
 

   

IHW
HHI

HHI
HW‘

I
1W

"
3
%

INN
/WW

HHI
WIW

HII
HI



RARIE

Nlllllllll‘nllllfillmlunuNn
3 1293 00785 4965

 

LIBRARY

Mlchlgan State

University

   

This is to certify that the

thesis entitled

0N TRUSS OPTIMIZATION BY

A HOMOGENIZATION METHOD

presented by

BRADLEY ERNEST BELDI NG

has been accepted towards fulfillment

of the requirements for

M.S. degreein MECHANICAL ENGINEERING

WW
“I 'r/professor A.Dl«AZ

  

Date '5 “A! I 1990

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

 

‘
4

.
_
k
a
—
j
.
r
“

<
~

“
E
E
A
A

4



 

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before due due.

    
DATE DUE DATE DUE DATE DUE

assess .k-Lf‘fi J - ,
    
  

 

 

  
 

   

 

 

  

  
 

  
 

 

 
 
 

  

 
   

 

usu Is An Affirmative AdleNEquel Opportunity Institution

cmmt



ON TRUSS OPTIMIZATION BY

A HOMOGENIZATION METHOD

By

Bradley Ernest Belding

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Mechanical Engineering

1990



0
5
9
3
4
5

ABSTRACT

ON TRUSS OPTIMIZATION BY

A HOMOGENIZATION METHOD

By

Bradley Ernest Belding

In the solution of the truss topology optimization problem using

traditional methods, it is necessary to specify a-priori the number of bars

and connectivity of admissible layouts. Experience and intuition are

necessary when using these methods to ensure that the optimum structure is

included in the set of admissible solutions. A new approach to the truss

topology problem is possible using a homogenization method. With this

method, optimum two-dimensional structures are generated that often

appear 'truss-like' in shape. This is accomplished without initial

specification of admissible topologies. This thesis develops a strategy

based on traditional methods and uses it to show that the solutions obtained

by the homogenization method are equivalent to truss structures of optimum

topology.
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CHAPTER I

INTRODUCTION

A problem that has often been considered in the literature is the

design of truss structures that are, in some sense, optimum. A truss is a

rigid body composed of a number of members, or bars, fastened together at

their ends. The truss is built to support or transfer forces and withstand

safely the loads applied to it. It is assumed that the weight of the bars and

the loads and reactions in the truss act only at the joints between bars, and

that the joints are smooth pins. From this it follows that any forces in the

bars will be tensile or compressive. A typical truss structure is shown in

Figure 1.

 
Figure 1. A Typical Truss
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Variables included in truss design include: number of bars and their

cross-sectional area, connectivity of the bars, and location of the joints, or

nodes. An important consideration in designing an optimum truss is the

topology of the structure (number of bars and connectivity). Traditional

solution methods require that a set of admissible topologies be defined

from which the optimum structure is chosen. Some of these methods use

the topology of structures that have been used in the past to satisfy the

same or similar loading conditions; changes are then made around the

existing design in an effort to find an optimum structure. Experience and

intuition are necessary when solving for optimum topology using

traditional methods in order to ensure that the optimum solution is included

in the set of admissible topologies.

A homogenization method [1] has been developed to solve two-

dimensional shape optimization problems based on the equations of plane

elasticity. Knowing only the extent of the design domain and a total

allowable volume of the final structure, along with boundary conditions,

the method places the material in a pattern that achieves minimum

compliance. In many cases, the shape that results resembles a truss

structure. This observation indicates that it may be possible to use the

homogenization method to solve the optimum truss topology problem.

The purpose of this work is to show that the solutions obtained by

the homogenization method are equivalent to truss structures of optimum

topology. This will be accomplished by studying a representative set of

_ examples. To make this comparison possible, a truss optimization strategy

along the lines of more traditional methods will be developed.

The next two sections of this chapter include a description of how

the homogenization method works, and a literature survey on traditional
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truss optimization methods. In Chapter 2, a truss optimization strategy

will be developed and characteristics of its optimum solutions will be

discussed. In Chapter 3, example problems solved using the

homogenization method will be presented. To show solutions to these

problems can be considered trusses of optimum topology, the same

problems will be solved using the strategy developed in Chapter 2.

Characteristics of the solutions from the two approaches will be discussed.

In Chapter 4, conclusions will be drawn based on the results.

1.1 Shape Optimization Using Homogenization

The optimum shape homogenization program (OSHP) uses a

homogenization method to find the shape of a plane, linearly elastic

structure of minimum mean compliance for a given solid volume. This

section outlines how homogenization theory is applied in the OSHP.

Consider the domain Q and the prescribed boundary conditions in

Figure 2a. The boundary conditions would include zero displacement along

the left side and the load P applied along a small portion of the right side.

The material properties of the structure within the domain are

characterized by the elasticity tensor E = [Eijkl], which is a function of the

location x in the domain. In the homogenization method, the material

properties can be characterized by a microstructure of cells. Within each

cell is a rectangular hole, the size of which determines the properties of the

cell. Such a cell is shown in Figure 3. For values of a=b=1, the area

occupied by the cell would be a void; for a=b=0, the area would be a



1 put structure load 1

here ' hm

 

  
 

a) Problem statement b) Optimum shape

Figure 2. Shape optimization by homogenization
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solid. For intermediate values (Osa,bsl) the cell would have an

intermediate level of material density.

I+a+|

 

Figure 3. Cell for homogenization

It is possible to determine a homogenized elasticity tensor, EH,

based on the location in the domain (x) and the properties of the cell at

that location. This value of EH is dependent upon the hole size. Details of

this homogenization process are found in Reference [2].

The shape optimization problem can then be written as

Find a(x), b(x) that

minimize C(u) (1)

subject to j(1—ab)dx S V" (2)

n

Osasl Osbsl (3)

and appropriate equilibrium equations.
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The compliance (C) is a function of the displacement field (u), the

solution to the equilibrium equations, in this case, the equations of plane .

elasticity for the given homogenized elasticity tensor. Inequality 2 is the

volume constraint which states that the total volume of material be less than

a specified maximum (V0).

The OSHP solution process follows these steps (Reference [2]):

l) The design domain and boundary conditions are prescribed and

the maximum volume of the solution is specified (typically 10%-30% of

the domain).

2) The domain is discretized into rectangular finite elements. The

material properties of each element are characterized by one cell.

3) EH is calculated for selected hole sizes (a,b) and then an

approximation of the function over the interval Osa,b_<_1 is made.

4) The minimum compliance problem in Equations 1 through 3 is

solved using an optimality criteria approach. In this solution process, the

equilibrium equations are solved using a finite element method.The

optimality criteria approach is used because there are generally a large

number of design variables. Figure 2b shows an OSHP solution to the

problem posed in Figure 2a.

1.2 Literature Survey of Traditional Truss Optimization Methods

The early work of Michell [3] is probably the best known analytical

approach to the truss optimization problem. Michell was able to find

minimum weight truss layouts for several loadings. Some of his designs
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required an infinite number of members and joints, which makes them

impractical for application.

Truss optimization based on numerical methods is more recent, and

takes advantage of the speed and storage capability of the digital computer

and the use of finite element analysis. One of the earlier works using

numerical methods was done by Schmit [4]. With member areas as design

variables, Schmit used non-linear programming techniques to minimize the

weight of a three-bar indeterminate truss subject to stress constraints.

When topology and member sizes are considered, three different

approaches have been followed. The first approach involves specifying

possible nodal locations (i.e., location of member joints) and using linear

programming to find the member areas and connectivity that produce the

minimum weight truss. This approach was taken by Dorn et. al. [5] for

single loading conditions and by Dobbs and Felton [6] for multiple loading

conditions. Similarly, Sheu and Schmit [7] presented an approach that

began with a set of nodes which were completely interconnected with

members. From this configuration it was possible to identify subsets of

admissible topologies which could be candidates for the optimum solution.

Bounding techniques, which determined upper and lower limits on the

minimum weight, were used to eliminate many of the possible topologies.

Detailed optimization of the remaining topologies was then performed to

produce the minimum weight structure.

The second approach involves considering both nodal locations and

member areas as design variables. Pedersen [8] prescribed an initial

topology with a fixed number of members and nodes. Sequential linear

programming was then used with minimum weight as the objective and

member stresses as constraints. Lipson and Agrawal [9] used Boxs'



complex method to find the minimum weight of determinate or

indeterminate structures subject to both yield stress and buckling

constraints. Discrete member properties (cross-sectional area and radius of

gyration from a list of available sections) and nodal locations were included

as design variables. Members whose cross-sectional areas approached zero

were deleted during optimization. One advantage of using the complex

method is that it allows a varying number of design variables.

The third approach uses a two-stage optimization strategy. In the

first stage, member areas are considered as design variables while the

geometry remains fixed. In the second stage, the roles are reversed, with

the nodal locations becoming the design variables. The two-stage process

is repeated until further improvement in the objective no longer occurs.

Pedersen [10] followed this approach using sequential linear programming

to solve for minimum weight with stress and displacement constraints. The

number of members, the number of nodes, and the connectivity were

chosen in advance. Spillers [11] also followed a two-stage strategy. He

began with a prescribed configuration and allowed the deletion of members

with areas approaching a minimum gage.

Other approaches to truss optimization include variations such as the

type of constraints considered and the optimization method used.

Literature reviews by Vanderplaats [12] and Schmit [13] discuss many of

these works.



CHAPTERII

A TRUSS OPTIMIZATION STRATEGY

BASED ONTRADITIONALMETHODS

This chapter presents the approach that will be used to solve the

planar truss size and topology problem. The following terms are defined

now to facilitate the discussion:

Mode: A node is the connecting point between two or more bars, or

between ground and one or more bars. In a two-dimensional design space,

the location of the node is specified by its (x,y) cartesian coordinates.

Global Set of Nodes: The global set of nodes is a rectangular array

of nodes.

Law: A layout is a set of bars connecting a subset of nodes from

the global set. The subset includes only those nodes that remain after

removing one or more rows and/or columns from the global set. Here we

require that the connectivity of the layout is such that each node in the

subset be connected only to the nodes directly adjacent to it. This is

demonstrated in Figure 4.

Configuration: A configuration T is the set of bars and connectivity

created by superimposing one or more layouts from the same global set of

nodes. Here to superimpose means that the bars and connectivity

associated with each layout are combined to produce one layout with all

bars and connectivities.
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Figure 4. Connections in a layout
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WW: An admissible topology is a group of bars and

their associated connectivity that can be reached by removing bars from the

configuration T.

2.1 Problem Statement and Relevant Characteristics of Optimum Structures

Using areas and nodal coordinates as design variables, various

configurations of bars will be analyzed to find truss structures of minimum

compliance. Included in the procedure will be the ability to remove bars

whose areas approach a minimum specified value. Formally, the

optimization problem can be written as

W1

Given a prescribed configuration, T, amount of material, V0, and a

lower bound on bar areas, A find the vector of bar areas, AeR“,and
min’

the vector of nodal locations, xeRzm, that

minimizes C = uTF (4)

subject to [K]u=F (5)

v=imusm (3
i=1

AizAmin , i=l,n (7)

where: C: total compliance

F: applied load vector

[K]: global stiffness matrix

1i: length of bar i
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m:vnumbcr of nodes

n: number of bars

u : global displacement vector

V: total volume

V0: allowable volume

The truss structure is subjected to a single loading condition.

Effects such as buckling and self-weight will not be considered here. It is

also noted that the objective in this case, as with the OSHP, is to minimize

compliance, whereas in most of the methods discussed in the literature the

goal was to minimum weight. However, it can be shown that, if all bars

are made of the same material, the problem of minimizing compliance with

bounds on volume is equivalent to minimizing weight with stress

constraints.

The following steps are taken to solve the problem posed in

equations 4 through 7. The computer implementation of these steps will be

referred to here as the Optimization by Superimposed Layouts Program

(OSLP).

Step 1. Select a configuration, T.

Step 2. Solve the problem P(T) using a nonlinear optimization

program [14]. The examples in this study were solved using the

Generalized Reduced Gradient method.

Step 3. Obtain a reduced configuration,T', by removing bars from T

whose areas reached Am“. The problem P(T') is then solved.
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The solution strategy of the OSLP is based on the following well

known results (see References 5 and 15).

Proposition 1. At the solution of P(T), the bars in T are stressed

according to

_ (1) -
loil - o if Ai > Amin

(1) - _
loil < o If Ai - Amin

where, am is a scalar and (Si is the stress in bar i .

Similarly, at the solution of P(T’), the bars in T' are equally stressed at a

constant level, 0(2).

Let the solution to P(T) be {x*(T),A'(T)] with an associated

compliance C‘. Let DL be the set of all possible statically determinate

substructures (D) of T for x fixed at x*(T).

Proposition 2. For x fixed at x’(T), T* is a statically determinate

9' . . .

substructure of T. Furthermore, T 15 the stiffest structure in DL‘

The propositions state that T' is the stiffest statically determinate

substructure of T for x fixed at x‘(T), but they do not state that the truss at

{x*(T*),A'(T*)}, obtained when x is a design variable, is the best

solution for all P(D), where DEDL. The following result indicates that, if

Ami“ is small, the solution of the OSLP, if not optimal, is arbitrarily close

to the optimum solution.
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Proposition 3. When x is a design variable, any improvement over C.

obtained from a different P(D), where D is a subset of T, would be

arbitrarily small.

Proof.

Suppose that DO, a statically determinate substructure of T, exists

with nodal coordinates and areas {x°,A°} and associated compliance

C°<C*. Note that this solution must have a total volume equal to V0.

With x fixed at x°, suppose that the areas of the bars in D° are

reduced proportionally to a value A1 such that

X} = -—1—A§’ if ieD° andieT

(1+8)

with e>0. This reduction in area is done with the intention of later adding

the remaining bars in T, at an area Amin' To ensure that the resulting total

volume still equals V0 and retain feasibility, the value of 8 must depend on

Amin. It is easy to see that e->O as Amin'>o'

To determine the value of the compliance (C1) with the new, reduced

areas, first consider the equilibrium equations at A=A°

[K(A°)]u=F

whose solution, u°, yields a compliance

C°=u°TF .

Setting A=A1, the equilibrium equations are

[KG‘Nu = F

01'

l o _
m[K(A )jll — F

with solution
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‘—1__ 1 o 4
ll ——(1+E)[K(A )] F

= (1+e)u° .

Therefore,

6‘ = a ‘TF

= (1+e)u°TF

= (1+e)C°. (8)

Now with it fixed at x°, we add to D0 the remaining bars in the

configuration T, setting their area at Amin' This gives a resulting solution

[x°,Al} where

 A} = 1 A: ifieD°andieT
(1+8)

A% = Ami“ otherwise

and

2A:1,=v,.

ieCL

Notice that, as stated earlier, this solution has a total volume equal to V0.

The compliance of this solution is C1 and since the new bars were added to

the solution [x°,K1}.

C‘sE‘

Then from (8),

C‘g(1+e)c°

OI

C1-C°seC°. (9)

After all this, we have a solution for T at (x°,A1] whose compliance

(Cl) must be no less than that at {x‘(T),A*(T)}. This is true since the

latter was the solution to P(T), i.e.,
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clzc". (10)

Substituting (10) into (9) gives

C'-C°seC°.

Since it was established that e->0 as Amin'>0’ with small Amin an

improvement over C' using a different substructure would be arbitrarily

small. This proves Proposition 3.

2.2 Selection of Configurations

The solution strategy presented in the previous section assumed that

the configuration was prescribed. In presenting the characteristics of the

optimum structures, it was not mentioned that the optimum truss would not

be found if its topology was not included as an admissible topology in the

initial configuration T. This section discusses the issues that must be

considered when selecting this initial configuration.

The first issue that must be addressed is the number of bars and

connectivity that should be included in the configuration. In order to

guarantee that all possible t0pologies are available, an infinite number of

interconnected nodes would be required. Since this is not possible, a

method of selecting configurations must be found that is capable of

representing as many topologies as possible and at the same time, includes

as few bars as possible to keep the problem of manageable size.

It is necessary to decide on a finite, global set of nodes that might

reasonably be expected to contain the optimum topology and choose layouts

associated with that set. The layouts are superimposed to create the

configuration. By defining a global set of nodes, the number of admissible
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topologies becomes bounded. In order to guarantee that all topologies

within the bounds are considered, it would still be necessary to

superimpose all available combinations of layouts; even this approach

would lead to a large number of bars and it would still be unmanageable.

The approach used here is to choose a global set of nodes and then

find an initial solution from a configuration that is composed of a carefully

selected group of layouts. Based on the initial solution, more layouts

could be added to look for improved solutions. "Carefully selected

layouts" means here that the admissible topologies in the configuration will

include the topology of the OSHP solution and as many other topologies as

possible. This approach will not guarantee that an optimum solution will

be found, but it will make it possible to look for improvements on the

OSHP solution in an organized fashion, if such improvements exist.

2.3 Obtaining Configurations Using Superposition

This section presents the details on how a configuration is obtained

by superimposing layouts. Also discussed are advantages of a

configuration created in this manner.

Figure 5 presents an example of the use of superimposed layouts. In

Figure 5a, the global set of nodes consists of three rows and three columns.

In Figure 5b, Layout #1 includes rows 1 through 3 and columns 1 and 3;

the nodes are connected as though nodes from the second column were not

present. In Figure 5e, Layout #2 includes all rows and columns and

therefore all nodes. The connectivity is as shown. In Figure 5d, the two

layouts have been superimposed. The result is a configuration that



Rows O O O

(f)

O O O

O O O

—>

Columns (c)

a) Global set of nodes

‘ ‘-r1 

  <-r3 

—
>

t
i
l
-
>
4

.2

c) Layout #2

 4-r1

‘t? 

   <-r3

4 4
c1 03

b) Layout #1

 

d) Configuration

Figure 5. Example of superimposed layouts
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includes the bars and connectivity of both layouts. The configuration does

not include as many admissible topologies as one that has all nodes

interconnected, but, it does include all possible topologies in both layouts.

To see an advantage of using superposition, consider the problem

statement from Figure 2. By using Layout #1 from Figure 5b, the nodes

and connectivity would allow the 2-bar topology in Figure 6a . Likewise,

Layout #2 from Figure So would allow the 8-bar topology in Figure 6b.

Either case allows only one of the topologies. By using the configuration

in Figure 5d, it would be possible to have either of the topologies as seen

in Figure 6c. Hence the possibility of overlooking an acceptable topology

 
 

 

   

 

   
 

is reduced.

'27....“ 9f2:............

a) 2—bar b) 8-bar C) Both

topology topology topologies

possible possible possible

Figure 6. Superimposed layouts to include multiple topologies

Another advantage of superimposing layouts is the ability to find

structures with complicated geometries. As an example, consider the 'arch'

with six center supports shown in Figure 7a. It is not possible to generate

a structure of this type using a configuration that only has connectivity to
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3) Arch

     
  

   

 

b) Layouts

Figure 7. Superimposed layouts to create a specific geometry
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adjacent nodes. On the other hand, if the four layouts in Figure 7b were

superimposed, the required connectivity would be admissible.



CHAPTER III

EXAMPLES

The following examples are presented to show that the results

obtained by the OSHP are equivalent to trusses of optimum topology. A

design problem will be posed and the corresponding OSHP solution will be

shown. The same design problem will then be solved using the OSLP. In

doing so, configurations will be selected that include the topology of the

OSHP solution. Improvements in the solution will then be attempted to

show that the OSHP solution is of optimum topology. Characteristics of

the solutions from the two approaches will be discussed.

3. 1 Cantilever Truss

This problem is illustrated in Figure 8. The design domain has an

area given by LxH. The domain is fixed along the left side and a load, P,

acts at the center of the right side. This problem was solved using two

different aspect ratios (L/H).

Case 1: L=10 , H=24 (25% solid volume)

The structure obtained using the OSHP is shown in Figure 9a.

Except for a small region near the load and ground connections, the

equivalent (VonMises) stress is essentially uniform.

22
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Figure 8. Cantilevered design domain
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a) OSHP Solution b) OSLP Solution

Figure 9. Cantilever truss solutions at L/H=5/12
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In order to solve the same problem using the OSLP, the ll-bar

configuration in Figure 10a was chosen because it would allow a solution

similar to that obtained with the OSHP. As expected, the 2-bar truss

solution in Figure 9b was obtained. The minimum compliance for this

solution is c*= 3.45, where c=CE/P2. The bars are equally stressed (in

magnitude).

 

V

A

V

A
a) ll-bar

   

 

c) 29-bar

Figure 10. Configurations for cantilever truss

Note the difference in the height of the two solutions. The OSHP

solution does not span the entire height that was available in the design

domain. Fixing the boundary nodes at the coordinates of the OSHP

solution, the OSLP was used to solve the problem again and this time a 2-

bar truss with a compliance of c*= 3.33. This compliance is lower than

that of the previous OSLP result and, therefore, the shorter truss is a better

solution.

To look for possible improvements over the OSHP solution, the

configuration in Figure 10b was considered next. The OSLP solution with



25

this configuration is still the 2-bar truss even though many other topologies

were included in the configuration.

The structures obtained using both approaches are statically

determinate and, based on the results, the OSHP predicts the optimum

topology for this case. The OSHP also shows an advantage over the OSLP

in that it is able to select the proper location for the ground connection

along the boundary. Since boundary nodes are not included as design

variables in the OSLP, this solution could not have been obtained.

Case 2: L=8 , H=5 (37.5% solid volume)

At this new aspect ratio, the structure obtained by the OSHP is

shown in Figure 11a. The structure is statically determinate and, except

for a small region near the load and ground connections, the equivalent

(VonMises) stress is essentially uniform.

As with the previous case, to solve the problem with the OSLP, an

configuration was used that would allow results similar to those produced

by the OSHP. The 31-bar configuration in Figure 10b was selected for this

purpose; the OSLP solution is the 8-bar truss in Figure 11b. The truss is

statically determinate and the minimum compliance is c*= 21.31 . The

stress in the bars is nearly uniform.

In looking at the 31-bar configuration of Figure 10b it is noted that

the 2-bar truss was included as a possible solution, but the 8-bar structure

was preferred. To find out why this happened, the problem was solved

again with the ll-bar configuration of Figure 10a. The 2-bar truss that

resulted has a minimum compliance of c*= 26.32, which is more than that

of the 8-bar solution. It can be seen from this result that it would be very

easy to accept a solution as optimum when a better solution exists; if the 2-
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a) OSHP Solution

 

b) OSLP Solution c)Refined OSLP Solution

Figure 11. Cantilever truss solutions at L/H=8/5



27

bar truss result were found first, it may have been accepted as the optimum

structure.

In order to look for an improvement over the OSHP solution, the

idea of replicating a shape was considered. It is possible to view the 8-bar

truss as two repeated 2-bar trusses (with necessary bars for connection).

The 29-bar configuration in Figure 10c, creates the possibility of a third 2-

bar truss being repeated. The OSLP solution with this configuration is

seen in Figure 11c and, indeed, the replication .occured. The minimum

compliance for this structure is c*= 21.22 which is nearly identical to the

8-bar solution. The truss is statically determinate and the stress in the bars

is again nearly uniform. This solution resembles the Michell truss shown in

Figure 12. Configurations that allow more repeated 2-bar truss may lead to

solutions that become more and more like the Michell truss. It is not

known why the OSHP selected only the 8-bar structure as the optimum

answer.

 

 
a) Original truss b) Truss with similarity

highlighted

Figure 12. Michell truss
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3.2 Arch

This problem is illustrated in Figure 13. The domain has a fixed

support (uA=0) at A and either a fixed support (uB=0) or a rolling support

(uBy=0) at B. The applied loads are F1=71P and F2=72P, and 71 and 72

are l or O.

  

 

   

4 L=20 b

H=10

A C B

l l + 04$ “3
721’ 711’ 721’

Figure 13. Arch design domain

Case 1: 71:1, 72:0, uB=0 (25% solid volume)

The OSHP solution for this case is shown in Figure 14a and is seen

to be a statically determinate structure. In this solution, as with the 2-bar

truss solution, the resulting structure does not use the entire specified

domain; the final height of the arch is 9.45 .

The 66-bar configuration in Figure 15a was chosen to solve the same

problem using the OSLP because it can be used to represent a similar arch.

The OSLP solution is similar to that of the OSHP and is shown in Figure

14b. The truss is statically determinate and the bars are nearly equally

stressed.

The arch problem is examined more closely in the next example.
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a) OSHP Solution

b) OSLP Solution

Figure 14. Arch solutions: Case 1 (71:1, 72:0, uB=0)
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a) 66-bar b) 15-bar

 

 

 

 

     
c) 19-bar d) 23-b

 

   

  

  

   

e) 52-bar

Figure 15. Configurations for arch
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Case 2: 71:1, 72:0, “By=0 (25% solid volume)

In this case, the OSHP solution is very similar to the solution of

Case 1: two additional horizontal bars connecting the load and supports are

the only change. The solution is shown in Figure 16a. The structure is

statically determinate and the equivalent (VonMises) stress is nearly

uniform throughout the domain, except near the load and supports.

“7/
a) OSHP Solution b) OSLP Solution

  

Figure 16. Arch solutions: Case 2 (71:1, 72:0, uBy=0)

The 15-bar configuration in Figure 15b was chosen to solve the

problem using the OSLP because it can be used to represent a similar arch.

The solution, shown in Figure 16b, is again very similar to the OSHP

solution. The truss is statically determinate and the minimum compliance is

c*= 10.22. The bars are nearly equally stressed.

To investigate the possibility of an improvement over the OSHP

solution, the idea of including more bars as center supports was

considered. The configurations in Figures 15c and 15d would allow eight

and ten center supports, respectively. The OSL results for these

configurations are shown in Figures 17a and 17b. For the arch with eight

supports, the minimum compliance is c*= 10.09 . For the arch with ten

supports, the minimum compliance is c*= 10.18. The minimum compliance
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for each of the three arches (Six, eight and ten supports) is nearly identical

and all are statically determinate. However, some difference is seen in the

final height and angular orientation of the center supports. It could be

speculated that any number of center supports would yield an arch with the

same minimum compliance.

ll!
a) Eight supports b) Ten supports

 

  

Figure 17. OSLP arch solutions with extra center supports:

Case 2 (71:1, 72:0, “By=0)

Case 3: 71: 72:1, uBy=0 (25% solid volume)

For the domain with three loads, the OSHP solution is the arch

shown in Figure 18a. The structure is not statically determinate, but a

mechanism that becomes a rigid structure only for a specific choice of

nodal locations. The structure would not be practical for use since a small

change in the location of the bars would make the system mobile.

To solve the problem using the OSLP, the configuration in Figure

15c was chosen because it would have the elements and connectivity

available to produce a solution similar to that of the OSHP. Figure 16b

shows the truss that was obtained from the OSLP.
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a) OSHP Solution b) OSLP Solution

Figure 18. Arch solutions: Case 3 (71: 72:1, “By=0)

The OSLP solution has two more bars than the OSHP solution. The

two bars have a very small area and run diagonally from the center load

point to the upper part of the structure. The additional bars exist in the

OSLP solution to satisfy equilibrium of the system but are of vanishingly

small area. This is one situation where the OSLP solution gives some

insight that was not found in the OSHP solution. By adding the two small

bars to the OSHP solution, it would become stable.



CHAPTER IV

CONCLUSIONS

Based on the solutions obtained using the OSHP and the OSLP, it

can be speculated that the shapes obtained from the homogenization method

are equivalent to trusses of optimum topology. The OSHP solutions have

the characteristics of the optimum trusses in that they have uniform stress

and are statically determinate, except in the special case where a particular

geometry makes rigid a structure which would otherwise collapse. From

these characteristics and from the similarity of the material distribution

observed in the examples, it is also possible that the OSHP predicts the

optimum sizing of members.

The OSHP has many advantages over the OSLP, the most important

being that it does not require the experience and intuition to specify a-priori

admissible topologies. However, the OSHP does not take into account

multiple loading conditions or complex constraints, which are typical for

practical truss optimization. Improvements in the OSHP to include these

items will make it ideal for truss optimization.
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