PHYSIOLOGICAL  AND  ECOLOGICAL  INVESTIGATIONS  OF  CLOSTRIDIUM  DIFFICILE     By     Catherine  D.  Robinson                                     A  DISSERTATION     Submitted  to   Michigan  State  University   in  partial  fulfillment  of  the  requirements   for  the  degree  of     Microbiology  and  Molecular  Genetics-­‐  Doctor  of  Philosophy     2014                       ABSTRACT       PHYSIOLOGICAL  AND  ECOLOGICAL  INVESTIGATIONS  OF  CLOSTRIDIUM  DIFFICILE     By     Catherine  D.  Robinson         Disease  caused  by  Clostridium  difficile  is  currently  the  most  prevalent   nosocomial  infection  and  leading  cause  of  antibiotic-­‐associated  diarrhea.    It  is  clear   that  the  intestinal  microbiota  plays  a  role  in  preventing  C.  difficile  infection  in  the   absence  of  antibiotics;  however,  the  mechanisms  involved  in  this  protective  function   are  poorly  understood.    Since  antibiotic  administration  is  an  inducing  factor  of  C.   difficile  infection,  treatment  employing  antibiotics  often  results  in  recurrent  disease,   yet  it  is  still  the  primary  line  of  treatment.    Therefore,  a  central  goal  of  research  in  this   area  is  to  better  define  the  role  of  the  intestinal  microbiota  in  suppression  of  disease,   and  ultimately  develop  alternative  ways  to  prevent  and  treat  C.  difficile  infection.           In  this  thesis,  I  present  a  novel  in  vitro  model  that  was  developed  to  study   complex  fecal  communities.    This  in  vitro  model  is  a  continuous-­‐culture  system  that   utilizes  arrays  of  small-­‐volume  reactors;  it  is  unique  in  its  simple  set-­‐up  and  high   replication.    We  adapted  this  model  to  operate  as  a  C.  difficile  infection  model,  where   in  vivo  C.  difficile  invasion  dynamics  are  replicated  in  that  the  fecal  communities   established  in  the  reactors  are  resistant  to  C.  difficile  growth  unless  disrupted  by   antibiotic  administration.    We  then  go  on  to  use  this  model  to  show  that  newly   emerged,  epidemic  strains  of  C.  difficile  have  a  competitive  fitness  advantage  when   competed  against  non-­‐epidemic  strains.    We  also  show  this  competitive  advantage  in     vivo,  using  a  mouse  infection  model.    This  result  is  exciting,  as  it  suggests  that   physiological  attributes  of  these  strains,  aside  from  classical  virulence  factors,   contribute  to  their  epidemic  phenotype.    Finally,  the  metabolic  potential  of  C.  difficile   in  regards  to  carbon  source  utilization  is  explored,  and  reveals  that  epidemic  strains   are  able  to  grow  more  efficiently  on  trehalose,  a  disaccharide  sugar.    Moreover,   preliminary  in  vivo  mouse  studies  suggest  that  trehalose  utilization  plays  a  role  in   colonization.    Therefore,  the  growth  advantage  conferred  by  this  increased  ability  to   utilize  trehalose  may  contribute  to  the  ecological  fitness  of  these  strains  in  vivo.           The  in  vitro  model  developed  and  presented  in  this  thesis  could  be  used  to   study  many  aspects  of  C.  difficile-­‐microbiota  interactions  and  has  the  potential  to   elucidate  mechanisms  that  are  important  for  in  vivo  resistance  to  establishment  of   disease.    In  addition,  the  metabolic  investigations  described  provide  insight  into   understanding  the  physiology  of  not  only  C.  difficile  as  a  whole,  but  also  physiological   attributes  unique  to  epidemic  strains.    Ultimately,  these  types  of  ecological  and   physiological  investigations  will  bring  us  closer  to  finding  better  ways  to  treat  and   prevent  disease  caused  by  C.  difficile.                               ACKNOWLEDGMENTS           First  of  all  I  would  like  to  thank  my  advisor  Rob  Britton  for  helping  to  make  my   experience  as  a  doctoral  student  so  successful  and  positive.    Having  had  one  child   coming  into  graduate  school  and  then  two  babies  during  my  PhD,  I  had  many  extra   challenges  and  responsibilities  in  addition  to  those  of  a  graduate  student.    Dr.  Britton   was  amazingly  supportive  of  my  family  obligations  and  understanding  about  the   difficulties  that  having  children  brings.    Above  that,  his  encouragement,  support,  and   mentorship  from  an  academic  standpoint  was  exceptional.      I  also  want  to  thank  the   other  members  of  my  graduate  committee,  Dr.  Gemma  Reguera,  Dr.  Chris  Waters,  Dr.   Terry  Marsh,  and  Dr.  Vince  Young  for  their  insight  and  guidance.       I  would  also  like  to  thank  all  of  the  Britton  lab  members,  both  past  and   present.    It  was  a  genuine  pleasure  working  with  all  of  them.    I  couldn’t  have  asked  for   a  more  collaborative  and  pleasant  lab  to  be  a  part  of.    I  want  to  especially  thank  Jenny   Auchtung  for  being  such  a  great  colleague  and  friend.    She  was  like  a  second  mentor   to  me  and  always  had  helpful  advice,  drawn  from  her  abundant  experiences  in   different  areas  of  research  as  a  graduate  student  and  postdoc.    She  was  always  willing   to  lend  an  ear  for  venting  about  both  research  and  child-­‐rearing  frustrations  and   offered  invaluable  support  and  encouragement.         I  can’t  adequately  express  how  much  the  support  of  my  parents  has  meant  to   me  over  the  years.    They  deserve  all  of  the  credit  for  making  me  the  successful  person   I  am  today.    I  am  thankful  that  they  instilled  in  me  the  work  ethic  and  sense  of  self-­‐ pride  and  dedication  required  to  persevere  through  this  process.    The  encouraging     iv   and  reassuring  words  from  them  really  helped  me  along  the  way  and  they  never  fail   to  express  how  proud  they  are  of  me.         Finally,  I  want  to  thank  my  family-­‐  my  husband,  Dan,  and  my  three  girls,  Alex,   Lana,  and  Veda.    They  are  my  real  motivation.    I  truly  don’t  think  a  better,  more   supportive  husband  and  father  exists.    He’s  my  rock  and  my  biggest  fan  and  always   encourages  me  when  I  question  my  abilities.    I  want  to  thank  him  for  believing  in  me   and  giving  me  the  confidence  to  believe  in  myself.      I  want  my  daughter  Alex  to  know   how  much  having  her  by  my  side  has  meant  to  me,  not  only  for  all  of  her  help  with  the   little  ones,  but  how  she  supports  and  encourages  me  in  her  own  way.    I  hope  that  I  am   setting  a  good  example  for  all  of  my  girls  and  that  they  will  see  that  they  can   accomplish  anything  they  set  their  minds  to.                                 v   TABLE  OF  CONTENTS         LIST  OF  TABLES  ............................................................................................................................................x       LIST  OF  FIGURES  ........................................................................................................................................xi           CHAPTER  1:  Overview  of  Clostridium  difficile  Disease  and  Physiology……….……………..1       Antibiotic-­‐Associated  Diarrhea…………………………………………………………………....1     C.  difficile:  the  Bacterium  and  the  Disease…………………..……………………………..….2       C.  difficile  infection  cycle…………………………………………………………………...2       Epidemiology,  disease,  and  virulence  factors………………………………...…...6       Molecular  typing  schemes………………………………………………………………...8     Emergence  of  Epidemic  C.  difficile  Strains………………………………………………...…..9       Current  impact  on  the  health  care  system…………………..…………………....11     Understanding  Disease  Development:  Colonization  Resistance……………………11       Bile  acids  and  germination……………………………………………………….…...…12       Competitive  exclusion………………………………………………...……………….…..13       Direct  antagonism………………………………………………………………………….  14   Understanding  C.  difficile  Physiology:  Metabolism……………………………….……...16   Early  Characterization  of  C.  difficile  physiology………………………….……..18   Studies  of  C.  difficile-­‐microbiota  nutrient  competition…………….………...19   Hydrolytic  enzymes……………………………………………………….………………..22   Proteolysis,  amino  acids,  and  stickland  fermentation……….……………….23   “Omics”  approaches  to  investigating  metabolism….……………………….…27       Genomics……………………………………………………………………………..27       Transcriptomics  and  proteomics…………………………………….…….28       Metabolomics…………....………………………..……………………….……….30   Autotrophy………………………………………………………………………….….………31     Summary………………………………………………………………………………….…….……..…..31     REFERENCES………………………………………………………………………….………...……….34     CHAPTER  2:  Development  of  Single  Chamber  Human  Gut  Microbiota      Mini-­‐bioreactor   Arrays  (MBRA)……………………………………………………………………………….……………………46     Abstract………………………………………………………………………………….……………...….47     Introduction…………………………………………………………………………..………………….48     Materials  and  Methods……………………………………………………………………………....50       Design  of  mini-­‐bioreactor  arrays  (MBRA)………………………………………...50       Collection  of  fecal  samples……………………………………………………..….…….51       Preparation  of  fecal  samples……………………………………………………………51       Media……………………………………………………………………………………..………52       MBRA  operating  conditions  and  sampling………………………..………………53       HPLC  of  SCFA……………………………………………………………….…………………54       SCFA  Analysis…………………………………………………………………………………54       DNA  extraction……………………………………………….………………………………55     vi                   Preparation  of  16S  rRNA  amplicons  for  sequencing…………………….……55   Analysis  of  amplicon  data………………………………………………………….…….56   Comparison  of  cultures  grown  in  BRMW,  BRMW10  and  BRMG     to  the  fecal  slurry……………………………………………………………..…..57   Analysis  of  variation  in  cultures  grown  in  BRMW10  and   comparison  to  the  starting  fecal  inoculum……………………………..59   Results………………………………………………………………………………………………….…..59     Mini-­‐bioreactor  design……………………………………………………………..……..59     MBRA  operation…………………………………………………………….……………….61   Short  chain  fatty  acid  profiles  of  cultures  grown  in  each  medium   revealed  that  BRMW10  communities  were  highly  stable  and  most   similar  to  the  fecal  inoculum………………………………………………………..…..62   Comparison  of  MBRA  microbial  composition  and  structure   demonstrates  that  communities  cultured  in  BRMW10  are  most  similar   to  the  fecal  inoclum.………………………………………………………………...….......67   Comparison  of  class-­‐level  differences  among  reactor  communities   revealed  the  extent  of  reorganization  of  the  microbial  community   during  culture……………………………………………………………….........................70   Examining  the  microbial  community  structure  in  BRMW10  communities   at  more  frequent  time  intervals  revealed  how  communities  diverge   from  day-­‐to-­‐day  and  reactor-­‐to-­‐reactor…………………………………...………71   Discussion……………………………………………………………………………….……………...…75   Comparison  of  community  ecology  in  BRMW10  reactors  to  previously   published  models  reveals  similar  trends  among  the  in  vitro  models….78   Conclusions…………………………………………………………………………………….80   Ackknowlegements………………………………………………………………………………..….80   APPENDIX…………………..…………………….……………………………………………..………..81   REFERENCES………………………………………………………………………………………...…..87           CHAPTER  3:    Epidemic  Clostridium  difficile  strains  demonstrate  increased  competitive   fitness  over  non-­‐epidemic  isolates………………………………………………………….……………..93     Abstract………………………………………………………………………………………….…………94     Introduction……………………………………………………………………………….……………..95     Materials  and  Methods……………………………………………………………….…….………..97       Mini-­‐bioreactor  array  (MBRA)  design  and  operation…………………..……97       Strains,  media,  and  growth  conditions……………………………………………..97   Collection  and  preparation  of  fecal  samples  for  fecal  MBRA     experiments………………………………………………………………..……….….………98   C.  difficile  invasion  and  competition  growth  studies  in  fecal     community  MBRA………………………………………………………..………………….99   Quantitative  PCR  of  tcdA  gene  to  quantify  C.  difficile  invasion…………101   Preparation  of  16S  rRNA  amplicon  sequencing………………………………102   Processing  and  analysis  of  Sequencing  Data……………………….…………..103   Quantitative  PCR  Analysis  of  Competition  Cultures  and  Calculations     of  Competitive  Index………………………………………………………..……………104    vii           C.  difficile  competition  experiments  in  humanized  microbiota  mice   (hmmice)  ……………………………………………………………………..……….……….106   Results…………………………………………………………………………………..………………..108   Fecal  mini-­‐bioreactors  (MBRA)  provide  an  in  vitro  model  to  study  C.   difficile  invasion  in  complex  microbial  communities……………….………108   MBRAs  support  complex  fecal  microbial  communities……………………112   Bioreactor  community  composition  changes  in  response  to     Clindamycin  treatment…………………………………………..………………..……114   Ribotype  027  strains  exhibit  a  competitive  advantage  over  non-­‐027   strains  in  the  presence  of  a  complex  microbiota…………………….……….116   Ribotype  027  strains  display  a  competitive  advantage  in  vivo…………121   Discussion……………………………………………………………………..………………...………123     Fecal  MBRA  as  a  model  for  C.  difficile  invasion…………………………..……127     Conclusions…………………………………………………………………………..………129   Ackknowlegements……………………………………………………….……….………….…….130   APPENDIX…………………..……………….………………………………...………………………..131   REFERENCES……………………………………………………………………...…………….....…..142           CHAPTER  4:  Differential  Metabolism  of  Trehalose  by  Epidemic  Ribotypes  of   Clostridum  difficile……………………………………………………………………………………..……….149     Introduction………………………………………………………………………………………..…..149     Materials  and  Methods……………………………………………………………………...……..154       C.  difficile  strains  used  in  this  study  and  growth  conditions……….……154   Identifying  nutritional  compounds  that  increase  growth  of  Clostridium   difficile.  ………………………………………………………………………………..…..…..155   Growth  experiments  further  investigating  C.  difficile  utilization  of   compounds  identified  in  Phenotype  MicroArray  plates…………….…….157   Trehalose  growth  experiments………………………………….…………..………157   RT-­‐qPCR  analysis  of  treA  expression………………………….……..……………158     Cultures…………………………………………………………..…………………158     RNA  extractions…………………………………………….……………………158     Reverse  Transcription……………………………………..………………….159     Real-­‐Time  PCR  reactions…………………………………………………….159   Alignments  of  TreA  amino  acid  sequences  from  C.  difficile  clinical   isolates  and  other  Gram-­‐positive  bacteria………………………………………162   Construction  of  a  treA  knockout  mutant  in  the  C.  difficile  parent  strain,   CD630Δerm…………………………………………………………………………………..162   Colonization  and  competition  of  CD630Δerm  wild-­‐type  and  treA     mutant  strains  in  a  mouse  model  of  C.  difficile  infection…….……………163   Quantitative  PCR  Analysis  of  Competitions  and  Calculations  of   Competitive  Index…………………………………………………………………………164     Results  and  Discussion………………………………………………………………..…….……..166       Identification  of  carbon  sources  that  C.  difficile  is  able  to  use  for     growth……………………………………………………………..…….…………………….166   Compounds  identified  in  Phenotype  MicroArray  plates  increase     growth  yield  of  several  C.  difficile  strains………………………..………………168    viii   Characterization  of  growth  phenotypes  of  C.  difficile  strains  grown     on  trehalose.………………………………………………..…….………………………….170   Construction  of  a  treA  mutant  and  analysis  of  the  growth     phenotype…………………………………………………………………….……….....…..172   Alignments  of  treR,  the  repressor  of  trehalase  (treA),  reveal  a     conserved  leucine  residue  that  is  substituted  with  isoleucine  in     RT  027  strains…………………………………………………….……….........................174   RT  027  strains  have  increased  treA  expression…………...………………….179   A  treA  knockout  mutant  of  C.  difficile  displays  a  decrease  in  colonization   levels  in  a  mouse  model  of  C.  difficile  infection  and  a  decrease  in   competitive  fitness  compared  to  the  wild  type  strain……………...………181   Summary  and  Future  Directions.…………………………………………………..…….……187   Acknowlegements…………………………………………………………………………..……….189     APPENDIX…………………..………………………………………….……………………...………..190     REFERENCES………………………………………………………………………….……….......…..193     CHAPTER  5:  Discussion  and  Conclusions………………………………………………...………..…198     Discussion……………………………………………………………………………..…….…….…….198     Conclusions…………………………………………………………………………..……….………..203     REFERENCES……………………………………………………………………………....….……….204                                                       ix   LIST  OF  TABLES         Table  1.1.    C.  difficile  metabolic  functions  related  to  growth…………………………….……17   Table  2.1.  SCFA  profiles  for  fecal  inoculum  and  MBRA  cultures…………………….……....67   Table  3.1.  Characterization  of  Strains  Used  in  this  Study…………………………………...….98   Table  S3.1.    Competitive  indices  of  ribotype  027  strains  at  selected  time     points  after  C.  difficile  inoculation  as  determined  by  quantitative  PCR……………..……134     Table  S3.2.  Primers  used  for  qPCR………………………………………………………………….….135   Table  4.1.  Characterization  of  strains  used  in  this  study……………………………….……..154   Table  4.2.    Defined  medium  ingredients  and  concentrations…………………………….…156   Table  4.3.    Primers  used  in  this  study…………………………………………………………………161   Table  4.4.  Compounds  that  conferred  at  least  a  1.5-­‐fold  growth  yield     advantage  in  Biolog  PM1  and  PM2  plates……………………………………………………….……167     Table  S4.1.  Compounds  that  conferred  at  least  a  1.5-­‐fold  growth  yield     advantage  (relative  to  unsupplemented  medium  control)  for  either  one   or  both  strains  in  the  Biolog  PM3-­‐8………………………………………………………………….….191                                             x   LIST  OF  FIGURES         Figure  1.1.  Clostridium  difficile  infection  cycle………………………………………………..……….4     Figure  2.1.  Schematic  of  MBRA  design  and  set-­‐up…………………………………………………61     Figure  2.2.  Short  Chain  Fatty  Acid  analysis  of  bioreactor  cutures………………………..…64     Figure  2.3.  Pearson  Product  Moment  Correlation  Coefficient  of  the  SCFA     composition  in  bioreactor  cultures……………………………………………………………………….65     Figure  2.4.    Microbial  ecology  of  bioreactors  compared  to  the  fecal  inoculum………..69     Figure  2.5.  Comparison  of  the  class-­‐level  distribution  of  microbes  in     bioreactors  and  the  fecal  inoculum………………………………………………………………………..71     Figure  2.6.  Analysis  of  changes  in  community  structure  across  time  in     replicate  reactors…………………………………………………………………………………………………73     Figure  2.7.    Pairwise  analyses  of  changes  in  comminty  structure  across  time     between  reactors…………………………………………………………………………………………..….….74     Figure  S2.1.    SCFA  concentrations  in  bioreactor  cultures………………………………..…..…82     Figure  S2.2.  Pearson  Product  Moment  Correlation  Coefficient  of  the  SCFA     profiles…………………………………………………………………………………………………..…………….83     Figure  S2.3.    Shared  community  structure  of  bioreactor  cultures…………………..………84     Figure  S2.4.    Class-­‐level  community  analysis  of  replicate  reactors  in  different     media.  …………………………………………………………………………………………………………...…….85       Figure  3.1.    An  example  of  a  minibioreactor  array  (MBRA)  used  for  cultivation     of  fecal  microbial  communities..………………………………………………………………………….109     Figure  3.2.  Fecal  bioreactor  communities  prevent  invasion  by  C.  difficile     unless  disrupted  by  treatment  with  clindamycin…………………………………………………110     Figure  3.3.  C.  difficile  proliferation  was  assayed  in  fecal  bioreactors  with     different  levels  of  inoculum  and  in  pure  culture  under  the  continuous-­‐culture   conditions  used  for  bioreactors………………………………………………………………..…………111     Figure  3.4.  Comparison  of  the  community  structure  between  fecal  samples,     mock-­‐treated  and  clindamycin-­‐treated  reactors…………………………………………..………113     xi     Figure  3.5.  Community  structure  changes  in  response  to     clindamycin-­‐treatment………………………………………………………………………………….……116     Figure  3.6.    Competitive  indices  of  ribotype  027  strains  relative  to  non-­‐027     strains  in  the  presence  of  MBRA  fecal  communities………………………………………..……119     Figure  3.7.    Competitive  indices  of  ribotype  027  strains  relative  to  non-­‐027     strains  in  a  mouse  model  of  C.  difficile  infection………………………………………………...…122     Figure  S3.1.  Bacterial  abundance  does  not  change  significantly  in  clindamycin-­‐ treated  reactors……………………………………………………………………………………………….…136     Figure  S3.2.    PCR  screen  of  DNA  samples  from  88  strains  of  C.  difficile  for     detection  of  insert  containing  thyA  or  the  uninterrupted  thyX………………………………137     Figure  S3.3.    Ratios  of  ribotype  027:non-­‐027  C.  difficile  strains  over  time     in  MBRA  competitions………………………………………………………………………………………..138     Figure  S3.4.    Comparison  of  the  community  structure  on  day  7  from     clindamycin-­‐treated  reactors  used  for  C.  difficile  competition  experiments     to  triplicate  mock-­‐treated  and  clindamycin-­‐treated  reactors  infected  with     CD2015…………………………………………………………………………………………………………..…139     Figure  S3.5.  Similar  community  structure  changes  were  observed  in  response     to  clindamycin-­‐treatment  in  competition  bioreactor  communities………………………140     Figure  S3.6.      Levels  of  C.  difficile  strains  across  time  in  mouse  model  of     infection  as  determined  by  plating  from  fecal  pellets……………………………………..……141     Figure  S3.7.    Competitive  indices  (CI)  of  two  competition  pairs  of  ribotype  027     and  non-­‐027  C.  difficile  strains  in  the  MBRA  (circles)  and  Mouse  (triangles)     models………………………………………………………………………………………………………………141     Figure  4.1.  Results  of  growth  yield  experiments  using  compounds  selected     from  Phenotype  MicroArray  plates………………………………………………………………..……170     Figure  4.2.  Maximum  growth  yield  of  C.  difficile  strains  grown  in  the  presence     of  a  range  of  trehalose  concentrations  in  defined  medium…………………………...………171     Figure    4.3.  Growth  yield  of  C.  difficile  strains  belonging  to  several  ribotype     Groups…………………………………………………………………………………………………………….…172     Figure  4.4.      Growth  yields  of  CD630  wild-­‐type  (WT)  and  treA  knock-­‐out  mutant     in  defined  medium  (DM)  supplemented  with  glucose  and  glucose  disaccharide   sugars  (25mM)…………………………………………………………………………………………….…….174    xii     Figure  4.5.    Trehalose  utilization  genes  located  on  the  C.  difficile  chromosome……174     Figure  4.6.  Alignments  of  TreR  amino  acid  sequences  for  several  C.  difficile     strains  of  various  ribotypes………………………………………………………………..……………….175     Figure  4.7.  Alignments  of  TreR  amino  acid  sequences  from  several  Gram-­‐   positive  bacterial  organisms  showing  conservation  of  the  leucine  residue……………176     Figure  4.8.      Ribbon  diagram  of  the  C-­‐terminal  (effector-­‐binding  domain)  of     TreR  from  Bacillus  subtilis  showing  the  locations  of  the  predicted  trehalose-­‐   6-­‐phosephate  binding  pocket  and  conserved  leucine  residue  (Leu-­‐169)…………..…..177     Figure  4.9.  Expression  of  treA  in  several  C.  difficile  strains  grown  in     DM+25mM  trehalose  as  determined  by  RT-­‐qPCR…………………………………………….…..181     Figure  4.10.    CFU/g  feces  of  wild-­‐type  and  treA  mutant  C.  difficile  infected     Mice……………………………………………………………………………………………………………..……183     Figure  4.11.    Competitive  indices  of  wild-­‐type  CD630Δerm  when  competed     against  the  treA  knockout  mutant  in  a  conventional  mouse  model  of  C.  diffiicile   infection………………………………………………………………………………………………….…………186     Figure  4.12.    Total  CFU/g  feces  of  C.  difficile  in  each  group  of  mice……………..………..186                                              xiii   CHAPTER  1         Overview  of  Clostridium  difficile  Disease  and  Physiology         Antibiotic-­‐Associated  Diarrhea     The  advent  of  the  antibiotics  era  in  the  1940’s  is  one  of  the  most  notable  milestones   in  medical  science  history.    It  enabled  the  treatment  of  numerous  bacterial  infections   that  were  previously  fatal.      Unfortunately,  the  use  of  antibiotics  brought  along  with  it   several  unforeseen  complications.      Perhaps  the  most  significant  of  these  is  the   development  of  antibiotic  resistance  (1).    Not  far  behind  it,  however,  is  the  common   side  effect  of  antibiotic  administration,  antibiotic-­‐associated  diarrhea  (AAD).    Often   the  cause  of  AAD  is  unknown,  but  may  be  due  to  several  different  etiologies.      The   antibiotic  compound  itself  can  induce  allergic  or  toxic  interactions  with  the  intestinal   mucosa,  or  general  physiological  effects  on  gut  motility  (2,  3).    Even  more  significant,   however,  are  the  implications  of  the  impacts  that  antimicrobials  have  on  the   intestinal  microbiota.             The  human  gastrointestinal  tract  is  home  to  trillions  of  bacteria,  which  can  be   classified  into  hundreds  of  different  species  (4).    This  large  consortium  of  organisms   plays  a  fundamental  role  in  many  different  aspects  of  our  health  and  physiology,  more   and  more  of  which  are  being  elucidated  all  the  time  (reviewed  in  (5)).    One  important   function  of  the  intestinal  microbiota  is  to  protect  us  from  intestinal  pathogens,  which   occurs  by  many  different  mechanisms  including  modulation  of  the  host  immune   response,  production  of  inhibitory  compounds,  and  competition  for  limited  nutrients     1   or  binding  sites,  also  known  as  colonization  resistance  (6).    Antibiotics,  particularly   broad-­‐spectrum  antibiotics,  not  only  target  the  desired  pathogen  but  also  inflict   collateral  damage  to  the  intestinal  microbiota,  thereby  compromising  these   protective  functions  and  allowing  growth  of  pathogenic  strains  (7).        Several   pathogens  have  been  implicated  in  AAD,  including  Salmonella  spp.,  Clostridium   perfringens,  Staphylococcus  aureus,  Klebsiella  oxytoca,  Clostridium  difficile,  and   Candida  albicans  (2,  8).        The  most  common  of  these  is  C.  difficile,  being  the  causative   agent  in  as  many  as  25%  of  AAD  cases  (9).    Moreover,  C.  difficile  is  responsible  for   ~90%  of  cases  of  pseudomembranous  colitis,  a  more  severe  malady  of  antibiotic-­‐ associated  disease  (10).           C.  difficile:  the  Bacterium  and  the  Disease   C.  difficile  is  a  Gram-­‐positive,  spore  forming,  anaerobic,  motile  rod.      Hall  and  O’Toole   first  isolated  and  described  this  bacterium  in  1935  while  characterizing  bacterial   intestinal  colonization  of  healthy  new-­‐born  infants  (11).      While  there  is  a  high   carriage  rate  of  C.  difficile  in  infants,  as  the  intestinal  microbiota  matures,  C.  difficile  is   quickly  replaced  by  other  strains  (12).      This  process  of  ecological  succession  has   been  demonstrated  in  both  mice  and  humans  (13-­‐16).    Consequently,  asymptomatic   carriage  of  C.  difficile  in  adults  is  very  low  (17).           C.  difficile  infection  cycle.    The  cycle  of  infection  for  C.  difficile  is  unique  compared  to   other  intestinal  pathogens  due  to  its  obligate  anaerobic  physiology  and  complex   interactions  with  the  host  microbiota.    A  simplified  overview  is  presented  in  Figure     2   1.1.    In  general,  a  perturbation  of  the  intestinal  microbiota  is  required  for  disease   development,  usually  by  administration  of  broad-­‐spectrum  antibiotics.    Therefore,  the   intestinal  microbiota  provides  resistance  to  infection  in  healthy  individuals;  functions   of  an  unperturbed  intestinal  microbiota  that  provide  resistance  to  C.  difficile  infection   will  be  reviewed  below.      Since  C.  difficile  is  an  anaerobic  organism,  it  can  only  pass   from  host  to  host  in  the  spore  form.    Therefore,  germination  and  outgrowth  are   required  for  toxin  production  and  establishment  of  disease.    However,  it  is  poorly   understood  which  of  these  key  steps,  germination  or  outgrowth,  are  most  important   for  initiation  of  C.  difficile  expansion  in  the  gastrointestinal  tract.      Once  vegetative   growth  ensues,  exotoxins  are  produced  and  cause  damage  to  the  intestinal   epithelium,  eliciting  an  inflammatory  response  and  establishment  of  disease.    Spores   are  produced  during  the  course  of  infection,  although  it  is  also  unknown  what  the   inducing  factors  are  for  sporulation.    Nonetheless,  formation  of  spores  is  essential  for   host  transmission,  since  it  requires  passage  through  the  aerobic  environment.    Spores   are  shed  through  fecal  material,  facilitated  by  the  development  of  diarrhea.    They  can   survive  in  the  environment  for  very  long  time  periods  due  to  their  inherent  resistance   to  environmental  conditions  such  as  desiccation,  UV-­‐light  damage,  chemicals,  and   extreme  temperatures.    In  healthcare  settings,  environmental  contamination  of   spores  is  a  major  issue  related  to  C.  difficile  infection  control.    Spores  present  on   patient  bedding  resist  removal  during  laundering,  are  recalcitrant  to  alcohol-­‐based   hand  sanitizers,  and  have  been  shown  to  spread  through  airborne  dissemination  (18-­‐ 20).      Moreover,  spores  are  often  transferred  from  patient  to  patient  on  the  hands  of     3   healthcare  workers  (21).      Ingestion  of  spores  by  another  patient  with  reduced   intestinal  resistance  continues  the  cycle.             Figure  1.1.    Clostridium  difficile  infection  cycle.      Changes  to  the  intestinal   environment  induced  by  antibiotic  treatment  present  conditions  that  allow  C.  difficile   spores  to  germinate  and  outgrow.    Production  of  toxins  incites  intestinal  damage  and   development  of  disease.    Undefined  factors  induce  sporulation;  spores  are  shed  from   the  host,  contaminating  the  environment.    Spores  are  transmitted  to  new  hosts,  and   the  cycle  continues.    PMC=  pseudomembranous  colitis.           While  CDI  is  primarily  a  nosocomial  infection,  the  recent  increases  in   community-­‐acquired  infections  offer  the  possibility  of  an  alternative  reservoir  of  C.   difficile.    Several  potential  sources  of  community-­‐acquired  C.  difficile  transmission   have  been  proposed.    Recent  work  has  shown  both  animals  and  food  as  potential   reservoirs  in  the  community  (22).    Another  report  suggests  that  the  high  rate  of     4   carriage  in  infants  is  a  contributor  to  C.  difficile  community-­‐acquired  infections  (23).       In  addition,  a  recent  study  surveyed  30  houses  in  an  urban  city,  and  showed  a  high   degree  of  environmental  contamination  within  the  households  (24).    These  are  all   valid  models  for  reservoirs  of  C.  difficile  outside  of  health-­‐care  environments,  and  it  is   likely  that  there  are  multiple  contributors  to  community-­‐acquired  spread  of  C.   difficile.    Nonetheless,  the  basis  for  the  recent  increases  in  community-­‐acquired  CDI  is   undoubtedly  multifactorial,  and  more  work  needs  to  be  done  in  this  area  to  find  ways   of  preventing  these  infections.       A  major  complication  of  CDI  is  the  high  rate  of  recurrent  disease.    As  many  as   20%  of  patients  will  have  a  recurrent  infection,  and  45%  of  patients  who  have  had  a   second  infection  will  have  subsequent  infections  (25).    Some  patients  have  multiple   recurrent  infections  over  several  months  or  even  years.      The  paradigm  for  recurrent   disease  is  based  on  failure  of  the  intestinal  microbiota  to  reestablish  appropriately   and  restore  resistance  to  C.  difficile.    Recurrence  is  the  result  of  either  relapse  due  to   reinfection  of  the  initial  infecting  strain,  or  infection  by  a  newly  acquired  strain  (26,   27).    Multiple  studies  have  shown  that  the  structure  and  diversity  of  the  intestinal   microbiota  of  patients  with  recurrent  disease  is  significantly  different  from  those  who   do  not  (17,  28).    Indeed,  we  know  that  antibiotic  treatment  can  have  both  short  and   long-­‐term  impacts  on  the  intestinal  microbiome  (29-­‐32).    Since  antibiotics  are   typically  the  first  line  of  treatment  for  CDI,  this  can  serve  to  only  exacerbate  the   problem  by  further  perturbing  intestinal  communities,  thereby  increasing  the  risk  of   recurrent  disease.    Therefore,  much  work  is  being  done  to  try  to  find  new  ways  of   treating  CDI  in  order  to  circumvent  this  problem  and  reduce  recurrence.         5     Epidemiology,  disease,  and  virulence  factors.    The  association  between  C.  difficile   and  antibiotic-­‐associated  disease  was  not  elucidated  until  1978,  when  Bartlett  et  al.   showed  that  it  is  the  primary  causative  agent  of  pseudomembranous  colitis  (33).       Since  then,  much  work  has  been  done  to  investigate  the  epidemiology  and   pathogenesis  of  this  organism.    The  three  major  risk  factors  for  disease  caused  by  C.   difficile  infection  (CDI),  are  antibiotic  treatment,  advanced  age  (>65)  and  exposure  to   a  hospital  setting  (34).    Any  broad-­‐spectrum  antibiotic  has  the  potential  to  initiate   CDI;  however,  some  have  higher  rates  of  triggering  CDI  than  others.    Clindamycin  was   the  major  contributing  antibiotic  initially,  followed  several  years  later  by  those  in  the   cephalosporin  group  (10).    Most  recently,  fluoroquinolones  have  been  added  to  this   list,  due  to  the  emergence  of  fluoroquinalone-­‐resistant  hypervirulent  strains  (35).    In   addition  to  the  elderly,  high  risk  groups  also  include  immuno-­‐compromised   individuals,  patients  who  have  had  gastrointestinal  surgery,  and  persons  taking   gastrointestinal  medications  including  antiperistaltic  drugs  and  proton  pump   inhibitors  (36).    Although  community-­‐acquired  cases  are  rare,  the  incidence  of  these   infections  have  increased  in  recent  years  (37).       The  symptoms  of  CDI  range  from  mild,  self-­‐limiting  diarrhea  to  severe  colonic   inflammation  and  death.    In  severe  cases,  CDI  is  accompanied  by  the  formation  of   pseudomembranes,  termed  pseudomembranous  colitis  (PMC).    Pseudomembranes   are  characterized  as  regions  of  the  mucosa  that  become  inflamed  and  covered  in   yellowish  plaques,  composed  of  cellular  debris  (dead  leukocytes  and  mucosal  cells),   fibrin,  and  mucin  (38).    About  10%  of  patients  with  CDAD  will  develop  PMC  (39).       6   Toxic  megacolon,  a  condition  in  which  complete  loss  of  colonic  function  can  occur,   has  associated  mortality  rates  as  high  as  80%  (9).       The  primary  virulence  factors  recognized  in  this  organism  are  toxins,  TcdA   and  TcdB.    Not  all  C.  difficile  strains  are  toxigenic;  however,  only  toxin-­‐producing   strains  cause  disease.    The  genes  tcdA,  tcdB,  and  associated  regulatory  genes  are   located  on  a  19.6  kb  pathogenicity  locus  (PaLoc)  on  the  chromosome  of  C.  difficile   (40).      Additional  genes  include  tcdR  (a  positive  regulator;  sigma  factor),  tcdC  (a   negative  regulator)  and  tcdE  (a  holin-­‐like  protein).    These  large  toxin  proteins  (308   kDa  and  270  kDa,  respectively)  are  glucosyltransferases;  they  inactivate  members  of   the  Ras  superfamily  of  small  GTPases.    This  inactivation  has  a  cytotoxic  effect  on   target  cells  by  disrupting  intracellular  signaling  pathways  involved  in  interactions  of   the  actin  cytoskeleton  and  initiation  of  apoptosis,  and  induces  inflammation  (41).       Some  strains  produce  an  additional  binary  toxin,  CDT.      Although  its  role  and   significance  in  CDI  is  not  fully  understood,  there  is  evidence  that  it  may  be  associated   with  increased  mortality  (42).       Several  non-­‐toxin  virulence  factors  of  C.  difficile  have  been  studied.      Adhesins   are  bacterial  cell-­‐surface  molecules  that  facilitate  binding  to  host  tissues,  which  in  the   case  of  C.  difficile  are  primarily  mucosal  surfaces.    These  include  proteins  involved  in   intestinal  adherence  by  binding  to  fibronectin,  collagen,  fibrinogen,  and  other   components  of  mucin  or  intestinal  epithelia.    In  a  recent  review  by  Vendantam  et  al.,  a   literature  search  resulted  in  a  substantial  list  of  C.  difficile  proteins  that  have  either   experimentally-­‐demonstrated  or  putative  roles  in  intestinal  adherence  (43).    Several   of  these  are  cell  wall  proteins  (CWPs)  and  surface  layer  proteins  (SLPs).         7     Flagella  also  play  an  important  role  in  bacterial  pathogenesis.    Not  only  are   they  essential  for  motility,  but  can  also  aid  in  adherence.    Motility  has  several   important  functions  for  pathogen  survival.    Being  able  to  navigate  toward  sources  of   nutrients  as  well  as  away  from  detrimental  chemicals  is  advantageous  for  self-­‐evident   reasons.    Moreover,  the  intestinal  epithelium  is  continually  pumping  out  and  turning   over  viscous  mucin;  being  able  to  better  traverse  this  landscape  aids  in  intestinal   colonization.    Experimental  evidence  suggesting  the  importance  of  flagella  to  C.   difficile  in  both  colonization  and  adherence  has  been  reported  (44).           Molecular  typing  schemes.    In  epidemiological  studies,  molecular  typing  of   pathogens  is  used  to  determine  genetic  relatedness  between  clinical  isolates.    This   information  helps  determine  routes  of  transmission  and  sources  of  outbreaks.     Moreover,  it  can  help  to  elucidate  the  spread  of  clonal  lineages  among  populations  at   several  levels  of  resolution;  within  a  small  hospital  population,  regionally,  nationally,   or  even  globally.    There  are  several  different  typing  schemes  used  for  C.  difficile,   including  Restriction  Endonuclease  Analysis  (REA),  North  American  Pulsed-­‐Field  Gel   Electrophoresis  (NAP),  PCR  Ribotyping  (RT),  Multilocus  Sequence  Typing  (MLST),   among  others  (45).      Each  method  utilizes  the  genetic  differences  between  strains  to   classify  them  into  different  groups,  or  types.    There  are  regional  preferences  in  terms   of  which  typing  techniques  are  used;  for  example,  in  North  America  C.  diffcile  is   commonly  typed  by  NAP  group.    Likewise,  REA  and  RT  strain  designations  are   common  in  Europe.    These  typing  methods,  particularly  ribotyping,  are  becoming   more  common  in  North  America  as  well.    Although  a  recent  publication  showed  a     8   strong  correlation  among  typing  methods  used  to  classify  a  set  of  100  international   isolates,  a  common  protocol  for  typing  isolates  would  be  advantageous  for  tracking  C.   difficile,  and  facilitate  epidemiological  studies  (46).         Emergence  of  Epidemic  C.  difficile  Strains   An  increase  in  cases  of  CDI,  marked  by  significantly  higher  morbidity  and  mortality   rates,  has  been  largely  attributed  to  the  recent  emergence  of  epidemic  strains.     Several  outbreaks  were  first  reported  in  Quebec,  Canada  in  2002,  and  several  others   in  the  United  States  between  2000  and  2003  (35,  47).    Analysis  of  isolates  from  these   outbreaks  revealed  a  specific  strain  lineage  of  C.  difficile  was  associated  with  the   majority  of  these  cases,  typed  as  NAP1  (North  American  Pulsed-­‐field  1),  RT  027  (PCR   ribotype),  and  BI  (restriction  endonuclease  analysis).    In  addition,  several  attributes   of  these  strains  were  identified,  including  production  of  binary  toxin  (CDT),   resistance  to  fluoroquinolones,  and  a  deletion  within  the  tcdC  gene,  encoding  the   negative  regulator  of  TcdA  and  TcdB  (35).    Epidemiological  studies  have  reported   that  RT  027/NAP1  strains  are  associated  with  up  to  10-­‐fold  higher  morbidity  rates,   increased  cases  of  severe  disease  leading  to  toxic  megacolon,  and  necessity  for   colectomy  (48).    Furthermore,  mortality  rates  have  been  reported  as  high  as  16.7%;  a   near  10-­‐fold  increase  from  reports  previous  to  the  emergence  of  this  strain  (48).    The   rapid  spread  of  RT  027/NAP1  strains  since  these  initial  outbreaks  is  remarkable.    In   just  a  few  years  following,  it  was  reported  that  57%  of  478  C.  difficile  clinical  isolates   from  88  hospitals  in  Quebec,  Canada  were  NAP1  strains  (49).    Moreover,  RT  027   strains  have  been  shown  to  be  prevalent  in  many  other  hospitals  and  regions  (50-­‐53).       9   In  less  than  a  decade,  this  strain  has  spread  globally  and  been  associated  with  several   more  outbreaks,  namely  in  Europe  (54,  55).      He  et  al.  recently  published  an  extensive   phylogenetic  study  of  RT  027  C.  difficile,  using  whole  genome  sequences  of  a  global   set  of  151  isolates  (56).      Their  analyses  revealed  the  global  spread  patterns  of  two   distinct  lineages  within  this  clade  of  strains,  both  originating  from  North  America,   with  one  undergoing  much  wider  global  dissemination.       Initial  reports  regarding  the  emergence  of  RT  027/NAP1  strains  designated   them  as  hypervirulent  due  to  associations  with  increased  morbidity  and  mortality   rates.      It  has  recently  come  into  question,  however,  if  these  strains  really  are   hypervirulent.    While  several  studies  have  shown  increased  rates  of  disease  due  to   these  strains,  other  reports  have  demonstrated  a  lack  of  correlation  between  ribotype   and  disease  severity  (57-­‐59).    It  is  possible  that  outbreak-­‐associated  RT  027  strains   are  not  representative  of  the  lineage  as  a  whole.    Nonetheless,  the  global  spread  and   prevalence  of  this  group  still  warrant  investigation.    Regardless  of  the  ability  of  these   strains  to  cause  more  severe  disease  within  individuals,  this  observation  suggests   that  they  have  increased  transmission  rates.    In  ecological  terms,  this  implies  that   they  have  an  increased  ecological  fitness  compared  to  strains  of  other,  less  prevalent,   ribotypes  (60).    Therefore,  it  remains  to  be  determined  if  strain  characteristics  aside   from  archetypical  virulence  factors  contribute  to  the  pervasiveness  of  the  RT  027   strains.    A  significant  portion  of  the  work  presented  in  this  thesis  aims  to  address  this   specific  question.         10   Current  impact  on  the  health  care  system.    According  to  a  recent  report  from  the   Centers  for  Disease  Control  and  Prevention  (CDC),  C.  difficile  infection  has  surpassed   MRSA  and  is  now  the  most  common  hospital-­‐acquired  infection  in  the  United  States   (61).        Based  on  current  surveillance  data,  C.  difficile  causes  an  appalling  250,000   infections  per  year.      Moreover,  the  CDC  reported  a  400%  increase  in  related  deaths   between  years  2000  and  2007,  with  a  current  estimate  of  14,000  deaths  per  year.    In   addition,  estimated  annual  hospital  costs  associated  with  CDI  are  in  excess  of  $3   billion  (62).    The  significance  of  C.  difficile  disease  is  clear,  as  is  the  need  to  better   understand  the  pathogenesis  of  this  organism.      Finding  better  ways  of  preventing   and  treating  this  disease  is  a  growing  area  of  current  investigation.       Understanding  Disease  Development:  Colonization  Resistance.         Soon  after  the  advent  of  clinical  antibiotic  use,  it  was  observed  that  antibiotic   treatment  often  resulted  in  increased  susceptibility  to  enteric  pathogens.      This  led  to   the  theory  that  the  intestinal  microbiota  provides  a  protective  function,  termed   ‘colonization  resistance’,  by  inhibiting  growth  of  pathogens  and  development  of   disease.      Research  in  this  area  has  revealed  several  different  mechanisms  at  play,   including  ones  that  involve  not  only  microbiota-­‐pathogen  interactions,  but  also   indirect  inhibition  mediated  through  microbiota-­‐host  interactions  (reviewed  in  (6)).     The  intricacies  and  dynamics  involved  in  colonization  resistance  are  inherently   complex  and  multi-­‐factorial.    Moreover,  the  key  interactions  providing  resistance  are   likely  different  for  different  pathogens.      Therefore,  while  there  have  been  some   developments  in  our  understanding  of  colonization  resistance  in  the  case  of  C.  difficile     11   infection,  much  more  work  is  needed  to  be  done.    There  are  several  mechanisms   proposed  to  be  involved  in  colonization  resistance  against  C.  difficile,  and  these  are   briefly  outlined  below.           Bile  acids  and  germination.    The  capacity  of  C.  difficile  to  colonize  and  establish   infection  is  dependent  on  the  ability  of  spores  to  germinate  and  outgrow.      In  vivo,   these  processes  are  affected  by  bile  acids;  specific  primary  and  secondary  bile  acids   have  been  shown  to  act  as  germinants,  anti-­‐germinants,  and  growth  inhibitors  (63-­‐ 65).    Primary  bile  acids,  both  amino  acid-­‐conjugated  and  unconjugated,  are  secreted   from  the  gall  bladder  and  function  in  fat  and  cholesterol  absorption.    Some  members   of  the  microbiota  can  enzymatically  deconjugate  or  convert  these  primary  bile  acids   into  secondary  bile  acids.    As  such,  the  intestinal  track  contains  a  complex  mixture  of   primary  and  secondary,  conjugated  and  deconjugated  bile  acids,  and  the  proportions   of  each  component  within  this  mixture  are  affected  by  the  microbiota  that  are   present.      Giel  et  al.  recently  demonstrated  this  using  a  mouse  infection  model  to  show   that  the  balance  of  bile  acids  under  normal  conditions  is  such  that  germination  is   inhibited,  yet  following  antibiotic  treatment  changes  to  the  microbiota  results  in  a   shift  in  bile  acids  to  a  state  which  allows  spore  germination  and  outgrowth  (66).      To   further  support  the  role  of  bile  acids  in  colonization  resistance  and  demonstrate  that   this  mechanism  can  be  exploited  as  a  way  to  prevent  infection,  Howerton  et  al.   showed  that  a  bile  acid  analog,  CamSA,  could  prevent  spore  germination  and   therefore  colonization  and  development  of  disease  in  mice  (67).    Future  work  in  this     12   area  is  needed  to  better  define  the  role  of  bile  acids  in  colonization  resistance  and  has   the  potential  to  lead  to  novel  ways  of  preventing  CDI.         Competitive  exclusion.    A  central  mechanism  of  colonization  resistance  that  can  be   applied  to  many  intestinal  pathogens  involves  direct  out-­‐competition  by  the   microbiota  for  nutrient  sources  and  intestinal  binding  sites,  also  referred  to  as   competitive  exclusion  or  niche  exclusion.    Indeed,  examples  for  both  of  these  exist  in   the  case  of  C.  difficile  inhibition.      Initial  evidence  that  competition  occurs  between   intestinal  microbiota  and  C.  difficile  was  demonstrated  in  both  an  in  vitro  chemostat   model  and  an  in  vivo  mouse  model  (68).      Further  investigation  by  Wilson  and  Perini   identified  several  compounds  for  which  the  microbiota  of  hamsters  can  outcompete   C.  difficile  in  vitro  (69).    These  findings  were  only  recently  directly  tested  in  an  in  vivo   mouse  model  to  show  that  C.  difficile  metabolism  of  sialic  acids  plays  a  role  in  gut   colonization  (70).      Few  studies  directly  testing  competition  for  specific  nutrients   exist;  however,  the  general  metabolic  capabilities  of  C.  difficile  will  be  extensively   reviewed  in  the  next  section.           In  addition  to  nutrient  availability,  another  important  element  of  an   organism’s  niche  is  spatial  availability.    Regarding  intestinal  colonization,  this   encompasses  the  ability  to  bind  to  mucosal  components,  such  as  fibronectin,  collagen,   and  fibrinogen  (71).      Several  cell  surface  molecules  of  C.  diffcile  have  been  implicated   to  be  involved  attachment,  including  fibronectin-­‐binding  proteins,  cell  wall  proteins,   and  surface  layer  proteins  (reviewed  in  (43)).    The  majority  of  these  studies  were   conducted  using  in  vitro  conditions  and  therefore  the  contribution  of  these  adhesins     13   to  in  vivo  colonization  has  not  been  directly  tested,  nor  have  the  specific  competing   members  of  the  microbiota  been  identified.             This  concept  of  niche  exclusion  led  to  the  hypothesis  that  non-­‐toxigenic  C.   difficile  could  be  used  to  treat  or  prevent  CDI.      The  premise  is  that  they  will  either   occupy  the  specific  niche  and  therefore  exclude  toxigenic  C.  difficile,  or  outcompete   already  colonized  toxigenic  C.  difficile,  therefore  displacing  and  eliminating  them.     Borriello  et  al.  presented  evidence  supporting  this  hypothesis  when  they  showed  that   pre-­‐colonization  of  non-­‐toxigenic  C.  difficile  prevented  disease  development  in  a   hamster  infection  model  (72).    A  few  years  later  this  was  tested  in  two  hospital   patients  with  recurrent  CDI,  both  of  which  had  no  additional  bouts  of  relapsing   disease  following  administration  of  the  non-­‐toxigenic  C.  difficile  (73).    More  recently,   additional  work  investigating  non-­‐toxigenic  C.  difficile  prevention  of  disease  has  been   conducted  in  hamsters  (74,  75).    This  work  supports  the  theory  of  niche  exclusion  in   the  intestinal  environment  and  future  work  to  identify  specific  members  of  the   microbiota,  which  compete  with  C.  difficile  for  its  required  niche,  will  contribute  to   our  understanding  of  the  role  of  colonization  resistance  in  CDI.     Direct  antagonism.    Additional  mechanisms  of  colonization  resistance  include  ones   where  there  is  direct  antagonism  of  C.  difficile  by  production  of  inhibitory  compounds   by  the  microbiota;  these  include  short  chain  fatty  acids  (SCFAs),  lactate,  and   bacteriocins.    Several  studies  have  investigated  the  effects  of  SCFAs  on  C.  difficile   colonization  in  both  in  vivo  and  in  vitro  models  (76-­‐78).    Much  of  the  work  supports   that  SCFAs  suppress  C.  difficile  colonization,  however,  some  of  these  results  are     14   conflicting.    For  example,  Su  et  al.  did  not  see  a  difference  in  colonization  levels  of  C.   difficile  in  mono-­‐associated  mice  when  administered  physiologically  relevant   concentrations  of  SCFAs  (77).        The  ability  of  lactate,  another  organic  acid,  to   suppress  C.  difficile  colonization  has  also  been  shown  (79).      In  this  work,  lactate   produced  by  a  potential  probiotic  strain,  Streptococcus  thermophilis,  was   demonstrated  to  ameliorate  CDI  in  a  mouse  infection  model.    It  is  known  that   intestinal  microbiota  also  produce  lactic  acid,  and  therefore,  this  work  supports  the   potential  role  of  lactic  acid  in  colonization  resistance.    Lastly,  Rea  et  al.  discovered   that  a  human  fecal  isolate,  Bacillus  theringiensis,  produces  a  bacteriocin  with  narrow-­‐ spectrum  activity  against  C.  difficile  (80).      To  date,  this  is  the  only  example  of  a  C.   difficile-­‐specific  bacteriocin  produced  by  the  intestinal  microbiota,  however,  it  shows   that  there  are  specific  antagonistic  mechanisms  employed  by  intestinal  microbiota   against  C.  diffiicle  and  future  work  in  this  area  may  contribute  additional  insight.         In  summary,  several  mechanisms  utilized  by  the  intestinal  microbiota  to  either   directly  or  indirectly  suppress  C.  difficile  have  been  implicated  to  contribute  to   colonization  resistance.    While  some  mechanisms  have  been  directly  tested  in  in  vivo   models,  most  have  not.    Moreover,  the  specific  member/s  of  the  intestinal  microbiota   that  are  responsible  for  these  inhibitory  functions  have  generally  not  been  identified.       Considering  the  variability  in  microbial  communities  among  individuals,  it  is  likely   that  different  strains  perform  these  activities  in  different  people.    Therefore,  there  is   still  much  to  be  done  in  this  area  to  understand  colonization  resistance  and  be  able  to   exploit  these  mechanisms  for  prevention  or  treatment  of  CDI.           15   Understanding  C.  difficile  Physiology:  Metabolism     The  genus  Clostridium  is  very  diverse,  comprised  of  both  medically  and   biotechnologically  important  members.    The  metabolic  capabilities  of  many  of  these   species  have  been  investigated;  perhaps  the  most  well  known  is  the  industrially   relevant  solventogenic  clostridia.    In  contrast  to  some  of  these  other  clostridial   species,  little  is  known  about  the  nutritional  requirements  and  nutrient  utilization   capabilities  of  C.  difficile.    Since  the  discovery  of  CDI,  a  large  portion  of  research  has   been  focused  on  the  epidemiology  and  pathology  of  C.  difficile  rather  than  its   physiology.      That  approach  is  changing,  however,  with  the  growing  body  of  evidence   supporting  that  CDI  is  a  microbiome-­‐mediated  disease.      More  attention  is  being   focused  now  on  the  colonization  strategies  of  C.  difficile  and  aspects  of  its  general   biology  and  physiology,  including  metabolism,  sporulation,  and  germination.         It  is  clear  that  the  intestinal  microbiota  plays  a  role  in  resistance  to  C.  difficile   colonization  and  disease  establishment.    As  reviewed  above,  a  primary  mechanism  at   play  is  likely  competition  for  limited  nutrients  within  the  gastrointestinal  tract.     Understanding  better  the  metabolic  strategies  that  C.  difficile  employs  to  grow  in  the   highly  competitive  intestinal  environment  could  help  to  elucidate  novel  ways  to   prevent  or  control  disease  development.    In  the  following  pages  I  will  review  what  is   known  about  C.  difficile’s  metabolic  capabilities  based  on  published  literature,  with  a   focus  on  nutrients  contributing  to  vegetative  growth.      The  metabolic  functions,   associated  compounds,  experimental  approaches  used,  and  relevant  references   identified  in  the  literature  and  included  in  this  review  are  listed  in  Table.  1.1.           16   Table  1.1.    C.  difficile  metabolic  functions  related  to  growth.     Metabolic  Function   Sugar  fermentation   Stickland   fermentation   Hydrolysis  of  host   tissue  components   Metabolism  of   mucin  components   Amino  acid   utilization   Ethanolamine   utilization   Compounds  Metabolized   Glucose,  fructose,  mannitol,   salicin,  xylose,  galactose,   maltose,  sucrose,  lactose,   raffinose,  inulin,  glycerol   Mannose,  melezitose,  sorbitol,   ribose,  cellobiose,  trehalose   raffinose,  stachyose   Glucose,  N-­‐acetylglucosamine   Amino  acids     Hyaluronic  acid   Chondroitin-­‐4-­‐sulfate,   heparin,  collagen   Gelatin   Sialic  acids  (N-­‐ acetyleneuraminic  acid)     Essential  amino  acids:   cysteine,  isoleucine,  leucine,   proline,  tryptophan,valine   Ethanolamine   Carbon  fixation  (CO2  +  H2)     General  metabolism       (In  silico  analysis)     General  metabolism   (transcriptomics)     Autotrophy   General  metabolism   (proteomics)   General  metabolism   (metabolomics)     Intestinal  environment   metabolites   Experimental  Approach   In  vitro  –  batch  culture   References   (81,  82)   In  vitro  –  batch  culture   In  vitro  –  batch  culture   In  vitro  gut  model   In  vitro  –  batch  culture   Proteomics   In  vitro  -­‐  biochemical  assay   In  vitro  -­‐  biochemical  assay   (82,  83)     (82)   (84)   (85-­‐87)   (88)   (89-­‐92)   (91,  92)   In  vitro  –  batch  culture   In  vitro  gut  model   (83)   In  vivo  -­‐  mouse  model   Defined  medium   development   (70)   Structural  and  biochemical   analysis  of  eut  operon   In  vitro  –  batch  culture     Whole  genome  sequencing   and  annotation   In  vitro  vs  in  vivo  (pig  ileal-­‐ ligated  loop  model)   In  vitro  vs  in  vivo   (monoassociated  mice)   In  vitro  vs  in  vivo  (pig  ileal-­‐ ligated  loop  model)   Analytical  chemical  analysis   of  in  vivo  (mouse)  samples   (84)   (93)   (94)   (95)     (96)   (97)   (98)   (88)   (82)       The  nutritional  landscape  of  the  gut  is  remarkably  complex,  dependent  on  factors  of   the  host’s  genetics  and  diet,  as  well  as  the  intestinal  microbial  community,  which  has   been  shown  to  be  highly  variable  from  person  to  person  (99).      Potential  nutrient   sources  in  the  gut  come  from  the  host  diet,  host  tissues  and  secreted  compounds,   components  of  microbial  cells,  and  metabolites  of  the  host  and  microbiota.    While  it  is     17   sometimes  assumed  that  the  intestinal  environment  is  nutrient-­‐rich,  it  is  in  fact  a  very   nutrient-­‐poor  environment,  especially  in  the  large  intestine.    Most  nutrients  are   depleted  from  the  intestinal  contents  in  transit  through  the  small  intestine  by  the   microbes  in  this  upper  region  and  by  host  degradation  and  nutrient  uptake.       Moreover,  the  niche-­‐adapted  commensal  microbiota  present  a  highly  competitive   environment  for  enteropathogens  to  obtain  the  limited  nutrients  that  are  available.       The  nutrient  utilization  and  competitive  strategies  of  a  few  enteropathogens,  such  as   Salmonella  enterica  and  Escherichia  coli,  have  been  extensively  studied  (reviewed  in   (100).    Some  of  the  key  nutritional  resources  exploited  by  these  pathogens  include   oligopeptides,  mucus-­‐derived  sugars  and  proteins,  ethanolamine,  and  1,2-­‐propandiol.       While  the  strategies  used  by  C.  difficile  are  poorly  defined  to  date,  it  is  likely  that  it   utilizes  some  of  the  same  resources,  and  the  growing  body  of  literature  in  this  area  is   helping  to  paint  an  ever-­‐clearer  picture  of  its  intestinal  niche.         Early  Characterization  of  C.  difficile  physiology.    In  the  original  paper  describing  C.   difficile  (then  named  Bacillus  difficilis),  a  classical  battery  of  microbiological  tests  was   conducted  to  characterize  this  newly  discovered  intestinal  bacterium  (11).      They   noted  a  difficulty  in  growing  this  organism  and  interpreting  the  employed  assays,   mainly  due  to  the  strictly  anaerobic  conditions  required,  hence  the  name  “difficilis”.     Nonethethless,  a  short  list  of  nutrients  utilized  by  C.  difficile  was  reported  including   dextrose,  fructose,  mannitol,  salicin,  xylose  and  to  a  lesser  extent  galactose,  maltose,   sucrose,  lactose,  raffinose,  inulin,  and  glycerol  (Table  1.1).      Their  preliminary   experiments  were  focused  more  on  characterization  of  this  bacterium  in  order  to     18   differentiate  it  from  other  intestinal  isolates  and  not  as  an  extensive  investigation  into   its  metabolic  capabilities.         Over  four  decades  after  this  initial  description  of  C.  difficile,  its  association  with   antibiotic-­‐associated  disease,  primarily  pseudomembranous  colitis,  was  published   (33).    At  a  time  when  genomic-­‐based  diagnostic  assays  were  not  available,  there  was   a  need  to  further  develop  microbiological  assays  for  clinical  identification  of  this   pathogen.      Some  additional  primary  characterization  was  conducted  by  Hafiz  et  al.  in   1977,  but  soon  after  simplified  protocols  that  were  more  practical  for  clinical   application  were  developed  by  Nakamura  et  al.  (83,  101).    In  both  studies,  the   carbohydrate-­‐fermentation  properties  of  large  strain  sets  (30  and  82,  respectively)   were  investigated.    Nakamura  et  al.  tested  for  fermentation  of  28  different   carbohydrates,  reporting  positive  results  for  11  of  them,  many  of  which  overlaped   with  the  previously  published  results  of  Hall  and  O’Toole.    This  added  mannose,   melezitose,  sorbitol,  ribose,  cellobiose,  and  trehalose  to  the  list  of  fermentable   carbohydrates.    They  also  noted  that  all  82  strains  liquefied  2%  gelatin,  and  that  the   additional  ability  to  ferment  mannitol  was  a  unique  characteristic,  allowing  it  to  be   distinguished  from  other  subterminaly  sporulating  clostridia  (83).           Studies  of  C.  difficile-­‐microbiota  nutrient  competition.    The  observation  that   antibiotic  treatment  was  required  for  development  of  CDI  sparked  much  interest  into   understanding  the  role  of  the  intestinal  microbiota  in  resistance  to  disease.    Initial   work  replicating  this  observation  in  both  hamster  and  mouse  models  showed  that  the   intestinal  microbiota  repressed  C.  difficile  growth  since  it  was  only  able  to  colonize     19   the  intestinal  tracts  of  gnotobiotic  or  antibiotic-­‐treated  animals  (102,  103).    Wilson   and  Perini  went  on  to  further  investigate  the  mechanism  of  this  protective  function,   hypothesizing  that  competition  between  the  intestinal  microbiota  and  C.  difficile  for   specific  limited  nutrients  was  important.    A  foundation  for  these  studies  was   previously  established  by  Freter  et  al.  who  studied  the  interactions  and  colonization   dynamics  between  intestinal  microbiota  and  Escherichia  coli,  and  had  developed  a   continuous-­‐flow  culture  model  of  the  mouse  large  intestine  (104-­‐107).      Indeed,  they   had  already  shown  that  the  intestinal  microbiota  could  displace  or  inhibit  growth  of   C.  difficile  in  their  in  vitro  model  (68).    The  fact  that  these  dymanics  could  be   replicated  in  the  continuous-­‐flow  culture  system  supported  the  idea  that  competition   for  growth-­‐limiting  nutrients  was  occurring.    Wilson  and  Perini  first  showed  that  C.   difficile  grew  slower  than  the  dilution  rate  of  the  in  vitro  system  in  spent  filtrates  of   the  model,  which  had  been  seeded  with  mouse  microbiota  (84).      This  suggested  that   important  nutrients  had  been  depleted  by  the  mouse  microbiota  in  the  medium,   which  was  prepared  from  cecal  contents  of  germ-­‐free  mice.    Analysis  of  the   carbohydrates  in  fresh  and  spent  medium  revealed  several  components  that  were   significantly  depleted  in  the  spent  medium.    Individually  adding  these  back  to  the  C.   difficile  spent  medium  cultures  increased  the  growth  rate  of  C.  difficile,  but  only  for   three  of  the  components  tested;  glucose,  N-­‐acetylglucosamine,  and  N-­‐ acetylneuraminic  acid.      It  is  interesting  to  note  that  the  latter  two  of  these  three  are   constituents  of  mucin.  This  was  the  first  time  that  specific  nutrients  important  for  C.   difficile  growth  in  the  context  of  the  intestinal  environment  were  identified.    Another   interesting  finding  of  this  work  was  that  C.  difficile  can  only  utilize  these  nutrients  in     20   their  free  form,  since  it  lacks  the  ability  to  cleave  them  from  mucin  directly  (84).       Therefore,  it  still  requires  the  degradative  functions  of  other  members  of  the   intestinal  microbiota  to  be  able  to  utilize  these  compounds  in  vivo,  further  supporting   the  complexity  of  these  competitive  interactions.     Only  recently  was  utilization  of  mucin-­‐derived  nutrients  further  investigated   in  vivo.    Ng  et  al.  used  a  mouse  model  of  C.  difficile  invasion  to  show  that  sialic  acids   (specifically,  N-­‐acetylneuraminic  acid)  impact  the  levels  of  C.  difficile  colonization  in   the  mouse  large  intestine  (70).    Moreover,  their  work  demonstrated  that  members  of   the  microbiota  (in  these  experiments,  Bacteroides  thetaiotaomicron)  that  can   hydrolyze  sialic  acids  from  the  mucosa  are  required  for  C.  difficile  to  be  able  to  utilize   them,  as  suggested  in  the  work  by  Wilson  and  Perini.      C.  difficile  expansion  was  lower   in  mice  when  it  was  co-­‐colonized  with  a  sialidase-­‐deficient  strain  of  B.   thetaiotaomicron  rather  than  the  wild-­‐type  strain.    Furthermore,  this  decrease  in   colonization  levels  was  restored  when  the  mice  were  fed  free  sialic  acid.    Additional   support  for  the  importance  of  sialic  acid  availability  was  demonstrated  by  showing  a   4-­‐fold  decrease  in  colonization  between  wild-­‐type  C.  difficile  and  a  mutant  unable  to   metabolize  N-­‐acetylneuraminic  acid.      However,  it  is  clear  that  additional  nutrients   are  important  for  C.  difficile  colonization  in  vivo,  since  the  mutant  was  still  able  to   reach  relatively  high  levels  (7  x  107  CFU/ml  feces).      Nonetheless,  this  work  is   important  for  understanding  the  metabolic  functions  of  C.  difficile  playing  a  role  in   intestinal  invasion;  hopefully,  more  in  vivo  work  similar  to  this  will  be  done  to   provide  insight  in  this  area.           21   Hydrolytic  enzymes.    Hydrolytic  enzymes  comprise  a  class  of  virulence  factors   common  to  bacterial  pathogens  (108).    More  specifically,  these  refer  to  enzymes  that   can  hydrolyze  different  components  of  host  tissues.    Some  classic  examples  include   neuraminidase,  hyaluronidase,  collagenase,  gelatinase,  and  heparinase.    These  are   important  to  pathogens  for  two  main  reasons.    One,  they  are  integral  in  pathogenesis   because  they  incite  tissue  damage,  stimulating  inflammatory  responses  and  allowing   access  to  underlying  tissues.    Secondly,  the  products  of  the  hydrolysis  reactions  can   be  used  as  nutrient  sources.      Furthermore,  the  activity  of  hydrolytic  enzymes  has   been  demonstrated  for  several  isolates  of  the  human  fecal  microbiota,  particularity  in   reference  to  the  break  down  of  host  mucin,  supporting  that  these  compounds  are  an   important  source  of  nutrients  for  organisms  that  inhabit  the  intestinal  tract  (109).       The  hydrolytic  activities  of  C.  difficile  have  not  been  extensively  studied.    The   studies  that  have  been  done  generally  include  poorly  characterized  strains,  often  not   specifying  the  virulence  or  toxigenicity  of  the  strains.    Drawing  conclusions  from   these  studies  is  even  more  difficult  in  light  of  the  conflicting  and  inconsistent  results.       For  example,  Hafiz  et  al.  screened  21  isolates  for  hyaluronidase  activity  and  reported   them  all  to  be  positive,  while  Popoff  and  Dodin  then  screened  25  isolates  finding  them   all  hyaluronidase  negative  (89,  90).    Later,  a  study  was  published  by  Borriello  et  al.   that  screened  three  groups  of  strains  of  varying  virulence  for  the  activity  of  four   different  hydrolytic  enzymes;  hyaluronidase,  chondroitin-­‐4-­‐sulfatase,  heparinase,  and   collagenase  (91).    They  reported  nine  of  the  eleven  strains  to  have  positive  (or  weak)   hyaluronidase  and  chondroitin-­‐4-­‐sulfatse  activity,  all  eleven  have  positive  (or  weak)   heparinase  activity,  and  only  6  to  have  collagenase  activity  (of  which  5  were  weak).         22   While  there  were  no  strong  correlations  with  virulence,  there  was  a  trend  of  more   hydrolytic  activity  in  the  more  virulent  strains.    The  same  group  also  published  a   larger  study  of  30  strains  of  known  virulence  or  toxin  production  where  they  again   screened  for  the  same  hydrolytic  activities  (92).    Again,  they  concluded  that  there   were  no  direct  correlations  between  enzymatic  activity  and  virulence  or  toxigenic   status;  however,  the  most  virulent  strains  in  their  analyses  had  the  most  positive   results,  whereas  many  of  the  lesser  virulent  strains  had  more  negative  results.    It  is   unclear  whether  the  hydrolytic  capabilities  of  C.  difficile  play  more  of  a  direct  role  in   virulence  by  damaging  host  tissues  and  breaking  down  the  mucosal  barrier  as  a   means  of  allowing  the  toxins  access  to  the  underlying  epithelia,  or  if  they  serve  to  play   a  more  indirect  role  by  providing  nutrients  for  growth  and  expansion  in  the  intestinal   environment.    In  essence,  these  two  functions  are  difficult  to  separate  for  C.  difficile   since  its  ability  to  compete  with  the  intestinal  microbiota  and  colonize  is  such  an   integral  part  of  its  pathogenesis.    Nonetheless,  more  investigation  in  this  area  is   warranted  and  would  provide  much  needed  insight  into  important  metabolic   strategies  of  C.  difficile.       Proteolysis,  amino  acids,  and  stickland  fermentation.    In  1989,  Seddon  and   Borriello  developed  the  first  chemically  defined  medium  specifically  for  growth  of  C.   difficile  (110).      Components  included  9  amino  acids,  N-­‐acetylglucosamine,  and  a  mix   of  vitamins  and  minerals.    They  tested  10  different  strains  in  this  medium,  and   growth  was  adequate,  yet  poorer  than  growth  in  the  standard,  rich  medium  typically   used  for  C.  difficile,  Brain  Heart  Infusion  (BHI)  medium.      Several  years  later,     23   Karasawa  et  al.  more  thoroughly  characterized  the  in  vitro  growth  requirements  of  C.   difficile  by  identifying  the  essential  amino  acids  and  vitamins  needed  for  optimum   growth  (93).    Essential  amino  acids  included  cysteine,  isoleucine,  leucine,  proline,   tryptophan,  and  valine;  only  three  vitamins  were  found  to  be  essential:  biotin,   pantothenate,  and  pyridoxine.    Their  optimized  defined  medium  resulted  in  growth   comparable  to  that  in  BHI  medium,  and  was  a  better  alternative  for  physiological   studies.       Seddon  and  Borriello  observed  that  C.  difficile  growth  was  stimulated  when   provided  a  source  of  peptides,  such  as  proteose  peptone  or  casein  hydrolysate,   hypothesizing  that  it  may  prefer  to  grow  on  short  peptides  rather  than  free  amino   acids.    To  further  investigate  the  proteolytic  capabilities  of  C.  difficile,  they  screened   10  strains  using  various  proteolytic  assays  (111).    They  used  plate  assays  as  well  as  a   variety  of  biochemical  assays  using  both  whole  cell  suspensions  and  supernatant  to   separate  cell-­‐associated  and  extracellular  enzymatic  activity.    In  agreement  with  their   previous  work  investigating  the  hydrolytic  activities  of  these  strains,  they  found   variable  proteolytic  activity  among  the  strains  with  no  direct  correlation  to  toxigenic   or  virulence  status;  however,  they  again  observed  a  trend  of  the  most  virulent  strains   having  the  most  proteolytic  activity.    Furthermore,  they  confirmed  the  collagenase   activity  previously  reported,  that  there  was  no  albuminase  activity,  and  no   chymotrypsin  activity.    They  did  observe  the  presence  of  an  enzyme  with  trypsin-­‐like   activity  and  further  biochemical  characterization  of  the  partially  purified  enzyme   suggested  it  was  similar  to  the  known  proteolytic  virulence  factor,  clostripain,  of  C.   histolyticum,  another  Clostridial  pathogen.      Finally,  the  authors  proposed  that  C.     24   difficile’s  proteolytic  activity  allows  for  generation  of  amino  acid  sources  for   metabolism  and  growth  and  therefore  may  contribute  to  the  virulence  of  this   organism.    For  example,  ATP  generation  through  fermentation  of  amino  acids  has   been  demonstrated  and  will  be  discussed  next.     First  discovered  in  1935,  Stickland  observed  that  extracts  from  Clostridium   sporogenes  were  able  to  ferment  amino  acids  in  a  pair-­‐wise  fashion  in  which  one   amino  acid  (Stickland  donor)  was  oxidized  while  another  amino  acid  (Stickland   acceptor)  was  reduced  (112).    Subsequent  work  has  shown  these  reactions  to  be   utilized  by  other  proteolytic  Clostridia.    Building  upon  the  previous  work  showing  C.   difficile’s  proteoltic  activity  and  ability  to  utilize  free  amino  acids,  Jackson  et  al.   investigated  whether  C.  difficile  was  able  to  also  utilize  Stickland  reactions  for  growth   (85).    Indeed,  they  showed  that  C.  difficile  growth  was  increased  when  cells  were   grown  in  minimal  medium  supplemented  with  Stickland  pairs  of  amino  acids.       Furthermore,  this  metabolic  activity  was  dependent  on  the  presence  of  selenium  in   the  medium.      Using  the  newly  sequenced  and  annotated  genome  data  from  the  C.   difficile  type  strain,  CD630  (96),  they  identified  two  selenoenzymes  likely  to  be   involved  in  these  reactions,  glycine  reductase,  and  D-­‐proline  reductase.      Expression   analysis  showed  both  of  these  enzymes  were  expressed  in  the  presence  of  the   appropriate  Stickland  donor  amino  acids  (glycine,  proline,  or  hydroxyproline).    They   were  also  able  to  purify  and  further  characterize  D-­‐proline  reductase,  observing  that   the  biochemistry  of  this  enzyme  is  slightly  different  from  other  known  proline   reductases  since  it  is  does  not  require  divalent  cations  and  is  inhibited  by  zinc.    This   was  the  first  demonstration  that  Stickland  amino  acid  fermentation  is  important  for     25   growth  of  C.  difficile  and  the  identification  of  two  enzymes  that  may  play  critical  roles   in  this  metabolic  function.    Moreover,  if  Stickland  fermentations  are  critical  for   optimum  growth  in  the  intestinal  environment,  is  suggests  that  the  availability  of   selenium  could  be  an  important  growth  factor.    More  recent  work  has  gone  on  to   investigate  the  transcriptional  regulation  of  the  glycine  reductase  and  D-­‐proline   reductase  gene  clusters  and  has  identified  that  it  is  proline-­‐dependent  and  mediated   by  the  protein  PrdR  (86).            Based  on  the  evidence  suggesting  the  importance  of  Stickland  fermentation   for  C.  difficile  metabolism  and  that  the  organisms  utilizing  this  metabolic  strategy  are   limited,  Wu  et  al.  hypothesized  that  the  enzymes  involved  could  be  potential  narrow-­‐ spectrum  drug  targets  for  development  of  novel  C.  difficile  treatment  (87).       Furthermore,  recent  transcriptomic  and  proteomic  studies  have  demonstrated  that   these  enzymes  are  expressed  in  in  vivo  models  (88,  98).    The  activity  of  D-­‐proline   reductase  requires  the  conversion  of  L-­‐proline  to  D-­‐proline,  a  function  carried  out   PrdF,  D-­‐proline  racemase.      An  insertional  knock-­‐out  mutant  of  PrdF  showed  no   significant  reduction  in  growth  rate  in  early  log  phase;  however,  mid  and  late-­‐log   phase  growth  was  reduced  resulting  in  significantly  lower  final  growth  yield  of  the   mutant.      No  affect  on  virulence  was  reported  as  there  was  no  difference  in  survival   time  of  hamsters  infected  with  the  wild  type  or  mutant  strains  and  there  was  no   significant  difference  in  toxin  expression  in  vitro  (87).    The  generation  of  knock-­‐out   mutants  of  several  genes  in  the  Stickland  fermentation  pathways  in  this  and  the   Bouillaut  et  al.  study  (86)  show  that  these  are  not  essential  for  growth  in  vitro.     Additionally,  lack  of  affect  of  the  PrdF  knock-­‐out  on  virulence  suggests  that  Stickland     26   fermentation  is  not  essential  in  vivo  either.    However,  more  in  vivo  work  in  this  area   investigating  the  role  of  this  and  other  Stickland  pathway  enzymes  on  colonization   levels  is  warranted  to  determine  of  Stickland  metabolism  is  important  for  C.  difficile   growth  and  competition  in  the  intestinal  environment.           “Omics”  approaches  to  investigating  metabolism.     Genomics.    The  first  C.  difficile  whole  genome  sequence  and  analysis  was  published  by   Sebaihia  et  al.  in  2006  for  strain  CD630,  a  virulent  strain  isolated  from  a  patient  with   severe  pseudomembranous  colitis  in  Switzerland  in  1982  (96).    CD630  has  a  4.3  Mbp   chromosome  (and  also  a  7.9  kbp  plasmid),  with  an  unusually  high  (11%)  percentage   of  mobile  elements  and  a  low  G+C  content  (29%).    In  terms  of  energy  metabolism,   genome  annotation  identified  a  large  amount  of  genes  involved  in  carbohydrate   transport  and  metabolism  as  well  as  genes  involved  in  degradation  of  ethanolamine,  a   bacterial  carbon  and  nitrogen  source.      Ethanolamine  is  a  component  of  the   phosphatidylethanolamine,  a  common  phospholipid  of  biological  membranes,  and   hence  is  abundant  in  the  gastrointestinal  environment  due  to  the  multitude  of   microbes  present  as  well  as  the  sloughing  off  of  host  mucosal  epithelia  (113).      The   ability  of  several  gut-­‐associated  bacteria  to  degrade  ethanolamine  has  been  reported   (114),  as  has  its  role  in  virulence  and  colonization  for  several  pathogens  (115).     Recently,  a  structural  and  biochemical  study  of  the  proteins  encoded  in  the  C.  difficile   ethanolamine  gene  cluster  and  microcompartment  formation  was  reported  (94).     However,  the  direct  role  of  ethanolamine  utilization  in  C.  difficile  colonization  or   virulence  has  not  been  investigated.         27     Transcriptomics  and  proteomics.    The  availability  of  whole  genome  sequence  data,   especially  through  web-­‐based  microbial  genomics  sources  such  as  IMG  (Integrated   Microbial  Genomes)  and  NCBI  (National  Center  for  Biotechnology  Information),  has   facilitated  utilization  of  “omics”  approaches  to  investigate  C.  difficile  colonization.         Several  studies  have  applied  transcriptomics  and  proteomics  to  determine  which   genes  or  proteins  are  differentially  expressed  under  in  vivo  vs  in  vitro  conditions  (88,   97,  98,  116,  117).      The  focus  of  many  of  these  studies  is  on  identifying  genes  related   more  directly  to  virulence  (toxin  expression)  and  stress  tolerance,  yet  some  data  has   emerged  providing  information  about  the  metabolic  strategies  employed  in  vivo.       In  an  effort  to  further  understand  C.  difficile  adaptation  to  the  host   environment,  Scaria  et  al.  developed  a  pig  ileal-­‐ligated  loop  model  and  used  it  to   determine  the  transcriptional  profile  of  C.  difficile  4,  8,  and  12  hours  post-­‐infection   (97).        Comparison  of  microarray  data  between  in  vivo  (pig  ligated  loop  model)  and  in   vitro  (BHI  medium)  conditions  revealed  upregulation  of  several  pathways  involved  in   transport  and  metabolism  of  amino  acids  and  various  carbohydrates,  anaerobic   respiration,  and  lipid  degradation.    In  particular,  the  data  suggested  metabolism  of   xylose,  mannose,  and  glycogen  to  be  important  in  vivo.      This  study  was  one  of  the   first  transcriptional  profiling  studies  of  C.  difficile  gene  expression  in  an  in  vivo  model.     The  same  group  then  used  a  proteomics  approach  to  look  at  C.  difficile  protein   expression  in  a  similar  pig  ligated  loop  model  (88).    Again,  they  compared  samples   from  in  vitro  and  in  vivo  conditions  4,  8,  and  12  hours  post  infection;  of  the  705   quantifiable  proteins  identified,  109  were  differentially  expressed.      Many  proteins     28   involved  in  metabolism  and  energy  production  were  identified,  including  those   important  for  amino  acid  metabolism,  carbohydrate  metabolism,  and  Stickland   fermentation.    Many  of  the  pathways  upregulated  in  this  study  overlap  with  their   previous  transcriptomic  study;  however,  some  did  not  and  this  is  probably  a   reflection  of  the  differences  in  the  technical  challenges  of  these  two  techniques,  and   inherent  differences  in  the  targets  of  the  analyses.      Regardless,  these  studies  provide   useful  data  suggesting  important  metabolic  adaptations  of  C.  difficile  to  its  host   environment  and  can  be  mined  for  potential  functions  to  more  directly  test  through   genetic  manipulation  and  in  vivo  colonization  and  virulence  experiments.     Another  in  vivo  transcriptomic  study  recently  published  by  Janoir  et  al.  used   this  comprehensive  approach  by  first  identifying  genes  upregulated  in  vivo  and  then   testing  knock-­‐out  mutants  of  those  genes  for  defects  in  colonization  (98).    They   compared  temporal  gene  expression  in  vitro  (TY  medium)  vs  in  vivo,  using  C.  difficile-­‐ monoassociated  mice;  549  differentially  expressed  genes  were  identified,  20%  of   which  were  ascribed  to  metabolic  pathways.    Like  the  other  in  vivo  transcriptomic   and  proteomic  studies  in  the  pig  ileal-­‐ligated  loop  model,  the  pathways  included  lipid   and  carbohydrate  transport  and  metabolism,  and  fermentation  of  carbohydrates  and   amino  acids.    In  addition,  genes  involved  in  glycogen  synthesis  and  degradation  of   polysaccharides  were  upregulated  in  vivo.    Evidence  for  a  preference  for  the   leucine/proline  Stickland  fermentation  pair  was  also  apparent  in  the  data.     Interestingly,  one-­‐sixth  of  the  upregulated  genes  were  of  unknown  function,  two  of   which  were  selected  for  further  investigation.    Genetic  knock-­‐out  mutants  of  these   two  genes  were  tested  against  the  wild  type  strain  for  decreased  colonization  fitness.       29   One  of  them,  CD1581,  had  significantly  lower  colonization  in  the  co-­‐infection   experiment,  providing  direct  evidence  for  the  importance  of  the  product  of  this  gene   for  colonization  in  vivo.    The  observation  that  the  other  hypothetical  protein  mutant   did  not  show  a  colonization  defect  even  though  the  gene  was  differentially  expressed   supports  that  colonization  factors  identified  in  these  initial  genetic  studies  must  be   directly  tested  in  follow-­‐up  experiments.               Metabolomics.    Yet  another  approach  to  understanding  the  metabolic  strategies  used   by  C.  difficile  for  colonization  was  recently  published  by  Theriot  et  al.  (82).    They  used   metabolomics  to  first  identify  changes  in  the  available  nutrients  between  caecal   contents  of  C.  difficile  resistant  and  susceptible  (antibiotic-­‐treated)  mice,  identifying   significant  changes  in  levels  of  some  amino  acids,  carbohydrates,  lipids,  peptides  and   xenobiotics.    In  vitro  growth  experiments  confirmed  the  ability  of  C.  difficile  to  utilize   some  of  the  carbohydrates  shown  to  increase  in  the  C.  difficile-­‐susceptible  metabolic   environment,  namely  glucose,  fructose,  mannitol,  sorbitol,  raffinose,  and  stachyose.     Additionally,  they  identified  two  different  C.  difficile-­‐resistant  states,  one  before   antibiotic  treatment,  and  one  six  weeks  after  antibiotic  treatment.    Interestingly,  the   bacterial  communities  between  these  states  were  very  different,  however,  their   metabolomic  profiles  were  strikingly  similar,  especially  with  regard  to  compounds   found  to  be  important  for  C.  difficile  germination  and  growth.    This  supports  that  the   functions  of  the  intestinal  microbiota,  which  shape  the  metabolic  environment,  rather   than  the  specific  community  member  are  more  important  for  resistance  to  C.  difficile.       This  study  took  a  novel  approach  to  understanding  C.  difficile  colonization  by  first     30   characterizing  the  nutrients  available  to  C.  difficile,  then  testing  its  ability  to  utilize   these  compounds.    In  contrast,  previous  studies  first  identified  C.  difficile  compound   utilization  by  genomic  and  phenotypic  analyses,  then  tested  if  these  affected   colonization.    Additional  studies  combining  data  from  these  two  complementary   approaches  will  undoubtedly  provide  even  more  insight  into  understanding  C.  difficile   intestinal  colonization  and  bring  us  closer  to  development  of  novel  ways  to  prevent   and  treat  CDI.         Autotrophy.    A  completely  novel  growth  strategy  used  by  C.  difficile  was  recently   discovered  by  Kopke  et  al.  (95).    This  was  an  exciting  discovery  as  it  was  the  first  time   a  bacterial  pathogen  was  demonstrated  to  be  able  to  grow  autotrophically.      Metabolic   byproducts  of  the  microbial  breakdown  of  some  intestinal  saccharide  and  protein   sources  include  carbon  dioxide  and  hydrogen  gases.      C.  difficile  can  in  turn  fix  the  CO2   and  form  acetate  by  way  of  the  Wood-­‐Ljungdahl  pathway;  several  genes  belonging  to   this  pathway  are  conserved  among  C.  difficile  isolates.    Indeed,  it  was  demonstrated   that  C.  difficile  can  grow  on  CO2  and  H2  as  the  sole  source  of  carbon  and  energy  in  a   defined  medium  (95).    Experiments  designed  to  directly  test  the  contribution  of   autotrophic  growth  to  in  vivo  colonization  are  needed;  however,  the  ability  of  C.   difficile  to  grow  autotrophically  adds  another  growth  strategy  to  C.  difficile’s   metabolic  repertoire.               Summary     Disease  caused  by  C.  difficile  is  a  common  complication  in  antibiotic  treatment.    Until   recently,  it  was  not  considered  a  significant  nosocomial  threat.    However,  increases  in     31   disease  prevalence  and  severity  have  generated  an  urgency  to  understand  the   epidemiology  and  etiology  of  this  disease.      A  likely  contributing  factor  to  the   increased  disease  incidence  is  the  emergence  of  epidemic  strains  that  appear  to   spread  more  readily  and  potentially  cause  more  severe  disease.    C.  difficile  infection  is   distinctive  in  that  there  is  a  clear  role  of  the  intestinal  microbiota  in  the  development   of  disease.    However,  the  specific  mechanisms  that  govern  outgrowth  of  C.  difficile  in   the  colon  are  poorly  understood.    One  hypothesis  regarding  inhibition  of  C.  difficile  in   the  absence  of  antibiotic  treatment  suggests  that  members  of  the  microbiota   outcompete  C.  difficile  for  key  nutrient  sources.    Several  studies  have  been  published   providing  evidence  that  supports  this  hypothesis.    There  is  some  understanding  of  the   general  metabolic  capabilities  of  C.  difficile,  however,  which  specific  nutrients  are  key   players  in  colonization  resistance  and  how  much  of  an  impact  they  have  on  the  ability   of  C.  difficile  to  outgrow  in  the  colon  is  poorly  understood.    Understanding  all  of  the   strategies  C.  difficile  uses  to  compete  for  the  limited  resources  available  in  the   gastrointestinal  tract  could  provide  insight  into  how  the  microbiota  impacts  disease   progression,  and  ultimately  lead  to  new  infection  control  strategies.    Furthermore,  it   is  unclear  if  characteristics  of  the  newly  emerged  epidemic  strains  related  to   colonization  and  competitive  dynamics  within  the  intestinal  environment  contribute   to  their  increased  prevalence  and  ability  to  cause  disease.      The  work  presented  in   this  thesis  aims  to  address  some  of  these  issues.      Chapter  2  presents  the  development   of  an  in  vitro  model  to  study  fecal  bacterial  communities,  which  was  adapted  in   chapter  3  as  a  C.  difficile  infection  model.    We  used  the  in  vitro  C.  difficile  infection   model  to  show  that  in  the  presence  of  complex  fecal  microbiota,  epidemic  ribotype     32   027  strains  outcompete  strains  of  other  ribotypes.    Also  presented  are  in  vivo  data   supporting  this  competitive  advantage  of  the  RT  027  strains  in  a  mouse  infection   model.    Chapter  4  focuses  on  the  growth  metabolism  of  C.  difficile  and  shows  that   epidemic  strains  are  able  to  grow  more  efficiently  on  the  disaccharide  trehalose.       This  metabolic  characteristic  of  epidemic  strains  may  contribute  to  the  competitive   advantage  we  observed  in  our  in  vitro  and  in  vivo  models.        Moreover,  if  the   importance  of  trehalose  metabolism  translates  into  the  human  intestinal   environment,  this  work  provides  insight  into  defining  the  intestinal  niche  of  C.  diffcile,   and  understanding  the  evolution  and  emergence  of  epidemic  strains.                                                                   33   REFERENCES     34       1.   REFERENCES     Aminov  RI.  2010.  A  brief  history  of  the  antibiotic  era:  lessons  learned  and   challenges  for  the  future.  Front  Microbiol  1:134.   2.   Bartlett  JG.  2002.  Antibiotic-­‐associated  diarrhea.  New  England  Journal  of   Medicine  346:334–339.   3.   Högenauer  C,  Hammer  HF,  Krejs  GJ,  Reisinger  C.  1998.  Mechanisms  and   management  of  antibiotic-­‐associated  diarrhea.  Clin.  Infect.  Dis.  27:702–710.   4.   Qin  J,  Li  R,  Raes  J,  Arumugam  M,  Burgdorf  KS,  Manichanh  C,  Nielsen  T,   Pons  N,  Levenez  F,  Yamada  T,  Mende  DR,  Li  J,  Xu  J,  Li  S,  Li  D,  Cao  J,  Wang   B,  Liang  H,  Zheng  H,  Xie  Y,  Tap  J,  Lepage  P,  Bertalan  M,  Batto  J-­‐M,  Hansen   T,  Le  Paslier  D,  Linneberg  A,  Nielsen  HB,  Pelletier  E,  Renault  P,  Sicheritz-­‐ Ponten  T,  Turner  K,  Zhu  H,  Yu  C,  Li  S,  Jian  M,  Zhou  Y,  Li  Y,  Zhang  X,  Li  S,   Qin  N,  Yang  H,  Wang  J,  Brunak  S,  Doré  J,  Guarner  F,  Kristiansen  K,   Pedersen  O,  Parkhill  J,  Weissenbach  J,  MetaHIT  Consortium,  Bork  P,   Ehrlich  SD,  Wang  J.  2010.  A  human  gut  microbial  gene  catalogue  established   by  metagenomic  sequencing.  Nature  464:59–65.   5.   de  Vos  WM,  de  Vos  EA.  2012.  Role  of  the  intestinal  microbiome  in  health  and   disease:  from  correlation  to  causation.  Nutrition  Reviews  70:S45–S56.   6.   Stecher  B,  Hardt  W-­‐D.  2008.  The  role  of  microbiota  in  infectious  disease.   Trends  in  Microbiology  16:107–114.   7.   Paterson  DL.  2004.  “Collateral  Damage”  from  Cephalosporin  or  Quinolone   Antibiotic  Therapy.  CLIN  INFECT  DIS  38:S341–S345.   8.   Ayyagari  A,  Agarwal  J,  Garg  A.  2003.  Antibiotic  associated  diarrhoea:   infectious  causes.  Indian  J  Med  Microbiol  21:6–11.   9.   Yassin  SF,  Young-­‐Fadok  TM,  Zein  NN,  Pardi  DS.  2001.  Clostridium  difficile-­‐ associated  diarrhea  and  colitis.  Mayo  Clin.  Proc.  76:725–730.   10.   Kelly  CP,  Pothoulakis  C,  LaMont  JT.  1994.  Clostridium  difficile  Colitis.  N.   Engl.  J.  Med.  330:257–262.   11.   HALL  IC.  1935.  Intestinal  flora  in  new-­‐born  infants.  Am  J  Dis  Child  49:390– 402.   12.   Wilson  KH.  1993.  The  microecology  of  Clostridium  difficile.  Clin.  Infect.  Dis.   16  Suppl  4:S214–8.     35   13.   Rotimi  VO,  Duerden  BI.  1981.  The  development  of  the  bacterial  flora  in   normal  neonates.  Journal  of  Medical  Microbiology  14:51–62.   14.   SCHAEDLER  RW,  DUBOS  R,  COSTELLO  R.  1965.  The  Development  Of  The   Bacterial  Flora  In  The  Gastrointestinal  Tract  Of  Mice.  J.  Exp.  Med.  122:59–66.   15.   Favier  CF,  Vaughan  EE,  de  Vos  WM,  Akkermans  ADL.  2002.  Molecular   monitoring  of  succession  of  bacterial  communities  in  human  neonates.  Appl   Microbiol  68:219–226.   16.   Koenig  JE,  Spor  A,  Scalfone  N,  Fricker  AD,  Stombaugh  J,  Knight  R,   Angenent  LT,  Ley  RE.  2011.  Succession  of  microbial  consortia  in  the   developing  infant  gut  microbiome.  Proceedings  of  the  National  Academy  of   Sciences  108  Suppl  1:4578–4585.   17.   Rea  MC,  O'Sullivan  O,  Shanahan  F,  O'Toole  PW,  Stanton  C,  Ross  RP,  Hill  C.   2012.  Clostridium  difficile  Carriage  in  Elderly  Subjects  and  Associated   Changes  in  the  Intestinal  Microbiota.  Journal  of  Clinical  Microbiology  50:867– 875.   18.   Roberts  K,  Smith  CF,  Snelling  AM,  Kerr  KG,  Banfield  KR,  Sleigh  PA,  Beggs   CB.  2008.  Aerial  Dissemination  of  Clostridium  difficile  spores.  BMC  Infect  Dis   8:7.   19.   Hellickson  LA,  Owens  KL.  2007.  Cross-­‐Contamination  of  Clostridium  difficile   Spores  on  Bed  Linen  During  Laundering.  American  Journal  of  Infection   Control  35:E32–E33.   20.   Jabbar  U  ,  BA,  Leischner  J  ,  MD,  Kasper  D  ,  MD,  Gerber  R  ,  MD,  Sambol  SP  ,   BS,  MT(A,  Parada  JP  ,  MD,  MPH,  Johnson  S  ,  MD,  Gerding  DN  ,  MD.  2010.   Effectiveness  of  Alcohol-­‐Based  Hand  Rubs  for  Removal  of  Clostridium   difficileSpores  from  Hands.  Infection  Control  and  Hospital  Epidemiology   31:565–570.   21.   Gerding  DN,  Muto  CA,  Owens  RC  Jr.  2008.  Measures  to  Control  and  Prevent   Clostridium  difficileInfection.  Clin  Infect  Dis  46:S43–S49.   22.   Rupnik  M.  2007.  Is  Clostridium  difficile-­‐associated  infection  a  potentially   zoonotic  and  foodborne  disease?  Clin  Microbiol  Infect  13:457–459.   23.   Rousseau  C,  Poilane  I,  De  Pontual  L,  Maherault  A-­‐C,  Le  Monnier  A,   Collignon  A.  2012.  Clostridium  difficile  carriage  in  healthy  infants  in  the   community:  a  potential  reservoir  for  pathogenic  strains.  Clin  Infect  Dis   55:1209–1215.   24.   Alam  MJ,  Anu  A,  Walk  ST,  Garey  KW.  2014.  Investigation  of  potentially   pathogenic  Clostridium  difficile  contamination  in  household  environs.     36   Anaerobe  27C:31–33.   25.   Johnson  S.  2009.  Recurrent  Clostridium  difficile  infection:  A  review  of  risk   factors,  treatments,  and  outcomes.  Journal  of  Infection  58:403–410.   26.   Wilcox  MH,  Fawley  WN,  Settle  CD,  Davidson  A.  1998.  Recurrence  of   symptoms  in  Clostridium  difficile  infection—relapse  or  reinfection?  Journal  of   Hospital  Infection  38:93–100.   27.   Figueroa  I,  Johnson  S,  Sambol  SP,  Goldstein  EJ,  Citron  DM,  Gerding  DN.   2012.  Relapse  versus  reinfection:  recurrent  Clostridium  difficile  infection   following  treatment  with  fidaxomicin  or  vancomycin.  Clin.  Infect.  Dis.   55:S104–S109.   28.   Chang  JY,  Antonopoulos  DA,  Kalra  A,  Tonelli  A,  Khalife  WT,  Schmidt  TM,   Young  VB.  2008.  Decreased  Diversity  of  the  Fecal  Microbiome  in  Recurrent   Clostridium  difficile–Associated  Diarrhea.  J  Infect  Dis  197:435–438.   29.   Peterfreund  GL,  Vandivier  LE,  Sinha  R,  Marozsan  AJ,  Olson  WC,  Zhu  J,   Bushman  FD.  2012.  Succession  in  the  gut  microbiome  following  antibiotic   and  antibody  therapies  for  Clostridium  difficile.  PLoS  One  7:e46966.   30.   Jakobsson  HE,  Jernberg  C,  Andersson  AF,  Sjölund-­‐Karlsson  M,  Jansson  JK,   Engstrand  L.  2010.  Short-­‐term  antibiotic  treatment  has  differing  long-­‐term   impacts  on  the  human  throat  and  gut  microbiome.  PLoS  One  5:e9836.   31.   Schubert  AM,  Rogers  MAM,  Ring  C,  Mogle  J,  Petrosino  JP,  Young  VB,   Aronoff  DM,  Schloss  PD.  2014.  Microbiome  Data  Distinguish  Patients  with   Clostridium  difficile  Infection  and  Non-­‐C.  difficile-­‐Associated  Diarrhea  from   Healthy  Controls.  MBio  5:e01021–14–e01021–14.   32.   Jernberg  C,  Löfmark  S,  Edlund  C,  Jansson  JK.  2007.  Long-­‐term  ecological   impacts  of  antibiotic  administration  on  the  human  intestinal  microbiota.  ISME   J  1:56–66.   33.   Bartlett  JG,  Chang  TW,  Gurwith  M,  Gorbach  SL,  Onderdonk  AB.  1978.   Antibiotic-­‐associated  pseudomembranous  colitis  due  to  toxin-­‐producing   clostridia.  N.  Engl.  J.  Med.  298:531–534.   34.   McDonald  LC,  Owings  M,  Jernigan  DB.  2006.  Clostridium  difficile  infection   in  patients  discharged  from  US  short-­‐stay  hospitals,  1996–2003.  Emerg.   Infect.  Dis.  12:409.   35.   Loo  VG,  Poirier  L,  Miller  MA,  Oughton  M,  Libman  MD,  Michaud  S,   Bourgault  A-­‐M,  Nguyen  T,  Frenette  C,  Kelly  M,  Vibien  A,  Brassard  P,  Fenn   S,  Dewar  K,  Hudson  TJ,  Horn  R,  René  P,  Monczak  Y,  Dascal  A.  2005.  A   predominantly  clonal  multi-­‐institutional  outbreak  of  Clostridium  difficile-­‐   37   associated  diarrhea  with  high  morbidity  and  mortality.  N.  Engl.  J.  Med.   353:2442–2449.   36.   Barbut  F,  Petit  JC.  2001.  Epidemiology  of  Clostridium  difficile-­‐associated   infections.  Clin  Microbiol  Infect  7:405–410.   37.   Kuijper  EJ,  Barbut  F,  Brazier  JS,  Kleinkauf  N,  Eckmanns  T,  Lambert  ML,   Drudy  D,  Fitzpatrick  F,  Wiuff  C,  Brown  DJ,  Coia  JE,  Pituch  H,  Reichert  P,   Even  J,  Mossong  J,  Widmer  AF,  Olsen  KE,  Allerberger  F,  Notermans  DW,   Delmee  M,  Coignard  B,  Wilcox  M,  Patel  B,  Frei  R,  Nagy  E,  Bouza  E,  Marin   M,  Akerlund  T,  Virolainen-­‐Julkunen  A,  Lyytikäinen  O,  Kotila  S,   Ingebretsen  A,  Smyth  B,  Rooney  P,  Poxton  IR,  Monnet  DL.  2008.  Update  of   Clostridium  difficile  infection  due  to  PCR  ribotype  027  in  Europe,  2008.  Euro   Surveill.  13.   38.   Poutanen  SM.  2004.  Clostridium  difficile-­‐associated  diarrhea  in  adults.   Canadian  Medical  Association  Journal  171:51–58.   39.   McFarland  LV.  1998.  Epidemiology,  Risk  Factors  and  Treatments  for   Antibiotic‐Associated  Diarrhea.  Dig  Dis  16:292–307.   40.   Voth  DE,  Ballard  JD.  2005.  Clostridium  difficile  toxins:  mechanism  of  action   and  role  in  disease.  Clin.  Microbiol.  Rev.  18:247–263.   41.   Shen  A.  2012.  Clostridium  difficile  toxins:  mediators  of  inflammation.  J  Innate   Immun  4:149–158.   42.   Gerding  DN,  Johnson  S,  Rupnik  M,  Aktories  K.  2013.  Clostridium  difficile   binary  toxin  CDT:  Mechanism,  epidemiology,  and  potential  clinical   importance.  gutmicrobes  5:6–18.   43.   Vedantam  G,  Clark  A,  Chu  M,  McQuade  R,  Mallozzi  M,  Viswanathan  VK.   2012.  Clostridium  difficile  infection:  toxins  and  non-­‐toxin  virulence  factors,   and  their  contributions  to  disease  establishment  and  host  response.   gutmicrobes  3:121–134.   44.   Tasteyre  A,  Barc  MC,  Collignon  A,  Boureau  H,  Karjalainen  T.  2001.  Role  of   FliC  and  FliD  flagellar  proteins  of  Clostridium  difficile  in  adherence  and  gut   colonization.  Infection  and  Immunity  69:7937–7940.   45.   Killgore  G,  Thompson  A,  Johnson  S,  Brazier  J,  Kuijper  E,  Pepin  J,  Frost  EH,   Savelkoul  P,  Nicholson  B,  van  den  Berg  RJ,  KATO  H,  Sambol  SP,  Zukowski   W,  Woods  C,  Limbago  B,  Gerding  DN,  McDonald  LC.  2008.  Comparison  of   Seven  Techniques  for  Typing  International  Epidemic  Strains  of  Clostridium   difficile:  Restriction  Endonuclease  Analysis,  Pulsed-­‐Field  Gel  Electrophoresis,   PCR-­‐Ribotyping,  Multilocus  Sequence  Typing,  Multilocus  Variable-­‐Number   Tandem-­‐Repeat  Analysis,  Amplified  Fragment  Length  Polymorphism,  and     38   Surface  Layer  Protein  A  Gene  Sequence  Typing.  Journal  of  Clinical   Microbiology  46:431–437.   46.   Manzo  CE,  Merrigan  MM,  Johnson  S,  Gerding  DN,  Riley  TV,  Silva  J,  Brazier   JS,  the  International  Clostridium  difficile  Study  Group.  2014.  International   typing  study  of  Clostridium  difficile.  Anaerobe  28C:4–7.   47.   McDonald  LC,  Killgore  GE,  Thompson  A,  Owens  RC,  Kazakova  SV,  Sambol   SP,  Johnson  S,  Gerding  DN.  2005.  An  epidemic,  toxin  gene-­‐variant  strain  of   Clostridium  difficile.  N.  Engl.  J.  Med.  353:2433–2441.   48.   Bartlett  JG.  2006.  Narrative  review:  the  new  epidemic  of  Clostridium  difficile-­‐ associated  enteric  disease.  Ann.  Intern.  Med.  145:758–764.   49.   Hubert  B,  Loo  VG,  Bourgault  A-­‐M,  Poirier  L,  Dascal  A,  Fortin  E,  Dionne  M,   Lorange  M.  2007.  A  portrait  of  the  geographic  dissemination  of  the   Clostridium  difficile  North  American  pulsed-­‐field  type  1  strain  and  the   epidemiology  of  C.  difficile-­‐associated  disease  in  Québec.  Clin  Infect  Dis   44:238–244.   50.   Waslawski  S,  Lo  ES,  Ewing  SA,  Young  VB,  Aronoff  DM,  Sharp  SE,  Novak-­‐ Weekley  SM,  Crist  AE,  Dunne  WM,  Hoppe-­‐Bauer  J,  Johnson  M,  Brecher   SM,  Newton  DW,  Walk  ST.  2013.  Clostridium  difficile  ribotype  diversity  at   six  health  care  institutions  in  the  United  States.  Journal  of  Clinical   Microbiology  51:1938–1941.   51.   Goorhuis  A,  Van  der  Kooi  T,  Vaessen  N,  Dekker  FW,  Van  den  Berg  R,   Harmanus  C,  van  den  Hof  S,  Notermans  DW,  Kuijper  EJ.  2007.  Spread  and   Epidemiology  of  Clostridium  difficile  Polymerase  Chain  Reaction  Ribotype   027/Toxinotype  III  in  The  Netherlands.  CLIN  INFECT  DIS  45:695–703.   52.   Wilcox  MH,  Shetty  N,  Fawley  WN,  Shemko  M,  Coen  P,  Birtles  A,  Cairns  M,   Curran  MD,  Dodgson  KJ,  Green  SM,  Hardy  KJ,  Hawkey  PM,  Magee  JG,  Sails   AD,  Wren  MWD.  2012.  Changing  epidemiology  of  Clostridium  difficile   infection  following  the  introduction  of  a  national  ribotyping-­‐based   surveillance  scheme  in  England.  CLIN  INFECT  DIS  55:1056–1063.   53.   Wultańska  D,  Młynarczyk  G,  Harmanus  C.  2014.  Occurrence  of  Clostridium   difficile  PCR-­‐ribotype  027  and  it's  closely  related  PCR-­‐ribotype  176  in   hospitals  in  Poland  in  2008-­‐2010.  Anaerobe.   54.   Kuijper  EJ,  van  Dissel  JT.  2008.  Spectrum  of  Clostridium  difficile  infections   outside  health  care  facilities.  Canadian  Medical  Association  Journal  179:747– 748.   55.   Gerding  DN  ,  MD.  2010.  Global  Epidemiology  of  Clostridium  difficileInfection   in  2010.  Infection  Control  and  Hospital  Epidemiology  31:S32–S34.     39   56.   He  M,  Miyajima  F,  Roberts  P,  Ellison  L,  Pickard  DJ,  Martin  MJ,  Connor  TR,   Harris  SR,  Fairley  D,  Bamford  KB,  D'Arc  S,  Brazier  J,  Brown  D,  Coia  JE,   Douce  G,  Gerding  D,  Kim  HJ,  Koh  TH,  Kato  H,  Senoh  M,  Louie  T,  Michell  S,   Butt  E,  Peacock  SJ,  Brown  NM,  Riley  T,  Songer  G,  Wilcox  M,  Pirmohamed   M,  Kuijper  E,  Hawkey  P,  Wren  BW,  Dougan  G,  Parkhill  J,  Lawley  TD.  2013.   Emergence  and  global  spread  of  epidemic  healthcare-­‐associated  Clostridium   difficile.  Nat  Genet  45:109–113.   57.   Sirard  S,  Valiquette  L,  Fortier  LC.  2011.  Lack  of  Association  between  Clinical   Outcome  of  Clostridium  difficile  Infections,  Strain  Type,  and  Virulence-­‐ Associated  Phenotypes.  Journal  of  Clinical  Microbiology  49:4040–4046.   58.   Carlson  PE,  Walk  ST,  Bourgis  AET,  Liu  MW,  Kopliku  F,  Lo  E,  Young  VB,   Aronoff  DM,  Hanna  PC.  2013.  The  relationship  between  phenotype,  ribotype,   and  clinical  disease  in  human  Clostridium  difficile  isolates.  Anaerobe  24:109– 116.   59.   Walk  ST,  Micic  D,  Jain  R,  Lo  ES,  Trivedi  I,  Liu  EW,  Almassalha  LM,  Ewing   SA,  Ring  C,  Galecki  AT.  2012.  Clostridium  difficile  ribotype  does  not  predict   severe  infection.  Clin.  Infect.  Dis.  55:1661–1668.   60.   Smits  WK.  2013.  Hype  or  hypervirulence:  a  reflection  on  problematic  C.   difficile  strains.  Virulence  4:592–596.   61.   US  CFDCAP.  2013.  Antibiotic  resistance  threats  in  the  United  States,  2013.   62.   Dubberke  E.  2012.  Clostridium  difficile  infection:  The  scope  of  the  problem.  J.   Hosp.  Med.  7:S1–S4.   63.   Sorg  JA,  Sonenshein  AL.  2008.  Bile  Salts  and  Glycine  as  Cogerminants  for   Clostridium  difficile  Spores.  Journal  of  Bacteriology  190:2505–2512.   64.   Sorg  JA,  Sonenshein  AL.  2009.  Chenodeoxycholate  is  an  inhibitor  of   Clostridium  difficile  spore  germination.  Journal  of  Bacteriology  191:1115– 1117.   65.   Wilson  KH.  1983.  Efficiency  of  various  bile  salt  preparations  for  stimulation   of  Clostridium  difficile  spore  germination.  Journal  of  Clinical  Microbiology   18:1017–1019.   66.   Giel  JL,  Sorg  JA,  Sonenshein  AL,  Zhu  J.  2010.  Metabolism  of  Bile  Salts  in  Mice   Influences  Spore  Germination  in  Clostridium  difficile.  PLoS  ONE  5:e8740.   67.   Howerton  A,  Patra  M,  Abel-­‐Santos  E.  2013.  A  new  strategy  for  the   prevention  of  Clostridium  difficile  infection.  J  Infect  Dis  207:1498–1504.   68.   Wilson  KH,  Freter  R.  1986.  Interaction  of  Clostridium  difficile  and     40   Escherichia  coli  with  microfloras  in  continuous-­‐flow  cultures  and  gnotobiotic   mice.  Infection  and  Immunity  54:354–358.   69.   Wilson  KH,  Perini  F.  1988.  Role  of  competition  for  nutrients  in  suppression   of  Clostridium  difficile  by  the  colonic  microflora.  Infection  and  Immunity   56:2610–2614.   70.   Ng  KM,  Ferreyra  JA,  Higginbottom  SK,  Lynch  JB,  Kashyap  PC,  Gopinath  S,   Naidu  N,  Choudhury  B,  Weimer  BC,  Monack  DM,  Sonnenburg  JL.  2013.   Microbiota-­‐liberated  host  sugars  facilitate  post-­‐antibiotic  expansion  of  enteric   pathogens.  Nature  502:96–99.   71.   Vengadesan  K,  Narayana  SVL.  2011.  Structural  biology  of  Gram-­‐positive   bacterial  adhesins.  Protein  Sci.  20:759–772.   72.   Borriello  SP,  BARCLAY  FE.  1985.  Protection  of  hamsters  against  Clostridium   difficile  ileocaecitis  by  prior  colonisation  with  non-­‐pathogenic  strains.  Journal   of  Medical  Microbiology  19:339–350.   73.   Seal  D,  Borriello  SP,  Barclay  F,  Welch  A,  Piper  M,  Bonnycastle  M.  1987.   Treatment  of  relapsing  Clostridium  difficile  diarrhoea  by  administration  of  a   non-­‐toxigenic  strain.  Eur.  J.  Clin.  Microbiol.  6:51–53.   74.   Merrigan  MM,  Sambol  SP,  Johnson  S,  Gerding  DN.  2009.  New  approach  to   the  management  of  Clostridium  difficile  infection:  colonisation  with  non-­‐ toxigenic  C.  difficile  during  daily  ampicillin  or  ceftriaxone  administration.  Int.   J.  Antimicrob.  Agents  33:S46–S50.   75.   Nagaro  KJ,  Phillips  ST,  Cheknis  AK,  Sambol  SP,  Zukowski  WE,  Johnson  S,   Gerding  DN.  2013.  Nontoxigenic  Clostridium  difficile  protects  hamsters   against  challenge  with  historic  and  epidemic  strains  of  toxigenic   BI/NAP1/027  C.  difficile.  Antimicrobial  Agents  and  Chemotherapy  57:5266– 5270.   76.   Rolfe  RD.  1984.  Role  of  volatile  fatty  acids  in  colonization  resistance  to   Clostridium  difficile.  Infection  and  Immunity  45:185–191.   77.   Su  WJ,  Waechter  MJ,  Bourlioux  P,  Dolegeal  M,  Fourniat  J,  Mahuzier  G.   1987.  Role  of  volatile  fatty  acids  in  colonization  resistance  to  Clostridium   difficile  in  gnotobiotic  mice.  Infection  and  Immunity  55:1686–1691.   78.   May  T,  Mackie  RI,  Fahey  GC,  Cremin  JC,  Garleb  KA.  1994.  Effect  of  fiber   source  on  short-­‐chain  fatty  acid  production  and  on  the  growth  and  toxin   production  by  Clostridium  difficile.  Scand  J  Gastroenterol  29:916–922.   79.   Kolling  GL,  Wu  M,  Warren  CA,  Durmaz  E,  Klaenhammer  TR,  Guerrant  RL.   2012.  Lactic  acid  production  by  Streptococcus  thermophilus  alters     41   Clostridium  difficile  infection  and  in  vitro  Toxin  A  production.  gutmicrobes   3:0–6.   80.   Rea  MC,  Sit  CS,  Clayton  E,  O'Connor  PM,  Whittal  RM,  Zheng  J,  Vederas  JC,   Ross  RP,  Hill  C.  2010.  Thuricin  CD,  a  posttranslationally  modified  bacteriocin   with  a  narrow  spectrum  of  activity  against  Clostridium  difficile.  Proceedings   of  the  National  Academy  of  Sciences  107:9352–9357.   81.   HALL  IC,  O'TOOLE  E.  1935.  Intestinal  flora  in  new-­‐born  infantswith  a   description  of  a  new  pathogenic  anaerobe,  Bacillus  difficilis.  Am  J  Dis  Child   49:390–402.   82.   Theriot  CM,  Koenigsknecht  MJ,  Carlson  PE,  Hatton  GE,  Nelson  AM,  Li  B,   Huffnagle  GB,  Li  JZ,  Young  VB.  2014.  ncomms4114.  Nature  Communications   5:1–10.   83.   Nakamura  S,  Nakashio  S,  Yamakawa  K,  Tanabe  N,  Nishida  S.  2013.   Carbohydrate  Fermentation  by  Clostridium  difficile.  Microbiol.  Immunol.   26:107–111.   84.   Wilson  KH,  Perini  F.  1988.  Role  of  competition  for  nutrients  in  suppression   of  Clostridium  difficile  by  the  colonic  microflora.  Infection  and  Immunity   56:2610–2614.   85.   Jackson  S,  Calos  M,  Myers  A,  Self  WT.  2006.  Analysis  of  Proline  Reduction  in   the  Nosocomial  Pathogen  Clostridium  difficile.  Journal  of  Bacteriology   188:8487–8495.   86.   Bouillaut  L,  Self  WT,  Sonenshein  AL.  2013.  Proline-­‐Dependent  Regulation  of   Clostridium  difficile  Stickland  Metabolism.  Journal  of  Bacteriology  195:844– 854.   87.   Wu  X,  Hurdle  JG.  2014.  The  Clostridium  difficileproline  racemase  is  not   essential  for  early  logarithmic  growth  and  infection.  Can.  J.  Microbiol.  60:251– 254.   88.   Janvilisri  T,  Scaria  J,  Teng  C-­‐H,  McDonough  SP,  Gleed  RD,  Fubini  SL,  Zhang   S,  Akey  B,  Chang  Y-­‐F.  2012.  Temporal  differential  proteomes  of  Clostridium   difficile  in  the  pig  ileal-­‐ligated  loop  model.  PLoS  ONE  7:e45608.   89.   Hafiz  S.  1974.  Clostridium  difficile  and  its  toxins.   90.   Popoff  MR,  Dodin  A.  1985.  Survey  of  neuraminidase  production  by   Clostridium  butyricum,  Clostridium  beijerinckii,  and  Clostridium  difficile   strains  from  clinical  and  nonclinical  sources.  Journal  of  Clinical  Microbiology   22:873–876.     42   91.   Borriello  SP,  Davies  HA,  Kamiya  S,  Reed  PJ,  Seddon  S.  1990.  Virulence   factors  of  Clostridium  difficile.  Clin.  Infect.  Dis.  12:S185–S191.   92.   Seddon  SV,  HEMINGWAY  I,  Borriello  SP.  1990.  Hydrolytic  enzyme   production  by  Clostridium  difficile  and  its  relationship  to  toxin  production   and  virulence  in  the  hamster  model.  Journal  of  Medical  Microbiology  31:169– 174.   93.   KARASAWA  T,  Ikoma  S,  Yamakawa  K,  Nakamura  S.  1995.  A  defined  growth   medium  for  Clostridium  difficile.  Microbiology  (Reading,  Engl.)  141:371–375.   94.   Pitts  AC,  Tuck  LR,  Faulds-­‐Pain  A,  Lewis  RJ,  Marles-­‐Wright  J.  2012.   Structural  insight  into  the  Clostridium  difficile  ethanolamine  utilisation   microcompartment.  PLoS  ONE  7:e48360.   95.   Köpke  M,  Straub  M,  Dürre  P.  2013.  Clostridium  difficile  is  an  autotrophic   bacterial  pathogen.  PLoS  ONE  8:e62157.   96.   Sebaihia  M,  Wren  BW,  Mullany  P,  Fairweather  NF,  Minton  N,  Stabler  R,   Thomson  NR,  Roberts  AP,  Cerdeño-­‐Tárraga  AM,  Wang  H,  Holden  MT,   Wright  A,  Churcher  C,  Quail  MA,  Baker  S,  Bason  N,  Brooks  K,   Chillingworth  T,  Cronin  A,  Davis  P,  Dowd  L,  Fraser  A,  Feltwell  T,  Hance  Z,   Holroyd  S,  Jagels  K,  Moule  S,  Mungall  K,  Price  C,  Rabbinowitsch  E,  Sharp   S,  Simmonds  M,  Stevens  K,  Unwin  L,  Whithead  S,  Dupuy  B,  Dougan  G,   Barrell  B,  Parkhill  J.  2006.  The  multidrug-­‐resistant  human  pathogen   Clostridium  difficile  has  a  highly  mobile,  mosaic  genome.  Nat  Genet  38:779– 786.   97.   Scaria  J,  Janvilisri  T,  Fubini  S,  Gleed  RD,  McDonough  SP,  Chang  YF.  2011.   Clostridium  difficile  Transcriptome  Analysis  Using  Pig  Ligated  Loop  Model   Reveals  Modulation  of  Pathways  Not  Modulated  In  Vitro.  J  Infect  Dis   203:1613–1620.   98.   Janoir  C,  Denève  C,  Bouttier  S,  Barbut  F,  Hoys  S,  Caleechum  L,  Chapetón-­‐ Montes  D,  Pereira  FC,  Henriques  AO,  Collignon  A,  Monot  M,  Dupuy  B.   2013.  Adaptive  strategies  and  pathogenesis  of  Clostridium  difficile  from  in   vivo  transcriptomics.  Infection  and  Immunity  81:3757–3769.   99.   Blottiere  HM,  de  Vos  WM,  Ehrlich  SD,  Doré  J.  2013.  Human  intestinal   metagenomics:  state  of  the  art  and  future.  Current  Opinion  in  Microbiology   16:232–239.   100.   Staib  L,  Fuchs  TM.  2014.  From  food  to  cell:  nutrient  exploitation  strategies  of   enteropathogens.  Microbiology.   101.   HAFIZ  S,  OAKLEY  CL.  1976.  Clostridium  difficile:  isolation  and  characteristics   (Plate  VIII).  Journal  of  Medical  Microbiology  9:129–136.     43   102.   Wilson  KH,  Sheagren  JN,  Freter  R.  1985.  Population  dynamics  of  ingested   Clostridium  difficile  in  the  gastrointestinal  tract  of  the  Syrian  hamster.  J   INFECT  DIS  151:355–361.   103.   Wilson  KH,  Sheagren  JN,  Freter  R,  Weatherbee  L,  Lyerly  D.  1986.   Gnotobiotic  models  for  study  of  the  microbial  ecology  of  Clostridium  difficile   and  Escherichia  coli.  J  INFECT  DIS  153:547–551.   104.   Freter  R,  Stauffer  E,  Cleven  D,  Holdeman  LV,  Moore  WE.  1983.  Continuous-­‐ flow  cultures  as  in  vitro  models  of  the  ecology  of  large  intestinal  flora.   Infection  and  Immunity  39:666–675.   105.   Freter  R,  Brickner  H,  Botney  M,  Cleven  D,  Aranki  A.  1983.  Mechanisms  that   control  bacterial  populations  in  continuous-­‐flow  culture  models  of  mouse   large  intestinal  flora.  Infection  and  Immunity  39:676–685.   106.   Freter  R,  Brickner  H,  Fekete  J,  Vickerman  MM,  Carey  KE.  1983.  Survival   and  implantation  of  Escherichia  coli  in  the  intestinal  tract.  Infection  and   Immunity  39:686–703.   107.   Ozawa  A,  Freter  R.  1964.  Ecological  Mechanism  Controlling  Growth  Of   Escherichia  Coli  In  Continuous  Flow  Cultures  And  In  The  Mouse  Intestine.  J   Infect  Dis  114:235–242.   108.   Duerden  BI.  1994.  Virulence  factors  in  anaerobes.  Clin.  Infect.  Dis.  18  Suppl   4:S253–9.   109.   Corfield  AP,  Wagner  SA,  Clamp  JR,  Kriaris  MS,  Hoskins  LC.  1992.  Mucin   degradation  in  the  human  colon:  production  of  sialidase,  sialate  O-­‐ acetylesterase,  N-­‐acetylneuraminate  lyase,  arylesterase,  and  glycosulfatase   activities  by  strains  of  fecal  bacteria.  Infection  and  Immunity  60:3971–3978.   110.   Seddon  SV,  Borriello  SP.  1989.  A  chemically  defined  and  minimal  medium   for  Clostridium  difficile.  Letters  in  applied  microbiology  9:237–239.   111.   Seddon  SV,  Borriello  SP.  1992.  Proteolytic  activity  of  Clostridium  difficile.   Journal  of  Medical  Microbiology  36:307–311.   112.   Stickland  LH.  1934.  Studies  in  the  metabolism  of  the  strict  anaerobes  (genus   Clostridium):  The  chemical  reactions  by  which  Cl.  sporogenes  obtains  its   energy.  Biochemical  Journal  28:1746.   113.   Garsin  DA.  2010.  Ethanolamine  utilization  in  bacterial  pathogens:  roles  and   regulation.  Nat  Rev  Micro  8:290–295.   114.   Tsoy  O,  Ravcheev  D,  Mushegian  A.  2009.  Comparative  genomics  of   ethanolamine  utilization.  Journal  of  Bacteriology  191:7157–7164.     44   115.   Garsin  DA.  2012.  Ethanolamine:  a  signal  to  commence  a  host-­‐associated   lifestyle?  MBio  3:e00172–12.   116.   Janvilisri  T,  Scaria  J,  Chang  Y-­‐F.  2010.  Transcriptional  profiling  of   Clostridium  difficile  and  Caco-­‐2  cells  during  infection.  J  Infect  Dis  202:282– 290.   117.   Emerson  JE,  Stabler  RA,  Wren  BW,  Fairweather  NF.  2008.  Microarray   analysis  of  the  transcriptional  responses  of  Clostridium  difficile  to   environmental  and  antibiotic  stress.  Journal  of  Medical  Microbiology  57:757– 764.                                     45   CHAPTER  2     Development  of  Single  Chamber  Human  Gut  Microbiota  Mini-­‐bioreactor  Arrays   (MBRA)               The  material  presented  in  this  chapter  was  an  equal  collaboration  with  Jennifer  M.   Auchtung  (Britton  Lab,  Department  of  Microbiology  and  Molecular  Genetics  MSU)   and  Robert  D.  Stedtfeld  (Hashsham  Lab,  Department  of  Civil  and  Environmental   Engineering,  MSU).      Robert  Stedtfeld  drafted  the  bioreactor  design  for  fabrication,   and  performed  the  HPLC  analysis  for  SCFA  quantification.    Jennifer  Auchtung   conducted  the  bioreactor  community  analysis  and  microbial  ecology.     46   Abstract     We  developed  single  chamber  continuous-­‐flow  mini-­‐bioreactor  arrays  (MBRA)  for   in  vitro  human  fecal  microbiome  studies.  The  small  size  (15  ml  volume)  and  setup   allowed  many  individual  reactors  to  be  operated  in  parallel,  providing  flexibility  in   terms  of  testing  multiple  conditions  and  replicates  simultaneously.  Initially,  we   tested  four  variations  of  media  to  determine  how  well  these  media  would  be  able  to   reproduce  the  microbial  diversity  and  functional  stability  of  a  human  fecal   community.  Triplicate  reactors  were  inoculated  with  each  medium  and  their   stability  was  monitored  over  time  (28  days).    We  identified  one  medium  that  best   supported  growth  of  a  diverse  fecal  microbial  community  with  a  stable  short  chain   fatty  acid  (SCFA)  profile  most  similar  to  the  starting  fecal  inoculum.  Detailed   analyses  of  communities  in  this  medium  demonstrated  that  the  microbial   community  in  each  reactor  was  dynamic  throughout  the  culture  period.  The  largest   changes  in  the  communities  were  observed  during  the  first  week  in  culture,  after   which  the  communities  stabilized  to  a  constant  low  rate  of  change.  Over  time,  the   communities  present  in  each  replicate  reactor  diverged  both  from  the  starting   community  and  from  the  other  replicate  reactors,  but  still  shared  some  similarity   with  the  starting  fecal  inoculum.  This  study  demonstrates  the  utility  of  multiplexed,   single  chamber  MBRA  to  support  growth  of  complex,  dynamic,  functionally-­‐stable   fecal  microbial  communities.         47   Introduction   The   trillions   of   microorganisms   forming   the   commensal   microbiota   of   the   human   gastrointestinal   tract   contribute   to   many   different   aspects   of   host   physiology,   including   metabolism   and   energy   stasis,   maturation   of   the   immune   system,   metabolism  of  xenobiotics,  and  protection  from  pathogen  invasion  (reviewed  in  (1-­‐ 3)).   Although   many   insights   about   the   role   of   the   microbiota   in   host   health   and   disease  have  been  gained  by  studying  the  microbiota  in  association  with  its  human   host   (e.g.,   (4-­‐6)),   the   availability   of   less   complex   models   of   the   microbiota   (i.e.,   conventional   and   humanized   animal   (7-­‐10)   and   in  vitro   models   (11-­‐16)   have   also   played   an   important   role   in   elucidating   the   roles   of   the   microbiota.   The   primary   advantage  of  using  these  models  are  the  ability  to  perform  controlled  experiments   at   a   higher   throughput   than   can   be   achieved   with   human   studies,   whereas   the   primary  disadvantage  is  the  lack  of  interactions  with  the  human  host.   Several   different   in   vitro   models   of   the   human   intestinal   tract   have   been   developed,   ranging   from   simple   batch   culture   models   (e.g.,   (17,   18))   to   more   complex   continuous   flow   culture   models   (e.g.,   (11-­‐16)).   Continuous-­‐flow   culture   models   are   beneficial   for   studying   the   complex   interactions   between   members   of   the  host  microbiota  in  vitro  because  they  allow  for  studies  to  be  completed  during   an   extended   period   of   time   under   conditions   where   pH,   nutrient   availability   and   washout  of  waste  products  and  dead  cells  can  be  better  controlled  (reviewed  in  (19-­‐ 21)).       Three   multi-­‐stage   continuous-­‐culture   models   that   have   been   well   studied   and   validated   for   their   use   as   in   vitro   models   of   the   human   microbiota   are   the     48   Simulator  of  Human  Intestinal  Microbial  Ecosystem  (SHIME,  (14,  22,  23)),  the  TIM-­‐2   in   vitro   model   of   the   human   intestine   (12,   24),   and   the   three-­‐stage   compound   continuous   culture   system   (13,   16).   Although   they   share   several   features,   each   model   has   its   own   unique   properties.   The   SHIME   and   three-­‐stage   compound   continuous   culture   system   simulate   multiple   colon   compartments   (ascending,   transverse,   and   descending   colon)   with   fresh   nutrients   coming   into   the   system   at   the  ascending  colon.  In  contrast,  the  TIM-­‐2  model  has  four  chambers  that  simulate   the  proximal  colon  and  are  connected  in  a  loop  with  contents  circulated  between  the   four   chambers   and   fresh   medium   brought   into   one   of   the   chambers   through   a   peristaltic  valve.  All  three  models  are  inoculated  with  human  feces,  maintained  at  a   constant   temperature   of   37°C,   kept   anaerobic   by   continuous   flushing   of   anaerobic   gas   (N2   (SHIME,   TIM-­‐2)   or   CO2   (three-­‐stage),   and   incorporate   dynamic   pH   monitoring  and  adjustment.     Another   common   feature   of   all   three   model   systems   described   above   is   their   size   and   complexity,   which   makes   high   numbers   of   biological   replication   of   experiments   challenging.   The   goal   of   our   study   was   to   develop   a   simpler,   continuous-­‐flow  in  vitro  model  that  would  support  growth  of  complex  human  fecal   microbial  communities  but  also  facilitate  higher  throughput  studies.  We  developed   mini-­‐bioreactor  arrays  (MBRAs)  that  allow  for  simultaneous  operation  of  up  to  24   independent   reactors   in   a   single   anaerobic   chamber.   After   testing   four   different   media,   we   identified   a   single   medium   that   best   supported   growth   of   microbial   communities   that   were   functionally   and   ecologically   similar   to   the   initial   fecal     49   community.  Based  upon  these  results,  we  anticipate  that  our  MBRA  model  will  be  a   useful  tool  for  moderate  throughput  studies  of  human  fecal  microbial  communities.     Materials  and  Methods   Design  of  mini-­‐bioreactor  arrays  (MBRA).  MBRAs  were  designed  using  CAD   software  (Argon,  Asheller-­‐Vellum),  and  fabricated  with  DSM  Somos  Watershed  XC   11122  via  stereolithography  (FineLine  prototyping).    In  detail,  six  reactors  with  an   internal  volume  of  25  mL  were  designed  into  a  single  strip  with  200mm  x  47  mm  x   36  mm  dimensions  (Fig.  1A).    Reactors  were  drawn  with  25  x  25  x  40  mm   dimensions,  including  10  mm  radial  blends  on  the  bottom  corners  (to  prevent   buildup  of  cells  and  other  insoluble  materials),  and  5  mm  radial  blends  on  the  top.   Reactors  were  spaced  32.5  mm  center  to  center  to  match  dimensions  on  the   selected  stir  plate  (described  below).    Three  5.55  mm  diameter  holes  (influent,   effluent,  inoculation/sampling)  were  placed  into  the  top  of  each  reactor,  and  spaced   16  mm  apart  center  to  center.    Holes  were  tapped  with  threads  to  fit  with   conventional  leur  connectors.    Inner  walls  of  the  reactors  were  placed  2  mm  from   the  bottom  of  the  strip,  5  mm  from  the  top  of  the  strip,  5  mm  from  the  side  of  the   strip,  and  3.25  mm  into  the  strip.  A  1.25  x  16  x  31  mm  intrusion  was  designed  into   the  bottom  corners  of  the  MBRA  for  fixing  into  a  custom  built  acrylic  block  that  held   the  reactors  upright  and  properly  aligned  with  the  stir-­‐plate.    A  CAD  file  (.stl)  that   can  be  used  directly  for  fabrication  via  stereolithography  is  available  in  the   supplemental  material.                                 50   Collection  of  fecal  samples.  Fecal  samples  were  donated  by  twelve  healthy,   anonymous  donors  that  were  between  the  ages  of  25  and  64,  had  not  taken   antibiotics  for  at  least  two  months  and  had  refrained  from  consuming  products   containing  intentionally-­‐added  live  microbes  for  at  least  two  days  prior  to  donation.   Fresh  samples  were  collected  into  sterile  containers,  which  were  then  packed  in  wet   ice  in  a  sealed  (8.1  quart,  Sterilite  Ultraseal)  container  with  two  anaerobic  gaspaks   (BD  biosciences)  and  transported  to  the  laboratory  within  24  hours.  Protocols  for   participation  of  human  subjects  were  reviewed  and  approved  by  the  Institutional   Review  Board  of  Michigan  State  University.       Preparation  of  fecal  samples.  Once  received  in  the  laboratory,  samples  were   transferred  to  an  anaerobic  chamber  and  manually  mixed  with  sterile  equipment   (spatula  and/or  pestle).  Aliquots  were  transferred  to  sterile  cryogenic  vials  and   stored  at  -­‐80°C  until  use.  Prior  to  inoculation  into  the  bioreactors,  aliquots  from   each  donor  were  thawed  in  the  anaerobic  chamber  and  resupsended  in  sterile,   phosphate-­‐buffered  saline  with  0.1%  cysteine  at  a  concentration  of  20%  w/v.   Samples  were  vortexed  vigorously  for  5  min,  then  allowed  to  settle  for  5  min  prior   to  removal  of  the  supernatant,  which  was  used  for  inoculation  into  the  reactors.   Inoculum  was  introduced  into  each  reactor  through  an  ethanol-­‐sterilized  rubber   septum  via  a  sterile  syringe  and  needle.  The  final  concentration  of  inoculum  in  each   reactor  was  1%.  Excess  fecal  slurry  was  diluted  30%  with  sterile  glycerol  to  a  final   concentration  of  15%  glycerol,  aliquoted  into  1  ml  volumes  in  sterile  cryovials,  flash   frozen  in  liquid  nitrogen,  and  stored  at  -­‐80°C.  Two  aliquots  of  excess  fecal  slurry     51   were  used  for  analyzing  the  SCFA  and  microbial  community  composition  of  the  fecal   inoculum.     Media.  One  liter  of  BRMW  was  composed  of  tryptone  (1g),  proteose  peptone  #3   (2g),  yeast  extract  (2g),  arabinogalactan  (1g),  maltose  (1.5g),  D-­‐cellobiose  (1.5g),   sodium  chloride  (0.4g),  hemin  (5mg),  magnesium  sulfate  (1mg),  calclium  chloride   (1mg),  tween  80  (2ml),  taurocholate  (1g),  D-­‐glucose  (400mg),  inulin  (2g),  sodium   bicarbonate  (2g),  potassium  phosphate  monobasic  (6.1g),  potassium  phosphate   dibasic  (7.6g),  and  vitamin  K3  (1mg).  The  composition  of  BRMW10  was  the  same  as   BRMW  with  the  exception  of  10-­‐fold  reductions  in  the  concentration  of   arabinogalactan,  maltose,  D-­‐cellobiose,  D-­‐glucose,  and  inulin.  One  liter  of  BRMG  was   composed  of  trypticase  peptone  (2g),  yeast  extract  (1g),  D-­‐glucose  (0.4g),  cellobiose   (1g),  maltose  (1g),  fructose  (1g),  beef  extract  (5g),  magnesium  sulfate  heptahydrate   (32  mg),  sodium  chloride  (80mg),  calcium  chloride  (0.8mg),  iron  sulfate  (2.5mg),   hematin  (1.2mg),  histidine  (31mg),  tween  80  (0.5ml),  ATCC  vitamin  mix  (10%  v/v),   boric  acid  (30µg),  manganese  chloride  (600µg),  cobalt  (II)  chloride  (190µg),  nickel   (II)  chloride  (124µg),  copper  (II)  chloride  (102µg),  zinc  sulfate  (144µg),  sodium   molybdate  (36µg),  sodium  metavanadate  (25µg),  sodium  tungstate  (25µg),  sodium   selenite  (6µg),  isovaleric  acid  (0.1ml),  propionic  acid  (2ml),  butyric  acid  (2ml),   taurocholate  (1g),  sodium  bicarbonate  (2g),  potassium  phosphate  monobasic  (6.1g),   potassium  phosphate  dibasic  (7.6g),  and  vitamin  K3  (1mg).  The  composition  of   BRMG10  was  the  same  as  BRMG  with  the  exception  of  10-­‐fold  reductions  in  the   concentration  of  maltose,  D-­‐cellobiose,  D-­‐glucose,  and  fructose.  We  adjusted  the  pH     52   of  all  four  media  to  6.8  and  sterilized  by  a  combination  of  autoclaving  and  filter   sterilization  of  heat  labile  reagents.     MBRA  operating  conditions  and  sampling.  Media  were  transferred  from  the   source  bottles  through  a  combination  of  1/8  in  inner  diameter  (ID)  C-­‐flex  tubing   (6424-­‐67,  Cole-­‐Parmer)  and  0.89  mm  ID  2-­‐stop  Tygon  lab  tubing  supplied  to  the   reactors  via  a  24-­‐channel  peristaltic  pump  (IPC-­‐24,  Ismatec).  The  waste  line  in  each   MBRA  was  set  to  maintain  a  working  volume  of  15  ml  and  the  pumps  were   calibrated  for  a  flow  rate  of  0.625  ml/hr  (24  hr  retention  time).  Waste  was  removed   from  the  reactors  through  a  combination  of  1/8  in  ID  C-­‐flex  tubing  and  1.14  mm  ID   2-­‐stop  Tygon  lab  tubing  drawn  from  the  reactors  via  the  same  24-­‐channel  peristaltic   pump.  Omnifit  caps  were  used  to  connect  media  and  waste  bottles  to  tubing.     Reactors  were  stirred  using  magnetic  stir  bars  driven  by  independent  magnets  on  a   60-­‐spot  magnetic  stir  plate  (VarioMAG  HP  60,  Vario-­‐MAG  USA).  Assembled  MBRA   were  sterilized  by  autoclaving  and  were  operated  in  an  anaerobic  chamber  (5%  H2,   5%  CO2,  90%  N2)  maintained  at  37°C.  MBRA  and  source  media  were  allowed  to   equilibrate  to  the  anaerobic  environment  of  the  chamber  for  at  least  72  hours  prior   to  use.  Media  was  pumped  through  tubing  into  the  reactors  and  allowed  to   equilibrate  for  48  hrs  in  the  reactors  prior  to  inoculation  to  ensure  sterility.  1  ml   samples  were  removed  for  SCFA  and  microbial  ecological  analyses  every  two  days   by  sterile  needle  and  syringe  through  ethanol-­‐sterilized  septa.    (Removal  of  1  ml  of   sample  decreases  the  total  volume  of  the  culture  in  the  reactor  by  6.7%.    Reactor   volume  returns  to  the  pre-­‐sampling  volume  of  15  ml  within  1.6  hours  of  sampling     53   through  the  addition  of  fresh  medium.  During  these  1.6  hours,  waste  is  unlikely  to   be  removed  since  the  volume  of  the  reactor  is  below  the  threshold  volume  for  waste   removal.)  Samples  were  centrifuged  for  1  min  at  maximum  speed,  supernatants   were  removed  from  cell  pellets,  and  both  pellets  and  supernatants  were  stored  at  -­‐ 80°C  until  further  processing.  The  pH  of  thawed  supernatant  samples  was  tested   with  pH  strips  (pHyrdrion  papers,  pH  4.5-­‐7.5,  MicroEssential  Laboratories).     HPLC  of  SCFA.  To  ensure  cells  were  removed,  thawed  supernatant  samples  were   centrifuged  at  maximum  speed  for  an  additional  15  min.    Centrifuged  reactor   samples  were  filtered  through  0.22-­‐μm-­‐pore-­‐size  filters  (SLGS033SS,  Millipore)  and   acidified  with  0.1  M  H2SO4.    SCFAs  were  analyzed  with  a  high-­‐performance  liquid   chromatograph  (HPLC)  equipped  with  a  250  x  4.6  mm  Discovery  C8  column  (59354-­‐ U,  Supelco  Analytical)  connected  to  a  UV/Vis  absorbance  detector  (Series  200,   Perken  Elmer)  set  at  210  nm.  The  mobile  phase  was  25  mM  potassium  phosphate   adjusted  to  a  pH  of  2.8  with  phosphoric  acid,  at  a  flow  rate  of  1  ml/min,  and  100  μl   was  injected  into  the  HPLC  using  an  autosampler  (Series  200,  Perkin  Elmer).  All   compounds  detectable  with  the  UV/Vis  absorbance  detector  within  50  min  were   monitored.  Lactate,  acetate,  butyrate,  propionate,  and  isobutyrate  were  identified  by   their  retention  times  compared  to  those  of  standards.       SCFA  Analysis.  The  area  under  peaks  were  calculated  using  TotalChrom  Navigator   (Perkin  Elmer),  and  the  concentration  of  SCFA  was  derived  via  standard  dilutions  of   lactate,  acetate,  butyrate,  propionate,  and  isobutyrate  run  in  parallel.    Pearson     54   Product  Moment  Correlation  Coefficients  were  calculated  using  the  Pearson   function  in  Microsoft  Excel.  Additional  transformations  of  the  data  are  reported  in   the  figure  or  table  legend.     DNA  extraction.  We  extracted  DNA  from  samples  using  bead  beating  followed  by   cleanup  with  a  Qiagen  DNEasy  Tissue  Kit.  Samples  were  resuspended  in  360  µl   buffer  ATL  (Qiagen),  transferred  to  a  MoBio  fecal  bead  tube,  and  homogenized  on   full  speed  for  1  min.  Homogenates  were  incubated  with  proteinase  K  (40  µl  of  >600   mAU/ml,  Qiagen)  for  1  hour  at  55°C,  followed  by  incubation  with  200  µl  of  buffer  AL   for  10-­‐30  minutes  at  70°C.  200  µl  of  ethanol  was  added  prior  to  loading  on  the   column.  Column  washing  was  as  described  in  the  Qiagen  protocol  and  samples  were   eluted  in  100  µl  of  Buffer  AE.  DNA  concentrations  were  determined  with  Quant-­‐IT   (Invitrogen)  according  to  the  manufacturer’s  protocol.     Preparation  of  16S  rRNA  amplicons  for  sequencing.  We  used  40  ng  of  each  DNA   sample  as  template  in  PCR  with  the  following  final  concentrations  of  reagents:  200   nM   357F   primer,   200   nM   926R   primer,   1X   AccuPrime   PCR   Buffer   II   (Invitrogen),   0.75  U  of  AccuPrime  Taq  DNA  High  Fidelity  (Invitrogen).  357F/962R  were  designed   by   the   Human   Microbiome   Project,   amplify   the   V3-­‐V5   variable   regions   of   the   16S   rRNA  gene,  and  contain  unique  barcodes  that  can  be  used  to  multiplex  sequencing   reactions   (25).   Each   reaction   was   set   up   in   triplicate   and   amplified   using   the   following  cycle:  95°C  for  2  min,  followed  by  30  cycles  of  95°C  for  20  sec,  50°C  for  30   sec,   and   72°C   for   5   min,   with   a   final   extension   at   72°C   for   5   min.   Successful   PCR     55   amplification   products   from   triplicate   reactions   were   pooled   and   cleaned   with   Agencourt   AMPure   XP   beads   essentially   according   to   protocol   with   minor   modifications   (Beckman-­‐Coulter).   Briefly,   products   were   resuspended   with   a   0.7X   volume   of   beads,   washed   twice   with   70%   ethanol,   and   eluted   with   25   µl   of   low   EDTA   TE   Buffer   (10   mM   Tris,   0.1   mM   EDTA).     Concentrations   of   purified   DNA   samples   were   determined   using   Quant-­‐IT   (Invitrogen)   according   to   the   manufacturer’s   protocol   and   were   pooled   in   equimolar   amounts.   Nucleotide   sequencing  was  performed  on  a  454  GS  Junior  (Roche  Diagnostics)  at  Michigan  State   University   according   to   the   manufacturer’s   protocols.   Four   sequencing   runs   were   performed.  Run  1  included  BRMW  &  BRMW10  Reactors  1,  2  &  3  on  days  2,  4,  8,  14,   and   28   and   BRMG   Reactors   1,   2,   &   3   on   days   2,   4,   8,   14,   22,   and   28   in   culture;   Run   2   included  BRMW  &  BRMW10  Reactors  1,  2,  &  3  on  day  20  in  culture;  Run  3  included   BRMW10  Reactors  1,  2,  &  3  on  days  2,  4,  6,  8,  10,  12,  14,  16,  18,  and  20  in  culture  as   well  as  two  independently  prepared  replicates  of  the  fecal  slurry;  Run  4  was  an  in-­‐ depth  analysis  of  the  two  replicates  of  the  fecal  slurry.     Analysis  of  amplicon  data.  All  sequence  data  were  analyzed  using  mothur  (26)   Version  1.27.0  (August  2012).  The  sequences  from  the  four  sequencing  runs   described  above  were  initially  processed  independently  and  were  quality  trimmed   and  filtered  to  remove  those  sequences  that  had  any  ambiguous  bases,  mismatches   to  the  reverse  primer  or  barcode,  homopolymeric  stretches  longer  than  8  nt,  were   shorter  than  200  nt,  and/or  had  an  average  quality  score  over  a  50  nt  window  less   than  30  (27).  Sequences  from  all  four  runs  were  then  compiled  into  a  single  fasta  file     56   and  aligned  to  the  SILVA  reference  alignment  using  the  NAST-­‐based  aligner  in   mothur,  trimmed  to  ensure  that  sequences  overlapped,  and  pre-­‐clustered,  allowing   a  difference  between  sequences  of  2  bp  or  less  (27).  Potentially  chimeric  sequences   were  removed  using  the  mothur-­‐implementation  of  UChime  (28);  remaining   sequences  were  classified  using  RDP  training  set  version  9  (March  2012)  and   mothur’s  implementation  of  the  kmer-­‐based  Bayesian  classifier.  Sequences  that   classified  as  Mitochondria,  Chloroplasts,  Eukarya  or  unknown  were  removed  prior   to  further  analysis.  Sequences  were  binned  into  Operational  Taxonomic  Units   (OTUs)  with  ≤3%  sequence  dissimilarity  using  the  average  neighbor  algorithm  of   mothur.  Taxonomy  was  assigned  to  each  OTU  based  upon  the  majority  sequence   consensus  within  that  OTU  (29).     Comparison  of  cultures  grown  in  BRMW,  BRMW10  and  BRMG  to  the  fecal  slurry.  In   order  to  determine  the  differences  in  microbial  community  structure  and   composition  within  and  between  cultures  grown  in  BRMW,  BRMW10,  BRMG  and  the   fecal  slurry,  we  extracted  these  samples  (from  Runs  1  (all  samples  included),  2  (all   samples  included),  and  3  (fecal  slurry  only))  from  the  larger  pool  of  samples  prior  to   further  analysis.  For  OTU-­‐based  analyses,  we  then  removed  those  sequences  that   were  represented  by  only  a  single  sequence  across  the  samples  studied  (singletons).   Before  determining  alpha-­‐diversity  measures  (Inverse  Simpson,  Chao  Richness,   Simpson  Evenness)  for  the  communities  using  the  calculators  present  in  mothur,  we   randomly  subsampled  our  data  to  the  maximum  number  of  sequences  present  in  the   smallest  group  (nseqs=554)  ten  times  and  presented  the  mean  ±  standard   deviations  of  these  calculations.    We  also  used  one  iteration  of  our  randomly     57   subsampled  data  to  calculate  the  theta  dissimilarity  measure  described  by  Yue  and   Clayton  (θYC  (30))  using  the  calculators  present  in  mothur.     For  taxonomic-­‐based  analyses,  we  classified  sequences  using  the  RDP   training  set  and  the  mothur-­‐implementation  of  the  RDP-­‐classifier  as  described   above.  Sequences  that  were  classified  to  the  same  taxonomic-­‐level  (Genus,  Family,   Order,  Class,  or  Phylum)  were  binned  together  into  phylotypes.  Prior  to  calculation   of  the  θYC  dissimilarity  index,  those  phylotypes  that  were  represented  by  a  single   sequence  across  the  samples  were  removed  and  the  data  was  randomly  subsampled   to  the  largest  number  of  sequences  present  in  the  smallest  sample  (nseqs=557).            For  analysis  of  phylogenetic  diversity,  we  randomly  subsampled  our  data  to  the   maximum  number  of  sequences  present  in  the  smallest  group  (nseqs=557),   calculated  an  uncorrected  pairwise  distance  matrix  between  the  aligned  sequences,   and  then  built  a  relaxed  neighbor  joining  phylogenetic  tree  of  the  sequence  data   using  the  mothur-­‐implementation  of  clearcut  (31).  We  calculated  the  phylogenetic   distance  between  samples  using  the  mothur-­‐implementation  of  weighted  unifrac   (32).    We  used  the  mothur-­‐implementation  of  principal  coordinates  analysis   (PCOA),  ANOSIM,  and  AMOVA  for  analysis  of  θYC  Dissimilarity  Indices.  PCOA  data   was  plotted  in  R  whereas  other  distance  measures  were  plotted  in  Microsoft  Excel.              The  percent  abundance  of  each  phylotype  at  the  class-­‐level  was  based  upon   analysis  of  total  sequences  present  in  the  indicated  samples  (not  subsampled).  The   percent  abundance  in  the  fecal  slurry  samples  was  based  upon  the  in-­‐depth   sequencing  (nseqs  =  38,169  and  44,792)  of  duplicate  fecal  slurry  samples   (Sequencing  Run  4).     58     Analysis  of  variation  in  cultures  grown  in  BRMW10  and  comparison  to  the  starting   fecal  inoculum.  In  order  to  calculate  the  differences  that  occurred  between  the  three   reactors  grown  in  BRMW10  and  between  BRMW10  and  the  fecal  inoculum,  we   extracted  sequence  data  from  all  three  reactors  on  Day  2,  4,  6,  8,  10,  12,  14,  16,  18   and  20  and  the  two  replicates  of  the  fecal  slurry  samples  (Sequencing  Run  3).  For   OTU-­‐based  analyses,  we  removed  sequences  represented  by  only  a  single  sequence   across  the  data  points  and  randomly  subsampled  all  groups  to  the  largest  number   present  in  the  smallest  sample  (nseqs=1814  for  comparisons  without  fecal  slurry   samples;  nseqs=1582  for  comparisons  with  fecal  slurry  samples).  For  taxonomic-­‐ based  analyses,  we  classified  sequences  using  the  RDP-­‐classifier  and  binned  into   phylotypes,  removed  singletons,  and  subsampled  as  described  above.  We  calculated   the  θYC  dissimilarity  index,  and  ANOSIM  and  AMOVA  of  the  θYC  distance  matrix  as   described  above.  We  calculated  the  Pearson  Product  Moment  Correlation  Coefficient   using  the  Pearson  function  in  Microsoft  Excel.  Data  was  plotted  in  Microsoft  Excel.       Results   Mini-­‐bioreactor   design.   After   evaluating   different   materials   for   use   in   the   MBRA,   we   determined   that   DSM   Somos   Watershed   XC   11122   was   the   most   appropriate   material  due  to  its  transparency,  resistance  to  water  and  humidity,  durability  after   autoclaving,   previous   use   in   microbiological   studies   (33),   and   its   ability   for   use   with   enclosed   3D   fabrication.   Stereolithography   was   used   to   create   blocks   of   six   bioreactor   chambers   within   each   mini-­‐bioreactor   array   (Fig.   2.1A).   We   chose     59   stereolithography   for   synthesis   in   order   to   have   a   completely   enclosed   reactor   design,  thereby  minimizing  points  at  which  contaminants  could  be  introduced  into   the   reactors.   The   interior   volume   of   each   reactor   was   designed   to   allow   a   15   ml   medium   volume   and   a   10   ml   headspace   volume.   This   reactor   volume   was   chosen   to   allow  for  a  less  drastic  change  in  volume  of  medium  upon  sampling  (<10%  for  a  1  ml   sample)  while  still  maintaining  sufficient  headspace  within  the  reactor  to  reduce  the   risk   of   contamination   of   the   source   medium.     Further,   the   small   medium   volume   (compared   to   liter   scale   reactors)   reduced   medium   consumption   and   waste   production,  thereby  limiting  expense  of  operation.             60     Figure  2.1.  Schematic  of  MBRA  design  and  set-­‐up.  (A)  Picture  of  a  single  mini-­‐ bioreactor  (MBRA)  strip  with  dimensions  indicated.  (B)  Schematic  of  bioreactor   setup.  Each  mini-­‐bioreactor  was  operated  with  a  total  volume  of  15  ml.  We  used   peristaltic  pump  tubing  with  0.89  mm  inner  diameter  (ID)  and  the  lowest  peristaltic   pump  setting  to  produce  a  flow  rate  from  the  feed  of  0.625  ml/hr  (24  hr  retention   time).  We  used  1.14  ID  peristaltic  tubing  on  the  waste  lines  to  prevent  clogging.   Each  reactor  was  constantly  stirred  using  a  magnetic  stir  bar  driven  by  a  stir  plate.   Reactors  were  maintained  in  an  anaerobic  chamber  (5%  H2,  5%  CO2,  90%  N2)  at   37°C.       MBRA  operation.  We  operated  the  MBRA  as  continuously-­‐stirred  tank  bioreactors   with  a  retention  time  of  24  hours  (Fig.  2.1B).  Similar  operating  conditions  have  been   used   in   other   in  vitro   colonic   models   of   the   distal   colon   that   supported   growth   of   diverse   microbial   communities   (14,   34).   These   operating   conditions   allowed   us   to   monitor  growth  of  our  fecal  communities  in  culture  for  28  days.  In  order  to  facilitate     61   growth  of  strict  anaerobes,  we  maintained  the  MBRA  in  a  37°C  anaerobic  chamber   with  5%  CO2,  5%  H2  and  90%  N2  atmosphere.  We  evaluated  four  different  types  of   media,  which  were  variations  of  media  developed  in  the  Wilcox  (13)  and  Gordon  (8)   laboratories   for   culturing   diverse   fecal   communities.   We   named   the   media   variations  BRMW  (Bioreactor  Medium  Wilcox),  BRMG  (Bioreactor  Medium  Gordon),   BRMW10  and  BRMG10.  BRMW10  and  BRMG10  are  modifications  of  BRMW  and  BRMG   that   contain   10%   of   the   carbohydrates   found   in   the   original   media,   which   we   evaluated   because   previous   work   with   the   three-­‐stage   compound   continuous   culture   system   had   shown   that   the   majority   of   carbohydrates   in   the   medium   are   depleted   prior   to   reaching   the   third   chamber   of   the   system   that   mimics   the   distal   colon   (34).   The   media   were   buffered   with   both   phosphate   buffer   and   bicarbonate,   which  was  sufficient  to  maintain  a  relatively  constant  pH  without  addition  of  acid  or   base   (pH   was   between   6.5   and   7.0   across   all   twelve   reactors,   when   measured   every   2  days).     Short  chain  fatty  acid  profiles  of  cultures  grown  in  each  medium  revealed  that   BRMW10   communities   were   highly   stable   and   most   similar   to   the   fecal   inoculum.     One   key   function   the   gut   microbiota   provides   to   its   host   is   the   fermentation   of   otherwise   indigestible   polysaccharides   to   short   chain   fatty   acids   (SCFAs),  which  can  both  be  used  by  the  host  for  energy  metabolism  and  influence  a   wide   array   of   host   functions   (reviewed   in   (3)).   Changes   in   the   concentration   and   proportion  of  individual  SCFAs  correlate  with  changes  in  bacterial  groups  (35-­‐37),   thus   monitoring   SCFAs   can   be   a   good   measure   of   community   functional   stability.     62   Using   HPLC,   we   monitored   the   concentrations   of   five   SCFAs   (acetate,   butyrate,   isobutryate,  lactate  and  propionate)  in  our  reactors  over  time  and  compared  these   concentrations   to   the   starting   fecal   inoculum.   While   the   low   concentration   of   isobutyrate,   an   isoform   of   butyrate,   is   typically   neglected,   it   was   monitored   in   this   study   because   it   has   been   described,   along   with   butyrate,   as   the   most   rapid   indicators  for  monitoring  process  instability  (38,  39).       We   found   considerable   differences   in   SCFA   profiles   and   concentrations   across  the  four  different  media  (Figure  2.2,  Figure  S2.1).  For  an  individual  reactor  in   a  given  medium,  we  generally  observed  that  stabilization  in  the  SCFA  profile,  which   we   defined   as   a   Pearson   Product   Moment   Correlation   Coefficient   >   0.8   from   one   sample  day  to  the  next  (as  had  been  previously  reported  to  represent  stability  (23,   40)),   occurred   by   day   two   of   growth   in   culture   and   persisted   throughout   the   remainder   of   time   in   culture   (Fig   2.3A-­‐D).   The   two   exceptions   to   this   trend   were   from  a  single  reactor  grown  in  BRMG  and  another  reactor  grown  in  BRMG10  where   the   correlation   coefficient   dropped   to   0.73   and   0.77,   respectively   during   single   two-­‐ day  windows.  In  general,  the  correlation  coefficient  was  above  0.9  for  most  points  in   culture.   A   notable   exception   occurred   between   day   18   and   20   in   culture   in   BRMG   and   BRMG10   where   the   correlation   coefficient   dropped   quickly   then   returned   to   stability.   This   time   frame   corresponded   to   a   change   from   one   batch   of   source   medium  to  a  new  batch  of  source  medium.         63     Figure  2.2.    Short  Chain  Fatty  Acid  analysis  of  bioreactor  cutures.    Comparison   of  the  Short  Chain  Fatty  Acid  Profiles  of  the  fecal  inoculum  to  bioreactors  cultured  in   BRMW,  BRMG,  BRMW10,  or  BRMG10.  (A-­‐E)  Mean  Percent  Abundance  of  SCFA  in   duplicate  samples  of  original  fecal  inoculum  (A)  and  from  triplicate  reactors   cultured  in  BRMW(B),  BRMG(C),  BRMW10(D),  or  BRMG10  (E)  sampled  on  every  two   days.  (F-­‐G)    We  calculated  Pearson  Product  Moment  Correlation  Coefficients  of  the   SCFA  composition  (percent  abundance  of  acetate,  butyrate,  isobutyrate,  lactate,  and   propionate)  for  each  day  in  culture  compared  to  the  initial  fecal  inoculum.  Data   presented  are  the  mean  of  triplicate  reactors  (error  bars=SD  of  mean).  Symbols   represent  cultures  grown  in  BRMW  (n),  BRMW10  (o),  BRMG(l)  or  BRMG10  (¡).         64   Pearson Correlation Coefficient! A! B! 1! 0.95! 0.85! 0.9! 0.7! 0! C! 1! 4! 8! 12! 16! 20! 24! 28! D! 1! 0.9875! 0! 4! 8! 12! 16! 20! 24! 28! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture! 1! 0.85! 0.975! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture! 0.7!   Figure   2.3.   Pearson   Product   Moment   Correlation   Coefficient   of   the   SCFA   composition   in   bioreactor   cultures.   For   each   individual   reactor   grown   in   BRMW(A),  BRMG(B),  BRMW10  (C),  or  BRMG10(D),  we  calculated  the  Pearson  Product   Moment  Correlation  Coefficient  of  the  SCFA  composition  from  day  X  to  day  X+2  in   culture  (X=2-­‐28  at  two  day  intervals)  and  plotted  this  is  a  function  of  day  X.  Black   symbols   represent   the   data   from   reactor   1,   gray   symbols   represent   the   data   from   reactor  2,  and  white  symbols  represent  the  data  for  reactor  3  in  each  panel.     The  similarity  in  SCFA  profiles  that  we  observed  from  one  replicate  reactor   to   another   varied   by   the   type   of   medium   evaluated.   Bioreactor   communities   established  in  BRMW10  were  highly  similar  to  one  another,  with  a  mean  correlation   coefficient  from  one  replicate  to  another  on  the  same  day  in  culture  of  >0.99  (Figure   S2.2B).   In   contrast,   one   of   the   replicate   reactors   grown   in   BRMW   diverged   drastically  from  the  other  two  replicates  by  day  4  in  culture  (Figure  S2.2A).  In  this   case,   the   SCFA   profiles   of   two   reactors   were   highly   similar   (mean   correlation   coefficient   across   all   days   sampled   >0.99),   whereas   the   third   reactor   had   a   SCFA   profile   dissimilar   to   either   of   the   reactors   (mean   correlation   coefficient   across   all   days  sampled  of  0.46  and  0.41).  The  replicate  cultures  grown  in  BRMG  and  BRMG10     65   were  intermediate  between  these  two  extremes,  with  mean  correlation  coefficients   amongst  reactors  ranging  from  0.82  to  0.98  (Figure  S2.2C  and  S2.2D)   We   also   compared   the   similarity   of   the   SCFA   profiles   of   our   different   bioreactor  cultures  to  the  starting  fecal  slurry.  The  SCFA  profile  of  our  fecal  slurry   (87%  acetate,  11%  butyrate,  1%  propionate,  and  1  %  lactate,  Table  2.1)  was  similar   to  previously  reported  fecal  SCFA  profiles  (35,  41).  Cultures  grown  in  BRMW10  had  a   SCFA   profile   most   similar   to   the   fecal   inoculum   (Fig.   2.2F),   although   acetate   concentrations   were   15%   lower   than   in   the   fecal   inoculum   with   increased   concentrations   of   the   remaining   four   SCFAs   (Table   2.1).   Cultures   grown   in   BRMW   had   a   SCFA   profile   least   similar   to   the   fecal   inoculum   (Fig.   2.2F).   Acetate   concentrations   dropped   to   24%   of   the   total   SCFA   pool   with   large   increases   in   butyrate   (50%)   and   propionate   (20%,   Table   2.1).   Cultures   grown   in   BRMG   and   BRMG10  had   SCFA   profiles   more   similar   to   the   fecal   inoculum   than   those   grown   in   BRMW,   but   less   similar   than   cultures   grown   in   BRMW10   (Fig.   2.2F   &   2.2G).   As   expected,   concentrations   of   acetate,   butyrate,   and   propionate   were   higher   in   cultures   grown   in   BRMG   or   BRMG10  (Fig.   S2.1),   which   contain   added   SCFAs   (acetate,   29.6  mM;  butyrate,  21.6  mM;  propionate,  26.5  mM).  However,  even  after  correcting   for  the  calculated  levels  of  SCFAs  in  the  starting  media,  cultures  grown  in  BRMG  and   BRMG10  still   had   reduced   acetate   concentrations   (47%   and   55%,   respectively,   Table   2.1)  and  higher  concentrations  of  butyrate  (41%  and  33%,  respectively,  Table  2.1)   than  the  fecal  inoculum.           66   Table  2.1.  SCFA  profiles  for  fecal  inoculum  and  MBRA  cultures.     Fecal   Inoculum1   BRMW2   Acetate   Butyrate     Propionate     Lactate   Isobutyrate     87%  ±   10%  ±  1.5%   1.0%  ±  0.4%   1.0  ±  0.0%   ND   1.1%   24.1  ±   ND   2.6%   50.7  ±  2.9%   19.9  ±  2.5%   5.3  ±  1.2%           2   BRMW10 70.5±  2.9%   16.5  ±  1.9%   6.1  ±  1.3%   4.7  ±  0.2%   1.9±0.09%             2,3 BRMG   43.2  ±   2.6%   33.9  ±  6.1%   21  ±  4.5%   1.7  ±  0.6%   0.09  ±  0.1%             BRMG102,3   47.3  ±   5.5%   30.8  ±  6.6%   20.4  ±  1.9%   1.2  ±  0.2%   0.2  ±  0.2%             1  Values  reported  are  the  mean  of  duplicate  slurry  samples  for  fecal  inoculum  ±  SD     2  Values  reported  are  the  mean  of  samples  collected  every  two  days  for  28  days   across  triplicate  bioreactors  ±  SD   3  Background  concentrations  of  acetate,  butyrate  and  propionate  (29.6  mM,  21.6   mM,  and  26.5  mM,  respectively)  in  BRMG  and  BRMG10  were  subtracted  prior  to   determining  the  mean  percent  abundance  of  each  SCFA  species.       Comparison  of  MBRA  microbial  composition  and  structure  demonstrates  that   communities   cultured   in   BRMW10   are   most   similar   to   the   fecal   inoclum.   In   order   to   study   how   culturing   in   the   bioreactors   influenced   the   structure   of   the   microbial   communities,   we   analyzed   16S   rRNA  gene   diversity   of   samples   collected   from   triplicate   reactors   grown   in   BRMW,   BRMG,   and   BRMW10   at   several   points   during   growth   as   well   as   from   duplicate   samples   of   the   initial   fecal   slurry.   We   did   not   include   cultures   grown   in   BRMG10   in   these   analyses   because   preliminary   16S   rRNA   gene   sequence   analyses   of   BRMG10   communities   revealed   that   the   cultures   were  dissimilar  from  the  fecal  inoculum  (data  not  shown).     67   Overall,  culturing  in  any  of  the  three  media  resulted  in  significant  decreases   in   microbial   diversity   and   species   richness   and   an   increase   in   species   evenness   compared   to   the   fecal   inoculum   (Fig   2.4A-­‐C).   The   highest   levels   of   diversity   and   richness   were   seen   in   the   communities   cultured   in   BRMW10,   whereas   the   lowest   levels  of  diversity  and  richness  were  seen  in  the  communities  cultured  in  BRMG.  As   might   be   expected   based   upon   the   changes   in   diversity,   richness   and   evenness,   culturing  also  resulted  in  changes  in  overall  community  structure  (Fig.  2.4D-­‐F).  We   examined  the  changes  in  community  structure  at  multiple  taxonomic  levels  (Order,   Genus,   and   operational   taxonomic   units   (OTUs)   with   sequence   dissimilarity   ≤   3%   in   Fig.  2.4D,  2.4E,  and  2.4F,  respectively)  using  the  dissimilarity  measure  described  by   Yue   and   Clayton   (θYC   (30)),   which   compares   community   structures   based   upon   shared   community   membership   and   abundance.   We   found   that   the   communities   cultured  in  BRMG  were  least  similar  to  the  starting  fecal  inoculum  at  all  taxonomic   levels  (Fig.  2.4D-­‐F,  scaled  from  0  to  1,  with  1  being  least  similar).  When  examined  at   the   Order   level,   communities   cultured   in   BRMW   appeared   slightly   more   similar   to   the  starting  fecal  inoculum  than  communities  cultured  in  BRMW10,  throughout  their   time   in   culture,   although   these   differences   were   not   statistically   significant   (student’s  two-­‐tailed  t-­‐test,  p>0.07  for  all  time  points).    As  expected,  comparing  the   BRMW   and   BRMW10   communities   at   finer   taxonomic   resolution   (Fig.   2.4E   and   2.4F)   revealed   more   dissimilarity   to   the   starting   fecal   inoculum   after   culture   in   either   medium.   Culturing   in   either   medium   produced   similar   levels   of   change   in   the   community  structure  relative  to  the  fecal  inoculum,  with  exception  of  the  bioreactor   communities   in   BRMW   reactors   on   day   4,   which   were   much   more   similar   to   the     68   starting  fecal  inoculum.  Similar  differences  in  community  structure  among  the  three   media  were  also  observed  when  we  compared  their  16S  rRNA  gene  diversity  using   shared  phylogenetic  distance  with  weighted  Unifrac  ((32),  data  not  shown).     A! B! C! 10! 5! 100! 0! 0! 1! 0.8! 0.6! 0.4! 0.2! 0! Order! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture! E! θYC Dissimilarity! D! 0.2! 0! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture! Genus! 1! 0.9! 0.8! 0.7! 0.6! 0.5! 0! 4! 8! 12!16!20!24!28! Days in Culture! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture! F! θYC Dissimilarity! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture! θYC Dissimilarity! 0.4! Evenness! 200! Richness! Diversity! 15! 3% OTU! 1! 0.9! 0.8! 0.7! 0.6! 0.5! 0! 4! 8! 12!16!20!24!28! Days in Culture!   Figure  2.4.  Microbial  ecology  of  bioreactors  compared  to  the  fecal  inoculum.   We  compared  the  composition  and  structures  of  microbial  communities  cultured  in   BRMW,  BRMW10,  or  BRMG  medium  to  the  fecal  inoculum  by  analysis  of  16S  rRNA   gene  diversity.  We  partitioned  sequences  with  ≤ 3%  sequence  dissimilarity  into   operational  taxonomic  units  (OTUs,  A-­‐C,  G)  as  well  as  examining  shared  community   composition  at  the  Order  (E)  and  Genus  (F)  levels.  Triplicate  BRMW  or  BRMW10   bioreactor  communities  were  analyzed  on  days  2,  4,  8,  14,  20,  and  28  in  culture;   triplicate  BRMG  bioreactor  communities  were  analyzed  on  days  2,  4,  8,  14,  22,  and   28.  In  (A-­‐C),  we  determined  the  mean  (A)  microbial  diversity  (Inverse  Simpson   (1/D)),  (B)  species  richness  (Chao  Richness  Estimate),  and  (C)  species  evenness   (Simpson  Evenness)  of  triplicate  bioreactor  communities  after  the  indicated  times   in  culture  in  BRMW  (n),  BRMW10  (l),  and  BRMG  (r)  to  the  fecal  inoculum  (Í).  In   (D-­‐F),  we  compared  the  differences  in  the  overall  community  structure  (Yue  and   Clayton  θ  Dissimilarity  Index  (θYC)  at  the  Order  (E),  Genus  (F),  and  3%  OTU  (G)   levels  between  each  day  in  culture  in  BRMW  (n),  BRMW10  (l),  or  BRMG  (r)  to  the   fecal  inoculum.  We  plotted  the  mean  of  the  dissimilarity  index  for  each  triplicate  set   of  reactors  as  a  function  of  the  day  in  culture.  Error  bars  represent  the  standard   deviation  of  the  mean.       69   Examining  how  the  community  composition  varied  amongst  media,  we  found   that  each  medium  supported  a  microbial  community  that  was  distinct  in  structure   from   the   other   media   tested.   We   found   that   both   analysis   of   similarities   (ANOSIM   (42),   Fig.   S2.3)   as   well   as   analysis   of   molecular   variance   (AMOVA   (43)),   indicated   that   the   composition   and   structure   of   each   community   was   distinct   (P   <   0.001).   These   observations   held   true   whether   we   examined   shared   community   structure   as   measured  by  common  OTUs  (Fig.  S2.3)  or  phylogenetic  distance  (data  not  shown).       Comparison   of   class-­‐level   differences   among   reactor   communities   revealed   the   extent   of   reorganization   of   the   microbial   community   during   culture.   Examining   the   class-­‐level   distribution   of   organisms   in   the   different   media   after   4   weeks  in  culture  (Day  28),  we  found  that  in  all  three  media  there  was  a  significant   decrease   in   the   relative   abundance   of   Clostridia   (Fig.   2.5).   This   decrease   in   the   abundance   of   Clostridia   was   observed   by   the   second   day   in   culture   (Fig   S2.4).   In   cultures   grown   with   BRMW   or   BRMW10,   this   decrease   in   Clostridia   correlated   primarily  with  increased  representation  of  Bacteroides  (Fig.  2.5).  In  two  of  the  three   reactors   cultured   in   BRMG,   the   loss   of   Clostridia   correlated   with   a   much   higher   population   of   γ-­‐Proteobacteria   (~50%   of   all   organisms   present),   whereas   in   the   third   reactor   there   was   a   bloom   of   Bacilli.   Two   other   classes   of   Bacteria   that   significantly   expanded   in   culture   were   the   Synergistia   and   Fusobacteria,   with   the   largest  expansions  observed  in  reactors  cultured  with  BRMW10  and  BRMG.         70   I! 100%! 100%! 80%! 80%! 60%! 60%! I! MW! MW10! MG! 40%! 40%! 20%! 20%! 0%! 0%! 1 2 3 1 2 3 1 2 3! Reactor Number! R1! Other! 1.2! 0.17! Other! Other! UC Bacteria! 0.34! 0.17! Unclassified Unclassified Bacteria! Bacteria! Synergistia! Synergistia! Synergistia! 0.0024! 1.3! Fusobacteria! Fusobacteria! Fusobacteria! 0.0035! 5.4! Gammaproteobacteria! γ-Proteobacteria! 0.088! 11! Gammaproteobacteria! Deltaproteobacteria! Δ-Proteobacteria! 0.087! 0.34! Deltaproteobacteria! Bacteroidia! Bacteroidia! 20! 45! Bacteroidia! Unclassified Firmicutes! MW! R2! 0.3! 2.7! 2.5! 2.3! 9.4! 0.3! 39! R3! 0.6! 1.2! 0.66! 0.83! 18! 0.25! 46! R1! 0.56! 0! 3.4! 18! 14! 0.37! 39! MW10! R2! R3! R1! 0.93! 0.59! 0.2! 0! 0.074! 0! 10! 7.3! 4.4! 13! 7.2! 2.9! 0! 10! 51! 1.2! 2.9! 0.10! 39! 49! 5.4! Negativicutes! Unclassified Firmicutes! UC Firmicutes! 3.0! 0! 0! 0.25! 0.28! 1.4! 0.74! 0! Erysipelotrichia! Negativicutes! 3.5! 5.4! 1.2! 0.66! 2.7! 0.86! 2.4! 8.4! Negativicutes! Clostridia! Erysipelotrichia! 1.5! 0.085! 0! 3.1! 0! 0! 0.07! 0! Erysipelotrichia! Bacilli! Clostridia! Clostridia! Bacilli! Bacilli! 70! 0.11! 31! 0! 42! 28! 21! 0! 0.91! 0! 33! 0! 20! 0! 16! 11! MG! R2! 0! 0! 2.1! 8.0! 66! 0.13! 7.6! R3! 0.48! 0! 7.9! 8.9! 2.2! 3.6! 15! 0! 0! 9.2! 8.1! 0! 0! 6.7! 8.0! 0! 46!   Figure  2.5.  Comparison  of  the  class-­‐level  distribution  of  microbes  in   bioreactors  and  the  fecal  inoculum.    Comparison  of  the  class-­‐level  distribution  of   microbes  on  day  28  in  culture  in  BR(MW),  BR(MW10),    or  BR(MG)  to  the  fecal   (I)noculum.  The  percent  abundance  of  each  class  of  Bacteria  in  the  individual   bioreactor  samples  is  shown  as  is  the  mean  percent  abundance  of  each  class  in   duplicate  fecal  inoculum  samples.  Reactor  numbers  correspond  to  those  given  in   Figures  3  and  4.  UC  Bacteria  and  UC  Firmicutes  indicate  phylotypes  that  could  not   be  classified  with  greater  than  80%  confidence  beyond  the  Domain  (Bacteria)  and   Phylum  (Firmicutes)  levels  by  the  ribosomal  database  project  classifier  release  9.   Phylotypes  classified  as  “Other”  were  present  in  <1%  abundance  in  any  of  the   samples  and  include  Actinobacteria,  Uncalssified  Bacteroidetes,  Lentisphaeria,   Methanobacteria,  α-­‐Proteobacteria,  β-­‐Proteobacteria,  Unclassified  Proteobacteria,   and  Verrucomicrobiae.       Examining  the  microbial  community  structure  in  BRMW10  communities  at   more  frequent  time  intervals  revealed  how  communities  diverge  from  day-­‐to-­‐ day  and  reactor-­‐to-­‐reactor.  After  examining  the  SCFA  profiles  and  community   composition,  it  was  clear  that  the  cultures  grown  in  BRMG  were  least  similar  to  the   starting  fecal  inoculum  and  were  not  further  studied.  Because  cultures  grown  in   BRMW10  had  a  SCFA  profile  that  was  more  similar  to  the  fecal  inoculum  (Fig.  2.2),   showed  lower  inter-­‐reactor  variation  in  SCFA  profiles  across  replicates  (Fig.  2.3,  Fig.   S2.2),  and  maintained  levels  of  microbial  diversity,  species  richness,  evenness,  and     71   community  composition  with  as  much  similarity  to  the  fecal  inoculum  as  cultures   grown  in  BRMW  (Fig.  2.5),  we  focused  on  the  microbial  communities  that  were   established  in  these  reactors  in  more  detail.  We  examined  changes  in  microbial   community  composition  in  the  triplicate  reactors  grown  in  this  medium  every  two   days  for  the  first  twenty  days  in  culture  in  order  to  determine  the  extent  of  intra-­‐   and  inter-­‐reactor  variation  that  occurred  over  time  in  culture.     Two  overall  trends  were  apparent  from  these  analyses:  1)  the  communities   present  in  each  individual  reactor  changed  over  time  in  culture  with  larger  changes   in  community  structure  at  earlier  times  in  culture  (Fig.  2.6),  and  2)  the  structures  of   the  microbial  communities  in  replicate  reactors  diverged  from  each  other  over  time   (Fig.  2.7).  We  determined  the  average  θYC  dissimilarity  of  each  day  in  culture  from  all   other  days  in  culture  in  each  replicate  reactor  (a  similar  measure  of  community   stability  based  upon  average  Unifrac  distances  was  described  by  Werner  (44)).     Upon  plotting  these  dissimilarities  as  a  function  of  the  day  in  culture,  we  found  that   the  communities  present  early  during  cultivation  (Days  2-­‐6)  were  less  similar  to  the   overall  communities  present  later  in  culture  (Days  8-­‐20,  Fig.  2.6A).  The  statistical   significance  of  the  differences  was  supported  by  both  ANOSIM  and  AMOVA  (Fig.   2.6B).   We  also  examined  the  variation  in  community  structure  between  replicate   reactors  over  time  in  culture.  We  found  that  the  variation  between  replicate   reactors  was  smallest  during  the  first  week  in  culture  and  increased  between  the   replicate  reactors  in  subsequent  weeks  (Fig.  2.7A).  This  pattern  is  most  obvious   when  comparing  reactors  1  and  3,  where  both  ANOSIM  and  AMOVA  revealed     72   statistically  significant  differences  in  community  structure  during  the  last  two   weeks  in  culture  that  were  absent  during  the  first  week  of  culture  (Fig.  2.7B).  In   contrast,  the  community  present  in  reactor  2  had  statistically  significant  differences   in  structure  compared  to  reactors  1  and  3  throughout  its  time  in  culture  (Fig.  2.7A   and  2.7B),  although  the  differences  in  community  structure  between  these  reactors   early  in  culture  indicated  by  the  ANOSIM  values  (R=0.78  between  reactors  1  &  2  and   reactors  2  &  3),  were  not  statistically  significant.       θYC Dissimilarity! A! Early! 0.6! Late! R1! R2! R3! 0.45! 0.3! 0.15! 0! 0! 4! 8! 12! Days in Culture! 16! 20! B! ANOSIM! AMOVA! Reactor 1! R=0.73, P=0.008! 0.004! Reactor 2! R=0.95, P=0.012! <0.001! Reactor 3! R=0.99, P=0.01! <0.001!     Figure  2.6.    Analysis  of  changes  in  community  structure  across  time  in   replicate  reactors.    We  examined  the  changes  that  occurred  in  the  structure  of   microbial  communities  based  upon  changes  in  shared  OTUs  (≤  3%  sequence   dissimilarity)  every  two  days  from  Day  2  to  Day  20  during  culturing  in  triplicate   reactors  grown  in  BRMW10.  In  (A),  we  compared  the  mean  distance  from  each  day  in   culture  from  all  other  days  in  culture  in  Reactor  1  (n),  Reactor  2  (l),  or  Reactor  3   (r)  using  the  θYC  (A)  Dissimilarity  Indices.  Error  bars  reflect  the  standard  errors  of   the  mean.  In  (B),  we  calculated  ANOSIM  and  AMOVA  between  early  (Days  2-­‐6)  and   late  (Days  8-­‐20)  days  in  culture  for  each  individual  reactor  based  upon  θYC   Dissimilarity  Indices.     73     θYC Dissimilarity! A! Early! R1! R2! R3! 0.6! 0.45! 0.3! Late! 0.15! 0! 0! B! 4! 8! 12! Days in Culture! ANOSIM! 16! 20! AMOVA! Early! Late! Early! Late! Reactor ! 1 & 2! R=0.78, P=0.079! R=0.93, P<0.001! <0.001! <0.001! Reactor ! 1 & 3! R=-0.26 P=0.709! R=0.51, P=0.001! 0.597! 0.002! Reactor ! 2 & 3! R=0.78, P=0.132! R=0.98, P<0.001! <0.001! 0.001!   Figure  2.7.  Pairwise  analyses  of  changes  in  comminty  structure  across  time   between  reactors.    We  compared  the  changes  that  occurred  in  the  structure  of   microbial  communities  between  triplicate  reactors  grown  in  BRMW10  based  upon   changes  in  shared  OTUs  (≤  3%  sequence  dissimilarity)  every  two  days  from  Day  2  to   Day  20.  In  (A),  we  plotted  the  the  θYC  (C)  Dissimiarity  Indices  between  Reactors  1   and  2  (n),  Reactors  1  and  3  (l),  or  Reactors  2  and  3(r)  on  each  day  as  a  function  of   that  day  in  culture.  In  (B),  we  calculated  ANOSIM  and  AMOVA  between  reactors   during  early  (Days  2-­‐6)  and  late  (Days  8-­‐20)  days  in  culture  based  upon  θYC  (C)  or   Jaccard  (D)  Dissimilarity  Indices.                 74   Discussion   We  developed  relatively  simple,  single-­‐stage  bioreactors  that  allow  for  higher   throughput  in  vitro  studies  of  fecal  microbial  communities.  We  tested  four  different   media  (BRMW,  BRMW10,  BRMG,  and  BRMG10)  and  identified  a  medium,  BRMW10,   that  best  supported  cultivation  of  microbially-­‐diverse,  functionally-­‐stable  human   fecal  communities.  BRMW10  communities  produced  the  short  chain  fatty  acids   acetate,  butyrate,  isobutyrate,  latctate,  and  propionate  in  highly  stable  proportions   throughout  their  time  in  culture  and  at  levels  that  were  most  similar  to  the  starting   human  fecal  inoculum.  Further,  16S  rRNA  gene  sequence  analysis  revealed  that   cultures  grown  in  BRMW10  were  most  similar  to  the  fecal  inoculum,  having  the   highest  levels  of  microbial  diversity  and  richness  of  the  media  tested,  as  well  as   overall  community  composition  and  structure  that  was  as  or  more  similar  to  the   fecal  inoculum  than  the  other  media  tested.   From  our  comparisons  of  microbial  community  structure  between  the  initial   fecal  inoculum  and  the  communities  cultured  in  the  BRMW,  BRMW10  and  BRMG   (Fig.  2.4),  it  was  clear  that  the  communities  we  cultivated  in  all  three  media  were   significantly  different  from  the  initial  fecal  inoculum,  with  decreases  in  microbial   diversity  and  richness  and  increases  in  evenness,  and  that  these  changes  occurred   by  day  two  in  culture.  Many  factors  might  have  contributed  to  our  inability  to   cultivate  organisms  from  the  original  fecal  sample.    One  of  these  factors  is  likely  the   absence  of  specific  nutrients  in  our  media  that  are  required  for  growth  of  these  fecal   organisms.  Because  our  assessment  of  the  composition  of  the  initial  fecal  inoculum   is  based  upon  16S  rRNA  gene  analysis,  we  also  do  not  know  what  fraction  of  the     75   community  we  sequenced  represents  non-­‐viable  cells  that  could  not  be  cultivated   under  any  condition.  Although  our  protocol  for  sample  collection  and  processing   was  intended  to  minimize  damage  to  sensitive  anaerobic  bacteria,  it  is  possible  that   immediate  cultivation  from  freshly  voided  fecal  samples  could  produce  better   results.  In  addition,  since  our  initial  fecal  inoculum  was  pooled  from  twelve  distinct   fecal  donors,  each  with  a  different  microbial  community  (data  not  shown),  it  is   possible  that  competitive  forces  that  shaped  each  individual  microbiota  would  make   it  unlikely  that  all  of  these  microbes  would  coexist  in  a  single  community  under  in   vitro  or  in  vivo  conditions.  Comparing  the  impact  of  cultivation  on  inocula  from  an   individual  donor  to  pooled  communities  could  provide  some  insight  into  this   question.  Finally,  because  our  MBRA  were  designed  as  continuously-­‐stirred  tank   bioreactors  that  are  operated  anaerobically,  they  provide  fewer  niches  than  would   be  available  within  the  host.  The  increased  evenness  of  our  communities  in  culture   could  indicate  that  there  has  been  a  reduction  in  available  niches  that  promote   growth  in  different  proportions.  It  is  possible  that  coexistence  of  this  community   requires  further  niches  to  be  present,  such  as  those  that  could  be  provided  by   including  beads  coated  with  mucin  or  glycopeptides  typically  found  in  the  distal   colon.     Based  upon  in-­‐depth  analysis  of  the  communities  cultivated  in  BRMW10,  it   was  clear  that  adaptation  to  growth  in  culture  caused  the  biggest  change  in  the   structure  of  the  microbial  community,  with  the  largest  changes  observed  between   the  initial  fecal  inoculum  and  Day  2  in  culture  (Fig.  2.4).  However,  it  was  also   evident  that  there  was  continuous  change  in  the  community  composition  and     76   structure  throughout  cultivation,  with  the  largest  changes  observed  during  the  first   week  in  culture  (Fig.  2.6).  Further,  these  changes  appeared  to  follow  an  independent   path  in  each  replicate  reactor,  resulting  in  communities  in  each  reactor  at  the  end  of   cultivation  that  were  more  dissimilar  than  at  the  beginning  of  cultivation  (Fig.  2.6,   2.7).  In  spite  of  these  changes  in  community  composition,  SCFA  production   remained  highly  stable  throughout  the  time  in  culture,  indicating  that  in  these   communities,  functional  stability  can  be  obtained  in  the  presence  of  ongoing   changes  in  community  structure  at  the  species-­‐level.   Other  significant  changes  that  were  apparent  in  the  BMRW10  reactor   communities  relative  to  the  fecal  inoculum  were  the  increases  in  the  abundance  of  γ-­‐ Proteobacteria,  Fusobacteria  and  Synergistetes  (Fig.  2.5).  The  γ-­‐Proteobacteria   detected  were  primarily  classified  with  ≥  80%  confidence  as  members  of  the   Enterobacteriaceae  family.  The  Enterobacteriaceae  are  facultative  anaerobes  that   have  a  large  number  of  readily  cultivable  representatives  (e.g.,  Escherichia,   Salmonella,  Shigella).  It  is  unclear  what  niche  they  may  be  occupying  in  these   cultures  that  allow  for  their  expansion.  In  vivo,  high  levels  of  Enterobacteriaceae   correlate  with  inflammation,  colitis,  and  colorectal  cancer  (e.g.,  (45)).  Similarly,  we   cannot  predict  what  niche  Fusobacteria  may  be  filling  within  the  reactor   communities,  but  their  abundance  has  also  been  correlated  with  colorectal  cancer  in   vivo,  although  it  is  unclear  whether  these  organisms  may  play  a  causative  role  or  be   a  secondary  invader  (46,  47).  All  of  the  Synergistetes  isolates  that  were  identified   classified  as  members  of  the  genus  Cloacibacillus.  C.  evryensis,  a  cultured   representative  of  the  genus  Cloacibacillus  was  isolated  from  an  anaerobic  sludge     77   digestor  of  a  wastewater  treatment  plant  and  characterized  by  its  ability  to  ferment   amino  acids  to  acetate,  butyrate,  H2  and  CO2  (48).  Subsequently,  Synergistetes,   including  organisms  classified  as  Cloacibacillus,  have  been  found  as  naturally   occurring  members  of  the  human  microflora,  but  have  also  been  implicated  as   opportunistic  pathogens,  being  cultured  from  infections  of  the  peritoneal  fluid,  a   sacral  pressure  ulcer,  and  a  blood  culture  ((49),  and  references  therein).   The  immediate  stability  that  we  observed  in  the  SCFA  profiles  (between  the   first  two  time  points  tested,  Day  2  and  Day  4)  in  the  MBRAs  differs  from  other   studies,  in  which  functional  stability  was  not  reached  until  two  to  three  weeks  after   inoculation  (23,  40).    We  suspect  that  this  difference  may  be  due  to  the  fact  that   there  are  initially  large  changes  seen  as  the  inoculum  acclimates  to  growth  in   culture  (differences  between  the  inoculum  and  day  2  in  culture)  and  that  once   established,  the  simplistic  continuous-­‐flow  setup  of  the  reactors  causes  less   perturbation  to  the  functional  activity  of  the  communities.                   Comparison   of   community   ecology   in   BRMW10   reactors   to   previously   published   models   reveals   similar   trends   among   the   in   vitro   models.   It   is   somewhat   difficult   to   compare   the   changes   observed   between   the   communities   cultured  in  BRMW10  and  the  fecal  inoculum  with  those  previously  reported  for  other   gut   models.   In   the   three-­‐stage   compound   continuous   culture   system   developed   by   Macfarlane   et   al.   (1998),   community   composition   is   assessed   by   plating   on   selective   media,  which  does  not  resolve  differences  in  community  structure  at  the  genus  and   species   level.   Both   Van   den   Abeele   (2010)   and   Rajilic-­‐Stojanovic   (2010)   used   a     78   phylogenetic   microarray   (HITChip)   to   compare   the   composition   of   their   reactors   (SHIME  and  TIM-­‐2,  respectively)  to  their  fecal  inoculum.  HITChip  has  a  much  finer   phylogenetic  resolution  than  selective  plating,  but  still  produces  signals  at  a  variety   of   phylogenetic   distances   (60%   of   signals   at   98%   identity   phylotype   level,   29%   of   signals  at  genus-­‐level  identity,  and  9%  of  signals  at  order-­‐level  identity  (50)).     Van   den   Abeele   reported   the   similarity   in   composition   between   their   twin   SHIME  reactors  at  the  Phylum  and  Group  levels  (23).  They  found  differences  at  both   the   Phylum   and   Group   levels   after   19   and   26   days   in   culture,   with   a   ~1.5-­‐fold   increase   in   Bacteroidetes   and   an   ~3-­‐fold   decrease   in   Firmicutes.   Similarly,   we   observed  a  ~2-­‐fold  increase  in  Bacteroidetes  and  a  ~2-­‐3-­‐fold  decrease  in   Firmicutes   on  Day  28  in  culture  for  BRMW10  reactors  compared  to  the  fecal  inoculum  (Fig.  2.5).   Rajilic-­‐Stojanovic   (2010)   reported   the   overall   similarity   of   their   fecal   inoculum   to   culturing  in  the  TIM-­‐2  model  for  up  to  72  hours  and  found  that  the  mean  similarity   was   50%   based   upon   Pearson   Product   Moment   Correlation   Coefficients   of   their   HITChip   profiles   of   cultured   populations   and   the   fecal   inoculum.   When   we   calculated   the   Pearson   Product   Moment   Correlation   Coefficient   for   our   data   at   different  taxonomic  levels,  we  found  that  it  increased  at  increasing  taxonomic  levels   (mean  r2  =  29.7%  at  the  Genus-­‐level;  mean  r2  =  31.0%  at  the  Family-­‐level;  mean  r2  =   66%   at   the   Order-­‐level).   Rajilic-­‐Stojanovic   also   observed   significant   increases   in   Bacteroidetes   in   culture,   whereas   the   differences   amongst   Firmicutes   were   more   obvious   at   the   Class-­‐level,   with   increases   in   Bacilli   and   decreases   in   Clostridia.   We   did   not   observe   significant   increases   in   Bacilli   in   reactors   cultured   in   BRMW10.   These   differences   may   be   due   to   differences   in   media   or   inoculum   preparation   or     79   due   to   the   operation   of   our   reactors   in   an   anaerobic   chamber   as   opposed   to   maintaining  anaerobicity  through  streaming  of  O2-­‐free  gas.  With  our  reactor  setup,   we   found   that   streaming   of   O2-­‐free   gas   was   not   sufficient   to   maintain   a   strict   anaerobic   environment   due   to   the   multiple   points   at   which   O2   could   diffuse   into   the   system  (data  not  shown).     Conclusions.   Although   the   MBRA   lack   the   more   complex   interactions   that   are   possible   through   in   vivo   models   (e.g.,   lack   of   immune   interaction,   absorption/excretion   of   water   and   SCFA   between   the   host   and   microbiota),   they   represent   an   excellent   opportunity   to   study   microbial   interactions   in   a   more   structured,   high-­‐throughput   environment.   When   MBRA   were   operated   with   BRMW10   medium,   we   found   that   they   developed   dynamic   human   fecal   microbial   communities  that  produced  SCFA  profiles  very  similar  to  the  starting  fecal  inoculum.   Thus,   the   BRMW10   medium   and   MBRA   represent   an   exciting   avenue   for   future   studies  of  human  fecal  microbiota  community  dynamics.               Acknowledgements   The  authors  would  like  to  acknowledge  Byron  Smith,  Alec  Bonifer,  and  Lilian  Jensen   for  technical  assistance,  as  well  as  Terrence  Marsh  and  Thomas  Schmidt  for   constructive  comments  on  the  manuscript.  This  research  was  funded  as  part  of  the   Michigan  State  University  Enteric  Research  Investigation  Network  award  from  that   National  Institutes  of  Health  to  Robert  Britton  (Project  Number  5U19AI090872-­‐02).       80   APPENDIX     81     Appendix   Figure  S2.1.  SCFA  concentrations  in  bioreactor  cultures.    SCFA  concentrations   measured  in  reactors  cultured  with  BRMW  (▲)/  BRMW10  (◊;  A,  C,  E,  G)  or  BRMG   (▲)/BRMG10  (◊;  B,  D,  F,  H)  media.    Similarity  indices  based  on  Pearson  product-­‐ moment  correlation  coefficients  generated  between  day  X  and  day  X-­‐2  (K,  L)  for   samples  taken  at  2,  4,  6,  8,  10,  12,  14,  16,  18,  20,  22,  24,  26,  and  28  days.       82     Pearson Correlation Coefficient!     1! 1! 0.5! 0.975! 0! 0.95! 0! 4! 8! 12! 16! 20! 24! 28! C! D! 1! 0.7! 0! 4! 8! 12! 16! 20! 24! 28! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture! 1! 0.7! 0.4! 0.4! 0! 4! 8! 12! 16! 20! 24! 28! Days in Culture!       Figure  S2.2.    Pearson  Product  Moment  Correlation  Coefficient  of  the  SCFA   profiles.  We  calculated  the  Pearson  Product  Moment  Correlation  Coefficient  of  the   SCFA  profiles  (percent  abundance  of  acetate,  butyrate,  isobutyrate,  lactate,  and   propionate)  on  each  day  across  the  three  reactors  grown  in  in  BRMW(A),  BRMW10   (B),  BRMG(C),  or  BRMG10(D)  and  plotted  this  is  a  function  of  day  in  culture.  Black   symbols  represent  the  comparison  between  reactors  1  and  2,  gray  symbols   represent  the  comparison  between  reactors  2  and  3,  and  white  symbols  represent   the  comparison  between  reactors  1  and  3.  Reactor  numbering  is  the  same  as  in   Figure  2.3.         83   3&2$$[LV ï A" θYC Dissimilarity" BRMG! BRMW! BRMW10! ● ● ● ● ● ï ● ● ● ●● ●● ● ● ● ● ï ï 3&2$$[LV B" BRMW" BRMW10" R = 0.34! P < 0.001 ! BRMG" R = 0.76! P < 0.001! BRMW10" R = 0.79! P < 0.001!     Figure  S2.3.    Shared  community  structure  of  bioreactor  cultures.    Analysis  of   shared  community  structure  of  cultures  grown  in  BRMW,  BRMW10,  and  BRMG   evaluated  using  OTUs  with  ≤  0.03%  sequence  dissimilarity  in  the  16S  rRNA  gene.  (A)   Principle  Coordinates  Analysis  of  the  θYC  Dissimilarity  measures  among  triplicate   bioreactor  communities  cultured  in  BRMW  (n),  BRMW10  (l),  or  BRMG  (r)  and   sampled  on  Day  2,  4,  8,  14,  20/22,  and  28  (Day  20  for  BRMW  and  BRMW10;  Day  22   for  BRMG  reactors).  (B)  ANOSIM  θYC  Dissimilarity  (D)  of  communities  plotted  in  A.       84       A! Percent Abundance! 100%! (!!"# BRMW! 80%! 60%! 40%! 20%! 0%! 2 4 8 14 20 28 2 4 8 14 20 28 2 4 8 14 20 28! BRMW10! 100%! '!"# &!"# %!"# Percent Abundance! B! $!"# Percent Abundance! !"# Deltaproteobacteria! Bacteroidia! 40%! Unclassified Firmicutes! 20%! 100%! Synergistia! Gammaproteobacteria! 60%! C! Unclassified Bacteria! Fusobacteria! 80%! 0%! Other! Negativicutes! 2 4 8 14 20 28 2 4 8 14 20 28 2 4 8 14 20 28! BRMG! Erysipelotrichia! Clostridia! Bacilli! 80%! 60%! 40%! 20%! 0%! 2 4 8 14 22 28 2 4 8 14 22 28 2 4 8 14 22 28! Reactor 1! Reactor 2! Reactor 3!   Figure  S2.4.    Class-­‐level  community  analysis  of  replicate  reactors  in  different   media.    We  compared  the  class-­‐level  distribution  of  community  members  on  Day  2,   4,  8,  14,  20  or  22  (BRMW/BRMW10  and  BRMG,  respectively),  and  28  in  culture   across  triplicate  reactors.  The  percent  abundance  of  each  class  of  Bacteria  in  the   individual  bioreactor  samples  is  shown.  Reactor  numbers  correspond  to  those  given   in  Figures  2.3,  2.4,  and  2.6.  UC  Bacteria  and  UC  Firmicutes  indicate  phylotypes  that   could  not  be  classified  with  greater  than  80%  confidence  beyond  the  Domain   (Bacteria)  and  Phylum  (Firmicutes)  levels  by  the  ribosomal  database  project         85   Figure  S2.4  (cont’d)   classifier  release  9.  Phylotypes  classified  as  “Other”  were  present  in  <1%  abundance   in  any  of  the  samples  and  include  Actinobacteria,  Uncalssified  Bacteroidetes,     Lentisphaeria,  Methanobacteria,  α-­‐Proteobacteria,  β-­‐Proteobacteria,  Unclassified   Proteobacteria,  and  Verrucomicrobiae.                                             86   REFERENCES     87   REFERENCES     1.   Blumberg  R,  Powrie  F.  2012.  Microbiota,  Disease,  and  Back  to  Health:  A   Metastable  Journey.  Science  Translational  Medicine  4:137rv7–137rv7.   2.   Hooper  LV,  Littman  DR,  Macpherson  AJ.  2012.  Interactions  Between  the   Microbiota  and  the  Immune  System.  Science  336:1268–1273.   3.   Nicholson  JK,  Holmes  E,  Kinross  J,  Burcelin  R,  Gibson  G,  Jia  W,  Pettersson   S.  2012.  Host-­‐Gut  Microbiota  Metabolic  Interactions.  Science  336:1262–1267.   4.   Wu   GD,  Chen   J,  Hoffmann   C,  Bittinger   K,  Chen   YY,  Keilbaugh   SA,  Bewtra   M,   Knights  D,  Walters  WA,  Knight  R,  Sinha  R,  Gilroy  E,  Gupta  K,  Baldassano  R,   Nessel  L,  Li  H,  Bushman  FD,  Lewis  JD.  2011.  Linking  Long-­‐Term  Dietary   Patterns  with  Gut  Microbial  Enterotypes.  Science  334:105–108.   5.   Sokol  H,  Pigneur  B,  Watterlot  L,  Lakhdari  O,  Bermúdez-­‐Humarán  LG,   Gratadoux  J-­‐J,  Blugeon  S,  Bridonneau  C,  Furet  J-­‐P,  Corthier  G,  Grangette  C,   Vasquez  N,  Pochart  P,  Trugnan  G,  Thomas  G,  Blottiere  HM,  Doré  J,   Marteau  P,  Seksik  P,  Langella  P.  2008.  Faecalibacterium  prausnitzii  is  an   anti-­‐inflammatory  commensal  bacterium  identified  by  gut  microbiota  analysis   of  Crohn  disease  patients.  Proc.  Natl.  Acad.  Sci.  U.S.A.  105:16731–16736.   6.   Chang  JY,  Antonopoulos  DA,  Kalra  A,  Tonelli  A,  Khalife  WT,  Schmidt  TM,   Young  VB.  2008.  Decreased  Diversity  of  the  Fecal  Microbiome  in  Recurrent   Clostridium  difficile–Associated  Diarrhea.  J  Infect  Dis  197:435–438.   7.   Wang  Z,  Klipfell  E,  Bennett  BJ,  Koeth  R,  Levison  BS,  DuGar  B,  Feldstein  AE,   Britt  EB,  Fu  X,  Chung  Y-­‐M,  Wu  Y,  Schauer  P,  Smith  JD,  Allayee  H,  Tang   WHW,  DiDonato  JA,  Lusis  AJ,  Hazen  SL.  2011.  Gut  flora  metabolism  of   phosphatidylcholine  promotes  cardiovascular  disease.  Nature  472:57–63.   8.   Goodman  AL,  Kallstrom  G,  Faith  JJ,  Reyes  A,  Moore  A,  Dantas  G,  Gordon  JI.   2011.  Extensive  personal  human  gut  microbiota  culture  collections   characterized  and  manipulated  in  gnotobiotic  mice.  Proceedings  of  the   National  Academy  of  Sciences  108:6252–6257.   9.   Bäckhed  F,  Ding  H,  Wang  T,  Hooper  LV,  Koh  GY,  Nagy  A,  Semenkovich  CF,   Gordon  JI.  2004.  The  gut  microbiota  as  an  environmental  factor  that   regulates  fat  storage.  Proc.  Natl.  Acad.  Sci.  U.S.A.  101:15718–15723.   10.   Gootenberg  DB,  Turnbaugh  PJ.  2011.  Companion  animals  symposium:   humanized  animal  models  of  the  microbiome.  J.  Anim.  Sci.  89:1531–1537.   11.   Allison  C,  McFarlan  C,  Macfarlane  GT.  1989.  Studies  on  mixed  populations     88   of  human  intestinal  bacteria  grown  in  single-­‐stage  and  multistage  continuous   culture  systems.  Appl  Microbiol  55:672–678.   12.   Minekus  M,  Smeets-­‐Peeters  M,  Bernalier  A,  Marol-­‐Bonnin  S,  Havenaar  R,   Marteau  P,  Alric  M,  Fonty  G,  Huis  in't  Veld  JH.  1999.  A  computer-­‐controlled   system  to  simulate  conditions  of  the  large  intestine  with  peristaltic  mixing,   water  absorption  and  absorption  of  fermentation  products.  Appl  Microbiol   Biotechnol  53:108–114.   13.   Freeman  J.  2003.  Effects  of  cefotaxime  and  desacetylcefotaxime  upon   Clostridium  difficile  proliferation  and  toxin  production  in  a  triple-­‐stage   chemostat  model  of  the  human  gut.  Journal  of  Antimicrobial  Chemotherapy   52:96–102.   14.   Molly  K,  Vande  Woestyne  M,  Verstraete  W.  1993.  Development  of  a  5-­‐step   multi-­‐chamber  reactor  as  a  simulation  of  the  human  intestinal  microbial   ecosystem.  Appl  Microbiol  Biotechnol  39:254–258.   15.   Honda  H,  Gibson  GR,  Farmer  S,  Keller  D,  McCartney  AL.  2011.  Use  of  a   continuous  culture  fermentation  system  to  investigate  the  effect  of   GanedenBC30  (Bacillus  coagulans  GBI-­‐30,  6086)  supplementation  on   pathogen  survival  in  the  human  gut  microbiota.  Anaerobe  17:36–42.   16.   Macfarlane  G,  Macfarlane  S,  Gibson  G.  1998.  Validation  of  a  Three-­‐Stage   Compound  Continuous  Culture  System  for  Investigating  the  Effect  of   Retention  Time  on  the  Ecology  and  Metabolism  of  Bacteria  in  the  Human   Colon.  Microbial  Ecology  35:180–187.   17.   WANG  X,  Gibson  GR.  1993.  Effects  of  the  in  vitro  fermentation  of   oligofructose  and  inulin  by  bacteria  growing  in  the  human  large  intestine.  J.   Appl.  Bacteriol.  75:373–380.   18.   Kim  B-­‐S,  Kim  JN,  Cerniglia  CE.  2011.  In  Vitro  Culture  Conditions  for   Maintaining  a  Complex  Population  of  Human  Gastrointestinal  Tract   Microbiota.  J.  Biomed.  Biotechnol.  2011:1–10.   19.   Gibson  GR,  Fuller  R.  2000.  Aspects  of  in  vitro  and  in  vivo  research   approaches  directed  toward  identifying  probiotics  and  prebiotics  for  human   use.  The  Journal  of  nutrition  130:391S–395S.   20.   Macfarlane  GT,  Macfarlane  S.  2007.  Models  for  intestinal  fermentation:   association  between  food  components,  delivery  systems,  bioavailability  and   functional  interactions  in  the  gut.  Current  Opinion  in  Biotechnology  18:156– 162.   21.   Sousa  T,  Paterson  R,  Moore  V,  Carlsson  A,  Abrahamsson  B,  Basit  AW.   2008.  The  gastrointestinal  microbiota  as  a  site  for  the  biotransformation  of     89   drugs.  International  Journal  of  Pharmaceutics  363:1–25.   22.   Molly  K,  Woestyne  MV,  Smet  ID,  Verstraete  W.  1994.  Validation  of  the   simulator  of  the  human  intestinal  microbial  ecosystem  (SHIME)  reactor  using   microorganism-­‐associated  activities.  Microb  Ecol  Health  Dis  7:191–200.   23.   Van  den  Abbeele  P,  Grootaert  C,  Marzorati  M,  Possemiers  S,  Verstraete  W,   Gerard  P,  Rabot  S,  Bruneau  A,  Aidy  El  S,  Derrien  M,  Zoetendal  E,   Kleerebezem  M,  Smidt  H,  Van  de  Wiele  T.  2010.  Microbial  Community   Development  in  a  Dynamic  Gut  Model  Is  Reproducible,  Colon  Region  Specific,   and  Selective  for  Bacteroidetes  and  Clostridium  Cluster  IX.  Applied  and   Environmental  Microbiology  76:5237–5246.   24.   Rajilic-­‐Stojanovic  M,  Maathuis  A,  Heilig  HGHJ,  Venema  K,  de  Vos  WM,   Smidt  H.  2010.  Evaluating  the  microbial  diversity  of  an  in  vitro  model  of  the   human  large  intestine  by  phylogenetic  microarray  analysis.  Microbiology   156:3270–3281.   25.   Consortium  THMP.  2012.  Structure,  function  and  diversity  of  the  healthy   human  microbiome.  Nature  486:207–214.   26.   Schloss  PD.  2009.  A  High-­‐Throughput  DNA  Sequence  Aligner  for  Microbial   Ecology  Studies.  PLoS  ONE  4:e8230.   27.   Schloss  PD,  Gevers  D,  Westcott  SL.  2011.  Reducing  the  Effects  of  PCR   Amplification  and  Sequencing  Artifacts  on  16S  rRNA-­‐Based  Studies.  PLoS  ONE   6:e27310.   28.   Edgar  RC,  Haas  BJ,  Clemente  JC,  Quince  C,  Knight  R.  2011.  UCHIME   improves  sensitivity  and  speed  of  chimera  detection.  Bioinformatics   27:2194–2200.   29.   Schloss  PD,  Westcott  SL.  2011.  Assessing  and  improving  methods  used  in   operational  taxonomic  unit-­‐based  approaches  for  16S  rRNA  gene  sequence   analysis.  Applied  and  Environmental  Microbiology  77:3219–3226.   30.   Yue  J,  Clayton  M.  2005.  A  Similarity  Measure  Based  on  Species  Proportions.   Communications  in  Statistics:  Theory  and  Methods  34:2123–2131.   31.   Evans  J,  Sheneman  L,  Foster  J.  2006.  Relaxed  Neighbor  Joining:  A  Fast   Distance-­‐Based  Phylogenetic  Tree  Construction  Method.  Journal  of  Molecular   Evolution  62:785–792.   32.   Lozupone  CA,  Hamady  M,  Kelley  ST,  Knight  R.  2007.  Quantitative  and   qualitative  beta  diversity  measures  lead  to  different  insights  into  factors  that   structure  microbial  communities.  Applied  and  Environmental  Microbiology   73:1576–1585.     90   33.   Stoner  DL,  Watson  SM,  Stedtfeld  RD,  Meakin  P,  Griffel  LK,  Tyler  TL,   Pegram  LM,  Barnes  JM,  Deason  VA.  2005.  Application  of  Stereolithographic   Custom  Models  for  Studying  the  Impact  of  Biofilms  and  Mineral  Precipitation   on  Fluid  Flow.  Applied  and  Environmental  Microbiology  71:8721–8728.   34.   2009.  Validation  of  a  Three-­‐Stage  Compound  Continuous  Culture  System  for   Investigating  the  Effect  of  Retention  Time  on  the  Ecology  and  Metabolism  of   Bacteria  in  the  Human  Colon  1–8.   35.   Schwiertz   A,  Taras   D,  Schäfer   K,  Beijer   S,  Bos   NA,  Donus   C,  Hardt   PD.  2009.   Microbiota  and  SCFA  in  Lean  and  Overweight  Healthy  Subjects.  Obesity   18:190–195.   36.   Flint  HJ,  Bayer  EA,  Rincon  MT,  Lamed  R,  White  BA.  2008.  Polysaccharide   utilization  by  gut  bacteria:  potential  for  new  insights  from  genomic  analysis.   Nat  Rev  Micro  6:121–131.   37.   Duncan  SH,  Belenguer  A,  Holtrop  G,  Johnstone  AM,  Flint  HJ,  Lobley  GE.   2007.  Reduced  Dietary  Intake  of  Carbohydrates  by  Obese  Subjects  Results  in   Decreased  Concentrations  of  Butyrate  and  Butyrate-­‐Producing  Bacteria  in   Feces.  Applied  and  Environmental  Microbiology  73:1073–1078.   38.   Ahring  BK,  Sandberg  M,  Angelidaki  I.  1995.  Volatile  fatty  acids  as  indicators   of  process  imbalance  in  anaerobic  digestors.  Appl  Microbiol  Biotechnol   43:559–565.   39.   Ito  Y,  Moriwaki  H,  Muto  Y,  Kato  N,  Watanabe  K,  Ueno  K.  1997.  Effect  of   lactulose  on  short-­‐chain  fatty  acids  and  lactate  production  and  on  the  growth   of  faecal  flora,  with  special  reference  to  Clostridium  difficile.  Journal  of   Medical  Microbiology  46:80–84.   40.   Possemiers  S,  Verthà  K,  Uyttendaele  S,  Verstraete  W.  PCR-­‐DGGE-­‐based   quantification  of  stability  of  the  microbial  community  in  a  simulator  of  the   human  intestinal  microbial  ecosystem.  FEMS  Microbiology  Ecology  49:495– 507.   41.   Kotani  A,  Miyaguchi  Y,  Kohama  M,  Ohtsuka  T,  Shiratori  T,  Kusu  F.  2009.   Determination  of  short-­‐chain  fatty  acids  in  rat  and  human  feces  by  high-­‐ performance  liquid  chromatography  with  electrochemical  detection.   Analytical  sciences  :  the  international  journal  of  the  Japan  Society  for   Analytical  Chemistry  25:1007–1011.   42.   CLARKE  KR.  1993.  Non-­‐parametric  multivariate  analyses  of  changes  in   community  structure  18:117–143.   43.   Excoffier  L,  Smouse  PE,  Quattro  JM.  1992.  Analysis  of  molecular  variance   inferred  from  metric  distances  among  DNA  haplotypes:  application  to  human     91   mitochondrial  DNA  restriction  data.  Genetics  131:479–491.   44.   Werner  JJ,  Knights  D,  Garcia  ML,  Scalfone  NB,  Smith  S,  Yarasheski  K,   Cummings  TA,  Beers  AR,  Knight  R,  Angenent  LT.  2011.  Bacterial   community  structures  are  unique  and  resilient  in  full-­‐scale  bioenergy  systems.   Proceedings  of  the  National  Academy  of  Sciences  108:4158–4163.   45.   Arthur  JC,  Perez-­‐Chanona  E,  Mühlbauer  M,  Tomkovich  S,  Uronis  JM,  Fan   T-­‐J,  Campbell  BJ,  Abujamel  T,  Dogan  B,  Rogers  AB,  Rhodes  JM,  Stintzi  A,   Simpson  KW,  Hansen  JJ,  Keku  TO,  Fodor  AA,  Jobin  C.  2012.  Intestinal   inflammation  targets  cancer-­‐inducing  activity  of  the  microbiota.  Science   338:120–123.   46.   Kostic  AD,  Gevers  D,  Pedamallu  CS,  Michaud  M,  Duke  F,  Earl  AM,  Ojesina   AI,  Jung  J,  Bass  AJ,  Tabernero  J,  Baselga  J,  Liu  C,  Shivdasani  RA,  Ogino  S,   Birren  BW,  Huttenhower  C,  Garrett  WS,  Meyerson  M.  2012.  Genomic   analysis  identifies  association  of  Fusobacterium  with  colorectal  carcinoma.   Genome  Research  22:292–298.   47.   Castellarin  M,  Warren  RL,  Freeman  JD,  Dreolini  L,  Krzywinski  M,  Strauss   J,  Barnes  R,  Watson  P,  Allen-­‐Vercoe  E,  Moore  RA,  Holt  RA.  2012.   Fusobacterium  nucleatum  infection  is  prevalent  in  human  colorectal   carcinoma.  Genome  Research  22:299–306.   48.   Ganesan  A,  Chaussonnerie  S,  Tarrade  A,  Dauga  C,  Bouchez  T,  Pelletier  E,   Le  Paslier  D,  Sghir  A.  2008.  Cloacibacillus  evryensis  gen.  nov.,  sp.  nov.,  a   novel  asaccharolytic,  mesophilic,  amino-­‐acid-­‐degrading  bacterium  within  the   phylum  “Synergistetes,”  isolated  from  an  anaerobic  sludge  digester.  Int.  J.  Syst.   Evol.  Microbiol.  58:2003–2012.   49.   Marchandin  H,  Damay  A,  RoudiEre  L,  Teyssier  C,  Zorgniotti  I,  Dechaud  H,   Jean-­‐Pierre  H,  Jumas-­‐Bilak  E.  2010.  Phylogeny,  diversity  and  host   specialization  in  the  phylum  Synergistetes  with  emphasis  on  strains  and   clones  of  human  origin.  Research  in  Microbiologoy  161:91–100.   50.   Rajilić-­‐Stojanović  M,  Heilig  HGHJ,  Molenaar  D,  Kajander  K,  Surakka  A,   Smidt  H,  de  Vos  WM.  2009.  Development  and  application  of  the  human   intestinal  tract  chip,  a  phylogenetic  microarray:  analysis  of  universally   conserved  phylotypes  in  the  abundant  microbiota  of  young  and  elderly  adults.   Environ  Microbiol  11:1736–1751.         92   CHAPTER  3     Epidemic  Clostridium  difficile  strains  demonstrate  increased  competitive   fitness  over  non-­‐epidemic  isolates             These  results  have  been  published  in  the  article:    Robinson*,  C.D,  J.  M.  Auchtung*,  J.   Collins,  and  R.  A.  Britton.    Epidemic  Clostridium  difficile  strains  demonstrate   increased  competitive  fitness  over  non-­‐epidemic  isolates.      Infection  and  Immunity.     Published  ahead  of  print  April  14,  2014.     *Co-­‐first  authors     Copyright  ©  American  Society  for  Microbiology,  Infection  and  Immunity,  82:7,  2014,   2815-­‐2825,  DOI:  10.1128/IAI.01524-­‐14         Development  of  the  in  vitro  C.  difficile  infection  model  was  an  equal  collaboration   with  Jennifer  M.  Auchtung.    Jennifer  Auchtung  conducted  the  community  analysis   and  microbial  ecology  of  the  bioreactors.    James  Collins  developed  the  humanized   mouse  infection  model  and  facilitated  the  mouse  competition  experiments.               93   Abstract     Clostridium  difficile  infection  (CDI)  is  the  most  common  cause  of  severe  cases  of   antibiotic  associated  diarrhea  (AAD)  and  is  a  significant  health  burden.  Recent   increases  in  the  rate  of  CDI  have  paralleled  the  emergence  of  a  specific  phylogenetic   clade  of  C.  difficile  strains  (ribotype  027,  North  American  Pulsed-­‐Field   Electrophoresis  (NAP)  1,  Restriction  Endonuclease  Analysis  (REA)  Group  BI).  Initial   reports  indicated  that  ribotype  027  strains  were  associated  with  increased   morbidity  and  mortality  and  may  be  hypervirulent.  Although  subsequent  work  has   cast  some  doubt  as  to  whether  ribotype  027  strains  are  hypervirulent,  these  strains   are  considered  epidemic  isolates  that  have  caused  severe  outbreaks  across  the   globe.  We  hypothesized  one  factor  that  could  lead  to  the  increased  prevalence  of   ribotype  027  strains  would  be  if  these  strains  had  increased  competitive  fitness   compared  to  strains  of  other  ribotypes.  We  developed  a  moderate  throughput  in   vitro  model  of  C.  difficile  infection  and  used  it  to  test  competition  between  four   ribotype  027  clinical  isolates  and  clinical  isolates  of  four  other  ribotypes  (001,  002,   014,  and  053).  We  found  that  ribotype  027  strains  out-­‐competed  strains  of  other   ribotypes.  A  similar  competitive  advantage  was  observed  when  two  ribotype  pairs   were  competed  in  a  mouse  model  of  C.  difficile  infection.  Based  upon  these  results   we  conclude  that  one  possible  mechanism  that  ribotype  027  strains  have  caused   outbreaks  worldwide  is  due  to  their  increased  ability  to  compete  in  the  presence  of   a  complex  microbiota.         94   Introduction   Diarrhea  and  colitis  are  some  of  the  most  common  side  effects  of  antibiotic   treatment  (1).The  generally  accepted  paradigm  of  antibiotic-­‐associated  diarrhea   (AAD)  is  that  antibiotics  cause  a  perturbation  of  the  intestinal  microbiota,   presenting  conditions  that  allow  for  the  growth  of  toxigenic  bacteria  and  viruses.  It   was  not  until  the  late  1970’s  that  toxigenic  C.  difficile  was  identified  as  a  common   causative  agent  of  AAD  and  colitis  (2).  It  is  now  estimated  that  30%  of  antibiotic-­‐ associated  diarrhea  cases  are  attributable  to  C.  difficile  (3)  and  that  healthy  GI   microbial  communities  play  an  essential  role  in  providing  colonization  resistance  to   C.  difficile  infection  (1,  4,  5).     The  incidence  of  C.  difficile  infection  (CDI)  has  been  steadily  rising  over  the   past  decade,  with  CDI  recently  becoming  the  most  common  nosocomial  infection  in   the  United  States  (2,  6).  This  rise  in  the  rate  of  CDI  has  co-­‐occurred  with  an   increased  prevalence  of  infection  caused  by  a  specific  phylogenetic  clade  of  strains   characterized  as  ribotype  027  (3,  7).  Initial  clinical  and  epidemiological  studies   reported  ribotype  027  strains  as  being  associated  with  increased  rates  of  morbidity   and  mortality,  leading  to  the  hypothesis  that  these  strains  are  hypervirulent  (7-­‐13).   However,  subsequent  analyses  comparing  the  outcomes  of  endemic  CDI  caused  by   ribotype  027  strains  to  CDI  caused  by  strains  of  other  C.  difficile  ribotypes  have   yielded  conflicting  results.  Several  studies  have  found  that  infection  with  ribotype   027  strains  did  not  result  in  more  severe  clinical  outcomes  across  a  number  of   institutions  (14-­‐17);  whereas  other  studies  have  seen  higher  mortality  caused  by   ribotype  027  strains  compared  to  strains  from  some  of  the  other  C.  difficile     95   ribotypes  (18,  19).  What  is  clear,  however,  is  that  ribotype  027  strains  have  been   associated  with  several  large  outbreaks,  have  undergone  rapid,  global  spread  since   their  emergence,  and  have  become  a  prevalent  ribotype  in  many  hospitals  and   regions  (20,  21),  and  references  therein).  Therefore,  rather  than  ribotype  027   strains  being  hypervirulent  (capable  of  causing  more  severe  C.  difficile  disease),  we   hypothesized  that  ribotype  027  strains  may  instead  have  increased  ecological   fitness  over  strains  of  other  C.  difficile  ribotypes.     In  order  to  test  this  hypothesis,  we  examined  competition  between  several   ribotype  027  and  non-­‐027  strains  in  human  fecal  bioreactors.  Fecal  bioreactors  have   previously  been  used  to  study  C.  difficile  invasion  of  complex  microbial  communities   in  vitro,  as  well  as  the  effects  of  potential  antibiotic  and  probiotic  treatments  (e.g.,  (4,   22-­‐24)).  When  developing  our  fecal  bioreactors,  we  modified  parameters  of  design   and  operation  used  in  other  established  models  to  allow  for  simpler,  higher-­‐ throughput  fecal  mini-­‐bioreactor  arrays  (MBRA).  Using  these  fecal  MBRA,  we   examined  competition  between  four  different  pairs  of  ribotype  027  and  non-­‐027   clinical  isolates.  We  found  that  in  all  competitions  studied,  ribotype  027  strains   demonstrated  a  clear  competitive  advantage  over  non-­‐027  strains,  often  increasing   in  abundance  more  than  two  to  three  orders  of  magnitude  by  the  end  of  the   experiment.  We  then  performed  similar  competitions  between  ribotype  027  and   non-­‐027  strains  in  a  mouse  model  of  C.  difficile  infection  and  saw  similar  increased   competitive  advantage  of  the  ribotype  027  strains.  These  results  support  our   hypothesis  that  ribotype  027  strains  have  become  more  prevalent  due  to  increased   ecological  fitness  compared  to  strains  of  other  C.  difficile  ribotypes.     96   Materials  And  Methods   Mini-­‐bioreactor  array  (MBRA)  design  and  operation.    MBRAs  were  designed   using  CAD  software  (Argon,  Asheller-­‐Vellum),  and  fabricated  with  DSM  Somos   Watershed  XC  11122  via  stereolithography  (FineLine  prototyping,  Fig.  3.1).  Each   MBRA  consisted  of  six  reactors  with  an  internal  volume  of  25  ml  and  a  working   volume  of  15  ml.  MBRA  were  operated  under  an  atmosphere  of  5%  CO2/5%   H2/90%  N2  at  37°C  in  a  heated  anaerobic  chamber.  Media  was  continuously   replenished  and  waste  removed  at  a  flow  rate  of  1.875  ml/hr.  Prior  to  use,  MBRA   and  media  were  sterilized  by  autoclaving  and  allowed  to  equilibrate  to  the   anaerobic  environment  for  ≥72  hrs.  Reactor  contents  were  continuously  stirred.   Additional  details  regarding  MBRA  design  and  operation  are  available  in  the   Supplementary  Methods.     Strains,  media,  and  growth  conditions.    All  C.  difficile  strains  used  in  this  study  are   clinical  isolates  obtained  from  the  Michigan  Department  of  Community  Health   (MDCH,  Table  3.1).  They  were  collected  from  Michigan  hospitals  between  December   2007  and  May  2008.  MDCH  determined  strain  toxinotype  and  NAP  status.   Ribotyping  was  determined  by  Seth  Walk  (University  of  Michigan).  All  growth   studies  were  carried  out  in  a  37°  C  anaerobic  chamber  (Coy,  Grass  Lake,  MI)  under   5%  CO2/5%  H2/90%  N2  atmosphere  using  pre-­‐equilibrated  media.               97   Table  3.1.  Characterization  of  Strains  Used  in  this  Study.     PFGE  Type   Strain   Toxinotype   (NAP  status)   Ribotype   CD1014   0   MI-­‐NAP4   014   CD2015   III   MI-­‐NAP1   027   CD2048   0   MI-­‐NAP3   053   CD3014   0   MI-­‐NAP2   001   CD3017   III   MI-­‐NAP1   027   CD4004   0   MI-­‐NAP6   002   CD4010   III   MI-­‐UN13   027   CD4015   III   MI-­‐NAP1   027       BHIS  and  TCCFA  were  made  as  previously  described  (25),  except  that   cysteine  was  excluded  from  both  media.  One  liter  of  bioreactor  medium  (BRM)   contained:  1  g  tryptone,  2  g  proteose  peptone  #3,  2  g  yeast  extract,  0.1  g   arabinogalactan,  0.15  g  maltose,  0.15  g  D-­‐cellobiose,  0.4  g  sodium  chloride,  5  mg   hemin,  0.1  g  magnesium  sulfate,  0.1  g  calclium  chloride,  0.4  g  potassium  phosphate   monobasic,  0.4  g  potassium  phosphate  dibasic,  and  2  ml  tween  80;  which  were   adjusted  to  pH  6.8  and  autoclaved  at  121°C  for  30  min.  Following  autoclaving,  a   filter-­‐sterilized  mix  of  1  g  taurocholic  acid,  sodium  salt,  40  mg  D-­‐glucose,  0.2  g   inulin,  2  g  sodium  bicarbonate,  and  1  mg  vitamin  K3  was  added.  When  needed  to   solidify  media,  Bacto  agar  was  added  to  a  final  concentration  of  1.5  %  w/v.       Collection  and  preparation  of  fecal  samples  for  fecal  MBRA  experiments.    Fecal     98   samples  were  donated  by  twelve  healthy,  anonymous  donors  that  were  between  the   ages  of  25  and  64,  had  not  taken  antibiotics  for  at  least  two  months  and  had  not   consumed  probiotic  products  for  at  least  two  days  prior  to  donation.  Fresh  samples   were  collected  into  sterile  containers,  which  were  then  packed  in  wet  ice  in  a  sealed   (8.1  quart,  Sterilite  Ultraseal)  container  with  two  anaerobic  gaspaks  (BD   biosciences)  and  transported  to  the  laboratory  within  24  hours.  Samples  were  then   transferred  to  an  anaerobic  chamber  and  manually  mixed  with  sterile  equipment.   Aliquots  were  transferred  to  sterile  cryogenic  vials  and  stored  at  -­‐80°C  until  use.   Prior  to  inoculation,  aliquots  were  resupsended  in  sterile,  anaerobic  phosphate-­‐ buffered  saline  at  a  concentration  of  25%  w/v.  Samples  (pooled  at  equal  volumes)   were  vortexed  vigorously  for  5  min,  large  particulates  were  removed  by   centrifugation  at  201  X  g  for  5  min,  and  supernatants  were  used  for  inoculation  of   the  reactors.       C.  difficile  invasion  and  competition  growth  studies  in  fecal  community  MBRA.   Reactors  were  inoculated  with  4  ml  of  25%  fecal  slurry  inoculum  and  allowed  to   grow  in  batch  culture  for  16-­‐18  hr.  After  16-­‐18  hrs,  fresh  media  flow  and  waste   removal  was  initiated.  36  hrs  later,  we  began  dosing  clindamycin  (500  µg/ml  final   concentration)  or  an  equivalent  volume  of  water  (solvent  for  clindamycin;  both   stored  aerobically  at  4°  C  until  use)  twice  daily  for  4  days.  1  ml  samples  were   removed  from  the  excess  fecal  slurry  sample,  and  from  reactors  prior  to  the   initiation  of  dosing,  and  daily  thereafter  throughout  the  experiment.  Samples  were     99   centrifuged  at  21000  X  g  for  1  min,  supernatants  discarded,  and  cell  pellets  were   stored  at  -­‐80°C  until  subjected  to  further  analyses.     For  invasion  studies  with  CD2015,  CD2015  was  grown  in  BRM  broth  batch   culture  overnight  and  reactors  were  inoculated  with  either  a  1:100  dilution  of  the   overnight  culture  (Fig.  3.2)  or  from  dilutions  of  the  exponentially  growing   subculture  in  BRM  broth  (Fig.  3.3;  CD2015  concentrations  specified  in  figure)  on  day   7  of  operation.  Prior  to  inoculation,  reactors  were  tested  for  C.  difficile   contamination  by  selective  plating  of  an  aliquot  of  each  reactors’  contents  on  TCCFA   supplemented  with  rifampicin  (rif,  50  µg/ml)  and  erythromycin  (erm,  20  µg/ml)   and  by  qPCR  with  C.  difficile  specific  primers  (methods  described  below).  Additional   200  µl  samples  were  removed  from  each  reactor  either  15  min  (Fig.  3.3)  or  3  hrs   (Fig.  3.2)  post-­‐inoculation  and  CD2015  levels  were  determined  by  selective  plating   on  TCCFA  rif  erm.  On  subsequent  days  of  MBRA  operation,  C.  difficile  levels  were   determined  via  selective  plating  of  an  appropriately  diluted  100  µl  aliquot  from  the   1  ml  daily  sample  as  well  as  by  C.  difficile  specific  qPCR  at  the  times  indicated.     For  competition  studies,  bioreactors  were  set-­‐up  following  the  C.  difficile  in   vitro  invasion  model  described  above  with  the  following  modifications.  Strains  were   inoculated  into  5  ml  BRM  overnights,  which  were  subcultured  into  10-­‐30  ml  BRM   media  and  allowed  to  grow  at  37°  C  for  4  hr  before  inoculation  into  the  reactors  to   ensure  active  growth  at  the  time  of  inoculation.  Subcultures  were  mixed  at  various   ratios  (1:1,  1:2,  or  1:5  027:non-­‐027  as  indicated)  and  inoculated  into  the  reactors.   For  replicates  indicated  in  Table  S1  (three  replicates  of  two  competition  pairs,   CD3017/CD3014  and  CD4010/CD4004),  C.  difficile  was  inoculated  into  reactors  on     100   day  8  of  operation  instead  of  day  7.  0.5  ml  samples  were  removed  from  the  reactors   immediately  prior  to  C.  difficile  inoculation  and  2  hr  after  inoculation  and  processed   as  described  above.  0.25  ml  of  the  aliquots  collected  prior  to  C.  difficile  inoculation   were  used  in  qPCR  reactions  (described  below)  to  detect  possible  C.  difficile   contamination.  MBRA  were  run  for  an  additional  10-­‐12  days  and  sampled  daily  as   described  above.       Quantitative  PCR  of  tcdA  gene  to  quantify  C.  difficile  invasion.    Frozen  culture   cell  pellets  were  resuspended  in  0.5  ml  sterile  water  and  transferred  to  2  ml  screw-­‐ top  tubes  containing  ~200  µl  0.1  mm  silica  beads  (Biospec  Products).  The  samples   were  homogenized  by  bead-­‐beating  (BioSpec  Products)  on  the  homogenize  setting   for  1.5  min,  centrifuged  for  1  min  at  21000  X  g,  and  the  supernatant  was  transferred   to  a  new  tube.  When  not  in  use,  processed  supernatants  were  stored  at  -­‐20°C.  C.   difficile  levels  were  determined  by  qPCR  with  primers  specific  to  the  C.  difficile  Toxin   A  gene  (tcdA,  Table  S3.2).   We  calibrated  the  tcdA  signal  observed  in  our  reactors  to  a  known   concentration  of  C.  difficile  cells  grown  under  fecal  bioreactor  conditions  in  the   MBRA  and  enumerated  by  plate  counting.  We  processed  the  samples  as  described   above  and  spiked  them  into  pooled  supernatant  samples  prepared  from  bioreactors   prior  to  C.  difficile  inoculation.  We  generated  10-­‐fold  dilutions  of  C.  difficile  in  this   background  community  DNA  and  used  them  to  generate  a  standard  curve  for   determining  the  absolute  amounts  of  C.  difficile  in  our  bioreactor  samples.  We  also   used  10-­‐fold  dilutions  of  community  DNA  alone  to  generate  a  standard  curve  for     101   assessing  the  total  bacterial  signal  from  our  reactors  using  universal  16S  primers   (Table  S3.2).   Real-­‐time  PCR  reactions  were  performed  in  triplicate  and  contained  the   following  components:  4  µl  supernatant  (undiluted  (tcdA)  or  1:500  dilution  in   sterile  water  (universal  16S  rRNA)),  12.5  µL  Power  SYBR  Green  PCR  Master  Mix   (ABI,  Carlsbad,  CA),  0.25  µL  each  primer  (5  µM)  (Table  S3.2),  and  8  µL  Milli-­‐Q  water.   Real-­‐time  PCR  was  performed  using  an  Eppendorf  Mastercycler  PCR  machine  under   the  following  conditions:  95°C  10  min,  40  cycles  of  95°C  for  15  sec  followed  by  60°C   for  1  min.  A  20  min  melting  curve  was  also  performed  from  60°C  to  95°C.  We   calculated  the  tcdA  copies/ml  from  our  experimental  samples  using  the  CT  values   and  concentrations  from  our  standard  curve  described  above.  If  a  sample’s  CT  value   fell  below  the  lowest  concentration  from  our  standard  curve,  it  was  designated   below  the  limit  of  detection,  which  was  1000  tcdA  copies/ml.  We  also  determined   the  total  bacterial  load  per  sample  based  upon  CT  value  with  broad-­‐host  range  16S   rRNA  primers  (Table  S3.2).  We  used  these  CT  values,  which  varied  by  less  than  3   cycles  across  all  samples  (CT=18.75-­‐21.97,  Fig.  S3.1),  to  normalize  the  tcdA  copy   numbers  that  are  reported  in  Fig.  3.2.       Preparation  of  16S  rRNA  amplicon  sequencing.    We  extracted  DNA  from  samples   using  bead  beating  followed  by  modified  cleanup  with  a  Qiagen  DNEasy  Tissue  Kit   as  described  (26).  DNA  concentrations  were  determined  by  spectrophotometry  at   260  and  280  nm  (Nanodrop).  We  used  40  ng  of  each  DNA  as  template  in  PCR  with   the  following  final  concentrations  of  reagents:  200  nM  357F  primer,  200  nM  926R     102   primer,  1X  AccuPrime  PCR  Buffer  II  (Invitrogen),  0.75  U  of  AccuPrime  Taq  DNA  High   Fidelity  (Invitrogen).  357F/962R  were  designed  by  the  Human  Microbiome  Project,   amplify  the  V3-­‐V5  variable  regions  of  the  16S  rRNA  gene,  and  contain  unique   barcodes  that  can  be  used  to  multiplex  sequencing  reactions  (27).  Each  reaction  was   set  up  in  triplicate  and  amplified  using  the  following  cycle:  95°C  for  2  min,  followed   by  30  cycles  of  95°C  for  20  sec,  50°C  for  30  sec,  and  72°C  for  5  min,  with  a  final   extension  at  72°C  for  5  min.  Successful  PCR  amplification  products  from  triplicate   reactions  were  pooled  and  cleaned  with  Agencourt  AMPure  XP  (Beckman-­‐Coulter).   Products  were  resuspended  with  a  0.7X  volume  of  beads,  washed  twice  with  70%   ethanol,  and  eluted  with  25  µl  of  low  EDTA  TE  Buffer  (10  mM  Tris,  0.1  mM  EDTA).   Concentrations  of  purified  DNA  were  determined  using  Quant-­‐IT  (Invitrogen)   according  to  the  manufacturer’s  protocol  and  were  pooled  in  equimolar  amounts.   Nucleotide  sequencing  was  performed  on  a  454  GS  Junior  (Roche  Diagnostics)  at   MSU  according  to  the  manufacturer’s  protocols.       Processing  and  analysis  of  Sequencing  Data.    All  sequence  data  was  processed   using  mothur  (28)  Version  1.29.1  (January  2013).  Sequences  were  initially  quality   filtered  using  the  mothur-­‐implementation  of  PyroNoise  to  remove  low  quality   sequences  as  well  as  trimmed  and  filtered  to  remove  those  sequences  that  had  any   ambiguous  bases,  mismatches  to  the  reverse  primer  or  barcode,  homopolymeric   stretches  longer  than  8  nt,  and  were  shorter  than  200  nt  (29).  Sequences  from   independent  sequencing  runs  were  then  compiled  into  a  single  fasta  file  and  aligned   to  the  SILVA  reference  alignment  using  the  NAST-­‐based  aligner  in  mothur,  trimmed     103   to  ensure  that  sequences  overlapped,  and  pre-­‐clustered,  allowing  a  difference   between  sequences  of  2  bp  or  less  (29).  Potentially  chimeric  sequences  were   removed  using  the  mothur-­‐implementation  of  UChime  (30);  remaining  sequences   were  classified  using  RDP  training  set  version  9  (March  2012)  and  mothur’s   implementation  of  the  kmer-­‐based  Bayesian  classifier.  Sequences  were  binned  into   Operational  Taxonomic  Units  (OTUs)  with  ≤3%  sequence  dissimilarity  using  the   average  neighbor  algorithm  of  mothur.  Taxonomy  was  assigned  to  each  OTU  based   upon  the  majority  sequence  consensus  within  that  OTU  (31).  Number  of  OTUs,   evenness  (Simpson  Evenness)  and  diversity  (Inverse  Simpson)  were  calculated   using  mothur.  Differences  in  OTU  abundances  between  treated  and  untreated   bioreactors  was  determined  using  the  mothur-­‐implementation  of  metastats  (32).   Bray-­‐Curtis  dissimilarities  were  calculated  from  the  OTU  distributions  of  each   sample,  which  were  log10  transformed  and  normalized  by  dividing  the  abundance  of   each  OTU  in  a  sample  by  the  maximum  abundance  observed  for  that  OTU  followed   by  normalizing  the  total  abundance  of  OTUs  across  each  sample  to  the  same  number   using  the  vegan  package  in  R  (33).  The  metaMDS  function  of  vegan  was  used  to   determine  the  optimal  ordination  distances  for  the  Bray-­‐Curtis  dissimilarities,   which  were  also  plotted  in  R.  The  significance  of  community  differences  was   determined  by  Analysis  of  Similarities  (ANOSIM),  which  was  calculated  in  R.     Quantitative  PCR  Analysis  of  Competition  Cultures  and  Calculations  of   Competitive  Index.    Strain-­‐specific  genes  thyA  (027)  and  thyX  (non-­‐027)  were  used   to  differentiate  strains  in  competitions.  We  first  identified  the  strain  specificity  of     104   these  thymidylate  synthase  genes  while  doing  in  silico  genomic  comparisons  of  C.   difficile  genomes.  We  then  screened  a  collection  of  88  strains  belonging  to  several   NAP  groups,  including  all  of  the  strains  used  in  this  study,  for  the  presence  of  thyA  or   thyX  (Fig.  S3.2),  and  verified  that  thyA  was  unique  to  NAP1  (ribotype  027)  strains  by   screening.  This  correlation  of  thyA  with  ribotype  027  strains  has  been  noted  earlier.   (34).     Frozen  culture  cell  pellets  (from  0.5  or  1  ml  cells)  were  washed  in  the  same   volume  of  sterile  water,  resuspended  in  the  same  volume  of  sterile  water,  and   transferred  to  2  ml  screw-­‐top  tubes  containing  ~200  µL  0.1  mm  silica  beads.  The   samples  were  then  placed  in  a  BeadBeater  cell  disruptor  (BioSpec  Products,   Bartlesville,  OK)  on  the  homogenize  setting  for  1  min,  centrifuged  at  21000  X  g  for  1   min,  and  diluted  1:10  in  sterile  water.  Real-­‐time  PCR  reactions  were  set-­‐up  by   combining  the  following  components:  12.5  µL  Power  Sybr  Green  PCR  Master  Mix   (ABI,  Carlsbad,  CA),  0.25  µL  each  primer  (100  µM),  11  µL  Mili-­‐Q  water,  1  µL  diluted   culture  supernatant.  Primers  used  are  described  in  Table  S3.2.  PCR  was  performed   using  the  conditions  described  above.  All  PCR  reactions  were  performed  in  technical   triplicate  and  the  CT  values  are  an  average  of  the  triplicate  data  points.  The   amplification  efficiency  (E)  of  each  primer  set  was  determined  by  plotting  the  CT   values  of  a  standard  curve  generated  by  serial  4-­‐log  dilutions  of  C.  difficile  template;   the  sample  with  the  highest  signal  was  diluted  into  sample  with  no  C.  difficile   inoculated  (community  background  DNA).  Primer  efficiencies  were  calculated  using   the  method  described  by  Pfaffl  et  al.;  E=  10(-­‐1/slope)  (35).  Competitive  Indices  (CI)   were  calculated  by  dividing  the  end  point  ribotype  027:non-­‐027  ratio  by  the  ratio  at     105   T0  (Ratio=  2CT  (non-­‐027)-­‐CT  (027)).  Primer  efficiencies  were  not  factored  into  the  CI   calculations;  however,  they  differ  by  <5%  (EthyA=2.04;  EthyX=1.95)  when  calculated   from  reactions  using  sample  containing  C.  difficile  diluted  into  fecal  community   background  DNA.       C.  difficile  competition  experiments  in  humanized  microbiota  mice  (hmmice).     Germ  free  C57/B6  mice  were  gavaged  with  fecal  slurry  pooled  from  the  twelve   human  fecal  donors  described  above.  Following  initial  establishment  a  stable   humanized  microbiota  was  passed  from  hmmice  to  their  progeny.  Descendants  of   these  original  hmmice  were  maintained  under  specific  pathogen  free  conditions  and   used  for  all  experiments.  To  induce  susceptibility  to  C.  difficile  infection  (36),  an   antibiotic  mixture  of  kanamycin  (0.4  mg/ml),  gentamicin  (0.035  mg/ml),  colistin   (850  U/ml),  metronidazole  (0.215  mg/ml),  and  vancomycin  (0.045  mg/ml)  was   administered  in  drinking  water  ad  libitum  for  3  days  and  then  replaced  with  fresh   drinking  water.  After  24  hours  of  plain  drinking  water,  mice  were  treated   intraperitoneally  with  clindamycin  (10  mg/kg)  and  24  hours  post  injection   challenged  with  either  104  pure  or  mixed  027/non-­‐027  C.  difficile  spores.  Spores   were  cultivated  by  spread  plating  overnight  BHIS  cultures  of  C.  difficile  on  BHIS   medium  and  incubating  anaerobically  at  37°C  for  5  days.    Cells  were  scraped  from   the  plates  and  resuspended  in  sterile  water,  heat-­‐treated  at  60°C  for  30  min  to  kill   vegetative  cells,  and  the  number  of  viable  spores  were  enumerated  by  plating   appropriate  serial  dilutions  on  BHIS  supplemented  with  0.1%  taurocholic  acid.   Spore  preparations  were  diluted  in  sterile  water  to  yield  the  desired  concentrations     106   (~104  or  ~105  spores/ml),  then  mixed,  when  appropriate,  prior  to  gavaging  a  total   of  ~104  spores/mouse.  For  competition  experiments,  mice  were  gavaged  with  the   following  ratios  of  ribotype  027:non-­‐027  spores:  1:14  for  CD3017  +  CD1014  and   1:50  for  CD4015  +  CD2048.  Mice  were  observed  daily  for  disease  symptoms  and   morbidity.  Fecal  samples  were  collected  daily  and  frozen  until  analyzed.     C.  difficile  levels  were  quantified  in  fecal  samples  by  plating.  Fecal  samples   were  weighed,  diluted  in  500  µl  sterile  water,  and  heat-­‐treated  at  65°C  for  30  min  to   reduce  background  growth  of  mouse  fecal  microbiota.  Total  heat-­‐resistant  CFU/g  of   feces  were  determined  by  spotting  appropriate  serial  dilutions  on  BHIS  plates   supplemented  with  0.1%  taurocholic  acid.  Ribotype  027-­‐specific  heat-­‐resistant   CFU/g  of  feces  were  determined  by  spotting  appropriate  serial  dilutions  on  BHIS   plates  supplemented  with  0.1%  taurocholic  acid  and  either  50  µg/ml  rifampicin  and   10  µg/ml  erythromycin  (CD4015  +  CD2048  competition  samples)  or  10  µg/ml   erythromycin  only  (CD3017  +CD  1014  competition  samples).    Plates  were  incubated   anaerobically  for  24-­‐48  hrs.  Colonies  formed  on  antibiotic-­‐supplemented  medium   represented  levels  of  ribotype  027  strains  (CD3017  and  CD4015).  Non-­‐027  ribotype   strain  levels  were  determined  by  subtracting  the  number  of  colonies  formed  on   selective  plates  from  the  number  on  non-­‐selective  plates  (total  C.  difficile).  The  fecal   sample  weights  were  then  used  to  determine  CFU/g  feces.  CI’s  were  calculated  by   dividing  the  ribotype  027:non-­‐027  strain  ratios  at  day  4  by  the  ratios  in  the  gavaged   spore  mixtures.  In  cases  where  the  number  of  colonies  on  selective  plates  were  the   same  as  the  number  on  non-­‐selective  plates,  the  ribotype  027:non-­‐027  ratio  was  set   to  10.  This  was  determined  as  a  reasonable  level  for  the  non-­‐027  limit  of  detection     107   based  on  this  type  of  subtractive  analysis  taking  into  account  plating  error  and   would  most  likely  result  in  an  underestimate  of  the  ribotype  027  CI.     Because  we  used  subtractive  plating  to  measure  the  levels  of  ribotype   027:non-­‐027  spores  and  our  detection  limit  set  the  maximum  observable  ratio   between  ribotype  027:non-­‐ribotype  027  strains  at  10:1,  we  found  that  starting  with   the  ribotype  027  strain  in  the  minority  provided  a  larger  dynamic  range  that   allowed  us  to  more  readily  detect  an  increase  in  the  ribotype  027  strain  levels   compared  to  non-­‐027  levels.  Although  the  ratios  of  ribotype  027:non-­‐ribotype  027   spores  gavaged  were  lower  than  originally  intended,  placing  the  ribotype  027   strains  in  the  minority  ensures  that  the  027  strains  do  not  have  an  advantage  by   being  even  at  a  slightly  higher  proportion  in  the  mixed  spore  preparations,  since   there  is  always  a  low  level  of  error  in  diluting  and  plating     Results     Fecal  mini-­‐bioreactors  (MBRA)  provide  an  in  vitro  model  to  study  C.  difficile   invasion  in  complex  microbial  communities.    Our  objective  was  to  design  human   fecal  bioreactors  that  recapitulated  antibiotic-­‐  induced  C.  difficile  invasion  of  a   resistant  community  that  also  allowed  for  testing  of  multiple  experimental   parameters  in  replicate  reactors  simultaneously.  Therefore,  we  pursued  a  relatively   simple  bioreactor  design,  an  array  of  six  single  vessel  chambers  (mini-­‐bioreactor   array,  MBRA)  with  modest  operating  volume  (15  ml)  that  would  allow  us  to  operate   up  to  24  continuous-­‐flow  fecal  bioreactors  simultaneously  in  the  same  anaerobic   chamber  (Fig.  3.1).  The  reactors  were  fabricated  with  DSM  Somos  Watershed  XC     108   11122  resin,  which  allowed  for  direct  observation  of  the  reactor  contents  and  the   ability  to  autoclave  and  reuse  the  reactors.     Influent Effluent Sample port 47 mm 32.5 mm 200 mm Inner Dimensions: 25 X 25 X 40 mm (25 ml)   Figure  3.1.  An  example  of  a  minibioreactor  array  (MBRA)  used  for  cultivation   of  fecal  microbial  communities.  The  placement  of  the  influent,  effluent  and  sample   port  for  one  of  the  six  bioreactor  chambers  is  indicated  as  are  some  of  the  key   dimensions.     Continuous-­‐flow  MBRAs  were  inoculated  with  fecal  samples  pooled  from   twelve  healthy,  C.  difficile-­‐negative  donors  and  bacterial  communities  were  allowed   to  adapt  to  growth  in  culture  before  challenging  the  communities  with  clindamycin,   an  antibiotic  known  to  support  C.  difficile  invasion  (37).  Initial  studies  compared  the   ability  of  three  clindamycin-­‐treated  and  three  mock-­‐treated  communities  to  resist   invasion  by  C.  difficile.  We  found  that  in  mock-­‐treated  communities  challenged  with   106  vegetative  cells  of  C.  difficile,  C.  difficile  levels  were  reduced  to  below  the  level  of     109   detection  in  replicate  reactors  within  one  to  four  days  following  inoculation  (Fig.   3.2,  open  symbols).  In  contrast,  when  MBRAs  were  treated  twice  daily  with   clindamycin  for  four  days  prior  to  C.  difficile  inoculation,  C.  difficile  levels  were   maintained  at  the  same  high  levels  at  which  they  were  inoculated  for  eight  days   following  inoculation  (Fig.  3.2,  closed  symbols).       C.  difficile  CFU/ml A.   tcdA  copies/+l B.                                                                         107 106 105 104 103 102 101 107 106 105 104 103 102 101 7 9 11 13 Days  in  Culture 15 7 9 11 13 Days  in  Culture 15   Figure  3.2.  Fecal  bioreactor  communities  prevent  invasion  by  C.  difficile  unless   disrupted  by  treatment  with  clindamycin.  We  monitored  C.  difficile  proliferation   in  three  independent  fecal  bioreactors  that  were  either  clindamycin-­‐treated   (reactors  1-­‐3;  closed  squares,  circles  and  diamonds,  respectively)  or  mock-­‐treated   (reactors  4-­‐6;  open  squares,  circles  and  diamonds,  respectively)  through  selective   plating  (A)  or  quantitative  PCR  (B).  The  gray  dashed  line  in  panel  A  represents  the   theoretical  washout  rate  of  non-­‐proliferating  C.  difficile  cells.  The  black  dashed  line   represents  the  limit  of  detection  for  selective  plating  (A)  or  qPCR  (B)  in  our   experiments.       110   Because  we  used  such  a  high  inoculum  in  this  initial  experiment,  we  were   interested  in  establishing  the  minimal  number  of  C.  difficile  cells  required  for   invasion.  We  found  that  inoculation  with  104  or  150  cells  was  sufficient  to  allow   clindamycin-­‐induced  invasion  by  C.  difficile,  and  that  the  final  cfu/ml  reached  105-­‐ 106  (Fig.  3.3A).  These  levels  are  only  ~10-­‐100-­‐fold  lower  than  the  107  cfu/ml  that   pure  C.  difficile  reaches  in  reactors  operating  under  these  continuous-­‐culture   conditions  (Fig.  3.3B).     107 C.  difficile  CFU/ml A. 106 105 104 103 102 7 9 11 Days  in  Culture 13 2 3 4 5 Days  in  Culture 6 C.  difficile  CFU/ml B.                                                                                       108 107 106 105 104 0 1   Figure  3.3.  C.  difficile  proliferation  was  assayed  in  fecal  bioreactors  with   different  levels  of  inoculum  and  in  pure  culture  under  the  continuous-­‐culture   conditions  used  for  bioreactors.  In  (A),  we  monitored  C.  difficile  proliferation  in   four  independent  fecal  bioreactors  that  were  clindamycin-­‐treated  and  inoculated  at   the  indicated  densities.  In  (B),  we  measured  C.  difficile  proliferation  in  pure  culture   in  three  replicate  continuous-­‐culture  bioreactors  operated  under  flow  conditions   used  for  fecal  bioreactors.       111     In  addition  to  the  invasion  that  we  observed  for  the  single  ribotype  027   strain  (CD2015)  shown  in  Fig.  3.2,  we  found  similar  invasion  dynamics  for  other   ribotype  027  strains  (CD3017,  CD4010,  and  CD4015)  as  well  as  strains  from  other   ribotypes  (CD1014,  CD3014,  and  CD4004,  data  not  shown).  Based  upon  these   results,  we  concluded  that  the  communities  established  in  our  fecal  MBRA   demonstrated  the  key  attribute  of  an  in  vitro  C.  difficile  invasion  model  that  we   intended  to  achieve  -­‐  the  ability  to  resist  invasion  by  C.  difficile  until  disrupted  by   antibiotic  treatment.       MBRAs  support  complex  fecal  microbial  communities.    In  order  to  investigate   whether  the  resistance  to  invasion  that  we  observed  in  our  unperturbed  MBRA   communities  was  due  to  the  presence  of  complex  microbial  communities  or  simple   communities  composed  of  a  few  strains  that  were  inhibitory  to  C.  difficile  growth,   we  sequenced  the  V3-­‐V5  hypervariable  region  of  the  16S  rRNA  gene  from  samples   collected  from  the  triplicate  clindamycin  and  mock-­‐treated  reactors  through   pyrosequencing.  Samples  were  collected  prior  to  antibiotic  treatment  (day  2)  and   every  two  days  after  the  initiation  of  treatment  (days  4,  6,  8,  10  and  12;  C.  difficile   was  added  to  all  reactors  on  day  7)  and  sequencing  data  from  these  samples  were   compared  to  duplicate  samples  from  the  initial  fecal  inoculum.     At  the  sequence  depth  examined  (1053  sequences/sample),  we  detected  a   mean  of  69  operational  taxonomic  units  (OTUs;  97%  sequence  similarity)  in  the   untreated  (day  2,  all  reactors)  and  mock-­‐treated  (days  4,  6,  8,  10  and  12)  bioreactor     112   communities  (Fig.  3.4A).  The  number  of  OTUs  observed  in  untreated  or  mock-­‐ treated  reactors  was  ~2.4-­‐fold  lower  than  that  observed  in  the  original  fecal   inoculum  (mean=168  OTUs,  Fig.  3.4A).   #  of  OTUs  (3%  ID) A.   200 150 100 Relative  Abundance B.   50 0 0 2 4 6 8 Days  in  Culture 10 12 1.0 0.5 0.0                                                                                                 1          2          1          2          3          4          5          6 Fecal Day  2  Bioreactors Inoculum Actinobacteria Firmicutes Bacteriodes Verrucomicrobia Proteobacteria Synergistetes Fusobacteria Unclassified  Bacteria   Figure  3.4.  Comparison  of  the  community  structure  between  fecal  samples,   mock-­‐treated  and  clindamycin-­‐treated  reactors.  We  analyzed  the  16S  rRNA  gene   abundances  from  the  three  mock-­‐treated  and  clindamycin-­‐treated  communities   described  in  Fig.  3.2  on  days  2,  4,  6,  8,  10  and  12  in  MBRAs  as  well  as  duplicate   samples  from  the  initial  fecal  inoculum.  In  (A),  we  plotted  the  mean  number  of  OTUs   in  the  fecal  inoculum  (asterisks),  and  clindamycin  (closed  circles)  and  mock-­‐treated   (open  squares)  communities  ±  the  standard  deviations.  In  (B),  we  classified  each   sequence  to  the  phylum  level  with  at  least  80%  confidence  (sequences  <80%  were   designated  “Unclassified  Bacteria”).  We  then  plotted  the  relative  abundance  of  each   phylum  in  the  duplicate  samples  of  initial  fecal  inoculum  and  the  six  replicate   bioreactor  samples  from  day  2  prior  to  the  initiation  of  treatment.  Reactors  are   numbered  as  in  Fig  3.2.         113   When  we  compared  the  composition  of  the  original  fecal  inoculum   community  to  the  bioreactor  communities,  we  found  a  significant  shift  in   composition  upon  culturing  in  the  bioreactors,  even  by  day  2  (Fig.  3.4B).  The  fecal   inoculum  was  dominated  by  members  of  the  Firmicutes  phylum,  which  comprised   74%  ±  3%  of  the  sequences.  In  contrast,  members  of  the  Bacteroides  phylum  were   dominant  members  of  the  bioreactor  communities  on  day  2  in  culture  (Fig.  3.4B),   comprising  67%  ±  3%  of  the  sequences  in  all  six  replicate  reactors  studied.         Bioreactor  community  composition  changes  in  response  to  clindamycin   treatment.    Because  clindamycin-­‐treated  bioreactor  communities  become   susceptible  to  C.  difficile  invasion  (Fig.  3.2),  we  anticipated  that  we  would  observe   changes  in  the  microbial  composition  of  these  communities  compared  to  the  mock-­‐ treated  communities,  and  that  these  changes  would  be  consistent  with  previously   published  models  of  C.  difficile  invasion.  One  significant  change  we  observed  in  our   clindamycin-­‐treated  communities  was  a  significant  reduction  in  the  number  of  OTUs   compared  to  mock-­‐treated  reactors  (Fig.  3.4A,  p<0.01  for  days  4-­‐12  with  student’s  t-­‐ test).  The  ability  of  antibiotic  treatment  to  significantly  reduce  species  complexity   has  been  previously  reported  (26,  38).  Although  the  species  richness  declined,   quantitative  PCR  with  broad-­‐range  16S  rRNA  gene  primers  indicated  the  total   amount  of  bacteria  in  the  reactors  was  equivalent  to  untreated  reactors  after   clindamycin  treatment  (Fig.  S3.1),  indicating  that  C.  difficile  invasion  was  not   dependent  upon  a  decreased  bacterial  load  in  the  bioreactors.       114   This  change  in  microbial  composition  was  also  evident  when  comparing  the   composition  of  the  communities  using  the  Bray-­‐Curtis  dissimilarity  measure,  which   compares  the  relative  abundances  of  shared  OTUs  between  communities.  When  we   plotted  these  data  using  nonmetric  multi-­‐dimensional  scaling  (NMDS,  Fig.  3.5),  we   found  that  all  six  bioreactor  communities  were  highly  similar  prior  to  treatment  on   day  2  and  that  bioreactor  communities  diverged  in  response  to  clindamycin-­‐ treatment  as  well  as  time  in  culture.  Analysis  of  similarities  (ANOSIM,  (39))  found   strong  statistical  support  (p<0.05)  for  the  distinct  partitioning  of  the  communities   into  pre-­‐treatment,  mock-­‐treatment  and  clindamycin-­‐treatment  groups,  with   clindamycin-­‐treatment  causing  a  more  significant  shift  in  community  structure  than   time  in  culture.  Using  metastats  (32),  we  identified  several  specific  OTUs  that  were   significantly  different  between  treated  and  untreated  communities.  We  observed   decreases  in  specific  members  of  Ruminococcaceae,  Lachnospiraceae,  and   Clostridiaceae  families  that  were  consistent  with  changes  observed  in  previous   animal  and  human  studies  (40,  41),  providing  further  support  for  the  relevance  of   this  model  for  studying  aspects  of  C.  difficile  invasion  in  vitro.             115     Figure  3.5.  Community  structure  changes  in  response  to  clindamycin-­‐ treatment.  We  plotted  the  Bray-­‐Curtis  dissimilarity  (3%  OTUs)  between  samples   using  nonmetric  multidimensional  scaling  (NMDS).  Samples  were  plotted  from   three  clindamycin-­‐treated  replicates  (1-­‐3;  closed  symbols)  and  three  mock-­‐treated   replicates  (4-­‐6;  open  symbols)  every  two  days  from  day  2  (pre-­‐treatment)  through   day  12.  Data  was  normalized  prior  to  analysis  as  described  in  the  methods.  The   numbers  in  boxes  indicate  the  points  for  the  indicated  reactors  on  day  2  and  day  12   and  correspond  to  the  reactor  numbers  indicated  in  Fig.  3.4.  Intervening  time  points   are  represented  by  symbols  and  are  connected  in  sequential  order  by  lines.  The   ellipses  indicate  the  95%  confidence  intervals  for  the  indicated  groups  (pre-­‐ treatment;  mock-­‐treatment;  clindamycin-­‐treatment.)  Distinct  distributions  between   clindamycin  and  early/mock-­‐treated  samples  were  also  supported  by  ANOSIM,  with   p-­‐values  less  than  0.001.  The  plot  stress  was  0.171.         Ribotype  027  strains  exhibit  a  competitive  advantage  over  non-­‐027  strains  in   the  presence  of  a  complex  microbiota.    Having  developed  the  MBRA  C.  difficile   invasion  model,  we  investigated  if  ribotype  027  strains  were  able  to  better  compete   than  non-­‐027  ribotype  strains  for  their  available  niche  after  antibiotic  treatment  in   the  presence  of  the  complex  MBRA  communities.  We  chose  to  study  recent  clinical   isolates  of  ribotype  027  and  non-­‐027  C.  difficile  strains  collected  by  the  Michigan     116   Department  of  Community  Health  in  order  to  avoid  confounding  effects  of  strain   adaptation  to  laboratory  conditions.  Eighty-­‐eight  isolates  were  characterized  by   North  American  Pulsed-­‐Field  Electrophoresis  (NAP)  fingerprint,  toxinotype,  and   ribotype;  we  selected  eight  strains  for  further  study  (Table  3.1).  Four  different   ribotype  027  strains  were  competed  against  four  different  non-­‐027  ribotype  strains   in  order  to  avoid  selecting  strains  with  unrepresentatively  high  or  low  competitive   fitness  for  either  ribotype  group.  For  the  non-­‐027  ribotypes,  we  selected  strains  that   were  different  ribotypes  and  had  different  NAP  designations  to  broaden  the   phylogenetic  breadth  of  strains  tested.     Exponentially  growing  pure  cultures  of  ribotype  027  and  non-­‐027  C.  difficile   strains  were  mixed  together  and  inoculated  into  clindamycin-­‐treated  MBRAs.  At   days  3,  7,  and  11  post-­‐inoculation  samples  were  taken  and  quantitative  PCR  was   conducted  to  determine  the  relative  ratios  of  the  competing  strains.  Plotted  in  Fig.   3.6  are  the  competitive  indices  (CI)  of  ribotype  027  strains  at  day  7  for  all  of  the   replicates  in  each  competition  pair,  calculated  as  the  ratio  of  027:non-­‐027  at  day  7   divided  by  the  ratio  at  day  0.  The  mean  competitive  indices  (range)  for  these   competitions  are  7.8  (0.5  to  22.4)  for  CD2015,  832.4  (21.9  to  3993.2)  for  CD3017,   131.4  (1.4  to  593.4)  for  CD4015,  and  327.9  (30.3  to  764.9)  for  CD4010.  Fig.  S3.3   shows  the  027:non-­‐027  ratios  plotted  across  time  for  each  individual  reactor  of  all   competition  pairs.  The  competition  dynamics  vary  between  replicates  both  within   and  across  competition  pairs.  However,  there  is  a  strong  trend  of  increasing  ratios   over  time  for  the  ribotype  027  strains,  even  when  started  at  different  initial  input   ratios,  further  supporting  their  competitive  advantage.  The  competitive  indices     117   calculated  from  these  ratios  across  all  time  points  (days  3,  7,  and  11;  some  days   vary,  see  figure  legend)  are  reported  in  Table  S3.1.  Across  all  22  competition   replicates,  only  two  CIs  were  <1.0  at  day  7;  these  account  for  two  of  the  six   replicates  of  the  CD2015  (ribotype  027)  +  CD3014  (ribotype  001)  competition  pair.   This  competition  pair  was  particularly  interesting  in  that  this  ribotype  027  strain   (CD2015)  displayed  an  initial  drop  in  strain  ratio  in  the  majority  of  the  competition   replicates,  sometimes  emerging  as  low  as  2%  of  the  total  C.  difficile  population  at   day  3  (Fig.  S3.3).  Nevertheless,  CD2015  was  able  to  recover  and  eventually   outcompete  the  non-­‐027  ribotype  strain  by  the  end  of  the  competitions.  At  the  day   11  time  point  of  these  replicates,  the  ratios  continued  to  increase  resulting  in  CI’s   close  to  or  >1  (Table  S3.1).               118   Competitive Index 104 103 102 101 100 10-1 CD2015 [CD3014(001)] CD3017 [CD1014(014)] CD4015 [CD2048(053)] CD4010 [CD4004(002)] 027 Strain [competitor strain (ribotype)]   Figure  3.6.    Competitive  indices  of  ribotype  027  strains  relative  to  non-­‐027   strains  in  the  presence  of  MBRA  fecal  communities.  Clindamycin-­‐treated   bioreactors  were  inoculated  with  the  indicated  mixtures  of  strains  at  various  ratios   and  the  abundance  of  each  strain  was  monitored  over  time  by  qPCR  to  measure   ribotype  027:non-­‐027  ratios.  Plotted  here  is  the  competitive  index  of  the  ribotype   027  strains  for  each  replicate  competition,  calculated  as  the  ratio  of  027:non-­‐027  at   day  7  or  8  (see  Table  S1)  divided  by  the  ratio  at  day  0.    Each  black  circle  represents   an  individual  replicate  competition.  Where  the  non-­‐027  strain  was  below  the  limit   of  detection,  the  ratio  was  determined  by  substituting  in  the  highest  CT  value  in  the   linear  range  (detection  limit)  for  the  non-­‐027  value.  Black  bars  represent  the  mean   of  replicates  for  each  competition.         One  possible  mechanism  for  ribotype  027  strains  to  out-­‐compete  the  non-­‐ 027  strains  would  be  if  the  latter  were  inherently  unable  to  invade  the  complex   MBRA  communities.  We  tested  this  hypothesis  by  inoculating  fecal  bioreactors  with   individual  non-­‐027  strains  and  saw  that  these  strains  were  equally  able  to  invade   the  microbiota  as  ribotype  027  strains  (data  not  shown).  In  addition,  the  minimal     119   inhibitory  concentrations  to  clindamycin  of  all  of  the  strains  used  in  this  study   ranged  from  50  µg/ml  to  >100  mg/ml  (data  not  shown),  concentrations  several  fold   higher  than  the  calculated  residual  clindamycin  in  the  reactors  at  the  time  of  C.   difficile  inoculation  based  on  theoretical  washout  (<9  µg/ml).  Therefore,  the   competition  outcome  was  not  reflective  of  differences  in  clindamycin  sensitivity.     Because  we  performed  our  competition  experiments  in  fecal  bioreactors  that   had  been  treated  by  clindamycin  and  did  not  include  untreated  control  reactors,  we   wanted  to  verify  that  the  communities  present  in  our  clindamycin-­‐treated   competition  reactors  were  similar  to  those  previously  established  and  characterized   in  our  in  vitro  invasion  model.  Therefore,  we  sequenced  the  V3-­‐V5  hypervariable   region  of  16S  rRNA  gene  from  our  competition  bioreactor  samples  at  day  7,  just   prior  to  C.  difficile  inoculation,  by  pyrosequencing  and  compared  these  sequences  to   the  previous  data  we  had  collected  from  our  in  vitro  invasion  model  (Fig.  3.4  and   3.5).  We  found  that  the  richness,  diversity,  and  evenness  of  the  competition   communities  were  similar  to  those  of  the  other  clindamycin-­‐treated  communities  on   day  6  (Fig.  S3.4).  When  we  compared  the  microbial  community  structures  of  the   competition  bioreactor  samples  using  the  Bray-­‐Curtis  dissimilarity  measure  and   plotted  them  with  the  previous  clindamycin-­‐treated  and  mock-­‐treated  samples  with   NMDS,  we  found  that  they  grouped  together  with  the  clindamycin-­‐treated   communities  (Fig.  S3.5).  These  community  comparisons  show  that  the  strains  were   competed  in  the  presence  of  complex,  diverse  fecal  communities  and  not  community   anomalies  made  up  of  unexpectedly  low  richness  or  diversity.         120   Ribotype  027  strains  display  a  competitive  advantage  in  vivo.  In  order  to   address  if  ribotype  027  strains  are  capable  of  outcompeting  non-­‐027  ribotype   strains  in  the  intestinal  tract,  we  competed  two  ribotype  027  and  non-­‐027  strains  in   a  humanized  microbiota  mouse  model  of  C.  difficile  infection.  Mice  were  treated  with   an  antibiotic  cocktail  (36)  for  three  days,  followed  by  a  single  dose  of  clindamycin.   24  hours  later  mice  were  gavaged  with  C.  difficile  spores.  Under  these  conditions,   strains  CD3017  and  CD4015  (ribotype  027)  and  strains  CD1014  and  CD2048   (ribotypes  014  and  053,  respectively)  were  able  to  transiently  colonize  the   intestinal  tracts  of  mice  when  infected  individually  without  causing  severe  disease   (Fig.  S3.6).     To  compare  the  relative  fitness  between  ribotype  027  and  non-­‐027  strains,   antibiotic-­‐treated  animals  were  treated  with  a  mixture  of  104  spores  from  strains   CD3017  (027)  and  CD1014  (014)  (ratio  of  1:14)  or  CD4015  (027)  and  CD2048   (053)  (ratio  of  1:50).  The  abundance  of  each  strain  was  monitored  daily  by  selective   plating  of  mouse  feces.  The  027  strain  competitive  indices  in  replicate  mice  for  both   competition  groups  are  plotted  in  Fig.  3.7.  Competitive  indices  are  calculated  by   dividing  the  027:non-­‐027  ratios  at  day  4  by  the  ratios  present  in  the  gavaged  spore   mixtures.       121     Competitive Index 1000 100 10 1 CD3017 [CD1014 (014)] CD4015 [CD2048 (053)] 027 Strain [competitor strain (ribotype)]   Figure  3.7.    Competitive  indices  of  ribotype  027  strains  relative  to  non-­‐027   strains  in  a  mouse  model  of  C.  difficile  infection.    After  antibiotic  treatment,  mice   were  gavaged  with  mixtures  of  027  and  non-­‐027  ribotype  strain  spores.    C.  difficile   abundance  for  the  indicated  strains  was  determined  by  selective  plating  of  the  fecal   samples.  Plotted  here  is  the  competitive  index  of  the  027  strains  for  each  replicate   mouse  competition  as  the  ratio  of  027:non-­‐027  at  day  4  divided  by  the  ratio  at  day  0   (ratio  in  spore  mixes).  Black  bars  represent  the  mean  of  replicates  for  each   competition.    The  dotted  line  on  the  Y-­‐axis  represents  the  upper  CI  limit  for  the   CD3017/CD1014  competition  based  on  the  plating  limit  of  detection.     In  both  competitions,  we  noted  that  the  ribotype  027  strains  had  a   competitive  advantage  when  directly  competing  in  the  mouse  intestinal  tract  (Fig.   3.7).  CD3017  displayed  a  dramatic  expansion  over  days  2-­‐4  when  competed  against   CD1014;  at  day  4,  the  mean  CI  for  3017  was  86.7  (range=18.8  to  140.9).  CD4015   also  displayed  a  competitive  index  that  showed  it  had  a  competitive  advantage  over   CD2048,  and  although  the  CI  was  not  as  robust  as  observed  with  CD3017,  it  had  a   competitive  advantage  with  a  CI  of  12.4  (range=  7.9  to  25.0).  These  data     122   demonstrate  that  ribotype  027  strains  have  a  competitive  advantage  over  non-­‐027   strains  in  vivo.         Discussion   Ribotype  027  strains  have  been  frequently  shown  to  be  overrepresented  in  hospital   outbreaks  and  have  been  linked  to  increased  morbidity  and  mortality.  Although  this   association  with  a  hypervirulent  state  is  controversial,  the  fact  that  ribotype  027   strains  have  swept  across  the  globe  implies  they  have  acquired  an  increased  ability   to  cause  disease.  We  hypothesized  that  differences  in  strain  physiology  could  give   ribotype  027  strains  a  competitive  advantage  over  strains  of  other  ribotypes,   thereby  leading  to  the  increased  prevalence  of  ribotype  027  strains.  We  used  the   MBRA  C.  difficile  invasion  model  to  demonstrate  that  ribotype  027  strains  were  able   to  outcompete  strains  of  other  ribotypes  in  the  presence  of  complex  fecal  bacterial   communities.  We  then  demonstrated  similar  competitive  advantages  of  ribotype   027  strains  to  strains  of  other  ribotypes  in  a  mouse  model  of  C.  difficile  infection.     Our  work  demonstrates  that  ribotype  027  strains  can  directly  outcompete   strains  of  other  ribotypes.  Because  we  used  four  independent  ribotype  027  strains   competed  against  four  independent  strains  of  varying  ribotypes,  we  do  not  expect   that  the  observed  increase  in  competitive  fitness  of  the  ribotype  027  strains  was  due   to  strain  selection.  In  the  majority  of  competition  pairs  we  studied,  the  ribotype  027   strains  became  the  dominant  C.  difficile  strain  in  the  community,  sometimes  leading   to  the  complete  loss  of  the  non-­‐027  strain.  This  dominance  was  observed  in  all     123   bioreactor  communities  studied,  as  well  as  in  the  mouse  competition  between  the   ribotype  027  strain  CD3017  and  the  ribotype  014  strain  CD1014.  However,  in  the   second  mouse  competition  between  ribotype  027  strain  CD4015  and  ribotype  053   strain  CD2048,  the  ratio  of  CD4015  to  CD2048  increased  over  time,  from  a  1:50  ratio   at  the  beginning  of  the  experiment  to  a  mean  1:4  ratio  (range=1:10-­‐1:2)  at  the  end   of  the  experiment,  but  CD4015  did  not  become  the  dominant  C.  difficile  strain  in  the   community.  Although  we  interpret  these  results  to  indicate  that  CD4015  was   outcompeting  CD2048  for  available  niche  space  and  would  likely  have  led  to  its  loss   from  the  community  if  the  experiment  had  been  continued  further,  we  cannot   exclude  the  hypothesis  that  both  strains  would  have  reached  a  steady  level  of  co-­‐ existence.  Interestingly,  when  comparing  CI’s  of  competition  pairs  in  the  MBRA  or   mice,  similar  trends  were  observed,  with  the  CD3017  CI  higher  than  the  CD4015  CI   in  each  model,  supporting  that  the  MBRA  model  can  recapitulate  C.  difficile   dynamics  that  occur  in  vivo,  and  further  demonstrating  the  validity  of  the  MBRA   model  as  a  precursor  for  in  vivo  experiments  (Fig.  S3.7).     However,  it  is  currently  unclear  what  physiological  differences  present  in   ribotype  027  strains  allow  these  strains  to  outcompete  strains  of  other  ribotypes.   Although  it  is  possible  that  ribotype  027  strains  are  capable  of  directly  antagonizing   strains  of  other  ribotypes,  we  favor  the  model  that  ribotype  027  strains  are  better   able  to  proliferate  within  the  intestinal  environment  and  thereby  indirectly  lead  to   elimination  of  strains  of  other  ribotypes.     One  aspect  of  physiology  that  could  potentially  impact  competition  outcome   is  inter-­‐strain  variability  in  rates  of  sporulation.  If  one  strain  had  a  higher     124   proportion  of  the  cells  in  its  population  enter  into  sporulation  during  the  course  of   competition,  that  strain  would  have  less  cells  in  logarithmic  growth,  effectively   reducing  its  competitive  fitness.  Although  there  have  been  some  reports  that   ribotype  027  strains  sporulate  more  efficiently  than  other  strains  (e.g.,  (42,  43),   larger  studies  comparing  multiple  isolates  of  different  ribotypes  have  found  that   there  is  no  significant  correlation  between  sporulation  efficiency  and  ribotype  (44,   45).  Because  sporulation  dynamics  of  individual  strains  co-­‐cultured  within  the   MBRA  are  difficult  to  measure;  we  do  not  currently  have  data  to  determine  whether   the  non-­‐027  strains  used  in  our  study  sporulate  to  higher  levels  than  the  027   strains.  However,  when  we  assayed  sporulation  in  pure  culture  under  both  batch   and  continuous-­‐culture  conditions,  we  did  not  observe  higher  rates  of  sporulation  of   these  non-­‐027  strains  (data  not  shown).  The  dynamics  of  C.  difficile  sporulation  in   the  context  of  growing  in  the  presence  of  a  complex  fecal  community  is  an  area  of   current  and  future  investigation.  While  it  is  important  to  consider  the  impact  of   sporulation  dynamics  on  competition  outcome,  we  do  not  believe  this  is  the  factor   responsible  for  ribotype  027  strains  outcompeting  other  ribotypes  in  our   experiments.   A  second  aspect  of  physiology  that  could  play  a  role  in  competitive  fitness  is   differences  in  germination.  Differential  germination  does  not  play  a  role  in  the   competitive  advantage  of  ribotype  027  strains  in  the  MBRA,  since  competitions   were  initiated  with  vegetative  cells.  In  contrast,  competition  in  the  mouse  model   was  initiated  by  gavaging  a  mixture  of  spores.  Recent  work  published  by  Francis  et   al.  demonstrates  that  murine  bile  acids  (muricholic  acids)  inhibit  C.  difficile  spore     125   germination  and  that  there  is  strain  variability  in  this  inhibition  (46).  In  addition,   published  data  shows  there  is  significant  variability  in  rates  of  germination  and  the   compounds  that  serve  as  germinants  among  large  sets  of  C.  difficile  strains  of   varying  ribotyes,  at  least  in  vitro  (47).  However,  when  we  compared  the  day  one   levels  of  C.  difficile  in  the  mice  gavaged  with  individual  strains  of  different  ribotypes   to  the  levels  of  spores  present  in  the  initial  inoculum,  we  found  similar  increases  in   the  abundance  of  C.  difficile  cells  across  the  different  strains  by  day  one  (Fig.  S3.6).   Based  upon  these  results,  we  conclude  that  differences  in  germination  rates  are   unlikely  to  play  a  role  in  the  ribotype  027  competitive  advantage.     Evidence  suggests  that  factors  of  colonization  resistance  are  important  in   preventing  C.  difficile  infection,  and  therefore  must  be  overcome  in  order  for  C.   diffcile  to  proliferate  in  the  colon  (4).  Some  of  these  factors  include  competition  for   nutrients,  antagonism  by  production  of  inhibitory  compounds  (such  as  bacteriocins   or  short  chain  fatty  acids),  and  microbiota-­‐dependent  modulation  of  host  immune   functions  (reviewed  in  (5)).  Identifying  which  of  these  factors  is  driving  the   competition  outcome  in  our  model  is  the  next  area  of  investigation.  Comparative   genomic  studies  have  identified  potential  candidate  genes  that  could  provide   ribotype  027  strains  an  increased  competitive  advantage  over  strains  of  other   ribotypes.  One  such  genomic  difference  is  the  presence  of  the  thymidylate  synthase   gene,  thyA,  in  ribotype  027  strains,  which  has  effectively  replaced  the  native,   alternative  thymidylate  synthase  gene,  thyX,  in  the  form  of  a  four-­‐gene  insertion   (34).  Escartin  et  al.  showed  that  ThyA  enzymes  have,  on  average,  10-­‐fold  faster   catalytic  rates  than  ThyX  enzymes  in  vitro  and  are  able  to  confer  faster  genome     126   replication  rates  in  vivo  (48).  Based  upon  this  work,  we  hypothesize  that  the   presence  of  thyA  in  ribotype  027  strains  may  confer  a  growth  advantage,  and   therefore  play  a  role  in  competitive  fitness.    We  have  also  begun  assessing  whether   differences  in  carbohydrate  metabolism  between  ribotype  027  strains  and  strains  of   other  ribotypes  could  provide  a  competitive  advantage.  Preliminary  studies  using   phenotypic  arrays  (Biolog)  and  follow-­‐up  growth  studies  have  revealed  differences   in  metabolism  of  some  carbohydrates  by  ribotype  027  strains  (C.D.R.  and  R.A.B.,   unpublished  results).    Moreover,  we  are  actively  investigating  whether  ribotype  027   strains  require  less  of  a  disruption  of  the  microbiota  to  invade,  for  example  after   shorter  antibiotic  regimens  or  after  lower  dosing  of  antibiotics,  which  would   provide  further  evidence  as  to  why  these  strains  are  so  prevalent  in  many  clinical   locations.       Fecal  MBRA  as  a  model  for  C.  difficile  invasion.  Our  goal  was  to  cultivate  complex   fecal  microbial  communities  within  the  MBRA  that  could  resist  invasion  by  C.   difficile,  recognizing  that  these  communities  would  not  be  1:1  translations  of  the   starting  fecal  inoculum.  Relative  to  our  initial  fecal  inoculum,  we  observed  a   significant  shift  in  the  ratio  of  Bacteroides:Firmicutes  phylum  members  (Fig.  3.4B).   Bacteroides-­‐dominated  communities  have  been  observed  in  several  different  in  vitro   bioreactor  models  (22,  49-­‐51),  which  often  use  media  of  similar  composition  for   cultivation.  Several  parameters  can  affect  the  composition  of  the  microbial   communities  that  are  established  in  fecal  bioreactors,  including  source  of  fecal   material  and  how  it  is  processed,  the  media  composition  and  turnover  time  used  for     127   cultivation,  and  the  availability  of  surfaces  for  biofilm  formation  (reviewed  in  (52)).   For  example,  we  chose  to  pool  fecal  samples  from  twelve  donors,  reasoning  that  this   may  lead  to  an  in  vitro  community  that  was  more  representative  of  the  microbial   diversity  present  amongst  different  individuals  than  could  be  achieved  from  a  single   donor.  However,  by  choosing  this  pooling  strategy  we  may  have  selected  for   communities  that  would  not  normally  co-­‐exist.  We  have  examined  the  differences   between  MBRA  communities  formed  from  single  and  pooled  fecal  samples  and   found  that  they  exhibit  similar  C.  difficile  invasion  dynamics  (manuscript  in   preparation).  Although  modifying  different  aspects  of  the  operating  parameters   could  lead  to  communities  with  higher  similarities  to  the  starting  fecal  inoculum,   our  results  demonstrate  that  our  current  model  yields  complex  fecal  MBRA   communities  that  resist  invasion  by  C.  difficile  when  unperturbed  and  are   susceptible  when  disturbed  by  antibiotics.     Our  MBRA  model  does  not  promote  invasion  of  antibiotic-­‐treated   communities  with  C.  difficile  spores  and  thus  we  cannot  monitor  spore  germination   dynamics  in  the  presence  of  a  fecal  microbiota.  We  are  currently  attempting  to   modify  the  model  to  enable  spore  germination  within  the  MBRAs.  Determining   those  aspects  of  the  current  model  inhibitory  to  spore  germination  and  outgrowth   may  also  provide  new  insights  into  the  dynamics  between  C.  difficile  and  the   microbiota.   In  spite  of  the  limitations  discussed  above,  the  in  vitro  model  that  we   developed  allows  for  robust,  higher  throughput  studies  of  C.  difficile  invasion  on   shorter  time  scales  than  can  be  accommodated  in  animal  models  and  other  more     128   complex  bioreactor  models.  Therefore,  this  model  can  serve  as  a  complement  to   animal  studies  by  providing  a  platform  for  conducting  initial,  hypothesis-­‐generating   experiments,  including  those  experiments  regarding  potential  therapeutic   treatment  of  C.  difficile  infection.       Conclusions.  The  data  from  the  present  study  suggest  that  ribotype  027  strains   have  an  ecological  advantage  over  other  C.  difficile  ribotypes  in  the  context  of  the   intestinal  microbiota.  If  this  competitive  advantage  holds  true  in  the  human  colonic   environment,  it  may  explain,  in  part,  the  epidemic  nature  of  ribotype  027  strains.   Mixed  species  C.  difficile  infections  have  been  found  to  occur  in  7-­‐13%  of  patients   infected  with  disease  ((53,  54),  and  references  therein).  However,  it  has  been   difficult  to  explore  the  impact  of  mixed  infection  on  disease  progression  due  to   limitations  in  the  ability  to  accurately  quantify  the  rate  at  which  mixed  infections   occur,  or  the  dynamics  of  the  mixed  strains  over  time  within  individual  patients  (53,   54).  While  direct  competition  between  strains  may  be  occurring  during  co-­‐infection   in  patients,  we  suspect  that  ribotype  027  strains  are  able  to  outcompete  strains  of   other  ribotypes  in  our  models  of  C.  difficile  infection  due  to  their  ability  to  better   exploit  the  limited  resources  available  within  the  intestinal  communities.  Finally,   this  work  further  demonstrates  that  aside  from  virulence  factors  such  as  toxin   production  and  antibiotic  resistance,  the  physiology  of  C.  difficile  should  be   considered  an  important  contributor  to  its  success  as  a  pathogen.         129   Acknowledgements   The  authors  acknowledge  Sara  McNamara  (MDCH)  for  providing  C.  difficile  strains,   Seth  Walk  (University  of  Michigan)  for  ribotyping  strains,  Robert  Stedtfeld  (MSU)   for  designing  the  mini-­‐bioreactor  arrays,  Sara  Poe  and  Kathryn  Eaton  for   collaboration  in  developing  the  humanized  microbiota  mice,  and  Vince  Young   (University  of  Michigan)  and  Richard  Lenski  (MSU)  for  helpful  comments  regarding   the  manuscript.  This  work  was  supported  by  award  5U19AI090872-­‐02  from  the   National  Institutes  of  Allergy  and  Infectious  Diseases  to  RAB.                                                                 130   APPENDIX     131   Appendix     Supplementary  Methods:  MBRA  Design  and  Operation.       As  described  in  the  Methods,  MBRAs  were  fabricated  from  DSM  Somos  Watershed   XC  11122  via  stereolithography  (FineLine  prototyping).  Six  reactors  with  an   internal  volume  of  25  mL  were  designed  into  a  single  strip  with  200mm  x  47  mm  x   36  mm  dimensions  (Fig.  3.1).  Reactors  were  drawn  with  25  x  25  x  40  mm   dimensions,  including  10  mm  radial  blends  on  the  bottom  corners  (to  prevent   buildup  of  cells  and  other  insoluble  materials),  and  5  mm  radial  blends  on  the  top.   Reactors  were  spaced  32.5  mm  center  to  center  to  match  dimensions  on  the  stir   plate.  Three  5.55  mm  diameter  holes  (influent,  effluent,  sampling)  were  placed  into   the  top  of  each  reactor,  and  spaced  16  mm  apart  center  to  center.  Holes  were   threaded  to  fit  conventional  leur  connectors.  Inner  walls  of  the  reactors  were  placed   2  mm  from  the  bottom  of  the  strip,  5  mm  from  the  top  of  the  strip,  5  mm  from  the   side  of  the  strip,  and  3.25  mm  into  the  strip.  A  1.25  x  16  x  31  mm  intrusion  was   designed  into  the  bottom  corners  of  the  MBRA  for  fixing  into  a  custom  built  acrylic   block  that  held  the  reactors  upright  and  properly  aligned  with  the  stir-­‐plate.  A  CAD   file  (.stl)  that  can  be  used  directly  for  fabrication  via  stereolithography  is  available   upon  request.           Media  was  transferred  from  the  source  bottles  through  a  combination  of  1/8   in  inner  diameter  (ID)  C-­‐flex  tubing  (Cole-­‐Parmer)  tubing  and  0.89  mm  ID  2-­‐stop   Tygon  lab  tubing  supplied  to  the  reactors  via  a  24-­‐channel  peristaltic  pump   (205S/CA,  Watson-­‐Marlow).  Waste  was  removed  from  the  reactors  through  a     132   combination  of  1/8  in  ID  C-­‐flex  tubing  tubing  and  1.14  mm  ID  2-­‐stop  Tygon  lab   tubing  drawn  from  the  reactors  via  the  same  24-­‐channel  peristaltic  pump.  Reactors   were  stirred  using  magnetic  stir  bars  driven  by  independent  magnets  on  a  60-­‐spot   magnetic  stir  plate  (VarioMAG  HP  60,  Vario-­‐MAG  USA).                                                                                 133   Table  S3.1.    Competitive  indices  of  ribotype  027  strains  at  selected  time  points   after  C.  difficile  inoculation  as  determined  by  quantitative  PCR.         027  CIs  in  Fecal  Community  Background  Competitions       CD2015  (027)  +     CD3014  (001)   CD3017  (027)  +   CD1014  (014)   CD4015  (027)  +     CD2048  (053)   CD4010  (027)  +     CD4004  (002)   Days  post  C.  difficile  inoculation   3   7   11   0.06+   0.52+   0.22+   3.30+   3.19   0.11   0.75+   1.19+   0.49+   22.39+*   18.59   3.36   8.09+   3.74+*   0.88+   ND   ND   36.17   119.15   36.93   3.83   11.88   21.91   33.05   17.15   22.84   18.13   232.86   3993.21   ND   8.15   86.92*   23.43¢   8.11+   4.97+   24.59+   11.16+   34.62+   52.47+   8.44+   1.41+   18.34+   138.94*   593.38*   ND   20.21   21.26   40.32   19.43   183.55   107.20*   15.24   30.34   9.14*   12.97   31.27   50.09*   27.22   627.14*   ND   43.71*   764.94*   1386.61*     ND=  not  determined   *  Ratio  calculated  based  upon  limit  of  detection  for  non-­‐027  ribotype     +  CI’s  calculated  1  day  later  than  the  day  indicated  than  the  column  heading.   ¢CI’s  calculated  1  day  earlier  than  the  day  indicated  than  the  column  heading.   Shaded  rows  indicate  replicates  where  C.  difficile  was  added  to  the  MBRAs  post-­‐   cessation  of  clindamycin  dosing  24  hrs  later  than  the  other  replicates.               134   Table  S3.2.    Primers  used  for  qPCR.   Target  Gene   Primer  sequences  (Forward  &  Reverse)   Citation   C.  difficile  tcdA   F:  AGC  TTT  CGC  TTT  AGG  CAG  TG   This  study   R:  ATG  GCT  GGG  TTA  AGG  TGT  TG   Bacterial  16S  rRNA     F:  ACT  CCT  ACG  GGA  GGC  AGC  AG   (55)   R:  ATT  ACC  GCG  GCT  GCT  GG   C.  difficile  thyA   F:  GAT  GGC  CAG  CCT  GCT  CAT  ACA  ATA   This  study   R:  TGT  TTC  ATC  AGC  CCA  GCT  ATC  CCA   C.  difficile  thyX   F:  CCA  GTT  GGG  ACA  GAC  GAA  AT   R:  TGA  ACA  AGC  CCT  TGA  AAT  ACC                               135   This  study   CT  (Bacterial  16S  rRNA) 23 22 21 20 19 18 17 0 2 4 6 8 10 12 Days  in  Culture     Figure  S3.1.  Bacterial  abundance  does  not  change  significantly  in  clindamycin-­‐ treated  reactors.  We  measured  the  relative  abundance  of  16S  rRNA  gene  copies  in   bioreactor  samples  from  triplicate  clindamycin-­‐treated  (open  circles)  and  mock-­‐ treated  reactors  (closed-­‐squares)  using  quantitative  PCR  with  previously  described   broad-­‐range  16S  rRNA  gene  qPCR  primers  (55).  We  have  reported  the  average  cycle   threshold  (CT,  ±  standard  deviation)  where  the  qPCR  reactions  began  amplifying   linearly.  We  did  not  determine  absolute  quantification  of  16S  rRNA  gene  copies  in   the  samples  because  the  sample  populations  are  composed  of  mixtures  of  bacteria   with  different  16S  rRNA  gene  copy  numbers.  Clindamycin  or  mock-­‐treatment  began   on  day  2.5  in  culture  and  continued  twice  daily  through  day  6.         136             bp NAP-2 NAP-1 500 bp thyX   1000 500 250 bp thyA   100 630 196 37 VPI 10463 negative P- unknown N N 3 P- A A N   4 A P N -6 A P N -7 A P8   500 bp thyX   bp 1000 500 250 bp thyA   100   Figure  S3.2.    PCR  screen  of  DNA  samples  from  88  strains  of  C.  difficile  for   detection  of  insert  containing  thyA  or  the  uninterrupted  thyX.     137   CD3017(027) + CD1014(014) CD2015(027) + CD3014(001) 103 101 100 10-1 10-2 102 027:non-027 ratio 027:non-027 ratio 102 0 5 101 100 10-1 10-2 10 0 5 CD4015(027) + CD2048(053) CD4010(027) + CD4004(002) 103 102 027:non-027 ratio 027:non-027 ratio 103 101 100 10-1 10-2 10 Days in Competition Days in Competition 0 5 102 101 100 10-1 10 Days in Competition 0 5 10 Days in Competition Figure  S3.3.    Ratios  of  ribotype  027:non-­‐027  C.  difficile  strains  over  time  in   MBRA  competitions.    Each  plot  represents  a  different  competition  pair  of  one   ribotype  027  and  one  non-­‐027  ribotype  strain;  ribotypes  indicated  in  parentheses   above.    Each  line  in  the  plots  represents  a  replicate  reactor,  combined  from  three   independent  experiments.    Where  the  non-­‐027  ribotype  strain  was  below  the  limit   of  detection,  the  ratio  was  determined  by  substituting  in  the  highest  CT  value  in  the   linear  range  (detection  limit)  for  the  non-­‐027  value  (open  circles).                 138   A. #  of  OTUs  (3%  ID) 80 60 40 20 0 0 2 4 6 8 10 Days  in  Culture 12 0 2 4 6 8 10 Days  in  Culture 12 2 4 6 8 Days  in  Culture 12 B. Inverse  Simpson   16 12 8 4 0 C. Simpson  Evenness   0.3 0.2 0.1 0.0 0 10     Figure  S3.4.    Comparison  of  the  community  structure  on  day  7  from   clindamycin-­‐treated  reactors  used  for  C.  difficile  competition  experiments  to   triplicate  mock-­‐treated  and  clindamycin-­‐treated  reactors  infected  with   CD2015.  As  described  in  Fig.  3.4,  we  analyzed  the  16S  rRNA  gene  abundances   (binned  into  OTUs  with  3%  sequence  identity)  from  three  mock-­‐treated  and   clindamycin-­‐treated  communities  on  days  2,  4,  6,  8,  10  and  12  in  culture  and   compared  these  to  samples  from  all  competitions  described  (except  one  replicate   each  of  2015/3014  and  4010/4004  competitions;  these  are  not  plotted  due  to   technical  failures  of  the  sample  analysis)  on  day  7  just  prior  to  the  addition  of  C.   difficile.  We  plotted  the  number  of  OTUs  (A),  inverse  Simpson  microbial  diversity   indicator  (B),  and  Simpson  evenness  indicator  (C)  in  the  clindamycin  (closed   circles),  mock-­‐treated  (open  squares),  and  competition  (plus  symbols)  communities.     139   ï ï !"#$%&'()%* The  solid  lines  represent  the  mean  values  for  the  triplicate  clindamycin-­‐treated  and   mock-­‐treated  samples  at  each  time  point,  which  are  reproduced  from  Fig.  3.4.     + - * , , + * - ï ï 10'6$[LV   Figure  S3.5.  Similar  community  structure  changes  were  observed  in  response   to  clindamycin-­‐treatment  in  competition  bioreactor  communities.  As  described   in  Fig.  3.5,  we  plotted  the  Bray-­‐Curtis  dissimilarity  (3%  OTUs)  between  samples   using  nonmetric  multidimensional  scaling  (NMDS).  Samples  were  plotted  from   three  clindamycin-­‐treated  replicates  (1-­‐3;  closed  symbols)  and  three  mock-­‐treated   replicates  (4-­‐6;  open  symbols)  every  two  days  from  day  2  (pre-­‐treatment)  through   day  12.  The  numbers  in  boxes  indicate  the  points  for  the  indicated  reactors  on  day  2   and  day  12  and  correspond  to  the  reactor  numbers  indicated  in  Fig.  3.2.  Intervening   time  points  are  represented  by  symbols  and  are  connected  in  sequential  order  by   lines.  Asterisks  represent  the  day  7  samples  from  the  competition  bioreactor   communities  described  in  Fig.  S3.4.  The  ellipses  indicate  the  95%  confidence   intervals  for  the  indicated  groups  (pre-­‐treatment;  mock-­‐treatment;  clindamycin-­‐ treatment.)  The  plot  stress  was  0.201.             140   108 CFU/g feces 107 106 CD3017(027) CD1014(014) CD4015(027) CD2048(053) 105 104 103 102 101 100 1 2 3 4 Days post gavage   Figure  S3.6.      Levels  of  C.  difficile  strains  across  time  in  mouse  model  of   infection  as  determined  by  plating  from  fecal  pellets.    After  antibiotic  treatment,   mice  were  gavaged  with  spores  from  each  individual  ribotype.    Fecal  samples  were   collected  daily  for  four  days.    For  each  time  point,  fecal  samples  were  weighed,   suspended  in  sterile  water,  heat  killed  for  30  min  at  65°C,  and  plated  on  BHIS   containing  0.1%  taurocholic  acid.    Plotted  here  are  the  mean  CFU/g  feces  from   replicate  mice  for  each  strain  group  (with  standard  deviations  where  applicable;   some  data  points  were  lost  due  to  technical  failure;  two  groups  lost  a  triplicate   mouse  after  day  1).         Competitive Index 10000 1000 100 10 1 CD3017 [CD1014(014)] CD4015 [CD2048(053)]     Figure  S3.7.    Competitive  indices  (CI)  of  two  competition  pairs  of  ribotype  027   and  non-­‐027  C.  difficile  strains  in  the  MBRA  (circles)  and  Mouse  (triangles)   models.    When  comparing  the  relative  differences  between  the  CI’s  of  the   competition  pairs  in  each  model,  the  mean  CI  of  the  CD3017/CD1014  competition   pair  is  higher  than  the  CD4015/CD2048  competition  pair  in  both  models.       141   REFERENCES     142   REFERENCES       1.   Yassin  SF,  Young-­‐Fadok  TM,  Zein  NN,  Pardi  DS.  2001.  Clostridium  difficile-­‐ associated  diarrhea  and  colitis.  Mayo  Clin.  Proc.  76:725–730.   2.   Bartlett  JG.  1992.  Antibiotic-­‐associated  diarrhea.  Clin.  Infect.  Dis.  15:573– 581.   3.   Wiström  J,  Norrby  SR,  Myhre  EB,  Eriksson  S,  Granström  G,  Lagergren  L,   Englund  G,  Nord  CE,  Svenungsson  B.  2001.  Frequency  of  antibiotic-­‐ associated  diarrhoea  in  2462  antibiotic-­‐treated  hospitalized  patients:  a   prospective  study.  J.  Antimicrob.  Chemother.  47:43–50.   4.   Wilson  KH,  Freter  R.  1986.  Interaction  of  Clostridium  difficile  and   Escherichia  coli  with  microfloras  in  continuous-­‐flow  cultures  and  gnotobiotic   mice.  Infection  and  Immunity  54:354–358.   5.   Britton  RA,  Young  VB.  2012.  Interaction  between  the  intestinal  microbiota   and  host  in  Clostridium  difficile  colonization  resistance.  Trends  in   Microbiology  20:313–319.   6.   Miller  BA,  Chen  LF,  Sexton  DJ,  Anderson  DJ.  2011.  Comparison  of  the   Burdens  of  Hospital-­‐Onset,  Healthcare  Facility–Associated  Clostridium   difficileInfection  and  of  Healthcare-­‐Associated  Infection  due  to  Methicillin-­‐ Resistant  Staphylococcus  aureusin  Community  Hospitals.  Infection  Control   and  Hospital  Epidemiology  32:387–390.   7.   Loo  VG,  Poirier  L,  Miller  MA,  Oughton  M,  Libman  MD,  Michaud  S,   Bourgault  A-­‐M,  Nguyen  T,  Frenette  C,  Kelly  M,  Vibien  A,  Brassard  P,  Fenn   S,  Dewar  K,  Hudson  TJ,  Horn  R,  René  P,  Monczak  Y,  Dascal  A.  2005.  A   predominantly  clonal  multi-­‐institutional  outbreak  of  Clostridium  difficile-­‐ associated  diarrhea  with  high  morbidity  and  mortality.  N.  Engl.  J.  Med.   353:2442–2449.   8.   Miller  M,  Gravel  D,  Mulvey  M,  Taylor  G,  Boyd  D,  Simor  A,  Gardam  M,   McGeer  A,  Hutchinson  J,  Moore  D,  Kelly  S.  2010.  Health  Care–Associated   Clostridium  difficileInfection  in  Canada:  Patient  Age  and  Infecting  Strain  Type   Are  Highly  Predictive  of  Severe  Outcome  and  Mortality.  Clin  Infect  Dis   50:194–201.   9.   Pepin  J.  2005.  Mortality  attributable  to  nosocomial  Clostridium  difficile-­‐ associated  disease  during  an  epidemic  caused  by  a  hypervirulent  strain  in   Quebec.  Canadian  Medical  Association  Journal  173:1037–1042.   10.   Hubert  B,  Loo  VG,  Bourgault  A-­‐M,  Poirier  L,  Dascal  A,  Fortin  E,  Dionne  M,   Lorange  M.  2007.  A  portrait  of  the  geographic  dissemination  of  the     143   Clostridium  difficile  North  American  pulsed-­‐field  type  1  strain  and  the   epidemiology  of  C.  difficile-­‐associated  disease  in  Québec.  Clin  Infect  Dis   44:238–244.   11.   Bartlett  JG.  2006.  Narrative  review:  the  new  epidemic  of  Clostridium  difficile-­‐ associated  enteric  disease.  Ann.  Intern.  Med.  145:758–764.   12.   Kuijper  EJ,  van  Dissel  JT.  2008.  Spectrum  of  Clostridium  difficile  infections   outside  health  care  facilities.  Canadian  Medical  Association  Journal  179:747– 748.   13.   McDonald  LC,  Killgore  GE,  Thompson  A,  Owens  RC,  Kazakova  SV,  Sambol   SP,  Johnson  S,  Gerding  DN.  2005.  An  epidemic,  toxin  gene-­‐variant  strain  of   Clostridium  difficile.  N.  Engl.  J.  Med.  353:2433–2441.   14.   Morgan  OW,  Rodrigues  B,  Elston  T,  Verlander  NQ,  Brown  DFJ,  Brazier  J,   Reacher  M.  2008.  Clinical  Severity  of  Clostridium  difficile  PCR  Ribotype  027:   A  Case-­‐Case  Study.  PLoS  One  3:e1812.   15.   Sirard  S,  Valiquette  L,  Fortier  LC.  2011.  Lack  of  Association  between  Clinical   Outcome  of  Clostridium  difficile  Infections,  Strain  Type,  and  Virulence-­‐ Associated  Phenotypes.  Journal  of  Clinical  Microbiology  49:4040–4046.   16.   Cloud  J,  Noddin  L,  Pressman  A,  Hu  M,  Kelly  C.  2009.  Clostridium  difficile   strain  NAP-­‐1  is  not  associated  with  severe  disease  in  a  nonepidemic  setting.     Clin.  Gastro.  Hep.  7:868–873.   17.   Walk  ST,  Micic  D,  Jain  R,  Lo  ES,  Trivedi  I,  Liu  EW,  Almassalha  LM,  Ewing   SA,  Ring  C,  Galecki  AT.  2012.  Clostridium  difficile  ribotype  does  not  predict   severe  infection.  Clin  Infect  Dis.  55:1661-­‐1668.   18.   Walker  AS,  Eyre  DW,  Wyllie  DH,  Dingle  KE,  Griffiths  D,  Shine  B,  Oakley  S,   O'Connor  L,  Finney  J,  Vaughan  A,  Crook  DW,  Wilcox  MH,  Peto  TEA.  2013.   Relationship  Between  Bacterial  Strain  Type,  Host  Biomarkers,  and  Mortality   in  Clostridium  difficile  Infection.  Clin  Infect  Dis.  56:1589-­‐1600.   19.   Hensgens  MPM,  Goorhuis  A,  Dekkers  OM,  van  Benthem  BHB,  Kuijper  EJ.   2013.  All-­‐Cause  and  Disease-­‐Specific  Mortality  in  Hospitalized  Patients  With   Clostridium  difficile  Infection:  A  Multicenter  Cohort  Study.  Clin  Infect  Dis   56:1108–1116.   20.   Waslawski  S,  Lo  ES,  Ewing  SA,  Young  VB,  Aronoff  DM,  Sharp  SE,  Novak-­‐ Weekley  SM,  Crist  AE,  Dunne  WM,  Hoppe-­‐Bauer  J,  Johnson  M,  Brecher   SM,  Newton  DW,  Walk  ST.  2013.  Clostridium  difficile  ribotype  diversity  at  six   health  care  institutions  in  the  United  States.  Journal  of  Clinical  Microbiology   51:1938–1941.     144   21.   He  M,  Miyajima  F,  Roberts  P,  Ellison  L,  Pickard  DJ,  Martin  MJ,  Connor  TR,   Harris  SR,  Fairley  D,  Bamford  KB,  D'Arc  S,  Brazier  J,  Brown  D,  Coia  JE,   Douce  G,  Gerding  D,  Kim  HJ,  Koh  TH,  Kato  H,  Senoh  M,  Louie  T,  Michell  S,   Butt  E,  Peacock  SJ,  Brown  NM,  Riley  T,  Songer  G,  Wilcox  M,  Pirmohamed   M,  Kuijper  E,  Hawkey  P,  Wren  BW,  Dougan  G,  Parkhill  J,  Lawley  TD.  2013.   Emergence  and  global  spread  of  epidemic  healthcare-­‐associated  Clostridium   difficile.  Nat  Genet  45:109–113.   22.   Freeman  J.  2003.  Effects  of  cefotaxime  and  desacetylcefotaxime  upon   Clostridium  difficile  proliferation  and  toxin  production  in  a  triple-­‐stage   chemostat  model  of  the  human  gut.  Journal  of  Antimicrobial  Chemotherapy   52:96–102.   23.   Honda  H,  Hoyles  L,  Gibson  GR,  Farmer  S,  Keller  D,  McCartney  AL.  2011.   Impact  of  GanedenBC30  (Bacillus  coagulans  GBI-­‐30,  6086)  on  population   dynamics  of  the  human  gut  microbiota  in  a  continuous  culture  fermentation   system.  Anaerobe.  17:36-­‐42.   24.   Baines  SD,  Crowther  GS,  Todhunter  SL,  Freeman  J,  Chilton  CH,  Fawley   WN,  Wilcox  MH.  2013.  Mixed  infection  by  Clostridium  difficile  in  an  in  vitro   model  of  the  human  gut.  Journal  of  Antimicrobial  Chemotherapy  68:1139– 1143.   25.   Sorg  JA,  Dineen  SS.  2005.  Laboratory  Maintenance  of  Clostridium  difficile.   John  Wiley  &  Sons,  Inc.,  Hoboken,  NJ,  USA.   26.   Antonopoulos  DA,  Huse  SM,  Morrison  HG,  Schmidt  TM,  Sogin  ML,  Young   VB.  2009.  Reproducible  Community  Dynamics  of  the  Gastrointestinal   Microbiota  following  Antibiotic  Perturbation.  Infection  and  Immunity   77:2367–2375.   27.   Consortium  THMP.  2012.  Structure,  function  and  diversity  of  the  healthy   human  microbiome.  Nature  486:207–214.   28.   Schloss  PD.  2009.  A  High-­‐Throughput  DNA  Sequence  Aligner  for  Microbial   Ecology  Studies.  PLoS  ONE  4:e8230.   29.   Schloss  PD,  Gevers  D,  Westcott  SL.  2011.  Reducing  the  Effects  of  PCR   Amplification  and  Sequencing  Artifacts  on  16S  rRNA-­‐Based  Studies.  PLoS  ONE   6:e27310.   30.   Edgar  RC,  Haas  BJ,  Clemente  JC,  Quince  C,  Knight  R.  2011.  UCHIME   improves  sensitivity  and  speed  of  chimera  detection.  Bioinformatics   27:2194–2200.   31.   Schloss  PD,  Westcott  SL.  2011.  Assessing  and  improving  methods  used  in   operational  taxonomic  unit-­‐based  approaches  for  16S  rRNA  gene  sequence     145   analysis.  Applied  and  Environmental  Microbiology  77:3219–3226.   32.   White  JR,  Nagarajan  N,  Pop  M.  2009.  Statistical  Methods  for  Detecting   Differentially  Abundant  Features  in  Clinical  Metagenomic  Samples   5:e1000352.   33.   Oksanen  J,  Blanchet  FG,  Kindt  R,  Legendre  P,  Minchin  PR,  O'Hara  RB,   Simpson  GL,  Solymos  P,  Stevens  MHH,  Wagner  H.  2013.  vegan:  Community   Ecology  Package.  R  package  version  2.0-­‐9.   34.   Knetsch  CW,  Hensgens  MPM,  Harmanus  C,  van  der  Bijl  MW,  Savelkoul   PHM,  Kuijper  EJ,  Corver  J,  van  Leeuwen  HC.  2011.  Genetic  markers  for   Clostridium  difficile  lineages  linked  to  hypervirulence.  Microbiology   157:3113–3123.   35.   Pfaffl  MW.  2001.  A  new  mathematical  model  for  relative  quantification  in   real-­‐time  RT-­‐PCR.  Nucleic  Acids  Research  29:e45.   36.   Chen  X,  Katchar  K,  Goldsmith  JD,  Nanthakumar  N,  Cheknis  A,  Gerding  DN,   Kelly  CP.  2008.  A  mouse  model  of  Clostridium  difficile-­‐associated  disease.   Gastroenterology  135:1984–1992.   37.   Bartlett  JG.  1981.  Antimicrobial  agents  implicated  in  Clostridium  difficile   toxin-­‐associated  diarrhea  of  colitis.  Johns  Hopkins  Med  J  149:6–9.   38.   Jernberg  C,  Löfmark  S,  Edlund  C,  Jansson  JK.  2010.  Long-­‐term  impacts  of   antibiotic  exposure  on  the  human  intestinal  microbiota.  Microbiology   156:3216–3223.   39.   CLARKE  KR.  1993.  Non-­‐parametric  multivariate  analyses  of  changes  in   community  structure  18:117–143.   40.   Reeves  AE,  Theriot  CM,  Bergin  IL,  Huffnagle  GB,  Schloss  PD,  Young  VB.   2011.  The  interplay  between  microbiome  dynamics  and  pathogen  dynamics   in  a  murine  model  of  Clostridium  difficile  Infection.  gutmicrobes  2:145–158.   41.   Antharam  VC,  Li  EC,  Ishmael  A,  Sharma  A,  Mai  V,  Rand  KH,  Wang  GP.  2013.   Intestinal  dysbiosis  and  depletion  of  butyrogenic  bacteria  in  Clostridium   difficile  infection  and  nosocomial  diarrhea.  Journal  of  Clinical  Microbiology   51:2884–2892.   42.   Merrigan  M,  Venugopal  A,  Mallozzi  M,  Roxas  B,  Viswanathan  VK,  Johnson   S,  Gerding  DN,  Vedantam  G.  2010.  Human  Hypervirulent  Clostridium  difficile   Strains  Exhibit  Increased  Sporulation  as  Well  as  Robust  Toxin  Production.   Journal  of  Bacteriology  192:4904–4911.   43.   Akerlund  T,  Persson  I,  Unemo  M,  Noren  T,  Svenungsson  B,  Wullt  M,     146   Burman  LG.  2008.  Increased  Sporulation  Rate  of  Epidemic  Clostridium   difficile  Type  027/NAP1.  Journal  of  Clinical  Microbiology  46:1530–1533.   44.   Burns  DA,  Heeg  D,  Cartman  ST,  Minton  NP.  2011.  Reconsidering  the   sporulation  characteristics  of  hypervirulent  Clostridium  difficile   BI/NAP1/027.  PLoS  ONE  6:e24894.   45.   Carlson  PE,  Walk  ST,  Bourgis  AET,  Liu  MW,  Kopliku  F,  Lo  E,  Young  VB,   Aronoff  DM,  Hanna  PC.  2013.  The  relationship  between  phenotype,  ribotype,   and  clinical  disease  in  human  Clostridium  difficile  isolates.  Anaerobe  24:109– 116.   46.   Francis  MB,  Allen  CA,  Sorg  JA.  2013.  Muricholic  Acids  Inhibit  Clostridium   difficile  Spore  Germination  and  Growth.  PLoS  ONE  8:e73653.   47.   Heeg  D,  Burns  DA,  Cartman  ST,  Minton  NP.  2012.  Spores  of  Clostridium   difficile  Clinical  Isolates  Display  a  Diverse  Germination  Response  to  Bile  Salts.   PLoS  ONE  7:e32381.   48.   Escartin  F,  Skouloubris  S,  Liebl  U,  Myllykallio  H.  2008.  Flavin-­‐dependent   thymidylate  synthase  X  limits  chromosomal  DNA  replication.  Proceedings  of   the  National  Academy  of  Sciences  105:9948–9952.   49.   Van  den  Abbeele  P,  Grootaert  C,  Marzorati  M,  Possemiers  S,  Verstraete   W,  Gerard  P,  Rabot  S,  Bruneau  A,  Aidy  El  S,  Derrien  M,  Zoetendal  E,   Kleerebezem  M,  Smidt  H,  Van  de  Wiele  T.  2010.  Microbial  Community   Development  in  a  Dynamic  Gut  Model  Is  Reproducible,  Colon  Region  Specific,   and  Selective  for  Bacteroidetes  and  Clostridium  Cluster  IX.  Applied  and   Environmental  Microbiology  76:5237–5246.   50.   Rajilic-­‐Stojanovic  M,  Maathuis  A,  Heilig  HGHJ,  Venema  K,  de  Vos  WM,   Smidt  H.  2010.  Evaluating  the  microbial  diversity  of  an  in  vitro  model  of  the   human  large  intestine  by  phylogenetic  microarray  analysis.  Microbiology   156:3270–3281.   51.   Macfarlane  G,  Macfarlane  S,  Gibson  G.  1998.  Validation  of  a  Three-­‐Stage   Compound  Continuous  Culture  System  for  Investigating  the  Effect  of   Retention  Time  on  the  Ecology  and  Metabolism  of  Bacteria  in  the  Human   Colon.  Microbial  Ecology  35:180–187.   52.   Payne  AN,  Zihler  A,  Chassard  C,  Lacroix  C.  2012.  Advances  and  perspectives   in  in  vitro  human  gut  fermentation  modeling.  Trends  in  Biotechnology  30:17– 25.   53.   Eyre  DW,  Cule  ML,  Griffiths  D,  Crook  DW,  Peto  TEA,  Walker  AS,  Wilson  DJ.   2013.  Detection  of  Mixed  Infection  from  Bacterial  Whole  Genome  Sequence   Data  Allows  Assessment  of  Its  Role  in  Clostridium  difficile  Transmission.  PLoS     147   Comp  Biol  9:e1003059.   54.   Behroozian  AA,  Chludzinski  JP,  Lo  ES,  Ewing  SA,  Waslawski  S,  Newton   DW,  Young  VB,  Aronoff  DM,  Walk  ST.  2013.  Detection  of  Mixed  Populations   of  Clostridium  difficilefrom  Symptomatic  Patients  Using  Capillary-­‐Based   Polymerase  Chain  Reaction  Ribotyping.  Infection  Control  and  Hospital   Epidemiology  34:961–966.   55.   Fierer  N,  Jackson  JA,  Vilgalys  R,  Jackson  RB.  2005.  Assessment  of  soil   microbial  community  structure  by  use  of  taxon-­‐specific  quantitative  PCR   assays.  Appl  Microbiol  71:4117–4120.                                                                     148   CHAPTER  4     Differential  Metabolism  of  Trehalose  by  Epidemic  Ribotypes  of  Clostridum   difficile           Introduction   Clostridium  difficile  is  one  of  the  primary  causative  agents  of  antibiotic-­‐associated   diarrhea  (1).      While  Bartlett  et  al.  first  described  this  association  almost  four   decades  ago  in  1978,  it  is  still  poorly  understood  why  disease  generally  only  occurs   following  antibiotic  treatment  (2).    Several  factors  from  the  perspectives  of  the  host   and  microbiota  likely  contribute  to  the  complex  dynamics  of  both  resistance  and   susceptibility  to  C.  difficile  infection  (CDI).    However,  mechanisms  of  colonization   resistance  and  competitive  inhibition  are  believed  to  play  a  role  (reviewed  in  (3)).       Competition  for  nutrients  is  one  of  the  mechanisms  governing  colonization   resistance,  and  although  evidence  to  support  this  in  the  case  of  establishment  of  CDI   exists,  we  do  not  have  a  complete  understanding  of  the  role  of  nutrient  availability   (4-­‐6).    Therefore,  there  is  still  much  to  be  learned  in  terms  of  how  C.  difficile   metabolism  and  competition  for  nutrients  contribute  to  colonization  and   establishment  of  disease.    Moreover,  recent  increases  in  the  incidence  and  severity   of  CDI  correlate  with  the  emergence  of  epidemic-­‐associated  lineages  of  C.  difficile,   primarily  ribotype  027    (RT  027)  (7-­‐10).      In  chapter  3  we  show  that  RT  027  strains   are  able  to  out-­‐compete  strains  of  other  ribotypes  in  the  presence  of  complex  fecal     149   communities  in  an  in  vitro  model  of  C.  difficile  invasion.      Furthermore,  we  speculate   that  there  are  aspects  of  RT  027  strain  physiology  related  to  nutrient  utilization  that   play  a  role  in  this  increased  competitive  fitness.         In  this  chapter,  I  will  present  work  that  was  performed  to  investigate  carbon   source  utilization  of  C.  difficile  with  particular  emphasis  on  identifying  carbon   sources  that  RT  027  strains  differentially  metabolize.    The  primary  nutrients  and   carbon  sources  utilized  by  C.  difficile  during  outgrowth  in  the  gastrointestinal  tract   are  not  well  explored.    Identifying  compounds  that  support  C.  difficile  growth  in  the   context  of  the  intestinal  environment  would  increase  our  understanding  in  this  area   and  provide  insight  into  knowing  which  nutritional  factors  are  important  for  C.   difficile  gut  colonization.      Additionally,  elucidating  if  RT  027  strains  have  the  ability   to  utilize  a  wider  range  of  nutrients,  or  specific  nutrients  more  efficiently,  might   help  to  explain  the  competitive  advantage  of  RT  027  strains.      Moreover,  it  would   provide  further  evidence  to  support  the  hypothesis  that  these  strains  have  become   more  prevalent  due  to  differences  in  physiology  rather  than,  or  in  addition  to,   differences  related  to  traditional  virulence  factors.           Most  of  the  experimental  work  in  this  chapter  focuses  on  C.  difficile   metabolism  of  a  glucose  disaccharide  sugar,  trehalose.    Trehalose  is  a  naturally   occurring  sugar  consisting  of  two  glucose  subunits  linked  by  an  α,α-­‐1,1-­‐glycosidic   bond  (11).    Trehalose  synthesis  occurs  in  organisms  in  all  three  domains  of  life  (12).     Initially,  trehalose  was  thought  to  primarily  serve  as  an  energy  storage  molecule,   however,  many  more  biological  functions  of  this  molecule  have  since  been   discovered  (reviewed  in  (11,  13)).      These  functions  include  incorporation  in  cellular     150   structural  components,  transport,  intracellular  signaling,  and  regulation  (11,  13).     Furthermore,  because  of  its  particular  chemical  characteristics,  intracellular   accumulation  of  trehalose  provides  stabilization  of  biological  molecules,  providing   protection  against  osmotic,  heat,  cold,  and  oxidative  stresses  (14-­‐17).           Availability  of  trehalose  in  the  gastrointestinal  tract  has  not  been  well   defined  and  it  is  not  included  in  studies  quantifying  other  intestinally  relevant   sugars  such  as  glucose,  sucrose,  maltose,  and  lactose.    Nonetheless,  there  are  several   pieces  of  evidence  supporting  its  presence  and  potential  role  in  colonization.      First,   brush  border  enterocytes  of  the  small  intestine  express  trehalase,  the  enzyme   required  to  breakdown  trehalose  into  its  glucose  subunits  which  can  then  be   absorbed  and  metabolized  (18).    Historically,  the  primary  dietary  sources  of   trehalose  were  mushrooms,  insects,  lobsters  and  crabs,  honey,  and  baker’s  yeast   (13).    More  recently,  consumption  of  trehalose  is  increasing  due  to  increased  use  in   commercial  food  production  since  being  granted  GRAS  (Generally  Recognized  As   Safe)  status  by  the  US  FDA  in  2000.    Furthermore,  other  countries/regions  have   approved  its  use  as  a  food  additive  including  Korea  and  Taiwan  in  1998,  the  UK  in   1991,  Canada  in  2005,  and  Europe  in  2001.      An  extensive  report  published  by   Hayashibara  International  Inc.  addressing  the  safety  of  trehalose  based  on  several   toxicity  studies  prompted  this  approval  in  several  countries  (13).    Trehalose  has   unique  chemical  properties  that  make  it  useful  in  the  food  industry,  including  use  as   a  stabilizing  agent  and  texturizer  in  various  foods,  cryoprotectant  in  freeze  dried   foods,  and  a  sweetening  agent.    Indeed,  estimates  regarding  consumption  of   trehalose  by  the  average  adult  in  the  US  are  as  high  as  16  g/day  (13).      In  addition,  a     151   rare  condition  of  trehalose  intolerance  in  some  individuals  has  been  reported,  which   is  caused  by  insufficient  trehalase  activity  in  the  small  intestine,  and  results  in   intestinal  symptoms  similar  to  those  of  lactose  intolerance  upon  ingestion  of   trehalose-­‐containing  foods  (19,  20).       A  recent  proteomic  analysis  of  C.  difficile  proteins  expressed  in  a  pig  ileal-­‐ ligated  loop  model  reported  a  2-­‐fold  increase  in  TreA  expression  in  vivo  compared   to  in  vitro,  supporting  the  presence  of  trehalose  in  the  intestinal  environment  (21).     Moreover,  the  role  of  trehalose  in  colonization  of  other  intestinal  pathogens  has   been  shown  (22).    Martindale  et  al.  used  an  infant  rat  gut  model  to  investigate  genes   important  for  intestinal  colonization  of  Escherichia  coli  (23).    They  identified  a  treB   mutant  of  Escherichia  coli  that  was  defective  in  colonization;  TreB  is  a  trehalose-­‐ specific  component  of  the  phosphotransferase  system  required  for  uptake  of   trehalose.         Finally,  as  discussed  above,  many  bacterial  organisms  are  able  to  synthesize   and  maintain  intracellular  stores  of  trehalose.    Indeed,  if  any  members  of  the   intestinal  microbiota  had  intracellular  stores  of  trehalose,  this  would  present  a   source  of  trehalose  upon  microbial  lysis  after  antibiotic  treatment.      Taken  together,   all  of  this  evidence  supports  that  trehalose  is  a  relevant  nutrient  in  the   gastrointestinal  environment  and  has  the  potential  to  play  a  role  in  C.  difficile   colonization.       Very  little  work  has  been  done  regarding  metabolism  of  trehalose  by  C.   difficile.    Genome  annotation  data  suggest  that  C.  difficile  solely  uses  trehalose  as  a   carbon  source,  and  that  the  genes  required  to  synthesize  trehalose  are  absent.    It     152   only  harbors  treA,  the  gene  that  codes  for  the  trehalase  enzyme,  and  treR,  the  treA   repressor.    It  is  not  surprising  that  it  does  not  appear  to  be  able  to  also  synthesize   trehalose  for  use  in  energy  storage  or  stress  resistance,  as  this  functional  capacity   occurs  primarily  in  Gram-­‐negative  bacteria  (12).    In  terms  of  regulation  of  trehalose   utilization  genes,  however,  Antunes  et  al.  used  in  silico  analysis  to  identify  predicted   CcpA-­‐dependent  carbon  catabolite-­‐regulated  genes  in  C.  difficile,  including  treR  (24).     Here  we  show  that  RT  027  strains,  and  strains  of  another  highly  prevalent   epidemic-­‐associated  ribotype  (RT  078),  grow  to  higher  cell  densities  on  trehalose.     In  the  case  of  RT  027  this  is  potentially  due  to  an  identified  amino  acid  substitution   in  TreR  within  these  strains.    This  is  supported  by  the  observation  that  RT  027   strains  have  increased  treA  expression.    In  addition,  a  treA  knockout  mutant  in   CD630  was  generated  and  preliminary  mouse  studies  using  the  wild-­‐type  and   mutant  strains  suggest  that  trehalose  plays  a  role  in  colonization  and  competitive   fitness.    Should  this  result  translate  into  the  human  gastrointestinal  tract,  it  is   possible  that  the  ability  of  RT  027  strains  to  grow  better  on  trehalose  would  give   them  a  competitive  advantage.    Furthermore,  this  physiological  trait  could  partially   explain  the  prevalence  of  RT  027  strains.                     153   Materials  and  Methods   C.  difficile  strains  used  in  this  study  and  growth  conditions   All  strains  (except  CD630  and  CD196)  were  provided  to  the  Britton  laboratory  by   the  Michigan  Department  of  Community  Health,  who  determined  the  toxinotypes   and  did  the  PFGE  typing  (Table  4.1).        Strains  were  collected  from  infected  patients   at  either  Southeast  Michigan  or  Mid-­‐Michigan  Hospitals  between  11/2007  and   5/2008.    Strains  CD630,  CD630Δerm  and  CD196  were  kindly  provided  by  the   laboratory  of  Lincoln  Sonnenshein  (Tufts  University).    Ribotyping  of  the  strains  was   determined  by  Seth  Walk  (previously  of  the  Young  laboratory,  University  of   Michigan).    All  studies  requiring  growth  of  C.  difficile  were  carried  out  in  a  Coy   anaerobic  chamber  (5%  hydrogen,  90%  nitrogen,  5%  CO2  atmosphere),  incubated  at   37°C.         Table  4.1.  Characterization  of  strains  used  in  this  study.       Strain   toxinotype   PFGE  type  (NAP  status)   Ribotype   CD2015   III   MI_NAP1   027   CD196   III   MI-­‐NAP1   027   CD4015   III   MI-­‐NAP1   027   CD4001   III   MI-­‐UN13   027   CD4010   III   MI-­‐UN13   027   CD630   ND   ND   012   CD3014   0   MI-­‐NAP2   001   CD4011   0   MI-­‐NAP2   001   CD2048   0   MI-­‐NAP3   053   CD1007   0   MI-­‐NAP3   053   CD1014   0   MI-­‐NAP4   014   CD2012   0   MI-­‐NAP6   002   CD1015   V   MI-­‐NAP7   078   CD1018   V   MI-­‐NAP7   078   CD2001   V   MI-­‐NAP8   078       154     Identifying  nutritional  compounds  that  increase  growth  of  Clostridium   difficile.    Several  different  plates  are  available  to  screen  compounds  that  can  serve   as  carbon,  nitrogen,  phosphorus  and  sulfur  sources  as  well  as  nutritional   supplements  such  as  peptides,  fatty  acids,  and  vitamins.    A  list  of  the  different  plates   (PM1-­‐PM10)  and  their  compounds  can  be  found  at:   http://www.biolog.com/pdf/pm_lit/PM1-­‐PM10.pdf.      Selected  medium  was   inoculated  (1:100)  with  overnight  culture  (CD630  or  CD2015)  and  then  100  µl   added  to  the  wells  of  the  entire  Phenotype  MicroArray  plate.      Growth  was   monitored  using  a  Tecan  Sunrise  spectrophotometer,  reading  every  20  minutes   (OD600)  for  24  hrs  under  anaerobic  conditions  at  37°C.      Two  types  of  media  were   used  for  these  experiments-­‐  a  defined  medium  developed  for  C.  difficile  ((25)),  and   modified  sporulation  medium.    The  defined  medium  was  made  following  the   published  recipe  (Table  4.2)  with  a  few  modifications;  glucose  was  omitted  for  all   Phenotype  MicroArray  plate  experiments,  and  for  plates  PM3-­‐8,  only  essential   amino  acids  were  added  (see  table  legend).      The  other  medium  used  is  a  variation  of   the  C.  difficile  sporulation  medium  published  by  Wilson  et  al.  (26),  named  MSM  for   “modified  smorulation  medium”.    MSM  contained:  22.5  g/L  trypticase  peptone   (VWR),  1  g/L  (NH4)2SO4,  and  1.5  g/L  tris  base  (Invitrogen);  adjusted  to  pH  7.5  and   autoclaved  at  121°  C  for  30  min.      The  sporulation  medium  was  chosen  because  it  is   simple,  composed  only  of  peptones  and  salts,  and  was  diluted  four-­‐fold  in  order  to   provide  a  low  level  of  growth  and  allow  for  detectability  of  increased  yields.    Growth   yields  were  determined  as  the  maximum  OD600  of  the  growth  curve  for  individual     155   wells.    Compounds  that  increased  the  maximum  OD600  by  at  least  1.5-­‐fold  were   concluded  to  confer  a  growth  advantage.         Table  4.2.    Defined  medium  ingredients  and  concentrations.    *these  amino  acids   were  the  only  ones  added  for  medium  used  in  Biolog  Phenotype  MicroArray  plates   PM3-­‐8.      Amino  acids:   histidine   tryptophan*   glycine   tyrosine   arginine   phenylalanine   methionine   threonine   alanine   lysine   serine   valine*   isoleucine*   aspartic  acid   leucine*   cysteine*   proline*   glutamic  acid             mg/L   100   Vitamins:     thiamin   calcium-­‐D-­‐ pantothenate   nicotinamide   rioflavin   pyridoxine   p-­‐Aminobenzoic  acid   folic  acid   biotin   B12   100   100   100   200   200   200   200   200   300   300   300   300   300   400   500   600   900    minerals:   KH2PO4   Na2HPO4   NaCl   CaCl2.2H2O   MgCl2.6H2O   MnCl2.4H2O   (NH4)2SO4   FeSO4.7H2O   CoCl2.6H2O   NaHCO3                         156     mg/L   1   1   1   1   1   0.05   0.0125   0.0125   0.005       300   1500   900   26   20   10   40   4   1   5000     Growth  experiments  further  investigating  C.  difficile  utilization  of  compounds   identified  in  Phenotype  MicroArray  plates.    Compounds  initially  identified  to   increase  growth  in  Phenotype  MicroArray  plates  (PM1  and  PM2)  were  used  to   further  assess  C.  difficile  growth  using  additional  strains.    Although  Biolog  does  not   provide  the  specific  concentrations  of  the  components  in  their  phenotype   microarray  plates,  they  suggest  follow-­‐up  studies  be  done  in  a  range  of  5-­‐50mM  in   their  carbon  source  plates  (PM1-­‐2)  (per  email  correspondence  with  Biolog  technical   support).    The  defined  medium  was  used  (Table  4.2;  all  amino  acids)  and   supplemented  with  N-­‐acetyl-­‐glucosamine  (25mM),  N-­‐acetyl-­‐neuraminic  acid   (10mM),  alanine  and  hydroxyl-­‐proline  (12  mM  each),  mannose  (25mM),  or   trehalose  (25mM).    Cultures  were  grown  in  96-­‐well  plates  (Corning  Costar   #CLS3595)  plates  by  adding  200  μL  medium  (+/-­‐  compound)  to  selected  wells  and   inoculating  with  10  µL  MSM  overnight  culture  of  selected  strains.    Growth  was   monitored  using  a  Tecan  Sunrise  spectrophotometer,  reading  every  20  minutes   (OD600)  for  24  hrs  under  anaerobic  conditions  (Coy  anaerobic  chamber  with  3%   hydrogen,  97%  nitrogen  atmosphere)  at  37°C.             Trehalose  growth  experiments.    Selected  strains  were  grown  in  DM  (Table  4.2;  all   amino  acids)  supplemented  with  the  specified  trehalose  concentrations.      Medium   (200  µL)  was  added  to  selected  wells  of  96-­‐well  plate  and  wells  were  inoculated   with  10  µL  of  overnight  culture  of  indicated  strains.    Growth  was  monitored  using  a   Tecan  Sunrise  spectrophotometer,  reading  every  20  minutes  (OD600)  for  24  hrs     157   under  anaerobic  conditions  (Coy  anaerobic  chamber  with  3%  hydrogen,  97%   nitrogen  atmosphere)  at  37°C.         RT-­‐qPCR  analysis  of  treA  expression.   Cultures.    Selected  C.  difficile  strains  were  grown  overnight  in  5  ml  DM  (table  4.1),   inoculated  from  fresh  BHIS  agar  plates  (made  as  previously  described  except   without  the  addition  of  cysteine,  (27)).        Expression  cultures  were  started  by   subculturing  100  µL  of  the  overnight  culture  into  10  mL  fresh  DM  supplemented   with  25mM  trehalose  (by  addition  of  1M  stock  solution  of  trehalose  dissolved  in   water  and  filter-­‐sterilized).      Cultures  were  incubated  (anaerobic,  37°C)  and  OD600   (optical  density)  monitored  until  an  OD  of  ~0.1-­‐0.2  was  reached.    The  remaining   culture  (~8  mL)  was  mixed  with  an  equal  volume  of  ice  cold  ethanol:acetone  (1:1)   mix,  placed  on  ice  for  10  min,  and  stored  at  -­‐80°C.             RNA  extractions.    Samples  (culture,  ethanol,  acetone  mix)  were  thawed  on  ice,  and   then  pelleted  by  centrifugation  for  10  min  at  4°C,  and  the  supernatant  removed.    Cell   pellets  were  washed  with  500  µL  TE  buffer  (10mM  Tris,  1mM  EDTA,  pH  7.6).    From   this  point  RNA  was  extracted  using  Qiagen  RNeasy  Kit  (Qiagen  #74104),  following  a   modified  version  of  the  recommended  protocol,  starting  with  resuspension  in  1  mL   RLT  buffer  (to  which  1:100  dilution  of  β-­‐mercaptoethanol  is  added).      Samples  were   then  transferred  to  2  ml  screw-­‐top  tubes  containing  ~200  µl  0.1  mm  silica  beads   (Biospec  Products).    The  samples  were  homogenized  by  bead-­‐beating  (BioSpec   Products)  on  the  homogenize  setting  two  times  for  1  min  (placed  on  ice  for  1  min     158   between),  centrifuged  for  15  min  at  21000  X  g,  and  the  supernatant  was  transferred   to  a  new  tube.    Buffer  RLT  (+  1:100  β-­‐mercaptoethanol)  was  added  to  a  total  volume   of  900  µL,  then  vortexed.    500  µL  100%  ethanol  was  added,  the  sample  vortexed,   and  then  transferred  to  RNeasy  spin  column.    The  extraction  protocol  from  here   followed  the  handbook  protocol.    After  the  final  wash  with  RPE  buffer,  RNA  was   eluted  off  the  columns  with  20µL  RNase-­‐free  water.    1  µL  RNase  Inhibitor  (Roche   #03335399001)  was  added  to  the  extracted  RNA;  samples  were  stored  at  -­‐80°C.       Samples  were  treated  with  DNase  to  remove  any  contaminating  genomic  DNA  using   Ambion  Turbo  DNA-­‐free  Kit  (Ambion  AM1907).         Reverse  Transcription.    cDNA  of  RNA  samples  was  synthesized  using  Invitrogen   Superscript  III  reverse  transcriptase  (Invitrogen  #18080-­‐093)  following  the   recommended  protocol.    Other  reaction  components  used  were  random  primers   (Promega  #C1181),  and  10mM  dNTP’s  (Promega  #U1515).    Approximately  1  ng  of   each  RNA  sample  was  used  for  cDNA  synthesis.      No  reverse  transcriptase  controls   were  also  set-­‐up  by  replacing  the  1  µL  reverse  transcriptase  with  1  µL  water  in   those  reactions;  all  other  components  were  the  same.         Real-­‐Time  PCR  reactions.    Real-­‐time  PCR  reactions  were  performed  in  triplicate   and  contained  the  following  components:  1  µl  cDNA  (undiluted  (treA),  1:100   dilution  in  sterile  water  (16S  rRNA),  or  1:100  dilution  of  –RT  control  sample),  10  µL   Power  SYBR  Green  PCR  Master  Mix  (ABI,  Carlsbad,  CA),  0.25  µL  each  primer  (20   µM)  (Supplementary  Table  4.3),  and  8.5  µL  Milli-­‐Q  water.    Triplicate  water  controls     159   were  also  run;  1  µL  water  replaced  the  cDNA  template.    Real-­‐time  PCR  was   performed  using  an  Eppendorf  Mastercycler  PCR  machine  under  the  following   conditions:  95°C  10  min,  40  cycles  of  95°C  for  15  sec  followed  by  60°C  for  1  min.  A   20  min  melting  curve  was  also  performed  from  60°C  to  95°C.    Standard  curves  of   cDNA  were  run  to  determine  primer  efficiencies.    The  template  used  for  standard   curves  was  the  sample  with  the  lowest  CT  values,  diluted  4  logs  into  sterile  water.     Primer  efficiencies  (E)  were  calculated  by  the  method  published  by  Pfaffl  et  al.  (28);   treA  E=  1.95;  16s  rRNA  E=  1.93.    Expression  of  treA  at  the  stopping  point  of  each   culture  was  determined  using  the  average  of  the  triplicate  CT  values  from  each   sample  and  the  following  equation:  [EtreA(1.95)^(25-­‐sample  CT)]/[E16s(1.93)^(10-­‐ sample  CT)]  (28).    A  baseline  expression  CT  signal  for  all  samples  was  used  which   was  approximately  the  average  CT  value  for  all  strains  in  medium  supplemented   with  glucose  instead  of  trehalose.    This  was  done  to  normalize  the  variation  seen  in   the  baseline  expression  of  treA  in  control  cultures  (those  without  trehalose)  where   aberrant  expression  levels  in  some  replicate  cultures  were  observed.      Aberrantly   high  baseline  expression  effectively  would  otherwise  decrease  the  fold-­‐induction  of   treA  in  those  samples  and  not  be  representative  of  the  true  levels  of  treA  transcripts   in  the  presence  of  trehalose.                   160   Table  4.3.    Primers  used  in  this  study.   Target  Gene  (reference)   Sequence   C.  difficile  treA  (this  work)   Fwd:  tacgctgatggtcctcgtat     Rev:  cgcctcctttataatctgttttc   C.  difficile  16s  rRNA     {Rinttila:2004da}     Fwd:  ttgagcgatttacttcggtaaaga   treA  IBS1.2_Intron  retarget  (this  work)   atatcaagcttttgcaacccacgtcgatcgtgaataga Rev:  ccatcctgtactggctcacct   agattattgtgcgcccagatagggtg   treA  EBS1_Intron  retarget  (this  work)   cagattgtacaaatgtggtgataacagataagtcatta ttattaacttacctttctttgt   treA  EBS2_Intron  retarget  (this  work)   cgcaagtttctaatttcggttttctatcgatagaggaaa gtgtct   treA  knock-­‐out  screen  (this  work)   qPCR-­‐  wild-­‐type  specific   qPCR-­‐  treA  mutant  specific   Fwd:  gcaacaatgatggtataggtgatataaatgg     Rev:  ggaacagaaccatcaggtttagca     Fwd:  ggttgactcctatgtacgtttct     Rev:  caaagtcactcattgtcccatattt     Fwd:  tcctcctttctattaggcattcttg     Rev:  ggagaacctatgggaacgaaac               161   Alignments  of  TreA  amino  acid  sequences  from  C.  difficile  clinical  isolates  and   other  Gram-­‐positive  bacteria.    Whole  genome  sequencing  (Illumina  MiSeq)  was   conducted  on  several  of  the  C.  difficile  clinical  isolates  obtained  from  the  MDCH  used   in  this  study  by  the  MSU  Research  and  Technology  Support  Facility.      Genome   sequence  files  were  assembled  de  novo  using  the  next  generation  sequencing   assembly  algorithm,  Velvet  (www.ebi.ac.uk/~zerbino/velvet/).    BLAST  (Basic  Local   Alignment  Search  Tool)  databases  were  made  for  each  genome  and  the  treR   sequences  pulled  out  of  the  assembled  contigs  by  searching  for  sequences  matching   the  CD630  (Integrated  Microbial  Genomes  (IMG);  https://img.jgi.doe.gov)  treR   sequence.      The  treR  sequences  of  other  Gram-­‐positive  organisms  were  obtained   from  the  public  database  of  IMG.    All  alignments  were  done  using  ClustalW2   (https://www.ebi.ac.uk/Tools/msa/clustalw2/).         Construction  of  a  treA  knockout  mutant  in  the  C.  difficile  parent  strain,   CD630Δerm.    We  used  a  gene  knockout  system  similar  to  the  TagetTron  system   available  through  Sigma-­‐Alderich  to  generate  a  treA  gene  knockout  mutant.      This   system  uses  a  group-­‐II  intron,  retargeted  to  the  gene  of  interest,  to  generate   functional  knockouts.    We  used  the  protocol  previously  described  (29,  30).    Primers   were  designed  to  target  the  treA  gene  (CD3091)  of  CD630  using  the  treA  gene   sequence  obtained  from  IMG  (https://img.jgi.doe.gov).      A  primer  design  script  was   developed,  which  is  a  variation  of  the  one  available  from  Sigma  for  TargetTron   primer  design  (http://www.sigma-­‐genosys.com/targetron/),  and  was  modified  to   be  optimized  to  the  C.  difficile  genome.    The  “intronator”  script  is  available  upon     162   request.  Primers  used  are  listed  in  Table  4.3.    They  are  designed  to  target  the  intron   to  insert  at  bp  177  of  treA.    Two  plasmid  templates  (pBL64,  pBL65)  were  used  to   PCR  amplify  the  retargeted  intron  fragment  and  ligate  it  into  pBL100  (30).    Plasmids   and  erythromycin-­‐sensitive  CD630  derivative  strain  (CD630Δerm)  were  generously   provided  to  us  by  Dr.  Lincoln  Sonenshein’s  lab  (Tufts  University).    The  treA-­‐targeted   pBL100  plasmid  was  then  transformed  into  Escherichia  coli  SD46  (provided  by  Dr.   Craig  Ellermeier,  University  of  Iowa),  and  then  mated  into  CD630Δerm.    The   resulting  treA  insertion  mutant  was  verified  by  PCR  using  primers  designed  to  flank   the  treA  insertion  site,  resulting  in  a  350bp  product  for  the  wild-­‐type  gene  and  a   2.4kbp  product  for  the  gene  knockout  (Table  4.3).             Colonization  and  competition  of  CD630Δerm  wild-­‐type  and  treA  mutant   strains  in  a  mouse  model  of  C.  difficile  infection.    The  previously  published   cefoperazone  mouse  model  of  C.  difficile  infection  was  used  for  these  experiments   (31).  They  were  conducted  in  the  laboratory  of  Dr.  Vince  Young  (University  of   Michigan,  Department  of  Microbiology  and  Immunology),  by  Dr.  Mark   Koenigsknecht,  a  postdoctoral  research  associate.      Four  groups  of  C57BL/6  mice  (6-­‐ 8wks  in  age)  were  used  in  these  experiments;  One  group  (3  mice)  served  as  no-­‐ antibiotic  control,  two  groups  (5  mice  each)  were  infected  with  wild  type  CD630erm   or  treA  knockout  mutant  strain,  and  the  fourth  group  (5  mice)  was  infected  with  a   mixture  of  the  wild-­‐type  and  mutant  strains.    Mice  were  treated  with  cefoperazone   (0.5mg/ml)  in  their  drinking  water  for  5  days,  followed  by  two  days  of  fresh  water   before  oral  gavage  of  1  x  104  C.  difficile  spores/mouse.      Spores  were  cultivated  by     163   spread  plating  overnight  BHIS  cultures  of  C.  difficile  on  BHIS  medium  and  incubating   anaerobically  at  37°C  for  3  days.    Cells  were  scraped  from  the  plates  and   resuspended  in  sterile  water,  heat-­‐treated  at  60°C  for  30  min  to  kill  vegetative  cells,   and  the  number  of  viable  spores  were  enumerated  by  plating  appropriate  serial   dilutions  on  BHIS  supplemented  with  0.1%  taurocholic  acid.  Spore  preparations   were  diluted  in  sterile  water  to  yield  ~105  spores/ml,  then  mixed,  when   appropriate,  prior  to  gavaging  a  total  of  ~104  spores/mouse.      Mice  were  weighed   and  observed  daily  for  disease  symptoms  and  morbidity.  Fecal  samples  were   collected  daily  and  transferred  into  an  anaerobic  chamber  within  two  hours  of   collection.    Fecal  samples  were  weighed,  suspended  in  anaerobic  PBS,  serially   diluted,  and  plated  on  TCCFA  agar  plates  +/-­‐  10μg/ml  erythromycin.    After  24-­‐48   hrs  of  anaerobic  incubation  at  37°C,  colonies  were  counted  and  the  CFU/g  feces  was   determined.     Quantitative  PCR  Analysis  of  Competitions  and  Calculations  of  Competitive   Index.    For  mice  gavaged  with  a  mixture  of  wild  type  and  treA  mutant  strains,  the   strain  ratios  were  determined  by  qPCR  instead  of  plating.    Strains  ratios  determined   by  qPCR  will  be  more  reflective  of  the  actual  ratios  since  primers  are  designed  to   specifically  target  each  strain,  while  determination  by  plating  relies  on  subtraction   of  the  colonies  on  selective  plates  from  the  total  on  non-­‐selective  plates,  and  will  be   affected  by  inherent  plating  error,  making  small  differences  in  ratios  more  difficult   to  resolve.    DNA  was  extracted  from  fecal  samples  using  bead  beating  followed  by   modified  cleanup  with  a  Qiagen  DNEasy  Tissue  Kit  as  described  (32).    DNA     164   concentrations  were  determined  by  spectrophotometry  at  260  and  280  nm   (Nanodrop),  and  ranged  from  18-­‐48  ng/μL.    The  mixed  spores  preparation  (1  x  105   spores/ml)  used  to  gavage  mice  was  treated  with  0.1%  taurocholate  at  room   temperature  for  20  minutes  to  induce  germination  and  then  bead-­‐beated  as  above.     The  supernatant  was  transferred  to  a  fresh  tube  and  used  as  DNA  template  in  the   qPCR  analysis.    Primers  were  designed  to  specifically  target  the  wild-­‐type  strain   (flank  the  intron  insertion  site)  or  the  treA  mutant  (intron-­‐specific)  (table  4.3).     Real-­‐time  PCR  reactions  were  set-­‐up  by  combining  the  following  components:  10  µL   Power  Sybr  Green  PCR  Master  Mix  (ABI,  Carlsbad,  CA),  0.2  µL  each  primer  (20  µM),   8.6  µL  Mili-­‐Q  water,  1  µL  DNA  sample.    All  PCR  reactions  were  performed  in   technical  triplicate  and  the  CT  values  are  an  average  of  the  triplicate  data  points.  The   amplification  efficiency  (E)  of  each  primer  set  was  determined  by  plotting  the  CT   values  of  a  standard  curve  generated  by  serial  4-­‐log  dilutions  of  the  mixed-­‐spore   supernatant  diluted  into  a  DNA  sample  extracted  from  a  mouse  fecal  pellet  collected   before  C.  difficile  gavage  (community  background  DNA).  Primer  efficiencies  were   calculated  using  the  method  described  by  Pfaffl  et  al.;  E=  10(-­‐1/slope)  (28);   Efficiencywild-­‐type  =  1.96,  Efficiencymutant  =  2.03.    Competitive  Indices  (CI)  were   calculated  by  dividing  the  end  point  wild-­‐type:mutant  ratio  by  the  ratio  at  T0  (ratio=   Emut^CT_mut/Ewt^CT_wt).               165   Results  and  Discussion   Identification  of  carbon  sources  that  C.  difficile  is  able  to  use  for  growth.     Phenotype  MicroArray  plates  can  be  used  to  screen  various  compounds  for  their   ability  to  increase  the  growth  rate  or  growth  yield  of  selected  strains.    Phenotype   MicroArray  plates  are  96-­‐well  plates  in  which  each  well  contains  a  different   compound;  these  can  be  used  to  screen  not  only  for  phenotypic  effects  on  strain   growth  but  also  other  aspects  of  physiology  such  as  sporulation,  toxin  production,   or  biofilm  formation.    The  focus  of  this  work  was  on  identifying  nutrients  which  C.   difficile  is  able  to  use  to  increase  growth,  although  these  plates  could  also  be  used  to   identify  compounds  that  inhibit  growth.    Strains  CD630  and  CD2015  were  used  for   initial  Phenotype  MicroArray  growth  studies  (Table  4.1).    This  was  done  because  we   wanted  to  identify  compounds  beneficial  for  C.  difficile  in  general  as  well  as  ones   that  might  be  specific  to  the  epidemic  RT  027  strains.    Two  different  media  were   used  for  initial  experiments  in  order  to  detect  compounds  that  may  provide  an   advantage  in  one  medium  but  may  not  be  detected  in  the  other.    Table  4.4   summarizes  the  results  from  just  the  two  carbon  source  plates  (PM1  and  PM2).    Out   of  190  compounds  tested,  a  total  of  16  were  found  to  confer  a  growth  advantage  to   both  strains,  5  compounds  to  only  CD630,  and  3  compounds  to  only  CD2015,  (Table   4.4).    However,  these  results  are  representative  of  only  1  replicate  of  each  plate  for   each  strain  and  each  media  type.    More  replicates  or  media  types  might  have  shown   more  conserved  overlap  in  the  utilization  of  these  compounds  by  these  two  strains.     Moreover,  some  compounds  may  have  increased  growth  for  either,  or  both,  strains   but  may  have  not  met  the  1.5-­‐fold  cut-­‐off  value.    This  was  an  initial  screen  for     166   identification  of  compounds  to  follow-­‐up  in  subsequent  and  better-­‐replicated   growth  studies.      Therefore,  these  Phenotype  MicroArray  plate  experiments  are  not   an  exhaustive  study  into  the  metabolic  capabilities  of  C.  difficile  and  are  likely  to   overlook  some  compounds  that  may  be  of  interest.           Table  4.4.  Compounds  that  conferred  at  least  a  1.5-­‐fold  growth  yield   advantage  Biolog  PM1  and  PM2  plates.a               CD630   CD2015     Well   Compound   MSM   DM-­‐G   MSM   DM-­‐G   PM1:   A3   N-­‐acetyl-­‐D-­‐glucosamine*   +   +   ND   +     A8   L-­‐proline   +   -­‐   ND   -­‐     A10   D-­‐trehalose*   +   +   ND   +     A11   D-­‐mannose*   +   +   ND   +     B2   D-­‐sorbitol   -­‐   -­‐   ND   +     B11   D-­‐mannitol   +   +   ND   +     C7   D-­‐fructose   +     -­‐   ND   +     C9   α-­‐D-­‐glucose   +   +   ND   +     D7   α-­‐Keto-­‐Butyric  acid   +   +   ND   -­‐     G3   L-­‐serine   +   +   ND   -­‐     G4   L_threonine   +   -­‐   ND   -­‐     H1   glycyl-­‐L-­‐proline   +   -­‐   ND   -­‐   PM2:   B2   N-­‐acetyl-­‐neuraminic  acid*   -­‐   +   +   +     B6   D-­‐arabitol   -­‐   -­‐   -­‐   +     B8   arbutin   +   +   +   +     C4   D-­‐melezilose   +   +   +   +     D2   salicin   +   +   +   +     D6   D-­‐tagatose   +   +   -­‐   +     E5   D-­‐glucosamine   +   +   +   +     E8   b-­‐hydroxy-­‐butyric  acid   -­‐   +   -­‐   +     E10   α-­‐keto  valeric  acid   -­‐   +   +   +     G8   hydroxy-­‐L-­‐proline*   -­‐   -­‐   +   +     G10   L-­‐leucine   -­‐   +   +   +     G12   L-­‐methionine   +   -­‐   -­‐   +     aEach  +/-­‐  symbol  represents  results  of  an  individual  experiment  where  growth  was   (+)  or  was  not  (-­‐)  increased  by  at  least  1.5-­‐fold  that  of  the  control.    DM=  defined   medium;  MSM=  modified  sporulation  medium.   *These  compounds  were  selected  for  individual  growth  analysis  experiments.           167   Plates  PM3-­‐8  were  also  tested  for  increased  growth.    The  results  are   presented  in  Supplementary  Table  4.1;  however,  we  did  not  do  any  follow-­‐up   growth  studies  on  the  compounds  identified  in  these  plates.       Compounds  identified  in  Phenotype  MicroArray  plates  increase  growth  yield   of  several  C.  difficile  strains.    Several  compounds  that  conferred  growth   advantages  were  selected  for  follow-­‐up  experiments  (starred  in  Table  4.4).  These   compounds  were  selected  based  on  their  potential  for  availability  in  the  intestinal   environment.    For  example,  N-­‐acetyl-­‐glucosamine  is  a  building  block  of  bacterial   peptidoglycan.    This  compound  may  have  increased  availability  during  periods  of   bacterial  lysis  due  to  antibiotic  activity.    N-­‐acetyl-­‐neuraminic  acid  is  a  building  block   of  mucin,  a  substance  secreted  by  the  intestinal  epithelium.    Reduction  in  bacterial   levels  within  the  gastrointestinal  tract  following  antibiotic  treatment  may  increase   access  to  this  compound.    Additionally,  we  know  that  C.  difficile  is  capable  of   generating  ATP  through  Stickland  reactions,  the  coupled  reduction  and  oxidation  of   amino  acids  (4).    Alanine  and  hydroxy-­‐proline  have  been  demonstrated  to  serve  as  a   Stickland  pair  for  this  reaction.    Mannose  is  a  six-­‐carbon  sugar  that  is  naturally   occurring  and  often  a  component  of  cell-­‐surface  glycoproteins  as  well  as  present  in   various  dietary  sources.      Finally,  as  presented  in  the  introduction,  trehalose  is  a   glucose  disaccharide  that  has  several  lines  of  evidence  for  potential  gut-­‐availability.       Several  C.  difficile  strains  (3  RT  027  and  4  RT  non-­‐027)  were  tested  for  the   ability  to  grow  to  higher  cell  densities  on  these  selected  nutrient  sources;  the  results   are  presented  in  figure  4.1.      The  defined  medium  was  used  for  these  experiments     168   and  compound  concentrations  were  chosen  based  on  the  concentration  range  given   by  Biolog  (5-­‐50mM).    N-­‐acetylglucosamine  (NAG)  and  N-­‐acetylneuraminic  acid   (NANA)  increased  growth  yield  for  all  four  of  the  RT  non-­‐027  strains.    Of  the  three   RT  027  strains,  only  CD3017  increased  in  the  presence  of  NAG.  Interestingly,   CD2015  did  not  have  increased  growth  in  these  experiments  in  the  presence  of  NAG   or  NANA,  while  it  did  have  an  increase  in  the  Phenotype  MicroArray  plates.    This   may  be  an  indication  that  CD2015  is  more  sensitive  to  growth  conditions  for   utilization  of  this  compound,  or  that  the  concentrations  used  in  the  follow-­‐up   growth  cultures  were  lower  than  in  the  Phenotype  MicroArray  plates.    The  amino   acids  alanine  and  hydroxy-­‐proline  significantly  increased  growth  yield  only  for   CD2015.    Mannose  increased  growth  yield  for  all  strains  except  CD3014.    All  strains   tested  had  significant  increases  in  growth  yield  in  the  presence  of  trehalose.     Interestingly,  however,  when  comparing  the  fold-­‐increase  of  growth  in  trehalose-­‐ supplemented  medium  to  that  in  unsupplemented  medium,  the  RT027  strains  had   an  average  of  3-­‐fold  increase  compared  to  1.2-­‐fold  increase  of  the  non-­‐RT  027   strains  (except  for  CD630,  which  had  a  5-­‐fold  increase).  Taken  together,  these  data   illustrate  the  proof  of  concept  that  Phenotype  MicroArray  plates  can  successfully  be   used  to  identify  compounds  beneficial  to  C.  difficile  growth.       169   Maximum OD600 0.6 CD196 (027) CD2015 (027) CD3017 (027) CD630 (012) CD3014 (001) CD4011 (001) CD1007 (053) 0.5 0.4 0.3 0.2 0.1 H N yd Ala AN ro ni A xy ne -P + ro lin e M an no se Tr eh al os e G A N D M -G 0.0   Figure  4.1.  Results  of  growth  yield  experiments  using  compounds  selected   from  Phenotype  MicroArray  plates.  Results  are  reported  as  the  average  of  three   independent  growth  curves  with  associated  standard  deviations.  (DM-­‐G=  defined   medium  without  glucose,  NAG=  N-­‐acetyl-­‐glucosamine,  NANA=  N-­‐acetyl-­‐neuraminic   acid)     Characterization  of  growth  phenotypes  of  C.  difficile  strains  grown  on   trehalose.    With  the  observation  that  RT  027  strains  had  higher  fold-­‐increases  than   RT  non-­‐027  strains  in  the  presence  of  trehalose  in  the  follow-­‐up  studies  presented   above,  we  further  investigated  the  growth  dynamics  of  these  strains  in  the  presence   of  this  sugar.        Four  strains  were  selected  (two  RT  027  and  two  RT  non-­‐027)  and   grown  on  a  range  of  trehalose  concentrations  to  determine  if  the  differences  in   growth  yield  were  concentration-­‐dependent.      The  results  are  presented  in  Figure   4.2.    It  was  observed  that  the  RT  027  strain  cell  densities  began  to  increase  at  lower   levels  of  trehalose  than  the  RT  non-­‐027  strains,  showing  significant  differences  as   low  as  750uM  (p-­‐value<0.05,  student’s  t-­‐test),  while  the  RT  non-­‐027  strains  did  not     170   have  significant  differences  in  cell  densities  even  at  50mM  trehalose,  although  they   were  trending  higher.  The  variation  in  culture  final  OD’s  is  high  at  these  higher   concentrations,  however,  and  so  repetition  of  growth  experiments  would  likely   result  in  significant  differences.    Nonetheless,  it  is  clear  that  RT  027  strains  increase   growth  yield  in  the  presence  of  trehalose  at  much  lower  concentrations.         Maximum OD600 0.3 0 750uM 1.5uM 3mM 6.25mM 12.5mM 25mM 0.2 0.1 50mM 0.0 CD2015 (027) CD3017 (027) CD3014 (001) CD4011 (001)   Figure  4.2.  Maximum  growth  yield  of  C.  difficile  strains  grown  in  the  presence   of  a  range  of  trehalose  concentrations  in  defined  medium.    Ribotype  027  strains   increase  growth  yield  at  lower  trehalose  concentrations.    Results  are  reported  as  the   average  of  three  independent  growth  curves  with  associated  standard  deviations.       Using  a  concentration  where  there  were  significant  differences  between  the   growth  yields  of  RT  027  and  non-­‐027  strains,  the  growth  of  several  more  C.  difficile   strains  of  other  ribotypes  was  assessed.    The  results  are  presented  in  figure  4.3,   showing  growth  yields  of  C.  difficile  strains  grown  in  DM  with  and  without   supplementation  with  10mM  trehalose.      All  five  RT  027  strains  used  had   significantly  higher  maximum  OD’s  in  trehalose-­‐supplemented  DM  (p-­‐value  <0.05,     171   student’s  t-­‐test),  while  all  six  RT  non-­‐027  strains  did  not.    We  also  tested  three  RT   078  strains  (another  epidemic-­‐associated  RT  of  high  prevalence),  and  observed  that   they  also  had  significantly  higher  growth  yields  in  the  presence  of  10mM  trehalose.         Maximum OD600 0.6 0.4 DM 10mM trehalose 0.2 C D 2 C 015 D ( C 19 0 D 6 2 C 401 (0 7) D 5 2 C 400 (0 7) D 1 27 4 C 010 (02 ) D C 63 (0 7) D 0 27 C 301 (0 ) D 4 1 C 204 (0 2) D 8 0 C 100 (0 1) D 7 5 C 101 (0 3) D 4 5 C 201 (0 3) D 2 1 C 101 (0 4) D 5 0 C 101 (0 2) D 8 78 20 ( ) 01 07 (0 8) 78 ) 0.0 Strain (ribotype)     Figure    4.3.  Growth  yield  of  C.  difficile  strains  belonging  to  several  ribotype   groups.    Strains  were  grown  in  defined  medium  (DM)  +/-­‐  10mM  trehalose.      RT027   and  RT078  strains  grow  to  higher  cell  densities  on  10mM  trehalose.    Results  are   reported  as  the  average  of  independent  replicates  with  associated  standard   deviations.     Construction  of  a  treA  mutant  and  analysis  of  the  growth  phenotype.    The   ability  to  utilize  trehalose  as  a  carbon  source  is  dependent  on  a  cell’s  ability  to  break   the  disaccharide  bond,  generating  two  molecules  of  glucose  that  can  then  be   shuttled  into  the  glycolytic  pathway  of  central  metabolism.    In  C.  difficile,  a   trehalose-­‐6-­‐phosphate  hydrolase  enzyme,  TreA,  fulfills  this  function.    Using  a  group-­‐   172   II  intron  based  gene  knockout  system,  a  treA  knockout  mutant  was  constructed  in   the  CD630Δerm  background.      The  treA  mutant  and  CD630  parent  were  then  grown   in  DM  supplemented  with  glucose,  trehalose,  and  the  other  glucose  disaccharide   sugars,  cellobiose  and  maltose  (figure  4.4).    The  growth  experiments  confirmed  that   the  mutant  is  unable  to  metabolize  trehalose;  there  was  no  increase  in  growth  yield   in  DM  supplemented  with  25mM  trehalose  compared  to  unsupplemented  DM,  while   the  WT  strain  had  a  4-­‐fold  increase.    It  is  worth  noting  that  while  CD630  is  not  a  RT   027  strain,  it  does  grow  better  than  other  non-­‐027  RT  strains  on  trehalose,   presumably  due  to  its  lab  adaption  to  rich  media  (BHIS),  which  contains  trehalose   because  of  the  addition  of  yeast  extract.    This  supports  that  treA  encodes  a  protein   required  for  trehalose  metabolism.    Moreover,  knockout  of  treA  does  not  affect   metabolism  of  glucose,  cellobiose,  or  maltose,  since  the  growth  yields  of  the  WT  and   mutant  strains  were  essentially  the  same  in  media  supplemented  with  these   different  sugars.    This  observation  is  evidence  that  the  glusosidase  activity  of  TreA  is   specific  to  trehalose  and  not  other  glucose  disaccharides.    Moreover,  the  phenotype   of  this  mutant  is  specific  to  its  ability  to  utilize  trehalose  and  therefore  can  be  used   for  in  vivo  or  in  vitro  experiments  to  study  the  importance  of  trehalose  metabolism   to  C.  difficile  colonization  and  virulence.             173   Maximum OD600 0.5 0.4 0.3 WT treA KO 0.2 0.1 0.0 cellobiose glucose maltose trehalose DM   Figure  4.4.      Growth  yields  of  CD630  wild-­‐type  (WT)  and  treA  knock-­‐out   mutant  in  defined  medium  (DM)  supplemented  with  glucose  and  glucose   disaccharide  sugars  (25mM).     Alignments  of  treR,  the  repressor  of  trehalase  (treA),  reveal  a  conserved   leucine  residue  that  is  substituted  with  isoleucine  in  RT  027  strains.       The  treA  (locus  tag  CD3091)  gene  is  located  on  the  chromosome  immediately   downstream  of  a  gene  that  codes  for  its  cognate  transcriptional  repressor,  TreR   (locus  tag  CD3090)  (Figure  4.5).         treR  (CD3090) treA  (CD3091)   Figure  4.5.    Trehalose  utilization  genes  located  on  the  C.  difficile  chromosome.     The  trehalase  gene,  treA,  is  located  directly  down  stream  of  treR,  the  trehalase   transcriptional  repressor.           174     We  hypothesized  that  the  ability  of  RT  027  and  078  strains  to  grow  better  on   trehalose  was  due  to  a  genetic  difference  in  this  trehalose-­‐utilization  locus.    Whole   genome  sequencing  of  several  of  the  clinical  isolates  used  in  the  trehalose  growth   studies  above  was  conducted.    By  aligning  the  gene  sequences  pulled  out  of  those   genome  sequence  files,  we  identified  a  conserved  amino  acid  substitution  in  TreR  of   the  RT  027  strains  that  is  not  present  in  the  other  RT  strains  (figure  4.6).    This   substitution  corresponds  to  a  cytidine  to  adenine  mutation  in  the  gene  sequence  at   bp  514,  resulting  in  a  leucine  to  isoleucine  substitution  at  AA172.                 Figure  4.6.  Alignments  of  TreR  amino  acid  sequences  for  several  C.  difficile   strains  of  various  ribotypes.    RT027  strains  have  a  conserved  L172I  amino  acid   substitution  (circled  in  red)  not  present  in  the  non-­‐RT027  strains  or  the  RT078   strain.           In  order  to  investigate  the  conservation  of  this  residue  in  TreR  proteins  of   other  organisms,  we  aligned  the  TreR  amino  acid  sequences  from  10  other  Gram-­‐   175   positive  bacteria  (figure  4.7).      Indeed,  this  leucine  residue  was  conserved  across  all   of  the  organisms  included  in  our  alignments,  suggesting  it  is  has  structural  or   functional  importance.               Figure  4.7.  Alignments  of  TreR  amino  acid  sequences  from  several  Gram-­‐ positive  bacterial  organisms  showing  conservation  of  the  leucine  residue.               The  only  available  crystal  structure  of  a  TreR  protein  homologous  to  that  in   C.  difficile  was  published  by  Rezacove  et  al.  who  studied  the  C-­‐terminal  (effector-­‐ binding)  domain  of  TreR  in  Bacillus  subtilis  (33).    This  conserved  leucine  (AA169)  is   located  in  Helix  H3  of  the  structure  (Figure  4.8).           176   Rezacove  et  al.,  Proteins,  2007     leucine Trehalose-­‐6-­‐P  binding  pocket   Figure  4.8.      Ribbon  diagram  of  the  C-­‐terminal  (effector-­‐binding  domain)  of   TreR  from  Bacillus  subtilis  showing  the  locations  of  the  predicted  trehalose-­‐6-­‐ phosephate  binding  pocket  and  conserved  leucine  residue  (Leu-­‐169).     Structure  was  determined  and  published  by  Rezacova  et  al.  (33).         TreR  functions  as  a  dimer  of  dimers,  and  this  helix  (H3)  was  shown  to  be   important  for  interaction  between  subunits  of  the  two  dimers.    When  trehalose  is   absent,  the  dimers  form  a  tetramer  and  bind  to  two  operator  sequences  on  the   chromosome,  upstream  of  the  trehalose  operon.    These  14  bp  inverted  repeats  are   located  32  bp  apart  within  the  promoter  sequence  of  the  trehalsoe  operon  in  B.   subtilis  (34).    When  trehalose  is  present  in  the  medium,  it  gets  phosphorylated  to   trehalose-­‐6-­‐phoasphate  during  uptake  into  the  cell  by  way  of  a  trehalose-­‐specific   phosphotransferase  transporter  system.    Trehalose-­‐6-­‐phosphate  then  binds  to  TreR,   causing  a  conformational  change  that  dissociates  TreR  from  the  DNA,  allowing   expression  of  treA.    Additionally,  the  location  of  the  leucine  in  the  structure  lies  very     177   close  (just  a  few  amino  acids  away)  from  the  predicted  effector-­‐binding  pocket,   more  specifically,  where  the  phosphoryl  group  of  trehalose-­‐6-­‐phosephate  (the   effector)  is  predicted  to  interact  with  key  amino  acid  residues  (33).    Both  leucine   and  isoleucine  are  hydrophobic  amino  acids  containing  branched,  non-­‐polar  side   chains.    While  the  chemistry  of  these  two  amino  acids  is  similar,  the  slight   differences  in  their  structures  may  allow  for  a  change  in  structure  or  function  of  the   protein.    Since  this  amino  acid  is  highly  conserved,  it  is  likely  that  a  substitution  to   an  amino  acid  with  significantly  different  chemistry  would  result  in  a  structural  or   functional  change  that  could  be  deleterious,  potentially  even  resulting  in  complete   loss  of  function.      Based  on  the  location  of  this  substitution,  we  predict  that  the  RT   027  TreR  could  have  a  change  in  function,  which  allows  increased  induction  of  treA   expression.    This  could  occur  by  destabilization  of  the  TreR  tetramer,  since  AA172  is   located  in  helix  H3,  which  is  important  for  dimer-­‐dimer  interactions.    This  would   allow  for  the  dimers  of  TreR  to  more  readily  dissociate  upon  binding  trehalose-­‐6-­‐ phosphate.    Alternatively,  TreR  could  have  a  higher  affinity  for  trehalose-­‐6-­‐ phosphate,  because  of  AA172’s  close  proximity  to  the  effector-­‐binding  pocket,  which   would  also  allow  for  TreR  to  more  readily  dissociate  from  the  operator  region.     Therefore,  we  hypothesize  that  RT  027  strains  are  able  to  grow  to  higher  cell   densities  on  lower  levels  of  trehalose  due  to  increased  expression  of  treA.         Since  the  RT  078  strains  do  not  have  this  amino  acid  substitution,  the  basis   for  their  increased  growth  on  trehalose  must  be  the  result  of  some  other  genetic   difference.      Through  personal  correspondence  with  Wilco  Knetsch  (lab  of  Dr.  Ed   Kuijper,  Leiden  University  Medical  Center),  they  have  shared  that  they  recently     178   identified  a  genetic  insertion  in  RT  078  strains,  which  contains  genes  annotated  as   trehalose-­‐utilization  genes  (unpublished  data).    These  genes  may  be  the  genetic   basis  for  the  trehalose  growth  phenotype  of  RT  078  strains;  however,  it  is  possible   that  other  genetic  characteristics  are  playing  a  role.        Regardless,  the  observation  of   two  independent  lineages  of  epidemic-­‐associated  C.  difficile  acquiring  the  ability  to   grow  better  on  trehalose  supports  that  this  metabolic  ability  may  play  a  role  in  C.   difficile  colonization  and  disease.           RT  027  strains  have  increased  treA  expression.    In  order  to  test  the  hypothesis   that  RT  027  strains  have  increased  treA  expression,  we  grew  four  RT  027  strains,   and  four  strains  belonging  to  different  RT  groups,  in  DM  supplemented  with  25mM   trehalose  and  compared  the  levels  of  treA  mRNA  present  during  mid-­‐log  phase  of   growth  using  RT  q-­‐PCR.    The  CT  values  of  each  replicate  were  all  normalized  to  an   average  baseline  CT  value  of  replicates  grown  in  medium  without  trehalose.    The   results  are  presented  in  figure  4.9.    The  mean  values  of  the  four  RT  027  strains  are   2599,  3339,  3451,  and  3752.    The  mean  values  of  the  four  RT  non-­‐027  strains  are   392,  780,  1395,  and  603.    The  difference  treA  expression  in  RT  027  strains   compared  to  RT  the  non-­‐027  strains  in  these  conditions  is  significant;  the  p-­‐value   (student’s  t-­‐test)  calculated  from  groups  of  mean  values  from  the  RT  027  and  non-­‐ 027  groups  is  0.00026.    There  is  a  large  amount  of  variability  between  replicates   within  some  strains,  and  this  may  be  due  to  the  concentration  of  trehalose  used  in   these  experiments.    This  concentration  is  potentially  close  to  a  threshold   concentration  where  treA  expression  is  induced,  since  there  is  a  slight  increase  in     179   growth  yield  at  this  concentration  in  the  RT  non-­‐027  strains  shown  in  Figure  4.2.    A   lower  concentration  of  trehalose  (≤10mM)  might  yield  more  consistent  results,   however,  the  lower  cell  densities  of  the  cultures  would  make  obtaining  adequate   amounts  of  RNA  more  challenging.    Regardless,  there  is  still  a  strong  correlation   between  strains  that  have  increased  growth  on  trehalose  and  increased  expression   of  treA.      One  exception  is  the  RT  078  strain,  CD1015,  which  has  significantly   increased  growth  on  10mM  trehalose  yet  I  did  not  observe  increased  treA   expression  in  this  strain.      It  would  be  interesting  to  test  other  RT  078  strains  to   determine  if  they  also  do  not  have  increased  treA  levels.    If  not,  this  might  provide   insight  into  the  genetic  basis  for  their  growth  phenotype.    For  example,  it  might   indicate  that  the  trehalase  enzyme  they  carry  has  increased  catalytic  efficiency  or   affinity  for  trehalose-­‐6-­‐phosphate.    Alternatively,  it  might  provide  evidence  for  the   presence  of  an  additional  trehalase  gene,  which  is  suggested  in  the  unique  insertion   in  these  strains  that  is  discussed  above.                   180   Fold increase in treA expression 10000 1000 C D 20 C 15 D 40 (02 7) 1 C 5 (0 D 40 27 10 ) (0 C D 19 27) 6 C ( D 30 027 ) 14 C (0 D 0 10 15 1) C ( D 10 078 ) 14 (0 C D 63 14) 0 (0 12 ) 100 Strain (ribotype)   Figure  4.9.  Expression  of  treA  in  several  C.  difficile  strains  grown  in  DM+25mM   trehalose  as  determined  by  RT-­‐qPCR.    Plotted  points  represent  the  fold-­‐increase   of  each  replicate,  normalized  to  an  average  baseline  expression  in  medium  without   trehalose.    Replicates  of  each  strain  are  combined  data  from  2  or  3  independent   experiments;  black  bars  represent  the  means.    The  RT  027  strains  (four  on  left  side   of  graph)  expressed  treA  to  higher  levels  under  the  conditions  tested.      The  p-­‐value   (student’s  t-­‐test)  between  groups  of  RT  027  and  RT  non-­‐027  strain  averages  is   0.00026.           A  treA  knockout  mutant  of  C.  difficile  displays  a  decrease  in  colonization  levels   in  a  mouse  model  of  C.  difficile  infection  and  a  decrease  in  competitive  fitness   compared  to  the  wild  type  strain.    In  order  to  investigate  if  the  ability  to  utilize   trehalose  plays  a  role  in  C.  difficile  colonization  in  vivo,  we  infected  groups  of  mice   with  either  the  wild-­‐type  CD630Δerm,  a  treA  knockout  mutant  of  CD630Δerm,  or  a   mixture  of  the  two  strains.    Mice  were  treated  with  an  antibiotic,  cefoperazone,  for   several  days  in  order  to  induce  susceptibility  to  C.  difficile  infection,  then  gavaged     181   with  104  spores  of  the  desired  strain/s.    Fecal  samples  were  collected  daily  and  C.   difficile  was  enumerated  by  either  plating  (wild-­‐type,  mutant,  and  competition   groups)  or  qPCR  (competition  group).        The  CFU/g  feces  as  determined  by  plating   on  C.  difficile  selective  media  of  the  mice  infected  with  either  the  wild-­‐type  or   mutant  strains  is  plotted  is  figure  4.10.      The  fecal  levels  ranged  from  1.2  x  107  to  1.8   x  108  CFU/g  feces  across  all  five  days  for  the  mice  infected  with  wild-­‐type  strain,  and   the  range  for  the  mutant-­‐infected  mice  is  from  1.0  x  107  to  8.6  x  107  CFU/g  feces.       Interestingly,  there  is  a  significant  difference  between  the  CFU/g  feces  in  the  wild-­‐ type  and  mutant  groups  on  days  1  and  2  (p=0.02  and  0.03,  respectively)  and  close  to   significant  difference  on  day  3  (p=0.08),  with  the  mutant  colonizing  the  mice  to   lower  levels  on  those  days  (~2-­‐fold  difference  between  means  on  all  three  days).               182   CFU/g feces 109 wild-type 108 mutant 107 106 1 2 3 4 5 Day post-gavage Figure  4.10.    CFU/g  feces  of  wild-­‐type  and  treA  mutant  C.  difficile  infected  mice.     Two  groups  of  five  mice  were  gavaged  with  spores  of  either  wild-­‐type  CD630Δerm   or  a  treA  knockout  mutant.    Fecal  pellets  were  collected  daily  and  C.  difficile   quanitifed  by  plating  on  C.  difficile  selective  media.    Results  are  plotted  as  the  mean   and  standard  deviation  of  the  data  points  from  each  group  on  the  indicated  days.       *p-­‐value  <0.05         In  the  mice  infected  with  a  mixture  of  wild-­‐type  and  mutant  spores,  a   competitive  index  was  calculated  to  assess  the  advantage  of  having  a  functional  treA   gene.    Competitive  indices  (CI’s)  were  determined  by  dividing  the  wild-­‐type:mutant   ratio  within  individual  mice  at  days  1,  2,  3,  and  5,  and  dividing  by  the  ratio  in  the   gavaged  spore  mixture  (ratio  =  0.29).    Quantitative  PCR  using  primers  specific  to   either  strain  was  used  to  determine  the  strain  ratios.    The  CI’s  are  plotted  in  figure   4.11.    Each  data  point  represents  the  CI  of  the  wild-­‐type  strain  in  an  individual   mouse  on  the  indicated  day;  lines  connect  the  CI’s  within  each  mouse  across  time.    A   CI  of  one  would  indicate  no  change  in  ratio,  while  a  CI  greater  than  1  indicates  an   increase  in  ratio  and  therefore  a  competitive  advantage  of  the  wild-­‐type  strain.     When  tracking  the  CI’s  across  time  in  the  individual  mice,  four  of  the  five  mice  had     183   CI’s  of  >1  on  or  before  day  3.    Mouse  3  had  a  consistent  increase  in  CI  from  days  2  to   5,  indicating  a  clear  competitive  advantage  for  the  wild-­‐type  strain.    Mouse  1  had   CI’s  >1  from  days  2  to  5  as  well,  however,  they  were  decreasing  as  the  experiment   progressed.    Mice  2  and  4  had  CI’s  >1  on  days  2  and  3,  respectively,  however,  they   dropped  below  1  by  day  5.    Mouse  5  CI’s  were  below  1  throughout  the  experiment   with  the  lowest  CI  on  day  5  (0.6).    In  general,  there  was  a  trend  of  decreasing  CI’s   toward  the  end  of  the  experiment.     One  observation  from  the  plating  data  was  that  the  total  number  of  C.  difficile   in  all  mice  had  a  significant  decrease  in  CFU/g  feces  after  day  5  (figure  4.12).      There   was  larger  drop  (up  to  over  2  logs)  in  levels  of  C.  difficile  in  the  wild-­‐type  and   competition  mouse  groups,  while  the  drop  in  levels  in  the  mutant-­‐infected  mouse   group  was  lower,  yet  still  significant  (up  to  13-­‐fold  decrease).    This  observation   indicates  that  the  intestinal  microbiota  of  the  mice  are  likely  recovering  from  the   antibiotic-­‐induced  perturbation  and  resistance  to  C.  difficile  is  being  restored,   therefore  resulting  in  C.  difficile  washout.    Changes  in  the  intestinal  environment,   including  nutrient  availability,  are  likely  in  this  situation  and  would  affect  the   outcome  of  these  experiments,  particularly  the  competition  dynamics  of  the  wild-­‐ type  and  mutant  strains.    Therefore,  it  is  reasonable  to  draw  conclusions  from  our   data  based  on  the  earlier  time  points  in  the  experiment.         In  summary,  there  were  significant  differences  in  the  wild-­‐type  and  mutant   levels  of  C.  difficile  in  the  individually-­‐infected  mice  on  days  1  and  2.    In  addition,  CI’s   in  the  competition  mice  within  the  first  3  days  of  infection  indicated  a  competitive     184   advantage  of  the  wild-­‐type  strain.      Combined,  these  data  support  the  hypothesis   that  trehalose  plays  a  role  in  colonization  and  competitive  fitness  in  vivo.           In  consideration  of  the  variability  in  wild-­‐type  CI’s  among  mice  in  the   competition  group,  and  the  washout  of  total  C.  difficile  levels  in  all  mouse  groups   beyond  day  5  of  the  experiment,  the  data  are  not  as  robust  as  desired  and  warrant  a   repeat  of  the  experiment.    Nonetheless,  a  recent  study  published  by  Ng  et  al.   reported  similar  differences  in  colonization  levels  of  wild-­‐type  C.  difficile  and  a   mutant  deficient  in  sialic  acid  consumption  in  a  mouse  model,  with  the  mutant   colonizing  at  levels  2.3-­‐fold  lower  than  the  wild-­‐type  (35).      Unlike  sialic  acid,  which   is  a  component  of  mucin,  trehalose  availability  in  the  human  gastrointestinal  tract  is   at  least  partially  dependent  on  diet  composition.    Therefore,  administration  of   trehalose  to  mice  during  colonization  and  competition  studies  is  reasonable  and   potentially  more  closely  replicate  the  nutritional  availability  of  trehalose  in  humans.       Future  mouse  experiments  will  include  groups  of  mice  fed  trehalose  based  on  the   estimated  average  daily  consumption  of  trehalose  reported  in  the  literature.    We   expect  the  data  from  these  mice  to  reflect  an  even  stronger  support  for  the   importance  of  the  ability  of  C.  difficile  to  metabolize  trehalose  in  vivo.           185   Competitive Index 10 mouse 1 mouse 2 mouse 3 mouse 4 mouse 5 1 0.1 1 2 3 5 Day post-gavage   Figure  4.11.    Competitive  indices  of  wild-­‐type  CD630Δerm  when  competed   against  the  treA  knockout  mutant  in  a  conventional  mouse  model  of  C.  diffiicile   infection.    Mice  were  gavaged  with  a  mixture  of  wild-­‐type  and  mutant  spores,  and   fecal  pellets  were  collected  daily.    Competitive  indices  were  determined  by  qPCR   using  primers  specific  to  either  strain  and  calculated  by  dividing  the  wild-­‐ type:mutant  ratio  at  the  indicated  day  by  the  ratio  of  the  spore  mix.         109 CFU/g feces 108 wild-type mutant competiiton 107 106 105 9 7 6 5 4 3 2 1 104 Day post-gavage   Figure  4.12.    Total  CFU/g  feces  of  C.  difficile  in  each  group  of  mice.  Three  groups   of  five  mice  were  gavaged  with  spores  of  either  wild-­‐type  CD630Δerm,  a  treA   knockout  mutant,  or  a  mixture  of  both  strains.    Fecal  pellets  were  collected  daily  and   C.  difficile  quanitifed  by  plating  on  C.  difficile  selective  media.    Results  are  plotted  as   the  mean  and  standard  deviation  of  the  data  points  from  each  group  on  the   indicated  days.     186     Summary  and  Future  Directions   The  primary  focus  of  the  work  in  this  chapter  was  to  investigate  carbon  sources  of  C.   difficile,  with  an  emphasis  on  ones  that  RT  027  strains  are  able  to  differentially   utilize,  compared  to  other  ribotypes.      Using  Biolog  Phenotype  Microarray  plates,   several  compounds  that  increased  growth  yield  of  C.  difficile  were  identified.       Ribotype  027  strains  were  shown  to  grow  to  higher  cell  densities  on  one  of  these   compounds,  trehalose,  as  well  as  strains  of  another  epidemic  ribotype,  RT  078.       Genetic  analysis  identified  an  amino  acid  substitution  in  treR,  the  repressor  of  treA   (trehalase),  which  is  conserved  among  ribotype  027  clinical  isolates.    Moreover,   increases  in  treA  expression  in  ribotype  027  strains,  presumably  due  to  this   mutation  in  treR,  have  been  observed  by  RT-­‐qPCR.     Using  a  treA  knockout  mutant  of  C.  difficile,  we  tested  the  importance  of   ability  to  metabolize  trehalose  in  a  mouse  model  of  C.  difficile  infection.    The  results   of  this  preliminary  mouse  experiment  suggest  that  trehalose  utilization  is  important   for  reaching  maximum  levels  of  colonization  in  vivo  and  may  also  increase   competitive  fitness.         The  treA  mutant  generated  in  this  study  represents  the  first  experimental   proof  of  the  function  of  treA,  the  gene  annotated  to  encode  a  trehalose-­‐6-­‐phosphate   hydrolase  in  C.  difficile.      Not  only  was  it  shown  that  the  mutant  is  unable  to  grow  on   trehalose,  but  that  its  ability  to  metabolize  other  glucose  disaccharide  sugars  was   unaffected.           Currently,  the  phenotypic  effects  of  the  leucine  to  isoleucine  amino  acid   substitution  in  TreR  of  RT  027  strains  is  being  investigated  using  a  different  model     187   organism,  Lactococcus  lactis.    Genetic  tools  in  C.  difficile  are  relatively  limited,   however,  the  Britton  lab  has  recently  developed  and  optimized  a  recombineering   system  for  making  targeted  mutations  in  lactic  acid  bacteria.      The  TreR  of  L.  lactis   also  contains  the  highly  conserved  leucine  residue,  as  shown  in  figure  4.7.      Using   recombineering,  I  have  made  a  treR  mutant  of  L.  lactis  NZ9000  that  encodes  the   same  leucine  to  isoleucine  amino  acid  substitution  as  that  in  the  TreR  of  C.  difficile   RT  027  strains.    Currently,  growth  and  expression  experiments  are  being  conducted   to  see  if  the  amino  acid  substitution  displays  a  phenotype.      If  this  is  demonstrated,  it   will  provide  further  support  that  this  genetic  change  in  the  RT  027  strains   contributes  to  the  trehalose  growth  phenotype.      Moreover,  additional  experiments   are  planned  to  investigate  if  there  are  differences  in  the  ability  of  the  RT  027  TreR   and  the  RT  non-­‐027  TreR  to  bind  the  treR  or  treA  promoter  regions  using  enzyme   mobility  shift  assays.    We  hypothesize  that  the  TreR  of  RT  027  strains  will  dissociate   from  DNA  when  lower  levels  of  trehalose-­‐6-­‐phosphate  are  added  compared  to  the   TreR  of  RT  non-­‐027  strains.      This  would  also  provide  support  for  the  functional   effect  of  the  identified  amino  acid  substitution.     In  conclusion,  the  work  in  this  chapter  suggests  that  trehalose  is  one  of  the   nutrients  utilized  by  C.  difficile  in  vivo  and  that  epidemic-­‐associated  ribotype  strains   are  able  to  utilize  trehalose  more  efficiently.      This  work  not  only  contributes  to   understanding  the  nutritional  factors  involved  in  C.  diffcile  gut  colonization,  but  also   to  understanding  the  physiology  of  epidemic  strains.      Although  a  potential  genetic   basis  for  the  trehalose  advantage  of  RT  078  strains  was  not  identified,  the   observation  that  this  second  epidemic-­‐associated  and  prevalent  ribotype  group     188   grows  better  on  trehalose  is  intriguing.    It  further  supports  that  the  ability  to  utilize   trehalose  is  important  for  C.  difficile  colonization  and  might  indirectly  contribute  to   virulence.         There  are  several  potential  applications  of  this  insight.      For  example,   including  a  trehalose-­‐consuming  organism  in  a  prophylactic  probiotic  treatment   during  antibiotic  treatment  may  help  to  reduce  development  of  C.  difficile  infection.     Additionally,  altering  the  diet  of  patients  at  risk  for  C.  difficile  infection,  by  reducing   consumption  of  trehalose,  may  also  help  to  reduce  disease  development.         Ultimately,  the  more  we  understand  about  all  aspects  of  this  complicated  disease,   the  better  we  will  be  able  to  treat  and  prevent  it.       Acknowledgments     There  are  several  people  that  contributed  to  the  work  in  this  chapter  that  I  would   like  to  thank.    Dr.  Linc  Sonnenshein,  Dr.  Joe  Sorg,  Dr.  Craig  Ellermeier,  and  Dr.   Laruent  Bouillaut  kindly  provided  C.  difficile  strains,  protocols,  and  valuable   experimental  advice.      Sara  McNamara  (Michigan  Department  of  Community  Health)   provided  us  with  clinical  isolate  strains  of  C.  difficile.      Dr.  Seth  Walk  for  ribotyping   many  of  our  strains.    Finally,  Dr.  Mark  Koenigsknecht  (and  Dr.  Vince  Young)  for   conducting  the  conventional  mouse  experiments.                 189   APPENDIX     190   Appendix   Table  S4.1.  Compounds  that  conferred  at  least  a  1.5-­‐fold  growth  yield  advantage   (relative  to  unsupplemented  medium  control)  for  either  one  or  both  strains  in  the   Biolog  PM3-­‐8.    Defined  medium  was  used  for  all  plates.*       Well   Compound   CD630   CD2015   PM3:   A6   biuret   -­‐-­‐   +-­‐     A7   L-­‐alanine*   -­‐-­‐   +-­‐     A8   L-­‐Arginine   -­‐-­‐   +-­‐     A11   L-­‐cysteine   -­‐-­‐   +-­‐     B5   L-­‐leucine   ++   ++     B10   L-­‐serine   +-­‐   +-­‐     B11   L-­‐threonine   +-­‐   ++     B12   L-­‐tryptophan   -­‐-­‐   ++     C12   L-­‐ornithine   +-­‐   ++     D9   ethanolamine   +-­‐   +-­‐     D12   agmatine   ++   +-­‐     E8   D-­‐glucosamine   ++   +-­‐     E9   D-­‐galactosamine   +-­‐   -­‐-­‐     E11   n-­‐acetyl-­‐glucosamine   +-­‐   +-­‐     F6   Guanine   -­‐-­‐   +-­‐     F8   Thymine   +-­‐   +-­‐     F12   Inosine   +-­‐   +-­‐     G2   xanthosine   -­‐-­‐   +-­‐     G8   γ-­‐amino-­‐n-­‐butyric  acid   -­‐-­‐   +-­‐     G10   D,L-­‐α-­‐Amino-­‐Caprylic  Acid   +-­‐   +-­‐     G12   α-­‐Amino-­‐N-­‐Valeric  Acid   +-­‐   +-­‐     H4   alanine-­‐glycine   -­‐-­‐   +-­‐     H6   alanine-­‐leucine   -­‐-­‐   +-­‐     H7   alanine-­‐threonine   -­‐-­‐   ++     H9   Glycine-­‐Glutamate   -­‐-­‐   +-­‐     H11   Glycine-­‐methionine   -­‐-­‐   +-­‐     H12   Methionine-­‐Alanine   -­‐-­‐   ++   PM4:   F4   tetrathionate   -­‐-­‐   +-­‐     F10   L-­‐cysteic  acid   -­‐-­‐   +-­‐     G7   L-­‐methionine   -­‐-­‐   +-­‐     G8   D-­‐methionine   -­‐-­‐   +-­‐     H4   D,  L-­‐  lipoamide   -­‐-­‐   +-­‐   PM5:   A5   L-­‐asparagine   +-­‐   -­‐-­‐     B1   L-­‐glutamine   +-­‐   -­‐-­‐     B8   L-­‐phenylalanine   -­‐-­‐   +-­‐     B11   guanosine   +-­‐   -­‐-­‐     C12   deoxy-­‐inosine   +-­‐   +-­‐     F12   thymidine   +-­‐   -­‐-­‐     191   Table  S4.1  (cont’d)               PM6:                                 PM7:                                     PM8:   G1   oxaloacetic  acid   G3   cyano-­‐cobalamine   G4   ρ-­‐amino-­‐benzoic  acid   G5   folic  acid   H7   D,  L-­‐  carnitine   H8   choline   B1   alanine-­‐serine   B2   alanine-­‐threonine   B6   arginine-­‐arginine   B8   arginine-­‐glycine   B12   arginine-­‐lysine   D10   glutamate-­‐serine   D12   glutamate-­‐tyrosine   E4   glycine-­‐cystein   G12   lsoleucine-­‐serine   H1   isoleucine-­‐tryptophan   H4   leucine-­‐alanine   H6   leucine-­‐asparagine   H9   leucine-­‐isoleucine   H10   leucine-­‐leucine   H11   leucine-­‐methionine   H12   leucine-­‐phenylalanine   B3   lysine-­‐threonine   B10   methinonine-­‐glutamine   B12   methionine-­‐histidine   C2   methionine-­‐leucine   C3   methionine-­‐lysine   D5   proline-­‐asparagine   E1   serine-­‐alanine   E8   serine-­‐serine   E12   threonine-­‐arginine   F1   threonine-­‐glutamine   F2   threonine-­‐glycine   F3   threonine-­‐leucine   F4   threonine-­‐methionine   F7   trpyptophan-­‐arginine   G10   tyrosine-­‐leucine   H5   valine-­‐asparagine   H9   valine-­‐leucine   H12   γ-­‐glutamate-­‐glycine   E5   serine-­‐methionine   +-­‐   +-­‐   +-­‐   +-­‐   +-­‐   +-­‐   -­‐-­‐   +-­‐   +-­‐   +-­‐   +-­‐   -­‐-­‐   -­‐-­‐   +-­‐   +-­‐   -­‐-­‐   +-­‐   -­‐-­‐   -­‐-­‐   +-­‐   +-­‐   +-­‐   +   -­‐   -­‐   -­‐   +   +   +   +   +   +   +   -­‐   -­‐   +   +   +   +   +   +-­‐   +-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   +-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   -­‐-­‐   +-­‐   -­‐-­‐   +-­‐   +-­‐   +-­‐   +-­‐   +-­‐   -­‐   +   +   +   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   +   +   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐-­‐     *Each  +/-­‐  symbol  represents  results  of  an  individual  experiment  where  growth  was   (+)  or  was  not  (-­‐)  increased  by  at  least  1.5-­‐fold  that  of  the  control.         192   REFERENCES     193   REFERENCES     1.   Yassin  SF,  Young-­‐Fadok  TM,  Zein  NN,  Pardi  DS.  2001.  Clostridium  difficile-­‐ associated  diarrhea  and  colitis.  Mayo  Clin.  Proc.  76:725–730.   2.   Bartlett  JG,  Chang  TW,  Gurwith  M,  Gorbach  SL,  Onderdonk  AB.  1978.   Antibiotic-­‐associated  pseudomembranous  colitis  due  to  toxin-­‐producing   clostridia.  N.  Engl.  J.  Med.  298:531–534.   3.   Britton  RA,  Young  VB.  2014.  Role  of  the  intestinal  microbiota  in  resistance  to   colonization  by  Clostridium  difficile.  Gastroenterology  146:1547–1553.   4.   Jackson  S,  Calos  M,  Myers  A,  Self  WT.  2006.  Analysis  of  Proline  Reduction  in   the  Nosocomial  Pathogen  Clostridium  difficile.  Journal  of  Bacteriology   188:8487–8495.   5.   Nakamura  S,  Nakashio  S,  Yamakawa  K,  Tanabe  N,  Nishida  S.  2013.   Carbohydrate  Fermentation  by  Clostridium  difficile.  Microbiol.  Immunol.   26:107–111.   6.   Wilson  KH,  Perini  F.  1988.  Role  of  competition  for  nutrients  in  suppression   of  Clostridium  difficile  by  the  colonic  microflora.  Infection  and  Immunity   56:2610–2614.   7.   Wiström  J,  Norrby  SR,  Myhre  EB,  Eriksson  S,  Granström  G,  Lagergren  L,   Englund  G,  Nord  CE,  Svenungsson  B.  2001.  Frequency  of  antibiotic-­‐ associated  diarrhoea  in  2462  antibiotic-­‐treated  hospitalized  patients:  a   prospective  study.  J.  Antimicrob.  Chemother.  47:43–50.   8.   Loo  VG,  Poirier  L,  Miller  MA,  Oughton  M,  Libman  MD,  Michaud  S,   Bourgault  A-­‐M,  Nguyen  T,  Frenette  C,  Kelly  M,  Vibien  A,  Brassard  P,  Fenn   S,  Dewar  K,  Hudson  TJ,  Horn  R,  René  P,  Monczak  Y,  Dascal  A.  2005.  A   predominantly  clonal  multi-­‐institutional  outbreak  of  Clostridium  difficile-­‐ associated  diarrhea  with  high  morbidity  and  mortality.  N.  Engl.  J.  Med.   353:2442–2449.   9.   Ricciardi  R,  Rothenberger  DA,  Madoff  RD,  Baxter  NN.  2007.  Increasing   Prevalence  and  Severity  of  Clostridium  difficile  Colitis  in  Hospitalized  Patients   in  the  United  States.  Arch  Surg  142:624–631.   10.   He  M,  Miyajima  F,  Roberts  P,  Ellison  L,  Pickard  DJ,  Martin  MJ,  Connor  TR,   Harris  SR,  Fairley  D,  Bamford  KB,  D'Arc  S,  Brazier  J,  Brown  D,  Coia  JE,   Douce  G,  Gerding  D,  Kim  HJ,  Koh  TH,  Kato  H,  Senoh  M,  Louie  T,  Michell  S,   Butt  E,  Peacock  SJ,  Brown  NM,  Riley  T,  Songer  G,  Wilcox  M,  Pirmohamed   M,  Kuijper  E,  Hawkey  P,  Wren  BW,  Dougan  G,  Parkhill  J,  Lawley  TD.  2013.     194   Emergence  and  global  spread  of  epidemic  healthcare-­‐associated  Clostridium   difficile.  Nat  Genet  45:109–113.   11.   Elbein  AD.  2003.  New  insights  on  trehalose:  a  multifunctional  molecule.   Glycobiology  13:17R–27.   12.   Arg  x000FC  elles  JC.  2000.  Physiological  roles  of  trehalose  in  bacteria  and   yeasts:  a  comparative  analysis.  Archives  of  Microbiology  174:217–224.   13.   Richards  AB,  Krakowka  S,  Dexter  LB,  Schmid  H,  Wolterbeek  APM,   Waalkens-­‐Berendsen  DH,  Shigoyuki  A,  Kurimoto  M.  2002.  Trehalose:  a   review  of  properties,  history  of  use  and  human  tolerance,  and  results  of   multiple  safety  studies.  Food  Chem.  Toxicol.  40:871–898.   14.   Benaroudj  N.  2001.  Trehalose  Accumulation  during  Cellular  Stress  Protects   Cells  and  Cellular  Proteins  from  Damage  by  Oxygen  Radicals.  Journal  of   Biological  Chemistry  276:24261–24267.   15.   Kandror  O,  DeLeon  A,  Goldberg  AL.  2002.  Trehalose  synthesis  is  induced   upon  exposure  of  Escherichia  coli  to  cold  and  is  essential  for  viability  at  low   temperatures.  Proc.  Natl.  Acad.  Sci.  U.S.A.  99:9727–9732.   16.   Strøm  AR,  Kaasen  I.  1993.  Trehalose  metabolism  in  Escherichia  coli:  stress   protection  and  stress  regulation  of  gene  expression.  Molecular  Microbiology   8:205–210.   17.   Iturriaga  G,  Suárez  R,  Nova-­‐Franco  B.  2009.  Trehalose  Metabolism:  From   Osmoprotection  to  Signaling.  IJMS  10:3793–3810.   18.   Lebenthal  A,  Lebenthal  E.  1999.  The  ontogeny  of  the  small  intestinal   epithelium.  JPEN  J  Parenter  Enteral  Nutr  23:S3–6.   19.   Arola  H,  Koivula  T,  Karvonen  AL,  Jokela  H,  Ahola  T,  Isokoski  M.  1999.  Low   trehalase  activity  is  associated  with  abdominal  symptoms  caused  by  edible   mushrooms.  Scand  J  Gastroenterol  34:898–903.   20.   Murray  IA,  Coupland  K,  Smith  JA,  Ansell  ID,  Long  RG.  2000.  Intestinal   trehalase  activity  in  a  UK  population:  establishing  a  normal  range  and  the   effect  of  disease.  Br.  J.  Nutr.  83:241–245.   21.   Janvilisri  T,  Scaria  J,  Teng  C-­‐H,  McDonough  SP,  Gleed  RD,  Fubini  SL,  Zhang   S,  Akey  B,  Chang  Y-­‐F.  2012.  Temporal  differential  proteomes  of  Clostridium   difficile  in  the  pig  ileal-­‐ligated  loop  model.  PLoS  ONE  7:e45608.   22.   Staib  L,  Fuchs  TM.  2014.  From  food  to  cell:  nutrient  exploitation  strategies  of   enteropathogens.  Microbiology.  160:1020-­‐1039.     195   23.   Martindale  J,  Stroud  D,  Moxon  ER,  Tang  CM.  2000.  Genetic  analysis  of   Escherichia  coli  K1  gastrointestinal  colonization.  Molecular  Microbiology   37:1293–1305.   24.   Antunes  A,  Camiade  E,  Monot  M,  Courtois  E,  Barbut  F,  Sernova  NV,   Rodionov  DA,  Martin-­‐Verstraete  I,  Dupuy  B.  2012.  Global  transcriptional   control  by  glucose  and  carbon  regulator  CcpA  in  Clostridium  difficile.  Nucleic   Acids  Research  40:10701–10718.   25.   KARASAWA  T,  Ikoma  S,  Yamakawa  K,  Nakamura  S.  1995.  A  defined  growth   medium  for  Clostridium  difficile.  Microbiology  (Reading,  Engl.)  141:371–375.   26.   Wilson  KH,  Kennedy  MJ,  Fekety  FR.  1982.  Use  of  sodium  taurocholate  to   enhance  spore  recovery  on  a  medium  selective  for  Clostridium  difficile.   Journal  of  Clinical  Microbiology  15:443–446.   27.   Sorg  JA,  Dineen  SS.  2005.  Laboratory  Maintenance  of  Clostridium  difficile.   John  Wiley  &  Sons,  Inc.,  Hoboken,  NJ,  USA.   28.   Pfaffl  MW.  2001.  A  new  mathematical  model  for  relative  quantification  in   real-­‐time  RT-­‐PCR.  Nucleic  Acids  Research  29:e45.   29.   Bouillaut  L,  McBride  SM,  Sorg  JA.  2011.  Genetic  manipulation  of  Clostridium   difficile.  Curr  Protoc  Microbiol  Chapter  9:Unit  9A.2.   30.   Bouillaut  L,  Self  WT,  Sonenshein  AL.  2013.  Proline-­‐Dependent  Regulation  of   Clostridium  difficile  Stickland  Metabolism.  Journal  of  Bacteriology  195:844– 854.   31.   Theriot  CM,  Koumpouras  CC,  Carlson  PE,  Bergin  II,  Aronoff  DM,  Young   VB.  2011.  Cefoperazone-­‐treated  mice  as  an  experimental  platform  to  assess   differential  virulence  of  Clostridium  difficile  strains.  gutmicrobes  2:326–334.   32.   Antonopoulos  DA,  Huse  SM,  Morrison  HG,  Schmidt  TM,  Sogin  ML,  Young   VB.  2009.  Reproducible  Community  Dynamics  of  the  Gastrointestinal   Microbiota  following  Antibiotic  Perturbation.  Infection  and  Immunity   77:2367–2375.   33.   Rezácová  P,  Krejciríková  V,  Borek  D,  Moy  SF,  Joachimiak  A,  Otwinowski   Z.  2007.  The  crystal  structure  of  the  effector-­‐binding  domain  of  the  trehalose   repressor  TreR  from  Bacillus  subtilis  168  reveals  a  unique  quarternary   assembly.  Proteins  69:679–682.   34.   Bürklen  L,  Schöck  F,  Dahl  MK.  1998.  Molecular  analysis  of  the  interaction   between  the  Bacillus  subtilis  trehalose  repressor  TreR  and  the  tre  operator.   Mol.  Gen.  Genet.  260:48–55.     196   35.   Ng  KM,  Ferreyra  JA,  Higginbottom  SK,  Lynch  JB,  Kashyap  PC,  Gopinath  S,   Naidu  N,  Choudhury  B,  Weimer  BC,  Monack  DM,  Sonnenburg  JL.  2013.   Microbiota-­‐liberated  host  sugars  facilitate  post-­‐antibiotic  expansion  of  enteric   pathogens.  Nature  502:96–99.                                               197   CHAPTER  5     Discussion  and  Conclusions     Discussion   The  intestinal  microbiota  plays  a  fundamental  role  in  preventing  disease  caused  by   C.  difficile,  illustrated  by  the  fact  that  disease  generally  only  occurs  after  antibiotic   treatment.    However,  these  interactions  are  inherently  complex  due  to  the  variation   in  microbiota  across  individuals,  diversity  among  infecting  strains,  and  underlying   complexities  of  the  intestinal  environment.    Therefore,  much  work  is  still  needed  to   understand  all  of  the  intricacies  related  to  the  development  of  CDI.      In  addition,   there  is  a  lack  of  understanding  about  why  recently  emerged  epidemic  strains  of  C.   difficile  have  spread  globally  and  become  prevalent  in  such  a  short  time  frame.    The   work  presented  in  this  thesis  aims  to  address  some  of  these  questions.    In  chapter   two,  we  developed  a  novel  gut  microbiota  mini-­‐bioreactor  system  in  which  we  can   establish  continuously  cultured  complex  fecal  communities,  and  adapted  this   system  as  an  in  vitro  C.  difficile  infection  model  in  chapter  3.    We  then  investigated   the  competitive  dynamics  of  epidemic  and  non-­‐epidemic  C.  difficile  strains  in  the   presence  of  complex  communities  in  both  the  bioreactors  and  a  mouse  infection   model,  showing  that  these  newly  emerged  epidemic  strains  have  a  competitive   advantage.      A  potential  physiological  basis  for  this  competitive  advantage  is   identified  in  chapter  4,  where  I  demonstrate  that  epidemic  strains  grow  better  on     198   trehalose,  and  that  this  ability  may  be  conferred  by  a  single  amino  acid  substitution   in  a  regulatory  gene  involved  in  metabolism  of  this  sugar.         This  work  contributes  to  the  field  of  C.  difficile  in  three  ways.    First,  we  have   developed  a  novel  C.  difficile  infection  model  that  could  be  used  to  study  many   different  aspects  of  C.  difficile  physiology  and  interactions  with  intestinal  microbiota.     These  include  but  certainly  aren’t  limited  to  vegetative  growth,  sporulation  and   germination  dynamics,  gene  expression  including  toxin  production,  and  the  effects   of  different  community  assemblages  on  these  processes.    Second,  the  work  in   chapter  4  broadens  our  understanding  of  C.  difficile  metabolism  and  the  nutrients   that  potentially  play  a  role  in  intestinal  colonization.      Lastly,  identification  of  the   trehalose  growth  advantage  and  treR  mutation  in  epidemic  strains  provides  insight   into  physiological  attributes  that  potentially  explain  not  only  why  these  strains  are   so  prevalent  and  cause  more  disease,  but  also  insight  into  the  evolution  of  this   unique  pathogen.       Since  competitive  interactions  between  the  microbiota  and  C.  difficile  are  so   integral  to  disease  development,  evolutionary  adaptations  affecting  nutrient   competition  are  likely  contributing  to  the  evolution  of  this  organism.    In  the  case  of   RT  027  strains,  the  ability  to  grow  better  on  trehalose  may  have  contributed  to  its   recent  emergence;  however,  it  is  likely  that  there  are  other  contributing  factors.     Genetic  mutations  affecting  nutrient  utilization  could  provide  a  fitness  advantage,   resulting  in  several  outcomes.    Firstly,  a  mutation  might  allow  for  more  efficient   growth  on  a  particular  nutrient  by  affecting  either  nutrient  uptake  or  metabolism,   such  as  I  have  demonstrated  here  for  trehalose  utilization.    In  this  example,  the  new     199   strain  is  more  fit  than  the  other  C.  difficile  strains,  yet  still  less  fit  than  the  competing   member/s  of  the  microbiota.      The  competitive  dynamics  observed  in  chapter  3   exemplify  this  scenario  since  the  colonization  levels  and  invasion  of  individual   strains  in  the  in  vitro  and  in  vivo  models  were  similar.      Alternatively,  there  may  be   mutations  that  allow  the  new  strain  to  more  readily  invade  the  intestinal   environment,  not  only  outcompeting  the  other  C.  difficile  strains  but  also  members   of  the  microbiota  that  previously  competed  for  a  similar  niche.        In  this  situation,  the   evolved  strain  is  more  fit  than  the  other  C.  difficile  strains  and  also  the  competing   microbiota  members,  therefore  affecting  the  background  community  structure.    In   the  case  of  epidemic  C.  difficile,  some  evidence  of  this  may  be  demonstrated  by  the   observation  that  mice  infected  with  epidemic  (RT  027)  strains  had  persistent   dysbiosis  of  the  intestinal  microbiota,  different  from  the  non-­‐epidemic  strain   infected  mice  (1).    While  the  authors  speculate  that  dysbiosis  is  due  to  the  epidemic   strain’s  impact  on  the  inflammatory  response  of  the  host  which  in  turn  affects  the   microbiota,  it  is  possible  that  these  strains  directly  induce  changes  to  the  microbiota   through  competition.    Even  though  it  does  not  appear  that  this  is  occurring  in  our   humanized  mouse  infection  model,  it  would  be  interesting  to  look  more  closely  at   the  communities  of  epidemic  and  non-­‐epidemic  C.  difficile  infected  mice  and  see  if   they  are  also  different.    In  a  third  scenario,  the  new  strain  could  acquire  mutations   that  allow  it  to  fill  a  new  intestinal  niche,  for  example,  by  being  able  to  metabolize  a   carbon  source  not  utilized  by  other  C.  difficile  strains.    In  this  scenario,  it  would  be   possible  for  both  strains  to  co-­‐colonize  since  they  would  no  longer  be  competing  for   the  same  niche.      In  addition,  this  could  affect  the  background  community  as     200   described  in  the  second  example  above,  as  the  new  strain  could  now  be  out-­‐ competing  different  microbiota  members  for  this  other  nutrient.    The  Biolog   experiments  reported  in  chapter  4  identified  several  compounds  whose  utilization   may  be  unique  to  RT  027  strains,  however,  much  more  work  would  need  to  be  done   to  support  these  findings  by  screening  additional  strains  and  growth  conditions.           Several  comparative  genomic  analysis  studies  have  been  conducted  in  an   effort  to  understand  C.  difficile  strain  evolution  and  also  identify  genetic  factors  that   potentially  contribute  to  the  epidemic  phenotype  of  newly  emerged  strains  (2-­‐6).       Stabler  et  al.  used  whole  genome  sequence  analysis  of  three  C.  difficile  strains;  a   historic  non-­‐epidemic  RT  012  isolate  (CD630),  and  historic  non-­‐epidemic  RT  027   isolate  (CD196),  and  a  recent  epidemic  RT  027  isolate  (R20291)  (2).    They  identified   234  genes  unique  to  the  RT  027  strains,  many  of  which  are  associated  with  motility,   antibiotic  resistance,  and  toxicity,  and  an  additional  5  genetic  regions  unique  to  just   the  recent  RT  027  isolate.      While  the  impacts  of  some  of  these  traits  on  virulence  or   colonization  have  been  investigated,  such  as  motility,  for  the  most  part  most  have   not.    Moreover,  inclusion  of  recent  clinical  isolates  of  other  RT’s  would  have  been   beneficial,  as  some  of  these  genes  may  not  be  unique  to  just  RT  027  strains.       Knetcsh  et  al.  reported  several  genes  linked  to  epidemic  lineages  of  C.  difficile,   which  may  have  physiological  implications  (7).      These  include  an  antibiotic   synthesis  gene  set  in  RT  078  strains,  and  an  insertion  in  RT  027  strains  containing   genes  involved  in  generation  of  thymidine.      We  also  observed  this  genetic  insertion   in  RT  027  strains,  as  reported  in  chapter  3.    Their  analysis,  however,  showed  that   these  genetic  elements  are  not  unique  to  the  RT  078  and  027  strains,  but  are  found     201   in  other  closely  related  ribotype  strains.    Thus,  these  might  not  play  a  significant   role  in  their  epidemic  phenotype,  although  it  would  be  interesting  to  test  this   hypothesis.                   Fluoroquinolone  resistance  is  implicated  to  be  an  important  factor  in  the   emergence  of  RT  027  strains,  as  it  was  shown  to  have  independently  evolved  in  two   separate  clades  of  post-­‐epidemic  RT  027  isolates  (6).    In  the  same  study,  comparison   of  pre-­‐  and  post-­‐epidemic  RT  027  isolates  identified  several  SNPs  unique  to  the   post-­‐epidemic  strains,  none  of  which  suggested  any  obvious  phenotypic  function   (6).      This  study  only  focused  on  genetic  comparisons  of  strains  within  the  RT  027   clade,  and  so  would  not  be  able  to  identify  genetic  elements  novel  to  the  RT  027   lineage  as  a  whole,  which  may  also  be  important.    Again,  comparison  of  several   recent  clinical  isolates  of  different  RT  groups  with  a  focus  on  identifying  genes  or   SNPs  unique  to  just  RT  027  or  other  epidemic  RT’s  is  warranted.       Many  challenges  exist  when  interpreting  the  results  of  these  genomic   comparison  studies.    Many  identified  genetic  elements,  which  are  conserved  among   a  specific  strain  set,  are  hypothetical  proteins  or  otherwise  functionally   uncharacterized.    Moreover,  our  understanding  of  the  functions  of  specific  genes,   mutations  within  these  genes,  or  regulatory  networks  as  whole  is  largely  not   sufficient  to  predict  the  phenotypic  effects  of  these  mutations,  especially  for  C.   difficile.    Ultimately,  much  work  will  need  to  be  done  to  directly  test  if  any  of  these   genes  or  mutations  play  a  role  in  C.  difficile  colonization  or  virulence.                     202   Conclusions   We  have  only  begun  to  scratch  the  surface  when  it  comes  to  understanding  the   complexities  of  C.  difficile  disease.      However,  recent  increases  in  the  incidence  and   severity  of  CDI  have  fueled  the  need  to  address  this  issue  in  order  to  develop  better   ways  of  preventing  and  treating  this  infection.    As  a  result,  research  in  the  areas  of  C.   difficile  physiology,  infection  model  development,  and  generation  of  C.  difficile   genetic  tools  are  advancing  at  an  ever-­‐increasing  pace.    Indeed,  the  work  presented   in  this  thesis  is  no  exception.    Combined  with  the  contributions  from  research   investigating  the  human  microbiome  structure  and  function,  new  insights  into  the   dynamics  of  CDI  are  being  made  all  the  time.    Undoubtedly,  we  are  moving  closer  to   discovering  novel,  more  effective  ways  of  preventing  and  treating  infection  caused   by  C.  difficile.                               203   REFERENCES     204   REFERENCES     1.   Lawley  TD,  Clare  S,  Walker  AW,  Stares  MD,  Connor  TR,  Raisen  C,  Goulding   D,  Rad  R,  Schreiber  F,  Brandt  C,  Deakin  LJ,  Pickard  DJ,  Duncan  SH,  Flint  HJ,   Clark  TG,  Parkhill  J,  Dougan  G.  2012.  Targeted  Restoration  of  the  Intestinal   Microbiota  with  a  Simple,  Defined  Bacteriotherapy  Resolves  Relapsing   Clostridium  difficile  Disease  in  Mice.  PLoS  Pathog  8:e1002995.   2.   Stabler  RA,  He  M,  Dawson  L,  Martin  M,  Valiente  E,  Corton  C,  Lawley  TD,   Sebaihia  M,  Quail  MA,  Rose  G,  Gerding  DN,  Gibert  M,  Popoff  MR,  Parkhill  J,   Dougan  G,  Wren  BW.  2009.  Comparative  genome  and  phenotypic  analysis  of   Clostridium  difficile  027  strains  provides  insight  into  the  evolution  of  a   hypervirulent  bacterium.  Genome  Biol  10:R102.   3.   He  M,  Sebaihia  M,  Lawley  TD,  Stabler  RA,  Dawson  LF,  Martin  MJ,  Holt  KE,   Seth-­‐Smith  HMB,  Quail  MA,  Rance  R,  Brooks  K,  Churcher  C,  Harris  D,   Bentley  SD,  Burrows  C,  Clark  L,  Corton  C,  Murray  V,  Rose  G,  Thurston  S,  van   Tonder  A,  Walker  D,  Wren  BW,  Dougan  G,  Parkhill  J.  2010.  Evolutionary   dynamics  of  Clostridium  difficile  over  short  and  long  time  scales.  Proceedings  of   the  National  Academy  of  Sciences  107:7527–7532.   4.   Stabler  RA,  Dawson  LF,  Valiente  E,  Cairns  MD,  Martin  MJ,  Donahue  EH,   Riley  TV,  Songer  JG,  Kuijper  EJ,  Dingle  KE,  Wren  BW.  2012.  Macro  and  Micro   Diversity  of  Clostridium  difficile  Isolates  from  Diverse  Sources  and   Geographical  Locations.  PLoS  ONE  7:e31559.   5.   Knetsch  CW,  Terveer  EM,  Lauber  C,  Gorbalenya  AE,  Harmanus  C,  Kuijper   EJ,  Corver  J,  van  Leeuwen  HC.  2012.  Comparative  analysis  of  an  expanded   Clostridium  difficile  reference  strain  collection  reveals  genetic  diversity  and   evolution  through  six  lineages.  Infection,  Genetics  and  Evolution  12:1577– 1585.   6.   He  M,  Miyajima  F,  Roberts  P,  Ellison  L,  Pickard  DJ,  Martin  MJ,  Connor  TR,   Harris  SR,  Fairley  D,  Bamford  KB,  D'Arc  S,  Brazier  J,  Brown  D,  Coia  JE,   Douce  G,  Gerding  D,  Kim  HJ,  Koh  TH,  Kato  H,  Senoh  M,  Louie  T,  Michell  S,   Butt  E,  Peacock  SJ,  Brown  NM,  Riley  T,  Songer  G,  Wilcox  M,  Pirmohamed  M,   Kuijper  E,  Hawkey  P,  Wren  BW,  Dougan  G,  Parkhill  J,  Lawley  TD.  2013.   Emergence  and  global  spread  of  epidemic  healthcare-­‐associated  Clostridium   difficile.  Nat  Genet  45:109–113.   7.   Knetsch  CW,  Hensgens  MPM,  Harmanus  C,  van  der  Bijl  MW,  Savelkoul   PHM,  Kuijper  EJ,  Corver  J,  van  Leeuwen  HC.  2011.  Genetic  markers  for   Clostridium  difficile  lineages  linked  to  hypervirulence.  Microbiology  157:3113– 3123.       205