


g2 ¥

INIMHIHIIII\HIIHH!Iﬂ\||\IHIIHHI\IHHINIIII\I\IIM

3 1293 00786 4345

LIBRARY
Michigan State
University

This is to certify that the

thesis entitled

Modal Analysis of Damped Systems
Using a Bond-Graph Approach

presented by

Thomas L. Bush

has been accepted towards fulfillment
of the requirements for

_Master's degree in _Mechanical Engineering

A e,

Major professor

pare Mg /], /96

©0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

T e lad

 e— e ——



PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATEDUE DATE DUE DATE DUE

MSU Is An Affirmative ActiorvEqual Opportunity Institution
cicirc\datedus.pmd-p.”

————



MODAL ANALYSIS OF DAMPED SYSTEMS
USING A BOND-GRAPH APPROACH

By

Thomas Lee Bush

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Mechanical Engineering

1989



b 00 1500

ABSTRACT

MODAL ANALYSIS OF DAMPED SYSTEMS

USING A BOND-GRAPH APPROACH

By

Thomas Lee Bush

Modal analysis is one method used in the analysis of
linear dynamic systems. This method cannot be applied to
damped systems unless the damping is of the proper modal
form. To overcome this problem designers sometimes approxi-
mate the actual damping with modally-distributed damping. A
study into the errors resulting from these approximations
was conducted using bond-graphs. A bond-graph model was de-
veloped that represents the system in modal coordinates and
included an element to account for the coupling effect
caused by nonmodally-distributed damping. Simulations were
conducted using this bond-graph to try to correlate power
action in the coupling element to resulting output error.
Computer software was written to allow computation of dif-
ferences from successive ENPORT simulations. The results of
these simulations did show some of the expected trends.

However the desired general correlation was not obtained.
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Chapter 1

Introduction

Modal analysis is commonly used in the design process
for predicting the response of linear dynamic systems with
multiple degrees of freedom. This analysis technique allows
the designer to decompose the coupled, second-order, linear
differential equations into a set of decoupled, second-
order, linear, equations in a new set of coordinates. These
uncoupled equations can then be solved independently, yield-
ing the modal responses which can then be transformed back
to the original coordinate frame to obtain the overall sys-
tem response.

The problem with this analysis technique is that for
many damped systems it is not possible to obtain a transfor-
mation that will decouple the original differential equa-
tions. If the standard decoupling technique is employed the
modal equations may remain coupled by their damping terms.
Such a system is said to be non-modally damped. It is gen-
erally accepted that the modal analysis technique can only
be truly applied to systems with Rayleigh damping, that is,
systems with a damping matrix proportional to the mass and
stiffness matrices. However, a more general condition which
is both necessary and sufficient for determining the possi-
bility for modal decomposition is presented by I. Fawzy (1).
In either case, accurate representation of a system response

using this method is limited to a modal form of damping.

1
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The alternative to the modal decomposition procedure is
to convert the problem into a state-space formulation. This
formulation converts n second-order differential equations
into 2*n first-order differential equations. Because this
approach requires the solution of twice as many equations it
is generally used for numerical computations but avoided
when generalized solutions are desired.

One approximate method which has commonly been used to
deal with systems which are non-modally damped is to elimi-
nate the damping from the original equations, perform the
transformation, then add damping to the various modes based
on experience. This method is generally employed success-
fully for systems with light damping. However, there still
exists a question as to how much error is incurred when
using this approach. Additionally, the question arises as
to when the damping is small enough so that this method can
be employed without incurring substantial errors.

This thesis presents a study into non-modally damped
systems using bond-graphs. A bond-graph model is developed
which allows a modal representation of the system augmented
by intermode coupling elements. This structure allows one
to study the coupling activity and to determinate how
strongly the modes are coupled for a variety of inputs.

As part of this research, computer subroutines were
developed for the ENPORT software (4) to assist in the
evaluation of the errors produced by the elimination of the

intermode coupling. This software allows the user to



compare the results of a series of simulation runs made with
varied parameters. From these comparisons predictions can
be made as to the sensitivity of the original model to a
given parameter.

The development of the modal bond-graph is described in
Chapter 2. Chapter 3 then presents and describes the soft-
ware developed for use in comparing simulation results from
modal and non-modal systems. The actual study is presented

in Chapter 4 and Chapter 5 gives a summary of the findings.



Chapter 2

The Modal Bond-Graph Model

The purpose of this section is to develop a modal bond-
graph model for use in studying the intermode coupling ef-
fects. Margolis and Young (2) present a method for convert-
ing large bond-graph models to a modal bond-graph represen-
tation. However, their method falls somewhat short in that
they take the conventional approach and require that the
actual damping be replaced by modally distributed damping in
the modal model. The model developed here will allow the
transformed equations to remain coupled and include this
effect in the new bond graph as a coupling element between
the modes. Through this element potentially valuable infor-
mation can be obtained as to the effect of this coupling.

In this form the model will be an exact representation of
the original system. Therefore simulation results are
valid.

Section 2.1 presents the development of a modal bond-
graph for a system in which the damping is modally distrib-
uted. No intermode coupling element is needed since the
modal equations completely decouple. This model is modified
in section 2.2 to allow for coupling elements when the damp-

ing is not modally distributed.
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2.1 Systems with Modally Distributed Damping

The best way to present the development of the damped
modal model is by an example. This example begins with the
2 Degree of Freedom (D.O.F.) spring-mass-damper system shown

in Figure 1.

Fl Xl o _F2 XE o
K% | A 2K | A 3K
2M | M
-
gila

T

Cl _Q“‘UJ c2 O O c3

Figure 1

The 2 D.O.F. System Example

The differential equation of motion can be obtained in
the X coordinates shown using a Lagrangian or similar ap-
proach. Equation 2.1 give the representation of the two
coupled, iinear, ordinary differential equations for this

system in terms of X1 and X2.

2M o] [X1 ci+c2 -c2| | x| [3x -2k| [x1| [Fa] (2.1)

o M|[x2| t|-c2 c2+c3 | |x2|t|-2k  sk| [x2|=]|F2

The superdot denotes a time derivative throughout this

study.



Equation (2.2) is the matrix form of eq. (2.1), namely,

MX+CX+KX=F (2.2)

To ensure that the system is modally damped the damping can

be selected such that
c=0 M+ AK, (2.3)
where ®{ and A are real constants.
Proceeding with the condition that the damping is mo-
dally distributed, the set of equations (2.1) can be de-
coupled using the transformation,

X=4dn (2.4)

where ¢ denotes the eigenvector matrix for the undamped

equation

MX+KX-=0 (2.5)

and rldenotes the modal coordinate vector.
(Note that the eigenvector matrix has not been normalized.)

Substituting equation (2.3) into (2.2) and premultiplying by
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g yields a new equation in modal coordinates, namely,

g'MgR+gcgN + g kpn=gF. (2.6)
Letting
M' =¢g'M# (2.7a)
c't=d'c# (2.7b)
and K' =g K¢ (2.7¢c)

equation (2.6) becomes
M+ c'N + K'h = ¢ F. (2.8)

Since the damping matrix in the original model was
assumed to be structured such that the damping was of the
modal form, this new equation will contain only diagonal
matrices (except for ¢'). That is, the original coupled
equations have been decomposed into uncoupled equations in

the new coordinate M.

Expressing the diagonal matrices M' , C' , and K' for

our example as

M' =|MaA {] (2.9a)



c' =Jca o:I (2.9b)

K' =[ka o:l (2.9¢c)

and the eigenvalue matrix as

g = |vi1 vi2 (2.10)
V21 V22

the bond-graph shown in Figure 2 can be constructed.

(MA) (MB)
(CA) IA I8 (CB)
RA [ [ RB
(KA) \ / (KB)
CA=——— |A IB —— CB
(VI1) (v22)
TFIA TF2B
(VI2) V21 )
r TF 1B TF2A r
7
SE | —t— Ol h 02 -Ffe o5
X2
Figure 2

Bond-Graph for a 2 D.O.F. System with Modal Damping.



This bond-graph consists of 2 damped oscillators which
are connected to the external forcing through a transformer
structure. These oscillators are the 2 modes for the system
and each 1 junction (1A, 1B) represents a common velocity
junction for each of the modes. The velocities are &1' and
ﬁz: respectively. The values for the I, C, and K modal
elements come from the transformed independent modal equa-
tions. In short, they are the diagonal terms from the M',
C', and K' matrices. Applying causality to the bond-graph,
as shown in Figure 3, allows further insights into the equa-

tion structure.

(MA) (MB)
(CA) IA I8 (CB
RA T
(KA) \ / (KB)
CA=——— |A IB —— CB
(VI1) (vz22)
TFIA TF2B
(vi12) V21) -
T_ TFIB TF2A r
SE | 1 Ol 02 Fe-gps
X | X2
Figure 3

The Modal Bond-Graph of Figure 2 with Causality.



10

The transformer junction structure performs the trans-
formation of the forcing terms into the modal space. Spe-
cific values for transformer (TF) elements are obtained from
the ¢ matrix. In addition to transforming the forcing terms
into the modal space, the transformer junction structure
also transforms the velocity terms from the modal coordi-
nates back to the original X coordinate base. This becomes
apparent by viewing the model as a 'black box' the inputs of
which are the forcing terms in the original coordinate
frame. The outputs, as required by causality conditions,
must be the resulting velocities, which are also in the
original coordinate frame.

For this particular example, modal analysis leads to
the following values for M', C', K', and ¢. (Recall that the
damping was assumed proportional to the mass and stiffness

matrices (eq. 2.3)).

M' = [2.25 M ﬂ (2.11a)
0 2.25M
cr = Ezs(un + £K) 0 K—J (2.11b)
0 18 OM + 994
K' = 2.2s x o (2.11c)
o 99 K

g = |1 1 (2.12)
.50 -4.0
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For these particular values the bond-graph of Figure 2
takes on specific form as shown in Figure 4. Note that ¢
has not been normalized in the standard fashion at this

point; the leading element of each column vector has been

set to unity.

(2. ?SM) (2.25M)
1B (I8«M+995K)

2. ZESU*NLFaK —[ '[
(2.25M) §\\> </// (99K )

CA = IB +—— CB
(1.0) (-4.0)
TF 1A TF2B

T TF 1B TFZA& T

] _M1.0) (.50)
sg| 4 ol 02;4{%?—552

Figure 4

Modally Damped Bond-Graph with Specific Values.

Using this specific bond-graph as an example, four

state-space equations can be written in the (modal) state

variables T, N, 775, Np:
Th= -(2.25(o( M + £K)/2.25 M) M -2.25K \y+ (F1+.5 F) (2.13a)

N, = (1/2.25 )7, (2.13b)
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s = -((180¢M+99 £K)/18 M) Ty - 99K Ng +(F1-4.0 F2) (2.13c)

Ng = (1/ 18 M)y (2.134)

where ’HR and 'ﬁg are modal momenta associated with IA and

IB, respectively. Additionally, 2 output equations can be

written across the junction structure, converting the state
variables in modal coordinates to X coordinate velocity

values. That is,
x1 = N, + N (2.14a)

X2 50N, - 4.0 Ng. (2.14b)

Taking the Laplace transform of equations (2.13) with

zero initial conditions and solving for 7 (S) yields

F1(S) + .50F2(S)
MMa(S) = —————mmmmmmmmeeeee e (2.15a)

S + (otM+ £K)/M + K/MS

F1(S) - 4.0F2(S)
L ) T —— (2.15b)

S + (180(M + 99 AK)/18M + 99K/18MS.

Setting the velocities in the output equations (2.14a)

and (2.14b) equal to the derivative of the output
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displacements and Laplacing these equations yields

SX1(S) (1/2.25M) T, (S) + (1/18M) My(S) (2.16a)

SX2(S) (.50/2.25M) Th(S) - (4.0/18M) Mg(S). (2.16b)
Substituting equations (2.15a) and (2.15b) into (2.16a) and
(2.16b) yields the Laplace solution for the displacements in

the original X coordinates (equations (2.17a) and (2.17b).

F1(S)+.50F2(S) F1(S)-4.0£2(S)
X1(S)= ==m——mmm——————— T (2.17a)
2.25(MS2+ (ot M+/£ K) S+K) 18 (MS2+ (180 M+99 A K) S+99K)
.50(F1(S)+.50F2(s) -4.0(F1(S)-4.0F2(S))
X2(S)= ===mm—emememmeeeee S (2.17b)

2.25(MS2+ (oM+ FK)S+K) 18 (MS2+ (18 0(M+99£ K) S+99K)
This solution for X(S) obtained from the state equations of
the modal model can be compared to the solution obtained
using the Laplace of equations (2.4) and (2.8).
x(s) = #p s (2.18)

M's2 I(s)+ c'sN(s)+ K'N(s) = F(s) (2.19)

solving the matrix equation (2.19) for R, (s) and M, (s)
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F1(S) + .50F2(S)
R (S)= ——=-mmmmmmmmmeeeee (2.20a)

S + (otM+ fK)/M + K/MS

F1(S) + .S50F2(S)
N (5)= ==mmmmmmmmmmm - (2.20b)

S + (180(M + 99 £ K)/18M + 99K/18MS
and substitute into equation (2.18) and solve for (9S)

F1(S)+.50F2(S) F1(S)-4.0F2(S)
X1 (S) = ——=—mmmmmmmeeeee + mmmm—eemmceemee- (2.21a)

2.25(MS2+ (tM+ fK)S+K) 18 (MS2+(180(M+99 £K)S+99K

.50(F1(S)+.50F2(S)) -4.0(F1(S)-4.0F2(S))
X5 (S) = =————m-mmmmmmeeee + mmmeememmmmmeee- (2.21b)

2.25 (MS2+ (otM+ fK) S+K) 18 (MS2+ (180¢tM+994 K) S+99K

As expected, the Laplace solution obtained from the
bond-graph model is identical to that obtained directly
from the transformed differential equations.

This analysis has demonstrated the modal model's
ability to replicate the original differential equations.
Insights are also gained into the transformation junction

structure's job in linking the original physical
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coordinates to the derived modal coordinates. That is, the
input forcing terms in the original coordinates are trans-
formed to modal coordinates and act on the individual modal
oscillators. The resulting modal response is then trans-
formed back to the original coordinate space through the
same structure, yielding the output response. This can most
easily be seen by studying the causality conditions shown in

Figure 3.
A remark on normalization.

Some form of normalization of the eigen matrix is com-
mon in modal analysis. The classic method is to set the
transformed mass matrix equal to the identity matrix; that

is,
T
M' = ¢d M@ =1 (2.22)
This results in a modal stiffness matrix of the form

K' = |W,2 0 (2.23)

0 w22 .

The W; are interpreted as the undamped natural frequen-
cies. However, for the purposes of this study a particular
normalization is not required since any form of the eigen

matrix will transfer the original mass, stiffness, and
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damping matrices to modal coordinates. However, it should
be noted that once the transformed modal mass, damping, and
stiffness matrices are obtained, further normalization (i.e.
dividing each equation through by its mass term) should be
undertaken with some care. Since these modal matrices are

obtained using equations of the form

M' = g¢g'M @ (2.24)

a squared normalization term appears in each of the modal
M', C', and K' matrices where only a linear term appears in
the matrix. Dividing the entire equations through by a
linear term will result in an incorrect modal bond-graph.
For this reason, if some normalization scheme is desired, it
should be performed on the eigenvector matrix, before the
bond-graph parameters are specified.

This section has outlined the development of a modal
bond-graph for a system with modally distributed damping.
Each mode was represented in modal coordinates with a simple
spring-mass-damper oscillator. These modal oscillators were
then coupled to the original coordinate space by a transfor-
mation junction structure. This modal bond graph structure
can be used to provide insights to the mode activity which
may not be available in a conventional bond-graph model.

Separating the various modes allows the designer to de-
termine the relative importance of a particular mode to the

overall response for a given input forcing combination. 1In
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some instances this may allow model simplifications if a
particular mode or range of modes is determined to be inac-
tive. This is especially useful if the system under study
is a subsystem of a larger model. However, this modeling
technique is still limited to systems with modally distrib-
uted damping. The next section will expand on this modal

bond-graph to include non-modal damping.

.2, Modifications for Non-modal Dampin

The last section presented a bond-graph model which was
based on the assumption that the damping was modally dis-
tributed. In general this will not be the case and the
eigenvector transformation will not decouple the equations
of motion. This section presents a modified version of the
previous model which includes an intermode coupling element
to allow for the coupling of the transformed equations. As
before, this model will be an exact representation of the
original system equations.

Return to the system shown in Figure 1 and assume that
the damping is non-modal. The differetial equations are of

the same form.

2M o] [x1 + |C1+C2 -=C2 X1|, 3K =2K X1 |- |F1 | (2.25)

0 M| [x2 -c2 c2+c3| |x2]| [-2k sk| |x2| |F2

Since the eigenvector matrix is based strictly on the
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undamped equations it also remains unchanged.

®
]

V1l V12 (2.26)
V21 V22

Proceeding as if the eigenvalue matrix could uncouple
the differential equations, as before, the following matrix
representation for the differential equations in the modal

variable N are obtained.
MR+ cN+ kN = 4'F (2.27)

M' and K' are the same diagonal matrices obtained previ-

ously,

-

M'=¢ " Mg = |Ma o (2.28a)
0 MB

K'=¢'" K¢ = |KA o0 (2.28b)
0 KB

but C' is no longer a diagonal matrix. It has the form

c'=¢g " cg = |fea on (2.29)
CN CB

Notice, however, that C' is a symmetric matrix and can
be represented with 3 parameters; CA, CB, and CN. The rea-

son that C' is symmetric stems from the transformation
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¢ ¢ d and the fact that the eigenvector matrix is composed
of orthogonal vectors. It can be shown that this transfor-
mation will always result in a symmetric matrix.

Generally this procedure would be considered of little
value since the transformed equations remain coupled by
their damping terms, especially if a generalized solution
equation is sought.

Since the bond-graph model will generally be solved
using numerical techniques, this intermode coupling is of
little consequence and the modal bond-graph of section 2.1
can therefore be modified to include the coupling effect
without disrupting the solution procedure.

Let the diagonal modal damping matrix be represented as
the sum of a diagonal matrix and a matrix containing the off

diagonal terms, namely,

ol a7

b [ 2] 4 |

Notice that with the exception of the off-diagonal
damping matrix, this is exactly the same as equation (2.8)

used in the development of the modal bond-graph from section
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2.1. Notice also that the effect of this off-diagonal damp-
ing matrix is simply to add forcing terms to each mode that
are proportional to the velocity in the other mode. That
is, a force is applied to mode A which is proportional to
the velocity in mode B (IiB), and vice-versa. In bond-graph
terms an element which reproduces a force proportional to a
velocity is an R element or a gyrator. Since in this par-
ticular case the forcing effect is cross-coupled, a special
form of the R element, called a 2-port R element, can be
incorporated. This element takes the form shown in Figure

5.

0O ClI
Ce O
el

el
F_?T”—“—"EQD ‘;—fag‘—ﬁ

Figure 5
The 2-Port R Element
This 2-port R element uses a matrix type of equation struc-

ture of the form

el 0 cl||f2 (2.32)
e2 |T |c2 ol|f1

Where fl and f2 are the input flows, and el and e2 are the
resulting efforts. (Note that this matrix may be inverted

depending on the causal demands of the system.) This
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element equation is of the exact form of the off-diagonal
damping term in equation 2.31.

Using this element, the bond-graph developed in section
2.1 can now be modified as shown in Figure 6 to include the

effects of non-modally distributed damping.

(MA) (MB)
(CA) IA IB (CB)
RA RB
(KA) \ (CN) / (KB)
CA<— — IA ——= RD -~~~ IB -——— CB
(VI1) (v22)
TF 1A TFeB
(Vi12) v21)
f TF 1B TF2A [
A AN
_FlL _ o] 02 -F2 o
SE | o1 o SE2
Figure 6

A Coupled-Mode Bond-Graph for Non-modally Damped Systems

Except for the addition of the 2-port R element, this
bond-graph is identical to the graph shown in Figure 2. It
contains the same 2 damped modal oscillators connected to
the external forcing through the same transformer structure.
Adding causality as shown in Figure 7 will further illus-

trate the interactions across the R element.



(MA) 22 MB)

(CA) IA
RA

(KA) \ (CN) / (KB)

CA=—— |IA \V— RD — IB l———?CB

i T

(VI1) (ve2)
TFITA TFZ2B
_ (VIi2) v21)
r \TFIB TF2A T
X1 X2
Figure 7

The Coupled-Mode Bond-Graph with Causality Added

From this bond-graph, the state space equations can be

written in the (modal) state variablesl A,n A'TrB' nB:
Ty=-(CA/MA) T, - KA N, - (CN/MB) 713 + V11F1 + V21F2(2.38a)

(1/MA)TT (2.38b)

Ra
Tz =-(CB/MB) Ty - KB Ng - (CN/MA) M, + V12F1 + V22F2(2.38c)

(1/MB)11 g (2.38d)

=
o
I

Differentiating equations (2.38b) and (2.38d) yields
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M = MA N, (2.39a)
Mg = MB ﬁB (2.39b)

Now substituting equations (2.39%a), (2.39b), (2.38b), and

(2.38d4) into equations (2.38a) and (2.38c) yields

Ma Ny + ca, + oNn N + kA Ny = viiF1 + v21F2 (2.40a)

V12F1 + V22F2 (2.40Db)

MBNg + cBNg + cN N + kB Iy

or in matrix form,

I:MA o:I R+ [CA o] fl+|:(’ CN:INE(A ci|n= g' [m] (2.41)
0 MB 0 CB cN o] |0 kB F2

Notice that these equations are exactly the transformed
equations (2.36) from which the model in Figure 7 was devel-
oped. Since the transformed equations are simply the origi-
nal equations taken into a different coordinate frame, this
shows that the modified modal model exactly represents the

original system equations.
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2.3. The Need for This Type of Model

At this point the question arises as to why go to the
trouble of putting the system into this coupled-mode bond-
graph form. It seems hardly worth the extra trouble since a
more conventional bond-graph for the system can easily be
developed and a computer solution based on that model easily
obtained. It would appear that this representation offers
little advantage. The answer lies in the potential for
model simplification. This modal structure allows a view
into the modal response of the system not generally avail-
able in other bond-graph structures. If, for the expected
type of input, a particular mode is found to be inactive, it
may be possible to eliminate that part of the model, thereby
reducing the model complexity and saving computer time.

This would be of particular interest if the model were part
of a large system on which repeated simulations were in-
tended. This situation frequently occurs in the design of
control systems.

One type of model reduction of particular interest is
the modal damping assumption. Earlier it was stated that
one way in which designers avoid the problems with non-modal
damping is to replace the damping in the original system
equations with modally distributed damping in the trans-
formed equations. If the damping is light this procedure is
assumed to introduce only minimal error. The questions here

are:



25

1. When can the damping be considered light?
2. How much error is introduced by assuming damping is

light?

Chapter 4 presents a study into these questions using
the newly developed modal bond-graph model. The objectives
of this study were to determine if any conclusions could be

drawn in regards to:

1. The error introduced by eliminating the coupling element
by looking at some measure of the force or power

transmitted through the 2-port R element.

2. If some indication of the strength of the coupling could
be obtained by comparing the coupling coefficient with

some grouping of the other system parameters.

If some "rules of thumb" could be established in this
area it would give some insights as to when a modeler could
safely make the modal damping assumption.

Before proceeding with this study it was necessary to
develop some way to quantify the difference between the re-
sponses obtained for various levels of modal coupling. At
the time of this study, bond-graph analysis packages such as
ENPORT did not allow numerical comparisons between consecu-
tive simulations. It was therefore, desirable to enhance
the ENPORT package to allow this type of comparison. Chap-

ter 3 presents the development of this feature. It should
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be pointed out that this is also a very useful feature for
general system modeling and design. It could be very help-
ful in determining the sensitivity of a system response to

changes in the design variables.



Chapter 3

Automated Error Analysis Using ENPORT.

3.1. e Need for Error Analysis.

Very often in the design modeling process it is desir-
able to evaluate the difference in the output response as
the model parameters are changed. This is especially impor-
tant when the goal is model reduction. For this case these
differences are the output errors resulting from the pro-
posed reduction. The most straightforward way for determin-
ing these response differences is to compare the results
from comparable simulations of the two models.

In the past the problem has been that ENPORT, a bond-
graph simulation software, did not facilitate comparisons of
separate simulations. Designers were forced to "overlay"
response curves from consecutive simulations in order to
visually perform these types of comparisons. The informa-
tion obtained from these comparisons is generally qualita-
tive in nature and lacks the numerical basis for making
accurate comparisons. Since a substantial portion of the
study presented in Chapter 4 consists of making these types
of comparisons, it was desirable to enhance ENPORT to allow
the numerical evaluation of output response comparisons

obtained from comparative simulation runs.

27
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3.2, Program Development

Before explaining the specifics regarding the new
analysis feature, a brief explanation is in order on how
ENPORT operates. ENPORT is a dynamic analysis package which
provides numerical solutions for dynamic systems which have
been represented in bond-graph/block-diagram form.

This study focuses on models represented in bond-graph
form. In developing the differential system equations from

a bond-graph, four types of variables are used: P, Q, E, F.

(1) P is the momentum variable associated with energy

storage element I.

(2) Q 1is the displacement variable associated with

energy storage element C.

(3) E 1is the effort (force) variable associated with

each bond.

(4) F 1is the flow (velocity) variable associated with

each bond.

Using these variables, ENPORT sorts the system equa-

tions and arrives at a formulation equivalent to

*

X = f(X,U,t) (3.1)

where X is the state vector,
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U is the input vector,

and t is the time (the independent variable)

A linearized form of this equation can be generated by
a numerical approximation at any given state X and time t.

The result is

X = A*X + B*U (3.2)

where A is generated by ( dfi/ dXj)

and B is generated by ( dfi/ duj)

For a linear system the A and B matrices should be independ-
ent of the X and t chosen.

Oonce ENPORT has obtained the equations in this form, it
is simply a matter of numerical integration to obtain solu-
tions for the state (energy) variables. These values are
then stored in an internal array for subsequent display. 1In
addition to these state variables, the efforts and flows
associated with each bond and the input values are also
saved. These can be used later to derive other quantities
of interest such as power and energy transferred through the
bond structure. With these solutions store in internal
memory, output plots of selected quantities can easily be
obtained, although some quantities, such as power or energy,
are derived and need to be computed prior to display.

These stored values can represent a substantial portion
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of memory. Considering a simple model might contain 10
storage elements, 30 bonds, and 3 or 4 inputs, saving 300
time points for each variable would result in a storage
array containing 22,200 real numbers. For this reason
ENPORT reuses the same internal memory for each new solu-
tion and this is the reason that numerical comparisons of
subsequent simulations could not be made.

The first step in incorporating the analysis feature
was to provide ENPORT with the capability of storing and
retrieving the result values. Since these result files may
be used over a period of several ENPORT runs, it was deter-
mined that they should be saved in disk files and not simply
in internal memory. This also avoids excessive demands on
the required system memory. In order to keep the result
file size to a minimum, the original system model and equa-
tions are not included. Besides the results themselves,
these files contain only a header including the original
model filename, the results filename, i.e. a 1 line descrip-
tion, and a list of the saved variables. It is assumed that
the original model has been reloaded into ENPORT prior to
reloading a saved results file, using the standard method.
This assumption is verified by comparing the model name with
the model name saved in the results file. Although this is
obviously not a failsafe check, it does provide some safe-
guard. Although not yet incorporated, a better check would
be to compare the results variable list with the model vari-

able list. Also in an effort to make the results files
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smaller, they are saved in an unformatted form.

Once the ability to save and retrieve the computed
results was developed, incorporating a difference analysis
was bequn. It was simply a matter or retrieving the results
values into a 3 dimensional array, with the third dimension
indicating a particular set of results. Difference values
can then be computed for any set of selected variables.
These values can be listed or plotted just like an original
set of solutions. From this information quantitative deci-
sions can be made regarding the errors associated with the
proposed changes.

Another procedure along the same lines as error analy-
sis is sensitivity analysis. To assist in this type of
analysis it would be useful to be able to plot some measure
of the change in the output variables as a function of the
variation in system parameters. The problem in incorporat-
ing this type of feature for arbitrarily selected result
variables is that it would potentially require huge amounts
of internal memory. Considering that each variation would
require a full set of results and that several variations
would need to be compared in order to draw accurate conclu-
sions for a particular parameter. Even for a simple model
this would require the storage of 300,000 real numbers.

In order to avoid using large amounts of internal mem-
ory to store loaded results files, the analysis package is
currently limited to a comparison of only 2 files at a time.

This serves the purpose of this study since only error
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values caused by changing the intermode coupling strength
are of interest. The effect as this parameter is varied
over a range of values can be studied by comparison of the
results two at a time. This is an area for potential future

improvement which will be discussed in a later section.

3.3. An Example of the Analysis Feature

As stated earlier, it is often desirable to obtain
quantitative comparisons of the output response for a system
as the model parameters are varied. ENPORT is now capable
of these types of comparisons. The following example is
provided as a demonstration of this feature.

Using the bond-graph for the non-modally damped system
developed in section 2.2 as an example, the effects of as-
suming modal damping on output response can be studied.

This is the actual application in this study for which the
software was developed. Figure 1 shows the standard 2 de-
gree of freedom spring-mass-damper system from section 2.2.
Using the methods described in that section the bond-graph
in Figure 2 can be obtained for a given set of parameter
values.

This model and its associated parameter values can be
input into ENPORT in the usual way. (An ENPORT file listing
is included in the appendix.) A simulation can then be run
to yield the system response to a given set of inputs and

initial conditions. Selecting the velocities of the masses
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as the variables of interest, the plot shown in Figure 8 can
be obtained of these velocities as a function of time using
the standard ENPORT feature. In the modal bond-graph of
Figure 2 the velocities of the masses are the flows on bonds
1 and 2: f.1 and f.2. Since no assumptions have been in-
troduced into the model, these resulting velocities are the

true results and therefore are used as the baseline for

future comparisons.
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The Reference Velocity

At this point the results data should be filed using

the new analysis feature.
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Post-processor options

G: Graph (High resolution)
P: Plot (low resolution)
T: Table

S: System graph display

L: List processed data

D: Operations on run Data

R: Return to the main menu

Figure 9

The Modified Post-processor Menu

The new option, D: Operation on Run_Data, can be called
from the modified ENPORT post-processor menu (Figure 9) to

obtain the analysis options menu as shown in Figure 10.

Run_data processing options

W: Write run_data to file

L: Load run_data from file
S: Status of run_data
C: Clear the run_data

A: Analyze the run_data

R: Return to the post-processor

Figure 10

The Run_Data Menu in ENPORT
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From this options menu, W: Write Run_Data to File, can
be selected. This choice will call a subroutine that writes
all the computed result values to an unformatted binary file
under a user selected name. Call it "ref.dat" for this ex-
ample. Additionally, the user is allowed a one line file
description which is included in the file. This is helpful
for future identification of the correct file.

Now that the results from the baseline simulation have
been saved, a second simulation can be run with the assump-
tion of a modally damped system. This change can be imple-
mented by setting the parameter of the coupling element, RN,

to zero. The output response from this run is shown in

Figure 12.
Bt
Tak L
LEL - 4
5 s |'-' 4
. Il
"" 5 i
3 i lm |" ". |'
T
! e ol
) X
L.6a ¢ "
; ST st
'l‘ o e
S Ve T
v - &
':'I (G - - ~-- .
AUy #3440 g, L. .64 2.0
TIKE Pl6E 1

LEGERD) FoS5l — FL53 -
ARTED KIGAL DeRPIMG
Figure 11

The Response with Assumed Modal Damping.
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One important point to note is that simulations which
are to be analyzed together must currently be run under the
same time conditions. That is, the initial and final times,
as well as the number of time stages, must match in order to
obtain accurate response comparisons. Also, simulations
which are to be compared must originate from the same topo-
logical model. Only numerical values of the model parame-
ters may be changed. For example it would not be acceptable
to invoke modal damping by eliminating the coupling element.

Now that this second simulation has been run, its re-
sults can be written to a separate file. Call it
"model.dat", using the same method as for the reference
case.

With the simulation results for the two cases now
stored in the respective files, comparisons can be made
between these sets of results for selected variables. These
comparisons are obtained by again selecting option D: op-
erations on run_Data from the ENPORT post processor menu
which brings up the Run_Data menu as before. Selecting L:
Load a set of run_data will allow the first file to be
loaded into the storage buffer. This first file is consid-
ered to contain the reference data set or the set containing
the values to be subtracted from the second file loaded. 1In
the case of this example, this would be the data set saved
under "ref.dat", from the first simulation. After retriev-
ing this reference data set, the second data file can be

loaded using the same method as for the reference set.



37

This data set should contain the results to be compared to
the reference case. For example the file "modal.dat" would
be loaded.

Now, with the 2 data sets loaded and stored in the
internal memory buffer, the analysis can proceed by select
option A: Analyze run_data. This option presents the Analy-

sis Options Menu as shown below.

Run_data analysis options

G: Graph difference values
T: Table of select difference values

R: Return

Figure 12

Run_Data Analysis Menu in ENPORT

Currently, the options allow the user to obtain tabular
listings and hi-res graphic plots of actual difference val-
ues for user selected variables. In the future the option
could easily be modified to display normalized values such
as actual average, RMS average or absolute average. Select-
ing option 'G: Graph', from this menu produces a hi-res
plot of the difference in value of the user selected vari-
ables. The program automatically computes difference values
as the plots are constructed so there are no other steps

involved from the user perspective. The graph routine used
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to obtain difference plots is virtually identical to the

standard ENPORT graph routine and all the standard features

have been retained. Figure 13 is a plot of the displacement

difference values versus time for the two files loaded

above.
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Change in Velocity for Modal Damping Assumption.

Plots could also be obtained for the difference in any
other system variables. The tabular data can also be dis-
played by selecting 'T: Table'. For instance, if the in-
formation regarding the change in net energy into the modal
dampers was desired at each time step, option, T: Table,
could be selected. Choosing the display variable as the
energy (T) on the bonds connected to the modal damping ele-

ments, a tabular listing of the change in net energy into

the damper elements will be produced, Figure 14. Since
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energy is an integral quantity of the state variables, the
system will ask for the initial energy value. This value is
taken to be the offset in the initial energy for the two

cases and would generally be zero.

DIFFERENCE VALUES
Time T.DA T.DB T.NA

0.000E+00 @.00B0E+00 B.0rlTPIE+00 B.0000E+ID
S.00PE+@® -7.1824E-03 -7.1980E-03 7.5281E-03
1.900E+P1 —7.9916E-03 -7.48445E-03 7.5809E-83
1.S@PE+P1 -7.7132E-@3 —-7.5135E-93 7.5389E-93

Figure 14

Tabular Listing of the Change in Damper Energy Dissipated

After completing the desired plots and tables from the
loaded data sets options R: Return can be selected which
returns to the run_data processing options menu. The other

options which may be selected from this menu include:

C: Clear the run_data
S: Status of the run_data

D: Debug the run_data

Option C clears the internal memory to allow room for new
sets of data to be loaded. Option S displays the names of
the Data sets which are currently loaded. Option D allows
the user to display a list containing the variable vector
and the numerical values of each variable at each time step

for a loaded results file, generally used as an aid to de-

bugging the program.
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3 Pro lementati a uture Enhanceme

Suggestions.

The Fortran 77 subroutines which perform this new

analysis feature fall into one of 3 categories:

1) New subroutines
2) Modified ENPORT subroutines

3) Unmodified standard ENPORT subroutines

The new subroutines and the modified ENPORT subroutines have
been collected under 2 files: DRUNI and DRULOC. The file
DRULOC contains the subroutines which must be modified for a
particular operating system. These are the subroutines that
perform file manipulations. The rest of the subroutines are
collected under the file heading DRUNI. Appendix A contains
a listing of each of these files for reference purposes.

The added capability of storing and retrieving ENPORT
results data opens the door to a multitude of features that
would further enhance ENPORT's usefulness in design. Some
of these have already been mentioned such as the computation
of normalized measures of the difference values (RMS, abso-
lute average, actual average, etc.). Additionally, the
program could be modified to allow comparisons of results
data that were not computed with the same time steps. This
could be accomplished by simple interpolation and will be a
necessary change if results are calculated with a variable

timestep integrator.
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A somewhat more complicated enhancement would be the
ability to compare specific results from several simulations
simultaneously. Such a feature might be used to plot some
measure of error (Such as RMS) versus percent change in a
system variable, in essence showing the sensitivity of the
system to changes in that variable. Earlier it was stated,
however, that this type of analysis would currently require
a large amount of system memory. This is because under the
current design all system variables are saved and retrieved
from the results files, which, to compare several result
data sets, would require a prohibitive amount of memory.

The solution to this problem would be to allow the user to
reload only those system variables required to produce the
desired plots. This would require much less system memory
which would make it feasible to produce sensitivity plots.

The discussion above points to another potential oppor-
tunity for improving the program which would reduce the
result data file size. This opportunity arises because the
current design saves values for all the system variables.
For a given model, many of these variables can be derived
from a set of other system variables through algebraic equa-
tions. If the system could recognize these independent
variables, the size of the result data sets could be reduced
by including only these variables and the necessary alge-
braic equations. From these independent variables the post-
processor could compute any requested variable value using

the algebraic equations. This data handling scheme would
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result in a minimal data set file size but would require a

substantial change in the design of the post-processor.



Chapter 4

Approximations to Non-modal Systems

The model developed in section 2.2 was shown to be an
exact "coupled-mode" bond-graph representation for a non-
modally damped system. Solving this bond-graph would yield
the exact response for the system under study. For larger,
multiple degree of freedom systems this solution can be very
time consuming. This is especially true when the model will
be solved repeatedly, under a variety of input or initial
conditions. It is therefore desirable to reduce the model
complexity wherever possible. This can most easily be ac-
complished by eliminating elements and bonds which can be
shown to have minimal effect on the output response. This
procedure is routinely used in the modal analysis of con-
tinuous beam structures when only the first few modes are
considered in the analysis. It is this same reasoning that
allows designers to model lightly damped non-modal systems
with modal damping assumptions. In the case of the non-
modal bond-graph developed in Chapter 2 this assumption
eliminates the non-modal 2-port R damping element resulting

in a simplified representation.

4.1 The Objectives of The Study

The problem with the modal damping assumption is that

it is usually unclear as to when the assumption can

43
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accurately be applied. Using the modal bond-graph from
section 2.2 to provide a unique perspective, this study
attempts to quantify this decisions. In essence some '"rule
of thumb" was sought that would indicate the amount of error
which would be incurred if the non-modal damping element
were eliminated, reducing the system to the modally damped
case.

To provide this rule of thumb would require some type
of indicator which could be correlated to the error incurred
in the modal damping assumption. Mathematical analysis did
not reveal the desired indicator. An in-depth study was
therefore undertaken comparing simulation results as system
parameters were varied. It was believed that some correla-
tion could be found by comparing the output response error
between the non-modal model and the corresponding reduced
modal model to easilty measure system quantities. Since
there was no way to accurately compare results from succes-
sive simulations the first task of this study was the ENPORT
enhancement detailed in Chapter 3. Once this new tool was

developed the experimental investigation could proceed.

4.2. The Study Implementation

Figure 15 shows the modal bond-graph of the non-modally
demped system developed in section 2.2. The structure of
this bond-graph can basically be broken down into 2 inde-

pendent modal oscillators that are coupled by a 2-port
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damping element.
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A Coupled-Mode Bond-Graph for a Non-modally Damped System.

As explained in section 2.2 this coupling element ex-
ists to provide for the damped coupling of the transformed
modal equations (see eq. 2.36). The parameter value for
this element is determined by the off diagonal terms in the
transformed damping matrix. Since the transformed damping
matrix is symmetric, a single parameter value is associated
with this 2-port R element. Because of the symmetry, this
element provides a unique power interaction between the
modes which can be illustrated a typical element as shown in

Figure 16.
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A Typical 2-port R Coupling Element

Assigning the power direction and causality the same as
used in the non-modal bond-graph of Figure 15 implies that
the inputs are the flows fa and fb. The algebraic nature of
the R element then allows the direct computation of the

output efforts ea and eb as follows.

ea (cn) * fb (4.1a)

eb

(cn) * fa (4.1b)

The power on bonds a and b can then be computed.

Power a ea * fa (4.2a)

Power b eb * fb (4.2Db)

substituting equations 4.1a and 4.1b into 4.2a and 4.2b

yields

I

Power a (CN) * fb * fa (4.3a)

Power b (CN) * fa * fb (4.3b)
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or

Power a = Power b (4.4)

This result is interesting since it shows that the
nature of this coupling element is to act alternately as a
power source or a power sink to both elements simultane-
ously, depending on the relative signs of the input flows.
Additionally, an equal amount of power is provided to, or
dissipated from, both modes.

Since the addition of this coupling element is the only
factor that differentiates a non-modally damped system from
a system with modal damping, it would seem that the strength
of its interaction could be used to determine the potential
for model reduction. One measure of this interaction typi-
cal in bond-graph studies is the power transferred. Using
the power interaction of the coupling element as a basic
measurement to quantify the potential for a modal assumption
was therefore the first path explored as part of this study.

To implement this portion of the investigation a simple

2 degree of freedom was chosen as shown in Figure 17.
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Using the methods developed in Chapter 2 the modal
mass, stiffness and damping parameter matrices were com-

puted, as well as the modal transformation matrix.

_ -
M' =| 10.90 0

0 1.10 (4.5a)
K' =| 6.00 0

0 6.00 (4.5b)

c' = [€1+1.50c2+4.95c3 cl-1.50c2-.50c3
cl-1.50c2-.50c3 cl+1.50c2+.051c3 (4.5cC)

and
g = 1.00 1.00
2.225 =-,225 (4.6)

From these parameter matrices a coupled-mode bond-graph can
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be obtained as in Figure 18.
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A Coupled-Mode Bond-Graph For the System in Figure 17

It should be noted at this point that although a non-
modal coupling element has been included, this system may or
may not be modally damped. This does not present any prob-
lems since if the system were modally damped, the parameter
of the non-modal coupling element would simply be zero.

The initial focus of this investigation was to corre-
late the modal damping assumption error to some measure of
the power activity of the 2-port R element. It was believed

that larger assumption errors would result from increased
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intermode coupling activity, which could be measured as
larger power interaction. If a generalized correlation
between power and error could be found then a decision could
be made as to the potential for model reduction based on
power measurements. The idea was to run a simulation with
the full system under the expected forcing conditions and
measure the power interactions. From these power measure-
ments quantitative decisions could be made about the poten-
tial for model reduction.

An experiment to test this idea and to reveal the cor-
relation between power and error was then conducted. Using
the above system, groups of simulations were performed while
varying the damping parameter values. During each group of
simulations, the values of the modal damping parameters, Ra
and Rb, remained fixed. Several simulations were then run
while the value of the intermode coupling element (Rn) was
varied. For each simulation a measure of power transferred
through the intermode-coupling bonds was recorded. Addi-
tionally, the percentage error that would occur if the sys-
tem were assumed to be modally damped was recorded. Plots
of output error vs power were then created for each group of
simulations.

For the purpose of this experiment, error was defined
as the difference in output velocities, f.1 and f.2, between
a non-modally damped system and the same system under a
modal damping assumption. Recall that these are the actual

velocities of the masses in the original system. The RMS
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average over some time period was selected as a means to
quantify the amount of error. To avoid scaling problems
these raw quantities were normalized by dividing the RMS
error by an RMS average of the true velocity values. This
normalization provided a measure of the percentage error
associated with making a modal damping assumption.

The second piece of information necessary to obtain the
desired plots was a quantitative measure of the power activ-
ity of the intermode coupling element. The RMS average was
selected for this measurement also. This measurement is
also affected by scaling and must be normalized. The normal
procedure in ENPORT is to normalize these power measurements
by the maximum power average of the elements selected,
yielding power as a percentage of maximum. Since the effect
of the non-modal element is to exchange power with each
modal oscillator, it would seem that normalizing this power
by some measure of the power activity within a mode,namely
the maximum power bond, would be appropriate.

This method was used in early portions of the study.

It was noticed during the course of the early investigation
that the element which exchanged the maximum amount of power
would vary. It was felt that this inconsistency might
hamper the process of developing the desired correlation.

It was believed that a better scheme would be to compare the
power activity in the damping bonds. Because the origin of
intermode coupling is in the original system damping, this

normalization would seem to provide a better insight into
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the relative strength of the intermode coupling element. It
is this relative strength which is the core of the issue
since the modal damping assumption simply eliminates the
intermode element and therefore its effect. If the effect
is relatively weak then the elimination of the effect will
not cause much variation. For this reason only the average
power in the R element bonds was computed. The highest
average was used as a baseline to normalize the other damp-
ing bonds. This proved to be fairly consistent over the
course of the experiment since the first mode always seemed
to contain the highest power level.

With these insights in mind, the experiment continued
in an attempt to find a generic correlation between the
normalized intermode power activity and the percentage of
error resulting from a proposed modal assumption. Many
groups of simulations were conducted for varied modal damp-
ing ratios. To avoid influencing the results with the input
frequency, unit step forces were simultaneously applied at
both inputs. This type of input forced a transient analysis
as opposed to a steady state analysis which would be pos-
sible under a periodic form of input. Still it was felt
that the correlations would be more easily obtained if
forcing frequency was not a factor. The transient analysis
did present a problem however, which was over what time

period to compute the averages. Three times the longer
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modal time constant was selected for this study. Potential
problems resulting from this decision will be discussed in a

later section.

.3. e Results.

Each group of simulations consisted of holding all
parameters fixed except the intermode coupling. This pa-
rameter was then varied over an allowable range as simula-
tions were run for each setting. The allowable range for
this parameter was determined using the transformed damping
matrix. Since real physical systems were of interest in
this study, the original damping parameters were selected to
be positive. This restricted the range over which the off-
diagonal term in equation 4.3c for a give set of diagonal
terms. Recall that the off-diagonal term is the intermode
coupling element parameter, while the diagonal terms are the
parameters for the modal damping elements. For each of
these groups of simulations, curves representing the average
damping power activity versus percentage error were pro-
duced. A typical plot is shown in Figure 19. (Appendix B
contains an ENPORT listing of the mode with the parameter

values)
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Figure 19

A Typical Power Versus Error Plot

The curves represented in this plot are the power dis-
sipated in the coupling element (RD) for various levels of
modal damping. The RMS values have been normalized by the
average power in the first mode damping element (Ra). The
power scale is therefore represented as percentage of power.
Note that each data point is for a specific value of cou-
pling parameter.

Each curve developed during the experiment exhibited
the same expected trend of increased error as the modal

coupling power activity increased. Notice however that each
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power Vs error curve is represented by two lines. This
split occurs as the intermode element parameter is varied
from its maximum negative value, through zero, and to its
maximum positive value. This causes the split in the error
curve since error increases as the magnitude of the inter-
mode parameter is increased. At first it may seem strange
that positive damping parameters in the original system
could produce a negative damping parameter in the trans-
formed equations. However, the analysis shows this to be
perfectly acceptable. What does seem strange is that the
power Vs error curves are not the same for a negative cou-
pling element parameter as for a positive parameter. 1In
general the effect of the sign of intermode parameter on
system behavior is not understood.

Although individually each group of simulations produce
the expected results, the overall trends were not apparent.
The slopes of the power vs error curves varied between
groups of simulations as the modal damping parameters were
changed. One set of simulations would show large errors
corresponding to very small power percentages, while the
next set would be the opposite. In the final analysis no
trends could be found which could be used to provide the
desired rule of thumb for making a modal damping assumption.

Some progress was made in observing trends in symmetric
systems. These are systems in which the damping ratios are
the same for both modes. The general trend observed in

these systems was that as the damping ratio was increased
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the sensitivity of output error to power percentage was also
increased. That is, that as the amount of modal damping is
increased, a relatively smaller amount of power activity in
the coupling element causes a larger output error. This
seems to go along with the common wisdom that for small
damping the modal damping assumption can be made with little
consequential error. This trend was only an observation and

was not thoroughly verified.

4.4. Problems

Although the objectives of this study were not
achieved, a great deal of information was obtained. Among
this information are some of the potential reasons for not
finding the desired correlations. It is possible that the
desired correlation does not exist. However this author
still believes that such a correlation can be found.

One of the important factors effecting this study was
the selection of step forcing inputs. As stated earlier,
this decision forced a transient form of analysis. Due to
the nature of the transient response, simulation time has
large effect on the averaged values used in this study.
This point can be illustrated using the response curves

shown in Figure 20.
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Modal Velocity Response Curves.

The curves shown in Figure 20 are the modal velocities
plotted as a function of time. Notice that they are each
typical underdamped responses of differing time constants.
Using the methods from the experiment, these curves can be
averaged over a time period of three times the longer time
constant. If there is significant difference in time con-
stants between the longer and the shorter, significant er-
rors are induced in the average of the short time constant
curve. These errors occur because for a substantial portion
of the average period no activity is present. This tends to
artificially reduce the averages, leading to power percent-

ages that vary depending on the relationship between the
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modal time constants. It is believed that this is part of
the reason that some progress was made in the symmetric
systems, since in these systems both modes posses the same
time constant.

Another factor that strongly effected the analysis was
the value of the transformer parameters. These parameters
attenuate the inputs to and outputs from each of the modes,
scaling the effect of each mode in the output response.
Since the transformed output responses were used in the
error percentage computations, large error in one mode may
not result in a large error in the analysis, the second mode
had far less influence in the output than the first. There-
fore, large errors in the second mode produced very little
change in the output response. Somehow, in order to find
the desired general rule of thumb, this effect must be ac-

counted for in the analysis.

4.5 Suggestions for Future Research.

During the course of this research a great deal of time
was devoted to the development and initial analysis of the
model and to the development of tools and techniques neces-
sary to perform the analysis. Although the resulting re-
search did not produce the desired results, the information
gathered and documented in this report provides a good
starting point for a second phase of research. With this

information available at the start, it is believed that
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further research into the behavior of the modal model will
reveal the desired correlations.

One area of interest is to consider the effect of the
two port coupling element as a modulated effort source since
its effect is to provide an additional forcing input to each
mode. Comparing the force level in the coupling elements to
the other force inputs to the mode could provide some useful
insights.

At this point it is also believed that the step inputs
to the system should be replaced by periodic forcing. This
will provide a periodic steady state response and avoid the
problems associated with averaging the transients as de-
scribed above. Elimination of this problem should make the
trends more apparent although forcing frequency effects will
now need to be accounted for.

Based on the results that were obtained in this experi-
ment it is believed that the proposed trends are present and
that some measure of coupling activity can be correlated to
the amount of error associated with a modal assumption. It
is envisioned that a second phase of research that combines
the information presented in this report with some further

creative insights will produce these correlations.



Chapter 5

Summary

This research began as an investigation into linear
non-modally damped systems using bond-graphs. It was hoped
that a bond-graph approach might lead to new insights into
the effects of damped coupling in the transformed equations.
The ultimate goal was to develop some guidelines indicating
the amount of output error potentially incurred by making a
modal damping assumption on a given system. When possible,
this assumption allows a simplified analysis, as well as
reduces the model complexity.

The first step in the process was to develop a modal
model that accurately represents non-modally damped systems.
Using a set of coupled transformed equations, a standard
modal bond-graph was modified to include the coupling ef-
fect. It was found that a standard 2-port R element, con-
nected between the modes would accurately represent the
coupling effect. Although this element is commonly governed
by two parameters, only one was necessary in this case due
to symmetry of the transformed damping matrix. This fact
lead to the interesting property that the element acts al-
ternately as a power source or sink to both modes simultane-
ously, providing or dissipating equal amounts of power to

both modes.

60
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After developing and verifying the model the next step
was to begin to use the model to study the effect of inter-
mode coupling strength on output response. This study re-
quired the comparison of output responses of a series of
simulations. The problem here was that ENPORT software did
not facilitate these types of direct comparisons. Because
these types of comparisons are often desired when using
ENPORT in the design process, a decision was made to enhance
the package by developing software that would include this
feature.

With all the tools in place the study proceeded in an
attempt to find a correlation between intermode coupling ac-
tivity and output response error. Net power activity was
used as the basis to quantify the amount of coupling effect.
Output error was defined as the difference between the out-
put velocities with intermode coupling and the same veloci-
ties with coupling set to zero, as if assuming modal damp-
ing. RMS average was used to quantify both effects. To
avoid a reflection of forcing frequency in the modal re-
sponse, a step input was used in the study. This resulted
in a transient form for the corresponding responses. Three
times the longest time constant was selected as the standard
time base for computing the RMS averages.

Groups of simulations were run for varied damping para-
meters. In each group, the value of the intermode coupling
parameter was varied. Plots of net average power versus

output response error were constructed for each group of
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simulations. To include the effect of scaling between
groups or simulations, the power average was normalized by
the highest average power transferred in the modal damping
elements. The average velocity errors were normalized by
there respective average velocities. These normalizations
provided measures that were interpreted as percent power and
percent error and it was from these values that plots were
constructed.

As predicted each plot showed the expected trend of in-
creasqﬁ error percentage a coupling power percentage in-
creased. The problem came in attempting to draw any corre-
lations from one group to the next. The slope of each plot
seemed to vary depending on the overall amount of damping.
That is to say that for one plot 10% power would correspond
to 3% error while in the next plot 10% power would corre-
spond to 15% error. Because of this plot to plot variation,
no universal correlations could be found. However, it was
observed that for smaller damping higher power percentages
seemed to correspond to smaller errors.

although the desired 'rule of thumb' for assuming modal
damping was not found, much valuable information was gained.
Tools and techniques were developed that might be valuable
to future research in this area or possibly some other re-
lated areas. Additionally, one avenue was explored and the
possible road blocks pointed out which provide insights and
direction to future research in this area. I hope some

future research will reveal the desired correlations.
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This information includes tools and techniques that can
be used as a starting point for a second phase of investiga-

tion that might reveal the desired correlations.
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APPENDIX A

ENPORT Enhancement Code Listing

CFILE: DRUNI| -—-—---m——mmmmm DRUNI]l —=-=cc—cmcmmm e cc e cc e m e m e -
CFILE: DRUNI)] —-=--—==——=== —-==== DRUNI]] ==-=eec—ee—-- it ettt ettt
C~-=- Purpose: Subroutines in this file support storing and retreving
C of simulation results data and the calculation and

C display of difference values between sets of retrieved
g data.

g--- Description: A main module called from the post processor.

C-== Contents:

C RUNBLAK block data unit for (nitializing common

C DATRUN controls module flow with menu

[ DATPUT put the run_data in file

[of DATCET et the run_data from file (dummy)

C DBCRUN isplaz retrieved data for debu?ging

c ANLDVR presents menu for selecting analysis and display routines
C DIFPLT driver for hi-res graphics

C DFCURV draws actual hi-res curves

C DIFTBL driver for tabular data displaz

C DIFDEL acts ditplnz increments for table printing

C DIFLST oes the actual tadle printin

C DIFVRW aets the display variagle list from user

c DIFFIL ills the derived variables if necessary

C INTDIF integrates display variadbles if necessary

C DFRSLT fcn to evaluate the difference values

C DFTLMT sets the display time limit parameters

g DFYLMT finds the min/max value for each display vbl

C

C-== Index:

C ANLDVR

c DATCET

C DATPUT

C DATRUN

C DBCGRUN 3

C DFCURV .

C DFRSLTY (fcn) )

C DFTLMTY

C DFYLMT

C DIFDEL

C DIFFIL

C DIFLST

C DIFPLT

C DIFTBL

C DIFVRW

C INTDIF

C RUNBLK

C

C

g--- Programmer: Tom Bush March 135, 1989

g--- Last revision: May 2. 1989 TLB

CEOFH: DRUNI] ~=c--meceeccecceccce—- Ll Ll e L L et —————
CO>>>>>

¢ .

gRUNBLK 2I33IDI33DIDD2DI5OXO3D55DD22D55DD5>3DDD>> Last Change: 12/21/88 RR
¢ BLOCK DATA RUNBLK

g--- PURPOSE: Initialize common vbls in DATZBK. CBK

INCLUDE' “ENPORT>ROSENBERGOSHIP72>SIZEBK. CBK
INCLUDE °‘ENPORT>ROSENBERGCOSHIP72>SOLNBK. CBK*
INCLUDE °‘RDATBK. CBK*

END
C>>>>>
¢
gDATRUN 2I3233333355D5D355513D5535335535555151515>>>>> Last Change: 01/09/89 TB
¢ SUBROUTINE DATRUN
g--- PURPOSE: Presents main menu for simulation results data handling.
g--- DESCRIPTION: Main menu called from post processor.

INCLUDE °‘ENPORT>ROSENBERGISHIP72>S1ZEBK. CBK*
INCLUDE °‘ENPORT>ROSENBERGDSHIP72>SOLNBK. CBK *
INCLUDE °‘RDATBK. CBK°*
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CFILE: DRUNI1 ======m—mm—mme DRUNI] === == mmmmm e oo o e e

INCLUDE ‘ENPORT>ROSENBERGCOSHIP72>UTILBK. CBK*

Cc
INTECER !
LOCICAL FULL., OKAY
c CHARACTER TOKEN®#1, STRING#80

EXTERNAL MENSET. BLNKLN. WRTSTR., PROMPT, CETANS. COON. INVOPT
EXTERNAL DATPUT. DATGET. DBCRUN. ANLDVR

C
CooaDATRUNG 0000000000 0000000R0R000GR000NNGRRERstoNsNeEcattatacenecsaccsce

CALL MENSET(. TRUE.)
FULL = MMFULL
NDSET= O

C—==— Present the run_data menu

10 CONT INVE
IF (FULL) THEN
CAL NK

Run_data processing options:;

’

CALL WRTSTR(’ W: Write run_data to file’)
CALL WRTSTR(’ L: Load run_data from file’)
CALL WRTSTR(‘’ S: Status oF run_data’)
CALL WRTSTR(’ C. Clear the run_data’)
CALL WRTSTR(’ D: Debug print oF the data’)
C WRTSTR(’ A: Analyze the run_data’)
CALL WRTSTR(’ R: Return to the main menu )
CALL WRTSTR(’ === eeecc—ccccccc e e e e
STRING=’ Enter option (R): *

ELSE

CALL BULNKLN
CALL BLNKLN
CALL WRTSTR(' Run_data proccssxng optxons‘)
CALL WRTSTR(’ == -ecece—r—mccccc e cc e
l('SI§§NC- ‘ Write, Load. Status. Clear. chug. Analyze, Return?
v N
ENDIF

C-== NOW READ THE COMMAND TOKEN
CALL PROMPT(STRING)
TOKEN=‘®"’

CALL CETANS(TOKEN)

Cc
C—== NOW INTERPRET THE TOKEN
IF (TOKEN. EQ. ‘#°) THEN

IF _(TOKEN. EQ. ‘W°) THEN
CALL DATPUT(QKAY)
COON

CALL
ELSEIF (TOKEN. EQ. ‘L’) THEN
CALL DATCET(OKAY)
CALL COON
ELSEIF (TOKEN. EQ. ‘S’) THEN

CALL BL LN
CALL STR(‘’ Names of data sets loaded: ')
IF (NDSET CT.0) THEN
DO 30 I= 1.NDSET
50 CALL WRTSTR( *//DSNAM(1))
€ gALL COON

LSE
N CA#L WRTSTR(’ No run data has been loaded. ’)
ELSEIF (TOKEN. EQ. ‘C‘) THEN

DSET= O
ELSEIF (TOMEN. EQ. ‘D) THEN
CALL DBGRUN
CAl COON

ELSEXF (TO%S:.EO.’A‘) THEN
ELSEIF (TOMEN. EQ. ‘R°) THEN
RETURN

ELSE
CALL INVOPT
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CFILE: DRUNI} =====—mmemomee DRUNI1 =mm==ommommmmmomomomoo o

ENDIF
FULL=, FALSE.
c ¢0T0 10
END
C>>>>>
g
EDATPUT DIDDIIDIDI2DDIDIIDIDDIDDIDIDIX2IDID353>> Last Change:
c SUBROUTINE DATPUT(OKAY)
g--- PURPOSE: Store the results data in a bdinary file.
g--— INPUTS: GCenerated by dialog
g--— OUTPUTS: Data to file
INCLUDE ‘ENPORTD>ROSENBERGOSHIP?2>SIZEBK. CBK°
INCLUDE ‘ENPORTDROSENBERGDSHIP72>TITLBWK. CBK"*
INCLUDE °‘ENPORTOROSENBERGOSHIP72>SOLNBK. CBK *
INCLUDE ‘ENPORTODROSENBERGCOSHIPZ72>POSTBWK. CBK”
INCLUDE ‘RDATBK. CBK '’
INCLUDE ‘ENPORT>ROSENBERGCOSHIP72>UTILBK. CBK*
INCLUDE °‘ENPORTDROSENBERGCDSHIP72>INPTBK. CBK
c INCLUDE ‘ENPORTY>ROSENBERGCOSHIP72>GRFLDBK. CBK*
CHARACTER FILNAM®32, STRINCe72, TIiMe8, DATe8
INTECER UNIT, I, U
c LOCICAL OWKAY, 1SYES

EXTERNAL BLNKLN, WRTSTR., PROMPT, YORN, OUTBUF
EXTERNAL GCETUFL, GCETTD

03709789 TLB

CooeDATPUT T 00000ttt tsialttninciaitiaeilatiagiidiaieiodaecanscsvsaes
C

g--—— Check if original model was filed
UNIT=PRUNIT
OPEN(UNIT., FILE=NAME. STATUS=‘OLD ’, ERR=950,
1 FORM= ‘FORMATTED ‘', ACCESS=""SEQUENTIAL ')

g-—-- File exists, model has been filed

c CLOSE(UNIT)

C-=== Get the run label

10 CONTINUVE

CALL BLNKLN
CALL WRTSTR(' T
CALL WRTSTR(*® *

CALL BLNKLN
CALL PROMPT(’ Do you want to change it? (N):’)
ISYES=. FALSE.
CALL YORN(ISYES)
IF (ISYES) THEN
CALL BULNKLN
CALL WRTSTR(’ Enter the new run label on one line: ‘)
READ(#, 1033) WRTLBL
1033 FORMAT (A)
WRITE(Q, “(1X,A) ‘) WRTLBL
CALL OUTBUF (2)

he current run labdbel line is: )
//WRTLBL)

C¢070 10
¢ ENDIF
C==== GCet the file name
FILNAM="DUMMY. NAM*
CALL CETUFL (UNIT. FILNAM)
¢ IF (UNIT. EQ. O) RETURN
C-=== Write the heading line. resuvlts file name. original model title.
o and run label
REWIND(UNIT)
CALL CETTD(TIM, DAT)
WRITE(UNIT, ERR=900) PROGCID. VRSION, TIM. DAT
WRITE(UNIT, ERR=900) FILNAM
WRITE(UNIT, ERR=900) NAME
c WRITE(UNIT, ERR=900) WRTLBL

C-=== Write the numder of stages saved. the initial and final

e vector
[

times,



CFILE:

[
C-===

100
C
Cmmm—m

900

C-===
50
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DRUNI)] ----—-—c--—--eeee- DRUN]] ====--crmc e r e cm e e e -
WRITE(UNIT, ERR=900) NS. TIN. T2SOLV
WRITE(UNIT, ERR=900) NOVV
WRITE(UNIT, ERR=900) (OVNL(I), I=1, NOVV)
Write the run data
DO 100 I= 1,NS
WRITE(UNIT, ERR=900) (RSLT(I, J). J=1, NOVV)
CONTINVE

Close the file and return
CLOSE(UNIT)

CALL BULNKLN

STRING= ‘ Run data has been written to file: °‘//FILNAM
CALL WRTSTR(STRINGC)

OKAY= TRUE

RETURN

Uh-oh return

OKAY=_ FALSE.

CALL BULNKLN

CALL WRTSTR(’ ®«e Error while writing to file °‘//FILNAM)
RETURN

No model filed

OKAY= FALSE.

CALL BULNKLN

CALL WRTSTR(’ ®#® The model has not been filed. )
CALL WRTSTR( Please file origional model before

1 writing the results to a file. ')

CLOSE(UNIT)
RETURN

Cc
END

CO>3>>

¢ p

EDATCET DIIDIIDIDIDIIDDDD2DDDDDDDDIIDDDD052255>> Last Change: 03/09/89 TLB

c SUBROUTINE DATCET(OKAY)

E--- PURPOSE: Read the results data from a bin file

g——- INPUTS: Run data common vbls in file.

g--— OUTPUTS: Data in DATZBWK.CBK filled in.

INCLUDE ‘ENPORT>ROSENBERG>SHIP72>SIZEBK. CBK*
INCLUDE °‘ENPORT>ROSENBERGD>SHIP72>SOLNBK. CBK
INCLUDE ‘RDATBK. CBK*

INCLUDE °‘ENPORTOROSENBERGOSHIP72>UTILBRK. CBK
INCLUDE ‘ENPORTDROSENBERGDSHIP72>INPTBK. CBK*

c INCLUDE ‘ENPORTOROSENBERG>SHIP72>CRFLBK. CBK’
CHARACTER DSNAMT*32, STRING#72., NAMTMP#32., FILNAMe32
CHARACTER TPRGIDei. TIMe8, DATe8
INTEGER UNIT, I, J. TVRSN

c LOGICAL OKAY, E7YORN

c EXTERNAL BLNKLN, WRTSTR. FNDUFL, E7YORN

CoeaDATCE TR E 0000000000 00RT0ARINNRRINRINNNBOTEERENRENNNNEENOEsOOOTIOGIOGQRURIIOS

C

Co==-

IF (NDSET. CE. MXNDST) THEN
CALL BULNKLN
CALL WRTSTR(’ eee The run data base is full )
WRITE(STRING. 1020) MXNDST
FORMAT(4X. 12, ° is the maximum. °)
CALL WRTSTR(STRING)
OKAY= FALSE.

CONT INVE

Cet the file name

FILNAM= ‘'seee’

CALL FNDUFL (UNIT, FILNAM)

IF (UNIT._EQ O) THEN
OKAY= FALSE.
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CFILE: DRUNI] =—=wcce—cccccea—— DRUN]] ==—=creccccrc e e e e e
C-—=—— Set the data set name temporarily
DSNAHT- FILNAM
DO 20 I= 1, NDSET

IF (DSNAMT. EQ. DSNAM(I)) THEN
CALL BLNKLN
CALL WRTSTR( "’
CALL WRTSTR(’
070 10

### Duplication of data set already
Please try again. *)

loaded. ’)

NDSET= NDSET +1i
DSNAM(NDSET )= DSNAMT

Read the heading line.
C and run label
REWIND(UNIT)

results file name. original model title.

C==-s

Cm—m——

1010

Cm———

Cmmem—

o —

READ(UNIT, ERR=900, END=9350)
READ(UN1T, ERR=900, END=950)
READ(UNIT, ERR=900, END=930)
READ(UNIT, ERR=900, END=9350)

TPRC1D., TVRSN, TIM, DAT
F ILNAM

NAMTMP
RUNULBL (NDSET)

correct model is loaded
NAME) THEN

Incorrect model loaded’)
The model °‘//NAMTMP)

Must be loaded to proceed’)

Check to see if

IF (NAMTMP . NE.
CALL WRTSTR( '
CALL WRTSTR(
CALL WRTSTR( '’
NDSET=NDSET-1
RETURN

ENDIF

Ch Q i¢ file is correct
IF ILNAH NE. DSNAMT) THEN
CALL BLNKLN

CALL WRTSTR(’ File name mismatch. ’)
ENS?%L WRTSTR(’ File °‘//DSNAMT//’ was requested’)

WRITE(STRING, 1010) TPRGID. TVRSN

FORMAT(’ Written by ENPORT-‘, Al, ’

CALL WRTSTR(STRING .

STRING=’ Date written: ‘//DAT

CALL WRTSTR(STRING)

STRING=’ Time written ‘//TIM

CALL WRTSTR(STRING)

CALL BLNKLN

CALL WRTSTR(’ The run labdel; ’)

CALL WRTSTR(RUNLBL (NDSET))

Check 1f 1t 1s ok

CALL BLNKLN

IF (. NOT. E7YORN(°’
NDSET=NDSET-1
RETURN

ENDIF

Read the number and list of run vbdl nam

READ(UNIT, ERR=900, END=950) RNS(NDSET), RT!N(NDSET) RT2SLV(NDSET)
READ(UNIT, ERR=900, END=950) RNOVV(NDSET)

READ(UNIT, ERR=900, END=950) (ROVNL (I, NDSET), I=1, RNOVV(NDSET))

Check 1¢ time data natch reference set.

‘y12)

Is this the data set you want?’,. TRUE.

STRING='’ «e#e Fil not compatible with reference set’
IF (RTINC(NDSET). NE RTlN(l)) HEN
CALL BLNKLN

CALL WRTSTR(STRING)
CALL WRTSTR( Mismatch in the
NDSET=NDSET-1

initial times. °)

IF (RT?SLV(NDSET) NE. RT2SLV(1)) THEN
CALL BLNK
CALL HRTSTR(STRINC)
CALL WRTSTR(°’ Mismatch
NDSET=NDSET-1
RETURN

in the final times. °)

ENDIF
IF (RNS(NDSGT) NE. RNS(1)) THEN
CALL BLNKL
CALL HRTSTR(STRING)
CALL WRT Mismatch in the numdber of stages saved. )
NDSET-NDSET 1
RETURN

)) THEN
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CFILE: DRUNI1 =--=-=mmmm—=mmne DRUNIT ======mmmm oo oo oo oo

Cc
C—-—--— Read the run data
DO 100 I= 1,RNS(NDSET
READ(UN!T ERR-?OO.END-?SO) (DSET(I. J. NDSET),
éOO CONTINUE
C---=- Close the file and return
¢ CLOSE(UNIT)

CALL BULNKLN )
RING= ‘’ Run data has deen read from file:
({

ST

CALL WRTSTR

OK
RE

C-=== Uh
900  OK

ST ING)
AY= TRUE.
TURN

-oh return
AY=_ FALSE.

NDSET= NDSET -1

CA
CAl

LL BULNKLN
LL WRTSTR( ‘

RETURN

C-==- An

950 (913
ND
CAl
CA|
CAl
CAl
RE

C

other uh—-oh return
AY=_ FALSE.

SET= NDSET -1

LL BULNKLN
LL WRTSTR(’
LL WRYSTR( '’
LL WRTSTR( *
TURN

END
C>5>55>

annn

SUBROUTINE DBGRUN

--~ PUR
INP

--- our

(21alsTalalalsle]

INCLUDE

®ee Error while reading file

‘//F ILNAM

*//F ILNAM)

eee® Unexpected end-of—-file encountered.
Data read are not complete or reliabdle ‘)
This file has deen

ignored. ‘)

‘)

CDBCRUN DD3333D33305333333335535333355533333553>5> Last Change

J=1, RNOVV(NDSET))

01/09/89 TB

POSE: Display data stored in memory buffers for dedbugging.

UTS: RUNLBL
DSNAM

PUTS:

INCLUDE ‘RDATBK. CBK

(9]

CH
IN
LO

EX

oaonn o0

CA
CAl

IF

1020
30

c
100

ARACTER STRING#80
TECER I.J
CICAL ISYES

TERNAL BLNKLN. WRTSTR. YORN

LL BLNKLN

LL WRTSTR( "’ ese This ogtion only di
CALL WRTSTR( ' from ¢t

(NDSET. CT. 0) THEN
CALL BLNKLN

e last file

‘ENPORTOROSENBERGCOSHIP72>SIZEBK. CBK*

CALL WRTSTR(’ Data from file: *//DSNAM(NDSET))

CALL WRTSTR(’ The run label is; °)
CALL WRTSTR(RUNLBL (NDSET))

CALL BLNKLN
STRING= '’ Wou
CALL HRTSTR(STR NG)
ISYES=. TRUE.

CALL YORN(ISYES)

IF (. NOT. ISYES) COTO 100

CALL BLNKLN

DO 30 I=1, RNOVV(NDSET)
WRITE(STRING, 1020) ROVNL (I, NDSET)
FORMAT(1X, A12)

CALL WRTSTR(STRING)

ov like to see the saved vbls? (V)°’

CALL WRTSTR(’ Do you want a data listing? (Y)"’)

ISYES=. TRUE

0 oDBCRUNC RN 000000000000 00000000 RRERRINATRNBRBRENVNBRRAONNNENVEOORIGOIONGS
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CALL YORN(ISYES)
IF (. NOT. ISYES) GOTO 200

CALL BUNKLN

DO73 I=1, RNS(NDSET)
D083 J=1, RNOVV(NDSET)
WRITE(STRING, 1040) DSET(1., J, NDSET)
1040 FORMAT (1X, (1P,E195. 4))
CALL WRTSTR(STRING)
85 CONT INUVE
75 CONT INUVE
c200 CONTINUE

LSE
CALL BULNKLN
CALL WRTSTR(’ No data recovered. ‘)
ENDIF
RETURN
END
g)))))
EANLQVR DIDDIDDDDIID2DIDDDDDDODDDDDDDDDDD2DDDD>DD Last Change. 5/2/89 TLB

SUBROUTINE ANLDVR

c

g——- PURPOSE : Controls flow for run data options.

E--— INPUTS: Menu Driven

[

C--- VARIABLES:

E FULL Determines if full or abreviated menu is displayed
C

INCLUDE ‘ENPORTDROSENBERGDSHIP72>S1ZEBK. CBK *
INCLUDE ‘ENPORT>ROSENBERGOSHIP72>SOLNBK. CBK *
INCLUDE ‘RDATBM. CBK*

(g]g}

CHARACTER STRING#80. TOKEN#1
LOCGICAL FULL

EXTERNAL WRTSTR, BLNKLN. GOON., PROMPT, GETANS
EXTERNAL INVOPT, DIFPLT, DIFTBL

CoeaANLDVR® 0000000000000 000000008000RRRRRIRRRRRRRRRRRRRCRNIBINGRRERGEGRISGS

C
g—-— First check i¢ sufficient data sets have been loaded
IF (NDSET.LT. 2) THEN
CALL BLNKL

CALL NRTSTR(' e*ee Insufficient data e#ees’)
CALL WRTSTR(’ At least 2 data sets must be loaded to analyze’)

RETURN
c ENDIF
g-—— Present the options menu
10 CONT INUE

IF (FULL) THEN
CALL BLNKLN
CALL BLNKLN
CALL WRTSTR(‘ Run data analysis options’)
CALL WRTSTR(’ ——-—ememcecccccccccc e e e *)
CALL WRTSTR(’ C: Graph difference values. ‘)
CALL WRTSTR(’ T: Table of select difference values. ')
CALL WRTSTR(’ L: List proc.ssod difference values. ‘)
CALL WRTSTR(’ R: Reeurn )
CALL WRTSTR(’® - ——e——— e ———— ‘)
STRING=' Enter optxon (R) 4
ELSE
CALL BLNKLN
CALL BLNMKLN
CALL WRTSTR(’ Run data analysis options’)
ENg}EXNG-' Craph, Tabdle, List, Return? (full)”’

C-=- Now read the command
CALL PPOMPT(STRING)
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TOKEN="‘#®
c CALL CETANS(TOKEN)

C-== Now inter ot the command tohken
IF (TOKE ‘#’) THEN
IF (FULL) THEN
TOKEN= ‘R *

ELSE
FULL=. TRUE.

IF _(TOKEN. EO ‘C’) THEN
CALL DIF

ELSEIF (TOKEN EQ. ‘T’) THEN

CALL DIFTBL

CALL GOON
ELSEIF (TOKEN. EQ. ‘L’) THEN

CALL WRTSTR('’ List o#tion not yet available’)
ELSEIF (TOKEN. EQ. ‘R’) THEN

RETURN
LSE
CALL INVOPT
ENDIF
¢O0T0 10
C
C
END
¢
ngFPLT 2I3II2IID3DIDD333DD533D5DI033X35553>>> Last Change. 4/9/89 TLB
c SUBROUTINE DIFPLT
C--=- Purpose: Provide driver for hi-res araphxcs plots
C difference in values store
C Screen scale factors: 1 line = 22 points
g 1 column = 14 points
Cc
INCLUDE °‘ENPORTD>ROSENBERG>SHIP72>SI1ZEBK. CBK*
INCLUDE ‘ENPORTDROSENBERGDSHIP72>SOLNBK. CBK "’
INCLUDE °‘ENPORTDROSENBERGO>SHIP72>POSTBK. CBK *
INCLUDE ‘ENPORTD>ROSENBERGCOSHIP72>UTILBK. CBK
INCLUDE °‘ENPORTOROSENBERGOSHIP72>CRCMBK. CBK "’
c INCLUDE ‘RDATBK. CBK'’
C
INTEGER SCLVAR(3), NUHSCL. JTINM
LOCGICAL CONT, DATI
¢ REAL YMX(O:3), YHN(O:S). SCLMIN(O: 3), SCLMAX(O:3)
LOCGICAL PROCFG, E7YORN
c INTECER CURTER. CURDEV. VC21IS
EXTERNAL NEWDEV, NEWL. SETDEV. E7YORN. DALINE, GRTYPE
EXTERNAL WRTSTR, BLNKLN, GETLAB. DIFVRW, DFTLMT
EXTERNAL DFYLMT, SCALY. CONTUE, CRIDLE. DFCURV. ANMODE
c EXTERNAL DAVIS., COLOR. DAFULL.VC2IS
ConaDIFP LT eeec Rt sttt sl ttRadatinttantitettntencteslosaasanen
C
C

IF _(ITERM. EQ. O) THEN
CALL BLNKLN
CALL :RTSTR(‘ #ee This is not a graphics terminal. ’)

RETUR
c ENDIF
C-—-- Set defult plot increments to maximum density
JTIM=VCIS( TINE *)
DELTA=DSET(2, JTIM, 1 )-DSET(1, JTIM, 1)
IDEL=1
c NUMSCL =1
¢ CALL CETLAB(LABEL, DATIM)
CALL DIFVRW(. TRUE. )
c IF (NREQD. EQ. 0) RETURN

CALL DFTLMT
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CALL DFYLMT(YMX, YMN)
CALL SCALY(SCLMIN, SCLMAX, YMN, YMX, SCLVAR, NUMSCL)

CALL CGRTYPE

CALL CONTUE(CONT)

IF (. NOT.CONT) RETURN

CALL CRIDLE(SCLMIN, SCLMAX, DATIM, SCLVAR, NUMSCL)
CALL DFCURV(SCLMIN., SCLMAX, SCLVAR)

Cc
C—-- Mait ngLnolt input to return (keeps screen clear)
Cc CALL PACE
ANMODE
CALL DAVIS(. TRUE.)

CALL DALINE(2)
CURDIA= FALSE.
CALL BLNKLN
CALL BLNKLN
CALL BLNKLN
IF (E7YORN(’ Would you like this image stored i1n a file™ ’,
1 .FALSE. )) THEN
CURTER = [TERM
CURDEV = DEVICE

CALL NEWDEV(PROCFQ)
IF_(.NOT. PROCFGC) THEN

(o]

CALL CRIDLE(SCLMIN. SCLMAX, DATIM, SCLVAR. NUMSCL)
CALL DFCURV(SCLMIN., SCLMAX, SCLVAR)

And we put the pen asway on HPCL hard copy plotters
CALL COLOR(-1)
ITERM=CURTER
CALL SETDEV(CURDEV)

ENDIF

CALL DAFULL

(3] O?O
[}
|

(9}

END

CO>3>>

gDFCUﬂV DIIIIIDIIIDIDIIIIDIDIII33DIII22303223> Last Change: 04/15/89 TLB
SUBROUTINE DFCURV(SCLMIN., SCLMAX, SCLVAR)

Cc

C-== DFCURV DRAWS THE Y VERSUS T CURVES

g FOR PROCESSED DIFFERENCE VALUES

o INPUTS: 71,11, 12.NREQD, JDX., RES

Cc I= STAGE (X) INDEX

Cc J= VARIABLES (CURVE) INDEX

g L= TYPE OF LINE DRAWN
INCLUDE °‘ENPORTOROSENBERGDSHIP72>UTILBK. CDK
INCLUDE ‘ENPORT>ROSENBERGDSHIP72>SIZEBK. CBK’
INCLUDE ‘ENPORTDROSENBERGCOSHIP72>SOLNBK. CBK
INCLUDE °‘ENPORTDROSENBERGDSHIP72>POSTBK. CBK*
INCLUDE °‘ENPORTOROSENBERGCOSHIP72>CRCMBK. CBK

¢ INCLUDE °‘RDATBK. CBK’
REAL SCLMIN(O: 3), SCLMAX(O:3), DFRSLT, TIm

¢ INTEGER SCLVAR(3)., J, L. IVAR, INIT. JUTIM., VC2IS

EXTERNAL RECOVR. DWINDO. COLOR, MOVEA. DFRSLT. DASHA. HOME. BELL
EXTERNAL ANMODE. VC21S

20 eDFCURV 0000000 000000000008 000000000000000000080000RRINNGRRRRRIRORRIRIGE

CALL RECOVR

0on anon
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g Find the first point in time we are in’erested in

C JTIIM = E7KVBC(‘'TIME’) + 1
JTIM= VC2IS('TIME’)
INIT = O

11 CONT INUE

INIT = INIT +
TIM = DSET(INIT JTIM. 1)
IF(TIM.LT. T:) €OTO 11

C
DELTA-DSET(2 JTIM, 1)-DSET(1, VFIM. 1)
100 J=1, NREGD
CALL DWINDO(SCLMIN(O), SCLMAX(O).,
1 SCLMIN(SCLVAR(JY), SCLMAX(SCLVAR(J)))
:FSDEVICE.NE.? . AND. DEVICE. NE. 5) CALL COLOR(J)
ny-
CALL MOVEA(DFRSLT(INIT,0), DFRSLT(INIT. J))
. IVAR = INIT

10 IVAR = VAR + 1
IF(IVAR . GT. RNS(1)) GOTO 100
TIM = DSET(IVAR, JTIM, 1)
IF(TIM. CT. T2) COTO 100
CALL DASHA(DFRSLT(IVAR, 0). DFRSLT(IVAR, V). L)

c ¢0T0 10
éOO CONT INUE
CALL HOME
CALL BELL
CALL ANMODE
c CLDSE (18)
¢ RETURN
END
C>>3>> -
¢
SDIFTBL ))))))))))))))))}))>>>>>>)).)>>))>>> Last Change: 4/9/89 TLB
c SUBROUTINE DIFTBL
C This is a driving routine for listing run data difference values
g in tadbular form.
INCLUDE ‘ENPQORT>ROSENBERGCOSHIP72>SIZEBK. CBK
INCLUDE ‘ENPORT>ROSENBERGCOSHIP72>SOLNBK. CBK *
c INCLUDE ‘ENPORT>ROSENBERGCOSHIP72>POSTBK. CBK
c LOGICAL CONT. DATIM
C EXTERNAL GCETLAB. DIFVRW, DFTLMT, CONTUE. DIFLST,DIFDEL
CoooDIF TBL 0000000000000 00000000000RR0RRICRIRIIRRRTRGIRRERORNRNIRGS
C
c CALL GETLAB(LABEL.DATIM)

CALL DIFVRUW(. FALSE. )
IF (NREGD. EQ. 0) RETURN

o CONTINVE
CALL DFTLMT

CALL DIFDEL

CALL CONTUE (CONT)

IF (. NOT.CONT) QOTO 10
CALL DIFLST(DATIM)
RETURN

END
223>

-0

(2]

DIFDEL 2323323333232 32332333D330D33323232335533> Last Change: 05/16/789 TLB
SUBROUTINE DIFDEL
DIFDEL: SETS DISPLAY INCREMENT USED IN TABLE PRINTING

000 000OKO O O 0
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anon

DRUNI 1

INPUTS:

OUTPUTS:

INCLUDE
INCLUDE

75
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DELTA, T1., T2
IDEL

‘SIZEBK. CB

K’
‘SOLNBK. CBK *
INCLUDE ‘POSTBK. CBK*

REAL DTHI, TINC

LOGICAL NEWL IN, ENDLIN

CHARACTER#70 STRING

EXTERNAL BLNKLN, WRTSTR., PROMPT. CETRL

200D IFDEL®® 0000000000000 RCORRRRRARRRINRRRORRRRRRRRRIRRRRORNEQRRIRERIRIGTOTORRIGS

ann o

CALL BLNKLN
CALL WRTSTR(’ Set time increment for display: ‘)
CALL BULNKLN

TINC=DELTA
WRITE(STRING, 1010) DELTA
1030 FORMAT(’ Enter ¢is§laq increment (’,1PE11.4,°): °)
CALL PROMPT(STRINGC
NEWL IN= TRUE.
DTHI=T2-T1
CALL CETRL(DELTA. TINC. DTHI, NEWLIN, ENDLIN)

IDEL= (DELTA+ OO1#TINC)/TINC
RETURN
END

g)))))

c
c

C
DIFLST 23223333333333333333333335323553>5>5>> Last Change: 4/9/89 TLB
SUBROUTINE DIFLST(DATIM) .-

Purgoto:
List the difference values in the loaded run data

INCLUDE ‘ENPORT>ROSENBERG>SHIP72>SIZEBK. CBK
INCLUDE ‘ENPORTDROSENBERC>SHIP72>SOLNBK. CBK*
INCLUDE ‘ENPORTD>ROSENBERGOSHIP72>POSTBK. CBK*
INCLUDE ‘RDATBK. CBK’

LOGICAL DATIM

INTECER I, J. N. JTIM., VC2IS

REAL TIM., DFR

CHARACTER DATEOB. TIMECH#8., STRING+BO
EXTERNAL GCETTD. BLNKLN. WRTSTR, VC21S. DFRSLT

20D IFL ST 00 00eetaatatt sttt RRllcRlalaResIRIRlaNNResRIERacese

Cc
c
Cc
c
C
C

0nnn 0

=== Put up list heading
CALL BLNKLN
WRITE(STRING. 1010) NDSET. DSNAM(NDSET)
1010 FORMAT(1X., ‘Data set °’, 12, ‘e (A))
CALL WRTSTR(STRING)
CALL WRTSTR(’ Minus ‘)
WRITE(STRING, 1020) DSNAM(1)
1020 FORMAT(1X, ‘Reference data set: ‘0 CA))
CALL WRTSTR(STRING)
CALL BLNKLN

C~== Put up the date and time
IF (DATIM) THEN
CALL CETTDéTlHECH.DATE)

IF (DATE THEN
WRITE(STRING, 1005) DATE. TIMECH
1003 FORMAT(1X, ‘Date: ‘s AB, * Time: ‘» AB)
CALL WRTSTR(STRING)
ENDIF
¢ ENDIF
C-== Put up title and column headings
CALL BLNKLN

STRING=’ °*//LABEL(1:7})

CALL WRTSTR(STRING)

CALL BULNKLN

WRITE(STRING, 1000) (CLBL(J), y=1, NREGD)
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1000 FORMAT( Ti ‘. 3%, 3(1X, A10. 1X))
CALL HRTSTR(STR!NC)
CALL BLNKLN

C
C--- Now compute and list the table of data
JTIM=VCIS('TIME )
DO _100 1I=13, 12, IDEL
TIM=DSET(1, JTIM, 1)
WRITE(STRING, 1100) TIM, (DFRSLT(I,N),N=1, NREGD)
1100 FORMAT(2X, 1P, E10. 3, 5E12. 4
CALL WRTSTR(STRING)
100 CONTINUE
c RETURN
END
COD>>>
¢
ED!FVRH DIDIDDDIDDDDII2DDDDIDDDDDIIDD5D3>0>3>D>> Last Change: 04/15/89 TLB
c SUBROUTINE DIFVRW(HORZIFGC)
E--- PURPOSE: Cet the display vbl list.
C Note: This routine only differs from DVAKROW in
g that it calls DIFFIL not FILRSD
g—*— INPUTS: HORZFC, = T. get horiz vbl
C-=-- OUTPUTS: JDX, index of display vbls
g CLBL. names of display vbls

INCLUDE ‘ENPORT>ROSENBERGOSHIP72>S1ZEBK. CBXK

INCLUDE ‘ENPORT>ROSENBERGCOSHIP72>SOLNBK. CBK
INCLUDE °‘ENPORT>ROSENBERGYSHIP72>POSTBK. CBK
INCLUDE ‘ENPORTOROSENBERGCOSHIP72>UTILBK. CBK*

.
.

C
CHARACTER ANS#12, BLANK#12, STRINGe80. DVNAM(MAXNRQ)e]12
INTEGER KVBLX, I, J. NCHARS. RVBLX. NRED
c LOCGICAL NEWLIN, ENDLIN, E7YORN, HORZFG., SPEAKF
EXTERNAL BULNKLN, WRTSTR, E7YORN, PROMPT, RVBLX
EXTERNAL NCHARS, GETWD, GETANS, DIFFIL
c INTRINSIC MIN
c DATA BLANK/ S808880000080°/
CoooDIFVRIWE SIS EREGENEVCEERINIFRINNVVIGBNIGRVIVEDRVBRTPNBOVNIREONEIORTOORIS
Cc

CALL BLNKLN
CALL WRTSTR(’ Choose the display variadles. .. ‘)

(2]

C—=== Present the current list
10 CONTINUVE
C~=== Set a default list if necessary
IF (NREGD. EQ. O0) THEN
C-mm——— Set the x axis defavult to ‘TIME'. .
JDX(O)= TX
CLBL(O)= ‘TIME’
IF (NXI.GCT.O0) THEN
NREQGD= MIN(3, NX1)
DO 11 I= 1,NREQGD
CLBL(1)= OVNL(XIX(CI))
11 JDX(I)= XIX(I)
ELSEIF (NY.GT.0) THEN
NREQD= MIN(S, NY)
DO 12 I= 1, NREQD
CLBL(I)= QVUNL(YX(1))
12 JOX(I)= YX(1)
ELSEIF (NU.GCT.0) THEN
NREQGD= MIN(S, NU)
DO 13 I= 1, NREQGD
CLBL(I)= QVNL(UX(I))
13 JOX(I)= UX(I1)
ELSE

CALL BULNKLN
CALL WRTSTR(’ ese Nothing availabdle for display. °)
RETURN

ENDIF
ENDIF
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CFILE:
C---- Do the horizontal asxis here (one variable only)
IF(HORZFG) THEN
15 CALL BLNKLN
ANS= CLBL(0)
CALL PROMPT(’ Variable for the horirontal axis? (°//
1 ANS (1: NCHARS(ANS))// ). ")
CALL GCETANS(ANS)
SPEAKF=_ TRUE.
KVBLX= RVBLX(ANS, SPEAKF)
IF (KVBLX. EQ. 0) THEN
COTO 19
ELSE
JDX(O)= KVBLX
CLBL(O)= ANS
ENDIF
c ENDIF
C-=== And now the vertical axis variabdles. .

1
C
C

020

CALL BLNKLN

CALL WRTSTR (’ The current display list: *)
CALL BULNKLN

WRITE(STRING, 1020) (CLBL(J), J=1, NREGD)
CALL WRTSTR(STRING)

FORMAT(3(1X, A12))

Check if the list is ohay

IF (E7YORN( * Do you want to change the list?’,. FALSE. )) THEN

CALL BULNKL

CALL HRTSTR(' Enter a new list on one line (or HELP):

CALL BLNKLN

CALL PROMPT(’ >°)
NEWL IN= TRUE.
NRED= O

Crmmmm— Commenco to read the line
200

ANS=BL
CALL CETUD (ANS.NEHLIN.ENDLIN)
IF (ANS. NE. BLANK) THEN
NRED= NRED+}
DVNAM(NRED)= ANS
IF (NRED. EQ. MAXNRQ) COTO “03
NEWL IN= FALSE.
GOTO 200
ENDIF

C-~—=== Commence to identify the entries

SPEAKF=, TRUE.
NREQD= 0O
DO 220 I= 1, NRED
KVBLX= RVBLX(DVNAM(I1), SPEAKF)

———————— Implicitly ignore bad entries

IF (KVBLX. CTgO) THEN
NREQD= NREQD+1
JDX (NREQD)= KVBLX
CLBL (NREQGD)= DVNAM(])
ENDIF
CONT INVE

Cmmom- This list has been crached

0

onnn

9010

1

IF (NREQGD. EQ. 0) COTO 10

IF (E7YORN(’ Do you want to see the list again?’, FALSE.

COTO 10
ENDIF

Set the JUDX entries for derived vbdbls to proper indices
NODV= 0O
IF (JUDX(0). CT. NOVV) THEN
NODV= NQODV+1
JDX(0)= NOVV+NODV
ENDIF
DO 230 I= 1, NREQGD
IF (JDX(I). CT. NOVV) THEN
NODV= NODV+1i
JDX(1)= NOVV+NODV
ENDIF
CONTINVE

IF (DBCGFLGC) THEN

CALL BLNKLN

CALL WRTSTR(’ #e# Debuq data for d

CALL WRTSTR(’ DEBUC MODE NOT ACTIV

WRITE(STRING, 9010) NREGD. NODV. NO
FORMAT (95X, ‘NREAGD., NODV, NOVV: °,3

CALL WRTSTR(STRING)

WRITE(STRING, 9020) (UDX(1)., I=0.9)

erived vbls: ’)
E’)
v
13

°)

))
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C9020 FORMAT (5X, “JDX: ‘, 613)

C CALL WRTSTR(STRING)

C WRITE(STRING, 9030) (CLBL(I), I=0,2)

C9030 FORMAT (5X, ‘CLBL: ‘, 3(A12,2X))

C CALL WRTSTR(STRING)

C WRITE(STRING, 9030) (CLBL(I1). =3, 5)

C CALL WRTSTR(STRING)

c ENDIF

C-=—= Fill in the derived results if necessary
CALL DIFFIL

Cc IF _(DBGFLGC) THEN

C CALL BLNKLN

Cc DO 940 J=

C HRITE(STRING.9040) RSLTD(J.X).!-I.NODV)

C9040 FORMAT(5X, 1P, 4E12. &)

C CALL WRTSTR(STRING)

C940 CONT INUVE

g NDIF
RETURN
EN

CO55>>

¢

EDXFFIL DO 3ODDDIVIDDD3I3IDDID5O35>>>> Last Change: 03/11/89 RR

c SUBROUTINE DIFFIL

g--- PURPOSE: Fills derived vbl buffer with the proper difference values

C-=- INPUTS: CLBL., names of all displa? vbls

g JDX. indices of all display vbls

g--- OUTPUTS: DRVVAL values of derived vbls
INCLUDE °‘ENPORT>DROSENBERGOSHIP72>SIZEBK. CBK‘
INCLUDE ‘ENPORTDROSENBERG>SHIP?72>CREDBK. CBK*
INCLUDE °‘ENPORTD>ROSENBERGOSHIP72>SOLNBK. CBK*
INCLUDE °‘ENPORT>ROSENBERG>SHIP72>POSTBK. CBK*
INCLUDE ‘ENPORTDROSENBERGDSHIP72OUTILBK. CBK*

c INCLUDE ‘RDATBK. CBK*
INTECER 1. JURD, N, VC2IS., IXE., IXF. NCON. IBIAS, J
CHARACTER CH2+2, REST+#10
LOGICAL SPEAKWF

c REAL TEMP1., TEMP2

c EXTERNAL INTGR, VC21S

CoeeDIFF L 0eeeetertetertetsi s i it Relantienect it ieacRoessrtoeacececsese

C

1F _(NREGD. EQG. O) RETURN
SPEAKF= TRUE.

C-=-- Get DRVVAL column index for this vbl (URD)
DO 100 I= O. NRE
IF (JDX(1). LE. NOVV) ¢0T0 100
JRD= JUDX (1) -NOVV

------ Intorprct the implied operation
is derived momentum

is derived displacement

is power

1s anr?g

is total nodal energy

CH2= CLBL(1)(1:2)
REST= CLBL(I)(3:12)

IF (CH2. EQ. 'P. ’) THEN
IXE= VCQIS(’E. °‘//REST)
DO 20 N= |,RNS(1)
20 DRVVAL (N, JRD)= DSET(N, IXE, NDSET)-DSET(N, IXE. 1)
CALL INTGR(CLBL(I), JRD, SPEAKF)

ELSEIF (CH2.EQ. ‘Q. *) THEN
IXF= VC2lS('F"//REST)
DO 30 N= 1,RNS(1)
30 DRVVAL(N.JRD)- DSET (N, IXF, NDSET)-DSET(N. IXF. 1)
CALL INTGR(CLBL(1). URD, SPEAKF)

a0nnnn
Z~LO0
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ELSEIF (CH2 EQ._°* ’ CH2. EQ ‘T ) THEN
IXE= VC2IS( E. /

IXF= VCQIS( °F. /

DO 40 N= 1,RNS(1)
TEMP1=DSET(N, I1XE, 1 )*DSET (N, IXF
TEMP2=DSET (N, I1XE, NDSET)#DSET (N
DRVVAL (N, URD)= TEMP2-TEMP1

(CH2. EQ. 'T. ‘) THEN

CA%L INTGR(CLBL (1), JRD, SPEAKF)

.
A
4
(1

. F.NDSET)

40

IF

END

ELSEIF (CH2.EQ. °'N.°)
DO &0 N= 1,RNS(1)
DRVVAL (N, JRD)= 0.

Identify thxs node

DO 62 J= 1., INELS
IF (REST EQ. ELNAM(J)) COTO 63

CONT INUE

RETURN

For each BOND on this node

IBIAS= IBDPTR(J) -1

NCON= IBDPTR(J+1) -1BDPTR(J)

DO 69 J= 1, NCON
IF (BDTP(IBDSEL(IBIAS+J)). NE
REST= BDNAM(IBD él?;AS*d))

EST)

IXE= VC2IS(‘E
IXF= VC2IS('F
» 1)*DSET(N, IXF, })
» NDSET) ®DSET (N, I XF, NDSET)

DO 63 N= 1,RN
TEMP 1=DSET (

VVAL (N, JRD) «(TEMP2-TEMP 1)

» JRD., SPEAKF)

THEN

‘B’) GOTO &9

§
TEMP2=DSET (
DRVVAL (N, JR

CALL INTGR(CL
CONT INUE
ENDIF
CONT INVE

RETURN
END

65
69
100
C

S
/
/
1
1
1
(

O X~ N\ \ M
~xmm DO

S
N
N,
D)
BL

v
v

NA

v

\/

INTGR DD3333533333D333D323D33355533053D055335550) Last Change
SUBROUTINE INTGR(NAM, UVBL. SPEAKF)

--- PURPOSE:

INPUTS:

04730/89 TLB

Integrates the display vdl in INTVEC

NAM,

display vbdbl name
JVBL. DRVVAL vbl (column) index
SPEAKF, = 7. call for initial value

DRVVAL (®, UVBL) contains the vector to be
DRVVAL (&, UVBL )

integrated

=== OUTPUTS: contains integrated vector

OOOOAONONOO O0ONNO

INCLUDE
INCLUDE
INCLUDE
INCLUDE

"ENPORTDROSENBERGOSHIP72>S1ZEBK

‘ENPORTOROSENBERGOSHIP72>SOLNBK

‘ENPORT>ROSENBERGOSHIP72>POSTBK
‘ENPORTO>ROSENBERGOSHIP72>UTILBK

CBK *
CBK *
CBK*
CBK*

INCLUDE ‘RDATBK CBK'’

CHARACTER NAMe®12
INTEGER JTIM, LNAM,
LOCICAL SPEAKF, NEWLIN,
REAL VAL (MAXRES). TIMSTP

EXTERNAL BLNKLN. PROMPT.

NCHARS, N,
ENDLIN

VC21S., JVBL

NCHARS, GETRL.VC2IS

C
C
CeoaINTCR 00 AR PNEONENRCVNRGIRVINVENRIRVVVNIEINBRIOGNONIOIENNINNINRNRIRIRISIRETALITS
C
C==== Set inttial value
VAL(1)= O.
IF (SPEAKF) THEN
CALL BULNHKLN
LNAM= NCHARS (NAM)

' $8L% EROHPT(‘ Enter initial offset value for ‘//NAM(1 LNAM)//
NEHLIN- RUE.
CALL CETRL(VAL(!)--IO E25, 10. E25. NEWL IN, ENDLIN)
c ENDIF
C-=== Now tntoara
DO 2, RNS (1)
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C--- First find the time step
JTIM=YCIS( ‘TIME ’
c TIHSTP-DSET(N.JTXH.l)-DSET(N 1, JTINM. 1)
20 VAL (N)= VAL(N-1) +DRVVAL(N-1, JVBL)*TIMSTP
DO 40 N= 1,RNS(1)
¢ DRVVAL (N, JVBL) = VAL (N)
RETURN
C>>>>>
[

C
EDFRSLT DIDIIDIDDIDIIIDIIDIDDDDDIDDDDIDOD33D25335> Last Change: 08/29/88 RR
REAL FUNCTION DFRSLT(ISTACE. N)

S--- PURPOSE: Retrieve data from the storage buffer DSET or DRVVAL.
C--— INPUTS: ISTACE, tho stagt of storage
C N. the N- display variable

C
g—-- OUTPUTS: DFRSLT. value of the result requested

INCLUDE ‘ENPORT>ROSENBERGDSHIP72>SIZEBK. CBK"*
INCLUDE ‘ENPORT>ROSENBERGOSHIP72>SOLNBK. CBK
INCLUDE ‘ENPORT>ROSENBERGOSHIP72>POSTBK. CBK*
INCLUDE ‘RDATBK. CBK*

[
C INTEGER ISTACGE, N. J, JTIM. VC21S
c EXTERNAL VC21S
CoeoDFRSLT 9000000000000 0000000000000 00008000000008000000RRGIGRIRRGOGIES
Cc
Cc
¢ J=JDX (N) -
C-== Check if rcgucst ng a time value
JTIM=VCIS('TIME )
IF (JTIM _EQ. J) THEN
DFRSLT=DSET(ISTAGE. J. 1)
RETURN
c ENDIF
C-===~ Return sxmplc value if result already stored
J= JDX (¢
IF (J. GT NOVV) THEN
Comm== Derived vbl
J= J-NOWV
DFRSLT= DRVVAL(ISTAGE. J)
c ELSEIF (J CT O) THEN
ELDFRSLT-DSET(ISTAGE.JDX(N) NDSET)-DSET(ISTAGE, JDX(N), 1)
Commmmm Who knows
DFRSLT= O
¢ ENDIF
RETURN
END
CO>2>>
CEOF
g
gDFTLﬂT)))))))))))))))))>>>>DFTLHT>>>>>>>>>>> Last Change 04/16/89 TLB
¢ SUBROUTINE DFTLMT
E--- Sets the time limit parameters for RUN DATA
C INPUTS: DSET(O ., 1)
g DELTA
[ OUTPUTS: T2
g . 12

INCLUDE ‘ENPORT>ROSENBERGDSHIP72>S1ZEBK. CBK "
INCLUDE ‘ENPORT>ROSENBERGDSHIP72>SOLNBK. CBK*
INCLUDE ‘ENPORT>ROSENBERGD>SHIP72>POSTBK. CBK *
INCLUDE °‘RDATBK. CBK*
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REAL TFINAL

INTEGER JTIM, VC2IS, TZERO
LOCICAL NEWL IN, ENDLIN
CHARACTER#70 STRING

C
EXTERNAL BLNKLN. WRTSTR. PROMPT, GETRL. VC2IS
C
CoouvlF TLMT 00000000 000000000 R RRIRIRN RIS INARORANONREAREIL00EscRcecnssnreos
C
CALL BLNKLN
c CALL WRTSTR(’ Set time limits for display: ‘)
JTIM=VC2IS('TIME *)
TZERO=DSET(1,JYTIM, 1)
T1=TZERO
TFINAL=DSET(RNS(1), JTIM. 1)
T2=TF INAL
c DELTA=DSET (2, JTIM, 1)-TZERO

CALL BLNKLN
WRITE(STRING, 1010) T1
1010 FORMAT(’ Enter 1nitial time (‘,1PEL1.4, ") )
CALL PROMPT(STRING)
NEWL IN=. TRUE
CALL CETRL(T1.TZERO., TFINAL. NEWL IN, ENDLIN)

WRITE(STRING. 1020) T2
1020 FORMAT(’ Enter final time (‘. 1PE11.4, ). )
CALL PROMPT(STRING)
NEWL IN=, TRUE.
CALL GETRL(T2. T1., TFINAL, NEWLIN, ENDLIN)

C
IF(DELTA. LT. 1. OE-235) THEN
CALL WRTSTR(‘’ e#e Bad time control resolution °)
CALL WRTSTR( ° Too small time steps ‘)
RETURN .
¢ ENDIF ’
I1=(T1+ OO1«DELTA-TZERO)/DELTA+|
c 12=(T2+. OO1¢DELTA-TZERQO)/DELTA~1
RETURN
END
CO>55>>
¢
EDFVLHT>>>>>>>>>>>>>>>>>>>>>>>DFYLHT))})))))}}))) Last Change 04/146/89 TLB
c SUBROUTINE DFYLMT(YMAX. YMIN) ‘
E-—- FINDS MINIMUM AND MAXIMUM VALUES FOR EACH DISPLAY VARIABLE
INCLUDE ‘ENPORTD>ROSENBERGDSHIP72>SIZEBK CBK "’
INCLUDE °‘ENPORTDROSENBERG>SHIP72>SOLNBK. CBK
INCLUDE °‘ENPORT>ROSENBERGDSHIP72>POSTBK. CBK "’
c INCLUDE °‘RDATBK. CBWK*
INTEGER I.J
c REAL YMAX(O: e), YMIN(O:e), TRY, DFRSLT
¢ EXTERNAL DFRSLT
CooaDF Y LM T 000000000000t et NtcRe st ttileni asetNieoNioeEReNcaacencssensceces
C

DO10 I=0, NREGD
YMAX(1)=-10. E30
YMIN(I)= 10.E30

10 CONT INUE

DO20 I=11, 12
DO30 J=0. NREQOD
TRY=DFRSLT(I.J

)
IF (TRY. CT. YMAX(J)) YMAX(J)=TRY
IF (TRY.LT. YMIN(J)) YMIN(J)=TRY
30 CONT INVE
gO CONTINUE
RETURN
END
C>335>>

CEOF.
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CFILE: DRULOC---=========-=== DRULOC - ======mmmmm o oo - mmm oo
EFILE.DRULOC ---------------- DRULOC-====--mmmmcmmmmm e e mmcmmem e mm e
C--=- PURPOSE: Local vuvtilities file. for UNformatted file manipulation
E May need modification for a given operating system

E-—- DESCRIPTION: Used for compact storage of results files.

CONTENTS:
CETUFL opens and checks a file for unformated output
FNDUFL finds and opens unformated file for reading

-== INDEX:
CETUFL
FNDUFL
-== Programmer: Tom Bush
-=-— Last Modification: April B8, 1989
EOFH: DRULOC —-====—==--- B
>23>>

CETUFL D333335>3335333333D335D335333353350535330> Last Change. 4/8/89 TLB
SUBROUTINE CETUFL(UNIT, FNAME)
Purpose. Specifically for UNFORMATTED ihnut/qutput

Cet file name and open it on FTN unit
~-== Input: FNAME The defavult name for file (can be ‘QUIT’)
=== Outputs: UNIT The FORTRAN unit number on which file was opened
Set to 1ervo0 if file was not opened.

FNAME The name of the file (can be ‘QUIT’)
INCLUDE ‘ENPORTDROSENBERG>SHIP72>INPTBK. CBK’
INTECER NCHARS, UNIT

LOCICAL E7YORN
EXTERNAL CETWD. INQUIR. PROMPT, BLNKLN., WRTSTR, E7YORN. NCHARS

O 0000 OOO0O0Nn 00 nnnsnnnnnnnnnnno

C
CHARACTER FNAMEe(s), DEFALTe#32, TESTLN#B80. LFNAMEe32
INTECER JCDFLT, JCFILE
LOCICAL NEWL IN., ENDLIN, EXISTS

CooaCETUF L 0000000000000000000000000C00Rl0000R0000RNIONINEIIRRRIGRIRGERGBORRES
C

UNIT = PRUNIT
DEFALT = FNAME
LFNAME= FNAME
10 CONT INUE
CALL BLNKLN
JCDFLT = NCHARS(DEFALT)
CALL PROMPT(’ Please enter the file name (°//
DEFA%T():JCDFLT)//
Ty e
NEWLIN = TRUE.
LFNAME = DEFALT
CALL CETWD(LFNAME., NEWL IN, ENDL IN)
IF (LFNAME.  EQ. ‘GUIT ‘. OR. LFNAME. EQ. ‘7 ’) THEN
CALL BULNKLN
CALL WRTSTR(’ ees No file will de created. ‘)
UNIT = O
GO TO 20
ENDIF
JCFILE = NCHARS(LFNAME)
C-=-== PRIMOS style (defavlt)
OPEN(UNIT. FILE=LFNAME. STATUS=‘0LD *, ERR=8010.
1 FORM=‘UNFORMATTED . ACCESS=‘SEQUENTIAL ‘)

READ(UNIT, END=B020. ERR=8010) TESTLN

2

C
C
g--- The file already exists

CALL BLNKLN

lCALL WRTSTR(' The fxle)”‘//LFNAHE(l:JCFILE)//'" alreaay’//
‘ exists '

IF (E7YORN(’ Shall 1 overwrite 1t7’. LFNAME. EQ. DEFALT)) THEN

ELSgO T0 16
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CLOSE(UNIT)

¢0 70 18
c ENDIF
C—-=-= The file most probadly does not exist or 1t is not a sequential,
g unformatted one.
8010 CONTINUE
CLOSE(UNIT, ERR=8011)
8011 CONTINUE
CALL INQUIR(LFNAME, ‘UNFORMATTED’, EXISTS)
IF (EXISTS) THEN
CALL BLNKLN
CALL WRTSTR(’ e«e The file “°//LFNAME(1: UCFILE)//'" already’//
1 ‘ exists and’)
CALL WRTSTR(‘ has incompatible form and/or access mode. ‘)
CALL WRTSTR( Please specify another file name. '
G0 70 18
ELSE
------- PRIMOS yle (default)
OPEN(UNI Fl LE=LFNAME, STATUS="NEW ‘, ERR=8040,
c 1 FORM=‘UNFORMATTED’, ACCESS="'SEQUENTIAL *)
GO TO 16
c ENDIF
g—-- The file exists, but it seems to be empty.
8020 CONTINUE
CLOSE(UN!T)
C-=-—- PRIMOS style
OPEN(UNIT FILE=sLFNAME, STATUS='0LD‘, ERR=8010,
c 1 FORM= ‘FORMATTED* ACCESSﬂ’SEOUENTIAL')
REWIND(UNIT, ERR=8010)
READ(UNIT.‘(A)'.END-!Z.ERR-BOJO) TESTLN
0 TO 8010
12 CONTINVE
c cO TO 16
g-—- The file exists, however, it is inaccessible.
8030 CONTINUE
CLOSE(UNIT)
CALL BLNKLN
lCALI.. WRTSTR(’ eos Ihc fllt “*//LFNAME(1: UCFILE)// ‘" already’//
‘ exists, ’
CALL WRTSTR( Moreover., it is inaccessible. °)
CALL WRTSTR( ’ Please specify another file. °)
c ¢0 7O 18
E—-- The new file cannot be opened.
8040 CONTINUE
LOSE(UN!T ERR=8041)
8041 CONTINUE
CALL BUNKLN
lCAI.I. WRTSTR(’ ®#«e® The :il: “*//LFNAME(1: JCFILE)//*" cannot’//
’ opened.
CALL WRTSTR( * Bloaso specify another file. )
c GO TO 18
g--— TEST for writing privileges and/or disk space availability
C
16 CONTINVE
C REWIND(UNIT)
[ WRITE( UNIT.ERR-BOSO) TESTLN
REWIND(UNIT)
c C0 TO 20
g——- Unable to write to the file.
8030 CONTINUE
CLOSE(UNIT)

CALL BLNKLN
CALL WRTSTR('’ e®#® Unadble to write to the file °)

c CALL WRTSTR¢ Please specify another filename °)
g--- CHANGE default name if necessary.

18 CONT INVE
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IF (LFNAME. EQ. DEFALT) THEN
DEFALT = ‘QUIT’

ENDIF
cO0 TO 10
gO CONTINUE
FNAME = LFNAME
RETURN
END
C>52>>
gFNDUFL DIIDIDDDDDIIIIDDDIDIDDXDDDXD>3>> Last Change: 4/8/89 TLB
c SUBROUTINE FNDUFL (UNIT, FNAME)
[+ Purpose: Cet filename and open it for UNFORMATED 1/0
g Must be modified for VMS use.
g INPUT: FNAME The defalt name for file (can be ‘QUIT’)
[ OUTPUT: UNIT The FORTRAN unit number on which the file was opened
C et to 1ero if the file was not opened
g FNAME The name of the file (can be ‘GQUIT’)
¢ INCLUDE ‘ENPORTDROSENBERGDSHIP72>INPTBK. CBK*
CHARACTER FNAME# (%), DEFALT®#32, TESTLN#B80O. LFNAME«#32
INTEGER UNIT, JCDFLT. JUCFILE. NCHARS
c LOCICAL NEWL IN. ENDLIN
c EXTERNAL GETWD, PROMPT. BLNKLN., WRTSTR, NCHARS
Ceoee FINDUFL 9000000000000 008000800000000000000800000800080
C

UNIT = PRUNIT
DEFALT = FNAME
LFNAME = FNAME
10 CONTINVE
CALL BLNKLN
JCDFLY = NCHARS(DEFALT) .
CALL PROMPT(’ Please enter the file name (°‘//
1 QEFe%Y(l:JCDFLT)//

NEWLIN = . TRUE.

LFNAME = DEFALT

CALL CETWD(LFNAME., NEWL IN, ENDLIN)

IF (LFNAME. EQ. ‘QUIT’ OR. LFNAME. EQ. '/ ‘) THEN
CALL BLNKLN
CALL WRTSTR(’ ®®#e No file will be sought wse’)

UNIT = O
RETURN
c ENDIF
C=== Crunch on this file name

JCFILE = NCHARS(LFNAME)
C--- PRIMOS style (defalt)
OPEN(UNIT, FILE=LFNAME., STATUS=‘'0OLD ', ERR=8010.

c 1 FORM= ‘UNFORMATTED ‘', ACCESS="SEQUENTIAL *)
c READ(UNIT, END=8010. ERR=8010) TESTLN
C-== The file is open and readable
CALL BLNKLN
CALL WRTSTR(’ File "‘//LFNAME(1: UCFILE)//’* found ‘)
FNAME = LFNAME
c RETURN
C-=- The file most probably does not exist or it is not a sequential

C UNformated one
8010 CONTINUVE
CLOSE(UNIT)
CALL BLNKLN
CALL WRTSTR(’ e##» Unable to find or read °‘//LFNAME)

CALL WRTSTR( "’ Please specify another file name. ‘)
C-== Change defalt name if necessary
IF (LFNAME. EQ. DEFALT) DEFALT = ‘QUIT"
c ¢0 T0 10
END
C222>>>
CEOF ~=———— e e e e e e
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APPENDIX B

An ENPORT File Listing of
The System Used

HEADING
In The Study
HEADING
FILE 13:51: 54 11/01/88 ENPORT-7.2
RESRCH
TITLE

RESEARCH INTO MODAL DECOMPOSITION W/ DAMPINGC

SYSTEM GRAPH DESCRIPTION

NODE TYPE xLoC Yl (C
1A M1G 2100. &00.
1B M1G £00. 600
IA MIG 200, €00,
CA MCG 100. 600!
01 MOG 300 300,
TF1A MTG 200. £00.
0 MOG OO 200
TF2A MTG ¥ 00 A00
TF2B MG 800 £.00
1B MIG 1100 {00
cB MCG 1000 500
SE2 MEC L00. 200.
SE1 MEG 200, 200,
TF1B MTG 200, 400,
RA MRG 100 €00,
RB MRG 1000 oo
RN MRG 600 600

CONNECTOR TYPE FROM 10 VERTICFS
S1 BG i 0
s2 BG GEo or .
PA BG 1A 1A
QA e 1a CA
PB BC IR In
GB BG ' Cl
1 BC ) TFIn
2 Re TFIA 1A
3 BG 01 TH 3K
3 BG T 10
5 DG oo TFin
b BC TRl 1H
7 BC o DA
8 BG TETA 1A
DA DG 1A HA
DB Be 1) Y 800. 500
NA be 1A KN
NB RG i RN

GRAPHICAL ENVIRONMENT

Node size: 1. O000E +00
Connector size. 6. 2500E-01
Scale factor: 9. O0OO0F -01
Horizontal window minimum: -8. BBY4E+01
Hori1zontal window maximum: 1. 1889E+03
Vertical window minimum: 1. O000E +02
Vertical window maximum: 9. O000E +02
Gridding enabled: ON
Cridding visible: ON
Crid size: 1. O000E +02
Default node regime enabled: ON
Default connector regime enabled: OFI°
Default node regime: (]
Default connectr regime: (4
Postprocessor grid: ON
Postprocessor box: ON
Color o 30 O Dark Gray (background)
Color 2 0 100 O Whate (default line and label color)
Color 3 12 50 100 Red (attention)
Color 4 240 350 100 Green (Mechanical)
Color 9 0O ©80 100 Blvue (Rotational)
Color 6 300 50 100 Cyan (Electrical)
<-Color 7 60 950 100 Magentas (Hgdroulxc)
Color 8 180 50 100 low (Thermal



'"HEADINC

NODE EQUATIONS

Number of outputs: 14
Node. 1A Connectors:
Equation: Y = GAIN ’
Y_list X_list
FTPA PTPA
Node: CA Connectors:
Equation: Y = CGAIN ¢ X
Y_list X_list
ETGA Q. GA
Node: TF1A Connectors:
F. 1 = MOD. TFJA
.2 = MOD. TF1A
Equation: Y = CON « X,
Y list X_list
MOD. TF 1A
Node: TF2A Connectors:
F.7 = MOD. TF'A
E. G = MOD. TF2'A
Equation: Y = CON « X,
Y list X_list
MOD. TF2A
Node: TF2B Connectors:
F.S5 = MOD. TI-o'B
E. 6 = MOD. TI-&'B
Equation: Y = CON « X
Y list X_list
MOD. TF2B
Node: IB Connectors:
Equation Y = @AIN ¢ X,
Y_list X_list
F™PB P_PB
Node: CB Connectors:
Equation: Y = GAIN [ 9
Y_list X_list
ETGB [e ¢} :]
Node: GE2 Connectors:
Equatian: Y = STEP « X.
Y_list X_list
ES2 TIME
Node: SE} Connectore:
Equation: Y = STEP (« X.
Y. list X_list
E'S1 TIME
Node. TF1B Connectoys:
. 3 = MOD. TI-)B
E. 4 = MOD. TF1DB
Equation: Y = CON « X
Y list X_list
MmOD. TF1B
Node: RA Connectors:
Equation: Y = GAIN ¢ X,
Y_list X_list
E DA F DA
Node: RB Connectors:
Equation: Y = GAIN ¢ X,
Y_list X_list
E DB F'D
Node: RN " Connectors
Equation: Y = GAIN « X
Y_list X_list
ETNA FTNB
. Equation: Y = QAIN ¢ X
Y_list X_list
E'NB FNA

86

PA
P ) 1 1 1
Parameters
9. 1743E -02
GA
P ) 1 1 1
Parameters
6. 0000E +00
1 2
. F.2
LI N |
P 1 0 1
Parameters
1. O0O0OOE +00
7 8
« F.8
* F.7
P 1 0 1
Parameters
2. 2250E +00
] 6
* [
« E. S5
P 1 0 1
Parameters
-2. 2500E-01
FR
P 1 1 1
Pavrameters
9. 0827E -01
QR
P ) 1 1 1
Parameters
6. O00O0E +00
sz
P ) 1 1 2
Parameters -
0. O000E +00
1. O00OE +00
S1
P 1 1 2
Parameters
0. 000O0E +00
1. O000E +00
3 4
« F 4
.3
P ) 1 0 1
Parameters
1. OOOOE +00
DA
F ) 1 1 1
Parameters
1. O000E +00
DB
P 11 1
Parameters
1. OOOOE +00
NA NB
P ) 1 1 1
Pasrameters
0. O0O00E +00
P ) 1 1 1
Parameters
0. 0000E +00
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