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ABSTRACT

HARMONIC BLOCH FUNCTIONS

ON THE UPPER HALF SPACE

Hedi Ajmi

It is known that a holomorphic Bloch function f on the open unit disk of the

complex plane need not have radial limit at any boundary point. Nevertheless, Ullrich

showed that such an f does have “boundary values” in an average sense. Furthermore,

these average boundary values reflect the behavior of f inside the disk in a manner

analogous to the case of bounded holomorphic functions. These results transfer easily

to the upper half plane. They are also valid if we merely assume that f is harmonic;

here we need only remember that a real harmonic function is Bloch if and only if

its harmonic conjugate is Bloch (by Cauchy-Riemann equations). In this paper we

generalize these results to harmonic Bloch functions on upper half spaces of arbitrary

dimension. In higher dimensions, a new problem arises: A harmonic Bloch function

may well have harmonic conjugates that are not Bloch. However, we show it is always

possible to choose harmonic conjugates that are Bloch. (This choice is unique up to

an additive constant.) From this we obtain several results relating the “boundary



values” of a harmonic Bloch function to its behavior inside the domain. We also

obtain a number of “bounded mean oscillation” characterizations of the harmonic

Bloch space as well as characterizations involving higher derivatives (one of which

may be a little surprising).



To my father (posthume). To my dear mother. To my beautiful wife Saeeda Rayssi.

To my wonderful children Ameur, Allem, and Wah'd (I have not seen him yet). To

my sisters Fatma, Zohra, and Aycha. To my brothers Sidi, Ayadi, Hachmi, Chedh',

Ali, Moncef, and Faycal.



ACKNOWLEDGMENTS

I would like to thank Dr. Wade Ramey, my dissertation advisor, for all his help,

encouragement and advice. His knowledge and enthusiasm were invaluable. Besides

helping with mathematics, Dr. Ramey insisted (forcefully) that I type my disserta-

tion on my own, using Latex—a task that at first seemed to me unsurmountable,

considering that I had never used a computer before. I do thank Dr. Ramey for this

prodding. Dr. Ramey made also a tremendous positive impact on me in dealing with

personal or general matters.

I also thank the following professors: Dr. Sheldon Axler, Dr. Joel Shapiro, Dr.

Peter Lappan and Dr. Bill Brown for agreeing to be on my commitee. The course

on harmonic funtions that I took with Dr. Axler was especially helpful to me in my

studies. As well I thank Dr. Michael Frazier for helpful conversations concerning

Poisson integrals of BMO functions.

I thank the authorities at the Ministry of Defense and at the Ministry of Education

of the goverment of Tunisia for giving me the opportunity to study in the US. In

that regard, two people deserve my gratitude: MM. Youssef Baraket and Habib

Bouzguenda. I am also very grateful to the mathematics department at M.S.U for its

support. Here also I specifically thank Dr. Charles Seebeck and Dr. David Yen.

Finally I thank MM. Mondher Essid and André Burago for their help with Latex

and I wish good luck to my friend Radhouane.

ii



Chapter 1

Chapter 2

Chapter 3

Chapter 4

Bibliography

TABLE OF CONTENTS

Introduction ................................................. 1

Basic properties of harmonic

Bloch functions ......................................... 18

Harmonic conjugate functions ........................... 34

Boundary behavior of harmonic

Bloch functions ......................................... 42

56

iii



Chapter 1

Introduction

Let D = {z E C : Izl < 1} denote the open unit disk of the complex plane C. A

holomorphic function f on D is said to be a Bloch function if

llfll. = 815p (1 - |z|’)|f’(z)| < 00.

The Bloch space 80(D) is the set of all holomorphic Bloch functions on D. (The sub-

script a stands for “analytic” ; later we will be looking at harmonic Bloch functions.)

Even though Nf“3 is not a norm, we will refer to Nf“B as the Bloch norm of f. The

quantity |f(0)] + IIf”B does define a norm on Ba(D), and equipped with this norm,

Ba(D) is a Banach space.

Let us discuss some of the history of this subject. The basic idea of a Bloch

function goes back to the following remarkable theorem of André Bloch.

Bloch’s theorem: There exists a finite positive constant b such that if g is a

holomorphic function on D, normalized so that g(0) = 0 and g’(0) = 1, then there is

a disk A contained in D on which 9 is one-to-one and such that g(A) contains a disk

of radius b.



Although the exact value of b is unknown, it is known that .43 < b < .47.

Before we discuss the connection between Bloch’s theorem and the Bloch norm, we

introduce some notation. For a E C and r > 0, we denote the set {2 E C : Iz—al < r}

by D(a,r). For a holomorphic function f on D and a point z in D, let d1(2) be the

supremum of all r > O for which there exists an open connected neighborhood (I of

2: such that f is one-to-one on Q and f(fl) = D(f(z),r). (If f’(z) = 0, in which case

f cannot be one-to—one on any neighborhood of 2, then we set d,(z) = 0.) Here is

the connection between Bloch’s theorem and the Bloch norm: For any holomorphic

function f on D,

sgpdxz) 3 1|st 5 %sgp (11(2)-

This follows (easily, but not obviously) from Bloch’s theorem and the invariant form

of the Schwarz Lemma.

Besides this very appealing connection between the geometrically defined df(2')

and the analytically defined IIf“3, a number of other interesting properties of the

holomorphic Bloch space have been obtained; we discuss some of these below. The

main purpose of this paper is to explore some of these properties for the harmonic

Bloch space, especially in higher dimensions. A

For the harmonic Bloch space, we take as our principal setting the open upper

halfospace H = Hn of R” defined by

H = {(a:,y) 2:1: E 11”“, y > 0}.

A harmonic function u on H is said to be a Bloch function if

Hulls = sup y|V(U(x.y))l < 00.

where the supremum is taken over all (:r, y) E H, and Vu denotes the gradient of u. In

this paper the term “harmonic” means “real-valued and harmonic” unless otherwise



stated. We denote the vector space of harmonic Bloch functions on H by 8(H) As

above, we call Hulls the Bloch norm of u, even though it is not a norm; we obtain a

norm on 8(H) by adding |u(0,1)| to ”“llB- We call 8(H) the harmonic Bloch space

of the upper half-space. For the convenience of the reader, let us sketch a proof that,

equipped with this norm, 8(H) is a Banach space. The fact that 8(H) is a real

vector space is clear. If (u) is a Cauchy sequence in 8(H), then it is easy to see

that (Vuk) is uniformly Cauchy on compact subsets of H. Therefore, because (u)

converges at the point (0,1), (u) must converge uniformly on compact subsets of H

to some function u. The function u is harmonic, and it is easy to see that u E 8(H)

and that (uh) converges to u in norm.

Letting B = Bn = {2: E R" : le < 1} denote the unit ball of R", we could also

discuss the Bloch space 8(B) (whose definition can be guessed easily). When n = 2,

there is no great difference between 8(H) and 8(3). Indeed, the map

iz+l

¢<z>= 2+, 

is easily seen to induce an isomorphism between these two spaces. In higher dimen-

sions, the natural replacement for the map 43 is an appropriate modification of the

Kelvin transform (see 7.15 of [ABR]). Unfortunately, this map does not carry 8(B)

into 8(H). Thus when n > 2, there is no obvious correspondence between 8(B) and

8(H).

So why choose H over B? The main reason is that in H, we have a transitive

group of self-mappings that preserves harmonic functions—namely the family of maps

generated by horizontal translations and dilations. This is a luxury that we don’t find

in B. We do have the rotations of B (which correspond to horizontal translations of

H), but there is nothing in B resembling the dilation structure of H (which allows

us to pull all of H in towards the point 0 in the boundary of H). On the other hand,



the fact that H is unbounded creates a few problems of its own.

In the remainder of this introduction, we discuss some analogies between 86(D)

and 8(H) The numbered theorems below are the ones whose proofs appear later in

this paper.

GROWTH ESTIMATES: The next theorem, which is well-known, shows that a holo-

morphic Bloch function cannot grow faster than a logarithm near the boundary of

D.

Theorem: Iff E 8(D), then

1

|f(2)| S |f(0)| + llfllslosfil—zl

for all z 6 D.

This easily follows from integrating f’ from 0 to z. A similar type of growth

estimate (requiring a little more work) is valid in 8(H).

2.4 Theorem: Ifu E 8(H), then

IU($.y)l S lu(0a1)l+llull8ll +|103y|+ 2108(1+l$l)l

for all (x,y) E H.

CONFORMAL INVARIANCE: The invariant form of the Schwarz’s Lemma states that

if (,0 : D ——+ D is a holomorphic function, then

(1 - |2|2)|<P’(z)| S 1 - |¢.0(Z)|2

for all z E D. Therefore, if 90 : D —) D is holomorphic, then

1.1 llfosollas llflls



for all holomorphic functions f on D, and equality in 1.1 holds when cp is an auto-

morphism of D. Thus, 8a(D) is invariant under composition with holomorphic self

mappings of D.

Looking for analogues of conformal invariance in the upper half-space, we can

easily check that the upper half-space is invariant under the maps

(3,31) —’ (a: + my)? and (33,3!) _’ (rx,ry);

here a E 11""1 and r > 0. For such a and r and any function u defined on H, we may

define the horizontal translation Tau by

“raider. 3/) = "(x + 0.31),

and the r-dilate u, by

u,(z) = u(rz).

Clearly, u, and Tau are harmonic on H whenever u is harmonic on H. Also, a

straightforward computation shows

ll‘raUIls = IIUIIB = Ilurlls

for all a and r as above. Hence, 8(H) is invariant under horizontal translations and

dilations.

We’ll see later on that the dilation invariance of the Bloch norm is crucial. This is

a property that the Bloch norm shares in common with the L°°-norm and the EMU-

norm. We should thus expect (and will prove later) that 8(H) “behaves like” an

L°°-space or a BMO-space in some respects. Note that most norms do not have this

property. For example, the LP-norm is not dilation invariant if 1 S p < 00.

When n = 2, we have more than horizontal translations and dilations. For ex-

ample, the map 2 -> 1/7 = z/Izl2 preserves H and harmonicity, and allows us to



interchange the boundary points 0 and 00. It also preserves the Bloch space (this is

straightforward computation). When n > 2, we could hope that the Kelvin trans-

form, which preservee H and harmonicity (see 4.4 of [ABR]), has analogous properties.

Recall that the Kelvin transform of a function u defined on H is

Klu](z) = |2|""u(-|zi|,-)

for all z E H. Unfortunately, the Kelvin transform does not preserve 8(H) when

n > 2. Indeed, letting u E l we have K[l](z) = |z|"“ ¢ 8(H), since yIVK[1](0,y)| =

(n —2)y2'" is unbounded. Thus, when n > 2, there seem to be no other self-mappings

of H, other than the ones generated by the dilations and the horizontal translations,

that preserve 8(H)

HIGHER DERIVATIVES: In dealing with higher derivatives the following notation is

useful. We denote the k-th derivative of a holomorphic function f by fl“). In the

several variable case, we define a multi—index a to be an n-tuple of nonnegative

integers (011, . . . ,an). We use |a| to mean 011 + . . . + an. We denote the of,“ partial

derivative with respect to the j‘“ coordinate variable by Df", and when j = n we

often write D3“ instead of 03*. The partial differentiation operator D“ is defined to

be Di" . . . Dz" (D? denotes the identity operator).

The following theorem characterizes the holomorphic Bloch functions in terms of

their higher derivatives. Here (and in the rest of this paper) the expression A(f) z

B(f) means that there are two positive constants c and C such that the nonnegative

quantities A(f), B(f) satisfy the inequalities

0A(f) S B(f) S CA(f)

for all f under consideration.



Theorem: Let f be holomorphic on D, and let m be an integer greater than 1.

Then

llflls % 8gp (1 - IZI)”lf(’"’(Z)I + Z |f("’(0)l-
k=1

A straightforward induction argument, using Cauchy’s estimates and the funda-

mental theorem of calculus, gives the theorem.

One might think that a natural analogue in H for the above theorem would be:

If u is harmonic on H and m is an integer greater than 1, then

1-2 IIUIIB~ 821p 31'" Z |D°U($.y)l+ Z |D°'U(0.1)l-
Ia|=m Ial<m

Unfortunately, this doesn’t work. Indeed, the harmonic function u(x,y) = y is an

easy counterexample for any integer m > 1. In fact, if m > 1, then 1.2 fails for any

nonconstant harmonic polynomial of degree less than m. The reason is that, unlike

a holomorphic polynomial (which is in 8.,(D)), a nonconstant harmonic polynomial

is never in 8(H). Thus, the harmonic polynomials should somehow be taken into

consideration in the statement of the analogue of the above theorem in H. We do

this in the following way: Let ’Pm denote the set of all harmonic polynomials of degree

less or equal to m and define

P... = ' fllu + H pg,” ||u + PllB

for any harmonic function u on H. Note that although the above quantity could be

infinite for some u, it behaves like a quotient norm in the sense that it vanishes on

R... We are now able to state the analogue we are after in 8(H).

2.11 Theorem: If u is a harmonic function on H and m is a positive integer,

then

||u+7’ -1||~8;1{p y'" 2: |D°UI-

Ial=m



If we know ahead of time that u is a Bloch function, then we obtain the following

equivalence.

2.16 Theorem: If u 6 8(H) and m is a positive integer, then

Hulls z sup y’” 2 |D°u| z sup y”: [Dr'leuL

H |a|=m H k=1

REMARKS: 1. The last quantity in 2.16 contains only first order partial derivatives

with respect to the first n - 1 variables x1, . . . ,mn_1, whereas the second quantity

contains partial derivatives with respect to 1:1, . . . ,xn_1 of order less or equal to m.

This is the surprising fact mentioned in the abstract; it seems to suggest that for a

Bloch function, the partial derivatives with respect to y are more important.

2. Because Hulls does not depend on m, we also deduce that for different integers

m1, m2

sup y'”l |D°’u| z sup 3”"2 z |D°u|.

H
lal=m1 Ia|=mg

3. The condition |a| = m in 2.16 can be replaced by la] 3 m.

4. Unlike the case of 8.,(D), neither 2.11 nor 2.16 involves evaluating functions at

some fixed point in H.

BMO CONDITIONS: Here we’ll see that membership in 8(H) is equivalent to satisfying

certain BMO-type conditions. The realization that the Bloch space can be viewed

as a BMO-type space first occurred in [CRW]; see also [A]. For completeness, we

prove one of these results for 8.,(D). We let dA denote Lebesgue area measure on C,

normalized so that A(D) = 1, and we let Da = {z E D: Iz — a| < (1 — |a|)/2}.



Theorem: Let 1 S p < co and let f be a holomorphic function on D. Then

1

um. z sup {3&7 l». |f(z) — f(a)|’dA}; ,

where the supremum is taken over all a E D.

We now prove this theorem; the proof comes from [RUl]. (We will need some

of these ideas in Chapter 2). Let a be in D and 2 be in Da. Fix p E [1,oo). The

inequalities

lf(2)-f(a)| s Allz-allf’(a+t(z-a))ldt

al
1 Iz—

<_ llflla/o 1_la+.(._.)ld‘

Ilflls

 

|
/
\

(the last inequality uses the fact that |z — al < (1 — |a|)/2) easily show that

060

sup (250—) j . |f(z) - “away S Hill.

For the other inequality, we use the fact that

1.3 m0): 5 [Blind/1

for all f holomorphic on D (recall A(D) = 1). Now fix a E D and let r = (1 — |a|)/2.

We apply 1.3 to g(z) = f(rz + a) — f(a), getting

rlf’(a)l s /D wrz + a) — f(a)|dA(2)

= ri, D. lf(z) — f(a)ldA(z)
.1

.<. (3-21....If<z>- f(a)|’dA(z)}'.

the conclusion of the theorem follows.D

REMARK: The conclusion of this theorem is actually valid for all p E (0,00).
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We now state a more ambitious version of the above theorem that we will prove

in Chapter 2. We let B(a,r) = {z E R“ : Iz — a| < r} and fl(a,r) = B(a,r) n H.

Given u E Ll(fl), we define

l

=— d.an lfll/QuV

Here dV denotes the Lebesgue volume measure and III] denotes the volume of Q.

2.17 Theorem: Suppose u is a harmonic function on H that is volume integrable

on every bounded subset of H. If 1 _<_ p < 00, then

I
n

1 p

2.18 ||u||3~sup{lfi|/‘;Iu—u9|”dV} ,

where the supremum is taken over all 9 = Q(a,r) with a in the closure of H.

Note that in this theorem, we don’t restrict it to be a ball that stays away from

3H (as we did earlier for 8..(D)). For example, (2 can be a ball tangent to 3H, or half

a ball with center in 0H, or part of a ball with center in H. In the context of 8.,(D),

the authors in [CRW] also allowed such general Q’s; however, our proof of 2.17 will

not rely on the machinery developed in [CRW].

There is another BMO-condition that characterizes 8(H), this one involving the

Hardy-space norm. For 8.,(D), this first appeared in [RUl]. Recall that if u is a

harmonic function on the open unit ball of R" and 1 _<_ p < 00, then the Hardy-space

norm of u is

.1.
P

Hull» = sup [/ |u(r<)|’da(C)] ,
05r<1 S

where 5 denotes the unit sphere of R" and do denotes the normalized surface area

measure on 5, so that 0(5) = 1.
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2.20 Theorem: If u is a harmonic function on H and l S p < 00, then

IIUIIB 8 8UP IMO + TI) - “(a)llhr.

where the supremum is taken over all a, r such that B(a,r) C H.

In particular, Theorem 2.20 shows that if u E 8(H), then “u belongs to h” of

every ball in H tangent to 6H”.

HARMONIC CONJUGATES: Here we explore the notion of harmonic conjugates in

higher dimensions. This subject is not as widely known as in the case n = 2. Specif-

ically, we’ll address the following question: Given u 6 8(H), will its harmonic conju-

gates also be in 8(H)?

We first make clear what we mean by harmonic conjugates in higher dimensions.

Let u be a harmonic function on H. The functions v1, . . . , vn_1 on H are said to be

harmonic conjugates of u if

1.4 (v1,...,v,,_1,u)=Vf

for some harmonic function f on H. If such vj’s exist, then they must be harmonic,

being partial derivatives of a harmonic function. Also 1.4 and the condition that f is

harmonic are equivalent to the “generalized Cauchy-Riemann” equations

1.5 Dkvj = Djvk ; Dyvj = Dju

73-1

1.6 2 Djvj-l—Dyu = 0.

.=1

Indeed, if 1.4 holds, then 1.5 will hold since f is twice continuously differentiable on

H; also 1.6 easily follows from the fact that f is harmonic. Conversely, if 1.5 and 1.6

hold, then the differential form

n 1

Zvjdxj +udy

i=1
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is closed. Therefore, since H is simply connected, 1.4 holds (see Theorem 8.4 of [Fl])

for some function f, which is harmonic by 1.6.

The terminology “harmonic conjugates” comes from the case n = 2: By the

Cauchy-Riemann equations, 1.5 and 1.6 hold if and only if u + ivl is holomorphic

on H, as easily checked. Here of course the harmonic conjugate exists and is unique

up to an additive constant. Thus, 1.4 is a natural generalization of the case n = 2.

However, showing the existence of the harmonic conjugates in the case n > 2 requires

more work. There is also a greater degree of non-uniqueness of harmonic conjugates

when n > 2, as we show below. For now, we just state the following:

3.5 Theorem: If u is harmonic on H, then harmonic conjugates of it exist.

We need more than just the existence of harmonic conjugates. We now return to

our basic question: If u E 8(H), need the harmonic conjugates v1, . . . ,vn_1 belong

to 8(H)? In the case n = 2 it is easy to see via the Cauchy-Riemann equations

that if u is Bloch, then so is any of its conjugates. In the case n > 2 it is not

true that all the conjugates of a Bloch function are Bloch. For example, letting

u E 0, then v1(:rl,a:2,y) = 1:1 and v2(a:1,a:2,y) = —.2:2 are harmonic conjugates

for u that are not Bloch (here f(m1,a:2,y) = (z? -- z§)/2). On the other hand,

v1(.v1,:r2,y) = a and v2(a:1,:c2,y) = b (where a,b are constants) are also conjugates

for u (here f(3:1, 9:2, y) = axl + (1.132) and v1, v; are this time Bloch. The next theorem

shows that the above example is typical: Harmonic conjugates of a Bloch function

may always be chosen to lie in the Bloch space.
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3.12 Theorem: Let u E 8(H). Then there exist unique harmonic conjugates

v1,.. .,v,,-1 of u on H such that v; E 8(H) and vJ-(0,1) = 0 for each j. Moreover,

there exists a constant M, depending only on n, such that ”UjIIB S MIIuIIB for each

j.

This theorem will be very useful in studying the boundary behavior of the har-

monic Bloch functions on H.

BOUNDARY BEHAVIOR OF BLOCH FUNCTIONS: There are several well-known re-

sults in the literature concerning the behavior of harmonic functions at an individual

boundary point. Perhaps the best-known of these is due to Fatou. Let p be a com—

plex Bore] measure on R, and let u denote the Poisson integral of u so that u is well

defined and harmonic in the upper half-plane. Fatou showed that

. 1 h

1'7 ALIS: $1.}. d” _ L

implies

1.8 1,135: u(zy) = L,

where L E C (see [Fa]).

In general 1.8 does not imply 1.7, as Loomis showed in [L]. But in the same paper

Loomis proved that 1.8 implies 1.7 if the measure [I is assumed to be positive. It

follows that 1.8 implies 1.7 if u = fdz, where f E L°°(R) and drr is the Lebesgue

measure on R. However, 1.8 need not imply 1.7 if f E LP(R) and p < oo; in fact

there is an f E 0““, L’(R) for which 1.8 does not imply 1.7. (We recall some

classical terminology: The implication 1.7 =3» 1.8, which is true under a wide array

of conditions, is called the “abelian” direction. The direction 1.8 => 1.7 is called

the “tauberian” direction; it holds only when a certain condition—a “tauberian”
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condition—is added. Thus positivity is the tauberian condition for the Loomis result.)

W.Rudin generalized the Loomis result for positive measures to higher dimensions;

he also showed that this result fails when L = +00 (see [Rl]). W.Ramey and D.Ullrich

gave a different proof of Rudin’s result and extended it to the case dp = fdx, where

f E BM0. They also showed that in this latter case, 1.8 still implies 1.7 if f is

real-valued and L = ioo (see [RU2]).

The techniques used by Ullrich and Ramey in [RU2]—most importantly, dilation

invariance and normal families—are available for the class of Bloch functions. Thus,

it seems natural to ask about the relation between 1.7 and 1.8 for Bloch functions.

But we run into an immediate difficulty: If u is a Bloch function, then u need not be

the Poisson integral of a measure 11 on 0H. Indeed, if every Bloch function were a

Poisson integral, then every Bloch function would have almost everywhere boundary

limits by the Fatou Theorem. But it is well known that there are Bloch functions

that fail to have almost everywhere boundary limits. For example, on D,

f(2) = f: 22“
k=o

is such a function (see [ACP])‘. (After a conformal mapping, we obtain a similar

example for H.) Thus, in discussing the relation between 1.7 and 1.8 for Bloch

functions, we need something on the boundary in place of the measure p. One

possible way to arrive at a “boundary function” for a Bloch function is through the

theory of distributions:

4.1 Theorem: If u is a Bloch function in the upper-half space, then

jig; wumwwx

exists for every smooth function (,0 with compact support. Moreover, this limit defines

a distribution on the space of smooth test functions with compact support.
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Of course when u is the Poisson integral of a measure p as above, then the dis-

tribution of Theorem 4.1 is just the measure p. However, for our problem we need

to go beyond the theory of distributions, because in 1.7 we are integrating p not

against a smooth test function but against the characteristic function of an interval.

This is what Ullrich did in [U]. More precisely, given a holomorphic function f on D,

0<r<1and0<tgn,set

r _ _1_ t i0
A, f _ 2t L f(re )d0.

Ullrich showed that if f is a holomorphic Bloch function on D, then

gig; Alf = A.f

exists. Moreover, this limit defines a bounded linear functional on 80(D). Finally,

Ullrich obtained the equivalence of 1.7 and 1.8 for Bloch functions. In other words,

for f E 8.,(D),

1.1-IR f(r) = L if and only if [3113 Agf = L,

where L is any complex number. Because L°° C BM0 C Bloch, the equivalences

between 1.7 and 1.8 for L°° and BM0 mentioned earlier follow as special cases.

We now discuss analogues of Ullrich’s results for harmonic Bloch functions in the

upper half-space in any dimension. Let u E 8(H) and let 9 be a bounded measurable

subset of Rn'I. We then define

Igu=/‘1u(x,h)dz

for h > 0. We first show that the integrals Igu have good limiting behavior as h —) 0

if It is nice enough.
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4.2 Theorem: Suppose u E 8(H), Q is a bounded open set with (II-boundary,

and 0 E I). Then

Inn = III—Ii!) 1311

exists and defines a bounded linear functional on 8(H). Moreover, there is a constant

C, depending only on n, such that

Illnll S C(1+Iaflltl-t|a|)(1+|1080’|),

where d equals the diameter of Q.

REMARKS: The operator norm lllgll is, of course, computed relative to the norm

||u||5 + Iu(0, l)| of 8(H). By pm we mean the surface area measure of 39.

The proof of Theorem 4.2 uses the divergence theorem, as we’ll see in Chapter 4.

Thus, the condition that 80 is 01 could easily be replaced by the weaker condition

that an is piecewise C’. This suggests a natural question: What is the largest class

of It’s for which Theorem 4.2 will hold? We have not been able to settle this question.

To discuss the equivalence between 1.7 and 1.8 for 8(H), we specialize to the case

where Q is a ball centerd at the origin. Let us define the averages

, l

Aru — 11-13(1) l—B-r—l L'- ‘ll($, h)d$,

where B, is the ball in R""1 centered at the origin of radius r. The proof of the above

theorem will give us the estimate

IIArUIl S C(1+|10s'"|)(||u||s + IU(0.1)|)

for all r > 0. This estimate will be instrumental in proving the equivalence of 1.7 and

1.8 for harmonic Bloch functions on H, which is what the next theorem asserts.
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4.14 Theorem: Ifu E 8(H) and L 6 {—00, +00], then

[ir%u(0,y) = L if and only if [mtg/1m = L.



Chapter 2

Basic Properties

of

Harmonic Bloch Functions

The Cauchy-Riemann equations show that a real-valued harmonic function on D

is Bloch if and only if it is the real part of a holomorphic Bloch function on D. Hence,

most properties of real-valued harmonic functions on D can be obtained by studying

the corresponding properties of holomorphic Bloch functions on D. Thus, in a way,

the harmonic Bloch space on D, which we denote 8(D), is as well-known as 8.,(D).

In this chapter we focus on the less-known harmonic Bloch space 8(H), where

H: {2: (x,y):x E R”", y >0}.

A real-valued harmonic function on H is said to be a Bloch function if

sup y|V(u(:c,y))l < 00,

where the supremum is taken over all (x, y) E H, and Vu denotes the gradient of u.

The simplest Bloch functions on H are the real-valued bounded harmonic func-

tions: For if u is harmonic and bounded on H, then by Cauchy’s estimates, there is

a constant C such that

C C

[VU(2)[ —<- (1(2, CH) 2 3'

18
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for all z = (x,y) e H (see 2.6 of [ABR]). As is well-known, the class of bounded

harmonic functions on H is exactly the set of Poisson integrals of bounded measurable

functions on 11""1 (see 7.14(b) of [ABR]). Thus u is bounded and harmonic on H if

and only if u = P[f], where f E L°°(R”“) and

2.1 Plfl(:c,y)= [RM (Ix :ntl’fiti’fidt' 

Here cu is chosen so that

/ dt _ 1

6" nn-x (|t|2 +1)? _ '

We can easily check (for later purposes) that 2.1 defines a harmonic function on

H whenever f is a measurable function on HP"1 such that

|f(i)|
2.2 ————-dt .

(an-1mm)? < °°

Examples of unbounded Bloch functions on H are the functions

u(x,y) = log(x,2,+y2) k=1,...,n-1,

as easily checked. These particular functions are, respectively, the Poisson inte-

grals of the functions 2log|tk| E BMO(R""1). In fact, P[f] E 8(H) whenever

f E BM0(Rn'1). To see this, let f E BM0. Then f satisfies 2.2 (see [FS]). More-

over, setting u = P[f], we know by [F8] that yIVu(x,y)|2dV is a Carleson measure

on H. This means that there is a positive constant A such that

2.3 [C y|Vu(x,y)|2dV 5 Ah”"1

a,h

for all a E R’"1 and h > 0. Here Cay. is the cylinder {Ix — a| < h} x (0, h). Now fix

2 = (x,y) E H, and let 3; = B(z,y/2). Because I'Vul2 is subharmonic, we have

y’qu(z)l2 s y” {iii—I [8’ |Vu(s,t)|2dsdt}

_<_ 2"
lel

 [B t|Vu(s,t)|2dsdt.



20

Note that [EA = cry" (where a is a constant depending only on 11). Also note that

B, is contained in 0,3,”. Enlarging the domain of integration from B2 to C33,”,

we see that inequality 2.3 implies that y|Vu(x,y)| is bounded on H; i.e, u E 8(H)

as desired. (I thank Dr. Frazier for pointing out this simple way of seeing that

P[f] E 8(H) whenever f E BMO.)

However, not every harmonic Bloch function is the Poisson integral of a BMO

function. Indeed, it is well-known that the holomorphic Bloch function on D

9(2) = Z 22"
k=1

has finite boundary values nowhere on 8D. Hence, by Fatou’s theorem, g cannot be

the Poisson integral of any f E L1(8D). (After a conformal mapping we obtain a

similar example for H.)

Recall in Chapter 1, we introduced the horizontal translations and dilations of

a function defined on H, and asked the reader to check that the Bloch norm is

invariant under these transformations. We will also need the vertical translations: If

u is a function on H, then its vertical translate Thu is the function on H defined by

nub. y) = U(Iv. y + h)

for h > 0. If u E 8(H), then Thu is also in 8(H), and ”nulls _<_ Ilullg. Indeed, the

harmonicity of mu is clear, and

yllUllB

y+ h

 

yIVnu(x.y)l = yIVU(z.y+ h)l S S Hulls

for all (x,y) E H.

We’ll soon see that Thu equals P[u(-,h)], which will be important for our work

later. But in order for P[u(-,h)] to make sense, we need a growth estimate on u.

That’s the object of the next theorem, which shows that a Bloch function can grow
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no faster than [log y| near 6H and 00.

2.4 Theorem: Ifu E 8(H), then

IU($.y)| S IU(0.1)|+ ||u||8[1+ |logy|+ 21<>s(1+|fl¢|)l-

PROOF: Fix (x,y) 6 H. We have that

U

|.(.,.,) - no.1): = I /. D.u(z.s)dsl

y u

= IIUIlsllogyl-

Hence,

|u($.y)| S IU($,1)| + “Ullallosyl-

To get an estimate on |u(x,1)|, we let r = 1 + le and use the triangle inequality

x 1 x x

|u(x, 1) _ "(0, 1)l S lur(;a ;) "' Ur(;,1)l + luv-(p1) " 11,-“), 1)l + |u(01r) " "(091M

Denote I, II, III respectively the three terms on the right hand side of the inequality.

We then have

11 = |u(x,r) _ "(O’Tll

u

s sup mama sU—l'i’lzl swan...
‘6 [(W‘). (0.?” r

111 = |/ Dyu(0,t)dt|
l

S ||u||310gr.

(Note that the dilation invariance of the Bloch norm was used in I.) The conclusion

of the theorem follows.Cl
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We are now able to prove an important property of the Bloch functions in the

upper half-space: The vertical translates of a Bloch function are the Poisson integrals

of their boundary values. More precisely, we have

2.5 Theorem: Ifu E 8(H), then

W! = PHM» ’0]

for every h > 0.

For the proof of this theorem, we need the following three lemmas.

2.6 Lemma: If f is continuous on R""1 and 2.2 holds, then P[f] can be extended

continuously to the closure of H, with boundary values f.

PROOF: This is a simple variation on the proof that the Dirichlet problem for H

with bounded continuous boundary data is solvablefl

2.7 Lemma: Ifu is harmonic on R" and

IU($)I S A(1+lflvl’") (1' E R")

for some constant A, then u is a polynomial of degree S p.

PROOF: Fix x E R" and let a be a multi-index. By Cauchy’s estimates, there is

a positive constant Ca such that

< CaA(1+ r?)

_ rial

 

ID“ "(ail

for all r > le. Letting r go to infinity gives us D"u(x) = 0 for all a such that |a| > p.

Thus, u is a polynomial of degree S p.El
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2.8 Lemma: If f is a measurable function on R"" and there exists p 6 (0,1)

such that

|f(i)| S A+ Bltl”

for some constants A and B, then there exist constants C and D such that

lPlfl(z.y)| S C + Dl(z.y)l" ((x,y) 6 H).

For the proof of this lemma we need the polar coordinate formula for integration

on R": If g is a Borel measurable, integrable function on R", then

2.9 Ell—Bl 110ng = [:0 r"'1/Sg(r()do(C)dr.

PROOF OF LEMMA 2.8: Let f be as in the statement of the lemma. The fact that

f satisfies the condition 2.2 (and hence P[f] is well defined on H) follows easily by

using 2.9. We also have

dt |P[fl(2,y)| s [R “(A+B""”’
"-1 (it2 + It -z|’)i

y W

"-1 (y2 + lt - avl’)i

 AB/+c..1R

for all (x,y) 6 H. We split the last integral into two parts, by integrating over

{|t| < 2|xl} and over {|t| _>_ 2|xl}. In the first part, we replace |th in the numerator

by |2x|P and'integrate over all of Rn'l. We then see that the first part is bounded by

a constant times IxI". In the second part, we use the estimate

2 2) 2 BE

31 +lt-zl _y + 4

(valid for the domain of integration), then integrate over all of R""1 using the change

of variables t = ys. We then see that the second part is bounded by a constant times

y”. The conclusion of the lemma follows.Cl



24

PROOF OF THEOREM 2.5: Let u E 8(H) and fix h > 0. We easily check using

the growth estimate 2.4 and the formula 2.9 that u(t, h) satisfies the condition 2.2.

Define on H the harmonic functions

v = P[u(-, h)], w = Thu — v.

By Lemma 2.6, v extends to be continuous on the closure of H with boundary values

u(-, h). Hence, w extends to be continuous on the closure of H with boundary values

identically 0. We now extend w to all of R” by setting w(x, —y) = —w(x, y). By the

Schwarz Reflection Principle, w is harmonic on R" (see 4.9 of [ABR]). We now show

that w E 0 on R".

We have by the growth estimate 2.4 that

Mt. h)| S |u(0,1)l+llullsl1+l1°8 hI + 2108(1+|t|)l

< A + Bltli

for all t 6 RP“ (Here we choose the exponent 1/2 for no particular reason; any

positive exponent less than 1 will do.) Therefore, by Lemma 2.8

wosMSA+mosw

for all (x,y) E H. Also, by the growth estimate 2.4,

IThU(x.y)l S IU(0.1)|+||u||Bl1+I103(y+h)|+2108(1+|$|)l

s A + Bl(z,y)li

for all (x,y) E H. Hence,

wasnshwosn+was13A+anmt

for all (x,y) E H. Therefore w is a polynomial of degree 0 (by Lemma 2.7), hence

w E 0 on R" (since w E 0 on 6H). Thus 17.11 = P[u(-,h)] on H as desiredfl
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In the remainder of this chapter, we characterize the Bloch functions on H in

terms of their higher derivatives, and in terms of two bounded mean oscillation con-

ditions. Here is first a simple characterization of the Bloch functions in terms of the

last coordinate variable y. It shows that the constant functions are the only Bloch

functions in H that don’t depend on y.

2.10 Lemma: Ifu E 8(H) doesn’t depend on y, then u is constant.

PROOF: Our hypothesis implies that there exists a smooth function f defined on

R"'1 such that u(x,y) = f(x) for all (x,y) E H. Therefore

IVf($)l = IVU(1=.3I)|

IIUIIB

y

 

S

for all (x,y) E H. Letting y —-> 00, we see that Vf(x) = 0 for all x E Rn'l. Thus

(since H is connected), f is constant, and therefore so is u.D

Before we come to our characterization of the Bloch functions in terms of their

higher derivatives, recall from chapter 1 that P... denotes the set of all harmonic

polynomials of degree less or equal to m and that for any harmonic function u on H

we define

|lu+Pm|| =pg;,fmllu+plls-

2.11 Theorem: If u is a harmonic function on H and m is a positive integer,

then

||u+Pm-1|| z 8}? 31'" Z lDa‘ul-

|a|=m

To prove the theorem we need the following two calculus-type lemmas.
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2.12 Lemma: If a smooth function f defined on (0,00) satisfies

$k+1|f(k’($)| S M

for some integer lc 2 1, then there exists a polynomial pk_1 of degree S k — 1 such

that

211(2) —p.-.(x)l s -’,:—f (. e (o , co».

PROOF: By induction on k. Let k = 1. We show first that f(00) = limxnoo f(x)

exists. For t S x we have

|f(x)—f(t)l s [In

5 M Il-ll
x t

< w
_ t

This shows that f(00) exists. Because

°° M
_ < ’ < __m2) f(00)| _. L Ifl _. x,

we are done in the case I: = 1 (take p0 = f(oo)).

Now suppose the lemma is true for k and x"+2|f("+1)(x)| S M. As above, this

implies that f(“)(oo) exists. Furthermore,

|f""(x) — f""(oo)l s j: |f"‘+"| s (Ki—4);?

so that

ixk+1|f(k)(z) _ fl")(oo)l _<_ +1.

a
.

Hence

_M_.
(1.) I:

x"“|(f(:v)--——-f(°°"‘ )‘k’l k+l1:!

I
A
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Thus (by induction hypothesis), there is a polynomial p1,_1 such that

f(k) I: M

”(33) - ‘—_(§)i ‘Pk-ll SW

Taking pk(x) = x“f(“(00)/kl+p1,-1 shows that the lemma is true for k+ 1. Therefore,

the lemma is true for all positive integers [CD

2.13 Lemma: If u is a smooth function on H such that

M=sup y'" 2 |D°u| < 00

H lal=m

for some integer m 2 2, then there is a polynomial pm-1 of degree less or equal to

m — 1 and a positive constant C, depending only on m and n, such that

sup y“ 2 |D°(u-pm—1)| S CM-

|a|=2

PROOF: By induction on m. The case m = 2 is clear (any linear polynomial will

do). Now suppose the lemma is true for m and that

spip y’”+1 E: |D°u| = M < oo.

|a|=m+1

Fix x E 11"" and let 8 be a multi-index such that [HI = m. Define f(y) = D"u(x,y)

for y > 0. We easily see that

y'"“|f’(y)| S M

for all y > 0. Therefore, because M is finite, f(oo) = L exists (see the proof of

Lemma 2.11). Furthermore, L is independent of x. Indeed, the inequality

MIrL‘l
|Dfiu(z.y)- D”U(0.y)| S sap |D°u(2)l I-rl S y...”

26 [(xvy)o (0.1!”

 

for all (x,y) E H, shows that

L =f(oo) = jig; 0%,.)

= ”119310 D511“), 3]).
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It also follows from the fundamental theorem of calculus that

y’"|f(y) - L| = y'" IDBU(x.y) - LIS

for all (x,y) 6 H. Hence

y"‘|D”(u - qzs)(x. y))| S M

for all (x,y) E H, where qg is a polynomial of degree less or equal to m such that

Df’qg = L. Thus,

8:11) y'" ID"(u - qn)l S M.

Letting q = Elfil=m Qg and C equal the number of possible multi-indices 8 such that

[8| = m, we obtain

811p 11'" Z IDB(u - q)| S CM.

H Ifil=m

Hence (by induction hypothesis), there is a polynomial pm..1 such that

811p 31’ Z |D°(u-q-pm—1)| S CM-
|a|=2

Taking pm = q — pm_1 shows that the Lemma is true for m + 1. Thus the Lemma is

true for all integers m 2 2.0

If we add to the hypotheses of the above lemma the assumption that u is harmonic,

we obtain

2.14 Corollary: Let u and pm_1 be as in Lemma 2.13. Ifu is harmonic on H,

then pm_1 is harmonic on H.

PROOF: Because u is harmonic, we obtain (from Lemma 2.13)

811p VINu - pm—1)l= sup y’IA(pm-1)| S CM-

H H
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Here A denotes the Laplacian: A = D: + - - - + D3,. Because A(pm-1) is a polynomial,

the above inequality is possible only when A(pm_1) = 0.0

PROOF OF THEOREM 2.11: The case m = 1 is clear, so we assume that m > 1.

By Cauchy’s Estimates, there is a positive constant C such that

splp y'” z |D°’u| = SUP If" 2 |D°'(u+p)|

l°l=m Ial=m

S CH“ + File

for all harmonic functions u on H and all p E P -1. Therefore,

811p y'" X |D°u| S Cllu + Pm-lll-
H |a|=m

For the other inequality, fix u as in the statement of the theorem and assume that

sup y'” z: |D°u| = M < 00.

H |a|=m

We’ll show that there is a polynomial q E ’Pm-1 such that ”u — qllg is less than or

equal to a constant multiple of M. To do that, we fix x E R""1 and j E {1, . . . ,n}.

Define f(y) = Dj(u - pm_1)(x,y) for y > 0; pm_1 is as in 2.13. Then

y’lf’(y)| = y’IDuDJ-(u — pm_1)(x.y)| S GM

for all y > 0. Hence, f(00) = L,- exists. Moreover, L, is independent of x (as in the

proof of 2.13). Furthermore, by the fundamental theorem of calculus, we obtain

2‘15 lej(u-pm—1)(z.y)-Lj| = lej(U(x.y)-pm—1(x.y)-Lj$j)l S CM

for all (x,y) E H. Now take

q($. y) = I’m—1023.31) - 2 L198-

i=1
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Because u is harmonic, we obtain by 2.14 that pm-1 is harmonic. Thus q is harmonic.

Therefore, q E ’Pm_1. Also, using 2.15, we easily obtain that IIu—qIIB S nCM. Thus,

llu+7’ -1|l S 7108111) 31'" Z |D°U(x.y)l
H Ialzm

for all harmonic function u on H for which

sup y'” 2 |D°’u| < oo.

Ial=m

For the rest of the harmonic functions u on H, we may take the same constant nC

as above so that

llu+ 1’m—nll S "0821) y'" 2 ID"U(x.y)|

|a|=m

for all harmonic functions u on H.D

If we know ahead of time that u 6 8(H), then we can say more.

2.16 Theorem: Let u be a Bloch function on H and let m be a positive integer.

Then

Halls z 82(1) 31’" Z ID°u(w.y)| “3213 ymZIDZ‘"D.-u(2.y)l-

|a|=rn i=1

PROOF: Denote the three quantities of the theorem from left to right I, II, III.

We’ll prove: I a: II, and I z III. We start by proving I z II. The fact that II is less

or equal to a constant multiple of I follows from Cauchy’s Estimates. For the other

inequality, we apply Theorem 2.11. Fix 6 > 0. Because ”u + ’Pm-1ll S IIuIIB < 00,

there is a harmonic polynomial p( of degree less or equal to m — 1 such that

|lu+Pe||s S €+|lu+P -1||

S e+ Csup y'” z |D°u(x,y)| < 00 (by Theorem 2.11).

H lal=m
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Hence, since ||p.||3 S “u +p¢II5 + Hulls, we get pc is Bloch. Because 8(H) does not

contain any nonconstant polynomial, pc must be constant. Thus, Hu + Pells = IIuIIB.

Therefore,

IIUHB S HOS}? y’" X |D°u(z.y)l-

|a|=m

Letting 6 go to 0 gives the desired inequality.

The fact that III is less or equal to a constant multiple of I is again an easy

consequence of Cauchy’s Estimates. The other inequality follows by an easy induction

on m and by using the fundamental theorem of calculusfl

We now look at two BMO-type conditions, each of which characterizes the Bloch

functions on H. Recall that Q(a,r) = {[2 — a| < r} ('1 H. Here is the first one:

2.17 Theorem: Suppose u is a harmonic function on H that is volume integrable

on every bounded subset ofH. If] S p < 00, then

|
~

P1

2.18 ||u||3zsup{fiLIu—uglpdV} ,

where the supremum is taken over all (I = fl(a,r) with a in the closure of H.

PROOF: Let u and p be as in the statement of the theorem. For a E H, put

B, = B(a,a,,/2). Noting that u(a) = 118., for u harmonic on H, we have

1

p

2.19 [lullgzsup{TI:fJLa |u—u(a)|PdV} ,

where the supremum is taken over all a E H. The proof of 2.19 is almost the same as

the one given on page 9 of Chapter 1; we leave the easy changes to the reader. The

equivalence 2.19 shows that ||u||3 is less than or equal to a constant times the right

side of 2.18.

For the other direction in 2.18, dilation and translation invariance will be crucial.

After an appropriate dilation, as well as vertical and horizontal translations, we may
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assume that Q = Q(a,r) touches 6H, that r = l, and that a lies on the y-axis. The

triangle inequality gives

1 l

1 ' 1 '
{fifnlu—uol’dV} s{l-,,—I/alu—u(o,1)rdV} +Iun—u(0.1)l-

Writing ug - u(O, 1) as (l/Ifll) fn(u — u(0,1))dV, and applying Jensen’s inequality,

we see that the above is less than or equal to

.1.

r

2 {fill—If“ Iu _ u(0,1)|’dV} .

Now with our assumptions on (I, we have 9 C C, where C = {le < 1} x (0,2). We

also have III] 2 IBn(0,1)|/2. Thus the last expression displayed is less than or equal

to a constant (depending only on n and p) times

{fa [u _ u(0,1)|pdV}% .

The growth estimate 2.4 and an easy integration now finishes the proof.D.

The second BMO-type condition involves the Hardy-space norms || - |th on B (see

page 10 of Chapter 1).

2.20 Theorem: If u is a harmonic function on H and 1 S p < 00, then

II‘UIIB z 8UP IMO + m) - u(a)||hr.

where the supremum is taken over all a, r such that B(a,r) C H.

For the proof of the theorem, we need the following lemma, which can be proved

by using A.7 of [ABR] and then switching to polar coordinates.

2.21 Lemma: pr 6 (0,00), then

f.

P

m (la-(C) < 00.

Cu  
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PROOF OF THEOREM 2.20: Fix p 6 [1,00) and B(a,r) C H. Note that since

B(a, r) C H, the radius r of the ball B(a,r) cannot exceed an, the n“ coordinate of

a. It is clear that the function u(a + rx) - u(a) is well defined and harmonic on B.

Now fix 3 6 [0,1) and C E S. We have

|u(a + rsC) — u(a)| = l/ol Vu(a + tsrC) - rsttI

[01 |Vu(a + tsr()||rsC|dt

[1 rnuus d,
o an-l-rant

1

S fi‘kdt.

o 1+ant

In the last inequality we used the fact that r S a... If (n _>_ 0, then obviously the last

l
/
\

|
/
\

integral is less than or equal to ““llB- If (n > 0, the last integrand is dominated by

Hulls/(l + (at), which implies that

103(1 + C.)

(n

We now have an estimate independent of s 6 [0,1). The definition of the hP-norm

IU(a + NO - u(GUI S Hulls

  

and Lemma 2.21 now show that there is a constant C, depending only on n and p,

such that

IIU(a + rx) - “(0)!th S CHulls-

For the other inequality, note that if v 6 h”(B), then

2.22 IVv(0)| S C'llvllhn.

where C is a positive constant depending only on n and p. (This follows from the

Poisson integral representation formula of v.) Now fix a = (x, y) in H and apply 2.22

to v(z) = u(a + yz) —- u(a). We obtain, since |Vv(0)| = y|Vu(a)|,

yIV"(a)l S CHM“ + 312) - “(OHM-

Taking the sup on both sides of the above inequality yields the desired inequalityD



Chapter 3

Conjugate Harmonic Functions

THE UPPER HALF PLANE: If u is a real-valued harmonic function on H2, then a

harmonic conjugate of u is any real-valued function v on H: such that u + iv is

holomorphic on H2. It is well known that harmonic conjugates exist and are unique

up to additive constants. Hence, there is only one such v as above that satisfies

v(0, 1) = 0. It is immediate from the Cauchy-Riemann equations

611-22
8x_6y

§E__§£
0y_ ax’

that if u is a Bloch function, then so is v. Moreover, u and v have the same Bloch

norm .

THE UPPER HALF SPACE: Recall our definition from Chapter 1: Given a harmonic

function u on H, the functions v1, . . . , vn_1 are said to be harmonic conjugates of u if

3.1 (v1,...,v,,_1,u)=Vf

for some harmonic function f on H. The functions v1, . . . ,vn_1 are automatically

harmonic, since they are partial derivatives of a harmonic function. Also, 3.1 and

34
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the condition that f is harmonic are equivalent to the “generalized Cauchy-Riemann

equations”

3.2 Dkvj = 1151)]‘ ; Dyvj = Dju

11—1

3.3 2 D,v,-+D,u = 0.

i=1

When n = 2, by the Cauchy-Riemann equations, 3.2 and 3.3 hold if and only if

u + iv is holomorphic on H. Thus, 3.1 is a natural generalization of the case n = 2.

However, unlike the case n = 2, there is a greater degree of non-uniqueness of the

vj’s, as we’ll see shortly.

EXISTENCE OF HARMONIC CONJUGATES: Perhaps the best-known result concerning

harmonic conjugates on H is the following: If

yf(t) d,
u(a...) = Plfl(:c,y) = c. R.-. (Ix —t|2 + w. ,

where f E L2(R”‘1), then the functions vj given by

(“71' - tj)f(t)n dt
3.4 - , =w(iz 3!) Cu Rad (|x_t|2+y2)5_

are harmonic conjugates of u. Furthermore, each v,- is the Poisson integral of an L2

function on 11""1 (see page 78 of [8]).

Unfortunately, not every harmonic function u on H is such a Poisson integral as

above, so we need to do something else for such a function.

3.5 Theorem: If u is harmonic on H, then harmonic conjugates of u exist.

PROOF: We need to find a solution for 3.2 and 3.3. The solutions for the second

part of 3.2 are of the form

v

3.6 v.,-(x,y)=/l Dyu(x,t)dt+<p,-(x),
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where the cpj’s are any n — 1 smooth functions on R"'1 that satisfy

3.7 chpj = DjWk

for all j, k 6 {1,2, . . . ,n — 1}. Note that when n = 2, 3.7 holds trivially. To find the

cpj’s, we proceed as follows. First, we find (p1 = cp. To that end, we substitute 3.6

into 3.3 and we differentiate the new equation with respect to 2:]. We obtain

Ago(x) + DlDyu(x, 1) = 0

(having used the harmonicity of u and the equations Dle‘Pj = Dlegoj = chp

obtained from 3.7). This is just the Poisson equation in Rn‘l. Because D1 Dyu(x, 1)

is smooth on R"‘1, this last equation has a smooth solution on Rn‘l; see pages 195

and 201 of [R2]. Thus, (,01 exists. To obtain the rest of the (,oj’s, we proceed similarly.

By 3.7, we have that

(pJ-(x) =./o ngo(t, x2, . . . , xn_1)dt + ¢j(x2, . . . ,xn_1)

for j = 2,. . . , n — 1, where the wj’s are smooth functions on R""2 that satisfy

DH/Jj = Dflhk-

To find the wj’s, we fix 2b; = 21) and follow similar steps that led to the existence

of 901. We repeat the same process n -— 2 times till we obtain all the vj’s. Just by

construction, the vj’s obtained will satisfy 3.2 and 3.3.13

NON-UNIQUENESS OF HARMONIC CONJUGATES: Before we proceed let us look at

an example. Let u(x1,x2,y) = 2y. We can easily check that v1(x1,x2,y) = 0 and

v2(x1,x2,y) = —2x2 are harmonic conjugates of u (here f(x1,x2,y) = y2 — x3).

Slightly more complicated harmonic conjugates of u are v1(x1,x2,y) = 2x1x2 and
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v2(x1,xg,y) = x? — x3 — 2x2 (here f(x1,xg,y) = $¥$2 - x2/3 — x3 + y’). This ex-

ample shows that when n > 2, harmonic conjugates for the same u may differ by

more than just a constant. In fact, the proof of theorem 3.5 shows that adding any

harmonic function g of x1, . . . , x.._1 to v1 will generate another set of n — 1 harmonic

conjugates, say v1 + g, wl, . . . , wn_g. We can again add any harmonic function h

of x2,. . . ,xn_1 to wl. It will generate new harmonic conjugates for u of the form

v1 + g, to] + h, 31, . . . , sn_3, and so on. In the above example, the harmonic function

added to v; is 2x1x2. Note that in the case n = 2, if we add a harmonic function of x1

(which must be of the form axl + b) to v1, then v1 + ax; + b is a harmonic conjugate

of u if and only if a = 0, as easily checked. This is compatible with the well-known

fact that when n = 2, the harmonic conjugate is unique up to an additive constant.

HARMONIC CONJUGATES or BLOCH FUNCTIONS: Given u e 8(H), need the har-

monic conjugates v1, . . . , v..-1 belong to 8(H)? The answer is yes when n = 2; see the

beginning of this chapter. In higher dimensions, the answer is no as we can easily see

by taking u = 0. Here, u = 0 is Bloch but the harmonic conjugates v1(x1, x2, y) = x1

and v2(x1,x2,y) = ——x2 are not Bloch.

Nevertheless, there are certain properties that any conjugate of a Bloch function

must have. For example, we have control over the normal derivatives of the conju-

gates. Indeed, since

Dyvj = Dju,

we have

leuvj(-T.y)l S Hulls

for all (x,y) E H and all j. We also have a uniform bound on some of the second

partial derivatives of the harmonic conjugates. More precisely, there exists a positive
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constant C such that

3-8 y’lDkavj(a=.y)l S CHalls

for all (x,y) E H and allj E {1,...,n — 1} and k E {1,...,n}. Indeed,

yZIDkavflx, 31“ = ylevavH-ta y)l

|
/
\

y’leDquv. y)| (by 3-2)

< C I lull3 (Cauchy’s Estimates)

for all (x,y) E H and allj E {1,..., n- l} and lc E {1,..., n}.

We now begin to discuss the primary question of this chapter: Given u E 8(H),

can we choose harmonic conjugates of u that are Bloch? Referring to the discussion

above, suppose we know that for every x E R”‘1, Dim-(x,y) —> 0 as y —-+ 00. We

can then fix a: E I?!“1 and define on (0,00) the function f(y) = Dkvj(x,y). Then

3.8 implies that y’lf’(y)| S CIIuIIB. Therefore, since f(00) = 0, we get from the

fundamental theorem of calculus that

3.9 y|f(y)l = lekvj($al/)l S Cllulls

for all (x,y) E H; note that the constant C in 3.9 is the same as in 3.8 and hence is

independent of u.

Summarizing: To get Bloch conjugates for a Bloch function u on H, it suffices to

find harmonic conjugates v1, . . . , vn_1 of u such that

3.10 ”111% Dka-(x, y) = 0,

for all x E R"‘1 and for all k E {1,...,n} and j E {1,. . .,n -1}. Moreover, if 3.10

is satisfied, then (by 3.9) there is a positive constant C independent of u such that

llvjlls S CIlullzs-
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We now show that this can be done, essentially by using 3.4.

3.11 Lemma: For every h > 0, the functions

 

v?(x.y)=cu ( ’ ’
3"" (Ix—t|2+y2)r +t+(|t|21.1)?)110h)dt

are Bloch conjugates for Thu and there is a positive constant M, depending only on n,

such that limit? S MIIuIIB for all h > 0 and allj.

REMARKS: The term tj/(Itl2 + 1)"/2 has been added here to ensure that the inte—

grands belong to L1(R"‘l), and to ensure that v5?(0,1) = 0.

PROOF: Fix h > 0. The existence of the above integrals is checked by getting

a common denominator for the integrand. A straightforward computation shows

that vI‘,” ., v,’,‘__1 together with Thu satisfy 3.2 and 3.3. Therefore, of,” ., vf,’_ 1 are

harmonic conjugates for 17.. To show that vI‘, . . . , v34 are Bloch, it suffices to show

that 3.10 is satisfied. Fix j E {1, . . . ,n -- 1}. After differentiation under the integral

sign and making the change of variable x — t = ys, we get

  

C |u(x— ys h)I squ(x-y3ah)l
1),-v S — d‘’91“ J " ’

| I“,(:c y)| y Rh, “3'2 +1)% y 11..-: (M2 +1)+

S 0 [21(1' - 3,3, h)ldt
 

I Ila-1 (Isl2 +1)i

for all (x,y) E H. Using the growth estimate 2.4 in the above inequality and the

estimate

log(1 + Ix — y3|)Slog(1+IxI)+log(1+ y) + log(1 + Isl)

for all x and s in R""1 and all y > 0, we easily see that there are two positive

constants a and ,6 such that

l l 1 l 1+ as; +le) +,ouyw)
 

levj($.I/)l S a
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for all (x,y) E H. Therefore, lim,,_.oo Djvj‘(x,y) = 0 for all x E R"‘1. Similarly, when

k 7‘. j, hing...» Dka-‘(x,y) = 0 for all x E R”"1. Thus, 3.10 holds for vI‘,.. .,v,’:_1,

n—l
which implies that v? E 8(H). Furthermore, by 3.9 the Bloch norms of vI‘, . . . , v”

are uniformly bounded by a constant multiple of Hull; (recall that IIThuIIB S IIuIIB).D

We are now ready to prove the main result of this chapter.

3.12 Theorem: Let u E 8(H). Then there exist unique harmonic conjugates

v1, .. . ,vn_1 of u on H such that v,- E 8(H) and vJ-(O, l) = 0 for each j. Moreover,

there exists a constant M, depending only on n, such that IIvJ-IIB S MIIuIIB for each

j.

PROOF: Referring to vI‘, . . . , v24 of Lemma 3.11, we see that the vector-valued

family of harmonic functions (of, . . . , v24) is uniformly bounded on compact subsets

of H. (This follows because vf(0,1) = 0 for all h > 0 and all j, and since IIvI-‘IIB S

MIIUIIB for all h > 0 and all j.) Therefore, there is a sequence (hk) that converges to 0

such that (vf‘ , . . . , 11:1,) converges uniformly on compact subsets of H to some vector

of harmonic functions (v1, . . . , v..-1) (this is an easy generalization of 2.6 in [ABR]).

Furthermore, the sequence of partial derivatives converges uniformly on compact

subsets to the corresponding partial derivatives of (v1, . . . , vn-1) (see 1.19 of [ABR]).

It follows easily by letting h], go to 0 in the generalized Cauchy-Riemann equations

that v1, . . . ,vn_1 are harmonic conjugates of a. It is also an easy consequence of the

uniform boundedness of the Bloch norms IIvI-“IIB, that each vj belongs to 8(H) and

that IIvaIB S MIIuIIB for each j. Indeed,

yIij(a=.y)l = ,Ijgoylei‘Was/H

< ' ’9'- <,ggouv. lls _ Muuns.
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for all (x, y) E H and all j. The fact that vJ-(O, 1) = 0 for allj is clear since vI-‘(0, 1) = 0

for all h > 0 and all j. Finally, the uniqueness of v1, . . . ,vn_1 follows from the fact

that Dyvj = Dju and the fact that a Bloch function on H that doesn’t depend on y

is necessarily a constant (see Lemma 2.10).D

The last theorem is crucial for obtaining some results regarding the boundary

behavior of the harmonic Bloch functions, as we’ll see in the next chapter.



Chapter 4

Boundary Behavior

of

Bloch Functions

Recall some of our discussion in Chapter 1: Although holomorphic Bloch functions

on D need not have finite radial limits at any point on the boundary, they do have

“average radial limits” over an interval on the boundary; this is what Ullrich showed

in [U]. It easily follows that harmonic Bloch functions on D have this property. More-

over, it terms of these averages, Ullrich obtained a necessary and sufficient condition

for the existence of a radial limit at a given boundary point. The natural analogues

of these results follow for harmonic Bloch functions in the upper half-plane after a

conformal change of variables. The main purpose of this chapter is to explore these

ideas in higher dimensions. But first, we prove that harmonic Bloch functions on H

have “boundary values” in the sense of distributions. More precisely:

4.1 Theorem: If u is a Bloch function in the upper half-space, then

[13,; R.-.“("” y)r(x)dx

exists for every smooth function (,0 with compact support. Moreover, this limit defines

a distribution on the space of smooth test functions with compact support.

42
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PROOF: Let cp be as in the statement of the theorem. We define on (0,00) the

function

f(y) = [Rn-1 u($,y)<p(x)dx.

Differentiating under the integral sign yields

2

my) = [Rndaiyauoswowx

n-l

= — ./R Z Diu(x,y)¢(x)dx (since u is harmonic)
n-l k=l

= — [R _1 u(x,y)A¢(x)dx (integration by parts).

Therefore, using the growth estimates 2.4, we obtain

|f"(y)| S Csup|A<pI(1+|10gyl)

for all y E (0, 00). Hence,

I I l 1

If (y) - f (1)| S Csup lArI/y (1 + 103;)43 S Csup IA‘PI

for all yE(0,1). Because u E 8(H), it easily follows that If’(1)I S C sup Igol. Therefore

lf’(y)| S C(Sup lAvl + sup lrl)

for all y E (0,1). Thus limy_.o f(y) exists, and

Ms) - f(1)l S C (8111) Mel + sup lvl) ly -1|

for all y E (0,1). The above inequality together with the easy fact that I f(1)| S

C sup I‘Pl will finish the prooffl

Ullrich showed that when n = 2, the limit in 4.1 still exists if Lp is the characteristic

function of an open bounded interval symmetric around the origin; see the discussion

in Chapter 1. We now generalize this result by letting go be the characteristic function
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of an open bounded set with smooth boundary in any dimension. For this purpose,

we define

Igu = lnu(x,h)dx

for any bounded measurable subset Q of R"". We obtain:

4.2 Theorem: Suppose u E 8(H), Q is a bounded open set with Cl-boundary,

and 0 E (I. Then

Inu = III-m) I311

exists and defines a bounded linear functional on 8(H). Moreover, there is a constant

C, depending only on n, such that

“In” S C(1+ Wald +|9|)(1+ “081”).

where d equals the diameter of Q.

PROOF: Fix u E 8(H) and Q as in the statement of the theorem. We will be

interested in the cylinder C = Q X (h,d) for 0 < h < d. Because C has piecewise

smooth boundary, we may use the divergence theorem:

/divde=/ w-nds.
C 6C

Here we take w = (v1, . . . , vn-1,u), where v1, . . . , v.._1 are any harmonic conjugates

of u, and div w, the divergence of w, is defined to be Dlvl + . . . + Dyu. The vector

n = (171, . . . ,0“) is the outward unit normal to BC, ds denotes surface area measure

on 3C, and - denotes the usual Euclidean inner product. Now from the definition of

harmonic conjugates, we have div w = 0 (see 3.3). Thus, because n: (0,. . . ,0, 1) on

the top ofC and n: (0, . . . ,0, —1) on the bottom of C, we get

4.3 Isa = fnu(x, h)dx = Lu(x,d)dx+/hd/m "if nj(x)v,°(x,y)ds(x)dy.

i=1
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We need to estimate the integrand in the above double integral. First, since the

vector n has length 1, we have

n-1 n-1

Z lfljvjl S 2 |va

i=1 i=1

on 39 x (h,d). Second,

IvJ-(x,y)I S IvJ-(x, l)I (,x t )dtI

 

+|/.D~v

l.
S IvJ-(x,1)I + I llutllsdtI (recall that Dan- = DJ-u)

= lvj($.1)|+IIUI|s|108yl

for all (x,y) E H and all j. Therefore,

n—1 n-1

IE flj($)vj($ay)| S (n -1)||u||8|108y|+ Z lvj(-’B,1)|

i=1 i=1

for all (x,y) E 89 x (0,d). Because |logy| is integrable on (0,d), we see that

4.4 lim0]"-— Igu-— [a u(x, d)dx +/d[an 2:1 nJvJ(x, y)ds(x)dy.

flj=1

Note that up until now, v1, . . . , vn_1 could have been any harmonic conjugates of

u. However, to show that [flu is bounded, we resort to our result in 3.12: We may

choose harmonic conjugates v1, . . . ,vn-1 of u that are Bloch. Indeed, if we do that,

then the growth estimate 2.4 shows that

4-5 lvj(x.y)l S M IIUIlsll+| losyl+2103(1+|$|)l

for all (x, y) E H and all j. Here we have used the fact that vJ-(O, 1) = 0 for all j and

the estimate IIvaIB S MII‘UIIB from 3.12. Using the estimate 4.5 and the formula 4.4,

we obtain

lloul s /[|u(0 1)l+ Ilulls(1 + |losd|+ 2103(1+lm|)]dx

n—l

+ MllullsZ/I... [1+llogy|+2log(l+lxl)lds(x)dy
j=l
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An easy estimate shows that

d

[o |logyldy s d(1+llogdl)-

This inequality, together with the obvious estimates, give the desired conclusion (we

recall that the constant M depends only on n).El

With (2 as in 4.2, let us define the constant

Thus Theorem 4.2 gives

”19“ S 009-

The last estimate allows us to estimate ”16“”, for any h > 0: Because 1321 = 19(Thu),

we have

4.6 [Igul S 000077.11“), 1)l + llThullB)

S CCn(|U(0,1)|+ ||u|l8103(1+ h) + Hulls)

S CCn(1+103(1+ h))(IU(0,1)| + Halls)

for all h > 0.

The proof of Theorem 4.2 yields the following three corollaries:

4.7 Corollary: With 0 as in Theorem 4.2, we have

”1:;— In” s clan|(1+log(1+ d)) (h + hl log hl),

where 0 < h < d and C is a constant depending only on n.

PROOF: Fix it E B(H) We subtract the formula 4.4 from the formula 4.3 to get

IISu - Ioul = | U.E n.(x)v.(x,y)ds(x)dyl.
J=l
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Hence, by the estimate 4.5, we obtain (since InJ-I S 1)

n—l h

llfiu-InUI s MIIuIIsz/o fanll+llosyl+21030+|xl)]ds(x)dy
i=1

3 C |an|(1 + log(1 + d)) (h + h| log h|)||ulls.

The desired conclusion followsD

Note that Corollary 4.7 implies in particular that

. h _ =

mule In“ 0.

The next result shows that the linear functional In is continuous in a stronger

sense than that expressed in 4.2.

4.8 Corollary: Let Q be as in Theorem 4.2. If (mg) is a sequence of Bloch functions

on H such that the norms ||uk||3 are uniformly bounded and such that (u) converges

to u uniformly on compact subsets of H, then

[all = lim Ina}...

k—eoo

REMARK: The hypotheses here do not imply that uk —> u in the norm of B(H).

For example, in Ba(D), the sequence fk(z) = 2" is uniformly bounded on D, hence

uniformly bounded in the Bloch norm. This sequence converges to 0 uniformly on

compact subsets of D, yet

Imus > (1-(1— 1mm — l)“
' " lc k ’

which is on the order of l/e for large lc. Thus, kallg 7‘» 0. (After a conformal

mapping we obtain a similar example for H.)

PROOF OF COROLLARY 4.8: We first observe that the function u is Bloch and

that ||u||3 S sup llukllB (the argument was done in the proof of 3.12). Hence, Igu
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makes sense. Now let h < d. We have that

”nu — lung! 5 ”nu - 1611' + IISu - [and + I161”; — 1911”

for all k. The first term on the right of this inequality is small if h is small by 4.2.

The second term converges to 0 as I: —) 00 by the uniform convergence of (uk) to u

on compact subsets of H. For the third term, note that our hypotheses imply that

there is a positive constant A such that |uk(0,1)| + llukllB S A for all lc. Thus, using

Corollary 4.7, we obtain

”811k — Inukl S CA|0fl|(1+log(l+ d))(h + ill log hl)

for all k, which is small independently of k if h is small. The desired conclusion

follows.D

The next corollary states, roughly speaking, that for all y > 0, the average of u

over yQ cannot be too far away from u(0,y). Again the dilation invariance of the

Bloch norm will be used.

4.9 Corollary: Let Q be as in Theorem 4.2. Then

1 CC

IWIW)“ - "(Dd/ll S fillulls

for all y > 0.

PROOF: Fix y > 0 and Q as in statement of the corollary. Easy manipulations

show that

1

WIwm‘U = 1911”.

Hence, because the Bloch function u, — u(O, y) vanishes at the point (0, 1), Theorem

4.2 implies that
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1 l

IWIWO)“ — "(Oil/N = Ira—[190% — "(Day)“

—CC"IIu Ila
Inl ”
CC“

= — .CJ
'0' ”ullB

l
/
\

We need to discuss the particular case where Q = B,, the open ball in R"-1

centered at the origin of radius r (B, has obviously smooth boundary). Recall from

Chapter 1 the averages

 IBI/B u(x,h)dx.

We deduce from Theorem 4.2 that

’l‘irn) Afu = Aru

exists for all fixed r > 0. Also, the linear functional Ara is bounded on 8(H) for all

1
r > 0, and since there are positive constants an and flu such that |B,| = anrn' and

IBB,| = flnr”‘2 for all r > 0, we easily obtain from 4.6 (here d = 2r)

410 ”Ala” S C(1+|108rl)(1+108(1+h))(llulls+|u(0, 1)|)

for all r > 0 and all h > 0, where C is a positive constant depending only on n. Thus,

letting h —+ 0 in 4.10, we obtain

llArull S C(1+ |108r|)(IIUI|s + |u(0,1)|)

for all r > 0.

We now prove a lemma involving the averages A,u that we will need for the main

result of this chapter. Recall that en is the normalizing constant for the Poisson kernel

(see 2.1).
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4.11 Lemma: Ifu E 8(H), then

yr"

u(0,y) = nIBllcn [000 02++312)“;- Audr 

for all y > 0.

PROOF: Fix u E B(H) and y > 0. Also fix h E (0,1) for the moment. Estimate

4.10 gives

4.12 “Alt!“ S C(1+|103r|)(||‘llllts+|u(0a 1)|)

for all r > 0 and all h E (0,1), where C is a constant depending only on 12.

From the Poisson integral representation in Theorem 2.5, we have

y u(t, h)
0, h = ———7

“( ”Jr ) 6" ran-lame)?

We go to polar coordinates to obtain

any + h) = (n -1)IBIIc.y/o°° -(-—",:'7:)—,- /Su(rc.h)da(<)dr

for all y > 0. Now

 Afu = n 1 [G's-2 [S u(t(,h)do(()dt
rn-l

(again by going to polar coordinates). Therefore,

“‘Afu) dr

dr (r2 + yz)?

 

°°dr“

u(o,y+h)=c.IBIIy/o (

Thus, integrating by parts in the formula of u(x, y + h), we obtain

rfl

h

u(o,y+h)=n|B.|c,.y/°° (2+ y2)+_flArudr. 

Note that the boundary terms in the integration by parts vanish by the estimate 4.12.

This estimate also shows that the last integrand is bounded by a constant times

(1 + I log r|)r"

(.2 + W?
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independently of h E (0,1). Because this last expression is integrable on (0, 00) for

any y > 0, we can now let h -» 0 to obtain the desired result (by the Lebesgue

Dominated Convergence Theorem).C|

We now prove a result concerning the x-radialization of a given function on H:

Given a continuous function u on H, its x-radialization R[u] is the function on H

defined by

Rluum) = [SU(IwIC,y)d0(C)-

4.13 Proposition: If u is harmonic on H, then R[u] is harmonic on H.

PROOF: We use the converse of the mean value property (see 1.20 of [ABR]). The

function R[u] is clearly continuous on H. Also, we can view R[u] as

R[u1(x.y) = L. u(T(:c,y))dT,

where 0,, denotes the group of orthogonal transformations on R“ that leave the y-axis

invariant, and dT denotes the Haar measure on C“. Now, let 2 E H and let r > 0.

Then

stluKz + rodam = [9/6. u(T(z + rowdam

= [G ls u(Tz + rT(())da(()dT (Fubini and linearity of T)

= ./G.. lsu(Tz + rn)d0‘(17)dT (change of variables 17 = T(C))

= ./G.. u(Tz)dt (u is harmonic)

= R[u](z).

Thus R[u] is harmonic on H.D

We are now ready to prove our main result of this chapter: An “abelian-tauberian”

theorem characterizing the existence of a radial limit at a given boundary point in
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terms of the functionals Aru. We’ll prove it at the origin, but at any other point

(a, 0) of 0H, 7..., will take us back to the origin.

4.14 Theorem: Ifu E 8(H) and L E [—oo,+oo], then

lirr6u(0,y) = L if and only if ling Ara = L.
y—o r—v

PROOF: We do the proof for the case n > 2, and we’ll indicate the necessary

changes for the case n = 2. We first assume L = 0. Let us call the statement that

lim,_.o A,u = 0 implies limyno u(0, y) = 0 the “abelian” implication; the other half of

the theorm is the “tauberian” half.

As one might think, the abelian direction is rather straightforward. Indeed, setting

yr“

0" + w”?

 

Ky“) = nlBllcn

in 4.11, we see that u(0,y) is the integral of A,u against the positive kernel K,(r),

most of whose mass is near 0 for y small. (Loosely speaking, Ky(r) is an approximate

identity converging to the delta function at 0.) To deduce that u(0, y) -+ 0 if Ara —-) 0

is then a standard argument and we leave it to the reader.

The tauberian half of the theorem is a normal families argument: Suppose

113(1) u(0,y) = 0 but 113(1) Aru # 0.

Then there exists 6 > 0 and a sequence of positive numbers r), -+ 0 such that |A,,u| > e

for all Is. Now we consider the sequence of dilates uk(z) = u(rkz). First, observe that

Auu = Aluk for all Is (this can easily be done by an adequate change of variables in

h
Ana). Hence,

4.15 IAlukl > 6
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for all 1:. Second, because of the dilation invariance of the Bloch norm, (uh) is

uniformly bounded on compact subsets of H. Indeed, this follows from the following

inequalities

|uk($,y)| S |uk(0,1)| + Iluklls(1 + |logy| + 21<>g(1+ |$|)) (estimate 24)

= |u(0fl'k)l+llull8(1+l108yl+ 2108(1+ |$|)) (IIUklls = IIUHB)

_<_ C +||u||s(1+|103y|+ 2109;(1+|1=|)) (lfigumd) = 0)

for all (x,y) E H and all lc. Therefore, (uh) has a subsequence, which we still call

(uh), that converges uniformly on compact subsets of H to a harmonic function u on

H (see 2.6 of [ABR]).

Examining the limit function, we have (since lim¢_.o u(0, t) = 0)

v(0.y) = girgurdmy)

= klim u(0,rky) = 0

for all y > 0. Now because the Bloch norms llukllB are uniformly bounded (by IIuIIB),

it follows from Corollary 4.8, that

Alv = [3.152, Aluk.

Hence, (by 4.15)

4.16 |A1v| > e.

To get a contradiction, we show that Alv = 0. To do that we first observe that

since v(0,y) = 0 for all y > 0, we have R[v](0,y) = 0 for all y > 0. Also, R[v] is

radial in x and harmonic on H (by 4.13). This is enough to give, by Proposition 2.11

of [RU 2], RM E 0 on H. Now we go to polar coordinates to obtain



54

A1» .—. (n — 1) [01 r""2 [S v(r(, h)da(()dr

= (n — 1) [)1 r"'2R[v](rq, h)dr (17 is any element on S)

= 0

for all 0 < h < 1. Thus Alv = 0, contradicting 4.16.

The case where L is a nonzero real number follows from the case L = 0 by

considering the function u — L.

The case L = :l:oo follows easily from Corollary 4.9. Indeed, if r is fixed, then

letting fl = B in 4.9, gives (since r3 = B.)

l

|A,u — u(0,r)| = Imam”; — u(0,r)|

|
/
\

CIIUIIB,

where C is a constant depending only on n. Thus, lim,_.o Ara = 00 if and only if

limyno u(0,y) = 00.

The case n = 2 is easier, with the following change. Instead of using Proposition

2.11 of [RU 2], we use the following elementary fact: If u is a harmonic function on

the upper half-plane and u E 0 on the y-axis, then u(—x,y) = —u(x,y).D
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