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ABSTRACT

TWO LEVEL NESTED HIERARCHICAL LINEAR MODEL

WITH RANDOM INTERCEPTS VIA

THE BOOTSTRAP

by

Joshua Gisemba Bagaka’s

In statistical linear models, most procedures available for estimating the

variance components of the mixed model are usually based on the assumption that

the error terms and each set of random effects in the model are normally distributed

with zero means and some variance—covariance structure. However, in certain

research situations, there is little doubt that the error terms and each set of random

effects in the mixed model can be characterized as moderately or even distinctly

non—normal with heavy tails or badly skewed distributions.

Efron (1979) discussed the use of a technique called the bootstrap to generate

sampling distributions of statistics and thereby to draw inferences about parameters

without requiring any distributional prOperties. Besides the fact that the bootstrap

liberates statisticians from over-reliance on distributional assumptions, the method

makes it possible to attack more complicated problems which may not have

Closed—form expressions.

This study utilized the bootstrap procedure to estimate the sampling

distribution of estimators, their standard errors and thereby setting confidence

intervals about the parameters of a mixed HLM under a variety of conditions.



Applicability of the bootstrap on data originating from real research situations was

demonstrated through the estimation of the effects of school, classroom, and teacher

variables on the teachers’ self—eficacy.

Based on the usual MINQUE and bootstrap estimators, the study showed

that the success of estimation is typically affected by the nature and size of the tails

of the distribution of the errors and sets of random effects parameters of the model.

The bootstrap generally followed MINQUE quite closely in estimating the fixed and

random effects of the model under both the normal and double exponential

distributions. Particularly in estimating the pOpulation inter—class variance, 1'2 at

the 0.01 level of the intra—class correlation, the bootstrap was surprisingly closer to

the parameter value than the MINQUE.

Due to the fact that the bootstrap procedure is highly dependent on the

computer, the study recommended that software to implement the bootstrap

algorithm be deve10ped to make the method available to research practitioners.

Availability of the method to research practitioners will provide an important and

flexible tool, typically unavailable through classical methods, of estimating the

sampling distributions of statistics, their standard errors, and thereby setting

confidence intervals about parameters.
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CHAPTER I

INTRODUCTION

Estimation is frequently based on subpopulations which can be combined

collectively into one underlying p0pulat'ion. For instance, educational performance

can be examined through a sample from several schools in a nation or state. It is

quite natural to estimate the mean achievement and the spread of students’

achievement in each school. Yet groups such as the school district personnel may be

interested in knowing the achievement of students in their school district relative to

the national average, while the school principal may be interested in the

performance of the school relative to the statewide or national average performance.

Several other interest groups (parents, teachers, education ministers) may have

interest in difierent "levels" of data, making it necessary to examine the data in

stages.

Recently methodologists (Aitking and Longford, 1986; Burstein, Linn, &

Campell, 1978; Burstein & Miller, 1930; Goldstein, 1986; Raudenbush & Bryk,

1986) have deve10ped techniques to address studies involving data which have a

hierarchical character. Most of these studies have been conducted under the

assumption that the observations are independent and normally distributed.

Mason, Wong, and Entwistle (1983) and Raudenbush (1984) formulated similar

mathematical models for hierarchical data within—macro units with, say, students

in a school as "micro units" of analysis and schools as the "macro units" of analysis.

The resulting within— and between-macro units models were based on the usual

independence and normality assumptions.



Since the manner of obtaining data typically affects inferences that can be

drawn from such models, we consider a sampling process in which the "macro" units

are randomly drawn from a p0pulation before a random sample of "micro" units are

drawn from each "macro" unit. The resulting data are thus associated with two

random components (the between and within macro variance components) and the

model is correspondingly called the random effects model. Many situations arise

where "macro" units are nested within some fixed factors (not drawn randomly from

a population), together with other micro fixed effects and covariate(s), resulting in a

mixed model with both fixed and random effects. Analysis of variance is

traditionally employed in situations involving fixed effects models, to estimate the

fixed effects parameters.

Although statistical procedures are available for estimating the variance

components of the random parts of the mixed model, these procedures have several

limitations, which take one or more of the following forms. First is the problem of

unbalanced designs (unequal subclass numbers). Estimating variance components

from unbalanced data is not as straightforward as from balanced data (Searle,

1971). Secondly, estimating variance components often involves relatively

cumbersome algebra which makes it difficult for most methods to estimate model

parameters when covariate(s) are involved as part of the fixed factors. Third is the

problem of negative estimates of the variance components and last but not least, the

problem that most variance component estimation procedures are based on the

assumption that the random error terms and sets of random effects are normally

distributed.

The limitation of unbalancedness is certainly clear since balanced designs are

rare in research situations. Thus, procedures of estimating variance components

limited to balanced designs may not be at all useful. On the situation of

cumbersome algebra and negative estimates, no one method has yet been clearly



established as superior either in minimizing the amount of computation required to

estimate the variance components or in obtaining non—negative estimates of the

variance components. These are the situations in which attempts can be made to

minimize but not necessarily to overcome the problem.

' Most procedures available for estimating the variance components of the

mixed model are based on the assumption that the error terms and each set of

random effects in the model are normally distributed with zero means and some

variance—covariance structure. Then for the balanced random component model,

it can be shown that the sum of squares in the analysis of variance are distributed

independently of each other; and each sums of squares divided by the expected

values of its mean square has a central chi—square distribution with the

corresponding degrees of freedom (Searle, 1971). This holds true only for the

random component model. For the mixed model, this distributional pr0perty only

holds for those sums of squares whose expected values are not functions of fixed

effects; otherwise the same ratio of sums of squares that do involve fixed effects, will

have a non-central chi—square distribution. Thus, the normality assumption for the

error term and each set of random effects in the model is the basis of the

distributional pr0perties of variance component estimators, on which most variance

component estimation procedures are based.

However experience has shown that in certain research situations, there is

little doubt that the error terms and each set of random effects in the mixed model

can be characterized as moderately or even distinctly non—normal. For example,

educationally oriented variables such as number of days absent from school, number

of times a student answers a question (or talks in class) and many other variables

are likely to produce non—normal data that are heavy tailed or badly skewed. Thus



the results of statistical methods based on the Gaussian assumptions may not

always be reliable.

Approaches are available for dealing with non—normality. Most involve

transforming the original data to a form more closely resembling a normal

distribution such that normal theory methods can be applied (Box and Cox, 1964).

Efron (1982) examined a family of six transformations and cautioned against

uncritical use of normality as a criterion for successful transformation. Perhaps

variance stabilizing transformations may be preferable. Efron (1982) discusses

situations in which it is better to transform to homoscedasity and ignore

non—normality than vicehversa. Otherwise the alternative could be to do a

complete analysis to recover the lost information during transformation. However,

the practical motivation of transformation theory is to avoid complicated analysis,

especially in already complicated situations (Efron, 1982).

What complicates the issue of using transformations even more is the fact

that the underlying distribution of the original variable must be known before one

decides on the apprOpriate transformation. In many situations, the underlying

distribution of the original data may not be known and thus apprOpriate

transformation of the data becomes difficult.

Rao (1971) proposed the Minimum Norm Quadratic Unbiased Estimator

(MINQUE) for variance components, which does not require the normal distribution

properties of the error term and each of the sets of random effects. The method is

quite general, applicable most experimental situations, and the computations are

relatively simple (Rao, 1971). The approach of the MINQUE involves estimating a

linear function of the variance components using a quadratic function of the

observations, using pre—assigned weights in the norm. The MINQUE estimates

therefore may vary with the choice of weights.



In addressing the problem of dependency on the weights when using

MINQUE, Brown (1976) suggested a procedure in which, after calculating a

MINQUE estimate as usual, the values therein are used as weights and the

MINQUE is calculated again. The process is repeated iteratively until two

successive estimates are equal, to some degree of apprordmation. The method has

been named iterative MINQUE or I—MINQUE (Brown, 1976) and it has been

shown that MINQUE and I—MINQUE estimators are asymptotically normal.

However, because the I—MINQUE estimators are obtained iteratively, they do not

have the pr0perties used in deriving MINQUE (unbiasedness, translation invariant

and minimum norm), and thus they are not necessarily unbiased or "best" in any

sense (Searle, 1979).

This study ad0pted the MINQUE procedure as a useful method of estimating

the variance component since the procedure does not require the normal

distributional pr0perties. In addition, perhaps one of the most useful features of the

study was in the specific manner in which MINQUE was implemented. The study

used a crude ANOVA—type estimate of the variance components of the mixed

model as in Hanushek (1974). The values from this prior estimator are used to

determine the weights which are then used in the computation of the MINQUE

estimators. However, this does not in any way constitute the focus of the present

dissertation. The primary focus stands to be an attempt to liberate statisticians

from over—reliance on the normal assumptions in estimating the variance

components of a mixed model.

Efron (1979) has discussed the use of a technique called the bootstrap to

generate sampling distributions of statistics and thereby to draw inferences about

parameters without requiring any distributional pr0perties. Although Efron avoids

making any general claim for the origin of the name "bootstrap," Efron’s examples

may suggest to some that it is indeed a technique of "pulling ourselves up by our



bootstraps" in a data analysis, that is, for obtaining inferences insensitive to model

assumptions (Rubin, 1981). Indeed, the name reflects the fact that one available

sample gives rise to many others (Diaconis & Efron, 1983).

The deve10pment of the bootstrap starts with a sample X = {X,,...,Xn} of n

observations. From this sample, a random sample of size n is drawn with

rcplacement from which a first bootstrap estimate is calculated. The replicated

sample is denoted by X“ = {X},...,X;} and the bootstrap replicated estimate

computed from X“ is denoted by it". The process is repeated a large number B

times resulting in a sequence 6?; of estimates for b = 1,...,B. If F designates the

unknown distribution of X, then Efron (1979,1982) argues that the empirical

bootstrap distribution F* of X* can provide a very good approximation of F for

a wide variety of interesting statistics. The bootstrap, therefore, which is an

elaboration of the jackknife invented by Quenouille (1949), provides a general

method which can be applied to complicated situations where theoretical analysis is

not possible. Under quite general conditions, the bootstrap gives asymptotically

consistent results and for some simple problems which can be analyzed completely,

for example, ordinary linear regression, it automatically produces results which are

comparable to standard solutions (Efron, 1981b). Through a series of examples,

Efron has shown that the bootstrap method works reasonably well under a variety

of situations. A more detailed discussion of the bootstrap method is offered in

Chapter III.

Dependence on the Normal Assumptions

The distributional assumptions imputed to the random error terms and each

set of random effects in the mixed model are that they are independent and

normally distributed with mean 0 and some variance—covariance structure. But



in order to realize the increased flexibility of hierarchical linear models, careful

attention needs to be paid to these statistical assumptions (Bryk and Raudenbush,

1987). Though methods are available to assess the degree to which these

assumptions are realized in research situations, many researchers proceed with

computations under the normal assumptions regardless of whether or not the

normality condition is met. However, there are several situations in educational

research where hierarchical models may be applicable, but the normal assumptions

may not be guaranteed. For example, in the model involving student achievement

scores, or number of days absent there is doubt that the error terms are normally

distributed in certain situations.

The most common macro unit of analysis for the between group hierarchical

model in education is the school. Often, a random sample of schools is drawn from

which a sample of students is also drawn at random. Schools with different

characteristics may be in the sample resulting in an hierarchical data set with

certain response variables with different distributions for each school. Certain

educationally oriented variables, either at the student or school or classroom level

may be observed. Yet as mentioned earlier, for some of the variables, under the

assumption of random sampling from these suprpulations, there may be doubt

about the normality of the p0pulation distribution. Some schools may have data

sets whose underlying distribution is negatively skewed, others positively skewed,

others heavy-tailed and others may even be normally distributed. Under these

conditions using the standard methods to calculate parameter estimates may not

provide better estimates. Attempts to transform data to a form more closely

resembling a normal distribution will involve identifying the underlying original

distributions for variables in each context (e.g., school) first before deciding on the

most apprOpriate transformation strategies for each suprpulation. Even if the



underlying distributions of the suprpulations were known, transforming variables

difi'erently for each "macro" unit may deteriorate into a welter of calculations. In

such a situation, therefore, the bootstrap algorithm becomes handy and apprOpriate

not only to determine the expected values of the estimates without worrying about

the distributional properties but also to estimate the standard errors of the

estimates and the emmrical distributions of the estimators, thereby setting

confidence intervals about the parameters.

Negative Variance Estimates

The usefulness of variance component techniques is frequently limited by the

occurrence of negative estimates of essentially positive parameters (Thompson,

1962). Though methods like the Restricted Maximum Likelihood (REML) were

primarily designed to remove this objectionable characteristic for certain

experimental designs, the problem still remains unsolved. Thompson (1962)

described an algorithm for solving the problem of negative estimates of variance

components for all random effects models by considering that their expected mean

square column forms a mathematical tree in a certain sense. The algorithm was

described as follows:

"Consider the maximum mean square in the entire array; if this mean

square is the root of the tree then equate it to its expectation. If the

minimum mean square is not the root then pool it with its predecessor."

Thompson, 1962, p. 273.

In either case the problem is reduced to an identical one having estimates of the

variance components. The estimates are non—negative and have a maximum

likelihood pr0perty.



Other methods like the method of moments have ways of controlling for the

occurrence of negative estimates by simply equating any negative estimate to zero.

It is anticipated that the bootstrap method used in this study will provide another

useful way of controlling for non—negativity of estimates of the variance components

particularly when the p0pulation interclass variance is small but positive.

For the bootstrap method, the estimate 21,; of the variance component is

computed at each replication b for b = 1,2,...,B where B is a large number. The

expected value of the estimate is then the average over all B replicated values of

the estimator. It is anticipated that if the parameter value of the variance

component is non—negative, then the sum and average over all the replicated values

will be non—negative. In this case therefore, we view the bootstrap as a means of

providing the MINQUE method with B opportunities to prove the positiveness of

the estimate of the parameter value which is essentially positive.

Pu_rpgse of the Study

The interest of the study lies in a two—level mixed and nested hierarchical

linear model (HLM) with random intercepts. The general problem is one of

estimating the fixed effects and the variance components (group and individual level

variances) under several situations including conditions under which the normality

assumption may not be guaranteed. Besides the non—normality problem, the

problem of negative estimates of the between "macro" unit variance component

(especially in the case of boundary situations when the true variance component is

small) is not new to statisticians.
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In the present study two different estimators of the model parameters were

obtained and compared against each other. The first estimator was the MINQUE

based on the original sample. The other was the bootstrap estimate computed

though resampling from a sample with replacement.

prg’tives of the Study

The study demonstrates the use of the bootstrap in providing estimates of

the parameters (fixed and random) of a general two—level mixed and nested

hierarchical linear model, determining the standard errors of the estimators and

their empirical bootstrap distributions. In addition to demonstrating that the

bootstrap algorithm liberates statisticians from over—reliance on the Gaussian

assumptions (Diaconis and Efron, 1983), through Monte Carlo simulations, this

study also

( 1) Determines the bootstrap standard errors of the variance components

and thereby allow construction of bootstrap confidence intervals about

the parameters.

(2) Assesses the performance of the bootstrap method in determining the

estimates of the sampling distributions, the standard errors, and the

interval estimates of the variance component estimates of the model

when the response variable,

a) is normally distributed.

b) has a distribution with fairly heavy tails (e.g., the double

exponential distribution)

(3) Evaluate the bootstrap estimates and usual MINQUE estimates of the

variance components.



ll

(4) Examines the relative accuracy of the bootstrap method in estimating

the variance components of the model in the case of boundary

situations, particularly when the population interclass variance is

small but positive.

(5) Determines the bootstrap estimate of the fixed effects

parameters and their standard errors.

Summgy

The present dissertation concentrates on the problem of estimating the

parameters of a mixed and nested hierarchical linear model. Chapter II will

describe the hierarchical model and the estimation of variance components in

balanced and unbalanced designs when the models are with and without

covariate(s). Chapter HI will concentrate on the discussion of the bootstrap

method. The design of the study will be provided in Chapter IV and an application

of the bootstrap method in estimating model parameters in higher order teaching

(HOT) research will be presented in Chapter V. MINQUE and bootstrap Monte

Carlo simulations results will be presented in Chapter VI and conclusions and

recommendations set out in Chapter VII.



CHAPTER II

THE MULTILEVEL MODEL AND ESTIMATION

Intr ction

It is common in educational research to study the effect of character of the

educational group (e.g., school, school district, classroom, province). These

group—oriented variables (e.g., school policies, teacher/student ratio, per—pupil

spending) may form part of a set of independent variables hypothesized to have an

effect on some individual—level outcome variable(s). For example, student learning

activities occur within organizations in which the individual students belong

(Burstein, 1980). It is therefore necessary for educational researchers to understand

and be able to explain the complex influence of not only individual level variables

but also group—oriented variables on some individual student outcome variables.

Data in this class of research is typically available at two levels of

observation, individual (or micro) and group (or macro) levels, giving rise to a

hierarchical structure of data. Similar arguments can apply as well to more

complicated nesting situations (students within classrooms, classrooms within

schools, schools within school districts, and school districts within states or

provinces) without loss of generality (Burstein, 1980). The problem then, is that of

analyzing such multilevel data when certain key independent variables are measured

at different levels of an organizational hierarchy.

Traditional statistical methods of data analysis like multiple regression and

analysis of variance have been found to be ineffective in studies involving such data

of hierarchical structure. Methodologists (Burstein, 1980; Burstein & Lin, 1978;

12
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Mason, Wong, & Entwisle, 1984; Raudenbush Sr Bryk, 1986; Raudenbush, 1984)

have not only warned against the use of such classical linear models but have also

provided general statistical models of investigation when data exists in hierarchical

structures. These models are commonly referred to as hierarchical linear models

(HLM).

Studies of school effectiveness (e.g., Brookover, et.al., 1982) have been

interested not only in student achievement levels as measured by the average

achievement scores but also in overall group achievement or "equity" as measured

by the variability (or spread) of achievement scores. From this viewpoint, more

effective schools for example, not only produce high average achievement scores but

also help students of varied backgrounds to achieve mastery (Raudenbush, 1984).

The notion of evaluating the effectiveness of schools in achieving "equity" by

observing the within—school variability of scores can also be extended to examining

effectiveness of the state, province or country by observing between—school

variability in student achievement scores. Coupled with the fact that the "macro"

units (e.g., schools or classrooms) in the study may constitute a random sample of

such units from a p0pulation, then the mixed model conceptualization is certainly

appealing. Thus, one important class of investigation in such situations would

involve estimation of the variance components (or equity) in addition to examining

the efl'ects of other fixed factors in the mixed hierarchical linear models.

Thg Multilevel Model

The structure of data considered in this multilevel framework is assumed to

involve two levels of observations; the individual (micro) level and some higher

(macro) level. The structure can be characterized by contexts such as schools or

countries as "macro" units of analysis and individual subjects as the "micro" units

of analysis. The fundamental assumption underlying this multi-level hierarchical
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framework is that the micro values of the response variable depend in some way on

context and that the effect of the micro determinants may vary as a function of

context (Mason, et. al., 1983). At the lowest level, some measure of outcome for

individual subjects and other individual characteristics may be apprOpriate.

Suppose we begin by posing a within—context model that defines a micro

equation with one micro response variable Y and one micro regressor X, which is

identical for each macro unit j as,

(2-1) Yij = 503' + flrjxrij + eij

where j = 1, 2,...,J macro units and i = 1, 2,...,nj micro units within the macro

units. In this case Yij is the response and Xfij the regressor value for subject i

in macro unit j and 6,, is the random error term. The usual assumption is that

Eij is distributed normally with mean zero and variance 0:. The micro parameters

fioj and 311 are assumed to vary across context as a function of some macro

regressor variable W.

Since [90,- and flli are defined for each context, we pose the

between-context models using 190,- and flu as re3ponse variables as

(2-2) fiOj = 700 + Vorwij + er

(2-3) 5;; = 710 + 711w1j ‘l' erj

where 60) and 511 are the intercept and regression slape respectively for context

j, as defined in Equation 2.1. Both the intercept and the slape are assumed to be

random with eoj and e“ as their respective random error terms. It is most

common to assume that the error terms eoj and elj are normally distributed with

mean zero and variances 1100 and "11: respectively, with the covariance of eoj and

e“ denoted by 110,.

A single equation for this simple case of a multilevel model can be obtained

by substituting Equations 2.2 and 2.3 into Equation 2.1 as
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(2-4) Yij = 700 ‘I' 7orwrj + 'Yroan + 711W1jxrij +

(er + Xmeu + eij).

Although Equation 1.4 involves one micro regressor and one macro regressor, it is

quite general in the sense that other models of potential interest can evolve from it

(Mason, et. al., 1983). For example, a random effects one way analysis of variance

(ANOVA) model can be derived from it by setting to zero all of the coefficients of

X1 and W1, i.e., 70, = 1,0 = 7“ = e“ = 0 resulting in the model equation,

(2.5) Yij = 700 + eoj +.Eij.

Similarly, a fixed effects regression model is obtained by setting eoj and e,,- to

zero to obtain the model equation

(2-6) Yij="Yoo + 7orwij + 7roxrij + 711erxrij + 613”

For this study, a hierarchical linear model with random intercepts is

considered. Consequently, the random error elj associated with the random 310pe

model given in Equation 2.3 is set to zero. Model Equation 2.4 then reduces to the

variance component model given by

(2-7) Yij = 700 + Vorwrj + 7roxrij + 711erxrij + (er + eij)

which is a mixed model with the term (er + eij) as the random part and

(70° + 701W1+ 7,0Xfij + 7,,Wu-Xlij) as the fixed part of the model. The fixed

part of the model in Equation 2.7 may take a more general form with multiple X’s

(i.e. Xm,X3ij,...) and W’s (W,,W3,...) which may also include interactions.

One of the fixed factors of the model, for example, may be the sector in

which the random factor of context is nested. The fixed effects factor (sector) is

taken to consist of K levels, bringing the total number of fixed effects parameters

(including covariates) to P.

In terms of the general linear model matrix notation, and if we allow for any

number L of regressor variables, Equation 2.7 can be expressed for the jth context as
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(2'8) Y1 = {‘1‘}: +¥1§1 + $1

j= 1, 2,...J. where Yj is a (nj 1: 1) vector of response values; Xj is a (nj 1: p)

matrix of known constants; 95 is a (p x 1) vector of unknown fixed effects

parameters; 21 is (nj x 1) vector of 1’3; 13,- is (qx 1) vector of unknown

random efiects parameters and e, is an (11j x 1) vector of random error terms.

The ngflevel Hierarchical Linear Model

with Random Intercepts

The model illustrated thus far reduces to simpler models under specific

conditions. The present study involves two factor levels, a fixed and a random

factor where the random effects are nested within fixed effects. Application of this

model can be seen in education research with the school background or sector

(public, private or religious) as the fixed factor and individual schools as the random

factor. At the lowest level, some measure of outcome, for example academic

achievement may be of interest. Other school characteristics (teacher—student

ratio, school financial means, school policy, inner city or suburban location) together

with student characteristics (social economic status, IQ) may be included in the

model as covariates. An example of the use of "Micro" and "Macro" variables can

be found in Mason et. a1. ( 1983) who used a model for a multilevel analysis of the

determinants of children born in fifteen less—deve10ped countries. In this study

which was part of the Michigan Comparative Fertility project, Mason et. al. (1983)

used countries as the macro units of analysis, while married respondents served as

the micro units of analysis. Some of the macro variables used to define the context

within which individual childbearing took place included socioeconomic
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deve10pment, family planning program efiort, and per capita gross national product.

The micro specifications used included contraceptive use patterns, and the wife’s

education level.

Warm

Two levels of distributional assumptions can be specified for the multilevel

hierarchical linear model described above. First is the assumption related to the

micro specification model shown in Equation 2.1. For this model, the error terms,

eij are assumed to be independently and normally distributed with mean vector 0

and variance 031,, for j = 1,...,J. With Equations 2.2 which describe the random

1

intercept part of the model, the following assumptions are made:

(i) the error terms eoj associated with the intercept 60,- are assumed to

be distributed normally with mean 0 and some variance 1100.

(ii) the micro errors, ‘1' are independent of the macro errors eoj.

While attainability of the distributional assumptions related to the micro

error terms cij can be easily accessed by observing the distribution of the response

values Yij, accessing the distributional assumptions of the macro error terms eoj is

more difficult since [90,- is not directly observable. This worsens the situation in

dealing with methods which are overly dependent on distributional assumptions.

The assumption of independence in multilevel models also takes two forms,

within— and between—group independence. Robustness to within—group dependence

(dependence among observations) is of primary interest in the statistical literature

(Burstein, 1980). The statistical consequences of ignoring the intraclass correlation

structure that results by ignoring group membership can be quite serious (Burstein,

1980). In educational research involving student achievement, we realize that

instruction is primarily group—based. Instruction of students within the same class
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is likely to be more similar than that for students from different classes. Under

these and similar circumstances, the between— and within—group error terms are

likely to be correlated.

In general, standard statistical estimation techniques like ordinary least

squares are ineffective in the presence of within—group dependencies. Yet in several

educational research situations, depending on the nature of the outcome and effect

variables under study, dependence among observations may be an inevitable

phenomena. Thus it may be reasonable for researchers to assume that dependencies

among observations exist, such that more effort may be spent on ways to identify

and adjust for these dependencies rather than assuming independence when

dependence may erdst.

Variance Commnents Estimation

The problem of estimating the variance components in mixed linear models,

containing both fixed and random effects is not new to research methodologists.

Several methods of estimation have been suggested (Henderson, 1953; Hartley, 1967;

Searle, 1970; Henderson, et.al., 1959; Rao, 1970; 1971a, 1971b, 1972; Thompson,

1962). The deficiencies and/or difficulties in the application of these methods are

also well known (Searle, 1978). Estimates could be negative. Compuatational

problems could arise, particularly when covariates are involved as part of fixed

factors of the mixed model. There is no general method to cover all situations and

problems. The problem of variance component estimation also varies with the

design, whether the data is balanced (equal subclass numbers) or unbalanced.

We:

Balanced designs are those in which there are equal numbers of observations

in all the macro units. The analysis of variance method (or the method of

moments) is traditionally employed in estimating the variance components of mixed
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(or random) balanced designs. The method involves equating statistics to their

expected values and solving the resulting equations for the parameters (Hocking,

1985). But due to the infrequency of balanced designs in real world research,

methods which are limited to balanced designs are not at all useful.

Was

Unbalanced designs are to those in which the number of observations in the

sub—classes or macro groups are not all the same. Besides the problem of

cumbersome algebra and a confusion of symbols in variance components estimation

in unbalanced designs, other problems arise. Whereas with balanced data there is

only one set of quadratic forms to use (the analysis of variance mean squares), there

are many sets of quadratic forms that can be used for unbalanced data. And unlike

in balanced data, most quadratic forms in unbalanced designs lead to estimates that

have few optimal pr0perties. As Searle (1971) indicated, none of the earlier methods

were clearly established as superior in variance component estimation.

Efforts to adapt variance component estimation methods to unbalanced data

were led by Henderson (1953) who described an analogous to the analysis of

variance method used with balanced data, but designed to correct that deficiency.

Other methods evolved thereafter (see Searle, 1968), but Searle (1971) indicated

that most of these methods reduced in some way to the method of moments for

balanced data. The methods involve relatively cumbersome algebra such that a

discussion of unbalanced data easily deteriorate into a welter of symbols.

Other more recent methods of variance components estimation evolved which

are not necessarily allergic to unbalancedness. The maximum likelihood (ML)

estimator of the variance components is one such method. The ML estimators of

the variance components are those values of the components which maximize the

likelihood over the positive space of the variance components parameters (Corbeil

and Searle, 1976). Application of the ML method therefore requires assuming a
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probability density function for the random variables, and than writing down the

likelihood function of the sample data. Though the general ML procedure can be

used for almost any probability density function, for variance component

estimation, it is customary to assume normality (Searle, 1979). Then maximizing

the logarithm of the likelihood function is fairly straightforward. However, as

indicated earlier, requiring the normality assumptions in certain research situations

may be expecting too much.

An alternative to the ML estimator of the variance components is the

restricted maximum likelihood (REML) which was first suggested by Thompson

(1962) and later formally described by Patterson and Thompson (1971) and Corbeil

and Searle (1976). The method is based on a transformation that partitions the

likelihood under normality into two parts, one being free of the fixed effects and the

other involving fixed effects. Maximizing the part that is free of fixed effects yield

the REML estimators (Corbeil and Searle, 1976). The REML estimators are

translation invariant, but because maximum likelihood restricts the estimator to the

allowable parameter space (positive), then REML estimators are biased. Thus, in

terms of assumption requirements, neither ML nor REML offers no solutions to the

estimation of variance components without assuming certain distributional

properties.

From the late 1960’s till the early 1970’s, statisticians were involved in

seeking methods of variance components estimation that posess more desirable

properties than just being unbiased and translation invariant. LaMette (1973) and

Rao (1970) though working independently, derived the minimum variance quadratic

unbiased estimators (MIVQUE) from the theoretical viewpoints without offering

ways of applying the method to actual data analysis. Henderson (1973) derived

computational formulae for MIVQUE based on the mixed model equations (MME)

and indeed showed that LaMotte’s and Rao’s methods were identical.
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MIVQUE assumes normality and that V, the variance—covariance matrix of

the observations is known. Then the variance of quadratic forms is minimized for

this V. Since V is not known in reality, the procedure requires utilizing some

prior information about V, and as a result, the variance of quadratic forms is only

minimized if this prior V is the true p0pulation value. However, MIVQUE is

unbiased and translation invariant. In addition, if the prior V is the same as the

true V, then MIVQUE is also minimum variance. Thus, MIVQUE in general, is

not minimum variance in practice, but only as good as the prior V. For the present

study, the MIVQUE too does not ofier solutions to variance component estimation

since the procedure requires the normality assumption.

Rao (1970, 1971a,b, 1972) prOposed a minimum norm, quadratic, unbiased

estimator (MINQUE) of the variance component to estimate a linear function P I g

of the variance component (for known P ’ ). The method utilizes a quadratic

function Y’AY of the observations for Y, a vector of observations and A, a

symmetric matrix. The quadratic function Y'AY used to estimate P I g is taken

to possess the properties of translation invariance, unbiasedness and minimum norm

(Searle, 1979). More importantly, the MINQUE theory is developed without

reference to normality or the variance of the estimator and the method is highly

flexible in the choice of norm while at the same time preserving the desirable

prOperties of the estimator (Rao, 1971). Since their invention these estimators have

gained much recognition. See in particular, Seely (1971), Hartley et. al. (1978), and

Searle (1979). Also the naive form of the MINQUE which corresponds to the rather

uninformative prior value V = woln (MINQUEO) is provided by Statistical

Analysis Systems (SAS). Due to its desirable properties, particularly the fact that

the procedure does not require the normal assumptions, the present study adOpted
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the MINQUE technique in estimating the parameters of the mixed model via the

bootstrap method.

MINQUE for Two—level HLM with

Random Intercepts

The minimum norm quadratic unbiased estimator (MINQUE) for the

variance components of a mixed model is based on the statistical linear model whose

general form is represented by

(29) ¥=z<e+a>+s

with the following definitions:

Y is a (nxl) vector of n observations

X is an (nxP) known matrix of rank r()_() < n

g is a (le) vector of P fixed efi'ects parameters

2 is an (nxJ) known matrix, often consisting of 1’s and 0’s

1) is a (Jx1) vector of J unobservable random effects

parameters, and

e is a (nxl) vector of random error terms.

In order to identify the variance components corresponding to the random

effects in 13, this vector 11 is partitioned as

(2.10) 9’ = [bi...bk...b;] for k = 1,...,c,

where the vector bk contains jk effects for the levels of the k‘11 random factor.

Corresponding to bk of 2.10 the incidence matrix 2 is accordingly partitioned as

(2.11) 2: [argyle] for k = 1,...,c,

such that 2.9 can be written as,
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(2.12) 1; = 159 + 3312,13, + 5

with the model elements defined as before. Equation 2.10 and 2.11 are similar to 5.3

in Rao (1971b).

A compact way of writing (2.12) is to define 5 as another 131: namely, 13,,

and the corresponding 20 as In. The model Equation 2.12 becomes

(2.13) Y = X9 +

with the following distribution pr0perties:

(2-14) 13031) = 9, VaIQk) = Jilin COVQkiPkI) = 9

for 1,1' = 0,1,...,c

where cov(bk,bk,) is the matrix of covariance of the elements of bk with those of

13,, for k s 1’. The variance of y is given by

(2.15) Var(b) = D = diag{a§ljk} for 1 = 0,...,c.

With this formulation, we notice that Equation 2.7 is a special case of 2.13

with c = 1 whose compact form may be given by

(2'16) Y = )5? 'l' @0130 + @181

where

Y is a (nxl) vector of n observations,

X is an (nxP) known matrix of rank r(x) < n

representing fixed effects parameters,

a is a (le) vector of P fixed effects parameters,

20 is an (nun) identity matrix,

130 is a (had) vector of residual error terms,
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2, is a (nxJ) known matrix, often consisting of 1’s and 0’s and

b is a (J111) vector of J unobservable random effects

parameters.

The distributional pr0perties imputed to 2.16 are according to 2.14 given by

(2.17) may.) =9.cov(yo.1>.) =9

(2.18) 13 = var(bk) = diag{a:1n, 7’11} for 1 = 0,1

where a: is the variance component of the residual errors and 'r2 is the variance

component of the random effects of the model.

For the two—level mixed model of the form given in Equation 2.16, the

MINQUE estimate 5 of the variance components of 130 and b, using weights w0

and w1 in the norm is given by

(2.19) §= {tr(13.azilj.zezé.i-l {familiar}.

for k,k' =0,1

where P, which is given by

(2.20) 13.. = y;1—Y.;05(z<’y.;is)-Iis’y;l

is the projection operator on the space generated by the columns of X similar to

1.2 in Rao (1971b). v, = 213,? for D, = diag{onn, wgJ} is a dispersion

matrix of b where w0 = 1- p and “’1: p for p the intraclass correlation

coeficient. In practice, the weights w0 and w1 are pre—assigned numbers hence

V, and P, are matrices which can be calculated easily.

To advance the MINQUE estimates associated with the weights W0 and w1

for this special case, define F, and U, as follows:

(2'21) Fw = {tr(P'ZkszWZkIZkI)}

(2.22) U, = {Y P,ZkaP,Y}
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for k, k, = 0,1. F, is a (2x2) matrix and U, is a 2—dimensional vector both

originating from 2.19 such that the MINQUE estimator (:7 is given by

(2-23) g= 13:11.

Define the matrices If and A, as part of the projection Operator 2.20 as

(2.24) I; = (3’11:ch

9-25) 4. = waist/r.

If we let f“, to be elements of a (2x2) matrix F, for k,k’ = 0,1, then the

following definitions can be given:

(2.26) to, = tr(1_’,l_’,,) = tr(Y.;’) - "(113%)

(2-27) for = f10 = "(91:59?”

= swash -tr(y;14.z@1)

(233) f“ = (“(13.?1? 1131119? 1)

In order to simplify the vector U, of quadratic forms, we notice that

13.? = (Y: - Yise’yisr ’S'Yv’fi!

= we! - sir/231‘Um

such that

(2-29) 13.1! = 11:0! - as?)

where (:1 is the estimate of the fixed effects parameters of the model given by

(2-30) Er= 1952:?-

With this simplification, if we let 110 and 111 be the elements of the two
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dimensional vector U, of quadratic forms, then the following definitions can be

given:

(231) no = $13.13.? = (Y - sift/m - 293)

(2-32) =1!132%?¥= (¥-¥§)'Y&‘?1?1Yé‘(¥-¥§)-

We notice thatuZJZJ which occurs extensively in 2.27, 2.28, and 2.32 is

block diagonal with submatrices mJ of size (annJ) whose elements are all 1’s and

VJ? is block diagonal with submatrices V71 also of size (nJ-an) given by

(2.33) = w(IJJj cJ-mJ)

_ 1 ._ "I -_
for WTT—WTJ and cJ- — (1+(nj-UW1 for j— 1,2,...,J. Let XJ be the nJ- rows of 

the matrix X associated with fixed effects in context j. Let mJ = ZJJZ JJ- for ZJJ

a (an1) vector of 1’s. Then IQ; and the elements of F, and U, will simplify

significantly as follows:

(2.34) i_<={w2(xeJ —chJsJ)}

for SJ = XJZJJ a (le) vector of column sums of XJ;

(2.35) tr(V,?) = W3 E nJ.{(1-cJ)2 + c3(nJ—l)}

(2.36) tr(V,1A,)= w3 2 tr(tJ) - aJJcJ{(1—cnJ)2 + (2—cJnJ)}

for tJ =xe1_( and aJ=tr(x'JJr_<xJzJJz’JJ)=tr(sJr_<sJ)=sJ KsJ;

(2.37) tr(V,;3ZJZ J) = w2 E nJ(1-anJ)3

(2.3s) tr(V'lA,zJz’J)= w3 2 aJ(1—enJJ)a

(2.39) tr(V,;TZJZ ’Jsz'J) = w: s nJ2(1-anJ)2

(2.40) tr(V,1A,ZJZZJZJ)=w3 EnJaJ(1-cJ

(2:41) 9‘ = W 2 (195119 ’ “19191)
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for rJ = ZJJYJ is the sum of Y elementsin context j. If we define d = Y —Xa,
.. -J -J-

hJ-= ZJJdJ = dJZJJ—-B(YJ--XJa); and gJ= dJdJ, then the elements of the vector

U, can be computed as

(2.43) uJ = w2 E hJ(1—anJ)3.

As a result of adopting the formulae to the specific model of this dissertation

shown in Equation 2.16, the MINQUE estimators g of the variance components

associated with the weights w0 and wJ are given by

32

(2.44) {7: J f]
T:

A A

where the components a3 and ‘r2 are defined by

(2-45) ”3 = (frruo " 01111”D 311d

(2-46) 72 = (foour " f10110”D

where D = fJJfoJJ - fJJJfJ0 is the determinant of the (2x2) matrix F, given in 2.21.

A special case of MINQUE, namely MINQUEO is obtained by using zero for

all wk’s except wo. With such weights, V
1

_, reduces to onJJ and P, to t—VEM

for M given by

9-47) enema-1'1

where L is the Cholesky decomposition of Y,. This special MINQUEO estimator

denoted by 3,, is given by

(2.48) ={tr(MZJJZJJMZJJ,ZJJ,)}1 {YMZJJZJJMY}

for k,k’ = 0,1 in the place of 2.19. The estimators given in 2.48 were the first

estimators suggested by Rao (1970) and they are the estimators provided by

Statistical Analysis System (SAS). They also appeared in Hartley et.al. (1978) and

in Seely (1971). However, Searle ( 1979) has indicated that, other than the fact that
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these MINQUEO estimators correspond to the rather uninformative prior value

Y, = 'oIn: they have no particular merit, besides being relatively easy to compute.

Qheice of Initig Weights

One feature which is perhaps one of the most important features of the

MINQUE estimator is in the choice of the weights Wk: k = 0,1,...,c. Searle (1979)

indicated that regardless of the choice of the weights the MINQUE estimators will

possess the pr0perties of unbiasedness, translation invariance and minimum norm,

provided the wk’s are chosen such that 13",! exists. A version of MINQUE

(Brown, 1976) known as Iterative MINQUE (I-MINQUE) is obtained as follows:

After calculating a MINQUE estimate Er using arbitrary weights as in 2.19, the

values therein are used as weights wk and g is calculated again. The process in

repeated iteratively until two successive values of (:1 are equal (to some degree of

approximation). However, because I—MINQUE estimates are obtained iteratively,

they do not have the pr0perties used in deriving 2.19; and as such they are not

necessarily unbiased or "best" in any sense (Searle, 1979).

Instead of using arbitrary weights, the present study uses the method of

estimating g as in Hanushek (1974). These prior estimates are then utilized to

determine the weights wk. It is then these prior weights which are used in the

computation of the MINQUE estimator o in 2.19.

It is expected that, by determining MINQUE estimates through weights

established from some prior estimate of 3* we may obtain more efficient MINQUE

estimates of the variance components than through estimation based on arbitrary

weights.
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EM!

Chapter II discussed the mathematical model for the hierarchical data

together with the model assumption. Methods of variance component estimation

were reviewed and their limitations, weaknesses and strengths discussed, for both

balanced and unbalanced designs. Since the minimum norm quadratic unbiased

estimation (MINQUE) procedure was ad0pted for the present study to be used via

the bootstrap a more detailed discussion of the MINQUE was offered, particularly

for the two—level hierarchical linear model. An improved method of choosing the

initial weights for MINQUE was presented. A detailed review and discussion of the

bootstrap method is presented in Chapter III.



CHAPTER III

THE BOOTSTRAP METHOD

Imam

A typical problem in statistics involves estimation of an unknown p0pulation

parameter 0. Two main questions arise in connection with the problem:

ngtien 1: Perhaps among several possible estimators of the

parameter 0, what estimator 9 should be used

to estimate 0 ?

Quefiion 2: Having chosen some estimator :0, how accurate

is it as an estimator of 0 ?

This situation is easily adopted to most research problems in the real world.

For the problem of estimating the parameters of a mixed hierarchical linear

model, the issue of Question 1 was discussed in the greater part of Chapter II. The

minimum norm quadratic unbiased estimator (MINQUE) of the variance

component was ad0pted as the method of estimation.

The bootstrap method is generally concerned with the issues of Question 2.

As mentioned earlier, the bootstrap is a computer—intensive method, which

substitutes considerable amounts of computation in place of theoretical analysis

(Efron and Tibshirani, 1986). The method can routinely answer questions which are

far too complicated for traditional statistical analysis. Even for relatively simple

problems, the computer—based bootstrap is an increasingly good data analytic

bargain in an era of exponentially declining computational costs on extremely fast

computers (Efron and Tibshirani, 1986).

30
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Somewhat unfortunately, the name "bootstrap" conveys the wrong

impression of "something for nothing"—of statisticians idly resampling from their

samples, presumably having about as much success as they would if they tried to

pull themselves up by their bootstraps (Hall, 1990). This is by no means the case.

The bootstrap is a technique with a sound and promising theoretical basis (Hall,

1990).

As indicated in Chapter I (and later in this chapter), the bootstrap approach

involves computing an estimate of the parameter of interest and repeating the

process a large number of times by resampling with replacement. Thus, in utilizing

the technique in estimating the variance component of the mixed hierarchical model

described in this study, MINQUE will be used because of its desirable properties

and the fact that it does not require the normality assumptions.

The primary objective of the dissertation is to demonstrate the estimation of

parameters of a mixed hierarchical linear model in the total absence of

distributional assumptions of the model. It was due to this fact that MINQUE was

adapted since it does not require to normality (Rao, 1971). MINQUE then provides

a comparable partnership with the bootstrap which is a method designed to liberate

statisticians from over-reliance on the normal assumptions in data analysis.

In the literature, a distinction is made among three types of bootstrap

method namely, nonparametric, smoothed and parametric bootstrap. Since it is

the backbone of the study, a detailed discussion of the nonparametric bootstrap is

deemed necessary. It is this discussion to which this Chapter is committed.

Wan

In the nonparametric problem, we define a resample X* as an unordered

collection of 11 items drawn from X with replacement, so that each X‘J‘ has
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probability 1/n of being equal to any given one of the XJ’s. In other words,

(3.1) P(X* = XJIX) = 1/n, 1 5 i, j g 11.

Of course, (3.1) means that X” is likely to contain repeats, all of which must be

listed in the collection X*. We will here formally present the nonparametric

bootstrap with its associated terminologies and notation.

Let XJ, X,,..... ,XJJ be independent random variables with an unknown

common distribution function F. Suppose 3 is chosen as a statistic to estimate a

parameter 0 of the distribution F. The bootstrap distribution of 3 is generated

by taking repeated samples from XJ, X, , ..... , XJJ. One such bootstrap sample is a

simple random sample X'IJ‘, X3, ..... , X3 of size n drawn from XJ, X, , ..... , XJJ

with replacement. One bootstrap replication of the statistic 3 is then the value 3*

of 3 computed on the bootstrap replicated sample (X"J‘, X3, ..... , X3). Thus, the

bootstrap distribution of 3 is generated by considering a large number B of

bootstrap replications 3* of 3.

In this process of "resampling," the 11 data points XJ, X, , ..... , XJJ are

treated as a p0pulation with distribution function F. Let F be the empirical

distribution of XJ, X, , ..... , XJJ which puts mass l/n on each XJ, for i = 1, 2,...,n.

When we resample the data with replacement X‘IJ‘, X",‘, ..... , x; are independent,

with common distribution function F. The idea, then, is that the behavior of the

bootstrap quantity 3* mimics the behavior of 3. Thus, the distribution of 3*

could be generated from the data and used to approximate the unknown sampling

distribution of 3.

Another way of looking at the bootstrap estimation is by supposing that

XJ, X, , ..... , XJJ are independently and identically distributed random variables

from a population with unknown cumulative density function, F, and suppose the

objective is to draw inferences about some parameter 0 of the population. If 3 is

an estimator of 0 and F is the sample cdf that assigns mass l/n to each XJ,
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i = 1, 2,..., n, then Schenker (1985) has clarified that the bootstrap approximates

the sampling distribution of 3 under F by the sampling distribution of 3* under

17‘.

Several studies (Efron & Gong, 1983; Bickel & Freedman, 1981; Efron,

1981a; Schenker, 1985) have presented more straightforward procedure for

performing Monte Carlo simulation through steps. As a simple example, suppose

our goal is to estimate the standard error of the sample mean X. Let

3: X = 2 XJ/n (the sample mean). The bootstrap algorithm will approach this

problem in the following steps:

Step 1 Given the sample XJ, X, , ..... , XJJ, construct F by assigning

mass l/n to each of the XJ, i = 1, 2,....,n.

(3.2) F: mass 1/n at XJ, i = 1,2,...,n

Step 2 Draw a bootstrap sample X"J‘, X",‘, ..... , x; from F with

replacement and calculate

. = J11- % X";

Step 3 Independently do Step 2 some number B times, obtaining

bootstrap replications 3"J‘, 3;, ..... , 313.

Step 4 Calculate the standard error a( 3*) of 3" by

J 1/2

0(3") = [3.1.1 .335"; 4:12]

where

s

3': = fig; 91':-

However, the question of how well the empirical distribution of 3* under F

approximate the sampling distribution of 3 under F is certainly crucial.

Freedman and Bickel (1981) applied the bootstrap algorithm to estimate the

standard error of the sample mean X assuming they did not know the formula
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0N5. With a pOpulation Of 6,672 Americans aged 18—79 in Cycle I Of the Health

Examination Survey, Freedman and Bickel were interested in the estimate Of the

mean systolic blood pressure in millimeters Of mercury. Using B = 100, the

bootstrap algorithm yielded a mean systolic blood pressure Of 129.6 with a standard

deviation Of 21.4 compared to the sample mean Of 130.3 and a standard deviation Of

23.2 millimeters of mercury. On plotting the bootstrap and the theoretical

distribution of the mean, the bootstrap distribution followed the theoretical

distribution rather closely.

In estimating the distribution of the 5%, 10%, and 25% trimmed means,

Efron (1986) used B = 200 bootstrap replications for several trials along with the

jackknife and the theoretical Optimization. The simulation results showed that the

bootstrap clearly out performed the jackknife and its results were surprisingly close

to the theoretical Optimum for a scale—invariant standard deviation estimate

assuming full knowledge Of the parametric family.

In spite Of a great deal of encouragement from several studies (Beran, 1984;

Lunneborg, 1985; Rasmussen, 1987; Singh, 1981) in assessing the accuracy Of Efron’s

bootstrap, others like Dolker, Halperin, and Divgi (1982) have expressed doubt.

The key question about the bootstrap technique is its accuracy in a situation where

the sample size is small. What can one say in the case Of small samples, especially if

the true distribution has long, thick tails like in the case Of the Cauchy distribution

(Nash, 1981)? On the other hand, the advocates Of the bootstrap may question

whether the problem Of small sample sizes and long, fat tails is unique to the

bootstrap or whether it is a problem affecting most statistical methods.

The Bmtetrep Eetimete ef Big;

The bootstrap technique of estimating bias is based on the idea that for a

statistic 3, which estimates a parameter 0, 3" is the bootstrap estimate Of 3.
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Thus, the bootstrap estimate Of bias, denoted by BIAS is given by

(3.3) BIAS = 11, bids; — 3) = 3" — i),

where 3 is the usual estimate Of 3 and 3'" is the average Of 3; Over all

bootstrap replicated values Of 3'". Efron (1982) used this principle to compare the

relative accuracy Of the bootstrap with other methods Of estimation. By using 1000

bootstrap replications for the law school data which yielded 21‘" = 0.779 compared

to Z) = 0.776, Efron found that the bootstrap BIAS = 0.003, compared to —0.007 for

the jackknife and —0.011 for normal theory. In this study, a similar principle will be

utilized to demonstrate the relative accuracy Of the bootstrap, and the usual

estimates based on this principle Of the estimate Of bias.

The Bmtetrep Confidence Intervals

Approximate confidence limits for the parameter can be found via the

bootstrap using either the t—method or the bootstrap percentile method.

(i) The g—method: Suppose, for example, that 3 is the usual estimator of

the parameter 0. The usual confidence interval are based On the assumption that,

the statistic T, given by

(3,4) T = _9‘____",

3

is approximately distributed N(0, 1). Then the (1—a)100% confidence interval is

given by

Using the same principle, we can set the bootstrap confidence intervals by utilizing

the fact that the bootstrap estimator, 3" is the estimator Of 3. Let the statistic

Tg at replication b be defined by
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(3.6) T3 =u

0.

A r A

where 3" is based on the bootstrap sample and 03* is the estimator Of Var( 3)

based on the bootstrap sample. If we Observe T'J'; a large number B times, for

b = 1,2,...,B, we will estimate the distribution Of T by the empirical bootstrap

distribution Of T*’s. Then the bootstrap confidence interval about the parameter 3

are determined by the following process: find a number Tc such that the

proportion Of T’"’s between — T,J and Tc is (l—a). The bootstrap (1—a)100%

confidence interval is then given by

(3.7) 3 a T035

(ii) Percentile method: The bootstrap percentile method for constructing

confidence intervals about the parameter 3 may be presented as follows.

Let 3 be the usual statistic estimating a parameter 3 based on the original

sample. Define the statistic d = 3- 3. We can apprordmate the distribution Of d

by the bootstrap distribution of d'" = 3g-3, for b = 1,2,...,B, where 3;; are the

estimates Of 3 based on repeated samples from the original sample. If we find dc

such that (l—a)100% Of all d‘fi’s are between —dc and dc, then the (l—a)100%

confidence interval about 3 is given by

(3.8) 3 a dc.’

Certaien for Big in Bmtetrep Eetimetion

Perhaps the most important application Of the bootstrap is in estimating the

distributions and standard errors of statistics based on independent Observations.

But in many problems of practical interests, the bootstrap is employed to estimate

an expected value (Hall, 1990). For example, if 3 is an estimate Of an unknown
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parameter 3, then we might want to estimate bias, E( 3—3), or the distribution

function of d = 0— a.

In the case of bias, using Efron’s notation, we have,

BIAS = 13(9) — 0 = 11(0-0)

Using a = (0—3) + 3

(3.9) 3=3—(3—3)=3-d for d=3—3,

we can approximate the distribution Of d by the distribution Of d* = 3" — 3

where 3'" is the version Of 3 computed from bootstrap sample {X"J‘,X‘;,...,X;},

rather than from the original sample {XJ,X,,...,XJJ}. Thus we have an estimate of

bias, BIAS given by

BIAS = 3" —3

and by 3.9 3 can be estimated by

"BOOT = 3" ("f " 3)

= 3- 3‘" + 3

(3.10) 3300.1. .= 23- 31‘

Equation 3.10 is thus the bootstrap point estimate Of the parameter 3 which

is corrected for bias. This method which is referred to as "pivoting" has been

stressed in many studies Of the bootstrap method for confidence intervals

(Abramovitch and Singh, 1985; DiCicciO and Tibshirani, 1987; Hinkley and Wei,

1984; Hall, 1990; and Schenker, 1985). In most instances, pivoting amounts to

"studentizing" or correcting for scale. However, in certain situations, pivoting is

difficult to sustain in problems where scale cannot be estimated in a stable way

(Hall, 1990). But if we perceive that the major advantage Of "standard" bootstrap

methods is the ability to construct confidence intervals Of particularly difficult

problems, and if we see respect Of transformation as a major prOperty, then pivoting

is advocated (Hall, 1990).



CHAPTER IV

DESIGN OF THE STUDY

Intro i n

The primary purpose Of the present study was to estimate the parameters Of

a two level nested hierarchical linear mixed model under a variety Of conditions.

One such condition which forms the focus Of the study is in estimating the model

parameters (fixed and random) in situations where the random error terms and sets

of random effects are not normally distributed. The also demonstrated the ability Of

the bootstrap algorithm in providing the estimates Of the fixed and random effects

of the model, generating bootstrap empirical distributions and standard errors of the

statistics and thereby setting confidence intervals about the parameters. This

chapter presents the methodology and design employed in the study.

Implementation of the study design required a method Of generating samples

drawn from pOpulations Of known parameters. Data generation and analysis were

performed on an IBM 3090 VF mainframe computer at Michigan State University.

Programs used in generating data and Monte Carlo simulations were coded in

Statistical Analysis Systems (SAS), mostly using Interactive Matrix Language

(SAS/IML). Data were generated in such a way so that sets Of data were sampled

from populations of known parameter values in order to provide a check for the

performance Of estimation procedures and their properties. Data were sampled were

the normal and double exponential (or Laplace) pOpulation distributions.

The normal distribution represented the situation where the classical

estimation methods are usable. The double exponential or Laplace distribution (an

38
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example of a distribution with long and fat tails) represented a departure from

normality. In order to assess the relative usefulness Of the bootstrap method,

estimation Of the mixed model parameters were studied under the two distributional

models (normal and double exponential) and three specifications of the population

intraclass correlation condition. Specification Of the intraclass correlation, the study

design, and parameter values are presented in the later part Of this chapter.

Generetion Of Det_a_

The uniform random number generator (UNIFORM) function in SAS/IML

was used to generate random uniform deviates in the interval (0,1). In certain

instances, this uniform random number generating function was used as a basis for

generating other random numbers by applying some standard linear transformations

to these uniform deviates. The SAS/IML software provides a procedure which

generates independent values from a standard univariate normal distribution. The

package also provides a procedure (REPEAT) which creates a matrix or vector by

repeating the values Of the argument. These three features Of SAS/IML were used

in generating data sets for the study.

In generating samples drawn from a pOpulation of known parameters, the

data created had to fit certain assumptions. Each subject’s Observed score YJJ was

assumed to have been influenced by a combination Of factors and effects. The pOOl

of factors and effects included the fixed effects factor or, a covariate X whose

coeficient is denoted by 3; the random efiects factor bJ which are assumed to be

distributed with mean 0 and variance 7?; and the random error term 6 also

distributed with mean 0 and variance 03. A typical Observed value YJJ-

containing all these features is generated through the equation.

(4-1) Yij = I‘ + “k + fixij + bj ‘l' ‘ij

where
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YJJ is the Observed value of subject i in context j;

a, is the effect Of level k Of the fixed factor;

XJJ is the covariate value Of subject i in context j whose coefficient is

denoted by 3;

bJ is the effect Of level j (context j) of the random factor;

is the random error term associated with subject i in context j.

With k = 1,2,...,P—2; j = 1,2,...,J; and i = 1,2,...,nJ, and by using the

matrix notation, it can be shown that Equation 4.1 is similar to Equation 2.9 in

Chapter II where the term X9: in 2.9 represents the first three terms of 4.1.

While the SAS/IML procedure NORMAL was utilized to generate

independent values from a standard univariate normal distribution, SAS/IML

program segments were coded tO generate double exponential variates. The most

direct way to generate double exponential (or Laplace) variates involves first

generating two uniform random variates, U, and U, in the interval (0,1). Set

XJ = -1n(UJ) and X, = —1 if U, < 0.5. If U, _>_ 0.5, then set X, = 1. Then the

variates Y defined by the equation

(4.2) Y = 1; xe,

are distributed as double exponential with mean zero and variance 2.

SAS/IML code segments used to generate the normal and double exponential

distributions are given in Appendix B.

St Desi n P eter Values

The structure Of data in the present study is assumed to involve a random

factor consisting Of J levels, nested within some fixed factor levels. The random
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factor may be characterized by contexts such as schools or countries and the fixed

factor characterized by sector (e.g. public, private, or religious) in the case of

schools as context. In the case Of countries as context, the fixed factor levels may

be taken to be levels Of economic or industrial deve10pment (e.g. developed, less

deve10ped, develOping or underdevelOped) or may be world regions.

As noted earlier, two design factors in this study are expected to influence

the success Of the estimation of model parameters. These are the pOpulation

distribution Of the random components and the population intraclass correlation.

The intraclass correlation denoted by p is given by

(4-3) p = T 2
73+a§

 

where 03 and r3 are the intra— and inter—class variances Of the model

respectively. As Raudenbush and Bryk (1988) indicated, the intraclass correlation

has two useful and mathematically equivalent interpretations. First, it is the

correlation between pairs Of values within the J contexts such that it measures the

degree Of dependence among Observations sharing a context. Secondly, as a ratio, it

represents the prOportion Of the total variation in the response values which is

between contexts. Estimation Of variance components is Often dimcult when p is

quite small, sometimes resulting in negative estimates of the variance components.

Due to this feature, three levels of the intraclass correlation for each of the two

distributional models were introduced in the study as part Of the design factors. In

order to vary the intraclass correlation, a3, was fixed at 100 while 73 was allowed

to take values 1, 5.26, and 25 resulting in p taking values of 0.01, 0.05, and 0.20

respectively. Table 4.1 presents design factor combination trials.



42

Table 4.1

Design Factor Combination Trials*

Distribution Model

 

 

 

Intraclass Double All

Correlations (p) Normal Exponential

0.01 a b i

0.05 c d

0.20 e f k

All g h l

’" 400 trials (different sets Of data) were specified

for each cell (a through f).

The design factor specification shown in Table 4.1 provided for a total of

2400 Monte Carlo simulation trials, each consisting Of a different data set. As a

result, 1200 trials were performed for each of the two distributional models (normal

and double exponential) and 800 trials for each Of the three levels Of the intraclass

correlation, such that, g = h = 1200; i = j = k = 800 and g + h = i + j + k = 2400.

The specific mixed model used in the study has two factors, a random factor

with J levels, nested within a fixed factor with three levels and a micro level

covariate variable. However, it should be noted that it is possible to extend this

model by including additional covariates (at micro or macro level). For the purpose

of the present study, all data sets used in the study were unbalanced (unequal

number of subjects in each context) consisting Of 50 macro units.

Fixing the parameter value Of r9 at unit (near boundary value Of zero)

provided an additional advantage to the study. This is due to the interest Of the

study in estimating the random effect variance component 73 near the boundary

conditions. It is in these situations where most variance component estimation
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procedures experience problems Of giving negative estimates Of 1’3 when the

parameter value they are estimating is essentially positive. Thus, in an attempt to

understand the performance of the bootstrap procedure in estimating 73 near

boundary conditions, out Of the total 2400 trials 800 (or 33.3%) were performed for

‘r2 = 1 (p = 0.01), 800 (or 33.3%) for r3 = 5.26 (or p = 0.05), and 800 (or 33.3%)

for :r’ = 25 (or p = 0.20).

It should be emphasized that, in using the bootstrap algorithm to estimate

the distribution Of the parameters Of the mixed model described in the study,

estimation is done at each Of b bootstrap replication, for b = 1,2,...,B, where B is

a large number. For the present study, B was set at 200 bootstrap replications for

each trial shown in Table 4.1.

1m lem nt tion f the B ts ra usin MIN UE

The MINQUE method Of estimating the variance components requires using

weights wk associated with b, for k = 0,1. Ordinarily, arbitrary weights are

chosen provided one ensures that F,1 exists. According to Rao (1972), regardless

Of the choice Of weight, wk’s, the MINQUE estimators will still possess the

properties Of unbiasedness, translation invariance and minimum norm. However,

though the MINQUE estimators may generally possess the prOperties used in

deriving the estimators (unbiasedness, translation invariant, and minimum norm),

One would expect that, in practice, these estimators may be as good as the prior

weights that were utilized. In other words, the MINQUE estimators depend to a

certain extent on the prior weights used in the norm. Indeed, this condition was the

motivation behind Brown (1976) who suggested iterative MINQUE (I-MINQUE).

But since I—MINQUE estimators are Obtained iteratively, they do not possess the

properties used in deriving MINQUE. Thus, I—MINQUE estimators are not

necessarily unbiased or "best" in any sense (Searle, 1979).
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Instead of using arbitrary weights in implementing MINQUE, the present

study employed an ANOVA—type method Of independently estimating the variance

components Of the mixed model as in Hanushek (1974). The values Of this prior

estimates are used to derive the weights used in MINQUE. Using Hanushek’s

method, we fit ordinary regression model with all independent variables as

predictors. The prior estimator, 3J3; Of the random error variance 03 is taken as

usual MSE in the multiple regression model. However, the Hanushek estimator 3J3;

for the variance, 73 Of the random eflects Of the model is given by

. w—( N—P)33
_ II

where w is the sums of squares of residual in the regression model

 

T = E tr{SJ<(XJXJ)'ISJ-} for SJ : (le) vector of column sums Of XJ

for context j

N = sample size, and

P = number of fixed effects parameters in the model.

In order to use the Hanushek estimators 3J3; and 3J1; to derive the weight

w, and w,, define the ratio RJJ = dJaJ/iJzJ. The weights w, and w, can then be

Obtained by

R

 

1
(4.5) w = H and w = .

0 I+R, 1 1+1}; ,

1'2

We notice that wo= l—p and wJ=p where p = u . The value p is

the intraclass correlation based on the Hanushek estimates, “Ar; and 3J1 Of r? and

03 respectively. The weights w0 and w, Obtained through 4.5 are the values used

in the MINQUE procedure. It is reasonable to expect that the MINQUE based on

weights established from some prior estimates of 03 and 'r2 could be an

improvement over the conventional MINQUE based on arbitrary weights.
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Implementation Of the bootstrap algorithm to estimate the parameters of the

mixed, hierarchical linear model in the present study requires a random sampling

procedure with replacement. First a random sample of J macro units (e.g.

countries, schools) with replacement from the available sample Of J macro units is

drawn. From each of the selected macro units, a random sample Of size nj micro

units are selected with replacement for j = 1,2,...,J. The resulting data set is

termed the bootstrap replication sample (Efron, 1981). Based on the bootstrap

replicated sample, the MINQUE procedure is used to determine the estimate Of the

parameters Of the model. The process is repeated a large number B times yielding

B MINQUE estimates. This technique may be presented in a sequence of steps as

follows:

Step 1. Construct the distributions FJ by assigning mass 1/J to each

Of the macro units.

Step 2. From the J macro units, select a random sample of size J

with replacement

Step 3. For each Of the J selected macro units containing nJ micro

units, construct distributions FJJj by assigning mass 1/nJ- to

the jth macro unit, for j= 1,2,...,J.

Step 4. From each of the J macro units whose distributions were

constructed at Step 3 above, draw a random sample size nJ

with replacement for j = 1,2,...,J.

At the end Of Step 4, the resulting data is termed the bootstrap replicated samme.

The vector of Observations at this stage is denoted by Y*.

Step 5. From the bootstrap replicated data set generated at Step 4,

determine the MINQUE estimate Of the parameters Of the

model given by 6’" and (1*.
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Step 6. Independently, repeat 2, 4 and 5 a large number B times to

Obtain a sequence of MINQUE estimates Of the parameters Of

the model

53;; and {1; for b = 1,2,....B

A

Step 7: Observe the distribution Of the values of; and Er; as the

empirical bootstrap distribution Of the estimates Of the

variance component and the fixed effects Of the model.

The bootstrap standard error Of each of the component of the estimates is given by

(4.6) s.e.(3'") = [(3.1)-él (g), _ pmi/z

. B .. .. .. ..

where 3.* = B—le 3: for 3'" being any one Of the components Of a or a.
81 :- ~

The Computer Programs

Three main tasks in this study required the use Of a computer program.

These were: Generating data sets from population with known parameter and

distribution; Monte Carlo simulations; and bootstrapping. Independent computer

programs were coded for each task using SAS/IML package.

SAS/IML available in the MSU IBM 3090 VF mainframe computer system is

a double precision and multilevel, interactive programming language. SAS/IML

software is both flexible and powerful since it combines the advantages Of high—level

and low—level languages (SAS/IML User’s Guide, 1985, p. xi).

Though SAS provides a procedure which computes the MINQUE that

corresponds to the rather uninformative prior by using zero weights as an Option to

PROC VARCOMP, this procedure does not handle models that involve covariates.

The independent variables handled by the procedure PROC VARCOMP are limited

to main effects, interaction and nested effects; but no covariate effects are allowed in
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the PROC VARCOMP Statement (SAS User’s Guide: Statistics, 1985, p. 819).

However, the present study is not limited to models which do not involve

covariates. Consequently, the more flerdble software SAS/IML was utilized in the

study, not only to estimate parameters of the model but also tO generate data.

As indicated earlier in this chapter, the first computer program generates

sample Observations, Y and covariate X, and passes them over to the program

that implements the bootstrap algorithm. The bootstrap estimates at each

replication are written to a standard SAS file for further analysis. The Monte Carlo

simulation computer program is implemented like the bootstrap program except

that while the bootstrap samples data from a sample generated from the pOpulation,

the Monte Carlo simulation program samples data directly from the population.

The bootstrap SAS/IML code used in this study is thus flexible and available to be

used to estimate parameters of a model using data obtained from real world

research.

Applicability of the bootstrap method using the present SAS/IML code is

demonstrated in the present study. The computer code and method are applied on

actual field research data to estimate the parmeters of the model, the sampling

distribution Of the statistics and to set bootstrap confidence intervals about the

parameters Of teachers’ self—efficacy prediction model. Estimation results for the

fixed and random effects of the teachers’ self—eficacy model are presented in

Chapter V of this dissertation.



CHAPTER V

APPLICATION OF BOOTSTRAP AND MINQUE:

HIGHER ORDER TEACHING

Intr ction

The bootstrap is a new method whose time has come with the advent Of

modern computers. Though its applicability in generating sampling distributions Of

statistics and in construction of confidence intervals about parameters is highly

promising, the method has not been widely used in educational and social science

research. Strengths Of the method are Often demonstrated in situations where

parametric modeling is difficult and/or normal assumptions are not possible. These

situations are not uncommon in educational and social science research.

The interest Of the present study was to demonstrate the Operation Of the

bootstrap in a two—level hierarchical linear model. The focus Of the study was upon

the estimation Of the group and individual level variances and fixed efiects

parameters Of the mixed model. A highly promising approach Offered by the

method in this study was that Of estimating the sampling distribution of the

statistics and thereby setting confidence intervals about the parameters. The study

used computer-simulated data tO extensively assess the distributional behavior Of

parameter estimates under varying distributional assumptions Of the errors and sets

of random effects parameters.

In this chapter, applicability Of the bootstrap algorithm on data originating

from a real research situation is demonstrated. The method is applied on the actual

field research data to estimate the parameters of the model, the sampling

distribution of the estimators and to set the bootstrap confidence intervals about
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the parameters. Data used in this demonstration Of the applicability Of the

bootstrap method was part Of the data gathered earlier to investigate the contextual

efiects on the self-efficacy Of high school teachers.

Dfieription Of data and variables

The data was Obtained through a survey Of teachers in sixteen schools who

taught Mathematics, Science, English, or Social Science. Each teacher was assigned

to teach one or more classes in the school. Though the individual teacher was

viewed as the basic unit Of analysis, each teacher provided information on several

classes. As a result, we view the teachers as the "macro" units Of analysis with the

classes they taught as the "micro" units Of analysis. The teacher effects therefore,

constitute the random factor of the model.

The dependent variable in the study was teachers’ perception Of self—efficacy

which was measured at the class level. A measure of teachers’ self—efficacy

represents a person’s perceived expectancy Of enacting a desired level or type of

performance through personal effort (Bandura, 1986). For instance, a teacher who

possess a high level Of self-efficacy will be of the view that, no matter the nature Of

students or facilities he or she is provided with, he or she will produce an excellent

level Of performance. On the other hand, a teacher with low self—efficacy will feel

paralyzed if he or she is given "poor" children. The phenomenon has been identified

to have an effect on both students’ and teachers’ performance (Fuller, et.al., 1982).

In the present study, the extent to which teachers’ self—efficacy is influenced

by institutional, classroom and individual teacher characteristics is examined.

Academic subject taught (Mathematics, Science, English, or Social Science)

represented the primary fixed factor Of the model used to predict teachers’

self—efficacy. Other independent variables Of the model which were viewed as

covariates fell into two categories, namely, between— and within—teacher variables.
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The between teacher variables included: STAFCOOP, COOperation Of staff;

TCONTROL, Teacher control; and PLEADER, Principal leadership. The within

teacher (or classroom) level independent variables included: STUDACH, class

average student achievement level; LVLPREP, class level Of preparation; and

SIZE, class size.

Selection of valid data for the variables of interest resulted in a sample Of 244

teachers who provided information on 1634 classes taught. Breakdown of the

number of teachers and number Of classes by academic subject areas were as follows:

Mathematics had 63 teachers with 370 classrooms; Science had 59 teachers with 391

classrooms; (English had 69 teachers with 509 classrooms; and Social Science had 53

teachers with 364 classrooms. The average number Of classes for which each teacher

provided information was about 6.6.

The Model Stetements

We begin by posing a within-teacher model that defines a "micro" equation

with EFFICACY as the response variable and LVLPREP, SIZE and STUDACH as

"micro" regressors which are identical for each teacher j as,

(5.1) (EFFICACY)JJ = flOJ +1131 (SUBJECT) hJ + flJJ(LULPREPJ)j

+ ,6,J(SIZEJ)J- + 33J(STUDACHJ)J + cJJ-

where j= 1,...,J teachers and i= 1,...,nJ classes for each teacher j. Since 1%,

fiJJ, fi,J, and BJJ are defined for each teacher, we can pose the between—teacher

model using these coefficients as responses similar to Equations 2.2 and 2.3 in

Chapter H Of this dissertation. Specifically, we consider the intercept fiOJ to be

random and dependent on the between—teacher independent variables such that the

associated "macro" model is given by



51

(5.2) fioJ- = 700 + 70, (STAFCOOP)J + 70,(TCONTROL)J +

70, (PLEADER)J- + eJJJ

where j = 1,2,...,J teachers. Combining Equation 5.1 and 5.2 yields,

(5.3) (EFFICACY)JJ = [70° + 70J(STAFCOOP)J- + 70,(TCONTROL)J-

+ 7,, (PLEADER)J + h}: (SUBJECT) hJ + fiJJ-(LVLPREPJ)J

+ fl,J-(SIZEJ)J + 33J(STUDACHJ)J-] + [eoJ- + eJJ]

similar to Equation 2.7 in Chapter H. Model Equation 5.3 can be written in the

general linear matrix notation as in Equation 2.8 in Chapter II for teacher j with,

(5.4) Y1 = (EFFICACY)JJ-

4

+ 7,, (PLEADER)J + 1231 (SUBJECT) hJ + flJJ(LVLPREPJ)J-

+ s,J(SIZEJ)J + fl,J(STUDACHJ)J-

(5.6) ngj = eoj for bj = eoj and Zj = (1,...,1)’

(5.7) s = eJJ. Equations 5.5 and 5.6 represent the fixed and random efiects

Of the model respectively, while Equation 5.7 is the expression for the random errors

Of the model. The intent then is to estimate both the fixed and random effects Of

the model on the measure Of teachers’ self—efficacy.

Estimation Precedme

The ability Of the bootstrap to estimate parameters Of the model given in

Equation 5.3 was demonstrated through the used of MINQUE. For each parameter,

the usual MINQUE estimates were provided based on the original sample. The

bootstrap estimates based on B = 1000 repeated resampling with replacement were

also obtained. Due to the bootstrap’s ability to generate sampling distributions
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through resampling, 95% bootstrap confidence intervals about each Of the

parameters were also provided.

Estimates were provided for a total Of 14 parameters Of the model. There

were four effect levels of the factor, SUBJECT, denoted by aJ, 01,, 01,, and at,J

corresponding to Mathematics, Science, English and Social Science respectively.

Parameters for other fixed factors (or covariates) were denoted by (3,,fi,,3,)

correSponding tO the within teacher (or class—room) effects (LVLPREP, SIZE,

STUDACH) and (7J,7,,7,) corresponding tO the effects between teacher

(LVLPREP, SIZE, STUDACH, STAFCOOP, TCONTROL, and PLEADER).

Besides SUBJECT, all other fixed factor were viewed as covariates in the model.

The inter—teacher variance Of the model was denoted by r2 while 0% denoted the

variance Of the random errors (or intra—teacher variance). In addition, the

intra—teacher correlation denoted by p, and computed as in Equation 4.3 in

Chapter IV and the constant common to all Observations denoted by 700 were

estimated through both MINQUE and bootstrap.

Results Of Estimation

Table 5.1 presents the MINQUE and bootstrap results for the estimation Of

the fourteen parameters of the teacher self-efficacy prediction model. The results

provides the usual MINQUE estimate, the bootstrap estimate which is the average

over all B = 1000 bootstrap replications, the bootstrap standard error, and 95%

bootstrap confidence intervals about each parameter. The bootstrap estimate Of

bias given by 3* — 3, where 3* is the average Of the estimator over the B

bootstrap replications and 3 is the usual estimator based on the original sample is

also represented. For purposes Of consistency with notation given by Efron (1979),

the bootstrap estimate of bias is denoted by BIAS.
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From Table 5.1, it is shown that the average of the bootstrap estimates of

the parameters over B = 1000 replications did not differ much from the usual

MINQUE estimates. In addition, the bootstrap feature which was not available

through the MINQUE procedure was the estimation of the standard error of the

estimate. The statistic showed low bootstrap standard errors of the estimate for all

fourteen parameters of the model. The lowest value of the bootstrap estimate Of the

standard error was observed for the estimates of the effect of class SE and the

estimate of the intra—teacher variance, 3:. For these two parameter estimates, the

bootstrap estimate of bias was less than 0.002. Except for the estimator of the

constant, 7,, whose bootstrap estimate of bias was 0.1124, the bootstrap estimate

of bias for all other statistic was no more than 0.04.

An accomplishment of the bootstrap method which is not readily available

through the usual MINQUE was the construction of confidence intervals about each

of the parameters of the model. The 95% bootstrap confidence intervals were used

as a means of testing for the significance Of both the fixed and random effects on the

teachers’ self—efficacy. Based on the 95% confidence intervals, the results showed

that all factors with the exception ofMDhave statistically

significant effect on teachers’ Self—Effieecy.

The intra—class correlation denoted by p was significantly difierent from

zero, with 0.3204 and 0.3314 being the MINQUE and bootstrap estimates of p

respectively. Estimates of p through both methods indicated that, approximately

30% of the total variance in teachers’ Self—Efficacy is between teachers. The

MINQUE and bootstrap estimate of the inter—teacher variance denoted by 1" was

0.1320 and 0.1397 respectively.

In some problems of practical interest, we may wish to Observe the behavior

of the statistic used to estimate a parameter. This requires knowledge of the

sampling distribution of the statistic, Often based on the Gaussian theory. In
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situations where this theory is not available, it is Often difficult to draw conclusions

about the sampling distribution of the statistic. In such situations, the bootstrap

Oflers perhaps one of the most significant contributions to statistics. The method’s

applicability to even complicated problems involving statistics which may not have

closed form expressions may be a major promise of the bootstrap. But the

bootstrap can be applied to simple problems as well.

In the present study, the bootstrap method was used to generate the

sampling distributions of the statistics used to estimate the parameters Of the

teachers self-efficacy prediction model. The distributions were based on 1000

bootstrap replications.

Figure 5.1 presents three percentage polygons of the estimators of the

inter—teacher variance, r’, the intra—teacher variance, cg, and the intra—teacher

correlation, p, based on B = 1000 bootstrap replications. Though the distribution

.. 2

of 1’" appeared to be slightly positively skewed, the distributions of all the three

estimators are fairly symmetric with very low dispersion.

Figure 5.2 presents four percentage polygons of the estimators of the effects

of Mathematics, (1, Science, 01,, English, (1,, and Social Science, a:4 on teachers’

self—efficacy based on B = 1000 bootstrap replications. All four charts represent

the empirical bootstrap distribution of the estimator of SUBJEQT effects on the

teachers’ perception of eelf—effigey appears to be fairly symmetric with moderate

variability. However, the estimates of the effect of Mathematics, Social Science,

and Science seem to be slightly negatively skewed. But most importantly, all the

charts show that the replicated estimates are centered extremely close to the

MINQUE estimates Of the effects of Mathematics, Science, English, and Social

Science.
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Figure 5.1
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Figure 5.2

Percentage polygons for the bootstrap estimate of the efiects of Mathematics,

Science, English, and Social Science on the teachers’ self-eficacy

(B = 1000 replications).
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CHAPTER VI

SIMULATIONS AND BOOTSTRAP RESULTS

Overview

The purpose of the study was to demonstrate the use of the bootstrap in

providing estimates of the parameters of a general two level mixed hierarchical

linear model, determining the standard error of the estimates and their empirical

bootstrap distributions. The objective was to observe the behavior of the bootstrap

and MINQUE estimates of the fixed effects and the variance components of the

model under several conditions including situations where the normal distributional

assumptions may be violated. The study examined the influence of the magnitude

of the population intraclass correlation and the tail size of the distribution on the

estimation of the parameters of the mixed model. Double exponential (or LaPlace)

represented a distribution with fairly long and thick tails.

MINQUE and bootstrap abilities to estimate parameters of the mixed HLM

model were demonstrated by estimating the parameters from a large number of

independent samples generated from pOpulations of known distributions and

parameter values. Applying the estimation procedures on sets of data generated

from a pOpulation of known parameters provided a means of evaluating the relative

effectiveness of the methods of estimation. The independent samples consisted of 50

groups with each group containing 25 to 45 observations.

Estimation of parameters was studied for two underlying population

distributions, namely the normal and double exponential (or Laplace), and three

levels of the intraclass correlation. These two design factors provided for a total of

six design factor combinations (or cells). A total of 400 trials (based on independent

58
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samples) were performed for each design factor combination. As a result, 2400

Monte Carlo simulation trials, each based on a different data set, were performed

for the study. MINQUE and bootstrap point estimates, the 95% and 90% bootstrap

confidence intervals, empirical bootstrap distribution and standard errors were

provided for each trial. The MINQUE and bootstrap summary results are presented

in the remaining part of this chapter.

Results of Estimation Procedures

Simulated data represented observations from two pOpulation distributions of

random errors and sets of random effects characterized by three levels of the

intraclass correlation. The mixed model contained seven parameters of which three

were random effects parameters and four fixed. The random effects parameters were

the within and between group variances denoted by a: and 72 respectively and

the intraclass correlation denoted by p. The fixed effects parameters included 0:1,

0:2 and a:3 for levels of the fixed factor and )9, the coefficient of the covariate. The

MINQUE and bootstrap estimates were obtained for each of the seven parameters of

the model. While one MINQUE estimate was obtained at each trial, (based on the

original sample) the bootstrap estimate at each trial was the average over 200

bootstrap replicated values. Thus, the average of the bootstrap estimate over 400

trials is the average of the 400 averages each computed from 200 bootstrap

replications. Ten functions of the MINQUE and/or bootstrap estimates were

computed for the six non—redundant estimates for both models under normal and

double exponential error terms and sets of random effects at each trial. The average

and stande deviation of the estimates of these functions over 400 trials for each

design factor combination (cells denoted by a through f of Table 4.1 in Chapter

IV) are presented in Tables 6.1 through 6.6.
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Ten functions of the estimates consisted of: MINQUE and bootstrap

estimates, the bootstrap estimate of bias denoted by BIAS, the MINQUE bias and

bootstrap estimate of bias denoted by D1 and D, respectively, the MINQUE

ratio, R, and its correSponding bootstrap ratio denoted by R,, the MINQUE and

bootstrap mean square error denoted by MSEl and MSE2 respectively, and the

bootstrap]MINQUE measure of relative efficiency.

Table 6.1 presents the average and standard deviation of ten functions of :r’

and/or "r: over the 400 trials under the normal and double exponential error terms

and sets of random effects for three levels of the intraclass correlation. From Table

6.1 it is shown that the bootstrap overestimated 13 with a bias of 0.3432 and

0.3765 under normal and double exponential respectively for p = 0.01. For this low

value of the intraclass correlation, the bootstrap estimate of bias, denoted by BIAS

and given by r} — "r“ was also high and positive indicating that the bootstrap

method on average overestimated the value of 7’2 under both normal and double

exponential error terms and sets of random effects of the model. At this level of the

intraclass correlation (p = 0.01), though MINQUE on average also overestimated

1’, its bias was relatively low, at 0.0292 under normal and 0.0597 under the double

exponential distribution. The ratio, R2 expected to be 1.00 was observed at

1.0292 while its bootstrap estimate, R1 was 0.7811 under the normal distribution.

The same ratios were 1.0597 and 2.3032 respectively under the double exponential.

At this level of the intraclass correlation condition, the bootstrap estimate seemed

to be more efficient both under the normal and double exponential. From these

results, it is apparent that MINQUE and bootstrap estimates were fairly close both

under the normal and double exponential distributions.
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Table 6.1

Average and standard deviation of the functions of the estimates

7’ and/or 73 under the normal and double exponential

error and sets of random efi’ects for p = 0.01, 0.05, and 0.20.

 

 

 

Nor-a1 Double Exponential

Value of p Estinate Par.Value Average S .0. Average S .D .

0.01 Bootstrap, 73 1 .00 1 .3432 0. 7495 1.3765 0. 7298

MINQUE, 1" 1.00 1 .0292 0 .9010 1 .0597 0 .8879

01154342 0.3140 0.2113 0.3168 0.2207

0573—12 0.0292 0.9010 0.0597 0.8879

0,:73—7 0.3432 0.7495 0.3765 0.7298

3572/72 0.7811 11.0436 2.3032 14.4144

R2=;"/1'2 1.0292 0 .9010 1.0597 0 .8879

Isrz1=(}2—11)2 0.8105 1.2806 0.7899 1.2086

lSE2= (7.2—r?) 2 0 .6781 1 .3690 0.6729 1 .2438

Rel. Efficiencyo 0.8366 0.8519
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Table 6.1 (continued)

 

 

 

 

 

 

 

Nor-a1 Double Exponential

Value of )0 Estimate Par.Value Average 5 .D. Average S .D.

0.05 Bootstrap, 7'} 5.26 5.2900 1.6634 5.5309 2.1743

MINQUE, 7" 5.26 5.1755 1.6621 5.3996 2.1786

BIAS=73~72 0.1144 0.1201 0.1313 0.1316

n,=;’—13 —0.0845 1.6621 0.1396 2.1786

Dzzifi—r’ 0.0299 1.6634 0.2709 2.1743

3,91%? 1.0261 0 .0314 1.0354 0.0972

11,:13/r2 0 .9839 0 .3160 1.0265 0.4142

“3142242)? 2.7627 3.5337 4.7539 8.4574

ISE2=(73—7’)’ 2.7610 3.6216 4.7891 8.7037

Rel Efficiencyo 0.9994 1.0074

0.20 Bootstrap,72 25.00 24.9553 5.8896 25.5167 8.8370

MINQUE, }’ 25.00 24.8520 5.8766 25 .4018 8.8398

BIAS=73—;’ 0.1032 0.2050 0.1149 0.2077

0,4243 —O.1480 5.8766 0.4018 8.8398

[12:72—72 —0.0447 5.8896 0.5167 8.8370

31:;2/73 1 .0043 0 .0085 1 .0052 0.0089

32:73/7’ 0.9941 0.2351 1.0161 0.3536

1313142942)“ 34.4700 49.1902 78.1073 153.6137

Iss2=(rz—r’)’ 34.6030 49.6024 78.1651 154.7723

Rel. Efficiencyo 1.0039 1.0007

 

 

 

 

o Rel. Efficiency = MSE2/MSE1
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At the second level of the intraclass correlation (p = 0.05), the average

values of 7" and 72 were 5.1755 and 5.2900 in the normal case compared to the

true parameter value set at 5.26. At this level of the intraclass correlation, both the

bootstrap and MINQUE estimates were very close to the parameter 7" with 0.0299

and —0.0845 as their respective biases under normality. The estimates were slightly

off under double exponential with 7’ = 5.3996 with a bias of 0.1396 and

£2 = 5.5309 with a bias of 0.2709.

Under this condition of the pOpulation intraclass correlation however, the

strength of the bootstrap was demonstrated in the estimates R, and R2. The

average value of R, was 1.0261 under the normal and 1.0354 under the double

exponential compared to the average values of R2 which was observed at 0.9839

under the normal and 1.0265 under the double exponential.

Perhaps the most successful estimation of ‘r’ was attained in the situation

where the pOpulation intraclass correlation was 0.20, particularly under the normal

distribution. Compared to the true parameter value of 7’ = 25, 73 was observed

at 24.9553 and 7” at 24.8520 under the normal. The average values of 7" and 73

were 25.4018 and 25.5167 respectively under the double exponential distribution.

Based on the bias of these estimators, the results shows that the bootstrap with a

bias of -0.0447 and the MINQUE with a bias of -0.1480 were very close under the

normal distribution. The bootstrap estimate of bias was also observed at 0.1032

under the normal. The bias for the MINQUE and the bootstrap estimates were

observed at 0.4018 and 0.5167 respectively under the double exponential, with the

bootstrap estimate of bias equal to 0.1149.
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It may be important to note that, in both the normal and double exponential

distributions, the average values of R, and R, were quite close to 1.00. In

particular, the ratio R, was surprisingly close to 1.00 indicating a very successful

bootstrap estimation process. The bootstrap replicated values of R, were not only

centered near 1.00 but also were less variable under both the normal and double

exponential. The measure of relative efficiency for the two estimators was also

extremely close to 1.00 both under the normal and double exponential.

Figure 6.1 displays the percentage polygons of the 400 bootstrap and

MINQUE estimates of 7’ under the normal and double exponential errors and sets

of random effects at each of the three levels of the pOpulation intraclass correlation.

At p = 0.01, both MINQUE and the bootstrap estimates at each trial were centered

near the true parameter value set at 1.00 under both the normal and double

exponential. However, the percentage polygon for the bootstrap was positively

skewed while that of the MINQUE was nearly symmetrical under both the normal

and double exponential distributions. This is mainly due to the fact that the

bootstrap was protected from giving negative estimates of 7’ while MINQUE was

not.

From Figure 6.1 it is apparent that a greater mass of observations were

around 1.00 for the bootstrap frequent polygon than for the MINQUE polygon. It

can therefore be argued that, at this level of the pOpulation intraclass correlation,

the bootstrap seemed to be a good complement to the MINQUE estimator of 7’.

Percentage polygons for the 400 MINQUE and bootstrap estimates under the

normal and double exponential distributions at p = 0.05 shows that, both

MINQUE and the bootstrap were free of giving negative estimates and both were
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Figure 6.1

Pcrccnuse polygons for the MINQUE and bootstrap estimate of 13 over 400

trials under the normal and double exponential errors and sets of random effects for

p = 0.01, 0.05, and 0.20.
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centered near the true parameter value of 72 which was set at 5.26. However, for

both MINQUE and the bootstrap, the estimates were more variable under the

double exponential than under the normal distribution.

The difference in the variability of both the MINQUE and bootstrap

estimators between the normal and double exponential were more apparent at

p = 0.20 (see Figure 6.1). The percentage polygons for both estimators showed

more variability under the double exponential than under the normal. Estimation

results at the three levels of the pOpulation intraclass correlation show that, though

the bootstrap seems to be a more stable estimator of 72, particularly at the low

level of the intraclass correlation, the characteristic of the tails of the distribution

seem to be equally affecting the bootstrap and MINQUE in estimating 7’.

Table 6.2 presents the average and standard deviation of the ten estimable

functions of 6: and/or :72 over 400 trials under the normal and double

exponential error terms and sets of random effects for three levels of the population

intraclass correlation. From Table 6.2 it is shown that the bootstrap slightly

underestimated a: under both the normal and double exponential distributions for

p = 0.01. MINQUE slightly underestimated a: under normality but slightly

overestimated a: under the double exponential for p = 0.01.

At this level of the pOpulation intraclass correlation, the bias for MINQUE

was -0.0680 under the normal and 0.0698 under the double exponential. The bias

for the bootstrap estimate was —0.2025 under the normal and —0.0730 under the

double exponential. The bootstrap estimate of bias was observed at -0.1344 under

the normal and —0.1428 under the double exponential. Average results for R, and

R2 demonstrated a very successful estimation process at this level of the pOpulation

intraclass correlation. R, was observed at 0.9987 for the normal and at 0.9986 for
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Table 6.2

Average and“standard deviation of the fimctions of the estimates

:72 and/or a} under the normal and double exponential errors

and sets of random effects for p = 0.01, 0.05, and 0.20.

 

 

 

 

 

 

Normal Double Exponential

Value of p Estinate Par.Value Average S .D. Average S .D .

0.01 Bootstrap}: 100.00 99.7975 3.6352 99.9270 5.9080

MINQUE, 3’ 100.00 99.9320 3.6223 100.0698 5.9100

BIAS=6§—6’ —0.1344 0.2331 —0.1428 0.3939

0562—63 —0.0680 3.6223 0.0698 5.9100

0,:63—62 —0.2025 3.6352 —0.0730 5.9080

1156}/33 0.9987 0.0023 0.9986 0.0039

15:69:13 0.9993 0.0362 1.0007 0.0591

Iss1=(§3—a’)2 13.0927 17.0420 34.8462 50.6894

ls152=(az—o’)2 13.2225 17.1911 34.8222 51.0716

Rel. EfficiencyQ 1.0099 0.9993
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Table 6.2 (continued)

 

 

 

 

 

 

 

 

 

 

Nornal Double Exponential

Value ofp Estinate Par.Value Average S.D. Average S.D.

0.05 Bootstrapp} 100.00 99.6360 3.4799 99.9349 5.8466

MINQUE, a2 100.00 99.7693 3.4733 100.0755 5.8629

3115:3242 -0.1333 0.2398 -0.1406 0.3942

9502—03 —0.2307 3.4733 0.0755 5.8629

ll,=o:—a’ -0.3640 3.4799 —0.0651 5.8466

11,-;63/6’ 0.9987 0.0024 0.9987 0.0039

R3=0’2/02 0.9977 0.0347 1.0008 0.0586

ISE1=(§3—a’)’ 12.0867 17.0071 34.3938 49.9322

lSE2=(O’2—0’2)2 12.2122 17.2576 34.1013 50.2230

Rel. EfficiencyQ 1.0104 0.9915

0.20 Bootstrap,03 100.00 100.0437 3.7669 99.7328 5.7180

MINQUE, 3’ 100.00 100.1660 3.7717 99.8545 5.7151

BIAS=62-6’ —0.1223 0.2361 —0.1216 0.3878

D,=0’2—02 0.1660 3.7718 —0.1455 5.7151

”2:02—02 0.0437 3.7669 —0.2672 5.7180

3563/63 0.9988 0.0024 0.9988 0.0039

' lt,-_-¢}’/a2 1.0017 0.0377 0.9985 0.0572

lSEl=(§3—a’)’ 14.2177 19.9419 32.6019 44.6796

ISE2=(O'3—O’2)2 14.1557 19.9124 32.6852 45.4206

Rel. EfficiencyO 0.9956 1.0026
 

o Rel. Efficiency = MSE2/MSE1
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the double exponential while R, was observed at 0.9993 under the normal and at

1.0007 under double exponential.

Similarly, surprisingly accurate results were observed at the 0.05 level of the

intraclass correlation. At this level, the average of bootstrap estimate of a: was

observed at 99.6360 with a bias of —0.3640 under the normal and at 99.9349 with a

bias of -0.00651 under double exponential. The average of the MINQUE estimate

of a: was observed at 99.7693 with a bias of -0.2307 under the normal and at

100.0755 with a bias of 0.0755 under double exponential.

Compared to the expected ratio of the estimates at 1.00, both MINQUE and

the bootstrap very closely estimated the ratio with R, = 0.9987 both under the

normal and double exponential. R, was observed at 0.9977 and 1.0008 under the

normal and double exponential respectively. At the two levels of the intraclass

correlation condition (p = 0.01 and p = 0.05), the bootstrap and MINQUE were

very close both under the normal and double exponential distribution.

At the 0.20 level of the intraclass correlation, both MINQUE and the

bootstrap slightly overestimated a: under the normal and slightly underestimated

a: under double exponential. The bootstrap average was closer to the true value of

the parameter than the MINQUE with a bias of 0.0437 under the normal

distribution. On the other hand, the MINQUE was closer to the parameter than

the bootstrap with a bias of —0.1455 under the double exponential distribution.

Average values of R, and R, were very close to their expected value (1.00) at this

level of the intraclass correlation under both the normal and double exponential

distributions.

On average therefore, results in Table 6.2 shows that both MINQUE and the

bootstrap very closely estimated the parameter a: under both the normal and
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double exponential errors and sets of random effects at all three levels of the

intraclass correlation. However, at all three levels of the intraclass correlation, the

standard deviation of the functions of the estimates was relatively higher under

double exponential that under the normal distribution. Regardless of the underlying

distribution of the errors and sets of random effects of the model, the estimation of

the ratio of the estimators, R, and R, was quite close to 1.00 at all levels of the

intraclass correlation.

Figure 6.2 displays the percentage polygons of the 400 bootstrap and

MINQUE estimates of a: under the normal and double exponential errors and sets

of random efiects at each of the three levels of the pOpulation intraclass correlation.

From Figure 6.2 we see that, at all levels of the pOpulation intraclass correlation,

the bootstrap estimator followed the MINQUE quite closely. Percentage polygons

for both estimators were centered near the true parameter value set at 100.

However, differences in variation of the estimates by distribution was quite obvious.

The spread of both MINQUE and bootstrap frequent polygons was clearly higher

under the double exponential than under the normal distribution. For the

estimation of 0:, therefore, it can be argued that while both MINQUE and the

bootstrap fairly closely estimated 0:, their efficiency was severely affected by the

nature and size of the tails of the distribution of the errors and sets of random

effects. Both estimators were less efficient under a distribution with long and thick

tails (like that of the double exponential) than under a distribution with short and

lighter tails.

The intraclass correlation is given as a function of 7a and 0?, whose

formula is shown in Equation 4.3. It is the index which measures the degree of
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Figure 6.2

Percentage polygons for the MINQUE and bootstrap estimate of a: over 40

tdflsundathenomaluddoublecxponentiderronandsetsofrandomeffecufor
p = 0.01, 0.05, and 0.20.
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dependence among observations sharing a context as well as providing the

proportion of the total variation in the response values that is between contexts

(Raudenbush and Bryk, 1988). Success of estimation of model parameters often

depends on this measure, with less success when p is quite small. Due to this

feature, the population intraclass correlation was used as an important design factor

in the present study.

The MINQUE estimator p of p is obtained by substituting 7’ for 72 and

:7: for of, in Equation 4.3. Likewise, the bootstrap estimator p* is obtained by

substituting 73 and 6:... for 72 and a: respectively in Equation 4.3.

Bootstrap and Monte Carlo results for the estimation of ten estimable

ftmctions of p and/or p... under the normal and double exponential errors and sets

of random effects of the model for the three levels of the pOpulation intraclass

correlation are presented in Table 6.3. Summary statistics in Table 6.3 show that

both MINQUE and the bootstrap slightly overestimated p under both the normal

and double exponential distributions at the 0.01 level of the intraclass correlation.

The bias for the MINQUE and bootstrap were correspondingly 0.00013 and 0.0032

under the normal and 0.0005 and 0.0035 under double exponential. The bootstrap

estimate of bias was 0.0031 under the normal and 0.003 under double exponential.

The results show that though R, was poorly estimated at p = 0.01, estimation of

the other nine functions of p and/or p... near their expected value at this level of

the population intraclass correlation. Mean square errors for both MINQUE and

the bootstrap were surprisingly close to zero, both under the normal and double

exponential distributions for p = 0.01.

At the 0.05 level of the intraclass correlation, all the ten estimable functions

of p and/or p... were very close to their expected values estimated. The average
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Table 6.3

“Average and standard deviation of the functions of the estimates

p and]or p... under the normal and double exponential errors and

sets of random effects for p = 0.01, 0.05, and 0.20.

 

 

 

Nor-a1 Double Exponential

Value of p Est inate Par.Value Average S .D. Average S .D.

0.01 Bootstrap, p... 0.01 0.0132 0.0072 0.0134 0.0070

MINQUE, ,3 0.01 0.0101 0.0088 0.0105 0.0087

BilS=L*—}} 0.0031 0.0021 0.0030 0.0022

D,=p—p 0.00013 0.0088 0.0005 0.0088

0,=},—p 0.0032 0.0072 0.0035 0.0070

ll,=7*/p 1.1407 3.4598 1.3958 3.3220

n,=p/p 1.0132 0.8798 1.0460 0.8672

ISE1=(é—p)’ 0.0001 0.0001 0.0001 0.0001

[532:g—py 0.0001 0.0001 0.0001 0.0001

Rel. E ciency© 1.0000 1.0000
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Table 6.3 (continued)

Norual Double Exponential

Value of p Estinate Par.Value Average S .D . Average S .D.

0.05 Bootstrap, L... 0.05 0.0501 0.0151 0.0521 0.0193

MINQUE, p 0.05 0.0491 0.0151 0.0509 0.0193

BiAS=p,—p 0.0010 0.0011 0.0012 0.0012

D,=p—p —0.0009 0.0151 0.0009 0.0193

D,=p...—p 0.0001 0.0151 0.0021 0.0193

REA/12 1.0237 0.0306 1.0306 0.0962

ll,=p/p 0.9829 0.3023 1.0182 0.3866

Iss1=(;}—p)2 0.0002 0.0003 0.0004 0.0006

Iss2=(p,_p)2 0.0002 0.0003 0.0004 0.0006

Rel. EfficiencyG 1.0000 1.0000

0.20 Bootstrap, )3... 0.20 0.1978 0.0381 0.2002 0.0534

MINQUE, p 0.20 0.1972 0.0381 0.1992 0.0534

si1s=;._,3 0.0006 0.0014 0.0009 0.0014

D,=p—p —0.0028 0.0381 —0.0008 0.0534

n,=},—p —0.0022 0.0381 0.0002 0.0534

1,414}; 1.0033 0.0074 1.0051 0.0080

ll,=p/p 0.9860 0.1906 0.9962 0.2671

ISE1=(p—p) 2 0.0015 0.0021 0.0028 0.0043

ISE2=(p,—p) 2 0.0015 0.0021 0.0028 0.0044

Rel. Efficiencyo 1.0000 1.0000

 

 

 

0 Rel. Eficiency = MSE2/MSE1
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values of p and ,0. were 0.0491 and 0.0501 respectively under the normal and

0.0509 and 0.0521 respectively under double exponential. Accordingly, the biases

for the bootstrap and MINQUE were respectively 0.0001 and —0.0009 under the

normal and 0.0021 and 0.0009 respectively under double exponential. The bootstrap

estimate of bias was 0.0010 under the normal and 0.0012 under double exponential.

Under this condition of the intraclass correlation, R, and R, were fairly close to

1.00 with R, = 1.0237 and 1.0336 under the normal and double exponential

respectively and R, = 0.9829 and 1.0182 under normal and double exponential

respectively. The mean square error for both MINQUE and bootstrap was quite low

under both normal and double exponential at this level of the intraclass correlation.

The bootstrap slightly underestimated p under the normal but very

accurately estimated p under double exponential at the 0.20 condition of the

intraclass correlation. On the other hand, on average MINQUE slightly

underestimated p both under the normal and double exponential at the 0.20

condition of the intraclass correlation. The MINQUE and bootstrap biases were

observed at —0.0028 and -0.0022 respectively under the normal and —0.0008 and

0.0002 respectively under double exponential. The bootstrap estimate of bias was

0.0006 under the normal and 0.0009 under double exponential. R, was surprisingly

close to 1.00 under both the normal and double exponential but R, was slightly

less than 1.00 under both the normal and double exponential.

At this level of the intraclass correlation condition, both MINQUE and

bootstrap mean square errors were quite low, both observed at 0.0015 under the

normal and 0.0028 under double exponential. Based on these results therefore, it is

apparent that, while estimation of functions of (72,73) and (:73, 0’) may not have

been very successful, estimation of functions of (13*, p) which in turn depends on

73, 7’, :73, and :72 seemed to have been fairly successful for both MINQUE and the
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bootstrap. However, at this conditions of the intraclass correlation, the bootstrap

ration R, was closer to 1.00 than R, under both normal and double exponential

errors and sets of random effects of the model. It may also be important to note

that, for the estimation of the parameter p, the bootstrap/MINQUE measure of

relative efficiency at all three levels of the intraclass correlation was extremely close

to 1.00 under both the normal and double exponential distribution.

Figure 6.3 shows the percentage polygons of the 400 bootstrap and MINQUE

estimates of p under the normal and double exponential distributions at each of the

three levels of the pOpulation intraclass correlation. At the 0.01 level of the

intraclass correlation condition, though both MINQUE and the bootstrap

percentage polygons were centered near the population parameter value of p, it is

evident that a greater mass of observations were around the parameters value under

the bootstrap frequent polygon than under the MINQUE polygon, for both normal

and double exponential distributions. Thus, once again, the bootstrap method has

been shown to be a more efficient estimator of p than MINQUE at the 0.01 level of

the intraclass correlation condition.

Percentage polygons for the 400 MINQUE and bootstrap estimates under the

normal and double exponential distributions at the 0.05 level of the intraclass

correlation condition show that MINQUE and the bootstrap followed each other

very closely. However, the percentage polygons under this condition of the

intraclass correlation indicated that the values of both estimates were more variable

under the double exponential than under the normal. The percentage polygons

under the 0.20 level of the intraclass condition shows that the bootstrap and

MINQUE followed each other even more closely than at the 0.05 intraclass
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Figure 6.3

Percentage polygons for the MINQUE and bootstrap estimate of p over 400

trialsunderthenormalanddouble

p = 0.01, 0.05, and 0.20.
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correlation condition. Likewise, values of both estimates were more variable under

double exponential than under the normal distributions.

The estimation results at the three levels of the intraclass correlation

conditions indicate that the bootstrap is a more stable estimator of p, particularly

at the 0.01 level of the intraclass correlation condition. However, nature and size of

the tail of the distribution of the errors and sets of random effects equally influence

the bootstrap and MINQUE in estimating p. Estimation tends to be less successful

under a distribution with long and thick tails (like that of the double exponential)

than under a less thick and short tailed distribution.

Fixed effects parameters of the model which included a,, a,, and a, for the

three levels of the fixed factor and ,6, the coefficient of the covariate was estimated

at the three levels of the intraclass correlation conditions under the normal and

double exponential errors and sets of random effects of the model. Due to the fact

that a, for j = 1,2,3 are linearly dependent, estimation is only required for any

two of a,. For the purpose of the present dissertation, estimation results for a,,

a,, and 5 are presented for each of the six design factor combinations.

Table 6.4 presents the summary statistics over the 400 trials for the ten

estimable functions of 01, and/or 81‘, under the three levels of the intraclass

correlation condition for the normal and double exponential distributions. Means

and standard deviations presented in Table 6.4 shows that both MINQUE and the

bootstrap very closely estimated the fixed effect parameter a, at all the three

levels of the intraclass correlation condition under both normal and double

exponential distributions. At the 0.01 level of the intraclass correlation, the bias for

MINQUE and bootstrap were 0.0261 and 0.0264 respectively under the normal and
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Table 6.4

Average and standard deviation of the functions of the estimates

(1, and/or a‘,‘ under the normal and double exponential

error and sets of random effects for p = 0.01, 0.05, and 0.20.

 

 

 

Normal Double Exponential

Value of p Estinate Par.Value Average 3 .D . Average S .D.

0.01 Bootstrap 21*; -5.00 —4.9736 0.9302 —5.0251 0.9073

MINQUE, 7}, —5.00 -4.9739 0.9264 —5.0243 0.9032

3113:3714, 0.0003 0.0587 —0.0008 0.0619

0,=Zs,—o, 0.0261 0.9264 —0.0243 0.9032

0,:61—67, 0.0264 0.9302 —0.0251 0.9073

11,472,773, 0.9999 0.0128 1.0000 0.0133

lt,=Zt,/o, 0.9948 0.1853 1.0049 0.1806

Iss1=(o,—a,)2 0.8568 1.3327 0.8143 1.1918

151:2:(61—603 0.8638 1.3334 0.8217 1.2026

Rel. Efficiencyo 1.0082 1.0091
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Table 6.4 (continued)

Nor-a1 Double Exponential

Value of p Estimate Par.Value Average S .D. Average S .D.

0.05 Bootstrap 7}; —5.00 —5.0139 1.0867 -5.0211 1.0484

MINQUE, 6, -5.00 4.0143 1.0889 -5.0221 1.0438

3118:3714, 0.0004 0.0606 0.0010 0.0632

ll,=&,—a, —0.0143 1.0889 —0.0221 1.0438

D,=a’{—a, —0.0139 1.0867 —0.0211 1.0484

ugh/Zr, 1.0001 0.0128 0.9996 0.0138

2,=&,/o, 1.0029 0.2178 1.0044 0.2088

lssz(&,—a,)2 1.1830 1.9324 1.0873 1.5678

ISE=(dr‘,‘—a,)’ 1.1781 1.9236 1.0968 1.5833

Rel. Efficiencyé 0.9959 1.0087

0.20 Bootstrap 2., -5.00 —4.9529 1.6260 —5.0502 1.5745

MINQUE, 6, —5.00 -4.9522 1.6186 —5.0488 1.5736

BIAS=8,—0, —0.0007 0.0613 —0.0014 0.0660

D,=;1,—a, 0.0478 1.6186 -0.0488 1.5736

0,=e2,*—a, 0.0471 1.6260 -0.0502 1.5745

ll,=oq/o, 1.0000 0.0183 1.0001 0.0172

R,=a,/a, 0.9904 0.3237 1.0098 0.3147

Iss1=(o,—o,)2 2.6156 3.9830 2.4724 3.2204

Iss2=(&';—a,)2 2.6394 4.0097 2.4754 3.2304

Rel. EfficiencyG 1.0091 1.0012
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—0.0243 and -0.0251 under double exponential. The bootstrap estimate of bias at

this level was 0.0003 under the normal and —0.0008 under double exponential. At

this level of the intraclass correlation, R, was observed at 0.9999 under the normal

and 1.000 under the double exponential compared to R, which was 0.9948 under

the normal and 1.0049 under double exponential. Relative efficiency for the two

estimators was extremely close to 1.00 both under normal and double exponential.

For p = 0.05, the average of bootstrap and MINQUE estimates over the 400

trials were —5.0139 and -5.0221 under double exponential. Their respective biases

were —0.0139 and —0.0143 under the normal and —0.0211 and —0.0221 under double

exponential. Compared to the expected ratio of the estimates at 1.00, both

MINQUE and the bootstrap were very close in estimated the ratio with

R, = 1.0001 under the normal and R, = 0.9996 under double exponential while

R, = 1.0029 under normal and R, = 1.0044 under double exponential.

Estimation of a, at the 0.20 level of the intraclass correlation was equally

successful with R, being closer to 1.00 than R, under both normal and double

exponential distributions. The bootstrap estimate of bias was lower under the

normal than under double exponential. However, the bootstrap and MINQUE

biases differed by no more than 0.007 under normal or double exponential

distributions, and the measure of efficiency was extremely close to 1.00 under the

normal and double exponential.

The effect of the intraclass correlation condition on the estimation of the

functions of 61, and/or 01"; was apparent in the MINQUE and bootstrap mean

square errors. Both mean square errors tended to increase with increasing p under

both normal and double exponential distributions. For instance, the bootstrap

mean square errors were 0.8638, 1.1781, and 2.6394 for p = 0.01, 0.05 and 0.20
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respectively under the normal and 0.8217, 1.0968, and 2.4754 for p = 0.01, 0.05,

and 0.20 respectively under double exponential. The mean square errors for the

MINQUE estimates were quite close to those of the bootstrap at all levels of the

intraclass correlation under both normal and double exponential. Under both the

normal and double exponential, the bootstrap/MINQUE measure of relative

emciency was extremely close to 1.00 indicating that the bootstrap and MINQUE

estimators very closely estimated the parameter a,.

In general, therefore, results in Table 6.4 show that, both MINQUE and

bootstrap very closely estimated the parameter a, at all levels of the intraclass

correlation conditions under both normal and double exponential distributions. The

ratio R, was consistently closer to 1.00 compared to R, at all the six design factor

combinations; indicating a great deal of promise through the bootstrap method.

Figure 6.4 presents six percentage polygons of the 400 bootstrap and

MINQUE estimates of a, under the normal and double exponential errors and sets

of random effects at each of the three levels of the pOpulation intraclass correlation

condition. From these charts it is clear that the bootstrap generally followed the

MINQUE very closely at all levels of the intraclass correlation. The figures also

showed no obvious difierence in estimation between the normal and double

exponential distributions. However, the highest spread of the estimates for both

bootstrap and MINQUE were observed at the 0.20 level of the intraclass correlation

followed by 0.05 level. The spread of both estimates was lowest at 0.01. Percentage

polygons shown in Figure 6.4 therefore indicate that, though MINQUE and

bootstrap do not differ in estimating a,, both their ability to produce efficient (less

variable) estimates depends on the level of the population intraclass correlation.
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Figure 6.4

Percentage polygons for the MINQUE and bootstrap estimate of a, over 40

trialsunderthenormsland doubleexponentislerrorsand sets ofrandomefiectsfor
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Both methods yield less efficient estimates when the pOpulation intraclass

correlation is high. Their mean square errors increased at the same rate with

increasing intraclass correlation.

Despite differences in variability of the estimates at different levels of the

intraclass correlation, the percentage polygons indicate that the estimates were

centered nearly at the same point. Estimates were expected to be centered at the

true pOpulation parameters value which was set at -5.00. The results showed that

all the six percentage polygons were centered no more than 0.05 away from the true

parameter value.

Summary results for the bootstrap and MINQUE estimates of the parameter

0, based on the ten estimable functions of 01, and/or 01‘; over the 400 trials are

presented in Table 6.5. Summary results are presented for each of the three levels

of the intraclass correlation conditions under both the normal and double

exponential distribution of the errors and sets of random effects of the model. The

true population parameter, a, was set at 3.00. MINQUE and bootstrap estimates

are compared against the true pOpulation parameter value.

Averages and standard deviations over 400 trials presented in Table 6.5

shows that, both MINQUE and the bootstrap very closely estimated the parameter

a,. At the 0.01 level of the intraclass correlation, both MINQUE and bootstrap

slightly overestimated the parameter a, under the normal and slightly

underestimated a, under the double exponential errors and sets of random effects

of the model. The biases for MINQUE and bootstrap were 0.0366 and 0.0362

respectively under the normal and —0.0123 and -0.0101 under double exponential.

The bootstrap estimate of bias was observed at —0.0004 under the normal and

0.0021 under double exponential. The ratio R, was surprisingly close to 1.00 under
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Table 6.5

, Average and standard deviation of the functions of the estimates

a, and/or a“; under the normal and double exponential errors and

sets of random efi'ects for p = 0.01, 0.05, and 0.20.

 

 

 

 

 

 

Normal Double Exponential

Value of p Estimate Par.Value Average S .D. Average S .D .

0.01 Bootstrap, Zr; 3.00 3.0362 0.9030 2.9878 0.9053

MINQUE, a, 3.00 3.0366 0.9029 2.9899 0.9109

siAS=o§—6, -0.0004 0.05566 0.0021 0.0625

0,=e,—a, 0.0366 0.9029 —0.0123 0.9053

n,=eg—a, 0.0362 0.9030 —0.0101 0.9109

E,=a",‘/a, 1.0005 0.0228 1.0016 0.0357

ll,=o,/a, 1.0122 0.3010 0.9959 0.3018

Iss1=(&,—a,) 2 0.8145 1.1035 0.8176 1.2312

lSE2=(0r§—a,) 2 0.8146 1.0961 0.8277 1.2530

Rel. Efllciencyo 1.0001 1.0124
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Table 6.5 (continued)

Normal Double Exponential

Value of p Estimate Par.Value Average S .D. Average S .D.

0.05 Bootstrap, 21'; 3.00 3.0380 1.0368 3.0045 1.0326

MINQUE, 2:, 3.00 3.0349 1.0367 3.0002 1.0278

BIAS=5§—03 0.0031 0.0582 0.0043 0.0630

D,=a",‘—a, 0.0349 1.0366 0.0002 1.0278

0,:63—6, 0.0380 1.0368 0.0045 1.0326

3553/5, 1.0015 0.0264 1.0003 0.0415

ll,=0:§/a, 1.0116 0.3455 1.0001 0.3426

Iss1=(£s,—o,) 2 1.0732 1.4720 1.0537 1.5478

ISE2=(&§—a,)2 1.0738 1.4677 1.0635 1.5753

Rel. EfficiencyQ 1.0006 1.0093

0.20 Bootstrap, 27; 3.00 3.0379 1.4153 3.0711 1.4837

MINQUE, 6, 3.00 3.0380 1.4134 3.0688 1.4777

1115:2734, —0.0002 0.00610 0.0023 0.0646

ll,=e,—a, 0.0380 1.4134 0.0688 1.4777

0,:275—6, 0.0379 1.4153 0.0711 1.4837

r,=£.;/;, 0.9979 0.0529 1.0005 0.1067

ll,.-.Zs,/o, 1.0127 0.4711 1.0229 0.4926

ISE1=(;1,—a,)’ 1.9940 2.9561 2.1828 3.0902

Iss2=(&§—o,)2 1.9995 2.9688 2.2009 3.1362

Rel. Efficiencyo 1.0028 1.0083

 

 

 

 

o Rel. Efficiency = MSE2/MSE1
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both the normal and double exponential errors and sets of random effects of the

model. The usual MINQUE ratio, R, was not as close to 1.00 as R,, indicating

that the bootstrap more successfully estimated the ratio than MINQUE.

A more successful estimation of the parameter a, was achieved by both the

MINQUE and bootstrap under the double exponential errors at the 0.05 level of the

intraclass correlation condition. At this level, the average values of MINQUE and

bootstrap were 3.0349 and 3.0380 respectively under the normal and 3.0002 and

3.0045 respectively under double exponential distributions. The bootstrap and

MINQUE bias were 0.0380 and 0.0349 under the normal and 0.0045 and 0.0002

respectively under double exponential distributions. The bootstrap estimate of bias

was 0.0031 under the normal and 0.0043 under the double exponential. At this level

of the intraclass correlation also, the ratio R, was closer to 1.00 than R, both

under the normal and double exponential errors and sets of random effects of the

model. However, at the 0.05 level of the intraclass correlation condition, both

MINQUE and bootstrap mean square errors were greater than at the 0.01 level of

the intraclass correlation.

At the 0.20 level of the intraclass correlation, both MINQUE and bootstrap

slightly overestimated the parameter a, under the normal and double exponential

distribution of errors and sets of random effects of the model. However, both biases

were greater under double exponential distribution than under the normal. The

bootstrap estimate of bias was no more than 0.0025 under both distributions. On

average, R, was closer to 1.00 than R, under both the normal and double

exponential. The bootstrap and MINQUE mean square errors were near 2.00 at this

level of the intraclass correlation compared to about 1.05 at the 0.05 level and about

0.80 at the 0.01 level of the intraclass correlation. Thus, both mean square errors
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seemed to increase with increasing level of the intraclass correlation condition. The

bootstrap/MINQUE measure of relative efficiency at all three levels of the intraclass

correlation were very close to 1.00 under both the normal and double exponential

distribution.

Figure 6.5 shows the percentage polygons of the 400 bootstrap and

MINQUE estimates of a, for each of the six design factor combinations. Separate

frequent polygons are presented for the normal and double exponential distributions

at each level of the intraclass correlation condition. From these charts, it is shown

that the bootstrap followed the MINQUE quite closely such that it was difficulty to

distinguish the two at certain points. All the six charts were centered near the true

parameter value of a, which was set at 3.00.

Though the frequency polygons showed no variation by the distribution of

errors and sets of random effects, the spread of the estimates seems to vary by level

of the intraclass correlation condition. The highest spread was observed at the 0.20

level of the intraclass correlation while the lowest spread was seen at the 0.01 level.

The other fixed effects parameter of the model which was examined in the

study was 19, the coefficient of the covariate. The true parameter value was set at

1.00. As in the other parameters of the model, the bootstrap and MINQUE

estimates of 5 were calculated at each of the three levels of the intraclass

correlation under both normal and double exponential errors and sets of random

efl’ects of the model. Summary results for the bootstrap and MINQUE estimates

over the 400 trials for the six design factor combinations are presented in Table 6.6.

Here, averages and standard deviations of ten function of [9 and 5‘" are presented
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Figure 6.5

Percentage polygons for the MINQUE and bootstrap estimate of a, over 40

trials under the normal and double exponential errors and sets of random efi’ects for
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Table 6.6

Average and standard deviation of the fimctions of the estimates

)3 and/or 0“ under the normal and double exponential

errors and sets of random effects for p = 0.01, 0.05, and 0.20.

 

 

 

 

 

 

Normal Double Exponential

Value of p Estimate Par.Value Average S .D. Average S .D.

0.01 Bootstrap, 27* 1.00 1.0000 0.0117 1.0005 0.0123

MINQUE, p 1.00 1.000 0.0117 1.0005 0.0122

3115:2728 —0.0000 0.0008 —0.0000 -.0009

0,:[3—8 —0.0000 0.0117 0.0005 0.0122

0,:p‘t—s —0.0000 0.0117 0.0005 0.0122

ll,=p‘*/p 1.0000 0.0008 1.0000 0.0009

life/s 1.0000 0.0117 1.0005 0.0122

Iss1=(§—p)2 0.0001 0.0002 0.0001 0.0002

ISE2= p'—p)2 0.0001 0.0002 0.0002 0.0002

Rel. E ciencyo 1.0000 2.0000
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Table 6.6 (continued)

Normal Double Exponential

Value ofp Estimate Par.Value Average S.D. Average S.D.

0.05 Bootstrap, £62 1.00 0.9999 0.0125 1.0005 0.0123

MINQUE, p 1.00 0.9999 0.0124 1.0005 0.0123

311843—17 0.0000 0.0009 —0.0001 0.0009

91:13—16 —0.0001 0.0124 0.0005 0.0123

0,; —p —0.0001 0.0125 0.0005 0.0123

Ref/I9 1.0000 0.0009 0.9999 0.0009

1139/5 0.9999 0.0124 1.0005 0.0123

lSEl=(;:3—fl)’ 0.0002 0.0002 0.0002 0.0002

551-32: 102—17V 0.0002 0.0002 0.0002 0.0002

Rel. E ciencyo 1.0000 1.0000

0.20 Bootstrap, :8 1.00 0.9997 0.0121 1.0005 0.0128

MINQUE, p 1.00 0.9997 0.0120 1.0005 0.0127

3115:2724? 0.0000 0.0009 0.0000 0.0009

0,:8—8 —0.0003 0.0120 0.0005 0.0127

0,:[7'2-13 —0.0003 0.0121 0.0005 0.0128

age/[9 1.0000 0.0009 1.0000 0.0009

8,428 0.9997 0.0120 1.0005 0.0127

ISE1=(l:3—fl)’ 0.0001 0.0002 0.0002 0.0002

1582: W—fi)’ 0.0001 0.0002 0.0002 0.0003

Rel. E ciencyo 1.0000 1.0000
 

0 Rel. Eficiency = MSE2/MSE1
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at each of the three levels of the intraclass correlation by each of the distribution of

the errors and sets of random effects of the model.

From Table 6.6 it is shown that the average values of the bootstrap and

MINQUE were extremely close to the true parameter value regardless of the level of

the intraclass correlation or distribution of the errors and sets of random effects of

the model. At all levels of the intraclass correlation condition, the bootstrap and

MINQUE biases were never greater than 0.0005 and the bootstrap estimate of bias

was perfectly nil under both normal and double exponential distributions.

The average of the ratios R, was almost always equal to 1.00 at all levels of

the intraclass correlation for both normal and double exponential errors and sets of

random effects of the model. However, the average of the ratios, R, slightly

differed from 1.00 for some design factor combinations. The bootstrap and

MINQUE mean square errors were surprisingly small at all levels of the intraclass

correlation for both normal and double exponential distributions. Thus, based on

these summary statistics, it is clear that the parameter 8 was very successfully

estimated by both MINQUE and the bootstrap regardless of the level of the

intraclass correlation condition and the distribution of the errors and sets of random

effects of the model. In terms of their relative accuracy, neither method (MINQUE

or Bootstrap) was superior to the other. Their measure of relative efficiency was

extremely close to 1.00 at all levels of the intraclass correlation particularly under

the normal distribution.

Figure 6.6 is a display of the percentage polygons of the 400 bootstrap and

MINQUE estimates of 19 under the normal and double exponential errors and sets

of random effects at each of the three levels of the population intraclass correlation

condition. From these charts, it is apparent that the bootstrap on average followed
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Figure 6.6

Percentage polygons for the MINQUE and bootstrap estimate of 0 over 400

trials under the normal and double exponential errors and sets of random efiects for

p = 0.01, 0.05, and 0.20.
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the MINQUE quite closely at all levels of the intraclass correlation condition. The

percentage polygons also showed no obvious difference in estimation between the

normal and double exponential distributions. All the six figures were centered

extremely close to 1.00 as expected.

Results of Bootstrap Confidence Intervals

The bootstrap procedure for constructing confidence intervals is perhaps one

of the most significant accomplishments of the bootstrap method. The procedure

can be applied to even more complicated problems involving statistics whose

sampling distributions cannot be determine analytically. Derivation of the

bootstrap method for the confidence interval is based on the following assumption.

For an estimator, 0 of the parameter 0, let D = 6—0. Define D* = 0L6 to be

the bootstrap quantity observed at each bootstrap replication. The bootstrap

distribution of D* estimates the unknown distribution of D. As an illustration,

percentage polygons based on 1000 repetitions to demonstrate the relationship

between the distribution of functions D and D* of 72, 72 and/or 72* at 0.01,

0.05, and 0.20 intraclass correlation conditions are presented in Figure 6.7. But it is

important for readers to be reminded that, while D was derived from 1000

independent samples drawn from a population with predetermined parameters, D*

was derived from 1000 repeated resampling drawn from one such sample with

replacement.

If the distribution of D were known, then the (1 — a)100% confidence

interval can be defined using real values DL and DU by the probability statement,
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Figure 6.7

Percentage polygons for the relationship between the distribtion of the

function D = 72 - 71 and D“ = 7" - 72 for p = 0.01, 0.05, and 0.20.
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P(DLngDU).~.l—a

or

P(DL$ ill—05 DU): l—a

which can be written as,

(6.1) P(b—Dugogb—DL)=1—a.

Since D0 and D1. are not observable the probability statement in Equation 6.1 is

estimated by the bootstrap probability statement,

(6.2) P(b—D;gogb—D;)=1—a

where D; and D; are bootstrap versions of DU and DL respectively computed

from bootstrap samples. Equation 6.2 gives the bootstrap (l—a)100% confidence

interval via the percentile method. The procedure is highly flexible and can be

applied to complicated problems in a wide range of situations, where classical

methods may fail to be useful. Indeed, this was one of the aspects of the present

study where the bootstrap delivers while the MINQUE does not.

In the present study, 90 and 95 percent bootstrap confidence intervals were

constructed for each of the six parameters of the mixed model. The confidence

intervals were constructed for all six design factor combinations (cells a through f in

Table 4.1).

Table 6.7 presents the averages and standard deviations for the 90 and 95

percent confidence limits based on the bootstrap over the 400 trials at the 0.01 level

of the intraclass correlation condition. The summary statistics for the lower

confidence limit (L.C.L.), upper confidence limit (U.C.L.) and the width of the

confidence interval are presented both under the normal and double exponential

distributions.
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From Table 6.7 it is shown that bootstrap 95% confidence intervals about

the parameter 1" at the 0.01 level of the intraclass correlation had a width of

5.1793 and 5.3868 under the normal and double exponential respectively. The

average width of the 90% confidence interval was 4.3137 and 4.4735 under the

normal and double exponential respectively. Corresponding standard deviation to

these averages show clearly how precise these intervals were.

Averages and standard deviations of the confidence limits and widths of

confidence intervals about the parameter of, also showed a fairly precise bootstrap

interval estimation process. The average width of the confidence intervals were

fairly low, particularly under the normal distribution. Standard deviations

corresponding to these averages were 0.9369 under the normal and 2.2998 under

double exponential.

Since the bootstrap interval estimation process about the parameters 72 and

a: both of which are component of p (see Equation 4.3) was rather unsuccessful,

the results showed an equally successful bootstrap interval estimation process about

the parameter p. The average width of the 95% confidence interval was 0.0508

under the normal and 0.0523 under the double exponential distribution.

At this level of the intraclass correlation condition, the highest success of the

bootstrap confidence interval estimation procedure was achieved about the

parameter [3, the coeficient of the covariate of the model. For this parameter, very

precise bootstrap confidence intervals were obtained both under the normal and

double exponential distributions. For instance, the average width of the 95%

bootstrap confidence interval was 0.0467 under the normal and 0.0467 under the

double exponential. The standard deviations corresponding to these average widths
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were 0.0034 and 0.0037 under the normal and double exponential respectively. With

these results, it is apparent that, regardless of the distribution of the errors and sets

of random efl'ects of the model, the bootstrap confidence intervals about the

parameter 6 were extremely precise.

Table 6.8 shows the summary statistics for 90% and 95% bootstrap

confidence limits over the 400 trials at the 0.05 level of the intraclass correlation

condition. Averages and standard deviations for the lower (L.C.L.) and upper

(U.C.L.) confidence limits and the width of the confidence interval are presented

under the normal and double exponential distributions.

Summary statistics in Table 6.8 shows that, the bootstrap confidence

interval about the parameter 1" at the 0.05 level of the intraclass correlation were

by far more successful than the same intervals at the 0.01 level of the intraclass

correlation condition. The average widths were much smaller and less variable.

Summary statistics for bootstrap confidence intervals about the parameters a”, a,,

a,, and 19 at the 0.05 and 0.01 levels of the intraclass correlation showed a more

precise interval estimation under both the normal and double exponential. For the

parameters 1’2 and p, the bootstrap confidence interval estimation procedure at

the 0.05 level of the intraclass correlation was equally successful as at the 0.01 level

of the intraclass correlation condition. For instance, compared to the average width

of the 95% confidence interval about p of 0.0508 when p = 0.01, the same average

was 0.0615 when p = 0.05 under the normal distribution. Similar low differences

between the two levels of the intraclass correlation in the width of the bootstrap

confidence intervals about the parameter p were observed under the double

exponential distribution.
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Summary results for the 90% and 95% confidence intervals for the 400 trials

at the 0.20 level of the intraclass correlation are presented in Table 6.9. Averages

for the lower (L.C.L.), upper (U.C.L.) confidence limits and the width of the

confidence intervals are presented under both the normal and double exponential

errors and sets of random effects of the model.

At this level of the intraclass correlation, these summary statistics showed

slightly wider bootstrap confidence procedure about the parameters 1'2 and 0:

than at the other levels of the intraclass correlation. No diflerences in the level of

success of the method were noticed in estimating the confidence intervals about the

other parameters of the model among different levels of the intraclass correlation

condition. For the fixed effects parameters, the bootstrap procedure for confidence

interval was also always successful at all levels of the intraclass correlation

condition.

These results revealed an important feature of the bootstrap procedure for

confidence intervals about the parameters 1" and 0:. The success of the procedure

depends on the level of the intraclass correlation. When the pOpulation intraclass

correlation is small, the bootstrap procedure for confidence intervals using the

percentile method about the fixed and random effects parameters of the model is

quite precise. At high values of the intraclass correlation condition, the bootstrap

interval estimation procedure about the random effects parameters is slightly less

precise. However, regardless of the level of the intraclass correlation, the bootstrap

method for the confidence interval about the fixed effects parameters of the model

(a,,a,,fl) seemed to be a remarkable success.
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The reader should be reminded that, the bootstrap procedure for the

confidence interval demonstrated above, represents perhaps the greatest charm of

the bootstrap technique. Using the technique, confidence intervals which may be

difficult to obtain through the usual MINQUE are possible.

Accuracy of Bootstrap Qonfidence Intervals

In this simulation study, 90% and 95% bootstrap confidence interval were

constructed at each of the 400 trials. Table 6.10 shows the percentage of the

number of times each of the six population parameter fell within the 90% and 95%

bootstrap confidence interval for all the six design factor combinations (cells a

through 1'). Ideal percentages are expected to be near (1—a)100, for a = 0.01 or

0.05.

From these results, it is shown that, near perfect percentages were observed

for all the six parameters at the 0.05 level of the intraclass correlation under the

normal distribution. At this level of the pOpulation intraclass correlation condition,

percentages under the double exponential, though not as good as those under the

normal, were not far off from the expected quantity (1—a)100. For most of the

parameters, disappointingly low percentages were observed at the 0.20 level of the

intraclass correlation, particularly under the double exponential errors and sets of

random effects of the model. Even at the other two levels of the intraclass

correlation condition, there were more coverage probabilities which were below the

expected quantity (l—a) than those above the expected quantity. This finding

perhaps sends a precautionally message to research practitioners to aim higher
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coverage probabilities when setting confidence intervals rather than investing high

hopes at the conventional 0.9 or 0.95 coverage probabilities. However, for the

parameters a’ and fl, percentages extremely close to (1—a)100% were observed

for all the six design factor combinations.



111

Table 6.10

Percentage of times that the true population parameters fell within the

confidence intervals formed using the bootstrap procedure at the three levels of

the intraclass correlation.

 

 

 

 

 

 

 

 

Normal Double Exponential

Value p Expected 90% CI. 95% 0.1. 90% 0.1. 95% Cl.

0.01 1" 1.00 97.5 99.0 97.8 98.8

0.05 5.26 89.5 94.0 81.0 88.3

0.20 25.00 58.8 70.3 42.3 52.0

0.01 0’ 100.00 89.8 94.8 85.0 91.8

0.05 100.00 88.3 94.0 85.5 92.0

0.20 100.00 98.5 92.8 85.5 92.3

0.01 p 0.01 98.0 99.0 97.5 99.0

0.05 0.05 89.3 93.8 82.0 88.0

0.20 0.20 59.8 68.8 45.0 52.5

0.01 (11 —5.00 87.8 93.0 88.0 93.0

0.05 —5.00 81.8 88.3 81.8 88.3

0.20 —5.00 64.5 74.0 62.8 71.3

0.01 03 3.00 87.5 93.5 86.8 92.8

0.05 3.00 82.3 88.3 84.0 89.3

0.20 3.00 70.3 76.8 66.5 76.8

0.01 6 1.00 89.0 95.0 87.5 93.5

0.05 1.00 86.5 93.3 87.8 93.5

0.20 1.00 88.5 95.0 87.5 93.5



CHAPTER VII

SUMMARY, TECHNICAL DISCUSSION, CONCLUSIONS,

AND RECOMMENDATIONS

vervi

The primary purpose of the study was to demonstrate the Operation of the

bootstrap in estimating parameters of a mixed hierarchical linear model with

random intercepts. The study demonstrated the ability of the bootstrap algorithm

in providing the estimates of the fixed and random effects of the model, generating

bootstrap empirical distributions and standard errors of the statistics and thereby

constructing confidence intervals about the parameters.

The design of the study utilized samples generated from pOpulations of

known parameters. Computer programs used to generate independent samples and

perform Monte Carlo simulations were coded in Statistical Analysis Systems (SAS),

mostly using Interactive Matrix Language (SAS/IML). Generation of data from

pOpulations of known parameter values provided a check for the performance of the

estimation procedures.

P0pulation distributions from which samples were drawn from represented

the normal and double exponential (or Laplace) distributions. The double

exponential distribution (an example of a distribution with fairly long and thick

tails) represented a distribution with some departure from normality, a situation

which most classical statistical methods are typically not usable.

The Minimum Norm Quadratic Unbiased Estimation (MINQUE) procedure

was adopted as a useful method of estimating the parameters of the model at each

bootstrap replication. The method provided a comparable partnership with the

112
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bootstrap since they both do not require the normal distributional prOperties. Thus,

for each parameter of the model, two estimators were provided. These estimators

represented the MINQUE estimator based on the original sample and the bootstrap

estimator based on the resampled data.

Though the derivation of the MINQUE is based on arbitrary weights in the

norm, the present study ad0pted an ANOVA—type method of independently

estimating the variance components of the model as in Hanushek (1974). The

values therein those prior estimates were used to determine the weights to be used

in MINQUE.

In order to extensively assess the behavior of the bootstrap and MINQUE

estimators, a total of 2400 Monte Carlo simulation trials, each consisting of a

difl’erent data set were performed for six design factor combinations. The six design

factor combinations represented the three levels of the intraclass correlation by the

two distributional models (normal and double exponential).

In addition to simulated data, the bootstrap method and MINQUE were also

applied on actual field research data to estimate both the fixed and random effects

of the model involving the effect of institutional, classroom and individual teacher

variables on self-efficacy of high school teachers. For each parameter of this

specific model, the two estimators, the MINQUE and the bootstrap estimates were

provided side by side. However, the bootstrap’s additional estimation advantage

was demonstrated by providing the bootstrap standard errors, empirical bootstrap

sampling distributions of estimators, and the 95% bootstrap confidence intervals

about each of the parameters of the teachers’ self-efficacy prediction model. The

bootstrap estimate of bias for each estimator were also provided.
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Three parameters of the random part of the model, representing the intra—

and inter—teacher variances, denoted by of, and 1" respectively and the

intra—teacher correlation denoted by p were estimated using both MINQUE and

the bootstrap. In addition, eleven fixed effects parameters of the fixed part of the

model representing the eflects of Mathematics (01,), Science (01,), English (as),

Social Science (04), class level of preparation (13,), class size ([3,), average student

achievement level (193), staff c00peration (7,), teacher control (7,), principal

leadership (7,) and the constant common to all classrooms denoted by 700 were

studied.

The bootstrap estimates of the effects of intra—teacher variance,

inter—teacher variance, the effect of class size, staff c00peration, and principal

leadership were close to the MINQUE estimates. For these estimators, the

bootstrap estimate of bias was no more than 0.008. However, except for the

estimate of the constant 700, whose bootstrap estimate of bias was 0.1124, the

bootstrap estimate of bias for the remaining nine estimators was no more than 0.04.

The bootstrap provided additional estimation informations which was not

available through the MINQUE. These included the bootstrap standard error of

each estimator, the 95% confidence intervals about the parameters, and the

empirical bootstrap distribution of the statistics. Extremely low values of the

bootstrap standard errors were observed particularly for the inter— and

intra—teacher variances, the effects of the class level of preparation, class size,

teacher control, and principal leadership. The bootstrap standard errors for these

estimators were all close to 0.01.

As a means of testing hypothesis about the parameters of the teachers’

self-emcacy prediction model, the 95% bootstrap confidence intervals about the
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parameters were constructed. Based on these intervals, hypotheses of whether each

of these parameters was different from zero were tested. Based on this bootstrap

fashion of testing hypothesis, all factors, with an exception of pring’pg leadership

were found to have a statistically significant effect on teachers’ self—effica_cy.

Seven percentage polygons based on B = 1000 bootstrap replications of the

estimators of the inter—teacher variance (1"), intra—teacher variance (cg), the

intra-teacher correlation (p), the fixed effects of Mathematics (al), Science (a,),

English (0,), and Social Science (0,) were presented. Though the estimate of the

sampling distribution of the inter-teacher variance (7’) was slightly positively

skewed, and that of the effects of Mathematics (01,), Social Science (014), and Science

(0,) were slightly negatively skewed, estimates of sampling distributions for all

other estimators were fairly symmetric. But perhaps more importantly, percentage

polygons for all seven estimators were centered extremely close to their

corresponding usual MINQUE point estimators.

By applying the bootstrap method on actual field research data, the study

demonstrated three features which research practitioners may find useful. First is

the bootstrap’s ability to provide the standard errors, empirical bootstrap sampling

distributions of estimators, and setting confidence intervals about each of the

parameters. This feature is typically not available through classical methods in the

absence of certain distributional assumptions. The second feature was the

flexability of the design in accommondating a wide range of independent variables

(both continuous and discrete) in the model. The ability of a design to

accommodate all types of independent effects is important given the limitations of

most available statistical packages. For instance, the procedure VARCOM in SAS

allows only for independent effects limited to main effects, interactions, and nested

effects but not continuous efiects. The third feature and perhaps the least expected

was the efficiency of the bootstrap computer code. Though the bootstrap is
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typically perceived as computer intensive, the present study utilized a simple

program coded in SAS/IML through the MSU IBM 3090 VF mainframe computer.

With this program, one bootstrap trial on the full model (seven independent

variables) of B = 1000 replications took approximately 18:31.16 CPU time, which

was not very expensive.

Th im M el

Difi'erent simulated models corresponding to each of the six design factor

combinations (see Table 4.1) were studied. The six models represented the two

distributional models (normal and double exponential) by three levels of the

pOpulation intraclass correlation condition (p = 0.01, 0.05, and 0.20). The six

design factor combinations are denoted by cells a through f. Each of the six models

specified according to the design factor combination contained seven parameters of

which three were random and four fixed. The three random effects parameters

represented the inter—class variance (1’), the intra—class variance (0:), and the

intraclass correlation (p). The four fixed effects parameters, a,, a,, 03. and 6

represented the three levels of the fixed factor and the coefficient of the covariates.

Estimation of non—redundant effects were based on a,, 013, and B.

A total of 400 Monte Carlo simulation trials (based on independent samples)

were performed for each of the six design factor combinations (cells a through 1'),

resulting in a grand total of 2400 Monte Carlo simulation trials, each based on a

different data set drawn according to the specified design factor combination

parameters. Ten estimable functions expressed in terms of the usual MINQUE

and/or bootstrap estimates were used to assess the estimation of both the usual

MINQUE and the bootstrap estimators. The ten estimable functions were carequy

chosen to provide meaningful statistics like the Mean Square Errors, MSEl and
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MSE2, for the usual MINQUE and bootstrap estimator respectively, and the

bootstrap estimate of bias denoted by BIAS.

Since data were drawn from populations of known parameter values,

estimable functions were checked against their expected parameters values. The

following is a presentation of the summary of estimation results organized by the

population parameters of the models.

Wt”)

At the 0.01 intra—class correlation conditions, both MINQUE and

bootstrap overestimated the parameter 'r’ with biases equal to 0.0292 and 0.0597

under normal and double exponential respectively for MINQUE, and 0.3432 and

0.3765 under normal and double exponential respectively for the bootstrap.

Bootstrap estimates clearly improved for p = 0.05 both under the normal and

double exponential with biases of 0.0299 and 0.2709 under the normal and double

exponential respectively. Corresponding biases for the MINQUE estimate were

-0.0845 under normal and 0.1396 under the double exponential. The bootstrap

estimate of bias was observed at 0.1144 for p = 0.05 compared to 0.3140 for

p = 0.01 under the normal distribution.

Particularly successful estimation results for the parameter 1'2 were attained

at the p = 0.20 intraclass correlation condition. The bootstrap with a bias of

—0.0447 was clearly close to the usual MINQUE with a bias of —0.1480 under the

normal distribution. The bootstrap was also fairly close to the usual MINQUE

under the double exponential with the former registering a bias of 0.4018 and the

later having a bias of 0.5167. The estimate of bias at this level was 0.1149, and the

ratio R, was surprisingly close to 1.00.

On average therefore, the MINQUE was closer to the parameter than the

bootstrap only at the 0.01 level of the intraclass correlation condition under the
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normal. At p = 0.05 and 0.20, the bootstrap was close to the parameter value

compared to the MINQUE under the normal distribution. Both methods failed to

produce better estimates for r3 at all levels of the intraclass correlation under the

double exponential distribution.

Percentage polygons for the 400 MINQUE and bootstrap estimates were

centered near the true pOpulation parameter value of r’ at all levels of this

intraclass correlation condition. However, though the bootstrap percentage polygon

appeared to be positively skewed while the MINQUE polygon was fairly symmetric,

at the 0.01 level of the intraclass correlation condition it was observed that a greater

mass of observations were around 1.00 for the bootstrap percentage polygon than for

the MINQUE polygon.

The bootstrap confidence intervals about the parameter 1’ were extremely

tight under the double exponential as well as under the normal distribution at the

0.01 level of the intraclass correlation condition. Bootstrap confidence intervals

about 7’ were fairly short, both under the normal and double exponential at the

0.05 level of the intraclass correlation condition, but were wider at the 0.20 level of

the intraclass correlation condition. The percentage of times the true parameter

value of 'r’ fell within the 90 or 95 percentage bootstrap confidence intervals were

close to either 90 or 95 at the 0.05 level of the intraclass correlation condition. The

percentage of times the parameter value was captured by the bootstrap confidence

intervals were furthest from the expected confidence coefficient at the 0.20 level of

the intraclass correlation condition (see Table 6.10).

W103)

MINQUE and bootstrap fairly accurately estimated the population

inter—class variance both under the normal and double exponential distribution of

errors and sets of random effects parameters, at all levels of the intraclass
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correlation condition. However, at the 0.20 level of the intraclass correlation, the

bootstrap was closer to the parameter value than the MINQUE with a bias of

0.0437 compared to the MINQUE bias of 0.1660 under the normal distribution.

At the 0.01 level of the intraclass correlation the statistic R2 was extremely

close to unity, as expected. At all three levels of the intraclass correlation, the

standard deviation of the functions of the estimates were relatively high under

double exponential than under the normal distribution.

Percentage polygons for the MINQUE and bootstrap estimates at all levels of

the intraclass correlation, showed the bootstrap following the usual MINQUE quite

closely. Percentage polygons for both estimators were centered extremely close to

the true parameter value of 03, which was set at 100. Thus it can be argued that,

while both MINQUE and the bootstrap fairly accurately estimate 03,; eficiency of

these estimates is severely affected by the nature and size of the tails of the

distribution of the errors and sets of random effects parameters. Both estimators

are less efficient under a distribution with fairly long and/or thick tails than under a

distribution with short and/or thin tails. But the measure of their relative

eficiency was extremely close to unity.

The bootstrap confidence intervals about the parameter 036 showed a very

successful bootstrap interval estimation process. The average widths of the

confidence intervals were quite low, particularly under the normal distribution. At

all levels of the population intraclass correlation condition, the percentage of times

the true parameter value of a: fell within the 90 or 95 percentage bootstrap

confidence intervals were extremely close to either 90 or 95 under both normal and

double exponential distributions.
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At the 0.01 level of the population intraclass correlation condition, both

MINQUE and bootstrap very slightly overestimated p under both the normal and

double exponential. The biases were extremely close to zero under both

distributions. With an exception of R1 which was poorly estimated, all other nine

functions of p and/or 5* were fairly accurately estimated. At this level of the

intraclass correlation conditions the mean square errors for both MINQUE and the

bootstrap were particularly close to zero, under both distributions.

At the 0.05 level of the intraclass correlation condition, all ten estimable

functions of p and/or 13* were very successfully estimated, both by the MINQUE

and the bootstrap. The biases for the bootstrap and MINQUE estimators were

extremely close to zero under both the normal and double exponential distributions.

The bootstrap slightly underestimated p under the normal, but very

accurately estimated p under the double exponential at the 0.20 level of the

intraclass correlation condition. The MINQUE, on the other hand, slightly

underestimated p both under the normal and double exponential at this level of the

population intraclass correlation condition. Under both distributions, the statistics

R1 and R, were extremely close to unity. However, at this condition of the

intraclass correlation, the bootstrap performed as well as the MINQUE in

estimating the ratio of the estimate to the parameter, p under both the normal and

double exponential distributions.

Percentage polygons for the 400 MINQUE and bootstrap estimates of p

under the normal and double exponential distributions showed that the two

methods followed each other very closely. For both methods however,the estimates

of p were more variable under the double exponential than under the normal

distribution, at the 0.05 and 0.20 levels of the intraclass correlation condition.



121

The bootstrap interval estimation about the parameter 1", as a component

of p (see Equation 4.3) was successful, particularly at the 0.01 level of the intraclass

correlation; 90 and 95 percentage confidence intervals about p were fairly

successful under both normal and double exponential. However, the percentage of

times, the parameter value of p fell within the bootstrap 90 and 95 percent

confidence intervals were furthest from the expected confidence coefficient at the

0.20 levels of the intraclass correlation.

Fixfl effects pgameters (a,,gpgsl

Since a,, a,, and a, are linearly dependent, estimation was only required

for any two of them. Estimation results for a, and a:3 were presented.

At the 0.01 level of the intraclass correlation condition, both MINQUE and

bootstrap fairly accurately estimated both a, and a, with biases of no more than

0.027 for a, and 0.037 for 0,. The statistics R, and R, at this level of the

intraclass correlation were extremely close to 1.00 under both the normal and double

exponential distributions. Mean square errors for both MINQUE and bootstrap

estimates of a, and a:3 were no more than 0.87 under both normal and double

exponential distributions. The measure of their relative efficiency was quite clsoe to

one. 7

At the 0.05 level of the intraclass correlation, all ten estimable functions of

0, and/or 0: were very accurately estimated by both MINQUE and bootstrap,

under the normal. However, the bootstrap and MINQUE estimates of a, were

surprisingly accurate under the double exponential than under the normal. The

average values of the functions R, and R, for both MINQUE and bootstrap

estimates of a, and a, were extremely close to 1.00 under both normal and

double exponential for p = 0.05.



122

At the 0.20 level of the intraclass correlation, though the bootstrap was

closest to the parameter a, under the normal than under double exponential, the

biases for both MINQUE and bootstrap were no more than 0.05. Both biases for

bootstrap and MINQUE estimators of a, were close to 0.04 under the normal but

near 0.07 under double exponential.

In general therefore, both MINQUE and bootstrap very successfully

estimated the parameter a, and a, at all levels of the intraclass correlation under

both normal and double exponential distributions. However, the mean square error

for both MINQUE and bootstrap estimates of a, and a, tended to increase with

intraclass correlation under both normal and double exponential distributions.

The bootstrap confidence intervals about the parameters a, and a, at the

0.05 and 0.01 levels of the intraclass correlation showed a more precise bootstrap

interval estimation process under both normal and double exponential distributions.

Except for p = 0.20, the percentage of times the 90 or 95 percent bootstrap

confidence intervals captured the parameters a, and a, were extremely close to

the expected confidence coefficient, (1 — a) 100%.

C ' n of th variates

Perhaps the most accurate bootstrap and MINQUE estimation results were

obtained for the parameter [9, the coeficient of the covariates. For this parameter,

the bootstrap and MINQUE average estimates over 400 trials were extremely close

to the true parameter value regardless of the level of the intraclass correlation or

distribution of the errors and sets of random effects parameters of the model. At all

levels of the intraclass correlation condition, the bootstrap and MINQUE biases

were never greater than 0.0005 and the bootstrap estimate of bias was perfectly nil

under both normal and double exponential distribution.
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Average values for the functions R, and R, of [9 and/or 13* were either

extremely close to unit or exactly equal to unit at all levels of the intraclass

correlation condition. The mean squares errors for the bootstrap and MINQUE

estimators of ,6 were no more than 0.0002 under the normal and 0.0003 under the

double exponential at all three levels of the intraclass correlation condition. Thus,

based on these results it was evident that the parameter 6 was extremely

accurately estimated by both MINQUE and the bootstrap, regardless of the level of

the intraclass correlation condition and the nature and size of the tail of the

distribution.

Percentage polygons for the MINQUE and bootstrap estimates of 6 showed

no obvious differences between MINQUE and the bootstrap nor between their

estimation ability under the normal or the double exponential. At all levels of the

intraclass correlation, the percentage polygons showed that a large mass of the

bootstrap and MINQUE estimates were within 0.015 points from the true parameter

value of [9 which was set at 1.00. Also, regardless of the level of the intraclass

correlation, the bootstrap method for the confidence intervals about the parameter

5 was a remarkable success. Even the percentage of times the 90 or 95 percent

confidence intervals captured the true parameter value of 6 were extremely close to

the expected confidence coefficient at all levels of the intraclass correlation for both

normal and double exponential distributions.

Techni Di 8 ion

Much of statistical inference amounts to describing the relationship between

a sample and the population from which the sample was drawn. Consider for

instance, the statistic 0 used to estimate an unknown parameter 0. Suppose we

define a function R given by R = 9] 0. Since the behavior of R is unobservable,

we may wish to approximate its distribution. The main principle of the bootstrap is
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to estimate the unknown distribution of a function, such as R by the distribution

of R* = 17"] 9, where 9" is the bootstrap version of 0, computed from repeated

resampling.

The key feature of this argument is the hypothesis that the relationship

between 0 and 27* should closely resemble that between 0 and 0. Under the

assumption that the relationships are identical, we equate the two ratios, R and

R“ and obtain the estimate of 0 which is a function of data. Similar arguments

can be made for other functions like say, D* = 9* — 9 whose distribution will

resemble that of D = 9— 0. Bootstrap confidence intervals are then constructed

based on this approximation as demonstrated in Equation 6.1 through 6.3 in

Chapter VI of this dissertation.

In the present study, through Monte Carlo simulations, the distributions of

R and R“ were observed through two types of resampling. The distribution of R

was examined by drawing a random sample from a population having known

parameters, computing the statistic 9 and repeating the process a large number of

times. On the other hand, the distribution of R* was observed by drawing one

sample from the pOpulation similar to the one used in resampling for R. From this

sample, a random sample of the same size is drawn with replacement, the statistic

9" computed, and the process repeated a large number of times. The statistic 9

based on the original sample was also computed. The distributions of R and R“

were then derived from this systems. The purpose was then to empirically examine

the resemblence of the distribution of R“ and that of R.

Figures 7.1 and 7.2 presents the percentage polygons for the distributions of

R and R* representing the ratios of the estimators of the random and fixed

parameters of a mixed hierarchical linear model discussed in Chapter II of this
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Figure 7.1

Percentage polygons for the distributions of R and R“

representing the ratios of the estimates of the

random parameters 1’, 0:, and p.
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Figure 7.2

Percentage polygons for the distribution of R and R*

representing the ratios of the estimates of the

fixed parameters a,, a,, and fl.
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dissertation. The estimators represented in Figure 7.1 correspond to the random

parameters 1", oi, and p while those represented in Figure 7.2 correspond to the

fixed parameters a,, a,, and 6. Estimation of these parameters was done at the

0.05 level of the intraclass correlation condition.

The expected value of both R and R* is 1.00. Consequently, both

percentage polygons derived from the resampled data should be centered near 1.00.

Indeed, Figure 7.1 and 7.2 shows that both percentage polygons were centered

extremely close to 1.00.

It is important to emphasize that the distribution of R represents a

sampling distribution of a statistic which is unobservable in actual research

situations. Properties of this distribution can only be viewed theoretically for

certain statistics, typically via the normal theory. On the other hand, the

distribution of R* represents an approximation of the distribution of R. More

importantly, the distribution of R“ is almost always observable via the bootstrap

algorithm. If the distribution of R* fairly accurately approximates the distribution

of R, then the bootstrap proves itself as a highly promising method in statistics.

From Figures 7.1 and 7.2, it is apparent that the distributions of R and R“

are fairly similar, particularly in terms of their location (or central tendency). They

difi'er slightly in variability. However, the distribution of R* surprisingly appear

to be even "better" than that of R in the sense that, a greater mass of observations

are near 1.00 under the R* curve than under the R curve. This variations were

clearly marked under the double exponential than under the normal distribution.

Such variations in the distributions of R and R*, though slight, by underlying

distribution of errors and the random effects of the model were demonstrated to be

consistent for all estimators of the six parameters of the mixed hierarchical linear

model considered in the study (see Figures 7.1 and 7.2).
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The following conclusions were drawn from the results of the Monte Carlo

simulation study and the results of the application the bootstrap and MINQUE on

the estimation of the teachers’ self—efficacy prediction model.

1. Though the main mission of the bootstrap is not point estimation, the average of

the bootstrap estimates over B bootstrap replications can sometimes be closer to

the parameter value that the estimator based on the original sample. Thus, the

bootstrap may be viewed as both a point and interval estimation technique.

2. Efficiency of the usual MINQUE and the bootstrap estimators of the parameters

of a model are typically affected by the nature and size of the tails of the

distribution of the errors and sets of random effects of the model. Both estimators

are less efficient under a distribution with fairly long tick tails than under a

distribution with short think tails. In addition, the effect of the nature and size of

the tails of distribution tends to be more severe in estimating random efl'ects than

fixed effects of the model.

3. The bootstrap percentile method for the confidence intervals about the

parameters 1", p, a,, and c13 were successful at low intraclass correlation

conditions. At the 0.20 level of the intraclass correlation, the coverage probabilities

of the confidence intervals about these parameters was quite low. However, at and

below the 0.05 level of the intraclass correlation condition, the bootstrap percentile

method of the confidence intervals was shown to be highly promising.
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4. The bootstrap’s ability to estimate the standard error of the statistics,

generating empirical sampling distribution of the estimators and thereby setting

confidence intervals about parameters, without reference to any distributional

properties is the single most promising feature of the bootstrap. This ability was

very successfully demonstrated in the present study. Most importantly, the success

of the bootstrap point and interval estimation abilities were proved by comparing

the bootstrap estimates against the pre—determined true values of the model

parameters.

5. The MINQUE and bootstrap estimate of the coefficient of the covariates of the

model was surprisingly accurate. The bootstrap stande errors were extremely low

and bias was minimal. Even the bootstrap confidence intervals about the parameter

[9 were extremely precise.

6. In applying the bootstrap and MINQUE methods on the teachers’ self—efficacy

prediction model, which contained several predictors, showed the promising ability

of the bootstrap and MINQUE. The MINQUE which was once considered

computationally prohibitive can be used on such a large model with easy; even via

the bootstrap which involves repeated computation. The bootstrap algorithm can

be implemented on a large model of seven independent variables at a cost of no

more than 20 CPU time for one trial of 1000 replications.

7. For a statistic 9 used to estimate a parameter 0, the flmction R, defined by

R = 9/0 was used to represent the relationship between 0 and 0. Given :0" as

the bootstrap version of 9 computed from repeated resampling, we define the
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function R'" = 9'"/ 9 as an approximation to R. Through Monte Carlo simulations,

the distributions of R and R'" were found to be fairly similar, particularly in

terms of central tendency. The distributions difiered slightly in variability. The

distribution of R‘" was slightly less variable than the distribution of R.

Recommen tions

Through Monte Carlo simulations, the bootstrap was demonstrated as a

promising approach to estimating the standard error of the statistic, generating its

sampling distribution and thereby setting confidence intervals about a parameter.

This approach was empirically shown to work very well in estimating the

parameters of a mixed hierarchical model whose errors and random effects

parameters are either normally or double exponentially distributed. Applicability of

the bootstrap approach was further demonstrated in estimating the parameters of

the teachers’ self—efficacy prediction model.

Implementation of the bootstrap method requires a great deal of computer

usage. Though modern fast and relatively inexpensive computers are readily

available, software to implement the bootstrap algorithm are currently unavailable.

Development of such software is highly recommended to make the bootstrap

available to research practitioners.

m i ns f r her rese h

Results of a simulation study are typically limited in their generalization to

the conditions examined in the study. The present study examined the Operation of

the bootstrap via MINQUE in estimating parameters of a mixed hierarchical model

when the errors and random effects are either normally or double exponentially

distributed. The study was done under three levels of the intraclass correlation

conditions.
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The effectiveness of the bootstrap approach under severely skewed or heavily

tailed distributions remain to be seen. Studies to implement the bootstrap method

in examining the sampling distribution of estimators of parameters whose

underlying distributions are badly skewed like the gamma or heavily tailed like the

Cauchy are deemed necessary to fully understand the abilities and limitations of the

bootstrap approach.

The present study considered an hierarchical model consisting of "micro" and

"Macro" models with the assumption that only the intercepts were random. By

fixing other coefficients of the "micro" models simplified the study to one of

examining the variance components without covariates. A study to examine the

operation of the bootstrap in models involving not only variance components but

also covariance component will shed more light on the understanding of the

bootstrap in the hierarchical context.

The use of the bootstrap percentile method for the confidence interval at

p = 0.20 was not very successful in estimating certain parameters. A more

promising bootstrap t—method for the confidence interval was not used due to the

fact that the standard error of the MINQUE estimator was not known. Further

research geared to determining the standard error of MINQUE is deemed necessary

in order for the bootstrap users to utilize the t—method for the confidence intervals.
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APPENDIX A

SUMMARY OF COMPUTATIONAL FORMULAE

The object of MINQUE the study was to find the estimate {1 of the variance

compont g of the two—level mixed model Y = 159 + 2b. The estimate 13 using

weights w0 and w, in the norm is given by

 

where

foo for

f" = {tr(lfsfifil’éréiJ} = [ J for k, 1’ = 0,1

10 11

and

I I no

I]. = {1" 131159111331} = u,

for 13. = 13".: — y;‘s()5’y;‘)5)'¥'Y&‘ -

Let 1; = ($11.12;)— and e.= Y;‘¥'Y;‘¥)‘¥'Y;‘

such that I," = 13:1 — A
a. w .

“’1
for n. = number of micro units in 

_ 1 _
Ifwe define w — Til and cj — 1+(nj'1)wl

macro group j, then the following is the summary of the computational formulae:

132
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———m—1-1S 4.;

(a) Let If = ’5'sz = $131921.-

= {w 3 (X131 " 93151151159}—

: {w 2 (11,15, ‘ °1§1§1)}_

(b) 9. = 1915151:

= “’2 3 {1:1, " “151151931531an- c1511? 11)}

— 2 I I I I I

— W 2 (311.051 ‘ 0515519151 ‘ “151151131531

I2 I I

+ “1919113115315115111

2. F" matrix;

(a) foo = tr(Yl’) 441/1315)

where

tr(Y;’) = w" 2 n,-{(1—-c,-)2 + c}(nj—l)}

tr(Y;‘A') = w3 2 {tr(tj) — c,a,-[(1—c,-n,-)2 + (2—cjnj)]}

Where 1' = "513511.? and 31 = “0511531511? 11)

which is a scalar simplified by a,- = tr(S;I~(Sj) =
§115§1

(b) for = f10 = tr(YQ’E?) -tr(Y;1A@@’,)

where

tr(Yfgg ,) = w" )3 n,(1-c,nj)2

tr(Yé‘4~%1?1%171) = w’ 8 alum->3
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(c) 1.. = my;2z’-za?) 441121.192a91)

where

tr(Vf2,2,2 ,21) = w2 E n}(1—c,-n,)’

tr(V“142,2 2,,2,)=w1111,-"'}3na,,(l-cn,-)3

3. g and U”;

(a) €v= (312971;?

= KXV'1Y

=w2Kx, (Inj -,..cz1,z',,.)Y,

=w21_(X,-——,.,ch.z,,z',,Y,)

= w )3 (13X, — c,r,I,(S,) where "i = 21,17,- is the sum of Y

elements in context j

(b) uo=w22d,7(1 —,..'2ezz +c,’n,.zzH,,-,,- )d, ford,-=Y, —X,-a
.112 11

w’ 2 (d,d, —2c,d,z,,z',,d, + c,?n,d,z,,g’,,d,)

W2 ’3 (£1191 ' 2°1hi + C1111”?

for h, = z’,,d, = d';,, = 20;, —x.§)

11d1
(c) u,=w2}3(1—c,-n,)’dZ,,-2

= W2 2 hj2(1_cj11,)2

4. MINQUE forthe Fixed Effects:

Model: Y = X9 + 21,)

 

where Y is (nxl) vector of n observations

X is an (nxp) matrix of known constants

g is a (pxl) vector of fixed effects parameters
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Z is an (nun) identify matrix (usually denoted by Z0

in the random or mixed models).

13 is (nxl) vector of residual error terms.

1,)" onn

Y1.
ll

t
N

12.? = 12. = W111

which implies that

- 1
‘1'1 = a; In and

V.:’ = 1.1,,
w: '

K = (s’yrzo‘ = w.( ’29-

s. = V;‘z<05'Y;‘z<)‘z<’Y" = Y;‘2$I..<¥'Y;‘

= ‘-, W1 as???
wo

_ 1 I _ I

—fiN¥p¥

€11 = tr(ssz’w ) = tr0311’.)

where 13. = Y1? -Y1;"5(Z"Y12"5)_W:

= my? —Y;‘{,\.)

= 1103:) - 1101.14.)

=_n -2.

2 2

W0 W0
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1
< = (y.1 — Y1;‘)5(¥'Y;‘¥)‘ X'Yfl‘!

= 3,120; - ¥(¥'Y;‘Z‘)— U12?)

= Y1? (Y - 2&3)

for 131 = (x’wzcr in“!

thus,

= 01- {(9)332 (Y 45%)

=l.(Y—x1})’(Y—x21

w2 ' H ' --
0

where £1: (x'v;IX)‘x'v;lY

= XX _X—
wo( ) “TOY_

= (is)?!

Thus, for the general fixed effects model, the MINQUE estimator 1}: = 1};

is given by

s}: = 2:19.

2

W0 1 “ I “

—..—.p--;,<¥—z<e> (if-2‘9)

=n-1:5(Y" Xa) (Y- Xa)

which is independent of the weights wo and w, . Consider for

example the simplist and naive model given by,

Yij = l‘ + ‘ij

In the notation of the form

Y = ’59 + @‘3 »

X is a (nxl) vector of 1’s

a=p isascalar
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Z = In is an (nun) indentity matrix

b is a(nx1) vector of residual error terms.

Inthisspecificcase, P=l and

a =(XX)- XY== Y" (Grand mean).

y,=1—,(Y— Xa) (Y— Xa)

l
= —2 2 (Yij ""Y..)2

W0

W3
- -1 _

811C}! that, Wlth F' — n—_p ,

the MINQUE estimator a: is given by

03-— a: -—F"U

2
w0 1

=— —2(Y-- —Y..)2
11.1) w: 1]

1
= “Fr 2 (Yij - Y..)2

= s2

which is the moment estimator.

5. MINQQE for the one way rgdom eggs bflgced model:

where Y is (le) vector of N observations for N = nJ,

J = # of levels.

X is (le) vector of 1’s

9 II p

[oZ11]

andZ is (NJ) block diagonal, each block

'
N H

L
N

being a column of 1’s.
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13 = [Po 9:]:

b0 = (le) vector of residual error terms

13, = (J111) vector of J unobservable random

effects parameters.

(a) If = Q‘IYvil’fr = {W “31:an ' 61%11%§1)¥1}‘

= {w 2 (n —cn’)}— since 111 = n c- = c
J ’ J

= {wnJ(1 — A)}'1 .

Thus

K = w_nJ('I:X)' for )1 = find—2,;

(b) 4.. = 1.2 2 (l-cjnj)’ 151193

= 1.2110. 1,2 2 151253

(c) foo = tr(Y;’) — 11115.14.)

(i) tr(Y;’) = W” 2 1n,{(1-<=,-)2 + c,?(n,- - 1)}

= w’nJ((l-c)2 + c2(n—l)}

= w’nJ(1—2c + nc’)

= w’J(l—A)2 + (n—1)w2J

(ii) tr(Y;1§') = WK )3 n,-(1—c,-n,)3

= w’KnJ(l—A)3

= W3 mid-11')- nJ(l—A)3

= w"‘(1~-—A)2 .

Thus foo = w"‘J(l—A)2 + (n—l)w’J — w’(1—z\)2

= w’{(J—1)(1—»\)’ + (n—1)J}

= w’ {(J-1)(1—A)2 + J(n—1)}
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r(Y‘I)(I‘f)zuz‘“=
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r(Y—I)“z“-z(\’-I)fuz“=°‘J=‘°1‘smu.
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=(Y-I)rzuxgm=
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(J) P = (f00u1_ 01%)“)

(i) 1,011,: wH{(J-1)(1—,\) + J(N—l)}{w’n(l—A)’SSB}

= w‘n(J—1)(1—A)‘ SSB + w‘nJ(n—1)(1—A)’SSB

(ii) £0,110: {w’n(J—l)(1—A)’}{w(SSB(1—A)2 + SSW)}

= w‘n(J--—1)(l—)\)4 SSB + wn(J—-1)(l—/\)2 SSW

Thus foou, — {mu0 = wn(l—A)2 [J(n-1)SSB - (J—l)SSW].

~

Thus

fr: = w‘n(1-A)’[J(n—1)SSB—(J—1)SSW]
g»

w‘n’J(J—1)(n—1)( l—A) ’

I
F
”
.
.
.
-

1
.

.

_[J(n—l)SSB] — [(J-1)SSW]
 

  

nJ(J—1)(n-1)

_ J n—l SSB _ J—l SSW

_ — n— — n—

SBB SSW _MSB _MSW

=n( J—I) -nJ( n—l) n 11

As a result,

1;: = MSB-MSW
 

n

(which is the same as the method of moments).

(k) 3: = (fuuo - 01“1)/D

(i) f,,u°= {w’n’(J—l)(l—A)’}{w’SB(l—A)2 + SSW}

= wn’(J—1)(l—A)‘SSB+w‘n’(J—1)(1—)1)’SSW

(ii) fo,u,= {w’n(J—1)(1—A)’}{w2n(1—/\)2SSB}

= wn’(J——-1)(1-/\)‘SSB

which implies that,

f,,uo — 0,u, = w‘n’(J—1)(l—A)’ ssw

such that
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)

a: = (flluo " fo1u1)/D

= w‘n’(J—l)(1-/\)’SSW

w‘n’J(J-l)(n-l)( l—A)’

 

_ SSW
_ 31—,”—

= MSW

(which is the same as in the method of moments).



APPENDIX B

SAS/INL COMPUTER PROGRAMS

PART 1

COMPUTER PROGRAM TO IMPLEMENT TEE BOOTSTRAP ALGORITHM

ON A SAMPLE EIERARCRICAL DATA DRAWN FROM A NORMAL

POPULATION OP KNOWN PARAMETERS.

 

THE PROGRAM PIRST SETS UP THE 5 AND THE FIRST PART OP THE

; MATRIX EXCLUDING THE COVARIATES. THE CONSTRUCTION OF

THESE MATRICES ARE BASED ON THE NUMBER or OBSERVATIONS IN

CELL TO SATISFY THE REQUIREMENTS AS IN EQUATION 2.9 IN

CHAPTER II. THE PROGRAM IDENTIFIES THE COMPONENTS ON EACH

AS DENONSTRATED HY EQUATION 2.11 IN CHAPTER II.

THE WEIGHT :1 WAS DETERMINED SEPARATELY USING THE

HANUSHER (1974) METHOD.

PROC INL;

START;

I=1/(1-l1);

SROUPS=50;

NV11=REPEAT(20,2,1);

NV21=REPEAT(25,5,1);

NV31=REPEAT(30,10,1);

NV1=NV11//NV21//NV31;

NV12=REPEAT(35,5,1);

NV22=REPEAT(40,3,1);

NV32=REPEAT(20,3,1);

NV42=REPEAT(25,5,1);

NV2=NV12I/NV22//NV32//NV42;

NVI3=REPEAT(30,10,1);

NV33=REPEAT(40,2,1);

NV3=NV13IINV23IINV33;

NV=NV1//NV2//NV3;

cv=I1/(1+(uv-1)ow1);

111=REPEAT(1,465,1);

212=REPEAT(1,4SO,1);

113=REPEAT(1,555,1);

101=REPEAT(O,465,1);

XOZ=REPEAT(O,4SO,1);

803=REPEAT(0,555,1);

xr=x11//xoz//x03;

xz=xo1//x12//xoa;

xa=xo1//xoz//xra;

x4=xr||x2||x3;

O
O
O
O
O
O
O
O
O
I
’
.
.
.

Q
.

Q
.

Q
.
Q
.
Q
.

Q
.
Q
.

Q
.
Q
.

Q
.
Q
.

Q
.

Q
.
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PROGRAM SEGMENT TO GENERATE DATA FROM A NQRMAL POPULATION

OF SPECIFIED PARAMETER VALUES. THE PROGRAM FIRST DETERMINES

THE FIXED EFFECTS PARAMETERS AND THE COVARIATE WHICH IN

ARE USED IN TURN TO GENERATE THE OBSERVATIONS 1 THROUGH

THE EQUATION GIVEN BY:

Y = (X*ALPHA) + B + E

gggg: IS ANY NUMBER USED TO CREATE A RANDOM NUMBER OF

OBSERVATIONS FROM SOME POPULATION.

SEED = 10199;

*TIS THE INDEX COUNTER FOR THE NUMBER OF SIMULATION TRIALS

DO T = 1 TO 400;

 

REPPECTS = 2.2935 * NORMAL(REPEAT(SEED,GROUPS,1));

D1 = narrncrs[1,1];

N1 = NV[1,1];

8J1 = REPEAT(SI,N1,1);

DO I = 2 TO GROUPS;

SJ = REFPECTS[I,1];

N = NV[I,1];

BJI=BJIIIREPEAT(BJ,N,1);

END;

S
O
S
O
O
S
O
O
O
O
O
O
O
O
O

S=BJI;

n = 10 . NORMAL(REPEAT(SEED,1500,1));

:41 = REPEAT(25,1500,1);

:5 = INT(75 . UNIPORM(REPEAT(SEED,1500,1))) + :41;

x=X4||xs;

ALPHA = {-s,2,3,1.0};

Y = (X:ALPHA) + B + 3;

AT THIS POINT A SPECIFIC DATA an! HAS BEEN GENERATED IITH

THE PIXDD nrrncrs ALPHA AND E AND 3 AS THE RANDOM ;

PARTS or THE MODEL. IHILE THE PIXBD nrrncrs REMAINED AT

THESE VALUES, THE RANDOM arrears PARAMETERS TOOK THE VALUES

AS SHOIN BELLOI:

 

 

INTRA-CLASS

DATA SET CORRELATION TAU SQUARE SIGMA SQUARE

 

1 0.01 1.00 100

2 0.05 5.26 100

3 0.20 25.00 100

 

Q
.

Q
.
Q
.

Q
.

Q
.
Q
.
Q
.

Q
.
Q
.

Q
0

Q
.

Q
.
Q
.

Q
.

Q
.

Q
.
Q
.
Q
.

Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.

Q
.

Q
.
Q
.
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S 5 IS A MATRIX WHICH IS PART OF THE PROJECTION MATRIX PW

* GIVEN IN EQUATION 2.20 IN CHAPTER II. THE MATRIX 5 IS

GIVEN BY:

‘
0

X=INV(X’VWIX)

THE FOLLOWING PROGRAM SEGMENT COMPUTES THE ELEMENTS OF THE

MATRIX 5.

Q-----------------------_---.....———--------------..-------......---

x=o;

X1=0;

x2=o;

M=1;

N1=0;

DO J=1 TO GROUPS;

NJ=NV[J,I];

N1=N1+NJ;

XJ=X[M:N1,];

XJ=Y[M:N1,];

EIJ=REPEAT(1,NJ,1);

CJ=CV[J,1];

SJ=XJ‘*EIJ;

X1=X1+(XJ‘*XJ);

X2=X2+(CJ*SJ*SJ‘);

M=M+NU;

END;

X:W*(X1-X2);

X=INV(X);

S
.
.
.

I
t
S

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

a--------------------------------------------------------------- ;

* DETERMINATION OF THE MATRIX FM: ;

* I! IS A (282) MATRIX ASSOCIATED WITH WEIGHTS Wk SHOWN ;

* IN EQUATION 2.21, AND WHOSE ELEMENTS ARE DETERMINED THROUGH ;

* EQUATION 2.26 THROUGH 2.28. ;

O ALPHAH IS A VECTOR OF THE ESTIMATES OF THE FIXED EFFECTS ;

* PARAMETERS OF THE MODEL BASED ON THE ORIGINAL DATA SET. ;

0 THUS, THE FOLLOWING PROGRAM SEGMENT DETERMINES THE MATRICES ;

* USED TO COMPUTE THE USUAL MINQUE ESTIMATES THAT ARE BASED ;

* ON THE ORIGINAL DATA SET. ;

a----------------------------------------------------------—-—--;

F001=o;

FOO2=O;

F011=0;

F012=0;

F111=0;

F112=0;

ALPHA1={0,0,0,0};

ALPHA2={0,0,0,0};

M=1;

N1=0;
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DO J=1 TO GROUPS;

NJ=NV[J.1] ;

N1=N1+NJ;

XJ=X[M:N1,];

YJ=Y[M:N1,];

CJ=CV[J,1];

21J=REPEAT(1,NJ,1);

CN=CJ*NJ;

CJ2=CJ*CJ;

NJ:=NJ*NJ;

C2=(1-CJ)*(1-CJ);

TJ=TRACE(XJ‘*XJ*X);

SJ=XJ‘*EIJ;

AJ=SJ‘*X*SJ;

AC=AJOCJ;

CN1=1-CN;

CN12=CN1OCN1;

CN13=CN1*CN12;

AN=AJ*NJ;

RJ=EIJ‘*YJ;

F001=F001+(NJ*(C2+(CJZ*(NJ-1))

P002=P002+(TJ-AC*(CN12+(2-CN))

FOII=P011+(NJ*CN12);

F012=P012+(AJOCN13);

F111=F111+(NJ2*CN12);

F112=F112+(AN*CN13);

ALPHA1=ALPHA1+(X*XJ‘*YJ);

ALPHA2=ALPHA2+(CJ*RJ*R*SJ);

ALPHAH=ALPHA1-ALPHA2;

M=M+NU;

END;

I2=I*U;

I3=I2*U;

F001=I2*F001;

rooz=watrooz;

F011=I2*F011;

F012=W3*F012;

F111:I2*P111;

F112=I3*F112;

FOO=F001-F002;

F01=F011-F012;

F11=F111-F112;

ALPHAH:W*ALPHAH;

ALPHAHT=ALPHAH‘;

H:

H
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‘
0
‘
0

Q
0

Q
0

Q
0
Q
0

‘
0
Q
0
Q
0

‘
0

Q
0
Q
0

Q
0

Q
0

Q
0

Q
0

DETERMINATION OF THE MATRIX UW:

Q! IS A 2 DIMENSIONAL VECTOR OF QUADRATIC FORMS WHOSE

ELEMENTS ARE DENOTED BY no AND u1 (SEE EQUATION 2.22, 2.31

AND 2.32).

QETF IS THE DETERMINANT OF THE MATRIX FW USED TO OBTAIN

THE INVERSE OF THE (282) MATRIX FW.

SIGMAH IS THE INTRA-CLASS VARIANCE COMPONENT BASED ON THE

ORIGINAL HIERARCHICAL DATA SET.

TAUH IS THE INTER-CLASS VARIANCE COMPONENT ESTIMATE BASED

ON THE ORIGINAL DATA SET.

LAMDA IS THE INTRA-CLASS CORRELATION BASED ON THE ORIGINAL

SAMPLE AND COMPUTED BY THE FORMULA,

LAMDA = TAUH/(TAUH+SIGMAH)

001:0;

011:0;

M=1;

N1=o;

DO 3:1 TO GROUPS;

UJ=NVIJrllf

N1=N1+NJ;

XJ=X[M:N1,];

YJ=Y[M:N1,];

CJ=CV[J,1];

EIJ=REPEAT(1,NJ,1);

CN=CJ¢NJ;

N2=NJONJ;

=YJ-(XJ*ALPHAH);

HJ=EIJ‘*DJ;

GJ=DJ‘*DJ;

HJ:=HJ*HJ;

CH2=CJ*H32;

CN12=(1-CN)*(1-CN):

=YJ-(XJfiALPHAH);

001:001+(GJ-(an*(2-CN))):

U11=U11+(HJZ*CN12);

M=M+NU;

S
.
D
.
.
.
O
O
Q
O
O
O
O
I
’
I
’
.

 

* THIS MARKS THE END OF THE COMPUTATION OF THE USUAL MINQUE

* ESTIMATES BASED ON THE ORIGINAL SAMPLE. THE USUAL MINQUE

* ARE PRINTED AT THE FIRST LINE. ESTIMATES PRINTED AT THE

* PROCEEDING LINES ARE THE BOOTSTRAP REPLICATED ESTIMATES

* BASED ON THE RESAMPLED DATA FROM THE ORIGINAL SAMPLE

. _______ __ __ __ _-

Q
.

Q
.
Q
.

Q
.

‘
0

‘
0

‘
0

U0=W2*U01;

01=wztn11;

DETF=(FOO*F11)-(FOI*F01);

SIGMAH=((F11*UO)-(F01*Ul))/DETF;

TAUH=((FOO*U1)-(F01*UO))IDETF;
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*=__:=::___=__ _ _ == ______ __ ::_ _ __

* A PROCEDURE TO BOOTSTRAP THE PARAMETER ESTIMATES

* BY COMPUTING THE ESTIMATE B TIMES THROUGH RESAMPLING.

* 3 IS THE INDEX COUNTER WHICH COUNTS THE BOOTSTRAP REPLICATED

* SAMPLES. SEEDI IS THE RANDOM GENERATOR FOR THE BOOTSTRAP.

 

 

Q
.
Q
.
Q
0

Q
0

Q
0

‘
0

SEED1 = 10199;

DO B=1 TO 200;

* A PROCEDURE USED TO RESAMPLE DATA FROM THE ORIGINAL DATA SET

* BY FIRST CREATING AN INDEX FOR EACH OBSERVATION. THIS

* PROCESS IS REPEATED B TIMES FOR SOME LARGE B REPRESENTING

* THE NUMBER OF BOOTSTRAP REPLICATIONS.

O

Q
.

Q
.

Q
.
Q
.

Q
.

‘
0

NT=1;

CONSTANT=REPEAT(NT,NV[1,1,1);

INDEX=NV[1,1*(UNIFORM(REPEAT(SEED1,NV[1,1,1)))+CONSTANT;

DO S=2 TO GROUPS;

NT=NT+NV[S-1,];

CONSTANT=REPEAT(NT,NV[S,1,1);

INDEX1=NV[S,1*(UNIFORM(REPEAT(SEED1,NV[S,1,1)))+CONSTANT;

INDEX:INDEX//INDEX1;

END;

INDEX=INT(INDEX);

YSTAR=Y[INDEX];

XSSTAR=X5[INDEX];

XSTAR=X4||XSSTAR;

YSTART=YSTAR‘;

a--—------------------------------------------------------------;

* DETERMINE X=INV(X'VIIX) BASED ON THE REPLICATED COVARIATE ;

t VALUES ;

*---------------------------------------------------------------;

X=o;

x1=o;

32:0;

M=1;

N1=o;

DO 3:1 TO GROUPS;

NU=NV[J,1];

N1=N1+NJ;

XJ=XSTAR[M:N1,];

YJ=YSTAR[M:N1,];

EIJ=REPEAT(1,NJ,1);

CJ=CV[J,1];

SJ=XJ‘*ZIJ;

X1=X1+(XJ‘*XJ);

X2=X2+(CJ*SJ*SJ‘);

M=M+NU;

END;

X:W*(X1-R2);

X=INV(R) ;

 



149

* DETERMINATION OF THE MATRIX PM BASED ON THE REPLICATED R

* MATRIX.

* ALPHAH; IS THE ESTIMATE OF THE FIXED EFFECTS PARAMETERS BASED

* ON THE REPLICATED DATA SET.

.....................-............2..............-..............

F001=o;

F002=0;

F011=o;

r012=o;

F111=o;

r112=o;

ALPHA1={0,0,0,0};

ALPHA2={o,o,o,0};

M=1;

N1=O;

DO J=1 TO GROUPS;

NJ=NV[J,1];

N1=N1+NJ;

XJ=XSTAR[M:N1,];

YJ=YSTAR[M:N1,];

CJ=CV[J,1];

SIJ=REPEAT(1,NJ,1);

=CJ‘NJ;

CJ2=CJ*CJ;

NJ2=NJ*NJ;

C2=(1-CJ)*(1-CJ);

TJ=TRACE(XJ‘*XJ*R);

SJ=XJ‘*EIJ;

AJ=SJ‘*X*SJ;

AC=AJ*CJ;

CN1=1-CN;

CN12=CN1*CN1;

CN13=CN10CN12;

AN=AJ0NJ;

RJ=EIJ‘*YJ;

F001=P001+(NJ*(C2+(CJZ*(NJ-1))));

F002=P002+(TJ-AC*(CN12+(2-CN)));

F011=F011+(NJ*CN12);

F012=2012+(AJ*CN13);

F111=F111+(N32*CN12);

F112=F112+(AN*CN13);

ALPHA1=ALPHA1+(R*XJ‘*YJ);

ALPHA2=ALPHA2+(CJ*RJ*X*SJ);

ALPHAH1=ALPHA1-ALPHA2;

M=M+NJ;

END;

W2=N*l;

I3=W2*I;

F001=U2*F001;

F002=U3*F002;

F011=W2*F011;

F012:l3*F012;

Q
.
Q
.
Q
.

Q
.

‘
0
‘
0
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F111=W2*F111:

F112=W3*F112;

F00=F001-F002;

F01=F011-F012;

F11=F111~F1123

ALPHAH1=W*ALPHAH1;

ALPHAH1T=ALPHAH1‘;

 

I

* DETERMINATION OF THE VECTOR UM BASED ON THE RESAMPLED Y ;

0 AND THE REPLICATED X MATRIX ;

* SIGMAHI IS THE INTRA-CLASS VARIANCE COMPONENT ESTIMATE ;

t BASED ON THE REPLICATED SAMPLE ;

* TAUHI IS THE INTER-CLASS VARIANCE COMPONENT ESTIMATE BASED ;

* ON THE REPLICATED SAMPLE. . ;

* LAMDA; IS THE INTRA-CLASS CORRELATION ESTIMATE BASED ON ;

* THE REPLICATED SAMPLE. ;

a — — - —=—=— — ___ _ _ _ _ _= ——==—;

U01=0;

U11=0;

M=1;

N1=0;

DO J=1 TO GROUPS;

NJ=NV[J,1];

N1=N1+NJ;

XJ=XSTAR[M:N1,];

YJ=YSTAR[M:N1,];

CJ=CV[J,1];

SIJ=REPEAT(1,NJ,1);

CN=CJ*NJ;

N2=NJ*NJ;

DJ=YJ-(XJ*ALPHAH1);

HJ=21J‘*DJ;

GJ=DJ‘*DJ;

H32=HJ*HJ;

CH2=CJ*HJZ;

CN12=(1-CN)*(I-CN);

DJ=YJ-(XJ*ALPHAH1);

U01=UOI+(GJ-(CH2*(2-CN)));

U11=U11+(HJ2*CN12);

N=E+NU;

END;

U0=w20001;

01=w2t011;

DETF=(F00*F11)-(FOI*FOI);

TAUH1=((FOO*U1)-(FOI*UO))/DETF;

SIGMAHI=((F11*UO)-(F01*Ul))/DETF;

O--—------------------—--------—-----------------—-------------—--;

a THE NEXT PROGRAM SEGMENT PRINTS THE VALUE OF THE BOOTSTRAP ;

a AT EACH OF TEE B BOOTSTRAP REPLICATION. ;

I
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PRINT T (|PORNAT=4.o|) B (IFORMAT=4.0|) TAUH (IFORMAT=S.3|)

TAUHI (IFORMAT=S.3|) SIGMAH (IFORMAT=S.3|)

SIGMAHI (IFORMAT=S.3|);

PRINT ALPHAHT (IFORMAT=S.3|) ALPHAHIT (IFORMAT=S.3|);

SEEDI = SEED1 + 100;

END;
.__ _. _____ __ __ _ _= ___

* THE END OF THE BOOTSTRAP TRIAL BASED ON THE RESAMPLED DATA.

 

ANOTHER TRIAL WILL BE PERFORMED AFTER CHANGING THE SEED FOR

THE RANDOM SAMPLING ALGORITH.

SEED = SEED + 100;

END;

* THIS MARKS THE END OF THE SIMULATION TRIAL. EACH SUCH TRIAL

* RESULTS IN ONE SET OF THE USUAL MINQUE ESTIMATES AND B SETS

* OF THE BOOTSTRAP REPLICATED ESTIMATES. THE SUMMARY

0 STATISTICS FOR THE BOOTSTRAP REPLICATED ESTIMATES ARE ALSO

* COMPUTED.

FINISH;

RUN;

PART 2

COMPUTER PROGRAM TO IMPLEMENT THE BOOTSTRAP ALGORITHM

ON A SAMPLE HIERARCHICAL DATA DRAIN FROM A DQQELE

EXPONENTIAL POPULATION OF KNOWN PARAMETERS.

 

X MATRIX EXCLUDING THE COVARIATES. THE CONSTRUCTION OF

THESE MATRICES ARE BASED ON THE NUMBER OF OBSERVATIONS IN

CELL TO SATISFY THE REQUIREMENTS AS IN EQUATION 2.9 IN

CHAPTER II. THE PROGRAM IDENTIFIES THE COMPONENTS ON EACH

AS DEMONSTRATED BY EQUATION 2.11 IN CHAPTER II.

THE WEIGHT 1; WAS DETERMINED SEPARATELY USING THE

HANUSHEK (1974) METHOD.

PROC IML;

START;

=1/(1-W1);

GROUPS=50;

NV11=REPEAT(20,2,1);

NV21=REPEAT(25,5,1);

NV31=REPEAT(30,10,1);

NV1=NV11//NV21//NV31:

NV12=REPEAT(35,5,1);

NV22=REPEAT(40,3,1);

NV32=REPEAT(20,3,1);

NV42=REPEAT(25,5,1);

NV2=NV12//NV22//NV32//NV42;

NV13=REPEAT(30,10,1);

.
D
.
.
.
.
I
‘
O
O
O
O
.

TEE PROGRAM FIRST SETS UP THE E ANDVTHE FIRST PART OF TEE

Q
.

Q
.
Q
.
Q
.

Q
.

Q
.

Q
.

Q
.

Q
.
Q
.

Q
.
Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.
Q
.

Q
.
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NV23=REPEAT(3S,5,1);

NV33=REPEAT(40,2,1);

NV3=NV13//NV23//NV33;

NV=NV1//NV2//NV3;

cV=I1/(1+(NV-1)*W1);

XI1=REPEAT(1,465,1);

X12=REPEAT(1,480,1);

x13=REPEAT(1.555,1);

:01=REPEAT(0,465,1);

xoz=REPEAT(o,ASo,1);

X03=REPEAT(O,555,1);

:1=x11//xoz//xoa;

xz=x01//312//xoa;

Ia=x01//xoz//113;

X4=x1||x2||xa;

PROGRAM SEGMENT TO GENERATE DATA FROM A DOUBLE EXPONENTIAL

POPULATION OF SPECIFIED PARAMETER VALUES.

THE PROGRAM FIRST DETERMINES THE FIXED EFFECTS PARAMETERS

TOGETHER WITH THE RANDOM EFFECTS PARAMETERS

AND THE COVARIATE WHICH ARE USED IN TURN TO GENERATE THE

OBSERVATIONS 1 THROUGH THE EQUATION GIVEN BY:

Q
.
Q
.

Q
.
Q
.
Q
.
Q
.

Q
.
Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Y = (X*ALPHA) + B + E

fifigfll AND SEED2: ARE ANY NUMBERS USED TO CREATE A RANDOM

NUMBER OF OBSERVATIONS FROM A DOUBLE EXPONENTIAL POPULATION.

O
I
P
S
'
O
i
t
S
'
O
I
P
I
'
O
I
D
S
'
.

1 IS THE INDEX COUNTER FOR THE NUMBER OF SIMULATION TRIALS

‘---------------------------------------------------------------

DO T = 1 TO 400;

SEEDI = 100999;

SEED: = 12399;

I

0 T IS THE INDEX COUNTER FOR THE NUMBER OF SIMULATION TRIALS ;

0-—---------------—-—--—-——---------------—----—--—-------------;

DO T = 1 TO 1;

UR1=UNIFORM(REPEAT(SEED1,GROUPS,1));

UR2=UNIFORM(REPEAT(SEED2,GROUPS,1));

LR= -1 * LOG(UR1);

TR1 = REPEAT(1,GROUPS,1);

TR2 = TRI f (UR2 >= 0.5);

TR3 = -1*(TR1 I (UR: < 0.5));

TR4 = TR2 + TR3;

REFFECTS = 2.2935 * ((LR#TR4)/SQRT(2));

O—n-—————————————-—--------------------------------------------- ;

31 = REFFECTS[1,1];

"1 = NV[1.1]:

3.11 = REPEAT(B1,N1,1);

DO I = 2 TO GROUPS;

B3 = REFFECTS[I,1];

N = xvlllll;

BJI=BJIIIREPEAT(BJ,N,1);

END;

 



153

B=BJI;

E = 10 * NORMAL(REPEAT(SEED,1500,1));

3‘1 3 REPEAT‘25,1500,1);

H5 3 INT‘75 * UNIFORM(REPEAT(SEED,1500,1))) + X41;

x=x4||xs;

ALPEA = {-s,2,3,1.0};

Y = (H‘ALPHA) + D + E;

‘u...------.-----------------------------------------------------

. AT THIS POINT A SPECIFIC DATA SET HAS BEEN OHNERATED 'ITH

* THE FIXED EFFECTS ALPHA AND D AND E AS THE RANDOM ;

* PARTS OF THE MODEL. WHILE THE FIXED EFFECTS RHMAINHD AT

. THESE VALUES, THE RANDOM EFFECTS PARAMETERS TOOK THE VALUES

* AS SHO'N HELLO":

 

 

INTRA-CLASS

DATA SET CORRELATION TAU SQUARE SIGMA SQUARE

1 0.01 1.00 100

2 0.05 5.26 100

3 0.20 25.00 100

 

5 IS A MATRIX WHICH IS PART OF THE PROJECTION MATRIX PW

GIVEN IN EQUATION 2.20 IN CHAPTER II. THE MATRIX L IS

GIVEN BY:

K=INV(X’VIIX)

O
O
O
O
Q
O
O
S
S
O
O
S
S
S
S
I
’

* THE FOLLOWING PROGRAM SEGMENT COMPUTES THE ELEMENTS OF THE

* MATRIX A.

.-----------—---------------------------—---—------------_-.........-

X=0;

K1=0;

X2=0;

M=1;

N1=0;

DO J=1 TO GROUPS;

NJ=NV[J,1];

N1=N1+NJ;

XJ=X[M:N1,];

YJ=Y[M:N1,];

21J=REPEAT(1,NU,1);

CJ=CV[J,1];

SJ=XJ‘*ZIJ;

K1:K1+(XJ‘*XJ);

X2=X2+(CJ*SJ*SJ‘);

M=M+NJ;

END;

X=W*(K1-X2);

K=INV(K);

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.
Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.
Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.
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I

* DETERMINATION OF THE MATRIX FI: ;

t I! IS A (282) MATRIX ASSOCIATED WITH WEIGHTS Wk SHOWN ;

* IN EQUATION 2.21, AND WHOSE ELEMENTS ARE DETERMINED THROUGH ;

* EQUATION 2.26 THROUGH 2.28. ;

* ALPHAH IS A VECTOR OF THE ESTIMATES OF THE FIXED EFFECTS ;

* PARAMETERS OF THE MODEL BASED ON THE ORIGINAL DATA SET. ;

* THUS, THE FOLLOWING PROGRAM SEGMENT DETERMINES THE MATRICES ;

0 USED TO COMPUTE THE USUAL MINQUE ESTIMATES THAT ARE BASED ;

* ON THE ORIGINAL DATA SET. ;

*---------------------------------------------------------------;

F001=0;

F002=0;

ro11=o;

F012=0;

F111=0;

F112=0;

ALPHA1={0,0,0,0};

ALPHA2={0,0,0,0};

M=1;

N1=0;

DO J=1 TO GROUPS;

NJ=NV[J,1];

N1=N1+NJ;

XJ=X[M:N1,];

YJ=Y[M:N1,];

CJ=CV[J,1];

21J=REPEAT(1,NJ,1);

CN=CJ¢NJ;

CJZ=CJ*CJ;

NJz=NJ*NJ;

C2=(1-CJ)*(1-CJ);

TJ=TRACE(XJ‘*XJ*K);

SJ=XJ‘*213;

AJ=SJ‘*K*SJ;

AC=AJOCJ;

CN1=1-CN;

CN12=CN1*CNI;

C813=CN1*CN12;

AN=AJ*NJ;

RJ=213‘*YJ;

F001=F001+(NJ*(C2+(CJ2*(NJ-1))));

F002=F002+(TJ-AC*(CN12+(2-CN)));

F011:F011+(NJ*CN12);

F012=F012+(AJ*C813);

F111=F111+(NJ2*CN12);

F112=F112+(AN*CN13);

ALPHA1=ALPHA1+(K*XJ‘*YJ);

ALPHA2=ALPHA2+(CJ*RJ*x*SJ);

ALPHAH=ALPHA1-ALPHA2;

M=M+NJ;

END;
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'2=N*';

N3=W2*';

P001=W2*F001;

POO2=W3*FOO2;

P011=W2*P011;

P012=I3*P012;

P111=I2*P111;

1112=W3*P112;

P00=EOOl-FOO2;

P01=P011-F012;

P11=P111-P112;

ALPEAE=I*ALPEAN;

ALPEAHT=ALPEAE‘;

DETERMINATION OF THE MATRIX UN:

9! IS A 2 DIMENSIONAL VECTOR OP QUADRATIC FORMS WHOSE

ELEMENTS ARE DENOTED BY uO AND u1 (SEE EQUATION 2.22, 2.31

AND 2.32).

QETF IS THE DETERMINANT OF THE MATRIX PI USED TO OBTAIN

THE INVERSE OP THE (282) MATRIX PI.

SIGMAH IS THE INTRA-CLASS VARIANCE COMPONENT BASED ON THE

ORIGINAL HIERARCHICAL DATA SET.

IAUE IS THE INTER-CLASS VARIANCE COMPONENT ESTIMATE BASED

ON THE ORIGINAL DATA SET.

LAMDA IS THE INTRA-CLASS CORRELATION BASED ON THE ORIGINAL

SAMPLE AND COMPUTED BY THE FORMULA,
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LAMDA = than/(TAUB+BIGHAH)

*--------------==____ _-— __ _

001:0;

011:0;

M=1;

l1=0;

DO J=1 To GROUPS;

NJ=NV[J,1];

31=N1+NJ;

XJ=X[M:81,];

YJ=Y[M:N1,];

CJ=CV[J,1];

213=RBPBAT(1,NJ,1);

CN=CJ*NJ;

UZ=NJ*NJ;

DJ=YJ-(XJ*ALPHAH);

HJ=21J‘*DJ;

GJ=DJ‘*DJ;

3J2=HJ*HJ;

cnz=caanaz;

CN12=(1-CN)*(1-CN);

DJ=YJ-(XJ*ALPEAH);

uo1=ao1+(aJ-(cnzt(2-cu)));

011:011+(HJ2*CN12);

H=K+NJ;

3ND;
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TEIS MARKS TEE END OP TEE COMPUTATION OP TEE USUAL MINQUE

ESTIMATES BASED ON TEE ORIGINAL SAMPLE. TEE USUAL MINQUE

ARE PRINTED AT TEE PIRST LINE. ESTIMATES PRINTED AT TEE

PROCEEDING LINES ARE TEE BOOTSTRAP REPLICATED ESTIMATES

BASED ON TEE RESAMPLED DATA PROM TEE ORIGINAL SAMPLE

.---——------——-—-------------..-—----——-—--------—-—--------..---

00=l2*001;

01=I2*011;

DBT?=(POO*P11)-(POl*POl);

SIGMAH=((P11*UO)-(P01*01))/DBTF;

TAUE=((PooaUI)-(POIan))/DETE;

.-_-—------------------------------------------—---------.......

a A PROCEDURE TO BOOTSTRAP TEE PARAMETER ESTIMATES

o B! COMPUTING TEE ESTIMATE B TIMES TEROUGE RESAMPLING.

. fi_18 TEE INDEX COUNTER NEICE COUNTS TEE BOOTSTRAP REPLICATED

a SAMPLES. SEEDI IS TEE RANDOM GENERATOR POR TEE BOOTSTRAP.

.----—---............................——------—---------......---

SEEDI = 10199;

no B=1 To 200;

.----—---—-——---------------.---------------------_----_---_-----

a A PROCEDURE USED TO RESAMPLE DATA PROM TEE ORIGINAL DATA SET

. BY PIRST CREATING AN INDEX EOR EACE OBSERVATION. TEIS

. PROCESS IS REPEATED B TIMES POR SOME LARGE B REPRESENTING

. TEE NUMBER OP BOOTSTRAP REPLICATIONS.

. -----—-—--—--------------------------------------------------

NT=I;

CONSTANT=REPEAT(NT,NV[I,1,1);

INDBX=NV[1,1*(UNIFORM(REPEAT(BBBD1,NV[1,1,1)))+CONBTANT;

DO 3:: TO GROUPS;

=NT+NV[S-1,];

CONSTANT=REPEAT(NT,NV[S,1,1);

IND811=NV[8,]*(UNIFORM(RBPEAT(BBBDI,NV[8,1,1)))+¢ONBTANT;

INDEx=INDEX//INDEx1;

END;

INDBX=INT(INDBX);

YBTAR=Y[INDBX];

ISSTAR=x5[INDEx1;

ESTAR=x4||ESSTAR;

YSTART=Y8TAR‘;

3

* DETERMINE X=INV(X’VIIX) BASED ON THE REPLICATED COVARIATE ;

3
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* VALUES

a-----------------------------------------------—------------—--,

3:0:

R1=0;

32:0;

M=1;

N1=o;

DO 3:1 To GROUPS;

NJ=NV[J,1];

NI=NI+NJ;

=XBTAR[M:NI,];

YJ=Y8TAR[H:81,];
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ZIJ=REPEAT(1,MJ,1);

OJ=CV[J,1];

SJ=XJ‘*ZIJ;

X1=K1+(XJ‘*XJ);

M2=RP+(OJ*SJ*SJ‘);

M=M+MJ;

END;

X=l*(X1-R2);

R=INV(X);

.-------——--------------------.-------------..................---

* DETERMINATION OP THE MATRIX Fl BASED ON THE REPLICATED X

* MATRIX.

* ALPHAHI IS TEE ESTIMATE OR THE PIXED EPPECTS PARAMETERS BASED

* ON THE REPLICATED DATA SET.

j-------——-—-------—-.......-...................----------------.-

F001=0;

[002:0;

P011=o;

P012=o;

1111=O;

P112=O;

ALPHA1={0,0,0,0};

ALPEA2={0,0,0,0};

M=1;

M1=0;

DO 3:1 TO GROUPS;

MJ=MV[J,1];

81=MI+MJ;

XJ=XSTAR[M:M1,];

XJ=YSTAR[M:M1,];

CJ=CV[J,1];

21J=REPEAT(1,MJ,1);

CM=CJOMJ;

OJz=CJOCJ;

MJz=MJ*MJ;

c2=(1-CJ)*(1-CJ);

TJ=TRACE(XJ‘*XJ*M);

SJ=XJ‘*XIJ;

AJ=SJ‘*R*SJ;

AC=AJ*CJ;

CM1=1-OM;

CM12=CM1*CM1;

€813=CM1*CM12;

AM=AJ*MJ;

RJ=21J‘*YJ;

POOI=P001+(MJ*(C2+(CJ2*(MJ-1)))

P002=P002+(TJ-Ac*(CM12+(2-CM)))

P011=P011+(MJ*CM12);

P012=P012+(AJMCM13);

1111=P111+(N32*CN12);

1112=P112+(AN*CM13);

ALPHA1=ALPHA1+(X*XJ‘*YJ);

ALPHA2=ALPHA2+(OJORJ*R*SJ);

Q
.

Q
.
Q
.
‘
0
Q
0

‘
0
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ALPHABI=ALPHA1~ALPRA2;

M=M+MJ;

END;

I2=M*I;

I3=l2*M;

POOI=M2*P001;

P002=I3*P002;

1011=M2*P011;

P012=W3¢P012;

P111=W2*P111;

1112=I3*P112;

POO=P001-Pooz;

101=P011-2012;

P11=P111-P112;

ALPHA31=M0ALPXARI;

ALPMAH1T=ALPHAHI‘;

a DETERMINATION OP TEE VECTOR Ul BASED ON TEE RESAMPLED X

a AND TEE REPLICATED X MATRIX

a SIGMAE1 IS TEE INTRA-CLASS VARIANCE COMPONENT ESTIMATE

a BASED ON TEE REPLICATED SAMPLE

a TAUE1 IS TEE INTER-CLASS VARIANCE COMPONENT ESTIMATE BASED

0 ON TEE REPLICATED SAMPLE.

. LAMDA; IS TEE INTRA-CLASS CORRELATION ESTIMATE BASED ON

0 TBS REPLICATED SAMPLE. ‘

.---------------------------------------------------------------

001:0;

011:0;

M=1;

N1=0;

DO 3:1 TO GROUPS;

NJ=NV[U,1];

N1:N1+NJ;

XJ:XSTAR[M:N1,];

YJ=YSTAR[M:NI,];

ca=¢VtJ.11:

21J=REPEAT(I,NJ,1);

:CJtNJ;

N2=MJ*MJ;

:XU-(XatALPEAE1);

BJ=21J‘*DJ;

GJ=DJ‘*DJ;

EU::EJ~BJ;

c32=CJ*EJz;

C812=(1-CM)*(1-CM);

DJ=YJ-(XJ*ALPHA31);

U01:U01+(GJ-(CE2*(2-CN)));

U11=U11+(EU2*CN12);

M=M+NJ;

END;
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UO=I2*UOI;

Ul='2*011;

DETP=(POO*P11)-(P01*F01);

TAUHI=((FOO*01)- (301*UO))/DETP;

SIGMAHI=((F11*UO)- (P01*01))/DETP;

t---—---—--------------------------------------------------_---

* TEIS PROGRAM SEGMENT PRINTS TEE VALUE OE TEE BOOTSTRAP

* AT EACE OE TEE B BOOTSTRAP REPLICATION.

*---------.-----------------------------------—------u...-------.—

PRINT T (|PORMAT:4.0|) B (|EORMAT:4. 0|) TAUE (|EORMAT:S. 3|)

TAUE1 (IEORMAT:S. 3|) SIGMAE (IFORMAT=S. 3|)

SIGMAE1 (IPORMAT=S. 3|);

PRINT ALPEAET (IPORMAT=S. 3|) ALPEAE1T (IEORMAT:S.3|);

SEED1 : SEED1 + 100;

SEEDZ : SEBDZ + 100;

END;

.--—---——--------------—-----------------—-----------——--------_

* TEE END OE TEE BOOTSTRAP TRIAL BASED ON TEE RESAMPLED DATA.

. ANOTEER TRIAL MILL BE PERFORMED APTER CEANGING TEE SEED POR

0 TEE RANDOM SAMPLING ALGORITE.

.------——-—----------------------------------———--——--_-—-__----

END;

*---------—-----—-------------------——----——--------------------

a TEIS MARXS TEE END OE TEE SIMULATION TRIAL. EACE SUCE TRIAL

0 RESULTS IN ONE SET OE TEE USUAL MINQUE ESTIMATES AND B SETS

a or TEE BOOTSTRAP REPLICATED ESTIMATES. TEE SUMMARY

0 STATISTICS EOR TEE BOOTSTRAP REPLICATED ESTIMATES ARE ALSO

a COMPUTED.

Q—-----—-—-----———--—-—-—-——--------—-—-----—----—--------......-_..

PINISE;

RUN;

PART 3

COMPUTER PROGRAM TO SIMULATE THE SAMPLING DISTRIBUTION

OP THE MINQUE ESTIMATE FOR A SAMPLE DRAIN FROM A

NORMAL POPULATION OP KNOWN PARAMETERS.

 

THE PROGRAM FIRST SETS UP THE E AND THEAEIRST PART OF THE

X MATRIX EXCLUDING THE COVARIATES. THE CONSTRUCTION OF

THESE MATRICES ARE BASED ON THE NUMBER OF OBSERVATIONS IN

CELL TO SATISPY THE REQUIREMENTS AS IN EQUATION 2.9 IN

CHAPTER II. THE PROGRAM IDENTIFIES THE COMPONENTS ON EACH

AS DEMONSTRATED BY EQUATION 2.11 IN CHAPTER II.

THE WEIGHT 1; WAS DETERMINED SEPARATELY USING THE

HANUSHEX (1974) METHOD.

.-----------------------------------------------------.---------
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PROC IML;

.
.
O
O
O
O
O
O
O
O
O

*IIS THE INDEX COUNTER FOR THE NUMBER OF SIMULATION TRIALS

START;

N:1/(1-w1);

GROUPS:50;

NV11-.REPEAT(20,2,1);

NV21:REPEAT(25,5,1);

NV31:REPEAT(30,10,1);

NV1:NV11//NV21//NV31;

NV12:REPEAT(35,5,1);

NV22:REPEAT(40,3,1);

NV32:REPEAT(20,3,1);

NV42:REPEAT(25,5,1);

NV2:NV12//NV22//NV32//NV42;

MV13=REPEAT(30,10,1);

MV23=REPEAT(35,5,1);

MV33=REPEAT(40,2,1);

MV3=MV13//NV23//MV33;

NV:NV1//NV2//NV3;

cv=w1/(1+(Nv-1)*l1);

X11=REPEAT(1,465,1);

112=REPEAT(1,4SO,1);

X13=REPEAT(1,555,1);

XOI=REPEAT(O,465,1);

X02=REPEAT(0,ASO,1);

X03=REPEAT(O,555,1);

X1=X11//X02//Xo3;

X2=XO1//X12//X03;

13=XO1IIX02//X13;

160

PROGRAM SEGMENT TO GENERATE DATA FROM A NORMAL EOPQEATEO!

OF SPECIFIED PARAMETER VALUES.

THE EQUATION GIVEN BY:

Y = (X*ALPHA) + B + E

SEED: IS ANY NUMBER USED TO CREATE A RANDOM NUMBER OF

OBSERVATIONS FROM SOME POPULATION.

SEED = 10199;

THE PROGRAM FIRST DETERMINES

THE FIXED EFFECTS PARAMETERS AND THE COVARIATE IHICH IN

ARE USED IN TURN TO GENERATE THE OBSERVATIONS 1 THROUGH

SEED = 199;

DO T = 1 TO 1000;

REFFECTS = 2.2935 * NORMAL(REPEAT(SEED,GROUPS,1));

B1 = REFFECTS[1,1];

N1 = NV[1,1];

B31 = REPEAT(BI,N1,1);
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.
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DO I = 2 TO GROUPS;

BJ = REPPECT8[I,1];

N = NV[1.1]:

BJ1=DJIIIREPEAT(BJ,N,1);

END;

B=BJI;

3 = 10 t NORMAL(REPEAT(SBED,1500,1));

:41 = REPEAT(25,1500,1);

X4 = INT(75 * UNIFORM(REPEAT(SEED,1500,1))) + 241;

X:X1||X2||X3||X4;

ALPHA = {-5120301°°}3

Y = (X*ALPRA) + B + E;

 

I

* DETERMINE X=INV(X'VIIX) ;

.--------------------------------------------------------------;

x=°.'

X1=o;

X2=O;

M=1;

N1=NV[1,1];

DO 3:1 TO GROUPS;

XU=X[M:N1,];

YJ=Y[M:M1,];

N3=NRO'(YJ);

EIJ=REPEAT(1,NJ,1);

CJ=CV[J31]3

SJ=XJ‘*ZIJ;

N1=N1+(XJ‘*XJ);

N2=K2+(CJ*SJ*SJ‘);

M=M+NV[J,1];

N1:N1+NV[U,1];

END;

H='*(N1-R2);

X=INV(K)3

3

* DETERMINATION OF THE MATRIX FI ;

3
 

POOI=O;

1002:0;

3011=o;

1012=O;

P111=o;

[112:0;

ALPRA1={0,0,0,0};

ALPEA2={0,0,0,0};

M=1;

N1=NV[1,1]:

DO J=1 TO GROUPS;

XJ=X[M:M1,];

XJ=Y[M:M1,];

CJ=CVIJ0113

MJ=MROI(YJ);
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ZIJ=REPEAT(1,MJ,1);

CM=CJ*MJ;

OJ2=CJ*CJ;

MUZ=MJ¢MJ;

c2=(1-CJ)*(1-OJ);

TJ=TRACE(XJ‘*XJ*R);

SJ=XJ‘*EIJ;

AJ=SJ‘*X*SJ;

AO=AJOOJ;

CMI=1-CM;

OM12=CM1*CM1;

CM13=CM1*CM12;

AM=AJOMJ;

RJ=21J‘*YJ;

POO1=P001+(MJ*(C2+(CJ2*(MU-1))

P002=P002+(TJ-AC*(CM12+(2-CM))

P011=P011+(MJ*CM12);

PO12=PO12+(AJ*CM13);

r111=P111+(MJZ*CM12);

P112=P112+(AM*0813);

ALPHA1=ALPHA1+(R*XJ‘*IJ);

ALPEA2=ALPEA2+(CJtRJ*X*SJ);

ALPEAH=ALPEA1-ALPRA2;

M=M+MV[J,1];

M1=M1+MV[J,1];

H;

)3

END;

'2='*';

N3=I2*';

F001=N2*F001;

F002='3*F002;

F011='2*F011;

F012=N3*F012;

F111='2*F111;

F112='3*F112;

FOO=F001-F002;

F01=F011-F012;

F11=F111-F112;

ALPHAH=I*ALPHAH;

ALPHAHT=ALPHAH‘;

*--------------------------------------------------------------- ;

DETERMINATION OF THE MATRIX UN
.

I

.---------------------------------------------------------------'.

001:0;

011:0;

M=1;

M1=MV[1,1];

DO 3:1 TO GROUPS;

XU:X[M:N1,];

YJ=Y[M:M1,];

CJ=CV[J,1];

NJ:NRON(IJ);

z1J:REPEAT(1,NJ,1);

CM=CJ*NJ;
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N2=NUONJ;

DJ=YJ-(XJ*ALPHAH);

BJ=21J‘*DJ;

GJ=DJ‘*DJ;

E32:EJ*EU;

CE2:CJaE32;

CN12=(1-CN)*(1-CN);

DJ=YJ-(XJ*ALPHAH);

001=UOI+(GJ-(CH2*(2-CN)));

011=Ull+(KJZ*CN12);

M:M+NV[J,1];

N1=N1+NV[U,1];

SEED : SEED + 10;

END;

UO=W2*UOI;

01=W2*011;

DETF=(FOO*F11)-(F01*F01);

SIGMAH=((F11*UO)-(P01*01))/DETP;

TAUB=((FOO*UI)-(F01*UO))/DETF;

LAMDA:TAUE/ (TAUE+SIGMAE) ;

PRINT S TAUE SIGMAE LAMDA ALPEAET;

END;

PRINT SEED;

PINISE;

RUN;

PART 4

COMPUTER PROGRAM TO SIMULATE THE SAMPLING DISTRIBUTION

OF THE MINQUE ESTIMATE FOR A SAMPLE DRAIN FROM A

DOUBLE EXPONENTIAL POPULATION OF KNOWN PARAMETERS.

 

THE PROGRAM FIRST SETS UP THE A AND THE FIRST PART OF THE

A MATRIX EXCLUDING THE COVARIATES. THE CONSTRUCTION OF

THESE MATRICES ARE BASED ON THE NUMBER OF OBSERVATIONS IN

CELL TO SATISFY THE REQUIREMENTS AS IN EQUATION 2.9 IN

CHAPTER II. THE PROGRAM IDENTIFIES THE COMPONENTS ON EACH

AS DEMONSTRATED BY EQUATION 2.11 IN CHAPTER II.

THE WEIGHT :1 WAS DETERMINED SEPARATELY USING THE

HANUSHEX (1974) METHOD.

PROC IML3

START;

M=1/(1-Wl);

GROUPS=50;

NV11=REPEAT(20,2,1);

NV21=REPEAT(25,5,1);

NV31=REPEAT(30,10,1);

NV1:NV11//NV21//NV31;

NV12=REPEAT(35,5,1);

NV22=REPEAT(40,3,1);

NV32=REPEAT(20,3,1);
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NV42:REPEAT(25,5,1);

NV2:NV12//NV22//NV32//NV42;

NV13:REPEAT(30,10,1);

NV23:REPEAT(35,5,1);

NV33=REPEAT(40,2,1);

NV3:NV13//NV23//NV33;

NV:NV1//NV2//NV3;

CV=M1/(1+(NV-1)*I1)3

X11=REPEAT(1,465,1);

X12=REPEAT(1,4SO,1);

X13:REPEAT(1,sss,1);

X01:REPEAT(0,465,1);

xoz=REPEAT(0,4SO,1);

x03=REPEAT(0,sss,1);

X1:X11//X02//X03;

xz:X01//X12//X03;

X3:X01//X02//X13;

*----------.-----------------------------------------.......----—

. PROGRAM SEGMENT TO GENERATE DATA PROM A DOUBLE EXPONENTIAL

a POPULATION OP SPECIPIED PARAMETER VALUES.

= 10199;

SEED2 = 11099;

DO S = 1 TO 1000;

UR1=UNIFORM(REPEAT(SEED1,GROUPS,1)

UR2=UNIFORM(REPEAT(SEED2,GROUPS,1)

LR: '1 * LOG(UR1);

v
v

Q
0

‘
0

TRJ. = REPEAT(1,GROUPS, 1) 3

TR2 = TR1 I (UR2 >= 0.5);

TR3 = -1*(TR1 I (UR2 < 0.5));

TR. = TR2 + TR3;

REPPECTS = 2.2935 * ((LR#TR4)/SQRT(2));

81 = REPPECTS[1,1];

M1 = MV[1,1];

331 = REPEAT(E1,M1,1);

DO I = 2 TO GROUPS;

DJ = REPPECTS[I,1];

N = NV[I,1];

DJ1=SJ1IIREPEAT(EJ,M,1);

END;

3:831;

UE1=UMIPORM(REPEAT(SEED1,1500.1))

UE2=UMIPORM(REPEAT(SEED2,1500.1))

LE: -1 0 LOG(UE1);

O

I

O

I

TE1 = REPEAT(1,1500,1);

TE2 = TE1 I (UE2 >= 0.5);

TE3 = -1*(TE1 # (UE2 < 0.5));

TE4 = TE2 + TE3;

= 10 a ((LE#TE4)IBQRT(2)):

X41 : REPEAT(25,1500,1);

X4 : INT(7s a UNIPORM(REPEAT(SEED1,1500,1))) + X41;

X:X1||X2||X3||X4;
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ALPHA = {-5'2'3'100};

Y : (X*ALPHA) + B + E;
.---------------------------------------------------------------

DETERMINE X=INV(X’V'IX)

:0;

31:0;

M2=0;

M=1;

N1:NV[1,1];

DO J=1 TO GROUPS;

XJ=X[M:M1,];

YJ=Y[M:M1,];

MJ=MROW(YJ);

21J=REPEAT(1,MJ,1);

CJ=CV[J,1];

SJ=XJ‘*Z1J;

X1=X1+(XJ‘*XJ);

32=R2+(CJ*SJ*SJ‘);

M=M+MV[J,1];

M1:M1+MV[J,1];

END;

R=I*(R1-K2);

X=IMV1R);

DETERMINATION OF THE MATRIX F'

*---------------------------------------------------------------;

POO1=O;

F002=0;

1011=o;

PO12=0;

r111:0;

P112=o;

ALPEA1={0,0,0,0}

ALPRA2={0,0,0,0}

M=1;

MI=NV[1,1];

O

I

O

I

DO J=1 TO GROUPS;

XJ=X[M:M1,];

IJ=Y[M:M1,];

CJ=CV[J,1];

MU=MROI(YJ);

EIJ=REPEAT(1,MJ,1);

CM=CJ*MJ;

GJZ=CJ*CJ;

MUZ=MJ¢MJ;

cz=(1-CJ)*(1-CJ);

TJ=TRACE(XJ‘*XJ*R);

SJ=XJ‘*Z1J;

AJ=SJ‘*R*SJ;

AC=AJ*cJ;

O

I

o

I
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0N1:1-CN;

CN12:CN1*CN1;

CN13:CN1*CN12;

AN:AJ*NJ;

RJ:21J‘*YJ;

P001:P001+(NJ*(02+(OJZ*(NJ-1))));

1002:P002+(TJ-Ac*(CN12+(2-CN)));

P011:P011+(NJ*CN12);

P012:P012+(AJ*CN13);

P111:P111+(NJZ*CN12);

P112:P112+(AN*CN13);

ALPEA1:ALPRA1+(R*XJ‘*YJ);

ALPEA2:ALPHA2+(OJtRJ*R*SJ);

ALPHAR=ALPHA1-ALPHA2;

M:M+NV[J,1];

N1:N1+NV[J,1];

END;

I2:M*I;

I3:I2*I;

P001:I2*P001;

1002:M3*P002;

P011:I2*P011;

P012:l3*P012;

P111:l2*P111;

P112:M3*P112;

100:P001-P002;

PO1=P011-P012;

111:2111-P112;

ALPHAH:M*ALPEAR;

ALPRAXT=ALPEAB‘;

.----...........................................................

* DETERMINATION OR THE MATRIX UM

................................................................

001:0;

U11:0;

M=1;

N1=NV[1,1];

DO J:1 TO GROUPS;

XJ:X[M:N1,];

YJ:Y[M:N1,];

OJ:CV[J,1];

NJ=NROI(YJ);

S1J:REPEAT(1,NJ,1);

CN:CJ*NJ;

N2:NJ*NJ;

DJ:YJ-(XJ*ALPMAH);

RU=21J‘*DJ;

GJ:DJ‘*DJ;

RJZ:MJ*RJ;

032:CJ*EJZ;

CN12=(1-CN)*(1-CN);

DJ:YJ-(XJ*ALPMAH);

Q
.

Q
.
Q
.
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001:001+(GJ-(082*(2-CN)));
U11=Ull+(HJZ*CN12);

M=M+NV[J,1];

N1:N1+NV[J, 1];

SEED1 : SEED1 + 100;

SEED2 : SEED2 + 100;

END;

UO:W2*001;

01=W2*011;

DETF=(F00*F11)-(F01*F01);
SIGMAH=((F11*UO)-(F01*Ul))IDBTF;
TAUH=((FOO*UI)-(P01*UO))/DETF;
LAMDA:TAUE/(TAUE+SIGMAE);

PRINT T TAUE SIGMAE LAMDA ALPEAET;
END;

PINISE;

RUN;
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