationships to design and operate subirrigation systems.

CONCLUSIONS

- 1. The management of the water table fluctuation is important to corn and soybean production and needs to be considered in the design of water table management systems.
- 2. The wet/dry stress fluctuation index appears to be a valid method of evaluating water table fluctuation research results that is applicable to water table management system design.
- 3. Additional research is needed to establish water table depth/fluctuation vs. yield relationships to design and operate water table management systems that maximize the economic efficiency of plant biomass production.
- 4. Additional research is needed to determine the effect a controlled receding water table during the growing season has on plant biomass production.
- 5. There is a need to continue field size study of the water table fluctuation effects on yield for a variety of soil conditions, crops and climatic areas. Along with the field size studies, a water table management research facility that allows for replication and reduces non-treatment variables that affect plant biomass production is needed to better define the water table depth/fluctuation vs. yield relationships.
- 6. The design procedure developed as a part of this study allows for efficient system design that is based upon easily obtainable field and climatic data and includes water table depth and fluctuation as design parameters.
- 7. The water table management system design computer program SIDESIGN provides designers the opportunity to develop system designs based upon site soil hydraulic properties, water table management capabilities and economic efficiency.

APPENDIX A

BANNISTER SITE SOIL DATA

APPENDIX A

CLASSIFICATION: ZIGENFUSS; FINE-LOANY, MIXED, MONACID, MESIC MOLLIC HAPLAQUEPT

			(Clay	-TOTAL- SILT) Sand	(- CLAY PINB	-) 003	(SII PINB	CT) COARSE	(VF	 F	-SAND- M	 C) VC	(- COA)	ESE FRA -WEIGHT	CTIONS(N	M) -)	(>2HM) WT
SAMPLE	DEPTH	HORIZON	LT	.002	.05	LT	LT	.002	.02	.05	.10	.25	.5	1	2	5	20	.1-	PCT OF
NO	(CH)		.002	05	-2	.0002	.002	02	05	10	25	50	-1	-2	-5	-20	-75	75	WHOLB
			< ·				PCT OF	<2 m	(3al) -					>	<- P	CT OF (75MM(3B1) ->	SOIL
85P3482S	0- 23	AP	24.3	47.9	27.8			29.3	18.6	5.7	12.5	7.4	1.6	0.6	2			24	2
85P3483S	23- 38	BG1	30.3	39.4	30.3			27.5	11.9	6.1	14.3	7.4	1.7	0.8	1	1		26	2
85P3484S	38- 61	BG 2	28.0	33.6	38.4			22.1	11.5	1.4	17.9	9.7	2.3	1.1	5			34	5
85P34859	61- 92	BG3	33.0	36.3	30.7			25.7	10.6	6.0	14.6	7.8	1.6	1.3	2	2		28	4
85P3486S	92-112	CG1	31.6	36.8	31.6			25.6	11.2	6.4	14.5	7.8	1.6	1.3	2	2		28	4
85P34878	112-160	CG2	29.7	39.1	31.2			26.7	12.5	6.1	13.6	7.5	2.4	1.6	2	3	1	30	6
DEPTH	ORGN	(-RATIO/C	LAY-)	(BULK I	BNSITY	COLB		(-VATE	R CONTE	 NT-)	WRD								
	C		15	1/3	OVEN	WHOLE		1/10	1/3	15	WHOLE								
		CRC	BAR	BAR	DRY	SOIL		BAR	BAR	BAR	SOIL		(- CLAY/I	MINBRA	LOCY - I	BELATIVE	AMOUN	TS)
(CH)	PCT			(G/	CC)	CH/C	M	(- PC	T OF <2	MM -)	CH/CH		•			(<.0	02 m m)		
0- 23	1.90	0.61	0.44	1.62	1.76	0 .02	8	23.3	22.2	10.6	0.19		KK 3		MI 3		VN 2		VR 1
23- 38	0.78	0.44	0.40	1.65	1.79	0.02	1	21.3	20.3	12.2	0.13		KK 3		MI 3		VM 2		VR 1
38- 61	0.42	0.41	0.39	1.68	1.84	0.03	0	21.5	20.4	10.9	0.15		KK 3		MI 3		VM 3		CE 1
61- 92	0.38	0.35	0.40	1.68	1.85	0.03	2	21.3	20.6	13.3	0.12		MI 3		KK 3		VM 2		GE 1
92-112	0.32	0.34	0.42	1.69	1.84	0.02	8	19.8	19.1	13.3	0.10		MI 3		KK 3		VM 2		GE 1
112-160	0 41	0.34	0 42	1 62	1 91	0 03		91 4	91 0	19 5	A 19		MT 9		777 9		UN O		072 1

AVERAGES, DEPTH 25-100: PCT CLAY 31 PCT .1-75MN 29

ANALYSIS: S= ALL ON SIEVED (2MM BASIS

MINERALOGY:	KIND OF MINBRAL	KK KAOLINITB	MI NI	XA VH VE	SEN-MICA	/R VERMICULITE	CE COETHITE	
	RELATIVE AMOUNT	6 INDETERMIN	TB	5 DOMINIATE	4 ABUNDAI	T 3 NODERATE	2 SMALL	1 TRACE

WOTE: THIS PEDON IS A TAXIJUNCT TO THE ZIEGENFUSS SERIES. IT HAS LESS THAN 35% CLAY IN THE CONTROL SECTION

APPENDIX B

ST. JOHNS SITE SOIL DATA

APPENDIX B

CLASSIFICATION: WASEPI; COARSE-LOANY, NIXED, NESIC AQUOLLIC HAPLADALF

			(Clay	-TOTAL SILT) SAND	(- CLAY FINB	 -) CO3	(SII Fine	LT) COARSB	(VF	 P	-SAND- M	 C) VC	(- 00	ARSE FR	ACTIONS(M F	M) -)	(>2MM) VT
SAMPLB	DBPTH	HORIZON	LT	.002	.05	LT	LT	.002	.02	.05	.10	.25	.5	1	2	5	20	.1-	PCT OF
NO	(CH)		.002	05	-2	.0002	.002	02	05	10	25	50	-1	-2	-5	-20	-75	75	WHOLB
			<]	PCT OF	? {2mm	(3al) -					>	<-	PCT OF	(75 mm (3B1) ->	SOIL
86P55 48S	0- 23	AP	10.3	16.2	73.5			9.2	7.0	8.3	27.2	29.4	6.8	1.8	3	3		67	6
86P5549S	23- 48	BT1	13.8	19.3	66.9			11.2	8.1	8.5	29.9	21.1	4.9	2.5	3	3		61	6
86P55508	48- 71	BT2	10.7	13.2	76.1			7.3	5.9	7.4	30.4	28.1	6.8	3.4	4	5	1	72	10
86P5551S	71-100	BC	7.8	11.9	80.3			6.1	5.8	6.3	19.8	37.3	12.8	4.1	5	8		11	13
86P5552 S	100-150	2CG	1.9	4.1	94.0			1.8	2.3	1.9	26.1	56.3	1.4	2.3	3	6	4	93	13
DEPTH	ORGN	(-RATIO/	CLAY-)	(BULK	DENSITY) COLB		(-WAT)	BE CONTE	INT-)	WRD								
	C		15	1/3	OVEN	WHOLE		1/10	1/3	15	WHOLE								
		CEC	BAR	BAR	DRY	SOIL		BAR	BAR	BAR	SOIL		(- CLAY/	MINBE	ALOGY -	RELATIVE	AMOUN	TS)
(CH)	PCT			(G/	(CC)	CH/CH	1	(- P(T OF <2	MM -)	CH/CH		•			(<.()0 2111)		
0- 23	1.88	1.24	0.64							6.6			MT 3	KK 2	H	П 2 (CL 1	QZ 1	
23- 48	0.26	0.75	0.49							6.7			MT 3	KK 3	M	II 3 V	rr 2	CB 1	
48- 71	0.30	0.56	0.46							4.9			MT 3	KK 3	l	II 3	r 2	GE 1	
71-100	0.32	0.50	0.53							4.1			KK 3	MI 3	M	T 2 1	r 2	GB 2	
100-150	0.10	0.26	0.47							0.9			KK 3	MI 2	V	NB 1	Π1	GER 1	
MINRRAL I	NTERPRET	ATION:																	
	MT mon GB goe	tmorillini thite	te KK GI	aolini) gibbsit	te e	MI mic	8	CL cl	hlorine	Q	Z quart:	Z	VB ver	n iculit	e				
RELATIVE	PBAK SIZ	B: 5 Ver	y Large	4 L	arge	3 Medi		2 Smal	11 1	Very S	Bmall	6 No 1	Peaks						

APPENDIX C

WATER TABLE ELEVATION VS. TIME PLOTS

Figure C1. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WA4M1 for 1986 growing season at the Bannister site.

Figure C2. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WB2M2 for 1986 growing season at the Bannister site.

Figure C3. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WB4M2 for 1986 growing season at the Bannister site.

Figure C4. Water table elevation (m) and raqinfall (mm) vs. time (days) for observation well WB6L1 for 1986 growing season at the Bannister site.

Figure C6. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WC6M1 for 1986 growing season at the Bannister site.

Figure C7. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WD2L1 for 1986 growing season at the Bannister site.

Figure C8. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WD6M1 for 1986 growing season at the Bannister site.

.

Figure C9. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WE2M1 for 1986 growing season at the Bannister site.

Figure C10. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WG2M1 for 1986 growing season at the Bannister site.

: . .

Figure C11. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WH4M2 for 1986 growing season at the Bannister site.

Figure C12. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WC2M1 for 1987 growing season at the Bannister site.

.

· · ·

Figure C13. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WD2L1 for 1987 growing season at the Bannister site.

Figure C14. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WD6L1 for 1987 growing season at the Bannister site.

.

Figure C15. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WE2M1 for 1987 growing season at the Bannister site.

Figure C16. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WE4M1 for 1987 growing season at the Bannister site.

..

Figure C17. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WF4M1 for 1987 growing season at the Bannister site.

Figure C18. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WH4M2 for 1987 growing season at the Bannister site.

. .

Figure C19. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WB4M2 for 1987 growing season at the St. Johns site.

Figure C20. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WC4M1 for 1987 growing season at the St. Johns site.

Figure C21. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WC4M3 for 1987 growing season at the St. Johns site.

Figure C22. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WD8L1 for 1987 growing season at the St. Johns site.

Figure C23. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WA5M1 for 1988 growing season at the St. Johns site.

Figure C24. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WA5M1 for 1988 growing season at the St. Johns site.

Figure C25. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WB5L1 for 1988 growing season at the St. Johns site.

Figure C26. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WC4M3 for 1988 growing season at the St. Johns site.

Figure C27. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WC8M1 for 1988 growing season at the St. Johns site.

Figure C28. Water table elevation (m) and rainfall (mm) vs. time (days) for observation well WD8L1 for 1988 growing season at the St. Johns site.

APPENDIX D

FIELD DATA SCATTER PLOTS

A = cyield vs. spacing B = syield vs. spacing

Figure D1. Scatter plot of relative corn yield (cyield,%,A) and relatvie soybean yield (syield,%,B) vs. spacing of underground pipe system laterals (spacing,m) during the 1986 growing season at the Bannister site.

Figure D2. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (swtd,m) during the 1986 growing season at the Bannister site.

Figure D3. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (stimeb,%) during the 1986 growing season at the Bannister site.

Figure D4. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (stimea,%) during the 1986 growing season at the Bannister site.

Figure D5. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (sdfi,m*hr/hr) for the 1986 growing season at the Bannister site.

Figure D6. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wety stress index (swfi,m*hr/hr) for the 1986 growing season at the Bannister site.

Figure D7. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (jwtd,m) during July, 1986 at the Bannister site.

Figure D8. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (jtimeb,%) during July, 1986 at the Bannister site.

Figure D9. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (jtimea,%) during July, 1986 at the Bannister site.

Figure D10. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (jdfi,m*hr/hr) for July, 1986 at the Bannister site.

Figure D11. Scatter plot of relative corn yield (cyield, %, A) and relative soybean yield (syield, %, B) vs. the water table fluctuation wet stress index (jwfi, m*hr/hr) for July, 1986 at the Bannister site.

Figure D12. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (awtd,m) during August, 1986 at the Bannister site.

Figure D13. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (atimeb,%) during August, 1986 at the Bannister site.

Figure D14. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (atimea,%) during August, 1986 at the Bannister site.

Figure D15. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (adfi,m*hr/hr) for August, 1986 at the Bannister site.

> A Α Α 80+ А Α Α А Β Α _ В В 60+ B B В _ -В В B +--0.0 4.0 8.0 12.0 A = cyield vs. awfiB = syield vs. awfi

Figure D16. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wet stress index (awfi,m*hr/hr) for August, 1986 at the Bannister site.

A = cyield vs. spacing B = syield vs. spacing

Figure D17. Scatter plot of relative corn yield (cyield,%,A) and relatvie soybean yield (syield,%,B) vs. spacing of underground pipe system laterals (spacing,m) during the 1987 growing season at the Bannister site.

Figure D18. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (swtd,m) during the 1987 growing season at the Bannister site.

Figure D19. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (stimeb,%) during the 1987 growing season at the Bannister site.

Figure D20. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (stimea,%) during the 1987 growing season at the Bannister site.

Figure D21. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (sdfi,m*hr/hr) for the 1987 growing season at the Bannister site.

Figure D22. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wety stress index (swfi,m*hr/hr) for the 1987 growing season at the Bannister site.

Figure D23. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (jwtd,m) during July, 1987 at the Bannister site.

Figure D24. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (jtimeb,%) during July, 1987 at the Bannister site.

Figure D25. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (jtimea,%) during July, 1987 at the Bannister site.

Figure D26. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (jdfi,m*hr/hr) for July, 1987 at the Bannister site.

Figure D27. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wet stress index (jwfi,m*hr/hr) for July, 1987 at the Bannister site.

Figure D28. Scatter plot of relative corn yield (cyield, %, A) and relative soybean yield (syield, %, B) vs. mean depth to the water table (awtd, m) during August, 1987 at the Bannister site.

Figure D29. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (atimeb,%) during August, 1987 at the Bannister site.

Figure D30. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (atimea,%) during August, 1987 at the Bannister site.

Figure D31. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (adfi,m*hr/hr) for August, 1987 at the Bannister site.

Figure D32. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wet stress index (awfi,m*hr/hr) for August, 1987 at the Bannister site.

Figure D33. Scatter plot of relative corn yield (cyield,%,A) and relatvie soybean yield (syield,%,B) vs. spacing of underground pipe system laterals (spacing,m) during the 1987 growing season at the St. Johns site.

Figure D34. Scatter plot of relative corn yield (cyield, %, A) and relative soybean yield (syield, %, B) vs. mean depth to the water table (swtd, m) during the 1987 growing season at the St. Johns site.

Figure D35. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (stimeb,%) during the 1987 growing season at the St. Johns site.

Figure D36. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (stimea,%) during the 1987 growing season at the St. Johns site.

Figure D37. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (sdfi,m*hr/hr) for the 1987 growing season at the St. Johns site.

Figure D38. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wety stress index (swfi,m*hr/hr) for the 1987 growing season at the St. Johns site.

Figure D39. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (jwtd,m) during July, 1987 at the St. Johns site.

Figure D40. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (jtimeb,%) during July, 1987 at the St. Johns site.

Figure D41. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (jtimea,%) during July, 1987 at the St. Johns site.

Figure D42. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (jdfi,m*hr/hr) for July, 1987 at the St. Johns site.

Figure D43. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wet stress index (jwfi,m*hr/hr) for July, 1987 at the St. Johns site.

Figure D44. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (awtd,m) during August, 1987 at the St. Johns site.

Figure D45. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (atimeb,%) during August, 1987 at the St. Johns site.

Figure D46. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (atimea,%) during August, 1987 at the St. Johns site.

Figure D47. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (adfi,m*hr/hr) for August, 1987 at the St. Johns site.

Figure D48. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wet stress index (awfi,m*hr/hr) for August, 1987 at the St. Johns site.

Figure D49. Scatter plot of relative corn yield (cyield,%,A) and relatvie soybean yield (syield,%,B) vs. spacing of underground pipe system laterals (spacing,m) during the 1988 growing season at the St. Johns site.

Figure D50. Scatter plot of relative corn yield (cyield, %, A) and relative soybean yield (syield, %, B) vs. mean depth to the water table (swtd, m) during the 1988 growing season at the St. Johns site.

A = cyield vs. stimeb B = syield vs. stimeb

Figure D51. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (stimeb,%) during the 1988 growing season at the St. Johns site.

Figure D52. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (stimea,%) during the 1988 growing season at the St. Johns site.

Figure D53. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (sdfi,m*hr/hr) for the 1988 growing season at the St. Johns site.

Figure D54. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wety stress index (swfi,m*hr/hr) for the 1988 growing season at the St. Johns site.

Figure D55. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. mean depth to the water table (jwtd,m) during July, 1988 at the St. Johns site.

Figure D56. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (jtimeb,%) during July, 1988 at the St. Johns site.

Figure D57. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (jtimea,%) during July, 1988 at the St. Johns site.

Figure D58. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (jdfi,m*hr/hr) for July, 1988 at the St. Johns site.

Figure D59. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wet stress index (jwfi,m*hr/hr) for July, 1988 at the St. Johns site.

Figure D60. Scatter plot of relative corn yield (cyield, %, A) and relative soybean yield (syield, %, B) vs. mean depth to the water table (awtd, m) during August, 1988 at the St. Johns site.

Figure D61. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was below the mean water table depth (atimeb,%) during August, 1988 at the St. Johns site.

Figure D62. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. time water table was above the mean water table depth (atimea,%) during August, 1988 at the St. Johns site.

Figure D63. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation dry stress index (adfi,m*hr/hr) for August, 1988 at the St. Johns site.

Figure D64. Scatter plot of relative corn yield (cyield,%,A) and relative soybean yield (syield,%,B) vs. the water table fluctuation wet stress index (awfi,m*hr/hr) for August, 1988 at the St. Johns site.

APPENDIX E

FIELD DATA STATISTICAL SUMMARIES

able annis	Ela. I ter sit	Field d egrowi	ata used ng seaso	for lir n.	lear reg	gression	analyse	s from	the 1980
ROW	zone	cyield	syield	spacing	swtd	stimeb	sdistb	stimea	sdista
1	1	75	60	12	0.81	31	0.407	67	0.189
2	2	86	48	6	0.48	29	0.154	68	0.066
3	2	*	5 2	12	0.47	33	0.135	6 5	0.069
4	2	83	51	18	0.45	49	0.084	4 3	0.095
5	3	75	6 3	6	0.58	58	0.143	41	0.202
6	3	83	5 2	18	0.77	54	0.135	4.4	0.168
7	4	75	63	6	0.61	68	0.071	30	0.158
8	4	68	58	18	0.72	41	0.163	58	0.115
9	5	77	*	6	0.79	63	0.094	35	0.166
10	7	*	58	6	0.77	6 2	0.119	37	0.200
11	8	88	71	1 2	0.81	5 2	0.083	43	0.099
ROW	jwtd	jtimeb	jdistb	jtimea	jdista	awtd	atimeb	adistb	atimea
1	0.66	3.8	0.106	57	0.070	1.02	37	0.394	6 2
2	0.45	3.3	0.074	6.4	0.038	*	*	*	*
-	0.45	35	0.073	57	0.045	0.44	3 9	0.168	61
Ă	0.45	54	0.033	34	0.052	0.45	43	0.169	56
	0.45	61	0.055	34	0.052	0.45	43	0 105	50
5	0.03	5.4	0.030	30	0.114	0.37	57	0.103	43
7	0.72	50	0.054	28	0 066	0.53	51	0.003	13
	0.05		0.041	30	0.000	0.34	7.2		10
	0.00	53	0.048	33	0.000	0.91	13	0.017	19
	0.83	63	0.067	33	0.126	0.90	54	0.071	4.5
11	0.75	52	0.082	46	0.068	0.93	36	0.129	64
ROW	adista	sdfi	swf i	jdfi	jwfi	adfi	awfi		
1	0.237	37	81	8.4	12.7	7.5	12.5		
2	*	9	20	4.3	8.3	*	*		
3	0.106	11	21	4.8	7.8	1.7	2.7		
4	0.131	19	16	5.1	3.3	4.3	5.6		
5	0.084	5 5	39	10.6	5.2	4.6	5.7		
6	0.084	4 2	34	14.5	11.9	5.8	4.4		
7	0.079	31	14	8.3	5.3	1.4	0.8		
8	0.063	27	3.8	7.2	5.3	2.4	0.6		
9	0.082	4.5	25	14.8	7.9	4.1	3.6		
10	0.050	R 2	31	17.0	9.6	1.0	0.2		
11	0.072	10	16	8.6	7.7	3.5	6.3		
		1 9	10			3.3			

_____ STDEV SEMEAN N NX MEAN MEDIAN TRMEAN 78.89 2 77.00 cyield 9 78.89 6.47 2.16 10 57.60 syield 1 58.00 57.13 7.01 2.22 0 12.00 10.67 11 10.91 5.24 1.58 spacing swtd 0 0.6600 11 0.7200 0.6667 0.1453 0.0438 11 11 0 0 0 49.09 52.00 49.22 13.73 4.14 stimeb 0.1350 0.1444 0.1233 sdistb 0.0925 0.0279 11 48.27 43.00 48.11 13.70 4.13 stimea

 0
 0.1388
 0.1580
 0.1399
 0.0514
 0.0155

 0
 0.6500
 0.6600
 0.6511
 0.1432
 0.0432

 0
 51.36
 54.00
 52.11
 11.03
 3.33

 0
 0.06627
 0.06700
 0.06556
 0.02252
 0.00679

 0
 43.36
 39.00
 42.56
 11.39
 3.43

 0
 0.0812
 0.0680
 0.0788
 0.0354
 0.0107

 1
 0.7260
 0.8250
 0.7338
 0.2499
 0.0790

11 11 11 sdista iwtd jwtd itimeb 11 jdistb itimea 11 11 10 jdista awtd 10 1 atimeb 49.90 47.50 48.75 12.25 3.87 1 1 1 0.0880 0.0964 0.0355 adistb 10 0.1176 0.1122 10 10 47.37 50.00 17.88 5.65 atimea 45.60 0.0988 0.0830 0.0876 0.0534 0.0169 adista 11 31.55 31.00 31.44 15.98 4.82 sdfi 0 0 30.45 25.00 26.67 19.01 swfi 11 5.73 11 11 8.40 9.14 4.33 jdfi 0 9.42 1.31 7.727 7.800 7.667 2.895 0 0.873 JWEI 3.630 3.800 3.475 2.067 0.654 adfi 10 1 10 4.24 3.71 3.66 1.16 awfi 4.00 1 MAX 03 MIN 01 cyield 68.00 88.00 75.00 84.50 51.75 syield 48.00 71.00 63.00 18.00 spacing 6.00 6.00 18.00 0.4500 0.8100 0.4800 0.7900 swid 33.00 stimeb 29.00 68.00 62.00 0.1540 0.0710 0.4070 0.0840 sdistb 30.00 68.00 37.00 65.00 stimea 0.0660 0.2020 0.0950 0.1890 sdista 0.4500 0.8400 0.4500 jwtđ 0.7500 jtimeb 33.00 63.00 38.00 61.00 0.03300 0.10600 0.04800 0.08200 jdistb 34.00 64.00 57.00 jtimea. 30.00 0.1460 0.0520 0.1140 jdista 0.0380 0.4475 0.9350 awtd 0.3700 1.0200 73.00 atimeb 36.00 38.50 58.75 0.0110 0.3940 0.0410 adistb 0.1682 64.00 33.25 atimea 13.00 61.25 0.0500 0.2370 0.0697 0.1123 adista 9.00 55.00 14.00 81.00 adfi 19.0016.0045.00 38.00 swfi jđfi 4.30 17.00 5.10 14.50 jwfi 5.300 9.600 3.300 12.700 1.625 adfi 1.000 7.500 4.900 0.20 awfi 0.75 5.85 12.50

Table E1b.Statistical summary of the field data used for regressionanalyses from the 1986 Bannister site growing season.

ROW	zone	cyield	syield	spacing	swid	stimed	8 G 1 S 1 D	stimea	80181
1	3	86	79	6	1.15	4 2	0.187	57	0.13
2	4	86	80	6	0.99	47	0.261	52	0.23
3	4	78	92	18	1.03	61	0.124	36	0.21
4	5	*	71	6	0.97	51	0.186	4 8	0.19
5	5	1	89	12	0.89	4 5	0.220	54	0.18
6	6	83	74	12	1.76	64	0.101	36	0.18
7	8	80	82	12	1.30	57	0.146	4 2	0.19
ROW	jwtđ	jtimeb	jdistb	jtimea	jdista	awtd	atimeb	adistb	atime
1	0.98	31	0.073	60	0.038	1.19	4 3	0.134	5
2	0.73	23	0.129	68	0.044	1.04	54	0.180	4
3	0.82	4 5	0.055	47	0.052	1.12	62	0.051	3
4	1.01	62	0.120	38	0.198	0.87	36	0.143	6
5	0.71	33	0.052	47	0.037	0.95	5 5	0.174	4
6	1.77	60	0.081	38	0.129	1.78	67	0.099	3
7	1.09	54	0.079	4 5	0.093	1.39	54	0.083	4
ROW	adista	sđfi	swfi	jđfi	jwfi	adfi	awfi		
1	0.102	17	24	1.3	2.6	4.8	6.3		
2	0.216	32	35	1.3	3.8	11.0	9.2		
3	0.102	27	16	2.2	2.3	4.1	2.0		
4	0.081	30	28	14.8	9.0	3.2	5.6		
5	0.217	25	30	1.2	1.6	11.1	8.9		
6	0.205	2 2	12	5.8	3.6	9.6	4.6		
7	0.105	30	2 2	4.8	4.0	5.4	4.3		

Table E2a. Field data used for linear regression analyses from the 1987

analyses from the 1987 Bannister site growing season. TRMEAN N NX MEAN MEDIAN STDEV SEMEAN 82.60 83.00 cvield 5 2 82.60 3.58 1.60 oz.60 81.00 81.00 0 svield 7 80.00 7.53 2.85 0 10.29 10.29 spacing 7 12.00 4.54 1.71 7
 0
 1.156
 1.030
 1.156
 0.298

 0
 52.43
 51.00
 52.43
 8.40

 0
 0.1750
 0.1860
 0.1750
 0.0557
 swid 0.113 stimeb 7 3.18 . 7 sdistb 0.0210 7 46.43 stimes 0 46.43 48.00 8.56 3.24 7 7 7 0.1960 0.1921 0.0302 0.980 1.016 0.363 45.00 44.00 15.34 0 0.1921 0.1960 sdista 0.0114 1.016 jwtd 0 0.137 ō itimeb 5.80 jdistb 7 0 0.0841 0.0790 0.0841 0.0298 49.00 49.00 0.0113 7 7 7 7 0 49.00 47.00 itimea 11.17 4.22 0.0606 idista 0.0520 0.0844 0 0.0229 0 1.191 1.191 1.191 1.120 53.00 54.00 $0.310 \\ 10.58$ awtd 0.117 atimeb 7 53.00 0 4.00 7 7 7 7 0 0.1234 0.0478 44.86 11.65 adistb 0.0181 11.65 44.86 atimea 0 44.00 4.40 0 0.1469 0.1050 0.1469 0.0622 adista 0.0235 7 26.14 sdfi 0 26.14 27.00 5.27 1.99 7 23.86 0 23.86 swf i 24.00 8.01 3.03 4.49 jdfi 7 0 4.49 2.20 4.91 1.86 3.843 3.843 2.437 7 3.600 iwfi 0 0.921 7.03 5.843 adfi 5.40 7.03 3.41 7 0 1.29 5.843 2.568 awfi 0 5.600 0.971 7 MIN MAX Q 1 03 86.00 79.00 86.00 78.00 cyield 92.00 74.00 71.00 syield 89.00 6.00 6.00 spacing 18.00 12.00 1.760 0.890 0.970 swid 1.300 stimeb 42.00 64.00 45.00 61.00 0.1010 0.2610 0.1240 0.2200 sdistb 36.00 57.00 36.00 stimea 54.00 0.2370 sdista 0.1820 0.2100 0.1380 0.710 1.770 0.730 jwtđ 1.090 jtimeb 23.00 62.00 31.00 60.00 jdistb 0.0520 0.1290 0.0550 0.1200 68.00 38.00 itimea 38.00 60.00 0.1980 0.0370 idista 0.0380 0.1290 1.780 0.950 1.390 0.870 awtd 36.00 67.00 43.00 atimeb 62.00 0.1800 0.0830 0.1740 adistb 0.0510 63.00 atimea 31.00 32.00 56.00 adista 0.0810 0.2170 0.1020 0.2160 32.00 22.00 35.00 16.00 17.00 sdfi 30.00 12.00 swfi 30.00 14.80 jđfi 1.20 1.30 5.80 2.300 1.600 9.000 jwfi 4.000 adfi 3.20 11.10 4.10 11.00 9.200 4.300 2.000 awfi 8.900

Table E2b. Statistical summary of the field data used for regression

Table	E3a. F	ield dat	a used f	or linea	r regrea	ssion ai	nalyses f	roma the	1987 St.
Johns	site gr	owing se	ason.						
ROW	zone	cyield	syield	spacing	swtd	stimeb	sdistb	stimea	sdista
1	2	83	54	12	1.29	47	0.390	52	0.351
2	3	87	35	12	1.26	46	0.222	54	0.189
3	3	71	77	12	1.30	43	0.186	54	0.148
4	4	84	80	24	1.02	54	0.063	4.4	0.077
ROW	jwtd	jtimeb	jdistb	jtimea	jdista	awtd	atimeb	adistb	atimea
1	1.72	54	0.690	46	0.796	1.00	4 5	0.185	54
2	1.07	61	0.083	36	0.139	1.39	5 5	0.025	27
3	1.15	70	0.128	23	0.383	1.21	52	0.072	4 2
4	0.99	51	0.123	49	0.127	0.99	4 2	0.051	4 6
ROW	adista	sdf i	swf i	jđfi	jwf i	adfi	awfi		
1	0.155	119	132	69.1	59.9	23.6	28.2		
2	0.051	61	72	18.0	10.7	3.1	1.5		
3	0.090	4 2	53	13.9	4.7	12.1	9.7		
4	0.047	24	19	8.8	8.6	5.3	5.8		

Table E3a. Field data used for linear regression analyses from the
Statistical summary of the field data used for regression analyses from the 1987 St. Johns site growing season. _____ N MEAN MEDIAN TRMEAN STDEV SEMEAN 81.25 83.50 cyield 4 81.25 7.04 3.52 21.1 syield 61.5 65.5 61.5 4 10.6 12.00 spacing 4 15.00 15.00 6.00 3.00 4 1.2175 1.2750 1.2175 swid 0.1328 0.0664 46.50 stimeb 4 47.50 47.50 4.65 2.33 0.2040 0.2153 sdistb 4 0.2153 0.1349 0.0675 53.00 4.76 stimea 4 51.00 51.00 2.38 0.1912 0.1685 0.1912 0.1161 adista 4 0.0581 1.233 59.00 0.331 1.110 1.233 jwtd 4 0.166 jtimeb 57.50 59.00 8.45 4.22 4 0.126 idistb 0.256 0.256 0.290 0.145 4 jtimea 4 38.50 41.00 38.50 11.73 5.87 0.261 0.361 1.1050 1.1475 idista 0.313 4 0.361 0.156 awtđ 4 1.1475 0.1909 0.0954 48.50 48.50 atimeb 48.50 6.03 3.01 4 adistb 4 0.0833 0.0615 0.0833 0.0705 0.0353 atimea 42.25 44.00 42.25 11.32 5.66 4 0.0501 44.00 42.25 adista 4 0.0857 0.0250 sdfi 61.5 51.5 61.5 41.2 20.6 4 69.0 ewfi 4 69.0 62.5 47.4 23.7 27.4 27.4 21.0 28.0 26.1 jđfi 4 15.9 14.0 9.6 13.0 jwfi 4 11.03 8.70 11.03 9.22 7.75 11.30 11.75 adfi 4 4.61 awfi 4 5.88 MIN MAX Q 1 03 86.25 cyield 71.00 87.00 74.00 syield 80.0 39.8 79.2 35.0 spacing 12.00 24.00 21.00 12.00 1.3000 1.0800 1.0200 1.2975 swtd stimeb 54.00 43.00 43.75 52.25 0.0937 sdistb 0.0630 0.3900 0.3480 stimea 44.00 54.00 46.00 54.00 0.3510 sdista 0.0770 0.0948 0.3105 1.720 jwtd 0.990 1.010 1.577 jtimeb 51.00 70.00 51.75 67.75 0.083 jdistb 0.690 0.093 0.549 49.00 jtimea 23.00 26.25 48.25 idista 0.127 0.796 0.130 0.693 0.9925 0.9900 awtđ 1.3900 1.3450 55.00 atimeb 42.00 42.75 54.25 0.0250 0.1850 0.0315 adistb 0.1567 27.00 atimea 54.00 30.75 52.00 adista 0.0470 0.1550 0.0480 0.1388 132.0 28.5 119.0 sdfi 24.0 104.5 swfi 19.0 117.0
 69.1
 10.1

 59.9
 5.7
 8.8 4.7 56.3 idfi jwfi 47.6
 3.10
 23.60
 3.65

 1.50
 28.20
 2.58
 adfi 20.73 awfi 23.58 _____

185

Table E3b.

Johns 	site gr	owing s	eason. 				. .		
ROW	zone	cyield	syield	spacing	swtd	stimeb	sdistb	stimea	sdista
1	1	97	71	15	0.90	68	0.208	32	0.439
2	1	77	54	24	1.10	39	0.199	61	0.127
3	2	99	68	15	0.98	4 2	0.267	56	0.200
4	3	82	71	12	1.45	79	0.021	7	0.224
5	3	57	6 5	24	1.23	62	0.026	31	0.052
6	4	93	80	24	1.09	55	0.035	29	0.067
ROW	jwtd	jtimaeb	jdistb	jtimea	jdista	awtd	atimeb	adistb	atimea
1	0.94	31	0.232	69	0.106	0.89	47	0.086	35
2	1.05	34	0.104	61	0.059	1.08	26	0.171	72
3	0.89	34	0.486	66	0.253	0.92	48	0.141	49
4	1.46	4 2	0.011	27	0.016	1.47	22	0.019	41
5	1.24	38	0.023	4 3	0.021	1.24	34	0.023	4 4
6	1.09	5 1	0.018	31	0.029	1.09	51	0.018	31
ROW	adista	sdfi	swf i	jđfi	jwfi	adfi	awfi		
1	0.117	188	89	9.6	21.0	8.6	6.4		
2	0.061	59	93	5.3	9.4	5.0	14.1		
3	0.138	94	125	24.2	46.5	13.7	14.1		
4	0.010	27	3	0.8	0.5	0.4	0.7		
5	0.018	20	10	1.4	1.6	1.2	1.6		
6	0.029	22	12	2.1	1.3	2.1	1.3		

Table E4a. Field data used for linear regression analyses from the 1988 St.

Table E4b. Statistical summary of the field data used for regression analyses from the 1988 St. Johns site growing season. Ν MEAN MEDIAN TRMEAN STDEV SEMEAN 84.17 84.17 cvield 87.50 6.47 6 15.85 8.57 syield 6 68.17 69.50 68.17 3.50 spacing 19.50 19.00 19.00 5.59 6 2.28 swtd 6 1.1250 1.0950 1.1250 0.1950 0.0796 58.50 6 stimeb 57.50 57.50 15.37 6.28 sdistb 6 0.1260 0.1170 0.1260 0.1107 0.0452 6 36.00 31.50 36.00 19.78 stimea 8.07 sdista 6 0.1848 0.1635 0.1848 0.1423 0.0581 1.1117 6 1.1117 1.0700 0.2101 jwtd 0.0858 jtimeb 6 38.33 36.00 38.33 7.28 2.97 6 0.0635 0.1457 jdistb 0.1457 0.1868 0.0763 jtimea 6 49.50 52.00 49.50 18.31 7.47 6 0.0807 jdista 0.0807 0.0440 0.0908 0.0371 1.1150 awtd 6 1.1150 1.0850 0.2155 0.0880 atimeb 40.50 38.00 38.00 12.38 5.05 6 adistb 0.0763 0.0545 0.0763 0.0675 0.0276 6 6 45.33 42.50 14.54 5.94 atimea 45.33 adista 6 0.0622 0.0450 0.0622 0.0539 0.0220 68.3 68.3 sdfi 43.0 65.2 26.6 6 swf i 55.3 50.5 55.3 53.1 6 21.7 7.23 3.70 7.23 jđfi 6 8.93 3.65 jwfi 13.38 5.50 13.38 18.01 6 7.35 5.17 5.17 5.15 adfi 3.55 2.10 6 6.37 4.00 6.37 6.33 2.58 awfi 6 MIN MAX Q 1 Q 3 cyield 57.00 99.00 72.00 97.50 54.00 62.25 80.00 syield 73.25 spacing 12.00 24.00 14.25 24.00 0.9000 0.9600 1.2850 swtd 1.4500 stimeb 39.00 79.00 41.25 70.75 0.0210 0.0247 adiatb 0.2670 0.2228 stimea 7.00 61.00 23.50 57.25 0.0520 sdista 0.4390 0.0633 0.2778 jwtd 0.8900 1.4600 0.9275 1.2950 jtimeb 31.00 51.00 33.25 44.25 jdistb 0.0110 0.4860 0.0162 0.2955 jtimea 27.00 69.00 30.00 66.75 jdista 0.0160 0.2530 0.0197 0.1427 awtd 0.8900 1.4700 0.9125 1.2975 atimeb 22.00 51.00 25.00 48.75 0.0187 adistb 0.0180 0.1710 0.1485 atimea 31.00 72.00 34.00 54.75 adista 0.0100 0.1380 0.0160 0.1222 21.5 sdf i 20.0 188.0 117.5 swf i 3.0 125.0 8.3 101.0 jđfi 0.80 24.20 1.25 13.25 jwfi 0.50 46.50 1.10 27.38 adfi 0.40 13.70 1.00 9.87 awfi 0.70 14.10 1.15 14.10 _____

APPENDIX F

SILSPACE PROGRAM SOURCE CODE

PROGRAM NAME REM SILSPACE.BAS RFM PROGRAM VERSION PROGRAM AUTHOR Version 1.01 REM H. W. Belcher, MSU DATE OF LAST REVISION 09/30/89 REM PROGRAM LANGUAGE Turbo Basic - Version 1.0 REM REM------REM This program is used to design the spacing laterals should be REM installed for subirrigation. REM------DIM hydc(15), dporosity(15), th(15), length(100) \$INCLUDE "SIINPUT.INC" \$INCLUDE "SILSPACE.INC" \$INCLUDE "SITIME.INC" \$INCLUDE "SIOUTPUT.INC" \$INCLUDE "SISUBR.INC" END REMSUBROUTINE NAMESIINPUT.INCREMSUBROUTINE AUTHORH. Belcher, MSUREMDATE OF LAST REVISION10/11/89REMPROGRAM LANGUAGETurbo Basic - Version 1.0 REM-----debugoutput1\$="off" debugoutput2\$="off" CLS PRINT PRINT TAB(10); "SILSPACE - A lateral spacing design program for subirrigation" PRINT PRINT PRINT PRINT PRINT TAB(28);" H. W. Belcher " PRINT TAB(28); "MICHIGAN STATE UNIVERSITY" PRINT TAB(28);" Version: 1.01 " PRINT TAB(28);" 09/29/89 ., LOCATE 24,26 PRINT "PRESS ANY KEY TO CONTINUE? "; WHILE LEN(anykey\$)=0 anykey\$=INKEY\$ WEND begin: REM-----input data-----CLS anykey\$="" PRINT "WILL INPUT DATA COME FROM DISKFILE (f) OR KEYBOARD (k)? "

```
WHILE LEN(anykey$)=0:anykey$=INKEY$:WEND
IF anykey$="F" OR anykey$="f" THEN
   INPUT "Enter input file name ......";FileName$
   CIS
   OPEN FileNames FOR INPUT AS #1
   INPUT #1, barrierdepth, nlayers%
   FOR i%=1 TO nlayers%
      INPUT #1, th(i%),hydc(i%),sat(i%),dul(i%)
     n(i\%) = sat(i\%) - dul(i\%)
   NEXT 1%
                                      Ρ
                                           U
                                                Т
                             Ι
                                 Ν
                                                             #
                                                                 1
                                                                       ,
TileDepth, TileDiameter, TileGrade, TileLength, siWTdepthMidpoint,
            siWTdepthLateral,sdWTdepthMidpoint,sdWTdepthLateral
   INPUT #1, sirate, drrate, rainfall, rcn, WeirDepth
   CLOSE #1
  REM-----debug1 output-----
   IF debugoutput1$="on" THEN
     LPRINT "barrierdepth = "; barrierdepth
     LPRINT "nlayers% = ";nlayers%
     FOR i%=1 TO nlayers%
        LPRINT "th = ";th(i%),"hyde = ";hyde(i%),"sat = ";sat(i%),
                dul = ";dul(i\%)
     NEXT i%
     LPRINT "TileDepth = ";TileDepth
     LPRINT "TileDiameter = ";TileDiameter
     LPRINT "TileGrade = ";TileGrade
     LPRINT "TileLength = ";TileLength
     LPRINT "siWTdepthMidpoint = ";siWTdepthMidpoint
     LPRINT "siWTdepthLateral = ";siWTdepthLateral
     LPRINT "sdWTdepthMidpoint = ";sdWTdepthMidpoint
     LPRINT "sdWTdepthLateral = ";sdWTdepthLateral
     LPRINT "sirate = ";sirate
     LPRINT "drrate = ";drrate
     LPRINT "rainfall = ";rainfall
     LPRINT "ren = ";ren
     LPRINT "WeirDepth = ";WeirDepth
  END IF
  REM-----
ELSE
  PRINT "SYSTEM PARAMETERS:"
  PRINT
   INPUT "Enter depth to the lateral pipe (ft)......";TileDepth
   INPUT "Enter diameter of the lateral pipe (in)..... ";TileDiameter
   INPUT "Enter minimum grade of the lateral pipe (%)..... ";TileGrade
   INPUT "Enter length of the lateral pipe (ft)..... ";TileLength
  PRINT " For Subirrigation:
         INPUT
                Enter
                       depth
                             to water table at lateral
                                                               (ft)....
";siWTdepthLateral
   INPUT
         Enter
                       depth to water table at midpoint (ft)....
";siWTdepthMidpoint
  PRINT " For Subsurface Drainage:
```

s

```
....
   INPUT
                Enter
                        depth
                               to
                                    water
                                           table
                                                   at
                                                      lateral (ft)....
";sdWTdepthLateral
   INPUT
                Enter
                        depth
                               to
                                    water
                                            table
                                                   at
                                                       midpoint
                                                                  (ft)....
":sdWTdepthMidpoint
   INPUT "Enter design subirrigation rate (in/day)...... ";sirate
   INPUT "Enter design subsurface drainage rate (in/day)... ";drrate
   INPUT "Enter design storm rainfall (in)......";rainfall
   INPUT "Enter SCS runoff curve number.....";rcn
   INPUT "Enter depth to weir following rainfall (ft)..... ";WeirDepth
   PRINT
   PRINT
   PRINT "SOIL PARAMETERS:"
   PRINT
   INPUT "Enter Depth to Barrier (ft)..... ";BarrierDepth
   INPUT "Enter number of soil layers.....":nlayers
         nlayers%=fix(nlayers)
         totalth=0
   PRINT " For Surface Layer Enter layer thickness (in)..... ";
   INPUT "",th(1)
        totalth=totalth+th(1)
   PRINT "
                              Enter sat. hydr. cond. (in/hr).. ";
   INPUT "",hydc(1)
   PRINT "
                              Enter sat. water content..... ":
   INPUT "",sat(1)
   PRINT "
                              Enter dul water content......";
   INPUT "",dul(1):n(1)=sat(1)-dul(1)
   IF nlayers%>1 THEN
      FOR i\% = 2 TO nlayers%-1
         PRINT " For Layer ";i%;"
                                       Enter layer thickness (in)..... ";
         INPUT "",th(i%)
              totalth=totalth+th(i%)
        PRINT "
                                    Enter sat. hydr. cond. (in/hr).. ";
         INPUT "",hydc(i%)
        PRINT "
                                    Enter sat. water content...... ":
        INPUT "",sat(i%)
PRINT "
                                    Enter dul water content......";
        INPUT "",dul(i%):n(i%)=sat(i%)-dul(i%)
      NEXT 1%
   END IF
   i%=nlayers
   IF barrierdepth*12 > totalth THEN
      th(i%)=barrierdepth*12-totalth
      PRINT " For Layer ";i%;"
                                    Layer thickness (in) is.....";
     PRINT th(i%)
                                 Enter sat. hydr. cond. (in/hr).. ";
      PRINT "
      INPUT "",hydc(i%)
      PRINT "
                                 Enter sat. water content...... ";
     INPUT "",sat(i%)
PRINT "
                                 Enter dul water content......";
      INPUT "",dul(i%):n(i%)=sat(i%)-dul(i%)
   END IF
END IF
```

```
REM-----calculate model parameters------
REM Weight k and dporosity for soil layers to 2 feet below tile
FOR i% = 1 TO nlayers%
  dz(i\%) = th(i\%)
  k=k+hydc(i\%)*th(i\%)
  dporosity=dporosity+n(i%)*th(i%)
   tdepth=tdepth+th(i%)
   IF tdepth/12>TileDepth+2 THEN EXIT FOR
NEXT i%
k=k/tdepth
dporosity=dporosity/tdepth
REM-----calculate rainfall infiltration------
s=1000/rcn-10
IF rainfall>.2*s THEN
  runoff=(rainfall-0.2*s)^2/(rainfall+.8*s)
ELSE
  runoff=0
END IF
infiltration=rainfall-runoff
REM-----debug2 output-----
IF debugoutput2$="on" THEN
  LPRINT nlayersabove%, nlayersbelow%
  LPRINT "layer", "dz", "thickness", "hydc", "n"
  FOR i% = 1 TO nlayers%
     LPRINT i%, dz(i%), th(i%),;
     LPRINT USING "##.##";hydc(i%);
     LPRINT TAB(56);:LPRINT USING "#.##";n(i%)
  NEXT 1%
  LPRINT TAB(0);:LPRINT USING "##.##";k;
  LPRINT TAB(10);:LPRINT USING "#.##";dporosity
  LPRINT CHR$(12)
END IF
REM
       SUBROUTINE NAME
                            SILSPACE.INC
       PROGRAM AUTHORS
REM
                            P. Gerrish and H. Belcher
       DATE OF LAST REVISION 10/09/89
REM
RFM
      PROGRAM LANGUAGE Turbo Basic - Version 1.0
REM-----
units$="FPS"
dia=TileDiameter
IF TileDiameter=3 THEN remm=3.5
IF TileDiameter=4 THEN remm=5.1
IF TileDiameter=5 THEN remm=10.0
msd=ABS(sdWTdepthMidpoint-sdWTdepthLateral)
msi=ABS(siWTdepthLateral-siWTdepthMidpoint)
dwtsd=sdWTdepthMidpoint
dwtsi=siWTdepthLateral
CLS
FOR ii%=1 TO 2
  IF ii%=1 THEN
     dq = drrate
     m = msd
```

```
dwt = dwtsd
   END IF
   IF ii%=2 THEN
     dq = sirate
         = msi
     m
     dwt = dwtsi
   END IF
   FOR 1 = 100 TO 1 STEP -5
     GOSUB CONVERT
     GOSUB QCALC
     IF units$ = "FPS" THEN
        IF (dq-q) < .1 THEN
      GOSUB FINE
      GOSUB sr100
           EXIT FOR
        END IF
     ELSEIF units$ = "CGS" THEN
   dr = dq
   IF (dr-r) < 1 THEN
      GOSUB MFINE
      GOSUB sr100
          EXIT FOR
   END IF
     END IF
  NEXT 1
NEXT ii%
REM find minimum spacing
IF ldr < lsi THEN
  FinalLSpacing=ldr
ELSE
  FinalLSpacing=lsi
END IF
PRINT "LATERAL SPACING USED FOR SUBSEQUENT CALCULATIONS = ";
PRINT USING "###";CINT(FinalLSpacing);:PRINT " ft."
LOCATE 24,26:anykey$=""
PRINT "PRESS ANY KEY TO CONTINUE? ";
WHILE LEN(anykey$)=0:anykey$=INKEY$:WEND
REM
        SUBROUTINE NAME
                              SITIME.INC
REM
        SUBROUTINE AUTHOR H. W. Belcher
REM
        DATE OF LAST REVISION 10/13/89
REM
       PROGRAMMING LANGUAGE
                              Turbo Basic - Version 1.0
REM-----
               _____
```

start:

REM compute maximum discharge for lateral pipe assuming full pipe flow TileArea=3.1416*(TileDiameter/12)^2/4 TilePerimeter=3.1416*TileDiameter/12 FullPipeQ=1.486/.015*(TileArea/TilePerimeter)^(2/3)*(TileGrade/100)^.5*Tile Area FullPipeQ=FullPipeQ/FinalLspacing*12*24*60*60/TileLength

```
units$="FPS"
IF TileDiameter=3 THEN remm=3.5
IF TileDiameter=4 THEN remm=5.1
IF TileDiameter=5 THEN remm=10.0
dz=0.001
dd=1000
ElapsedTime=0
CLS
wtdRain=(siWIdepthIateral+siWIdepthMidpoint)/2-(infiltration/12)/DPorosity*.8
IF wtdRain<0 THEN wtdRain=0
IF WeirDepth>siWTdepthLateral THEN
    DrainTo=siWTdepthLateral+dz
ELSE
    DrainTo=WeirDepth
END IF
REM calculate maximum q for drawdown using hooghoudt equation
m=WeirDepth-wtdRain
1=FinalLspacing
GOSUB convert1
GOSUB qcalc1
IF q>FullPipeQ THEN q=FullPipeQ
MaxQ=q
LOCATE 22,5:PRINT SPACE$(75);
LOCATE 23,5:PRINT SPACE$(75);
LOCATE 24,5:PRINT SPACE$(75);
LOCATE 22,5: PRINT "CALCULATED MAXIMUM DISCHARGE DURING DRAWDOWN IS ";
PRINT USING "#.###"; MaxQ; : PRINT " IN/DAY"
anykey$="":LOCATE 23,5
PRINT "DO YOU WANT TO REDUCE THE MAXIMUM DRAWDOWN DISCHARGE (y/n)? ";
WHILE LEN(anykey$)=0:anykey$=INKEY$:WEND
IF anykey$="y" OR anykey$="Y" THEN
   LOCATE 24,5: INPUT "ENTER NEW MAXIMUM DRAWDOWN DISCHARGE (IN/DAY)"; MaxQ
END IF
CLS
REM perform calculations for initial flow (0<ldist<FinalSpacing/2)
REM by incrementing ldist by dd
m=WeirDepth-wtdRain
z=wtdRain
FOR ldist=0 TO FinalLspacing/2 STEP FinalLspacing/2/dd
   IF ldist=0 THEN
      oldarea=(DrainTo-wtdRain)*FinalLSpacing/2
      oldq=0
      oldl=0
      ElapsedTime=0
   ELSE
      area=(3.1416*ldist*(DrainTo-wtdRain))/4+(DrainTo-wtdRain)*_
```

```
194
```

```
(FinalLSpacing/2-1dist)
      l=ldist*2
     GOSUB convert1
     GOSUB gcalc1
     IF q>sirate+drrate THEN q=sirate+drrate
      IF q>FullPipeQ THEN q=FullPipeQ
      time=(oldarea-area)*2*DPorosity/((oldq+q)/2/24/12*(oldl+1)/2)
     ElapsedTime=ElapsedTime+time
     GOSUB sr1001
     oldarea=area
     oldq=q
     oldl=1
   END IF
NEXT ldist
LOCATE 3,1:PRINT "Phase 1 Elapsed Time: ";:PRINT USING "###";ElapsedTime
REM perform calculations for ldist = FinalLSpacing/2
REM by varying z until z = DrainTo
FOR z=wtdRain TO DrainTo-dz STEP dz
 REM calculate drainage o
 m=WeirDepth-z
  area = (3.1416*FinalLSpacing/2*(DrainTo-z))/4
  1=FinalLSpacing
  GOSUB convert1
 GOSUB gcalc1
  IF q>MaxQ THEN q=MaxQ
  IF q>FullPipeQ THEN q=FullPipeQ
  time=(oldarea-area)*2*DPorosity/((oldq+q)/2/24/12*FinalLSpacing)
 ElapsedTime=ElapsedTime+time
  GOSUB sr1001
 oldarea=area
  oldg=g
NEXT z
LOCATE 21,5:PRINT "FOR LATERAL SPACING = ";:PRINT USING "###";
   CINT(FinalLspacing);:PRINT "FT. AND MAXIMUM PIPE DISCHARGE = ";:
   PRINT USING "#.###";MaxQ;:PRINT " IN/HR"
LOCATE 22,5:PRINT "WATER TABLE DRAWDOWN ELAPSED TIME = ";:
   PRINT USING "#####";CINT(ElapsedTime);:PRINT " HRS"
anykey$="":LOCATE 23,5:PRINT "DO YOU WANT TO REVISE LATERAL SPACING (y/n)?
":
WHILE LEN(anykey$)=0:anykey$=INKEY$:WEND
IF anykey$="y" OR anykey$="Y" THEN
   LOCATE 24,5: INPUT "ENTER NEW SPACING (ft)"; FinalLSpacing
   GOTO start
END IF
REM
        SUBROUTINE NAME
                               SISUBR.INC
REM
        SUBROUTINE AUTHOR P. Gerrish and H. Belcher
REM
        DATE OF LAST REVISION 10/06/89
RFM
        PROGRAM LANGUAGE Turbo Basic - Version 1.0
REM-----
```

```
sr100:
```

```
PRINT "MAXIMUM LATERAL SPACING FOR SUBS DRAINAGE = ";
                      PRINT USING "###";CINT(1);:PRINT " ft."
                       ldr=1
           ELSEIF ii\% = 2 THEN
                      PRINT "MAXIMUM LATERAL SPACING FOR SUBIRRIGATION = ":
                      PRINT USING "###";CINT(1);:PRINT " ft."
                       lsi=l
                   END IF
RETURN
CONVERT:
       IF units$ = "FPS" THEN
             dtm = TileDepth*12*0.0254
             dbm = BarrierDepth*12*0.0254
             lm = 1 \times 12 \times 0.0254
             re = remm/1000
             km = k*0.0254*24
             mm = m \times 12 \times 0.0254
             dwtm = dwt*12*0.0254
      ELSE
             dtm = TileDepth
             dbm = BarrierDepth
             lm = 1
             re = remm/1000
             km = k
             mm = m
             dwtm = dwt
      END IF
RETURN
     QCALC:
      doverl = (dbm - dtm)/lm
      a = 3.55 - 1.6*doverl + 2*doverl^2
      IF doverl > 0.3 THEN
             var = lm/re
             dem = lm * (3.14159) / (8 * (LOG(var) - 1.15))
      ELSE
             dem = (dbm-dtm)/(1+dover1*((8/3.14159)*LOG((dbm-dtm)/re)-a))
      END IF
      de = dem * 100/2.54/12
      IF ii\% = 1 THEN
             r = (8 \times 1000 + 4 \times 1000 \text{ m}^2) / 1 \text{m}^2 \times 1000
      ELSEIF ii% = 2 THEN
             r = 4 \text{km} \text{mm} (dtm - dwtm + dem) (2 - mm/(dbm - dwtm)) / 1m^2 1000
      END IF
      q = r/25.4
RETURN
```

IF (dq-q) > 0.0005 THEN WHILE (dq-q) > 0.0005DECR 1, 0.1 GOSUB CONVERT GOSUB QCALC WEND ELSEIF (dq-q) < -0.0005 THEN WHILE (dq-q) < -0.0005INCR 1, 0.1 GOSUB CONVERT GOSUB QCALC WEND END IF RETURN MFINE: IF (dr-r) > 0.0005 THEN WHILE (dr-r) > 0.0005DECR 1, 0.01 GOSUB CONVERT GOSUB QCALC WEND ELSEIF (dr-r) < -0.0005 THEN WHILE (dr-r) < -0.0005INCR 1, 0.01 GOSUB CONVERT GOSUB QCALC WEND END IF RETURN REM----sr1001: LOCATE 1,1 PRINT "DISCHARGE RATE = "; PRINT USING "#.###";q;:PRINT " in/day"; PRINT " AT TIME = "; PRINT USING "#####";CINT(ElapsedTime);:PRINT " hr"; PRINT " AT WT DEPTH = "; PRINT USING "##.##";z;:PRINT " ft" RETURN convert1: IF units\$ = "FPS" THEN dtm = TileDepth*12*0.0254 dbm = BarrierDepth*12*0.0254 $lm = 1 \times 12 \times 0.0254$ re = remm/1000km = k*0.0254*24mm = m * 12 * 0.0254

```
dtm = TileDepth
            dbm = BarrierDepth
            lm = 1
            re = remm/1000
            km = k
                mm = m
                END IF
       RETURN
  qcalc1:
       doverl = (dbm - dtm)/lm
       a = 3.55 - 1.6*doverl + 2*doverl^2
       IF doverl > 0.3 THEN
            var = lm/re
            dem = lm * (3.14159) / (8 * (LOG(var) - 1.15))
       ELSE
            dem = (dbm-dtm)/(1+dover)*((8/3.14159)*LOG((dbm-dtm)/re) -
a))
       END IF
       de = dem * 100/2.54/12
            r = (8 \times 1000 + 4 \times 1000)
       q = r/25.4
  RETURN
RFM
     SUBROUTINE NAME
                           SIOUTPUT.INC
REM
     SUBROUTINE AUTHOR H. Belcher, MSU
REM
     DATE OF LAST REVISION 10/13/89
REM
     PROGRAM LANGUAGE
                           Turbo Basic - Version 1.0
REM-----
CLS
PRINT TAB(10);"
                         SILSPACE RESULTS
PRINT TAB(10);"
                           Michigan State University
X%=8
PRINT TAB(X%)"FOR:"
PRINT TAB(X%); "Depth to the lateral pipe (ft).....";
PRINT USING "##.##";TileDepth
PRINT TAB(X%); "Diameter of the lateral pipe (in).....
                                                   ":
PRINT USING "##"; TileDiameter
PRINT TAB(X%); "Minimum grade of the lateral pipe (%).....";
PRINT USING "#.###";TileGrade
PRINT TAB(X%);"Length of the lateral pipe (ft)..... ";
PRINT USING "####";TileLength
PRINT TAB(X%); "For Subirrigation:
PRINT TAB(X%);" Depth to water table at lateral (ft)..... ";
PRINT USING "##.##";siWTdepthLateral
PRINT TAB(X%);" Depth to water table at midpoint (ft)..... ";
```

PRINT USING "##.##";siWTdepthMidpoint PRINT TAB(X%); "For Subsurface Drainage: PRINT TAB(X%);" Depth to water table at lateral (ft)..... "; PRINT USING "##.##";sdWTdepthLateral PRINT TAB(X%);" Depth to water table at midpoint (ft).... "; PRINT USING "##.##";sdWTdepthMidpoint PRINT TAB(X%);"Design subirrigation rate (in/day)....."; PRINT USING "#.##";sirate PRINT TAB(X%); "Design subsurface drainage rate (in/day)... "; PRINT USING "#.##";drrate PRINT TAB(X%);"Design storm rainfall (in)....."; PRINT USING "##.##";rainfall PRINT TAB(X%);"SCS runoff curve number..... PRINT USING "###";rcn PRINT TAB(X%); "Design weir depth during drawdown (ft)..... "; PRINT USING "#.##";WeirDepth PRINT TAB(X%);"Depth to Barrier (ft)..... PRINT USING "##.#";BarrierDepth PRINT TAB(X%);"Saturated hydraulic conductivity (in/hr)... "; PRINT USING "#.##";k PRINT TAB(X%); "Saturated - Drained Upper Limit.....": PRINT USING "#.##";DPorosity anykey\$="":WHILE LEN(anykey\$)=0:anykey\$=INKEY\$:WEND CLS PRINT TAB(X%)"RESULTS:" PRINT TAB(X%)"Maximum lateral spacing for subirrigation (ft)... PRINT USING "###":lsi ": PRINT TAB(X%) "Maximum lateral spacing for subs. drainage (ft).. PRINT USING "###";ldr PRINT TAB(X%)"For lateral spacing (ft)..... PRINT USING "###"; FinalLspacing PRINT TAB(X%)"Time to return to subirrigation WTD (hr)..... PRINT USING "####";ElapsedTime PRINT TAB(X%)"Following precipitation with infiltration (in)... "; PRINT USING "#.##"; infiltration PRINT TAB(X%) "Water table depth after precipitation (ft)..... "; PRINT USING "##.##";wtdRain PRINT TAB(X%)"Maximum discharge for drawdown (in/day)..... "; PRINT USING "#.###";MaxQ; REM-----LOCATE 23,8 anykey\$="" PRINT "DO YOU WANT A PRINTOUT (y/n)? "; WHILE LEN(anykey\$)=0:anykey\$=INKEY\$:WEND IF anykey\$="y" OR anykey\$="Y" THEN Ρ R Ι Ν L

LPRINT TAB(10);" Michigan State University

LPRINT TAB(10);"

**

SILSPACE RESULTS

Т

Ρ L R Ι Ν X%=12 LPRINT LPRINT TAB(X%)"FOR:" LPRINT LPRINT TAB(X%); "Depth to the lateral pipe (ft)....."; LPRINT USING "##.##";TileDepth LPRINT TAB(X%); "Diameter of the lateral pipe (in)....."; LPRINT USING "##";TileDiameter LPRINT TAB(X%); "Minimum grade of the lateral pipe (%)....."; LPRINT USING "#.###";TileGrade LPRINT TAB(X%);"Length of the lateral pipe (ft)....."; LPRINT USING "####";TileLength LPRINT TAB(X%); "For Subirrigation: LPRINT TAB(X%);" Depth to water table at lateral (ft)..... "; LPRINT USING "##.##";siWTdepthLateral LPRINT TAB(X%);" Depth to water table at midpoint (ft)..... "; LPRINT USING "##.##";siWTdepthMidpoint LPRINT TAB(X%); "For Subsurface Drainage: LPRINT TAB(X%);" Depth to water table at lateral (ft)..... "; LPRINT USING "##.##";sdWTdepthLateral LPRINT TAB(X%);" Depth to water table at midpoint (ft).... "; LPRINT USING "##.##";sdWTdepthMidpoint LPRINT TAB(X%); "Design subirrigation rate (in/day)....."; LPRINT USING "#.##";sirate LPRINT TAB(X%); "Design subsurface drainage rate (in/day)... "; LPRINT USING "#.##";drrate LPRINT TAB(X%);"Design storm rainfall (in)....."; LPRINT USING "##.##";rainfall LPRINT TAB(X%);"SCS runoff curve number..... ": LPRINT USING "###";rcn LPRINT TAB(X%); "Design weir depth during drawdown (ft)..... ": LPRINT USING "#.##";WeirDepth LPRINT TAB(X%);"Depth to Barrier (ft)..... LPRINT USING "##.#";BarrierDepth LPRINT TAB(X%); "Saturated hydraulic conductivity (in/hr)... LPRINT USING "#.##";k LPRINT TAB(X%); "Saturated - Drained Upper Limit..... ": LPRINT USING "#.##";DPorosity LPRINT LPRINT TAB(X%) "RESULTS:" LPRINT LPRINT TAB(X%) "Maximum lateral spacing for subirrigation (ft)... "; LPRINT USING "###";lsi LPRINT TAB(X%)"Maximum lateral spacing for subs. drainage (ft).. ": LPRINT USING "###";ldr ": LPRINT TAB(X%)"For lateral spacing (ft)..... LPRINT USING "###"; FinalLspacing ": LPRINT TAB(X%)"Time to return to subirrigation WTD (hr)..... LPRINT USING "####";ElapsedTime ": LPRINT TAB(X%)"Following precipitation with infiltration (in)...

Т

```
LPRINT USING "#.##"; infiltration
   LPRINT TAB(X%) "Water table depth after precipitation (ft)..... ";
   LPRINT USING "##.##";wtdRain
   LPRINT TAB(X%) "Maximum discharge for drawdown (in/day)..... ";
   LPRINT USING "#.###";MaxQ
   FOR i%=1 TO 31:LPRINT:NEXT i%
END IF
CLS
anykey$=""
PRINT "DO YOU WANT TO QUIT (y/n)? ";
WHILE LEN(anykey$)=0:anykey$=INKEY$:WEND
IF anykey$="y" OR anykey$="Y" THEN
   CLS
   END
ELSE
   CLEAR
   GOTO begin
END IF
```

REM PROGRAM NAME SIECON.BAS REM PROGRAM AUTHOR H. Belcher, MSU REM DATE OF LAST REVISION 10/17/89 REM PROGRAM LANGUAGE Turbo Basic - Version 1.0 REM-------CLS Ρ R I Ν Т ****" PRINT PRINT TAB(3);" SIECON: An economic analysis program for water table management PRINT Ρ R Ι N Т ****" PRINT PRINT PRINT PRINT TAB(28);" H. W. Belcher PRINT TAB(28); "MICHIGAN STATE UNIVERSITY"
 PRINT TAB(28);"
 Version: 1.01
 "

 PRINT TAB(28);"
 09/29/89
 "
 LOCATE 24,26 PRINT "PRESS ANY KEY TO CONTINUE? "; WHILE LEN(anykey\$)=0 anykey\$=INKEY\$ WEND begin: REM-----input data-----CLS anykey\$="" PRINT "WILL INPUT DATA COME FROM DISKFILE (f) OR KEYBOARD (k)? " WHILE LEN(anykey\$)=0:anykey\$=INKEY\$:WEND IF anykey\$="F" OR anykey\$="f" THEN INPUT "Enter input file name";FileName\$ CLS OPEN FileNames FOR INPUT AS #1 INPUT #1, P, A, L, i, area, YldWO, YldW, ProdCostWO, ProdCostW, Price CLOSE #1 REM-----ELSE PRINT INPUT "Enter estimated installation cost of the system (\$).... ";P\$ IF LEN(P\$)=0 THEN P=INSTAL ELSE P=VAL(P\$) INPUT "Enter estimated cost of maintaining the system (\$)..... ";A\$ IF LEN(A\$)=0 THEN A=ANN ELSE A=VAL(A\$) IF LEN(L\$)=0 THEN L=LIFE ELSE L=VAL(L\$)

IF LEN(i\$)=0 THEN i=RATE ELSE i=VAL(i\$) INPUT "Field size (area).....";area\$ IF LEN(area\$)=0 THEN area=SIZE ELSE area=VAL(area\$) INPUT "Enter estimated yield w/o system (vol/unit area)..... ":YldWO\$ IF LEN(Y1dWO\$)=0 THEN Y1dWO=YIELD1 ELSE Y1dWO=VAL(Y1dWO\$) INPUT "Enter estimated yield w/ system (vol/unit area)..... ";YldW\$ IF LEN(YldW\$)=0 THEN YldW=YIELD2 ELSE YldW=VAL(YldW\$) INPUT "Enter production cost w/o system (\$/unit area)...... ":ProdCostWO\$ IF LEN(ProdCostWO\$)=0 THEN ProdCostWO=COST1 ELSE ProdCostWO=VAL(ProdCostWO\$) INPUT "Enter production cost w/ system (\$/unit area)..... ";ProdCostW\$ IF LEN(ProdCostW\$)=0 THEN ProdCostW=COST2 ELSE ProdCostW=VAL(ProdCostW\$) INPUT "Enter expected product market price (\$/unit vol)...... ";Price\$ IF LEN(Price\$)=0 THEN Price=VALUE ELSE Price = VAL(Price\$) END IF RFM-------INSTAL=P ANN=A LIFE=L RATE=i SIZE=area YIELD1=Y1dWO YIELD2=YLDW COST1=ProdCostWO COST2=ProdCostW VALUE=Price REPL=0 AINSTAL=INSTAL*((RATE/100)*(1+RATE/100)^(LIFE)/((1+RATE/100)^(LIFE)-1)) $ANNUAL = AINSTAL + ANN - (REPL*(RATE/100)/((1+RATE/100)^(LIFE) - 1))$ INCREASE = SIZE*(YIELD2*VALUE-YIELD1*VALUE)-SIZE*(COST2-COST1) RTN=INCREASE/ANNUAL CLS PRINT TAB(8);"SIECON RESULTSPRINT TAB(8);"Michigan State University X%=8 PRINT PRINT TAB(X%)"FOR:" PRINT TAB(X%); "Estimated installation cost of the system (\$)..... "; PRINT USING "#######";P PRINT TAB(X%); "Cost of operating and maintaining the system (\$)..."; PRINT USING "#######;A PRINT TAB(X%); "Expected life of the system (yr).....";

PRINT USING "########:L PRINT USING "####.##":i PRINT TAB(X%);"Field size (area).....": PRINT USING "########;area PRINT TAB(X%);"Estimated yield w/o system (vol/unit area)..... "; PRINT USING "########":YldWO PRINT TAB(X%);"Estimated yield w/ system (vol/unit area)..... "; PRINT USING "########":YldW PRINT TAB(X%); "Production cost w/o system (\$/unit area)......"; PRINT USING "####.##";ProdCostWO PRINT TAB(X%);"Production cost w/ system (\$/unit area)..... "; PRINT USING "####.##";ProdCostW PRINT TAB(X%); "Expected product market price (\$/unit vol)......"; PRINT USING "####.##";price PRINT PRINT TAB(X%); "RESULTS:" PRINT TAB(X%); "TOTAL INSTALLATION COST.....": PRINT USING "\$\$#######; INSTAL+.5 PRINT TAB(X%); "TOTAL ANNUAL SYSTEM COST.....": PRINT USING "\$\$######":ANNUAL+.5 PRINT TAB(X%); "TOTAL ANNUAL INCREASE IN" PRINT TAB(X%);"INCOME DUE TO SYSTEM....."; PRINT USING "\$\$######; INCREASE+.5 PRINT TAB(X%); "BENEFIT/COST RATIO....."; PRINT USING "########;RTN+.005 REM------LOCATE 25.8 anykey\$="" PRINT "DO YOU WANT A PRINTOUT (y/n)? "; WHILE LEN(anykey\$)=0:anykey\$=INKEY\$:WEND IF anykey\$="y" OR anykey\$="Y" THEN LPRINT Ρ Т R Τ L N LPRINT TAB(12);" SIECON RESULTS LPRINT TAB(12);" Michigan State University L Ρ Ι Т R N X%=12 LPRINT LPRINT TAB(X%)"FOR:" LPRINT TAB(X%);"Estimated installation cost of the system (\$)..... "; LPRINT USING "#######";P LPRINT TAB(X%); "Cost of operating and maintaining the system (\$).. "; LPRINT USING "########;A LPRINT TAB(X%);"Expected life of the system (yr)....."; LPRINT USING "########";L

LPRINT USING "####.##";i
LPRINT TAB(X%);"Field size (area)";
LPRINT USING "#######;area
LPRINT TAB(X%);"Estimated yield w/o system (vol/unit area)"
LPRINT USING "#######;YldWO
LPRINT TAB(X%);"Estimated yield w/ system (vol/unit area)"
LPRINT USING "#######";YldW
LPRINT TAB(X%);"Production cost w/o system (\$/unit area)";
LPRINT USING "####.##";ProdCostWO
LPRINT TAB(X%);"Production cost w/ system (\$/unit area)";
LPRINT USING "####.##";ProdCostW
LPRINT TAB(X%); "Expected product market price (\$/unit vol)
LPRINT USING "####.##";price
LPRINT
LPRINT TAB(X%);"RESULTS:"
LPRINT TAB(X%); "TOTAL INSTALLATION COST
LPRINT USING "\$\$######;INSTAL+.5
LPRINT TAB(X%); "TOTAL ANNUAL SYSTEM COST
LPRINT USING "\$\$#######;ANNUAL+.5
LPRINT TAB(X%); "TOTAL ANNUAL INCREASE IN"
LPRINT TAB(X%);"INCOME DUE TO SYSTEM";
LPRINT USING "\$\$#######; INCREASE+.5
LPRINT TAB(X%); "BENEFIT/COST RATIO";
LPRINT USING "####################################
FOR i%=1 TO 42:LPRINT:NEXT i%
END IF

CLS

```
anykey$=""
PRINT "DO YOU WANT TO QUIT (y/n)? ";
WHILE LEN(anykey$)=0:anykey$=INKEY$:WEND
IF anykey$="y" OR anykey$="Y" THEN
    CLS
    END
ELSE
    GOTO begin
END IF
```

END

APPENDIX G

WATER TABLE MANAGEMENT SYSTEM DESIGN EXAMPLE

Design a soybean subirrigation system for 39 acre field located NE of St. Johns, Michigan. Field studies of subirrigated soybean production suggests that soybean yield is related to the depth and fluctuation of the water table by the linear regression equation relative soybean yield = 89.9 - 2.30 * wfi where wfi is the wet stress fluctuation index for June through August.

The soil at the site is Ziegenfuss clay loam with a dense clay layer at 5.5 ft depth practically impervious to water. A site investigation indicates the soil above the dense clay layer has the following properties:

depth	k	sat	dul
(in)	(in/h)	(in/in)	(in/in)
0 - 9	1.6	.45	.30
9 - 15	0.2	.42	.27
15 - 66	0.7	.44	.29

Daily rainfall record near the site are available from a National Weather Service Cooperative observer station at St. Johns. The SIRAIN output using those records for the June, July and August months follow:

MONTH	2 YR	2 YR	10 YR
	RAIN	EVENTS	RAIN
	(in)		(in)
JUN	0.16	10	0.91
\mathbf{JUL}	0.15	8	0.77
AUG	0.20	8	0.96
SEASON	0.16	28	0.83

Next, three subirrigation system design alternatives were investigated using the computer model SILSPACE. For the three alternatives, the lateral spacing to provide steady state subsurface drainage and subirrigation is held constant. The only parameter varied for each alternative is the maximum discharge during drawdown following the .16 in design rainfall. That discharge was set equal to 0.375 in./day for alternate 1, 0.500 in./day for alternate 2 and 0.750 in./day for alternate 3.

The input data for the alternates:

Depth to the lateral pipe (ft)..... 4.00 Diameter of the lateral pipe (in)..... Minimum grade of the lateral pipe (%).....0.050 Length of the lateral pipe (ft)..... 300 For Subirrigation: Depth to water table at lateral (ft)..... 1.50 Depth to water table at midpoint (ft)..... 2.00 For Subsurface Drainage: Depth to water table at lateral (ft)..... 4.00 Depth to water table at midpoint (ft).... 2.00 Design subirrigation rate (in/day)..... 0.30 Design storm rainfall (in)..... 0.16 Design storm occurences..... 28 SCS runoff curve number..... 82 Total time (days)..... 90 Design weir depth during drawdown (ft)..... 4.00

produced the following results:

Maximum lateral spacing for subirrigation (ft)... 27, 27, 27 Maximum lateral spacing for subs. drainage (ft).. 40, 34, 27 For lateral spacing (ft)..... 27, 27, 27, 27 Time to return to subirrigation WTD (hr)..... 27, 36, 42 Following precipitation with infiltration (in)... 0.16, 0.16, 0.16 Water table depth after precipitation (ft)..... 1.46, 1.46, 1.46 Water table depth after drawdown (ft)..... 1.61, 1.61, 1.61

for:

The results of each SILSPACE simulation follow:

DESIGN ALTERNAT	Е	1	2	3
EVALUATION PERIOD		season	season	season
EVALUATION PERIOD	days	90	90	90
RAINFALL	in	0.16	0.16	0.16
EVENTS DURING EVAL		28	28	28
DRAWDOWN TIME	hr	42	36	27
DEPTH TO HIGH WT	ft	1.46	1.46	1.46
DEPTH TO LOW WT	ft	1.61	1.61	1.61
DEPTH TO MEAN WT	m	1.58	1.59	1.59
wfi	m*hr	1.57	2.68	3.54

Substituting the parameters wfi parameter into the Bannister site soybean yield regression equation resulted in:

DESIGN ALTERNATE	1	2	3
syld=89.9-2.30wfi	82%	84%	86 %

The preceding indicates increasing the subirrigation maximum discharge capacity to .375, .500 and .750 in/day will result in a soybean relative yield increase of 82, 84 and 86% respectively. Assuming a 100% relative yield is 65 bu/ac this translates to a yield of 57, 58, and 59 bu/ac for design alternative 1, 2 and 3 respectively. Thus to maximize yield, the third design alternative is best, ie. design the mains and submains to handle a flow rate of 0.750 inches/day.

However, to optimize the economic efficiency of the system to produce soybean yield costs of the alternatives must be considered. Detail design of each alternate resulted in the following system quantities and estimated installation costs:

	unit price	dc=.375 lf	dc=.375 \$	dc=.500 lf	dc=.500 \$	dc=.750 lf	dc=.750 \$
5"	70	1199	030	018	725	501	169
5 6"	1.11	729	809	648	719	324	360
8"	2.14	1080	2311	1107	2369	999	2138
10"	3.37			324	1092	756	2548
12"	4.25					324	1377
		=======	========	========	=======	========	=======
TOTAL		2997	4059	2997	4905	2997	6891

COST OF SUBMAINS

COST OF MAINS

	unit price	dc=.375 1f	dc=.375 \$	dc=.500 lf	dc=.500 \$	dc=.750 lf	dc=.750 \$
5"	.79						
6''	1.11	350	389				
8"	2.14			350	749	350	749
10"	3.37	400	1348				
12"	4.25	15	64	400	1700		
15"	5.91			15	89	400	2364
18"	7.25					15	109
		=======	=======	=======	=======	=======	========
TOTAL		765	1800	765	2538	765	3222

COST OF LATERALS

	unit price	de=.375 lf	de=.375 \$	dc=.500 lf	dc=.500 \$	dc=.750 lf	de=.750 \$
	.47	25913	12179	25913	12179	25913	12179
MISC COSTS			13000		13000		13000
GRAND TOTAL			31038		32622	======	35292

The detailed design and cost estimate for each alternate indicates:

Alternate 1 will cost \$31038 and provide a <u>57 bu/ac</u> annual yield.

Alternate 2 will cost \$32622 and provide a <u>58 bu/ac</u> annual yield.

Alternate 3 will cost \$35292 and provide a <u>59 bu/ac</u> annual yield.

To determine the most economic efficient alternative the computer module SIECON is used to calculate the benefit/cost ratio of each of the three alternatives.

Using an estimated annual operating and maintenance expense equal to \$500 per year, an expected system life of 20 years, a minimum attractive interest rate of 8%, a 35 bu/ac estimated yield without the system, a without system production cost of \$110.00 per acre, a with system production cost of \$120.00 per acre and an expected market price of \$6.50 per bushel of soybeans, the SIECON economic analysis provides the following results:

	alt 1	alt 2	alt 3
Appual System Cost	 ¢3669		 ¢1095
Annual System Cost	\$3002	\$3023	\$40 <i>3</i> 5
Annual Increase in Income	\$4124	\$4325	\$4527
Benefit/Cost Ratio	1.13	1.14	1.11

Thus the analysis indicates the second design alternate is the most economic efficient alternative of the three.

REFERENCES

REFERENCES

Anonymous. 1978. Measurement of watertable levels in the field, <u>Research Investigation and Field Trials 1977-78</u>. North of Scotland College of Agriculture, 335-342.

Armstrong, A.C. 1983. The measurement of watertable levels in structured clay soils by means of open auger holes. <u>Earth</u> <u>Surface Processes Landforms</u>, Chichester, John Wiley, Mar/Apr 1983, volume 8, issue 2, 183-187.

Belmans, C., J. G. Wesseling and R. A. Feddes. 1983. Simulation of the water balance of a cropped soil: SWATRE. J. of Hydrology, 63:271-286.

Benz, L. C., G. A. Reichman, E. J. Doering and R. F. Follett. 1978. Water-table depth and irrigation effects on appliedwater-use efficiencies of three crops. ASAE Trans. 21(4):723-728

Bouma, J., L. W. Dekker and J. C. Haans. 1980. Measurement of depth to water table in a heavy soil. <u>Soil Science</u>, 130, 264-270.

Bouwer, H. 1974. Developing drainage design criteria. Ch. 5 in <u>Drainage for Agriculture</u>, J. van Schilfgaarde, ed., Am. Soc. of Agron., Madison, WI.

Bouwer, H. and J. van Schilfgaarde. 1963. Simplified method of predicting the fall of water table in drained land. ASAE Trans. 6(4):288-291.

Chow, V. T. 1964. Test of raw data. in <u>Handbook of Applied</u> <u>Hydrology, Section 8</u>). V. T. Chow, ed. McGraw-Hill, Inc.

Chaudhary, T. N., V. K. Bhatnagar and S. S. Prihar. 1975. Corn yield and nutrient uptake as affected by watertable depth and soil submergence. Agron. J. 67:745-749.

DeBoer, D. W. and W. F. Ritter. 1970. Flood damage to crops in north-central Iowa. ASAE Trans. 13:547-549.

Doty, C. W., K. R. Cain and L. J. Farmer. 1986. Design, operation and maintenance of controlled-drainage/subirrigation (cd-si) system in humid areas. ASAE Trans. 2(2):114-119.

Dumm, L. D. 1954. Drain spacing formula. Ag. Engr. 35:726-730.

Evans, R. O. and R. W. Skaggs. 1987. Design procedures for water table management systems in North Carolina. Proceedings Third International Workshop on Land Drainage. Ohio State University, Columbus, OH. pp D9-D22.

Fausey, N. R. and M. B. McDonald, Jr. 1985. Emergence of inbred and hybrid corn following flooding. Agron. J. 77:51-56.

Fausey, N. R., T. T. VanToai and M. B. McDonald, Jr. 1985. Response of ten corn cultivars to flooding. ASAE Trans. 28(1):1794-1797.

Feddes, R. A., P. J. Kowalik and H. Zaradny. 1978. Simulation of field water use and crop yield. PUDOC, Wageningen, Simulation monographs, 189 pp.

Follett, R. F., R. R. Allmaras, and G. A. Reichman. 1974. Distribution of corn roots in sandy soils with a declining water table. Agron. J. 66:288-292.

Goebel, K. M. 1986. A bubbler system for water table monitoring. M.S. Thesis, Michigan State Univ., E. Lansing.

Goebel, K. M. and G. E. Merva. 1985. Bubbler system for water table monitoring. ASAE Paper 85-2563, ASAE, St. Joseph, MI.

Goins, T., J. Lunin and H. L. Worley. 1966. Water table effects on growth of tomatoes, snap beans and sweet corn. ASAE Trans. 9(4):530-533.

Grable, A. R. and E. G. Siemer. 1968. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potentials, and elongation of corn roots. Soil Sci. Soc. Am. Proc. 32:180-186.

Hiler, E. A., R. N. Clark and L. J. Glass. 1971. Effects of water table heights on soil aeration and crop response. ASAE Trans. 14(5):879-882.

Hinson, W.H., D. F. Fourt and W. D. Binns. 1970. The use and abuse of borehole studies in forest drainage research. Mimeo, Forestry Commission, Alice Holt Research Station.

Hooghoudt, S. B. 1940. Bijdragen tot de kennis van eenige natuurkundige grootheden den ground. Verslag, Landboruuk, Onderzock, 46:515-707.

Howell, T. A. and E. A. Hiler. 1974. Effects of inundation period on seedling growth. ASAE Trans. 17(2):286-288,294.

Howell, T. A. and E. A. Hiler, O. Zolezzi, and C. J. Ravelo. 1976. Grain sorghum response to inundation at three growth stages. ASAE Trans. 19(5):876-880.

Jones, C. A. 1984. The minimum data set for systems analysis and crop simulation. In: Experimental design and data collection procedures for IBSNAT. IBSNAT Technical Report 01.

Kanwar, R. S., J. L. Baker and S. Mukhtar. 1988. Excessive soil water effects at various stages of development on the growth and yield of corn. ASAE Trans. 19(5):876-880.

Lal, R. and G. S. Taylor. 1969. Drainage and nutrient effects in a field lysimeter study: I. Corn yield and soil conditions. Soil Sci. Soc. Am. Proc. 33:937-941.

Lal, R., and G. S. Taylor. 1970. Drainage and nutrient effects in a field lysimeter study: II. Mineral uptake by corn. Soil Sci. Soc. Am. Proc. 34:245-248.

McCree. K. J. 1982. The role of respiration in crop production. Iowa St. J. of Research. Vol. 56, No. 3, pp 291-306.

Merva, G. E. 1987. The velocity permeameter technique for rapid determination of hydraulic conductivity in-situ. Proceeding Third International Workshop on Land Drainage. Ohio State University, Columbus, OH. pp G56-G63.

Merva, G.E. and N. R. Fausey. 1984. Finite element analysis of water table observation well behavior. ASAE Paper 84-2061, ASAE, St. Joseph, MI.

Merva, G.E. and N. R. Fausey. 1986. Computer analysis of water table observation wells for water management. Proceedings of International Seminar on Land Drainage, Helsinki University of Technology, pp 181-197.

Miller, R. D. and D. D. Johnson. 1964. The effect of soil moisture tension on carbon dioxide evolution, nitrification, and nitrogen mineralization. Soil Sci. Soc. Am. Proc. 28:644-647.

Moody, W. T. 1966. Nonlinear differential equation of drain spacing. ASCE Journal of the Irrigation and Drainage Division. 92(IR2):1-9.

Mostaghimi, S., W. D. Lembke and C. W. Boast. 1985. Controlled-drainage/subirrigation simulation for a claypan soil. ASAE Trans. 28(5):1557-1563.

Parsons, J.E. 1987. Development and application of a 3dimensional water management model for drainage districts. Ph.D. Thesis, N.C. State Univ. 476 pp. Patwardhan, A. S., J. L. Nieber and I. D. Moore. 1988. Oxygen, Carbon Dioxide and water transfer in soils: Mechanisms and crop response. ASAE Trans. 31(5):1383-1395.

Pavelis, G. A. (editor). 1987. Farm drainage in the United States: history, status, and prospects. Economic Research Service, USDA Misc. Publ. No. 1455. Washington D.C. 170 pp.

Potter, M. P., editor. 1985. Engineer-in-training/fundamentals of engineering review. Great Lakes Press. Okemos, MI.

Purvis, A. C. and R. E. Williamson. 1972. Effects of flooding and gaseous composition of the root environment on growth of corn. Agron. J. 64:674-678.

Richards, L. A. 1931. Capillary conduction of liquids through porous mediums. Physics 1:318-324.

Riggs, J. L. and T. M. West. 1986. Essentials of Engineering Economics. McGraw-Hill, Inc., New York, NY. 572 pp.

Ritchie, J. T., J. R. Kiniry, C. A. Jones, and P.T. Dyke. 1986. Model inputs. In <u>CERES-Maize A Simulation Model of Maize Growth</u> <u>and Development</u>, ed. C.A. Jones and J.R. Kiniry. Texas A&M University Press, College Station, TX. pp 37-48.

Ritter, W. F. and C. E. Beer. 1969. Yield reduction by controlled flooding of corn. ASAE Trans. 12(1):46-47,50.

Schwab, G. O., R. K. Frevert, T. W. Edminster and K. K. Barnes. 1981. <u>Soil and Water Conservation Engineering</u>. John Wiley & Sons, New York, NY. pp 25-43.

Sieben, W. J. 1964. Het verban tussen ontwatering en opbrengst bij de jonge zavelgronden in de Noordoostpolder. Van Zee tot Land. 40, Tjeenk Willink V, Zwolle, The Netherlands. (as cited by Wesseling, 1974).

Singh, R. and B. P. Ghildyal. 1980. Soil submergence effects on nutrient uptake, growth and yield of five corn cultivars. Agron. J. 72:737-741.

Skaggs, R.W. 1978. A water management model for shallow water table soils. Tech. Rep. 134, Wat. Resour. Res. Inst., N.C. State Univ. 178 pp.

Skaggs, R. W. 1980. Drainmod reference report. USDA Soil Conservation Service. Fort Worth, TX. pp 2.11-2.19. Skaggs, R. W. and A. N. Tabrizi. 1986. Design drainage rates for estimating drain spacings in North Carolina. ASAE Trans. 29(6):1631-1640.

Soil Science Society of America. 1978. Glossary of soil science terms. Madison, WI.

Steele, G. D. and J. H. Torrie. 1980. <u>Principles and Procedures</u> of Statistics. McGraw-Hill Book Company, New York, NY. 633 pp.

USDA Soil Conservation Service. 1985. Draft Drainmod User's Manual Interim Technical Release. USDA Soil Conservation Service, Washington, D.C.

USDA Soil Conservation Service. 1972 National Engineering Handbook, Section 4, Hydrology. Washington, D.C. pp 10.1 to 10.4.

Van Beers, W.F.J. 1976. Computing drainage spacings. Bull. 15, ILRI, Wageningen, The Netherlands.

van Schilfgaarde, J. 1974. Nonsteady flow to drains. In <u>Drainage</u> <u>for Agriculture</u>, J. van Schilfgaarde, ed. American Society of Agronomy, Madison, WI. pp 245-270.

VanToai, T. T., N. R. Fausey and M. B. McDonald, Jr. 1988. Oxygen requirements for germination and growth of floodsusceptible and flood-tolerant corn lines. <u>Crop Sci</u>. 28:79-83.

VanToai, T. T., E. D. Desmond and N. R. Fausey. 1987. Drainage design and management. Proceedings of the Fifth National Drainage Symposium. ASAE, St. Joseph, MI. pp 142-148.

van Wijk, A. L.M. and R. A. Feddes. 1986. Simulating effects of soil type and drainage on arable crop yield. Proc. Intl. Seminar on Land Drainage. Helsinki Univ. of Tech. pp 127-142.

Weaver, M. M. 1964. <u>History of Tile Drainage</u>. Waterloo, NY: M. M. Weaver.

Wesseling, J. 1974. Crop growth and wet soils. In: van Schilfgaarde (ed.) <u>Drainage for Agriculture</u>. Agronomy 17:7-37. Am. Soc. of Agron., Madison, WI.

Williamson, R. E. and J. van Schilfgaarde. 1965. Studies of crop response to drainage: II. Lysimeters. ASAE Trans. 8:98-100,102

Williamson, R. E. and J. R. Carreker. 1970. Effect of water table levels on evapotranspiration and crop yields. ASAE Trans. 13(2):168-176.

Williamson, R. E. and G. J. Kriz. 1970. Response of agricultural crops to flooding, depth-of-water table and soil gaseous composition. ASAE Trans. 13(2):216-220.

Zolezzi, O., T. A. Howell, C. J. Ravelo and E. A. Hiler. 1978. Grain sorghum response to inundation duration at the early reproductive growth stage. ASAE Trans. 21(4):687-690,695.

ł