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ABSTRACT

POWER ANALYSIS OF

THE TEST OF HOMOGENEITY IN META-ANALYSIS

BY

Lin Chang

The power of homogeneity tests in both fixed- and

random-effects models in effect-size meta-analyses is

studied. Power functions are approximated and simulated.

The impact of the power of the homogeneity test on

statistical errors of subsequent tests of effect magnitude

is also examined. The homogeneity test or g statistic had

an asymptotic central chi-squared distribution when effect

sizes were homogeneous. When the effect sizes were not

homogeneous, under the fixed-effects model, the distribution

of the 3 statistic was well approximated by a noncentral

chi-squared distribution. The probability of a type I error

(a false rejection) was higher than the preset a level when

study effects were from many small samples. In order to

maintain the desired significance level, meta-analysts were

advised to lower the nominal type I error rate for reviews

with many small samples. The non-null distribution of the

homogeneity test fl+ under the random-effects model is



approximated well by a combination of many noncentral chi-

squared distributions. Power values were compared for

subsequent tests of effect magnitude (5 tests) calculated

with the fixed-effects variance (gF) versus tests with the

random-effects variance (fin) in the presence of a

statistical error at stage one of testing. When the stage-

one test of homogeneity was falsely accepted, the subsequent

fixed-effects test (gF) was slightly more powerful than the

appropriate random-effects test (g3). When the stage-one

test of homogeneity was falsely rejected, the subsequent

random-effects test (in) was much less powerful than the

correct fixed-effects test (5?). To prevent the random-

effects test (3R) from being falsely applied, reviewers

could either apply other approaches to prevent the use of

the test until more is learned about the estimator of

parameter variance used in the random-effects test, or

reviewers could lower the Type I error rate (the possibility

of false rejection) for the homogeneity test at stage one.
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CHAPTER I

INTRODUCTION

Mega-analysis in Educational Research

The application of quantitative methods in synthesizing

and analyzing the results of related studies has been of

growing interest to researchers in the social sciences. As

the number of related studies increases, drawing conclusions

about research questions becomes less straightforward than

it has been. Study results may be consistent with or

contradictory to each other. Features of the related

studies including sample sizes, experimental treatment

conditions, and sampled populations differ from study to

study. Drawing reasonable conclusions from those related

yet varied studies is the challenge for researchers.

Research reviewers utilize the results of many related

studies rather than results of single studies to draw

inferences. Such synthetic research is known as "meta-

analysis", a term coined by Glass (1976) to mean the

"analysis of analyses."

Various methods of research synthesis have been used

for many decades (e.g., since Tippett, 1931). The procedure

of meta-analysis in the social sciences was popularized by

Glass (1976), and has been developed by Rosenthal (1978),

Rosenthal and Rubin (1979), Pillemer and Light (1980),



Cooper (1982), Hedges and Olkin (1985) and others in the

last decade. This work has enabled research syntheses to

become quantitatively more precise through the analysis of

standardized effect sizes from primary studies.

Chang and Becker (1987) examined an empirical

application of three main approaches in meta-analysis: vote

counts and vote-counting estimation procedures (e.g.,

Hedges, 1986; Hedges & Olkin, 1980, 1985), tests of combined

significance (e.g., Fisher, 1932; Rosenthal, 1978; Tippett,

1931), and analyses of effect sizes (e.g., Hedges & Olkin,

1985). Chang and Becker compared the hypotheses,

statistical properties, and possible conclusions drawn from

the three approaches. In contrasting these methods, they

identified several areas for further research, noting in

particular a lack of information on the power of tests of

homogeneity of effect-size analyses.

Pur ose f e Stud

The purpose of this research is to study the power of

tests of homogeneity in effect-size analyses. The power of

homogeneity tests in both fixed- and random-effects models

in meta-analyses is studied. Power functions are

approximated and simulated. In addition, since typical

effect-size analyses involve tests for at least two stages,

the influence of the power of the homogeneity test on the

statistical errors of the subsequent tests is examined.
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Power analysis of statistical tests is essential and

often ignored by empirical researchers (Brewer, 1972; Cohen,

1962, 1973, 1977; Daly & Hexamer, 1983; and Sedlmeier &

Gigerenzer, 1989). Without information on power,

interpretation of the results of statistical tests can be

very difficult. A null hypothesis may be accepted either

because the null hypothesis is true, or because the

statistical test had insufficient power to detect a true

alternative hypothesis, or because by chance the result was

small by sampling error even when the test had sufficient

power. Brewer (1972) and Cohen (1962, 1965) found that the

neglect of power analysis has resulted in generally low

power in research. Brewer argued that lower power affects

the validity of what otherwise would be a proper rejection

of Ho based on the research data. Cohen (1973) emphasized

power analysis as "the only rational guide to planning the

relevant details of the research" (p. 227).

This study approximates power functions and serves

empirical meta-analysts by enabling them to estimate the

power of their statistical tests against an array of

possible outcomes. I will do a numerical simulation of

power values for homogeneity tests in effect-size meta-

analyses. Comparisons will be made between power values

calculated through theoretical approximations and simulated

values. Power tables will be constructed. The influence of

the power of the homogeneity test on subsequent effect-
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magnitude tests will also be examined. Below, I start by

briefly reviewing the concept of power and discussing the

importance of power analysis, especially for homogeneity

tests.

ed r a owe tud of Hom neit Tests in Meta-anal sis

D 'ni o Statist a Pow

Two types of error are involved in statistical

hypothesis testing. The type I error occurs if the

researcher rejects a null hypothesis when the null

hypothesis is actually true. A researcher commits a type II

error when accepting (failing to reject) a false null

hypothesis. The probability of the type I error is usually

denoted as 0, whereas the probability of the type II error

is denoted as 6. Statistical power is defined as the

probability of rejecting a false null hypothesis, and is

denoted 1 - 6.

Educational researchers have tended to be more

concerned about type I errors than about type II errors. In

setting a, the researcher imagines the null hypothesis to be

true and then considers the risk of falsely rejecting Ho.

On the other hand, in considering power, the researcher

imagines the treatment to have ”the minimum effect size"

worth detecting and then considers the risk of falsely

accepting Ho. Researchers limit the probability of a type I

error by setting low a levels, such as .05, .01, etc. Given
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certain preset or fixed a levels, they then try to increase

power. For instance, they may increase sample sizes to

increase the statistical power (1 - B).

By setting low a levels rather than controlling the B

level, educational researchers are conservative about

accepting a new alternative hypothesis over an existing null

hypothesis. The existing null hypothesis will be retained

unless there is enough evidence against it. This

conservative attitude in considering new alternative

hypotheses in educational settings is often practical. It

reflects concern over possible extra time or extra cost if

changes are involved. Nevertheless, the tradeoff for a

conservative attitude is the increased possibility of making

a type II error.

This conservative attitude is reasonable in the context

of rejecting the null hypothesis, because rejecting a null

hypothesis does not cause a type II error. However, when

the null hypothesis is accepted (which sometimes results

from a ”conservative attitude"), one needs to have

reasonably high power in order to be comfortable that the

acceptance of the null hypothesis implies a small or non-

existent effect. Thus, apart from limiting the type I

error, a power analysis is always valuable in research

planning.

Empirical researchers often may not report the power of

their statistical tests for two reasons. First, the power
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functions of some tests are not available, and second, some

researchers do not emphasize the importance of power.

Importance t9 the Test of git

The type I error is of primary concern and is often

used as the criterion for decisions in statistical tests.

However, one needs to be as concerned or more concerned

about limiting the type II error when testing for fit.

The purpose of tests of "fit" is to test the hypothesis

that certain expectations about a distribution (under Ho)

are correct and that the obtained data are actually from the

population specified by the hypothetical model (Hays, 1981).

The difference between tests of fit and other tests is an

implied "attitude." In the ordinary test, researchers

usually accept Ho unless the treatment effect is

significantly large. Therefore, researchers limit a values

in ordinary tests. In the test of fit, one tends to accept

Ha unless the obtained data fit Ho. That is, the researcher

assumes the data do not fit and seeks evidence that they do

(i.e., seeks to accept Ho). Logically, one should limit 6

in the test of fit. If applying a "conservative attitude"

to the tests of fit, researchers should limit B rather than

a, because in the tests of fit, the conservative researcher

would rather "accept" Ha. Hence, to be consistent with a

"conservative attitude," one would emphasize statistical

power (1 - B) more in testing for fit than in ordinary

tests. Also, since the test of fit is usually a preliminary
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test to other tests, for one to proceed comfortably with the

assumption of data being "fit" the power of the test of fit

need to be high.

we 0 e e E fec -s'ze Meta-anal sis

The simplest homogeneity test in meta-analysis (Hedges

& Olkin, 1985) examines whether all the studies share a

common effect size. Unless the effect sizes are shown to be

homogeneous, they are treated as heterogeneous. Thus, the

homogeneity test can be viewed as a test of fit. A power

study for the homogeneity test is important because the

homogeneity test is a test of fit. An analysis of the power

of homogeneity tests in meta-analyses not only will aid our

understanding of how homogeneity tests relate to other meta-

analysis summaries, as suggested by Chang and Becker (1987)

but also is essential pg;_§g.

e o a wer tud

A power study can provide more understanding about the

homogeneity test. Practically, a power analysis can examine

how sensitive the test of homogeneity in meta-analysis is to

such important factors as the number of studies to be

integrated, sample sizes in each study, magnitudes of effect

sizes, and other factors. Thus, the examination of the

power of the homogeneity test is significant for both

theoretical and practical reasons. Based on the results of

this study, meta-analysts will be able to estimate the

statistical power of the homogeneity test prior to their
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analysis, recognize factors influencing the power of the

test, and when possible choose appropriate values for those

influencing factors which can be manipulated to maintain

reasonable levels of power in their applications. Even if

they are unable (or choose not) to manipulate factors,

researchers will at least be able to evaluate how much power

they can obtain, based on this power analysis.

Comparison to the unbalanced Analysis of Variance Case

Parallels can be drawn between research synthesis and

the analysis of variance (ANOVA). Hypothesis testing in

ANOVA involves certain assumptions: observations are random

samples drawn from normally distributed populations; the

numerator and denominator of the E ratio are independent and

(under Ho) estimate the same population variance , 01‘. In

ANOVA models, the total variation in scores is partitioned.

For example, the simplest ANOVA model partitions the total

variation into two parts, the between-groups variation and

the within-group variation. The ratio of the between-groups

variation to the within-group variation has an E-

distribution (under Ho) and is used to test, for example,

the hypothesis of equal group means‘in the one-way case.

As with the analysis of variance, there are two models

for the population parameters in meta-analysis: the fixed-

effects case, and the random-effects case. In the fixed-

effects case, the population effect sizes are assumed to be
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constants (or the variance of population effect size is

zero). By contrast in the random-effects case, the

population effect sizes are random variables. Therefore, in

the random-effects case, population effect-sizes have a

variance greater than zero.

In combining results, studies have been treated as a

blocking variable (Snedecor & Cochran, 1967; and Rosenthal,

1978) in ANOVA. When the studies are regarded as a random

factor and when the Treatment x Studies effect is large,

this interaction effect is used as the appropriate error

term. In the fixed-effects case for effect sizes, Hedges

and Olkin (1985) and others (e.g., Pigott, 1986) also have

drawn analogies between the effect-size meta-analysis and

the analysis of variance.

However, for combining studies, the homogeneity test

proposed by Hedges and Olkin is often more accurate than the

E based on the Treatment x Studies effect as an index of the

extent to which effect sizes vary across the groups. This

statement is true primarily because in combining studies,

the scales of measurement of the variables usually are not

the same across studies, whereas in ordinary ANOVA,

treatment groups within an experiment or study usually are

measured on the same scale.

Also, the assumption of the homogeneity of variance for

ANOVA is often violated when standard (unweighted) ANOVA is

applied to meta-analysis data. Studies in meta-analysis
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thus often cannot be treated as blocks in an ANOVA where the

assumption is that comparable measurements are used.

However, weighted ANOVA where scores are weighted by their

precision would be appropriate, or if all of the reviewed

studies measure the outcome variable on a single metric and

if sample sizes (gs) are same (i.e., if homogeneity of

variance exists) then one could use the "treatment x blocks

(studies)" ANOVA to examine whether different studies have

different treatment effects.

Caution needs to be taken in making homogeneity of

variance assumptions in meta-analysis. In combining

studies, the sample sizes of the studies are almost always

different across studies. When studies do have equal sample

sizes, one might treat the study effects as having equal

variances (which depend mainly on the sample sizes).

However, more realistically, most studies will not be based

on the same sample sizes, thus the homogeneity of variance

in combining studies cannot typically be assumed.

Therefore, Hedges and Olkin's homogeneity tests for effect-

size meta-analysis are often necessary, and usually more

accurate than 3 tests in ANOVA. The homogeneity test

proposed by Hedges and Olkin does not require the assumption

of homogeneity of variance across the effect sizes. And the

homogeneity test can be applied to studies with unequal

sample sizes.



CHAPTER II

STATEMENT OF THE PROBLEM

Power of the Statistical Test in Empirical Research

As Cohen (1962) indicated nearly three decades ago, the

power of statistical tests in empirical research is rarely

reported. This is still true today. Though many

researchers have recognized the importance of statistical

power, few estimate and report the power of statistical

tests in their studies. For example, a review of studies

for the last ten years in the qurnal pf Research in Science

Tgaching (1980-1990) shows that few researchers (less than

5%) report power based on their proposed treatment effects

or sample sizes.

Theoretically, the power of a statistical test to

detect some alternative hypotheses (versus a given null

hypothesis) should be computed before the initiation of a

study. Without information on power, the test's conclusion

may be questionable. When the power of a test is reasonably

high, the decision about the hypothesis is likely to be a

valid one. However, when the power of a test is low, the

decision about the hypothesis may be confounded and

confusing. Specifically, when the probability of rejecting

the null hypothesis is low, the null hypothesis may be

11



accepted because it is true or because of low power.

Tversky and Kahneman (1971) even suggested that research

studies can be wasteful, as the interpretation of results is

quite difficult with tests having low power.

Overall (1969) argued that when a test has low power,

the probability of rejecting the true null hypothesis (a)

may be only slightly smaller than the probability of

rejecting a false null hypothesis (1 — B). "As a

consequence, false rejections of valid null hypotheses may

constitute a large proportion of all significant results"

(Overall, 1969, p. 286).

As defined in Bayes' theorem, the ratio of the

probability of invalid rejection of Ho to the total

probability of rejecting Ho depends upon (1) the simple a

specified by the investigator, (2) the power of the test,

and (3) the a_pripp1 probability that the null hypothesis is

valid (Overall, 1969). With low power, and if "the a priori

probability of validity for the null hypothesis is .

substantial, an even larger proportion of significant

results may be due to chance" (Overall, 1969, p. 286).

Overall’s message supports the emphasis on the power

analysis of the homogeneity test in combining studies.

Powe o t e - s s

The test for homogeneity of effect sizes has been

suggested of having "excessively high statistical power

12
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(Hunter et al., 1982)". In detecting a true difference, the

concept of a test being "too powerful" is often not a

concern. A powerful test can have a problem when the false

rejection rate (or the type I error rate) exceeds the

nominal level. Alexander et al. (1989) examined the chi-

square test of homogeneity of effect sizes when the test is

applied to correlation coefficients. Their results showed

that the test on untransformed ps has excessively high Type

I error rates but the test performs nominally for Fisher’s

p-to-z transformation. However, the power of test for

homogeneity of effect sizes are yet to be studied.

As mentioned above, in meta-analysis the effect-size

analysis can involve two levels of statistical tests.

Before testing the magnitude of the average of the effect

sizes drawn from related studies, one typically examines

whether the studies share a common effect size. The

reviewer first tests the homogeneity of the effect sizes

drawn from various studies; and then tests if the common or

average effect shared by those studies is greater than zero.

Low statistical power from the first-stage homogeneity

test can also affect the second-stage test of the magnitude

of the common effect size. When power is low, the null

hypothesis for the homogeneity test tends to be accepted;

that is, the effect sizes from studies are assumed to be

homogeneous. The subsequent test for the magnitude of the

commop effect size may be wrong (or misleading) if the
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effect sizes were actually heterogeneous and this has not

been detected.

In the extreme case, if the power of the homogeneity

test is approximately zero, one would always falsely accept

the hypothesis that the effects are from the same population

(i.e., effects are homogeneous). Subsequent tests of effect

magnitude would be based on the avgpagg effect size, which

would be wrongly assumed to be the pommpp effect. The test

for the magnitude of the effect then will generally be too

lenient, and the concept of the ppmmpp effect is misleading.

By assuming that the test of fit has adequate power, the

researcher also assumes that subsequent tests will behave as

they should. Thus a power analysis for the test of fit in

meta-analysis has indirect benefits as well.

Another situation using two-stage testing involves the

homogeneity-of—variance test in analysis of variance.

Suppose the within-group variances 0’; are very different

from group to group. In this case, the standard ANOVA would

be unjustified. Here the researcher also goes through two

stages: (1) testing homogeneity of variance across the

groups; and (2) if homogeneity is retained, proceeding with

the ANOVA. Testing at stage 2 will only be valid if the H0

at stage 1 is true. In other words, the test at stage 2

will lack validity if the result in stage 1 is a type II

error, wherein the Ho of homogeneity is falsely retained.

A similar analogy is (1) testing the blocks by .
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treatment interaction in a two-way ANOVA design; and (2) if

the interaction effect is judged to be zero, one can either

(a) pool the interaction sum of squares into the error sum

of squares, or (b) form a one-way model with treatment

effect as the only factor by pooling sums of squares for

blocks and the interactions into the error sum of squares.

Fabian (1991) pointed out that to proceed as if the

interactions were zero after rejecting the zero-interaction

hypothesis may give incorrect decisions with a large

probability. Fabian further studied whether considering the

power of the test and obtaining information on the neglected

interactions can provide improved methods for obtaining "(1)

an interval estimate of one of the cell expectations, (2) a

simultaneous interval estimate of the cell expectations, and

(3) an estimate of the cell with the largest expectation"

(p.362). Fabian concluded that replacing the two-way model

by the one-way model is a better method.

In the effect-size meta-analyses, the goal is to

estimate the overall average treatment effects. The

procedures also differ from the ANOVA analogy. When effect

sizes are determined to be consistent, the variation between

the population effect sizes will too be ignored. However,

instead of pooling error sum of squares as in the ANOVA, the

fixed-effects model excluding the variation of population

effect-sizes will be applied. Power of the homogeneity test

is again important because one can examine whether similar
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recommendation to the two-way ANOVA with blocks design will

be made to the effect-size meta-analyses.



CHAPTER III

POWER OF HOMOGENEITY TESTS IN EFFECT-SIZE ANALYSES

In this section, notation and definitions are given for

the statistics used in this paper. Second, procedures are

outlined for effect-size meta-analyses for both fixed- and

random-effects models. And third, the power of the tests of

homogeneity in effect-size meta-analyses for both fixed- and

random-effects models is studied.

Definitipns apd uppapion

Population Effect Siza

Consider the 1th of a series of 3 studies each

comparing two groups. The population effect size for the

two groups within study 1 is defined as

61 = (pf - ui°)/ 0.. i = 1. z. (1)

where #13 and pic are the population means in the ith study

on some outcome variable X1! in the experimental and control

groups, respectively, and 01 is the common population

standard deviation for study i.

class’s Estimator of Effept Size

Glass’s estimator of effect size is often used in

integrative reviews. (Examples can be found in some reviews

17



in the Appendix.) Glass (1976) estimated the population

effect size by the aampla standardized mean difference. The

formula for Glass’s effect size for the 1th study of a set

of k studies is

Q. = (2;E ~‘2iC)/§;, (2)

where 2&3 and-21C are the sample means in the 1th study for

the experimental and control groups, and §i is the pooled

sample standard deviation from the usual two-sample p test

for experimental and control groups. We assume that XLE, i

= 1,..., piE, and 21°, i = 1,..., pic, are independent and

normal with means u;E and pic, respectively, and common

population variance 0&2. This is the usual t test

assumption.

U b sed s ma 0 o t e

Glass's estimator of the population effect size is

biased. Hedges (1981) obtained a corrected effect size a1,

which is the minimum variance unbiased estimator of 6;. The

unbiased estimator is approximately

9.; = 2(E1)Q‘ (3)

where,

m (E1) z 1 - 3/(431 - 1). and

_. E C_

The large-sample distribution of a1 tends towards

normality.' Hedges and Olkin noted (1985, p. 86) that if piE

18
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and pic increase at the same rate (that is, if niE/Ei and

paF/fli are fixed, where 31 is p13 + pic) then the asymptotic

distribution of a1 is normal with mean 61 and asymptotic

variance 02(gi). We may write

6; ~ N (6;. 02011)). (4)

where the variance of ai is approximated by,

02(51') = - i + i . (5)

' qun;° 2(niE + 21°)

  

A

The variance of ai, 02(ai), is estimated by 02(gi), a sample

estimate of 02(ai), where Q; is substituted for 61 in

formula (5). I do not use the notation 02(61) to denote the

variance of a1, to avoid confusion with 035 introduced

below. According to Hedges and Olkin (1985, p. 193; also

Hedges, 1983), the exact conditional variance 03(g1|6i) of

Q; is

a2<g_|6_i_) = Baa/EL + (a_ - 1) 62;. (6)

where £1_ = 2122; / (D._E + .11;C) I

a; = mi(C(mi))’ / (m; - 2).

and m; = n: + pic - 2,

and C(mi) is approximated as in (3).
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A 'ca ' ati 0 Power

Effact-size Analyses for Fixed-Effects Models

In this section, I review methods for effect-size meta-

analyses in the fixed-effects case. The procedures for

analysis and the statistical tests used are briefly

described. Full details are given in Hedges and Olkin

(1985).

H s s. In effect-size analyses, an estimate of

effect size is first calculated for each study using (2) and

(3) above. Combining these estimates, one can obtain an

overall estimate of effect size. Reviewers are usually

interested in testing the magnitude of the overall effect

size. Typically one tests the null hypothesis of no effect.

Hedges (1982) indicated that if the underlying

population effect sizes from a series of studies are not

identical, representing the results of a set of studies by a

single estimate of effect size can be misleading. Hedges

developed a two-stage testing procedure for effect-size

meta-analysis in the fixed-effects case. At the first

stage, one tests the homogeneity of the effect sizes from

all the collected studies, and decides if the studies share

a common population effect size. If the studies are not

homogeneous, the studies probably do not share a common

population effect size. The reviewer next may attempt to

"model" or describe the studies with categorical or

regression models using study features as factors or
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predictors or may decide to adopt a random-effects approach.

If the studies are homogeneous, one can test the hypothesis

that the magnitude of the common effect size equals zero at

the second stage of testing.

Hypotheses examined in the two-stage testing are:

H01: 61=62=...=61_{=6, and (7)

H02: 6 = 0. (7a)

Homogeneity test statistig. The statistic for the

homogeneity test of “01' proposed by Hedges and Olkin

(1985), is

; (91. - 9142 A

1‘- ‘ E - " X2<1r.-1)' (8)
1 l ‘

02 (s1;)

 

under H01, and where

 

51° = I (9)

II
M
W

>

0-2(91)

is the average of dis, weighted by the precision of each di.

Hedges and Olkin (1985, p. 112) noted that if the

sample sizes of the experimental and control groups in each

of the 1; studies, p13, ..., pkg, plc, ..., pkc, increase at

the same rates (as pig/Hi, Bic/Hi remain fixed, where H; is

the total sample size for study 1), then the null

distribution of a. tends to normality with a mean
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; 1

6. = , (10)

K

2 a'2<g;)
=1 -

and a variance

1

02m.) = . (11)

L -2

'3‘” (9i)

1=1

where 02(ai) is defined in (5).

When the hypothesis of homogeneity is retained, one

tests H02 by drawing a normal confidence interval around the

weighted average d., or by doing a a test since a. is

asymptotically normally distributed with a mean of the

common effect 6 (if all 6is equal 6, then 6. = 6), and a

variance of 03(g.).

Distribution of the homogeneity test for fixed-effects

models. As stated before, when the gis are asymptotically

normal, under the null hypothesis where the 3 studies share

a common effect size, then the homogeneity test statistic, H

has an approximate central chi-square distribution with (k-

1) degrees of freedom. When the 6is are not the same across

the 5 studies, H has an approximate noncentral chi-square

distribution with (k-l) degrees of freedom and a

noncentrality parameter
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r. (a - 5.):
2 i

.'_=1 may

 

, (12)

where 6. is the weighted mean of 6is shown in (10).

Iheorem. Let g1, ..., gk be defined as in (4) and the

homogeneity test g be defined as in (8). Then when Ho: 61 =

... = 63 = 6 is true, g ~ x3£_1, and when H0 is false 3 ~

x3311(k.) where k. is defined in (12).

2:99;: We observe g1, ..., g; independently, each with

a mean 6;, and a variance 02(g1), that is,

a; A

d = = ~ N3 (6. diagw’mi). 03(d3))). (13)

where 6 = (61, ..., 6k)'. We wish to test the hypotheses

Ho: 61 = 62 = ... - 6k = 6 versus (14)

H : At least one 61 is different, for i = 1, ..., g.

The null hypothesis can be rewritten in matrix form as

Ho: 6 = 63 (15)

for some constant 6, where 6 = (61, ..., 63)’, and J = (1,

..., 1)’. Let g; = g1/a(gi{ denote g1 weighted by its

precision (or, the inverse of its standard error), so that

the vector of £43 is normally distributed with a mean vector

of 618 weighted by these precisions, denoted as vector pa,

and with a variance matrix equal to the k x k identity ~

matrix, Ik. In matrix form,
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Qi/U(Q1)

,, = ; (16)

you...)

l/atgl) 0

. . . . . . A

= . . . . d ~ N [MEI IE]!

6 : . . .1202Q5)

where n! = («h/0&1): .... 65/0(d£))'- Let vector 30 =

(1/0(91): ---. 1/a(g£))'. Under the null hypothesis, uw =

6x0. The projection of vector v on x0 is

  

K

30"" .2 Ei/O(Qi)
~ ~ i=1

p(w|xo) = x0 = x0 (17)

” “ "30"2 " E ”

2 1/“’(Q1)

i=1 _

ll
M
I
N

Q/0’(Q)
1 i i

I
P
-

 

u
'
l
e

1/03(Qi)

1

where g. is defined in (9). The projection of vector w on

~

the entire space other than the space spanned by vector xo

is, by definition, the difference between the vector w and

~

its projection on vector :0:
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r 9-; w r 1 1 r _d_1 _ g. 1

w - p(w|xo) = -—————- - g. = ———————— .

~ ~ ~ C(94) 0(511) 0(g1)

d; .1 93 -' g.

_ a(d_) . . 0&5) J L 0(dg) J

(18)

The vector w - p(w|xo) has multivariate normal distribution

~ ~~

with a mean vector of (51 - 6.)/a(gi). The squared length

of the above vector is

E (Q; ' §-)3

llw - p(w|xo)lla = E . (19>

“ ~ ” 131 03(93)

 

which is asymptotically distributed as a noncentral chi-

square with (g - 1) degrees of freedom and a noncentrality

parameter, say A., where

(6; " 6.):

 . (20)>
’

H

I
P
-

II
[
‘
1
I
X

1 0’(Q;)

Under the null hypothesis where 6&5 are equal and A. is

zero, the 3 statistic is asymptotically distributed as a

central chi-square with (L - 1) degrees of freedom."

Effect-size Analyses for Random-Effects Models

Unlike the fixed-effects case where the population

effect sizes, the 6Ls (i.e., 61, ..., 6k)' are fixed

constants, in the random-effects case the 6&3 are sampled

from some population. Cronbach (1980) argued that in

educational research each treatment site (or study) may be a



26

sample from some universe of related sites rather than from

a single population. Under the random-effects model

variations in treatments are viewed as more or less

effective in producing an outcome. In other words, in the

random-effects model there is no "single" true (population)

effect. The true effects are from a distribution of effects

with some variance.

Since random-effects models assume that true values of

the effect sizes are sampled from a distribution, the

sources of variation in observed effects are at least two.

One is the variability in effect-size parameters in the

population distribution of effects. Another is the

variability in the estimator about the true parameter value

for a particular study (due to sampling error).

The simplest case of a random-effects model specifies

that d1, ..., d3 are conditionally normal. That is, each d;

given 6; is approximately normal for the ith study. The

distribution of 61 values is often assumed to be normal,

which implies that the unconditional distribution of Q; is

also normal. The unconditional distribution of g; is then:

.Qi ” N (“5: 035 + 02(gilai))’ (21)

where #5 is the expected value of the population effect-size

values, 035 is the variance of the population distribution

of effect sizes, and 02(gilsi) is the variance of the

conditional distribution of Q1 given 51' and is described in
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formula (5) and (6).

t se . The steps in testing for a random-effects

model are, first, to estimate the mean effect size "a (the

population mean of the 6s) and the variance 015 and, then,

to test the hypothesis that 035 is zero. If 035 = 0, then

no variation exists among the 6&8, that is, the conditional

variance of g1, 02(gilsé), equals the unconditional variance

of d;, 02(gi) in the fixed-effects model. A test of 036 = 0

in the random-effects model corresponds to a test for

homogeneity of effect sizes in the fixed-effects model.

Hence, the following two hypotheses are the same:

H0: 035 = 0, and (22)

Ho: 61 = 62 = ... = 6k = 6, for some 6.

omo e e't es at 'c. Under the above null

hypothesis that the population effect sizes have no

variation, the homogeneity test statistic is

 

x (g; - g.)= A

3+ =.2 "' X20571): (23)

i=1 *

03(QLI61)

where

, a'2(gilsi) g1

l=1

g+ = . (24)

A

 

K-2
.2 a- (gilsé)

i=1

The estimate of the variance is obtained by substituting d-
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for 61 in the asymptotic variance in (5).

Distribution of the homogeneity test for random-effects

models. The statistical power of the homogeneity test is

the probability of rejecting a null hypothesis when the

alternative hypothesis is true, that is, when the true

variance of the 6&5 is not zero. The distribution of the fl+

statistic under the alternative hypothesis is no longer a

central x2, as under the null hypothesis that 6és have no

variation. However, it is not a simple noncentral x2

distribution either. It is a combination of many noncentral

x2 distributions.

Theorem. Let g1, ..., gk be defined as in (21) and the

homogeneity test fi+ defined as in (23). Then when Ho: 053 =

O is true, EL ~ x3£_1, and when no is false fi+ is a

combination of many x4£r1(x.) variates where A. is defined

in (12).

m: Let a9; = V052 + a=(gi|s;), let x; = 911/09;

denote g; weighted by the square root of its precision, and

let vector u! = p6(1/091, ..., 1/093)' denote u5 weighted

similarly, so that the vector v of yis is normally

distributed with a mean vector uv, and with a variance equal

to the identity matrix, 13' In matrix form,

I
n

\

Q

Q P1

(25)

”
a
l
l

o
n

o
n

n
o

\

Q

Q '
5
‘
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where IL is an identity of dimension 5. Let vector to =

(1/091. ..., 1/ap£)'. Under the null hypothesis that 052 =

0, vector to equals vector :0 (as defined in the proof for

the fixed-effects model), and vector v is vector w in

formula (16) for the fixed-effects model. Thus, under the

null hypothesis, the projection of vector v on to in the

random-effects model equals the projection of vector w on xo

~ ~

in fixed-effects:

p(VIto) = pWIxo) = doxo. (26)

and

v - p(v|to) = w - p(w|xo). (27)

~~ ~~

The squared length of the difference between vector v and

~

its projection on to is thus distributed as a central chi

squared with (K - 1) degrees of freedom under 30 as was E in

the fixed-effects case."

However, the nonnull distributions of 3+ for random-

effects models differ from that of a for fixed-effects. For

fixed-effects models, the distribution of a under the

alternative hypothesis is a noncentral chi-squared

distribution. In random-effects models, the probability

that fl+ S h given the 6&3 is an average over k dimensions:
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E5[P(fl+ S h|61, ..., 53)] = P(E+ S 11): (23)

for 6 = (61, ..., 63). For each possible 6 vector from the

population of 618, H; has a xakr1(k.) distribution with

noncentrality parameter A. as in (12):

PUi-q- S DIG-1.! 0": 65) = P(X2_)s-1()\°) S 11.)] = F01; 9(5)):

(29)

where F is the cumulative density function of 5+, and g(6)

is the noncentrality parameter A. for the noncentral X2k-1

distribution. Thus

Ei[P(H+ S hl‘;r °--o 55)] = E£[F(h; 9(i))]- (30)

We can also write:

Ei[F(hi 9(3))1 = S "' 5 F(hi 9(3)) Elf) §fr (31)

where 1(6) is the normal density function of the 615. The

power of the random-effects homogeneity test is

1 - P (.11. s n) = 1 -S S Fm; 9(6)) 2(6) d6. (32)

No simple form of the distribution of 5+ under the

alternative in the random-effects case can be written.



CHAPTER IV

SIMULATION OF THE DISTRIBUTIONS OF THE STATISTICS

FOR POWER UNDER FIXED- OR RANDOM-EFFECTS MODELS

In this Chapter the asymptotic distributions of the

homogeneity statistics 3 and 3+ (for fixed- and random-

effects models) are compared to numerical simulations of

those distributions. Specifically, differences between

cumulative density functions of chi-squared distributions

(with A. 2 O) and simulated cumulative density functions for

n and 5+ are examined. Confidence intervals are drawn for

the differences at the 95% level. The parameters varied in

the simulation include (1) the significance criterion (a

level), (2) the noncentrality parameter of the chi-square

density (the degree to which H0 is false), (3) the number of

effect sizes (5), and (4) the sample sizes (g). It is known

that, other things being equal, power increases as sample

size increases. The same relationship exists between the

power and the effect size, and between power and a levels.

Earameters of the Simulation Study

An empirical study of published reviews suggested

values for the parameters of the simulation study.

Practical ranges for variables in the simulation were

31
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designed by reviewing a random sample of twenty published

meta-analyses (see Appendix E). Many of these twenty meta-

analyses did not report sufficient information on the

original studies they reviewed to inform the selection of

variable values for the simulation. Therefore, I examined

about 40 more reviews in Review of Educational Research from

the middle of 1985 to the beginning of 1990 (volumes §§(2)

through §2(3)).

Factors examined included the following: the number of

studies (or number of independent effect sizes), 3; the

magnitude of effect sizes (g1), the sample variance of

simulated effect sizes (S35), the sample size of the

experimental group for each study ;, giE; and the sample

size of the control group for each study 1, pic. From these

factors values of the population effect sizes, 6;; the

variances of population effects, 035; and the significance

level, a; were chosen for the simulation.

Humber of Effect Sizes

In contrast to previously examined reviews (Becker,

1985), the reviews examined here tended to include more

studies, that is, to have larger 3 values. Of reviews that

reported information about individual studies, approximately

one fourth included more than one hundred studies, and about

one fourth analyzed fewer than twenty. One tenth of the

reviews contained fewer than ten studies. Very rarely, the

homogeneity test was applied to only two studies (3 = 2).
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Although the 3 values (numbers of studies) were generally

quite large in this set of reviews, power studies have often

been performed assuming small numbers of studies. For this

reason, a broader range of 3 values (3 = 2, 5, 10, and 30)

was selected for this power study.

a Si 5

Based on the empirical study, study sample sizes (a =

231/3, 1 = 1, ..., L) of 20 (e.g., 10 in each experimental

or control group), 60, 120 and 200 were selected. In

empirical reviews, studies rarely have equal sample sizes.

The sample-size values in the simulation were determined by

the total sample size across studies (3), the total sample

sizes of each study (3;, 1 = 1, ..., K), the sampling

fractions (n; = 31/3, 1 = 1, ..., 5), and the ratio of the

size of the experimental group over the total sample size of

a study (¢_1_ = niE/Qi' i = 1, ..., 15).

For example, in the case of g = 2, with a series sample

size of E = 40, with sampling fractions («1, #2) = (.5, .5)

and (.3, .7), and within-study sampling fractions (o1, ¢2) =

(.5, .5) and (.35, .35), the simulation will include the

sets of parameters described below.

Sampling fraction (”1' ”2) = (.5, .5) indicated that

studies had equal sample sizes, that is, (31,,32) = (20,

20). Two values of within-study sampling fractions

determined the sample sizes for two sets of samples. For

(o1, ¢2) = (.5, .5), samples were equal within studies. For



34

(o1, ¢2) = (.35, .35), the ratio of the sample sizes of the

experimental group over the total sample size within each

study was 0.35 (and was the same across studies.

Symbolically,

("1: ”2) = ('5: '5) => (£1.11 32) = (20: 20)

Then,

(th, 4:2) = (.5, .5) => 1113 = me = 10 and £23 = gzc = 10.

And for (o1, ¢2) = (.35, .35), then

£13 = 7, 31° = 13 and 1123 = 7, 94° = 13.

Thus the combination of fixed values of H and (n1, "2), with

the pair of (o1, ¢2) values produced two sets of sample

sizes for the simulation.

Unequal sampling fractions such as ("1, «2) = (.3, .7)

indicated that some studies had larger sample sizes than

others. In this example, the ratios of the study sample

sizes over the total of the sample sizes for the two studies

were 0.3 or 0.7. Thus for E = 40, (31, £2) = (12, 28). The

two values of within-study sampling fractions again

determined the within-study sample sizes. Sampling

fractions used within studies (o1, oz) = (.5, .5) or (.35,

.35) were the same as outlined above. Thus

("1: 7'2) = (.3, .7) => (21. £2) = (12: 23)

Then,

(401. ¢2) = (-S. .5) => 2113 = 21° = 6 and 22E = 122° = 14-
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And for (o1, ¢2) = (.35, .35), then

3313 = 4, 31° = 8 and £23 = 10, n2(3 = 18.

The values of E, 51' Hi, and ¢i were selected based on my

empirical study of reviews. Total sample sizes across 3

studies with average sample size n = 2n;/L were u = 3*3,

205, 603, 1203, or 2003. Sampling fractions were the ratios

of the sample sizes of each study to the total sample size

across studies. Sampling fractions differed for each x and

are listed in Table 1. Two values of the sampling fraction

within studies were selected: 0.5, or 0.35. That is,

experimental and control sample sizes were either balanced

(¢i = 0.5) or unbalanced (¢1 = 0.35) within studies.

Specific numbers used for the simulation are listed in Table

62 in Appendix B.

Table 1

Sampling Fractions for Power Study

 

 

3 (HI, ..., wk)

2 (.5 .5) (.3 -7)

5 (.2 .2 .2 .2 .2) (.15 .2 .2 .2 .25)

10 (.1 .1 .1 .1 .1 .1 .1 .1 .1 .1)

(.05 .06 .07 .07 .08 .08 .09 .1 .15 .25)

30 (.03 .03 .03 .03 .03 .03 .03 .03 .03 .03

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03)

(.007 .01 .01 .01 .013 .02 .02 .02 .02 .02

.02 .023 .023 .023 .027 .027 .027 .027 .037 .037

.037 .04 .04 .047 .056 .056 .056 .067 .067 .113)
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ula 'on e S' es

In the homogeneity test, the alternative hypothesis

that "at least ooe population effect size differs" is a

composite hypothesis. The number and complexity of possible

alternative hypotheses makes the power study difficult.

However, by examining past reviews, I have selected sets of

typical values for 61’ The conditions depicted include (1)

the null hypothesis, where all the estimates of effect sizes

share a common population parameter (6), and (2) several

alternative hypotheses, where at least one sampled effect

size arises from a different population.

For example, the empirical reviews showed that effect

sizes often vary from study to study. Thus, a typical

pattern of the effect sizes shows a set of 61 values that

differ slightly from each other. Other possible sets of 6;

values are also suggested by the empirical study. One

larger 6; value with (k - 1) smaller 61 values is of

interest (Becker, 1985). The pattern of two larger 6;

values will also be studied when k 2 10. Another pattern of

interest is one in which the 51 values are more evenly

distributed, for example, having equal value within three or

five equal subsets, but differing between subsets.

For the fixed-effects model, five patterns of 6:5 were

designed: (1) all equal to zero, (2) 61 = ... = 6k_1== 0

and one nonzero value 63 (taking values 0, 0.1, 0.25, 0.5,

0.75, and 1.0), (3) 61 = ... = 6k_2 = 0 and two nonzero 6is
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(6£_11and 6;) (for k 2 10), (4) three equal subsets of 6;s

in which one subset contains zeros, and studies in the other

two subsets share nonzero values 6 and 26, respectively, and

(5) five equal subsets of 6‘s where, again, one subset

contains zeros, and the other four subsets have nonzero

values (of %6, 6, 1&6, 26). The patterns of population

effects used were:

(1) (o, ..., 0),

(2) (O, ..., 0, 6),

(3) (0, ..., 0, 6, 6),

(4) (0, ..., 0, 6, ..., 6, 26, ..., 26), and

(5) (o ,..., 0, k6, ..., 25, 6,..., a, 126,..., 1%6,

26,.., 26).

The population effect sizes used for the fixed-effects

models are listed in Tables 63 to 66 in Appendix B.

Var' e 0 on cts

Values of the variance of the population effect sizes

(036) in the random-effects models were also suggested

through the empirical study. Variance values selected for

the random-effects models are 0.01, 0.03, 0.05, 0.07, 0.09,

and 0.1.

Design of the Simulation Study

Combinations of the variables outlined above formed 992

patterns of simulation parameter values for fixed-effects

models and about 2400 combinations for random-effects
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models. The probability distribution of the homogeneity

statistic was simulated for each combination of variables.

Simulated distributions were compared with the corresponding

asymptotic distribution at fifteen percentile points (1-a):

0.05, 0.10(0.10)0.90 (i.e., from 0.10 to 0.90 with increment

Of 0.10), 0.95, 0.975, 0.99, 0.995, and 0.999. That is,

14880 simulated and theoretical power values were obtained

from 992 combinations of parameters for fixed-effects

models.

The simulation followed these procedures:

Case I. 035 = 0, for fixed-effects models:

A. Generate 2000 replications (see rationale in

Appendix A) of normal and chi-square deviates

and compute 3 effect sizes (d1, ..., g3) for

each combination of the parameters presented

in Table 1.

8. Calculate the homogeneity statistic E from the

5 generated effect sizes for each of the 2000

replications. Computations for steps A, and B

were done for each replication.

C. Compute proportions of a values (from the 2000

replications) that fall beyond central x3

critical values at fifteen significance levels

(a).

D. Compare proportions of significant n

statistics at 15 a levels from step C to the
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probabilities based on the approximate

noncentral chi-squared distribution at each

significance (a) level.

Case II. 035 = 0.01(0.02)0.09, 0.10, for random-effects

models:

A. Generate 2000 replications of 62s (l = 1, ...,

L) from normal deviates and given sets of (pa,

035) values.

B. Calculate the noncentrality parameter A. from

each vector of 618. Randomly select a value

of 3+ from the noncentral chi-squared

distribution based on A.. As in Case I,

computations for steps A, and B were done for

each replication.

C. Compute proportions of 5+ values (from the

2000 replications) beyond central chi-squared

critical values (xza).

D. Compare proportions of significant 3+

statistics at various significance levels (a)

to the probabilities based on the calculated

power values from formula (29) in Chapter III

at page 24.

Attention is drawn below to the difference between

simulated and theoretical power in cases involving extreme

values, especially small values of 618, ks, and us. The

strength and nature of the relationships between power and
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the simulation parameters are examined.

Qomoutation for Simulated Distributions

Simulations were conducted using FORTRAN programs and

the resulting data were analyzed through the SPSS-X and §A§

statistical packages. FORTRAN programs were written by the

author. The accuracy of the programs and subroutines was

assumed by inspection of initial detailed printouts of

results on individual iterations. For small numbers of

iterations, results of the simulation were listed and

checked by hand calculation.

Fixed-effects Models

Sample effect-sizes were obtained from noncentral ;

statistics, computed using normal deviates and chi-squared

random numbers generated by IMSL subroutines DRNNOR and

RNCHI. Note that g is exactly a noncentral t statistic even

though its asymptotically normal. Glass’s estimator of the

effect size has a t distribution. The formula used for the

unbiased effect size estimator was 91 = {1 - [3/(4(oinfiof3

 

- 9H} * 1;. where t; = {‘1 + [0/(2F+ 111°) mimic) *

zi]}/(V§;7df , 21 is a normal deviate, and 91 is a chi-

squared random value. fl statistics were calculated from

those effect sizes using FORTRAN programs. For each given

set of population effect sizes (61s) and a combination of

other simulation parameters, 2000 replications of g

statistics formed a simulated distribution. Upper tail
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probability values from the simulated distributions were

compared with upper tail probabilities of noncentral chi-

squared distributions (provided by IMSL subroutine CSNDF) at

15 percentile points. Power values were calculated as the

proportions of 3 statistics exceeding critical values at the

15 significance levels.

Raodom-effects Models

In random-effects models, population effect sizes (625)

were not fixed values; rather, they were assumed to vary

randomly around one grand mean M5- In the simulation, sets

of population effect sizes 61s were generated from normal

distributions through IMSL subroutine DRNNOR with a given

mean, #5. and variance 035. From one set of means and

variances, 2000 replications of 6;s were generated. For

each set of 61s, a noncentrality parameter A. was calculated

to obtain probability values from a noncentral chi-squared

distribution using IMSL subroutine CSNDF. A homogeneity

test statistic (3+) was drawn randomly from each noncentral

chi-squared distribution to form a set of 2000 H+s. I did

not generate 91' ..., 92 to calculate fl+ because results of

g from the fixed-effects models showed that noncentral

x=(x.) based on the asymptotic theory approximates well for

the distributions of n for large sample sizes. Simulated

power values were calculated as the proportions of 3+ values

exceeding various percentile points from the central chi-

squared distribution (null distribution) through subroutine
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CHIIN. Simulated power values were compared with these

obtained from an average of 2000 noncentral chi-squared

probabilities.

Test for the goodness of fit was used to examine the

accuracy of the theoretical distributions to the simulated

distributions. Patterns of power of homogeneity test were

studied. Power values were tabulated.

Test for Goodness of Flt

A slight modification of the Kolmogorov-Smirnov one-

sample test (Massey, 1956) was used to test the goodness of

fit between the asymptotic distribution and the simulated

distribution of g. The Kolmogorov-Smirnov test focuses on

the largest of the deviations between two distributions one

of which is an empirical distribution based on 3

observations. The maximum deviation, denoted as Q:

Q = maximum IEOQC) - SEQUI (33)

where

£0 = the theoretical cumulative distribution,

!b(X) the proportion of values equal to or less than

X. and

§R(z) the observed cumulative step-function of g

observations, r/B, where z is the number of

observations equal to or less than 1.

An approximate critical value for Q at the 0.05 level is

1.36/\/§ if g > 35 (Massey, 1956).
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For each combination of various values of N, k, and the

pattern of effect-sizes of the simulated distribution,

fifteen proportions (simulated power values) were compared

to fifteen noncentral chi-squared tail areas. Thus the

empirical power function could be considered to have been

observed on B = 15 occasions. Since the 15 measured

proportions slightly differed from the §B(z) in the formula

for o, the statistic can be called 12*. When 3 = 15, the

Kolmogorov-Smirnov critical value for goodness of fit is

0.338 at a = 0.05 (Massey, 1956). The critical value of

0.338 was lenient, and no significant differences were found

for 3 = 15. However, since there were 2000 3 statistics and

sets of probability values (3 = 2000), the critical value

for Q' to reject the goodness of fit was revised to 0.030.

Though only 15 differences (out of a possible of 2000 based

on all available probabilities) were observed, the use of R

= 2000 should provide a more conservative measure of

differences between the two functions than the critical

value for B = 15.

B§§El§§

owe ' or an 'es 0 ed- ts ode s

For fixed-effects models the simulated power values

generally tended to be greater than theoretical power

values. The averages of differences between the theoretical

and simulated power values at a = 0.05 for each 3 and N were
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Table 2 shows the results of paired t tests on

the difference (theoretical power - simulated power) for

each total sample size (3) and number of effect sizes (3).

These tests of the mean differences gave general information

about the two power values for each sample group within 3.

Both values of o and the mean differences indicated that the

discrepancy between theoretical and simulated power values

increased as 3 increased or 3 decreased.

Table 2

Paired 5 Test between Theoretical and simulated Power for

 

 

 

Fixed-effects Model (a = 0.05)

3 3 Mean Diff . * Sd Se Paired t _d_f p_

2 203 0.0001 0.008 0.002 0.06 23 0.950

603 -0.0004 0.008 0.002 -0.24 23 0.816

1203 -0.0010 0.010 0.002 -0.48 23 0.632

2003 0.0013 0.007 0.001 0.94 23 0.359

5 203 -0.0163 0.008 0.001 -14.57 47 0.000*

603 -0.0062 0.010 0.002 -4.13 47 0.000*

1203 -0.0040 0.008 0.001 -3.67 47 0.001*

2003 -0.0011 0.008 0.001 -0.88 47 0.382

10 203 -0.0277 0.010 0.001 -26.04 87 0.000*

603 -0.0091 0.010 0.001 -8.39 87 0.000*

1203 -0.0043 0.008 0.001 -4.89 87 0.000*

2003 -0.0013 0.008 0.001 -1.49 87 0.141

30 203 -0.0592 0.021 0.002 -26.90 87 0.000*

603 -0.0139 0.015 0.002 -8.82 87 0.000*

1203 -0.0060 0.011 0.001 -4.94 87 0.000*

2003 -0.0035 0.009 0.001 -3.82 87 0.000*

Note: * o 5 0.001, positive mean difference indicates
 

theoretical power > simulated power.
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Data was further examined using the modified

Kolmogorov-Smirnov test to detect significant discrepancies

between theoretical and simulated power functions. The

criterion for a "significant discrepancy" is 0.030, derived

from formula (33). Again, significant discrepancies

increased as the number of effect sizes (3) increased. A

frequency table of the significant discrepancies

crosstabulated by 3 is in Table 3, where the difference 2

stands for theoretical power values minus simulated power

 

 

 

values.

Table 3

Crosstabulation of Discrepancies by 3

number of effoct sizes (3)

Discrepancy 2 5 10 30 Total

Q < -0.030 0 19 81 125 225

0% 10% 23% 36% 23%

-0.030 S D 5 0.030 94 171 268 227 760

Q > 0.030 2 2 3 0 7

1%

Total 96 192 352 352 992

 

x’ = 82-9909 (d_f -- 6, p < 0.00001)

Since only 7 of 992 (less than 0.7%) distributions had

higher theoretical power values, the following analyses will

ignore the sign and focus on the frequency of the

significant discrepancies. More detailed information on
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differences between simulated and theoretical power values

is summarized below according to the following factors:

total sample size (3), number of effect-sizes (3), sampling

fractions (Hi), sample ratios (¢i)' patterns of effect-sizes

(four patterns of fixed effect-size parameters), variation

in effect-sizes.

u e o fec s' es . The chi-squared test for

independence between "number of effect-sizes 3 (2, 5, 10,

30)" and the "significant discrepancy (yes or no)" was

significant (69.8485, o; = 3, p < .00001). Data in Table 4

indicated that discrepancies occurred the most for 3 = 30,

and the least (or almost never) for 3 = 2. However, as

shown in Tables 63 to 66 in the Appendix B, the values of

the effect-size parameters differ for different 3 values.

Table 4

Crosstabulation of Significant Discrepancies by 3

Number of Effeot-sigeo (k)

 

 

 

Significant

Discrepancy 3 = 2 3 = 5 3 = 10 3 = 30 Total

Yes 2 21 84 125 232

0% 11% 24% 36% 23%

NO 94 171 268 227 760

Total 96 192 352 352 992

 

x3 = 69.8485 (o: = 3, o < 0.00001)
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For 3 = 2, possible conditions were the null case (all 65

were zeros) and one extreme value case. For 3 = 5, one

additional condition showed three equal subsets of parameter

effects. Only 3 = 10, and 3 = 30 contained all possible

conditions: the null case, the one-extreme-value case, the

two-extreme-values case, three equal subsets of parameter

effects, and five equal subsets of effects. Comparisons of

results for different 3 values overlook other important

factors such as pattern of 6&5. Further analysis for each 3

value was necessary and is described below.

gaggle sizes ( ). Discrepancies between simulated and

asymptotic distributions happened more often for small

sample sizes (3) with larger 3 values. The chi-squared

value to test for the dependence between "total sample size

3 (with values 203, 603, 1203, 2003)" and "significant

discrepancy (yes or no)" is 260.7375 (of = 3, p < 0.00001).

Data in Table 5 indicated that the discrepancies occurred

the most for the smallest 3 and the least for the largest 3.

In other words, when total sample sizes were small,

especially for 3 = 203, simulated distributions showed

higher power values than theoretical distributions. The

asymptotic power fitted much better with effect size

calculated from samples of 120 (60 in each experimental or

control group) or greater.

For each value of 3, the discrepancies between the

simulated and asymptotic distributions were consistently
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smaller for larger 3s. For 3 = 2, simulated and theoretical

distributions fitted well. Only 2 out of 96 combinations

had significant discrepancies and they are not mentioned

further. Chi-square tests for the independence of "total

sample sizes" and a "significant discrepancies" within each

3 were as follows: for 3 = 5, x3 = 0.16 (g; = 3, p =

0.984); for 3 = 10, x’ = 100.95 (5;;= = 3, p < 0.00001),- and

for 3 = 30, x3= 223.43 (g; = 3, o < 0.00001). Complete

information is listed in Table 6.

Table 5

Crosstabulation of Significant Discrepancies by Sample Size

 

Iotal Sample Size

 

 

Significant

Discrepancy 203 603 1203 2003 Iotal

Yes 149 46 23 14 232

60% 18% 9% 7% 23%

NO 99 202 225 234 760

77%

Total 248 248 248 248 992

 

X3 = 260.7375 (3; = 3, Q < 0.00001)

These results suggested that simulated distributions

with large sample sizes (3) fitted better with the

calculated noncentral chi-squared distributions which

demonstrated the concept of the "asymptotic" distributions

(for large samples). Discrepancies occurred more with small
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samples. Results for each 3 showed that the differences

among sample sizes were stronger as 3 increased. When 3

increased, small total sample sizes 3 were composed of more

small (within-study) samples.

Table 6

Crosstabulation of Significant Discrepancies by 3 and 3

 

ota Sam e e

Significant

Discrepancy 3; 203 3= 603 3=1203 3=2003 Total

 

 

 

 

 

 

3=5

Yes 5 6 5 5 21

10% 13% 10% 10% 11%

No 43 42 43 43 171

x33 = 0.16 (p = 0.984) 192

3 = 10

Yes 55 16 9 4 84

63% 18% 10% 5% 24%

No 33 72 79 84 268

x33 = 100.95 (p < 0.00001) 352

3 = 30

Yes 88 24 8 5 125

100% 27% 9% 6% 36%

No 0 64 80 83 277

x33 = 223.43 (p < 0.00001) 352

 

§amoling fzaogions (111‘ Discrepancies between

simulated and calculated power values did not depend on the

"pattern of sample sizes" designated by sampling fractions
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(Hi). The sets of sampling fractions included were either

balanced or unbalanced. When sample sizes were the same for

all effect sizes, sample sizes were considered balanced.

Unbalanced sample sizes were designed according to the

sampling fractions obtained from the empirical study

discussed in the beginning of Chapter IV and listed in Table

62 in Appendix B.

Discrepancies between simulated and theoretical power

values did not depend on sampling fractions. The test of

independence chi-squared value between "significant

discrepancy", and "sampling fraction" was 3.80 (g; = 1, o =

0.051). Frequencies of discrepancies are listed in Table 7.

Table 7

Crosstabulation of Significant Discrepancies by I;

 

 

 

Sampling_£rastign_21

Significant

Discrepancy Balanced Unbalanced Total

Yes 129 (26%) 103 (21%) 232 (23%)

No 367 393 760 (77%)

Total 496 496 992

 

x31 = 3.80 (o = 0.051)

However, as noted in the description of the unbalanced

sample sizes pattern, large effects were only accompanied

with large samples. Results were not completely independent
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(as also indicated by the observed significant level of 0.05

for the chi-square test); simulated values for unbalanced

samples across studies tended to be higher than the

theoretical values. Detailed information for each value of

3 is listed in Table 8.

Table 8

Crosstabulation of Significant Discrepancies by I; and 3

 

Sampling Fraction n1

 

 

 

 

 

 

Significant

Discrepancy Balanced Unbalanced Total

3 = 5

Yes 11 (12%) 10 (10%) 21 (11%)

NO 85 86 171

x31 = 0.054 (p = 0.817) 192

3 = 10

Yes 50 (28%) 34 (19%) 84 (24%)

NO 126 142 268

x”; = 4.003 (p = 0.045) 352

3 = 30

Yes 68 (39%) 57 (32%) 125 (36%)

NO 108 119 227

x21 = 1.501 (p = 0.22) 352

 

Sample ratios (@11- Discrepancies between theoretical

and simulated power did not depend on the ratios ¢i of p; to

the total sample size within a study. The chi-squared value

for "significant discrepancy" and "sample ratio (0.5 or
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0.35)" was 0.563 (3: = 1, p = 0.453). Results are listed in

Table 9. This result was consistent within each 3 value.

Proportions of the significant discrepancies for each 3 are

listed in Table 10.

Table 9

Crosstabulation of Significant Discrepancies by ¢i

 

Sample Ratio oi

 

 

Significant

Discrepancy 313/3; = 0.5 pig/p; = 0.35 Total

Yes 121 (24%) 111 (22%) 232 (23%)

No 375 385 760 (77%)

Total 496 496 992

 

Table 10

Crosstabulation of Significant Discrepancies by ¢i and 3

 

ngple Ratio 91

 

Significant

Discrepancy 3 Biz/Hi = 0.5 gin/11; = 0.35 Total

Yes 5 13 (14%) 8 ( 8%) 21 (11%)

10 41 (23%) 43 (24%) 84 (24%)

30 65 (37%) 60 (34%) 125 (36%)
 

Eatterns of effecL-sigo pargmepops. In the simulation,

the non-null effect-size parameters were designed with four

patterns: (1) one distinct value with other values being

zero, (2) two distinct values with others being zero, (3)
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three subsets with values equal within each subset but

different across subsets, and one subset contained zeros,

and (4) five subsets with values equal within but different

across subsets, and one subset contained zeros. Significant

discrepancies between simulated and theoretical values

depended on the pattern of effect sizes.

The chi-square test for the independence of

"significant discrepancy (yes or no)" and "pattern of

effect-sizes" was 24.03 (g; = 4, p < .0001). As listed in

Table 11, discrepancies occurred more when population

effects had one or two extreme values. Simulated values

were higher than theoretical power values when one or two

extreme parameter values existed.

Table 11

Crosstabulation of Significant Discrepancies

by Pattern of 61s

Egttern of Effieot-SlZe Parameteps

Significant Zero One Two Three Five Total

Discrepancy Effects Extreme Extremes Subsets Subsets

 

 

 

Yes 8 86 54 47 37 232

13% 27% 34% 16% 23% 23%

NO 56 234 106 241 123 760

Total 64 320 160 288 160 992

 

x34 = 24.031 (p < 0.0001)

As was true in the context of other factors, when total

sample size 3 increased, the pattern of effect-sizes was
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less relevant in introducing discrepancies. However,

significant discrepancies still occurred more when extreme

population effects existed than when effects sizes were more

evenly distributed even with large sample sizes. When the

number of effects 3 increased, the discrepancies between

sample sizes or patterns of effect sizes also increased.

Results for each 3 value are listed in Table 12. Detailed

information on power discrepancies and pattern of effect-

sizes for each 3 by 3 combination is listed in Table 13.

Table 12

Crosstabulation of Significant Discrepancies

by Pattern of 61s and 3

 

 

 

 

 

 

Significant Zero One Two Three Five Total

Discrepancy Effects Extreme Extremes Subsets Subsets

3=5

Yes 0 17 - 4 - 21

21% 4% 11%

No 16 63 - 92 - 171

x33 = 15.217 (p < 0.001) 192

3 = 10

Yes 3 28 21 16 16 84

19% 35% 26% 17% 20% 24%

No 13 52 59 80 64 268

X34 = 9.336 (p = 0.053) 352

3 = 30

Yes 5 39 33 27 21 125

31% 49% 41% 28% 26% 36%

No 11 41 47 69 59 227

 

x’4 = 12.683 (p < 0.013) 352
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Table 13

Crosstabulation of Significant Discrepancies

by Pattern of 61s, 3, and 3

 

nggegp of Effiecp-size Parameters

3*p Zero One Two Three Five Total

Effects Extreme Extremes Subsets Subsets % Count

 

 

5(20) 0 15% - 8% - 10% ( 5)

5(60) 0 20% - 8% - 13% ( 6)

5(120) 0 25% - 0 - 10% ( 5)

5(200) 0 25% - 0 - 10% ( 5)

21/192 = 11%

10(20) 50% 65% 65% 58% 65% 63% ( 55)

10(60) 25% 35% 25% 4% 10% 18% ( 16)

10(120) 0 25% 15% 0 5% 10% ( 9)

10(200) 0 15% 0 4% 0 5% ( 4)

84/352 = 24%

30(20) 100% 100% 100% 100% 100% 100% ( 88)

30(60) 25% 55% 40% 13% 5% 27% ( 24)

30(120) 0 20% 20% 0 0 9% ( 8)

30(200) 0 20% 5% 0 0 6% ( 5)

125/352 = 36%

Total 232/992 = 23%

 

When there were many studies with small sample sizes,

discrepancies between the asymptotic and the simulated

distributions increased. As described above, discrepancies

occurred most often when the set of parameters had one

extreme value. In fact, that when 3 = 30 and p = 10, almost

half of the measured percentile points of each simulated
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distribution were significantly higher than those of the

theoretical distribution (these values are not tabled).

Simulation data repeatedly indicated that when effect—sizes

were from many studies (e.g., 3 = 30) all having small

sample sizes (e.g., p = 20), the homogeneity test produced

greater simulated power values than the asymptotic theory.

The discrepancies between the asymptotic and simulated

distributions became insignificant as sample sizes

increased.

Further analyses of power discrepancies examined the

magnitudes of the discrepancies. Of the 14880 measures (992

combinations x 15 percentiles) 986 had significant

discrepancies: 978 were negative, where theoretical values

were lower than simulated values; and 8 theoretical values

were higher than the simulated values. The frequency

distribution of the 986 significant differences (theoretical

values - simulated values) was negatively skewed in a range

from -0.15 to 0.04 with a mean of -0.051, a mode of -0.035

(333 cases, or 33.8% showed this modal discrepancy), and a

standard deviation of 0.02. Figure 4.1.0 is a frequency

table showing the absolute values of these discrepancies.

A paired 3 test showed that overall theoretical values

were lower than simulated power by an average of -0.008 (p =

-46.40, p < 0.0001, for 14,880 records). For the 986

absolute values of significant discrepancies, about one

third (34%) ranged from 0.03 to 0.04, more than one half
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had values less than 0.05, and almost all (99%) had

values less than 0.10.

Figure 4.1.0

Frequencies of Absolute Significant Discrepancies

 

Count Value “

333 .03-.04 ***************************************id”:

223 ,04—,05 ****************************

146 .05,—.05 ******************

114 .06—,07 **************

37 .07-,03 ***********

45 .08-.O9 ******

26 .09-.10 ***

6 .10-.11 *

2 .11-.12

0 .12-.13

3 .13-.14

0 .14-.15

1 .15-.16

----- +----+----+----+----+----+-—--+----+----+—---+

986 0 80 160 240 320 360

As discussed above, discrepancies occurred the most

often for large k, small 3, and extreme parameter effect

sizes. The magnitudes of the discrepancies also appeared to

be greater for these described conditions. Mean

discrepancies for pattern of population effects, number of

effects 3, and sample sizes are listed in Table 14. The

mean significant discrepancy for 3 = 30 and p = 20 was

around 0.058 (for 594 records).



58

 

Table 14

Means of Significant Discrepancies by Pattern of 61s,

El '3‘ L -

at e f t-s‘ze arameters

3*pi Zero One Two Three Five Total

Effects Extreme Extremes Subsets Subsets

 

2(20) - .031( 1) - - - .031( 1)

2(60) - ' ( 0) '- ‘ ' ‘- ( 0)

2(120) - ,031( 1) - - - .031( 1)

2(200) - - 0) - - - - ( 0)

5(20) - .037( 6) - .037( 5) - .037( 11)

5(60) - .044(15) - 1033( 2) - .035( 17)

5(120) - .042( 6) - - ( 0) - .042( 6)

5(200) - .036( 8) - - ( 0) - .036( 8)

10(20) .038(8) .040(47) .036(34) .036(33) .038(38) .038(160)

10(60) .031(1) .044(24) .043(15) .036( 1) .038( 3) .043( 44)

10(120) - (0) .046(10) .041( 4) — ( 0) .033( 1) .040( 15)

10(200) - (0) .035( 8) - ( 0) ,033( 1) - ( 0) .028( 9)

30(20) .052(28).058(134).058(140).058(151).057(141).057(594)

30(60) .036(2) .048( 43).054( 28).033( 4) .038( 1) .049( 78)

30(120) - (0) .063( 15).049( 10) — ( 0) - ( 0) .058( 25)

30(200) - (0) .050( 15).033( 2) - ( 0) - ( 0) .048( 17)

 

* Underlining indicates average theoretical power was

higher. Numbers in parentheses are counts pf dofferemces.

333333y. Simulated distributions tended to have fatter

upper tails than noncentral chi-squared distributions.

Simulated distributions fitted quite well to noncentral chi-

squared distributions when studies had large sample sizes or

evenly distributed effects. Discrepancies occurred the most

often and were largest when a review included many studies

(large 3) with small sample sizes, or when studies had

extreme parameter effects.

In other words, homogeneity tests were more sensitive
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than indicated by theory for data with small sample sizes or

with extreme parameter effects. The non-central chi-squared

distributions based on the asymptotic theory were useful for

data with large samples and evenly distributed parameter

effects. Using the asymptotic theory to obtain power for

homogeneity test would give conservative power estimates for

data with small samples or non-normal population effects.

In his paper, Bangert-Drowns (1986) questioned the use

of the homogeneity test due to the lack of understanding of

the behavior of statistics for small or nonnormal samples.

Simulation data indicated that simulated a values for

homogeneous population effects approximately equaled the

preset significance levels. Only for large collections of

small samples was the size of the test significantly greater

than 0.05. As shown in Table 11, when 3 = 30 and average

within-study sample size 3 = 20, simulated sizes and power

values were consistently higher than theoretical values.

Also simulated sizes were around 0.10 (0.05 higher than the

nominal level) for p = 20 and 3 = 30 (Table 11). Under the

null hypothesis, these higher values indicate an inflated

rate of false rejections (type I error).

When effects were not homogeneous (i.e., under

alternative hypotheses), higher simulated power for small

samples and extreme parameter effects was not problematic.

In these cases (1) heterogeneity should be detected (since

H0 is false), and (2) simulated power values were not much
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higher than the asymptotic power values. Asymptotic power

underestimated the power of the homogeneity test for extreme

parameter effects and small samples.

Powe; leozepanoles ip 3andom-effieots Mogels

Results (patterns of discrepancies) were similar across

different population effect-size means, ”5, of 0, 0.1, 0.25,

or 0.5. Table 15 demonstrates the results of paired 3 tests

for each 3, showing the differences in theoretical and

simulated power values.

Table 15

Paired 3 Test between Theoretical and Simulated Power for

Random-effects Model

 

 

 

3 p5 Mean Diff.* Sd Se Paired 3 g: p

2 0.00 0.0003 0.008 0.000 1.64 2399 0.102

0.10 0.0002 0.008 0.000 1.07 2399 0.287

0.25 0.0000 0.008 0.000 0.09 2399 0.931

0.50 -0.0000 0.008 0.000 -0.06 2399 0.950

5 0.00 -0.0002 0.007 0.000 -1.14 2399 0.253

0.10 -0.0004 0.007 0.000 -2.53 2399 0.012*

0.25 0.0001 0.007 0.000 0.83 2399 0.405

0.50 0.0003 0.008 0.000 1.90 2399 0.058

10 0.00 -0.0000 0.006 0.000 -0.08 2399 0.933

0.10 0.0002 0.007 0.000 1.37 2399 0.172

0.25 -0.0001 0.007 0.000 -0.58 2399 0.559

0.50 -0.0006 0.006 0.000 -4.75 2399 0.000#

30 0.00 -0.0003 0.007 0.000 -1.90 1919 0.057

0.10 0.0006 0.007 0.000 3.76 1919 0.000#

0.25 0.0002 0.007 0.000 1.28 1919 0.202

0.50 -0.0003 0.007 0.000 -2.00 1919 0.046*

3o3o: * p < 0.05, f p < 0.001, positive mean difference

indicates theoretical power > simulated power.
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For 3 = 2, none of the paired 3 tests showed significance at

the 0.05 level. For 3 = 5 and 10, one average difference

was significant. For 3 = 30, one group was found

significant and another barely significant. The mean

differences were very small. Statistical significance was

largely due to the large degrees of freedom and small

standard error values. These gverago differences would not

be consequential for our interpretation of theoretical power

values.

The modified Kolmogorov-Smirnov one-sample test was

again used to determine the goodness of fit between the

asymptotic power functions and the simulated power

functions. As in the fixed-effects case, the number of

replications used in random-effects was 2000. Thus the

maximum deviation, D, from formula (30) was again 0.030.

Only 20 of 2688 (0.07%) distributions had significant

discrepancies. For 3 = 2, 9 of 640 (1.4%) distributions had

significant discrepancies. For 3 = 5, 6 of 640 (1%)

distributions had significant discrepancies. For 3 = 10, 2

of 640 (0.3%) combinations had significant discrepancies.

And for 3 = 30, 4 of 512 (0.8%) combinations had significant

discrepancies. Frequencies of power discrepancies are

listed in Table 16..

Significant discrepancies occurred less than 1 out of

100 times. Their occurrence was dependent upon 3, the

number of effect-sizes (test of association, x33 = 14.898, p
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< 0.005). Significant discrepancies did not depend on

sample sizes 3 (x33 = 4.861, p < 0.25). No significant

association (x39 = 10.18, p < 0.40) was found between the

number of effect—sizes (3) and sample sizes (3) and

occurrence of significant power discrepancies. In other

words, the dependence of power discrepancies on sample sizes

3 did not vary with 3. Significant discrepancies occurred

the most often for 3 = 2; however, the occurrence rate was

still less than 1.5%.

Table 16

Frequency Table for Significant Discrepancies

for Random-effects Model

 

 

 

3 3 pa Total Total

for for

0.00 0.10 0.25 0.50 3 3

2 1 - - 2 1 3

2 - - 2 - 2

3 1 1 1 - 3

4 - - 1 - 1 9

5 1 1 - 1 3

2 - - - - 0

3 - - - 1 1

4 - 1 1 - 2 6

10 1 - 1 - - 1

2 - - - - 0

3 - - - - 0

4 - 1 - - 1 2

30 1 - 1 - - 1

2 - 1 - - 1

3 - - - - 0

4 - 1 - - 1 3

 

N 0Total 2 7 8 3 20

 



63

The magnitude of significant power discrepancies for

random-effects models was examined. Significant

discrepancies occurred for 28 out of 36,480 (0.8%) measures.

Unlike for the fixed-effects models where simulated power

values were sometimes higher than theoretical power values;

for random-effects models, a strong two-thirds (9/28) of the

discrepancies reflected lower simulated power values. The

mean of the 28 significant values was 0.009 (3 = 1.48, p >

.05). The 3 statistic indicated that the mean did not

differ significantly from zero. In other words, theoretical

power values were not consistently either higher or lower on

average than simulated power values.

The occurrence rates as well as the magnitudes of

significant discrepancies differed for random- and fixed-

effects models. The dissimilarity may have resulted

partially from the fact that population effect-sizes in the

random-effects models were all normally distributed, unlike

the cases examined for fixed-effects models. Also, the 3+

statistics were generated from asymptotic noncentral chi-

squared distributions in the random-effects models. Results

from the fixed-effects case had indicated that the

theoretical power functions approximated well the simulated

functions when sample size was large. However, simulated

power values in the random-effects simulations may still be

underestimating the true power for small samples and large 3

values. Simulation data did not indicate a many differences
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between simulated and theoretical power values; therefore,

the analysis of power for random-effects models will focus

on the theoretical values.

Powe na sis

Power values at a = 0.05 were selected for analysis.

Factors for the power analysis included: the number of

effect sizes 3 (2, 5, 10, 30), total sample sizes 3 (203,

603, 1203, 2003), sampling fractions a; (balanced vs.

unbalanced sample sizes 3333333 studies), sample ratios o;

(balanced vs. unbalanced sample sizes wlthin studies), and

patterns of effect size parameters. Relations between power

and these factors were studied through analysis of variance,

regression, correlation and curve fitting.

Eixed-ofifoc3s model. Power values for the homogeneity

test were positively related to the variance of simulated

effects, sample sizes 3, and number of effects 3. However,

since these variables were not directly (or linearly)

related to power, correlation coefficients representing the

relationships appeared weak. For the fixed-effects model,

the correlation coefficient 3(power, 3) was 0.15 (p =

0.001), and 3(power,‘V3) was 0.16. Between power and total

sample size 3, the correlation coefficient 3(power, 3) was

0.38 (p < 0.001), and 3(power,‘V30 was 0.43. The

relationship between power and the spread among population

effects was greater, 3(power, §?5) was 0.47 (p < 0.001), and
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3(power, 36) was 0.641. The relations between sampling

fraction or sample ratio and power were not significant.

The correlation coefficient 3(power, n) was 0.05 (p = 0.14)

and 3(power, ¢) was -0.02 (p = 0.44).

A regression analysis of the power values used a

stepwise procedure. The particular stepwise procedure

selected predictor variables in the order of the amount of

the variation (change in 33) in power values being explained

by the predictor. The variable representing the pattern of

6is was not continuous thus was not entered as a predictor

variable. As expected, the weighted average of parameter

effects, 6. (as in formula (9) in Chapter III, page 17), and

the spread of 6&8, 35, increased linearly within each

pattern of 6is. The combination of 6. and 36 contained

information about the pattern of 6&5. Therefore, 6. and 35

were entered into the regression as predictor variables

instead. The association between the pattern of 618 and

power was also studied below via analysis of variance.

The predictor variable first selected in the regression

model was the index of spread among parameter effects 35

(multiple 3 = 0.64, 32 = 0.41, 21,990 = 678.49, p < 0.0001,

for 992 cases). Total sample size with square root/Vfifwas

next to be included in the model with 3 increased to 0.83,

32 = 0.69, 132 change -- 0.28, and £2,939 = 1105.84 (p <

 

1 In the fixed-effects case, 835 represents the distance

between fixed 61 values.
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0.0001). The third predictor included in the regression

model was the square root of 3,‘V3f(3 = 0.84, 33 = 0.70, R2

change = 0.01, 33,988 = 765.44, p < 0.0001). Sampling

fraction between studies (n: 1 = balanced, 2 = unbalanced)

had a very small effect, however, was also selected into the

model last (3 = 0.84, 33 = 0.70, 33 change = .002). The

final regression model for combination of parameters j for

the fixed-effects model is listed below:

£92223 = -0.252 + 1.839 (g5)j + 0.012 «4% +

(-0.032) x/Ej + 0.035 nj. (34)

As predicted the spread in 61s explained much variation

in power. Total sample size was also important. Number of

effects 3 had a smaller effect, since 3 = 3*p had already

partially taken into account the effect of 3.

Analysis of variance was also conducted for power with

number of effects, sample sizes, sampling fraction, sample

ratio, and pattern of parameters as factors for the fixed-

effects model. Results are listed in Table 17.

The power of 3 was explained most by sample size and

the pattern of 6&3. Sampling fraction and sample ratio were

again not influential on the power of 3. This result seems

reasonable since effect sizes for homogeneity test were

weighted by their precision which is nearly proportional to

the sample sizes (see formula (5), and (9) in Chapter III at

page 15, and 16). And the power of homogeneity test should
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depend on whether effect sizes were similar. Changes in

sample sizes combined with values of 61s should affect the

power of the homogeneity test. Thus the total sample sizes

increased differences among the effects sizes were also

emphasized. However, the regression model seemed better

than the ANOVA model in explaining the variation of power.

The amount explained by the ANOVA model was around 31% which

was much less than the amount explained by the regression

model (70%).

Table 17

Analysis of Variance for Power of 3

 

 

Source of Sum of Amt. g3 Mean F p

Variation Squares Exp. Squares

Main Effect 39.031 (31%) 11 3.548 38.255 .000

k 1.642 ( 1%) 3 .547 5.900 .001

Sample size 33.706 (27%) 3 11.235 121.131 .000

Sampling fraction .316 ( 0%) 1 .316 3.408 .065

Sample ratio .088 ( 0%) 1 .088 .944 .331

Pattern of 615 2.250 ( 2%) 3 .750 8.087 .000

Residual 84.963 (69%) 916 .093

Total 123.994 927 .134

 

Average power values at a = 0.05 were calculated. For

fixed-effects, the grand mean power was 0.44 (across 992

cases) with a standard deviation of 0.37. Too much

information is aggregated in the grand mean; thus this value

has little practical meaning. Further categorization of the

data was necessary. Mean power values for each pattern of



615 and total sample size are listed in Table 18.

Table 18

Means of Theoretical Power of 3 by Pattern of 6&3,

3, and 3 (c = 0.05)

 

Patterp of Etfec3-sige Parameters

 

3*3 Zero One Two Three Five Total

Effects Extreme Extremes Subsets Subsets

2(20) .050(4) .146(20) - - - .1300( 24)

2(60) .050(4) .315(20) - - - .2708( 24)

2(120) .050(4) .470(20) - - - .4003( 24)

2(200) .050(4) .571(20) - - - .4844( 24)

5(20) .050(4) .143(20) - .125(24) - .1259( 48)

5(60) .050(4) .337(20) - .301(24) - .2951( 48)

5(120) .050(4) .500(20) - .496(24) - .4606( 48)

5(200) .050(4) .596(20) - .641(24) - .5732( 48)

10(20) .050(4) .154(20) .189(20).171(24) .158(20) .1630( 88)

10(60) .050(4) .360(20) .460(20).432(24) .409(20) .3992( 88)

10(120).050(4) .515(20) .595(20).636(24) .606(20) .5657( 88)

10(200).050(4) .607(20) .669(20).765(24) .718(20) .6640( 88)

30(20) .050(4) .134(20) .196(20).296(24) .256(20) .2140( 88)

30(60) .050(4) .315(20) .430(20).624(24) .566(20) .4705( 88)

30(120).050(4) .462(20) .573(20).797(24) .723(20) .6191( 88)

30(200).050(4) .564(20) .651(20).870(24) .808(20) .6992( 88)

 

Simulated power values were slightly higher, the grand

mean was 0.45 (992 cases) with a standard deviation of 0.36.

Means of simulated power values for each pattern of 6is by

total sample size are listed in Table 19.
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Table 19

Simulated Power of g by Pattern of Sis,

g, and L (c = 0.05)

 

Zero

Effects

3*3

a

One

Extreme Extremes

rno

Two Three

Subsets

Five

Subsets

ffect-size Parameters

Total

 

2(20)

2(60)

2(120)

2(200)

.049(4)

.053(4)

.050(4)

.045(4)

5(20)

5(60)

5(120)

5(200)

.058(4)

.os4(4)

.os1(4)

.055(4)

10(20) .078(4)

10(60) .053(4)

10(120).055(4)

10(200).054(4)

30(20) .100(4)

30(60) .062(4)

30(120).055(4)

30(200).051(4)

.146(20)

.315(20)

.471(20)

.571(20)

.159(20)

.348(20)

.504(20)

.598(20)

.184(20)

.373(20)

.521(20)

.610(20)

.194(20)

.337(20)

.477(20)

.574(20)

.217(20)

.470(20)

.601(20)

.671(20)

.257(20)

.449(20)

.582(20)

.651(20)

.142(24)

.304(24) -

.501(24) -

.641(24) -

.196(24).186(20)

.439(24).415(20)

.638(24).609(20)

.764(24).718(20)

.354(24).306(20)

.631(24).576(20)

.796(24).726(20)

.871(24).811(20)

.1300(

.2711(

.4012(

.4830(

.1421(

.3013(

.4646(

.5742(

.1908(

.4082(

.5699(

.6651(

.2732(

.4844(

.6251(

.7027(

24)

24)

24)

24)

48)

48)

43)

48)

88)

88)

88)

88)

88)

88)

88)

88)

 

When all effects were zero (homogeneous), the simulated

power was higher than expected a levels, especially for

small samples (e.g., n = 20).

= 0.10, 0.025, and 0.01 are also listed in Table 20.

Simulated power values for a



Table 20

 

 

Means of Simulated Power of g by Homogeneous 81s,

a, and x (8 = 0

3*3 0.10 0.05 0.025 0.01

2(20) .092 (4) .049 (4) .026 (4) .014

2(60) .104 (4) .053 (4) .025 (4) .009

2(120) .100 (4) .050 (4) .026 (4) .011

2(200) .096 (4) .045 (4) .023 (4) .009

5(20) .113 (4) .058 (4) .033 (4) .015 (4)

5(60) .103 (4) .054 (4) .027 (4) .011 (4)

5(120) .101 (4) .051 (4) .025 (4) .010 (4)

5(200) .101 (4) .055 (4) .028 (4) .012 (4)

10(20) .132 (4) .078 (4) .047 (4) .025 (4)

10(60) .110 (4) .058 (4) .030 (4) .013 (4)

10(120) .103 (4) .055 (4) .029 (4) .014 (4)

10(200) .105 (4) .054 (4) .030 (4) .012 (4)

30(20) .160 (4) .100 (4) .066 (4) .038 (4)

30(60) .118 (4) .062 (4) .034 (4) .017 (4)

30(120) .105 (4) .055 (4) .027 (4) .012 (4)

30(200) .103 (4) .051 (4) .025 (4) .010 (4)

 

Analysis of variance (ANOVA) was applied to power

values for each pattern of sis.

mean value or the spread of the population effects

Within each pattern, as the

increased, the power of the homogeneity test increased.

Sample size was again a significant factor. Tables 21 to 28

list the ANOVA results and mean power values for each

pattern of Sis.



Table 21

ANOVA on Power of g for 81s with One Extreme Value
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Source of Sum of g; Mean E 9

Variation Squares Squares

Main Effect 31.780 10 3.178 307.305 .000

L .079 3 .026 2.529 .058

3 8.874 3 2.958 285.771 .000

Magnitude of 518 22.828 4 5.707 551.361 .000

Two-way Interactions 4.658 33 .141 13.637 .000

L x E .014 9 .002 .153 .998

K x 6 .044 12 .004 .353 .978

H x 6 4.600 12 .383 37.043 .000

Three-way Interactions .051 36 .001 .137 1.00

Residual 2.484 240 .010

Total 38.973 319 .133

Table 22

Means of Power of g for 6 s with One Extreme Value

by g and 5 a = 0.05)

3*3 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .053(4) .066(4) .114(4) .195(4) .304(4) .1300(20)

2(60) .058(4) .097(4) .246(4) .472(4) .702(4) .2708(20)

2(120) .065(4) .148(4) .436(4) .762(4) .940(4) .4003(20)

2(200) .075(4) .215(4) .640(4) .930(4) .995(4) .4844(20)

5(20) .052(4) .063(4) .106(4) .187(4) .305(4) .1426(20)

5(60) .056(4) .092(4) .247(4) .515(4) .775(4) .3370(20)

5(120) .063(4) .141(4) .475(4) .843(4) .979(4) .5000(20)

5(200) .071(4) .213(4) .720(4) .976(4) .999(4) .5960(20)

10(20) .052(4) .063(4) .110(4) .203(4) .342(4) .1540(20)

10(60) .056(4) .094(4) .276(4) .572(4) .801(4) .3597(20)

10(120).063(4) .149(4) .532(4) .856(4) .973(4) .5146(20)

10(200).072(4) .235(4) .759(4) .970(4) .999(4) .6070(20)

30(20) .051(4) .060(4) .096(4) .172(4) .294(4) .1346(20)

30(60) .055(4) .083(4) .236(4) .503(4) .698(4) .3148(20)

30(120).059(4) .127(4) .468(4) .749(4) .906(4) .4621(20)

30(200).066(4) .199(4) .663(4) .901(4) .990(4) .5639(20)
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Table 22.a

Means of Simulated Power of! for 6 s with One Extreme Value

by )1 and1;(c =‘D. 05)

3*3 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .056(4) .074(4) .115(4) .189(4) .297(4) .1461(20)

2(60) .056(4) .091(4) .248(4) .472(4) .707(4) .3147(20)

2(120) .066(4) .150(4) .438(4) .759(4) .945(4) .4714(20)

2(200) .075(4) .214(4) .638(4) .933(4) .993(4) .5706(20)

5(20) .068(4) .075(4) .120(4) .202(4) .330(4) .1589(20)

5(60) .060(4) .097(4) .247(4) .534(4) .801(4) .3477(20)

5(120) .066(4) .143(4) .477(4) .850(4) .985(4) .5041(20)

5(200) .067(4) .209(4) .733(4) .979(4) 1.000(4) .5978(20)

10(20) .078(4) .089(4) .138(4) .232(4) .383(4) .1843(20)

10(60) .061(4) .103(4) .286(4) .588(4) .827(4) .3732(20)

10(120).065(4) .154(4) .540(4) .864(4) .983(4) .5210(20)

10(200).070(4) .235(4) .771(4) .976(4) .999(4) .6104(20)

30(20) .111(4) .113(4) .152(4) .234(4) .366(4) .1950(20)

30(60) .069(4) .091(4) .258(4) .533(4) .735(4) .3370(20)

30(120).060(4) .139(4) .486(4) .767(4) .934(4) .4771(20)

30(200).070(4) .211(4) .676(4) .919(4) .994(4) .5742(20)

Table 23

ANOVA on Power of g for 8;s with Two Extreme Values

 

 

Source of Sum of g; Mean 3 9

Variation Squares Squares

Main Effect 19.994 8 2.499 236.143 .000

3 .010 1 .010 .948 .332

3 5.067 3 1.689 159.576 .000

Magnitude of 618 14.918 4 3.729 352.367 .000

Two-way Interactions 2.419 19 .127 12.028 .000

3 x H .008 3 .003 .238 .869

K x 6 .009 4 .002 .223 .925

H x 6 2.402 12 .200 18.910 .000

Three-way Interactions .016 12 .001 .126 1.00

Residual 1.270 120 .011

Total 23.699 159 .149
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Table 24

Means of Power of g for 6is with Two Extreme Values

by g and L (a = 0.05)

 

 

 

5*; 6 = 0.10 0.25 0.50 0.75 1.00 Total

10(20) .053(4) .069(4) .142(4) .290(4) .393(4) .1892(20)

10(60) .059(4) .116(4) .397(4) .773(4) .954(4) .4598(20)

10(120).069(4) .203(4) .729(4) .977(4) .999(4) .5954(20)

10(200).083(4) .336(4) .928(4) .999(4) 1.000(4) .6690(20)

30(20) .052(4) .066(4) .129(4) .269(4) .465(4) .1961(20)

30(60) .057(4) .106(4) .375(4) .715(4) .897(4) .4301(20)

30(120).065(4) .187(4) .679(4) .937(4) .997(4) .5731(20)

30(200).077(4) .315(4) .867(4) .996(4) 1.000(4) .6509(20)

H2L§= The pattern of 6 values with two extreme values was

(0, or 5v 6 0

Table 24.a

Means of Simulated Power of g for 6 s with Two Extreme

Values by g and 5 (a = 0.05)

 

 

 

3*; 6 = 0.10 0.25 0.50 0.75 1.00 Total

10(20) .080(4) .098(4) .166(4) .320(4) .423(4) .2175(20)

10(60) .063(4) .125(4) .412(4) .783(4) .966(4) .4698(20)

10(120).074(4) .210(4) .738(4) .984(4) 1.000(4) .6009(20)

10(200).084(4) .350(4) .924(4) 1.000(4) 1.000(4) .6714(20)

30(20) .105(4) .122(4) .188(4) .332(4) .536(4) .2557(20)

30(60) .068(4) .119(4) .400(4) .733(4) .924(4) .4488(20)

30(120).072(4) .201(4) .688(4) .949(4) .998(4) .5816(20)

30(200).075(4) .307(4) .877(4) .996(4) 1.000(4) .6512(20)

Note: The pattern of 6 values with two extreme values was

(0. 0, 6, 6 .
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Table 25

ANOVA on Power of n for Three Equal Subsets of 61s

 

 

 

 

 

 

Source of Sum of g; Mean E 2

Variation Squares Squares

Main Effect 32.018 10 3.202 4347.081 .000

3 3.160 2 1.580 2145.030 .000

3 13.005 3 4.335 5885.632 .000

Magnitude of 63 15.853 5 3.171 4304.771 .000

Two-way Interactions 3.023 31 .098 132.419 .000

3 x g .195 6 .032 44.052 .000

g x 6 .450 10 .045 61.113 .000

n x 6 2.379 15 .159 215.303 .000

Three-way Interactions 1.221 30 .041 55.255 .000

Residual .159 216 .001

Total 36.421 287 .127

Table 26

Means of Power for Three Equal Subsets of 6is

by E and 3 (c = 0.05)

5*3 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .056 .076 .092 .112 .168 .243 .1245(24)

5(60) .070 .138 .141 .272 .463 .666 .3010(24)

5(120) .091 .247 .376 .524 .795 .944 .4962(24)

5(200) .122 .401 .596 .772 .960 .997 .6414(24)

10(20) .059 .088 .114 .147 .244 .377 .1714(24)

10(60) .078 .190 .293 .423 .705 .902 .4319(24)

10(120) .112 .379 .584 .774 .968 .998 .6359(24)

10(200) .163 .621 .846 .960 .999 1.000 .6691(24)

30(20) .064 .120 .174 .249 .463 .704 .2958(24)

30(60) .100 .347 .559 .766 .973 .999 .6240(24)

30(120) .169 .705 .917 .988 1.000 1.000 .7965(24)

30(200) .285 .938 .996 1.000 1.000 1.000 .8699(24)

flgtg: The pattern of three equal subsets of 6; values was

(0,000, 0: 6,000, 6’ 26,000, 26).
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Table 26.a

Means of Simulated Power of g for Three Equal Subsets of 6is

by H and L (c = 0.05)

 

 

3*3 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .069 .092 .106 .136 .184 .266 .1421(24)

5(60) .076 .144 .199 .279 .460 .665 .3038(24)

5(120) .092 .252 .381 .529 .801 .949 .5006(24)

5(200) .120 .404 .595 .770 .962 .996 .6412(24)

10(20) .080 .118 .138 .169 .269 .405 .1964(24)

10(60) .080 .202 .307 .405 .705 .907 .4388(24)

10(120) .121 .379 .590 .769 .970 .998 .6381(24)

10(200) .153 .627 .843 .960 .999 1.000 .7637(24)

30(20) .123 .189 .248 .324 .511 .728 .3541(24)

30(60) .115 .360 .573 .767 .973 .998 .63ll(24)

30(120) .171 .701 .920 .985 1.000 1.000 .7961(24)

30(200) .285 .938 .996 1.000 1.000 1.000 .8699(24)

 

note: The pattern of three equal subsets of 61 values was

(0,..., 0, 6,..., 6, 26,..., 26).

Table 27

ANOVA on Power of g for Five Equal Subsets of 61s

 

 

Source of Sum of 6; Mean 2 9

Variation Squares Squares

Main Effect 18.832 8 2.354 2997.240 .000

K .437 1 .437 556.972 .000

3 7.590 3 2.530 3221.503 .000

Magnitude of 618 10.804 4 2.701 3439.109 .000

Two-way Interactions 1.994 19 .105 133.602 .000

3 x H .057 3 .019 23.998 .000

L x 6 .162 4 .040 51.549 .000

Q X 6 1.775 12 .148 188.353 .000

Three-way Interactions .291 12 .024 30.846 .000

Residual .094 120 .001

Total 21.210 159 .133
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Table 28

Means of Power of g for live Equal Subsets of 81s

 

 

 

by M and g (a = 0.05)

3*; 86 = 0.10 0.20 0.30 .40 0.50 Total

10(20) .057(4) .082(4) .129(4) .207(4) .317(4) .1585(20)

10(60) .073(4) .164(4) .355(4) .614(4) .835(4) .4086(20)

10(120) .101(4) .318(4) .686(4) .932(4) .994(4) .6060(20)

10(200) .313(4) .532(4) .917(4) .997(4) 1.000(4) .7519(20)

30(20) .061(4) .100(4) .187(4) .339(4) .542(4) .2458(20)

30(60) .086(4) .254(4) .604(4) .899(4) .990(4) .5664(20)

30(120) .133(4) .542(4) .941(4) .999(4) 1.000(4) .7231(20)

30(200) .211(4) .830(4) .998(4) 1.000(4) 1.000(4) .8078(20)

flgtg: The pattern of five equal subsets of 6 values was

(0'000'0' %6'00 0'%6’ 6,000, 6' 1%6'000’1 6' 26,000 ,26).

 

 

 

Table 28.a

Means of Simulated Power for 6is with Five Equal Subsets

by N by k (c: 0. 05)

3*3 k6 = 0.10 0.20 0.30 0.40 0.50 Total

10(20) .081(4) .108(4) .162(4) .237(4) .343(4) .1863(20)

10(60) .078(4) .177(4) .357(4) .623(4) .842(4) .4154(20)

10(120) .106(4) .321(4) .691(4) .933(4) .994(4) .6090(20)

10(200) .318(4) .531(4) .915(4) .997(4) 1.000(4) .7523(20)

30(20) .120(4) .167(4) .251(4) .400(4) .589(4) .3056(20)

30(60) .105(4) .267(4) .613(4) .903(4) .989(4) .5757(20)

30(120) .140(4) .547(4) .942(4) .999(4) 1.000(4) .7256(20)

30(200) .221(4) .837(4) .999(4) 1.000(4) 1.000(4) .8113(20)

Note: The pattern of five equal subsets of 6 values was
 

(0,...,0, $56,...,356, 5, 000' 6' 1%8'000'1 6' 26,000 ,26).



77

The main effect of h and the two-way interaction

effects of K by u, and k by 6 were not significant for the

one-extreme-value case or the two-extreme-values case.

Power values did not vary with 3 when population effects had

extreme values. However these effects were significant for

the three-equal-subsets and the five-equal-subsets patters.

Power values increased faster with large 3.

Random-effects model. Correlation coefficients were

also obtained for power of g, and number of effects, total

sample sizes, variance of parameter effects, sampling

fraction, and sample ratio for the random-effects model. In

comparison to the fixed-effects model, the relationships

between power and the first three variables were stronger

for the random-effects model; {(power, 3) was 0.29 (p <

0.001), r(power,‘vgb was 0.34, {(power, H) was 0.43 (p <

0.001), r(power,‘VE) was 0.53, g(power, 035) = 0.48 (p <

0.001), and 1(power, 05) was 0.55 for random-effects.

Correlations were not significant between power and the

sampling fraction (g(power, n) was -0.24, p = 0.54), or

between power and the sample ratio ¢ (g(power, ¢) was 0.02,

p = 0.64).

Regression analysis with a stepwise procedure was also

applied to the power of 3+. For random-effects, instead of

the predicted 6. (weighted average of 61s) and $5 (the index

of spread among the fixed 61s), the standard variation of

parameter effects (05) was included in the regression
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analysis. For p5 = 0.00, the stepwise procedure also

selected the standard deviation of parameter effects 05 as

the most important predictor for power of fi+ (B = 0.55, 33 =

0.30, £1,990 = 261.97, p < 0.0001). The second predictor

included in the regression was the square root of the total

sample size‘Vfi (B = 0.87, 33 = 0.76, 33 change = 0.46,

22,989 = 943.18, p < 0.0001) . Only two predictors were

selected for the random-effects model, however, the

variation explained by the model reached 76%. For #5 =

0.10, 0.25, and 0.50 results were similar to the case of #5

- 0.00, the final regression model was:"
1
1

O '
1

T
:

o
n

I

(-0.326) + 1.557 (0‘5)j + 0.013 Vfij. (35)5

Results indicated that the power of 3+ depended upon the

variation of effects 05 and the total sample size in the

random-effects model. It appeared that 3 had no effect,

however, since u = 3*n, the total sample size had already

taken into account the effect of L.

The grand mean power value for u5 = 0.00 was 0.41 with

a standard deviation of 0.31. Mean power values for random-

effects increased as the variance of population effects or

the sample sizes increased. Mean power values according to

the variance of parameter effects for random-effects with #5

= 0.00 are listed in Table 29.

Asymptotic and simulated power values were calculated
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.05; k = 2, 5, 10, 30;and power curves drawn for a = and fl

= 203, 603, 1203, 2003 for fixed-effects models in Figures

4.1.1 to 4.4.2 in the Appendix D. For random-effects

models, power values were calculated with pa = 0, 0.10,

0.25, 0.50; and 053 = 0.01(0.02)0.9, 0.10. See Figures

4.5.1 to 4.8.4 in the Appendix D. Power tables for other 0

levels are also listed in the Appendix C.

Table 29

Mean Power of §+ at c = 0.05 for "a = 0

for the Random-effects Model

 

 

 

035 g = 205 605 1205 2003 Total

.00 0.05(16) 0.05(16) 0.05(16) 0.05(16) 0.05( 64)

.00-.02 0.06(16) 0.13(20) 0.23(20) 0.35(20) 0.20( 76)

.02-.04 0.09(16) 0.29(20) 0.50(20) 0.63(20) 0.39( 76)

.04-.06 0.13(16) 0.42(20) 0.54(16) 0.67(16) 0.44( 68)

.06-.08 0.17(16) 0.53(20) 0.51(12) 0.64(12) 0.45( 60)

.08-.10 0.23(32) 0.47(28) 0.59(24) 0.71(24) 0.48(108)

.15 0.34(16) 0.52(12) 0.70(12) 0.78(12) 0.57( 52)

.20 0.42(16) 0.60(12) 0.75(12) 0.81(12) 0.63( 52)

.25 0.48(16) 0.65(12) 0.78(12) 0.76( 8) 0.64( 48)

Total 0.22(160) 0.37(160) 0.48(l44) 0.56(140) 0.41(604)

 





CHAPTER V

THE INFLUENCE OF THE SIGNIFICANCE LEVEL AND POWER

OF THE FIRST STAGE TEST ON THE SECOND STAGE TEST

-- A SEQUENTIALLY RELATED TESTING PROCEDURE --

In this section, I will first distinguish among several

similar terms: "sequential analysis" (Wald, 1952),

"sequential decision" (Sobel & Wald, 1949), and

"sequentially related testing procedure". Use of these

terms in the literature suggests that "sequential analysis"

defines the sampling procedure, "sequential decision"

relates to the selection of the hypothesis, and

"sequentially related testing procedure" refers to the

ordering of testing in a multi-stage testing process.

Wald (1952) defined sequential analysis as "a method of

statistical inference whose characteristic feature is that

the number of observations required by the procedure is not

determined in advance of the experiment. The decision to

terminate the experiment depends, at each stage, on the

results of the observations previously made" (p. 1).

Sequential analysis is often used in medical research (e.g.,

Anscombe, 1963; Armitage, 1960; Whitehead, 1983, 1987;

etc.), probably because fewer subjects are required in

sequential trials than in fixed trials (Lewis, 1990).

80
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A §§Q2§EL1§1.Q§QL§12E involves the sequential

examination of hypotheses. Sobel and Wald (1949) discussed

a sequential decision procedure for choosing one of three

hypotheses concerning the unknown mean of a normal

distribution. Consider a variable x which is normally

distributed with known variance 02, but with an unknown mean

u. Given two real numbers a1 < a2 and a set of hypotheses

to be examined, say, H1: u < a1, H2: a1 5 u 5 a2, and H3: 0 >

a2, the problem is to choose one of these three mutually

exclusive and exhaustive hypotheses. This is a process of

making decisions about a sequence of hypotheses.

The third term, to be used in this study, is

"sequentially related testing procedure." Such a procedure

does not draw observations sequentially, nor does it involve

sequential decisions about several alternative hypotheses.

It involves testing more than one hypothesis in sequence for

one set of data. The sequentially related hypotheses tested

imply that one will test a second qualitatively different

hypothesis only after a specific decision is made at stage

1.

When tests are sequentially related, it is natural to

consider the relationship of the testing errors among the

tests. Will the testing error in the first test influence

errors made in conducting the next test? Does the impact

involve either one of, or both, type I and type II errors?

Effect-size meta-analysis involves the process of
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sequentially related testing, since many effect-size meta-

analyses involve the two-stage testing procedure outlined

above in (7) and (7a) in Chapter IV. Therefore, in studying

the power of the homogeneity test in effect-size meta-

analysis, the sequential impact of testing errors is a

concern.

In this chapter, I will discuss the influence of

sequentially related hypothesis test, and I will examine the

impact of the first-stage decisions on the second-stage

statistical errors.

Two-Stage Testing

Effect-size meta-analyses involve at least two tests in

sequence: the homogeneity test for the consistency of the

effect sizes and the test for the magnitude of the common

effect. When the study effects are determined to be

homogeneous, one further estimates the value of the probable

common p0pulation effect and tests whether the common value

is zero.

For example, consider a review of sex differences on

science achievement for grade-school students. After

computing effect sizes from a series of studies, the

reviewer first tests the homogeneity of all effects to

decide whether they are consistent. If the homogeneity of

effects is accepted, the reviewer then tests to determine

whether gender has an effect on science achievement. If the
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homogeneity test for the full set of effects is rejected,

one decides that the magnitudes of sex differences on

science achievement may vary. To proceed with the analysis,

one either considers effects to be random, or seeks

homogeneity within smaller groups of effects. For instance,

effects may vary with grade levels, such that girls perform

better than boys only in certain grade levels. The

homogeneity test would then be performed on the effects for

each grade level. If homogeneity of effects is accepted

within a subgroup or grade level, the second-stage test

measuring the magnitude of the average sex differences will

be conducted for that subgroup.

influence of Seguentially Related Hypothesis Testing

on Statistical Errors

The role of sequentially related hypothesis testing in

determining statistical errors is observed below in two

situations: acceptance or rejection of the overall

homogeneity test at the first stage.

v Ho e'

Since the test for homogeneity and the test for the

common population effect are sequentially related, the

validity of the former test can affect the validity of the

latter. If at stage one, the analyst made a type II error

in the homogeneity test, the second stage test for the

ggmmgg effect is misleading. Precisely, when population
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effects are heterogeneous, the estimate of the effect-size

in the second stage test is an estimate of an "average"

effect (#5) from a set of random effects rather than of the

"common" effect (6) representing a set of equal effects.

The interpretation of the test for the "average" effect

should differ from the interpretation of the test for the

"common" effect. As in the case of a random-effects

analysis-of-variance model, in the heterogeneous case

population effects are random numbers with some distribution

(i.e., 015 ¢ 0). Sampled effect sizes do not share one

population effect. Wrongly accepting the homogeneity of

effects will treat an average effect as the common effect.

The variance used for calculating the 1 statistic for

testing the hypothesis Ho: 6 = 0 under the assumption of

homogeneity will not reflect the variation of population

effects. The estimate of the variance used for the test

statistic for the hypothesis in (7a) (on p. 16) at the

second stage will be too small. Instead of using the

estimate of (035 + 02(91I51)) for the variance of the ith

effect size, calculation of the 1 statistic (say, in) under

the decision of homogeneity would use the estimate of

02(QII61)‘ Therefore, when the effects are heterogeneous

(i.e., 035 > 0), the test statistic is tends to be too

large, which likely results in a greater chance of type I

error (false rejection) or "too much power" in the second

stage test.
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e ' n t ve e

When the overall homogeneity test is rejected, one

assumes that several "true" effects may exist. One common

approach to further study of these effects is to divide the

collection of effect sizes into subgroups by certain factors

and repeat the homogeneity test for each subgroup. Another

approach to analyzing these effects is applying a random-

effects model and testing for the average population effect.

As mentioned above, errors at the first stage will

impact the validity of tests at the second stage. When a

false rejection is made at the first stage, dividing effects

into small groups can lead to more errors. First, because

the population effects are truly homogeneous, classifying

the effects from the same population into subclasses and

conducting separate analyses is unnecessary. Second, the

effective sample sizes for t tests for each subgroup are

obviously reduced from the total sample size used for the t

test for the whole group. Therefore, when population

effect-sizes are homogeneous, tests of homogeneity for

smaller subgroups are conservative or less powerful relative

to the one test for the whole group.

Applying random-effects tests at the second stage is

sometimes considered after rejection of the homogeneity

test. In a random-effects test, the variance used for

calculating the 1 statistic (denoted in here) will include

an estimate of the variation in population effects (016).
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Including the estimated variance of population effects (035)

rather then using 03(gi|61) alone would overestimate the

variance when population effects are actually consistent.

The in test statistic will then be too small and become less

powerful than tests using 3, under the fixed-effects model

(which should be applied when effects are truly

homogeneous).

The additional simulation in this Chapter will examine

the statistical errors and the appropriateness of tests

using fixed- versus random-effects models. The simulation

addresses the following questions: When the homogeneity

test at the first stage is rightly rejected or wrongly

rejected will the statistical error rates of the 1 tests (gF

and in) at the second stage be similar? Specifically, when

the homogeneity test is wrongly rejected (a type I error

occurs at stage one), how much is the power of the in test

(i.e., assuming random effects at the second stage)

decreased? And, when the homogeneity test is wrongly

accepted (a type II error occurs at stage one), how much is

the power of Q? increased?

Summary

In conclusion, when the overall homogeneity test is

wrongly accepted (a type II error) at the first stage, the

fixed-effects model test 2, would be wrongly applied at

stage two. Two errors will be made: the test is (1)

conceptually invalid, and (2) subject to type I error. When
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the overall homogeneity test is ytgngly_zg1ggtgg (a type I

error) at the first stage, the test at the second stage

should be less powerful when the random-effects test (an) is

wrongly applied. Table 30 illustrates the relationship

among two-stage sequential testing errors.

Table 30

Two-stage Testing Errors

 

  

  

       

 

  

  

I£E§_§L§L§

61 = 62 = ... = 63 = 6 At least one 61 differs

A I¥E§_II 3

True State True State

0 ,

D m 6 = 0 B 6 = 0 I B

e o

c 6 ¢ 0 a 1 - B 6 ¢ 0 l c 1 - B

i

s

iN M C D

o o True State True State

nt 6:0 8¢0 “6:0 [15750

H #5-0 B u5=0 [ B]
o

m fl5¢0 a 1-3 I15¢0 a [1.3]

o r .          
In Table 30, the four main cells represent the first-

stage test. For convenience, these cells are named A, B, C,

and D (marked at their upper right corners). The second-

stage tests and their statistical errors are illustrated by

small tables within each cell of the large table.

Population effects for the first stage are denoted by 613.

The common population effect for the homogeneous effects is
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6. The average population effect for the heterogeneous

effects is denoted as #5. Cells marked "Type I" or "Type

II" represent occurrences of the two types of statistical

errors.

From the above summary, I predicted that the second-

stage tests in cell C using the random-effects test (fin) may

have higher type II error rates than the correct fixed-

effects test 12‘ And second-stage tests in cell B using the

fixed-effects test gr may have lower type II error rates

than the correct random-effects test (ta), and may have

higher type I error rates.

Second stage 1 tests to test the hypotheses Ho: #5 = 0

vs. H1: ”51¢ 0 for fixed-effects and random-effects models

are 3

 

 

g.

£5: = I (36)

1 /"/{(1/"2 (Qflsg)

and

g.

2 = I (37)
 

 —R

1 ”Al/[025*‘03 (ELI 5;) l)

where g. is the average effect weighted by precision,

Q0 = Ei'd'i’ (38)
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US;1

2- = - (39)

’ V 2(1/.§i’)

 

The estimators of the variances S31 for fixed- and random-

effects differ:

For fixed-effects,

§_2 = 0’ (QLI5L)- (40)

For random-effects,

sj.a = 625 + annual). (41)

The estimator of the variance of population effects was an

estimate developed by Hedges and Olkin (Hedges & Olkin,

1985), specifically:

025 = §3(Qi) ' (1/5) E 03(Qil5i). (42)

where §2(gi) is the usual sample variance computed using the

g1 values as data.

Simulation gt Rowen to: Segngntial Tests

Power values for the 1 tests were constructed through

further simulation. Counts of both type I and type II

errors for the second stage 1 tests were noted. Simulation

will allow me to determine (1) whether or not the preset

significance level of the 1 test is maintained, and (2)

whether or not the second-stage 1 test given errors at the
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first stage is as powerful as it is following correct

decisions.

Factors that produced high or lgy power in the

homogeneity tests are crucial in studying errors of

subsequent 1 tests. The power simulation in Chapter IV

indicated that for certain non-normal distributions of 6

values and for effects with small sample sizes the actual

power of homogeneity tests was greater than power based on

the asymptotic theory . The primary goal of this Chapter is

to examine the statistical errors of the second-stage based

upon the decision at the first stage. Extra focus was on

the subsequent level of errors at the second stage in

conditions that showed higher power for the homogeneity test

at stage one. Results from "non-normal" sets of 63 (or

"sets of 6s with extreme values") or small sample sizes were

compared to those from more evenly distributed sets of 65 or

large samples.

Factots fon Simulation ot Subsegnent g Tests

Factors from previous simulations were chosen for the

simulation of n-test behavior. The fixed-effects models

were used to fully demonstrate the subsequent impact of the

power of the first-stage test on the power of the second-

stage test. Those combinations of factors that had resulted

in differences between the simulated and asymptotic power

values of homogeneity tests were closely examined. Other

factors used in the additional simulation were the same as
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those for the simulation in Chapter IV, with the elimination

of (1) cases where k = 2, and (2) patterns of population

effects with two extreme values.

The simulation procedure for the power of the second-

stage 1 tests followed the simulation for homogeneity tests

in Chapter IV:

A. Test significance of the homogeneity test (at a =

0.05). Consider the second-stage test to occur in

one of the four decision categories based on the

homogeneity test and the known pattern of 6 values.

The four categories (shown as A through D in Table

30) are rightly accepting homogeneity, wrongly

accepting homogeneity, rightly rejecting

homogeneity, or wrongly rejecting homogeneity.

Calculate two 1 statistics using the two estimates

of variance, and note which would be used based on

the decision about homogeneity. (using 1R if

homogeneity is rejected, or 1F if homogeneity is

accepted) for each of 2000 sets of generated

effects.

Continue to replicate until the count of 1 tests in

each category of decision based on the homogeneity

test reaches 2000 replications.

Compute proportions of 1 statistics (across the

2000 replications) exceeding normal critical values

at various significance levels separately for the
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above four decision categories.

E. Calculate theoretical power values for both fixed-

and random-effects tests (1F and 1R) based on the

known parameters 61' i = 1 to L-

F. Compare proportions of the significant 1 statistics

(as power values) with the theoretical power

values.

G. Determine if 1 tests were more powerful for cell B

(1, vs. 1R) than for cell A or less powerful for

cell C (1R vs. 1?) than for cell D. (Note that in

cell A and cell D, the 1 tests used would have been

computed with the correct estimate of variance.)

Results

Simulated power values for 1 tests from the second

stage of effect-size meta-analysis were compared to

theoretical power values. Analysis of power for 1 were

carried out for each of the four decision categories for the

homogeneity test at the first stage: (A) rightly accept

homogeneity test, (B) wrongly accept homogeneity test, (C)

wrongly reject homogeneity test, or (D) rightly accept

homogeneity test.

S'mu at v . Th we ues

Simulated power values based on tests with fixed- or

random-effects variance estimates were compared with the

corresponding theoretical power, based on either the fixed-
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or random-effects variance parameters.

Under the true state of homogeneity, theoretical power

of both fixed- and random-effects tests were equal since the

variance of population effects (015) was zero. Under

heterogeneity, theoretical power values for random-effects

tests were less than values for fixed-effects tests because

the random-effects test 1R used a larger variance value (in

its denominator).

Fined-effects tests. Theoretical power values were

calculated with the fixed-effects variance 03(gi|6i). The

simulated power values were obtained by computing is with

the estimated fixed-effects variance (using Q; for 6; in

formula (5)).

When effects were homogeneous, and the stage-one

decision about homogeneity was correct (in cell A),

theoretical power values for 1, were slightly greater than

simulated power values. The difference decreased as sample

sizes increased. At a = 0.05, for common effect 6 = 0, the

mean difference across all homogeneous groups was .003

(.050-.047). A paired t test for the equality of simulated

and theoretical power means was 4.36 (Q: = 47, p < .001).

When power was analyzed according to sample size and 1 the

mean difference in theoretical versus simulated power was

significant only for sample sizes n = 20. Paired t tests on

mean theoretical and simulated power values for 1, for

homogeneous groups with different sample sizes and 6 = 0 are
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listed in Table 31.

Table 31

Paired t Tests on Mean Theoretical and Simulated 1, Power

for Homogeneous Effects with 6 = 0 (a = 0.05

 

 

n n Mean Diff.* 86 Se paired t g; p

5 201 .0069 .005 .002 2.85 3 .065

601 .0043 .009 .004 .99 3 .395

120; .0040 .006 .003 1.31 3 .281

2001 .0023 .003 .002 1.41 3 .254

10 203 .0070 .004 .002 3.20 3 .049*

605 -.0016 .003 .002 -1.02 3 .385

1203 .0033 .005 .003 1.28 3 .290

2001 .0003 .006 .003 .09 3 .934

30 205 .0100 .003 .002 5.73 3 .011*

603 -.0029 .002 .001 -3.05 3 .056

1203 .0030 .003 .001 2.10 3 .127

2005 .0048 .004 .002 2.66 3 .076

 

ugtg: * p < .05, positive mean difference indicates

theoretical power > simulated power.

For homogeneous effects with 6 > 0, the mean difference

was .01 (.719-.709). The paired t test value was 7.56 (dt =

143, p < .001). Like the case in which 6 = 0, the

difference also decreased as sample size increased. Results

were similar for 6 = 0.1, 0.2, or 0.3. Paired t tests on

theoretical minus simulated power values for fixed-effects

tests (1?) for homogeneous groups with different sample

sizes and 6 > 0 are listed in Table 32.
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Table 32

Paired t Tests on Mean Theoretical and Simulated 1, Power

for Homogeneous Effects with 6 > 0 (a = 0.05:

 

 

1 H Mean Diff.* Sd Se Paired t g: n

5 20K .0237 .012 .003 7.04 11 .000#

605 .0073 .011 .003 2.30 11 .042*

1203 .0032 .009 .003 1.26 11 .234

200K .0014 .007 .002 .72 11 .484

10 203 .0364 .012 .003 10.87 11 .000#

603 .0084 .011 .003 2.54 11 .028*

1203 .0002 .006 .002 .13 11 .899

200K .0002 .004 .001 .21 11 .838

30 20K .0296 .020 .006 5.14 11 .000#

603 .0044 .008 .002 1.99 11 .072

1205 .0017 .005 .001 1.27 11 .229

2005 .0005 .002 .001 .85 11 .412

 

Note: * p < .05, positive mean difference indicates

theoretical power > simulated power.

if p < .001.

 

Next I applied the modified Kolmogorov-Smirnov test,

with critical value 26 = 0.030, to the distribution of

(theoretical power - simulated power) values. For

homogeneous population effects with 6 = 0, only 1 of 48

combinations showed a significant difference between the

theoretical and simulated Zr power functions. When 6 > 0,

22% (32/144) had significant discrepancies in which. The

theoretical power values were greater than the simulated

ones. Discrepancies increased as the sample size decreased.

Discrepancies were independent of the number of effect sizes

1, the value of 6, and the sampling fractions between or
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within studies. Frequencies are listed by numbers of

effects 3, total sample sizes H. equal vs. unequal sample

sizes between studies («1), within study sample-size balance

(¢;), or the value of the common effect 6 in Tables 33 to

37.

Table 33

Frequencies of Significant Discrepancies for Power of 1,

by 3 for Homogeneous Effects with 6 > 0

 

 

 

Significant unnben of effect—sizes (1)

Discrepancy 5 10 30 Total

Yes 8 (17%) 11 (23%) 13 (27%) 110 (22%)

No 40 37 35 112 (78%)

Total 48 48 48 144

 

x3 = 1.527 (g; = 2, p = .466)

Table 34

Frequencies of Significant Discrepancies for Power of 1F

by E for Homogeneous Effects with 6 > 0

 

 

 

Significant Tetal_samnle_sizes (H)

Discrepancy 201 603 1203 2001 Total

Yes 26(72%) 6(17%) 0 0 32 (22%)

No 10 30 36 36 112 (78%)

Total 36 36 36 36 144

 

x3 = 73.286 (1: = 3, Q < .001)
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Table 35

Frequencies of Significant Discrepancies for Power of 1,

by I; for Homogeneous Effects with 6 > 0

 

 

 

 

Significant Sam2lin9_fractign_bstuesn_§tudis§ (u )

Discrepancy Balanced Unbalanced Total

Yes 18 (25%) 14 (19%) 32 (22%)

No 54 58 112 (78%)

Total 72 72 144

X’ = 0.643 (1; = 1, p = .423)

Table 36

Frequencies of Significant Discrepancies for Power of 1,

by 8i for Homogeneous Effects with 6 > 0

 

 

 

Significant Samaling_fractign_xithin_§tudis§ (¢1)

Discrepancy Balanced Unbalanced Total

Yes 18 (25%) 14 (19%) 32 (22%)

No 54 58 112 (78%)

Total 72 72 144

 

0.643 (1; = 1, p = .423)X2
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Table 37

Frequencies of Significant Discrepancies for Power of 1,

by 6 for Homogeneous Effects with 6 > 0

 

ommon o u a on e e t (6)

3

 

 

Discrepancy 0.1 0.2 0. Total

Yes 7 (15%) 12 (25%) 13 (27%) 32 (22%)

No 41 36 35 112 (78%)

Total 48 48 48 144

 

x2 = 2.491 (_t = 2, p = .288)

When population effects are truly heterogeneous, fixed-

effects tests are not appropriate (in cell B and D).

However, the simulated power values for 1, were also

compared with the theoretical power values calculated with

the fixed-effects variances in cell B because in this case

the stage-one decision implies that 1, should be used. At a

= 0.05, theoretical power values were significantly less

than simulated power values, with a mean difference of -

.040, and the paired t-test value was -8.13 (11 = 375, p <

0.001). Results were similar across sample sizes. Paired t

tests on theoretical and simulated power values for 1F for

heterogeneous groups with different sample sizes are listed

in Table 38.
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Table 38

Paired t Tests on Theoretical and Simulated Power of 1,

for Heterogeneous Effects (0 = 0.05)

 

 

1 1 Mean Diff.* 86 Se paired t g; p

5 203 .0113 .021 .004 2.62 23 .015*

601 -.0138 .024 .005 -2.79 23 .010*

1203 -.0157 .034 .007 —2.27 23 .033*

2001 -.0219 .041 .008 -2.64 23 .015*

10 201 -.0361 .082 .014 -2.65 35 .012*

603 -.0590 .084 .014 -4.22 35 .000*

1201 -.0626 .121 .020 -3.09 35 .004*

2001 -.0665 .146 .024 -2.73 35 .010*

30 201 -.0419 .082 .014 —3.07 35 .004*

605 -.0396 .086 .014 -2.77 35 .009*

1201 -.0368 .090 .015 -2.47 35 .019*

2001 -.0554 .143 .027 -2.04 27 .051

 

Ngte: * p < 0.05, positive mean difference indicates

theoretical value > simulated value.

Results of the modified Kolmogorov-Smirnov test for

heterogeneous population effects with fixed-effects tests

showed that 51% of 376 combinations showed a significant

difference between the theoretical and simulated 1, power.

Most significant discrepancies were negative, that is,

simulated values were higher than the theoretical values.

Positive discrepancies were more common for smaller sample

sizes. That is, when sample sizes were small, some

theoretical values were higher than simulated power values.
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Discrepancies were not associated with patterns of

population effects. Discrepancies were independent of the

sampling ratio within studies, but were associated with

sampling fraction between studies. When studies with large

effects had large sample sizes, the simulated values were

consistently higher than theoretical values. When sample

sizes across studies were equal, the simulated values were

consistently lower than the theoretical values.

Crosstabulation of significant discrepancies are listed in

Tables 39 to 43.

Table 39

Frequencies of Significant Discrepancies for Power of 1,

by 1 for Heterogeneous Effects

 

 

 

Significant nunne; gt gffect-giges (1)

Discrepancy 5 10 30 Total

Yes 47 (49%) 80 (56%) 66 (49%) 193 (51%)

No 49 64 70 183 (49%)

Total 96 144 136 376

 

x’ = 1.672 (g; = 2, p = .433)
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Table 40

Frequencies of Significant Discrepancies for Power of 1, by

by H for Heterogeneous Effects

 

 
 

 

Significant Total 1ample sizes (N)

Discrepancy 203 603 1203 2001 Total

Yes 67 49 42 35 193

(70%) (51%) (44%) (40%) (51%)

No 29 47 54 53 183

Total 96 96 96 88 376

 

x3 = 20.0133 (1; = 3, p < .001)

Table 41

Significant Discrepancies for Power of 1, by Pattern of 61

for Heterogeneous Effects ‘

 

 

 

Pa er 0 o 8

Significant One Three Five

Discrepancy Extreme Subsets Subsets Total

Yes 70 (49%) 74 (53%) 49 (53%) 193 (51%)

No 74 66 43 183 (49%)

Total 144 140 92 376

 

x“ 0.694 (g: = 2, p = .707
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Table 42

Frequencies of Significant Discrepancies for Power of 1, by

11 for Heterogeneous Effects

 

 
 

 
 

Significant Sampling fnagtion between §tngies (n1)

Discrepancy Balanced Unbalanced Total

Yes 34 (18%) 159 (85%) 193 (51%)

No 154 29 183 (49%)

Total 188 188 376

 

x“ = 166.341 (1; = 2, p < .001)

Table 43

Frequencies of Significant Discrepancies for Power of 1, by

¢i for Heterogeneous Effects

 

 

 

 

 

Significant Sampling tpngtion witnin §tudie§ (¢i)

Discrepancy Balanced Unbalanced Total

Yes 97 96 193 (51%)

No 91 (48%) 92 (49%) 183 (49%)

Total 188 188 376

 

x“ = 0.0107 (g; = 2, p = .918)

do - . Theoretical power values for 1R

were calculated with the random-effects variance 035 +

03(gi|61). The simulated power values were obtained with

the estimate of the random-effects variance (see formulas

(40) and (41)).
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When population effects are truly homogeneous, random-

effects tests are not appropriate (in cell A and C).

However, in cell C the decision made at stage one is to

reject Ho, thus this decision would lead (incorrectly) to

the use of 1, at stage two. At a = 0.05, the discrepancy

between the theoretical and simulated power values for 1,

was large (in comparison to that for 1,, the fixed-effects

test). When 6 = 0 the mean difference across all sample

groups was .041 (.050-.009). The paired t-test value was

49.92 (g; = 47, p < 0.001), showing that the theoretical

values were significantly greater than the simulated power

values. Paired t tests on theoretical and simulated power

values of 1, for homogeneous groups with 6 = 0 and for

different sample sizes are listed in Table 44.

For 6 > 0, at a = 0.05, the mean difference across all

sample sizes was .1832 (.7187-.5355). The paired t test was

15.90 (g; = 143, p < .001) which showed that theoretical

values were significantly greater than simulated power

values. Results were similar across sample sizes. However,

as power values approached 1 for some large samples the

differences were forced to decrease. Paired t tests on mean

theoretical and simulated power values for 1, for

homogeneous groups with 6 > 0 for different sample sizes are

listed in Table 45.
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Table 44

Paired t Tests on Theoretical and Simulated Power of 1,

for Homogeneous Effects with 6 = 0 (a = 0.05)

 

 

 

3 H Mean Diff.* Sd Se Paired t g; p

5 203 .0450 .002 .001 48.11 3 .000

603 .0474 .002 .001 55.68 3 .000

1203 .0485 .001 .000 168.01 3 .000

2005 .0453 .001 .001 62.70 3 .000

10 203 .0421 .001 .001 64.07 3 .000

603 .0401 .001 .001 84.79 3 .000

1205 .0425 .002 .001 38.66 3 .000

2005 .0419 .001 .001 58.32 3 .000

30 203 .0356 .007 .004 10.16 3 .002

605 .0351 .005 .002 14.27 3 .001

1205 .0338 .002 .001 43.42 3 .000

2005 .0346 .005 .002 14.53 3 .001

Notg: * positive mean difference indicates that theoretical

power > simulated power.
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Table 45

Paired t Tests on Theoretical and Simulated Power of 1,

for Homogeneous Effects with 6 > 0 (a = 0.05)

 

 

 

3 11 Mean Diff . * Sd Se Paired t n: p

5 203 .2089 .091 .026 8.00 11 .000

603 .3228 .106 .030 10.58 11 .000

1203 .3035 .100 .029 10.47 11 .000

2003 .2433 .153 .044 5.51 11 .000

10 203 .2380 .089 .026 9.29 11 .000

603 .2285 .085 .024 9.35 11 .000

1203 .1627 .127 .037 4.43 11 .001

2003 .1265 .157 .045 2.79 11 .018

30 203 .2072 .101 .029 7.09 11 .000

603 .0887 .107 .031 2.87 11 .015

1203 .0491 .080 .023 2.31 11 .056

2003 .0192 .034 .010 1.98 11 .073

note: * positive mean difference indicates that theoretical

power > simulated power.

Applying the modified Kolmogorov-Smirnov test to

difference based on homogeneous population effects, when 6 =

0, all 48 combinations showed significant difference between

the theoretical and simulated 1 power. One half of the

significant discrepancies was positive and the other half

was negative. Significant discrepancies for 6 = 0 was not

associated with any simulation factors.

When 6 > 0, 89% of 144 combinations had significant

discrepancies, most of which were positive. The theoretical

power values were greater than the simulated ones.

Discrepancies increased when the number of effects 1 and the

sample size N decreased. When the value of 6 decreased
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discrepancies also increased. Discrepancies were

independent of the sampling fraction either between or

within studies. Frequencies are listed by number of effects

1, total sample sizes H, and equal vs. unequal sample sizes

between study sample sizes (”1), within study sample size

balance (¢$), and value of the common effect 6 in Tables 46

to 50.

Table 46

Frequencies of Significant Discrepancies for Power of 1,

by 1 for Homogeneous Effects (6 > 0)

 

 
 

 

Significant numben gt gffiegt-sizgs (K)

Discrepancy 5 10 30 Total

Yes 48 (100%) 47 (98%) 33 (69%) 128 (89%)

No 0 1 15 16 (11%)

Total 48 48 48 144

 

x3 = 29.672 (1; = 2, p < .001)
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Table 47

Frequencies of Significant Discrepancies for Power of 1,

by H for Homogeneous Effects (6 > 0)

 

 

 
 

Significant Tgtnl snmplg sizes (N)

Discrepancy 201 601 1205 2001 Total

Yes 36 34 31 27 128

(100%) (94%) (86%) (75%) (89%)

No 0 2 5 9 16

Total 36 36 36 36 144

 

x3 = 12.938 (df = 3, p < .01)

Table 48

Frequencies of Significant Discrepancies for Power of 1,

by 11 for Homogeneous Effects (6 > 0)

 

 

 

Significant Sampling tragtign between studigs (Hi)

Discrepancy Balanced Unbalanced Total

Yes 62 (86%) 66 (92%) 128 (89%)

No 10 6 16 (11%)

Total 72 a 72 144

 

x3 = 1.125 (g: = 1, p = .289)
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Table 49

Frequencies of Significant Discrepancies for Power of 1R

by 9i for Homogeneous Effects (6 > 0)

 

Significant Sam 'n f acti with' studies (¢i)

 

 

 

 

 

Discrepancy Balanced Unbalanced Total

Yes 63 (88%) 65 (90%) 128 (89%)

No 9 7 16 (11%)

Total 72 72 144

x’ = 0.281 (g; = 1, p = .596)

Table 50

Frequencies of Significant Discrepancies for Power of 1,

by 6 for Homogeneous Effects (6 > 0)

 

Significant annon population ettgpt (6)

0 1

 

 

 

 

Discrepancy . 0.2 0.3 Total

Yes' 48 (100%) 43 (90%) 37(77%) 128 (89%)

No 0 5 11 16 (11%)

Total 48 48 48 144

 

x3 = 12.79752 (1; = 2,‘ Q < .01)

When the population effects were heterogeneous and the

first stage hypothesis is rejected (in cell D), the random-

effects test 1, was the correct test. At a = 0.05,
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theoretical power values for 1, were greater than the

simulated values. The mean difference across all sample

sizes of 0.10 was significant (.463-.363), with a t = 18.67

(g; = 375, p < 0.001). Results were similar across sample

sizes. As above, when power values approached 1 for some

large samples, discrepancies were limited and reduced.

Paired t tests on theoretical and simulated 1, power values

for heterogeneous groups and different sample sizes are

listed in Table 51.

Table 51

Paired t Tests on Theoretical and Simulated Power of 1,

for Heterogeneous Effects (0 = 0.05)

 

 

 

1 3 Mean Diff.* Sd Se Paired t g; p

5 203 .1467 .089 .018 8.06 23 .000

603 .2021 .116 .024 8.56 23 .000

1203 .1776 .088 .018 9.90 23 .000

2005 .1445 .107 .022 6.60 23 .000

10 203 .1572 .087 .015 10.84 35 .000

603 .1454 .073 .012 12.01 35 .000

1203 .0871 .105 .017 4.98 35 .000

2003 .0447 .097 .016 2.75 35 .009

30 203 .1057 .053 .009 11.87 35 .000

605 .0380 .061 .010 3.75 35 .001

1203 .0141 .045 .007 1.88 35 .068

2003 -.0012 .062 .012 - .10 27 .919

Ngtg * positive mean difference indicates theoretical

power > simulated power.

Applying the modified Kolmogorov-Smirnov test to power

functions for 1, for heterogeneous effects, almost all (96%)
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of the 376 combinations showed significant differences

between the theoretical and simulated power. Most of the

significant differences were negative. About 33% of the

measures (376 x 15 = 5640 measures) showed that theoretical

power values were less than the simulated ones, and 13%

showed that theoretical values were less than the simulated

values. Significant discrepancies decreased as sample size n

or the number of effects 1 increased. Discrepancies

occurred more when population effects had extreme values

than when population effects were more evenly dispersed.

Frequencies are listed by number of effects 3, total sample

sizes 3, and equal vs. unequal sample sizes between study

sample sizes (ML) and within study sample-size balance (¢;)

in Tables 52 to 56.

Table 52

Frequencies of Significant Discrepancies for Power of 1,

by 1 for Heterogeneous Effects

 

 

 

Significant Nnnbet gt ettegt-sizes (1)

Discrepancy 5 10 30 Total

Yes 96(100%) 144(100%) 120 (88%) 360 (96%)

No 0 0 16 16 ( 4%)

Total 96 144 136 376

 

x3 = 29.490 ( f = 2, p < .001)
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Table 53

Frequencies of Significant Discrepancies for Power of 1,

by g for Heterogeneous Effects

 

 
 

  

Significant Tota s' (H)

Discrepancy 203 603 1201 2003 Total

Yes 96 96 88 80 360

(100%) (100%) (92%) (91%) (96%)

No 0 0 8 8 16

Total 96 96 96 88 376

 

x3 = 17.502 (df = 3, p < .001)

Table 54

Frequencies of Significant Discrepancies for Power of 1,

by I, for Heterogeneous Effects

 

Significant §ampling fnactign bgtwegn §tudigs (Hi)

 

 

Discrepancy Balanced Unbalanced Total

Yes 180 (96%) 180 (96%) 360 (96%)

No 8 8 16 ( 4%)

Total 188 188 376

 

ll

H
: II

..
.:

0.000 (d p = 1.000)X2
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Table 55

Frequencies of Significant Discrepancies for Power of 1,

by e, for Heterogeneous Effects

 

 

 

Significant Sampling fraction within studies (¢i)

Discrepancy Balanced Unbalanced Total

Yes 180 (96%) 180 (96%) 360 (96%)

No 8 8 16 ( 4%)

Total 188 188 376

 

x2 0.000 (g; = 1, p = 1.000)

Table 56

Significant Discrepancies for Power of 1, by Pattern of 61

for Heterogeneous Effects ’

 

Battern of gopulation Etfectg

 
 

 

 

Significant One Three Five

Discrepancy Extreme Subsets Subsets Total

Yes 144(100%) 132(94%) 84 (91%) 360 (96%)

No 0 8 8 16 ( 4%)

Total 144 140 92 376

 

x“ = 11.584 (1: = 2. n < .01)

Sunnaty. In general, theoretical and simulated values

matched better for large samples than small samples.

Because they are based on ngynptgtig theory, the theoretical

values should fit better for large samples. However, since
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both power values had an upper limit, and both power values

increased as the sample size increased, the discrepancies

also tend to decrease as sample size increases because both

power functions tend more quickly to one.

Theoretical values for 1, power fitted the best when

homogeneity tests at the first stage were correctly accepted

(in cell A). For homogeneous effects with 6 = 0, almost no

significant discrepancies between simulated and theoretical

power functions were found. When 6 > 0, most discrepancies

occurred when sample size was small (e.g., n, = 20), where

theoretical values were significantly greater than the

simulated values.

About half of the distributions showed significant

discrepancies between theoretical and simulated power values

for 1, when homogeneity was falsely accepted (in cell B).

Discrepancies increased as sample sizes decreased. When

studies had equal sample sizes (equal His), theoretical

values were closer to the simulated values then when studies

had unequal samples. When large effects were combined with

large samples, the theoretical values were lower than the

simulated values.

Power functions for random-effects tests (1,) did not

fit as well as those for fixed-effects tests. When

homogeneity was falsely rejected (in cell C), for 6 = 0, all

combinations had significant discrepancies (half were

positive values, and the other half were negative values).
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Significant discrepancies were not clearly associated with

any other simulation factors. When 6 > 0, about nine tenth

of the distributions had higher theoretical values.

Discrepancies decreased as the number of effect sizes, the

sample size, or the value of 6 increased.

When homogeneity was correctly rejected (in cell D),

almost all theoretical power values (96%) for 1, were

significantly different from the simulated values. When

population effects were fairly evenly distributed,

theoretical values were higher than simulated values. When

one population had one extreme effect-size value,

theoretical values could be either higher or lower than the

simulated values. Also discrepancies decreased as the

number of effects 3 increased.

Results showed that overall theoretical power values

did not fit well with the simulated values for random-

effects tests (1,). Theoretical values were sometimes

greater and sometimes less than simulated values. This

result leads to a question about the precision of the

estimate of the variance of population effects (035).

Hedges and Olkin (1985) gave an approximation to the

distribution of the effect-size parameter-variance

estimator. As they indicated, the estimator of the variance

of population effects has an asymptotic normal distribution,

however, the large sample normal approximation to the

distribution of the estimate of 035 is probably not very
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good unless the number of effects 1 is quite large. More

needs to be known about the accuracy of the large sample

approximation to the distribution of the estimate of the

variance of population effects.

When effects were homogeneous, the power of the random-

effects test 1, seemed excessively low. One possibility is

that the variance of the population effects 0’, for

homogeneous effects (0’, = 0) may be systematically

overestimated (biased). When effects were heterogeneous,

the estimate of the population variance seemed appropriate

and may be more accurate.

The behavior of the estimator of the population

variance based on different homogeneity decisions at stage

one was studied via further simulation. Two sample sizes n,

of 20 and 60 were selected and two sets of effect-size

parameters were set for the case where 1 = 5. The average

effect size was the same for both homogeneous and

heterogeneous effects: the 6 values for 035 = 0 were (0.2,

0.2, 0.2, 0.2, 0.2), and for 035 > 0 the effects were (0,

0.2, 0.2, 0.2, 0.4). 2000 replications were generated for

both correct and incorrect decisions about homogeneity.

When homogeneity was accepted values of the variance

estimates were close to zero and were less dispersed for

both homogeneous and heterogeneous effects. As predicted

the bias of the estimate was greater when effects were

homogenous than when effects were heterogeneous.
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ng11 of 1 gased on Decisiong npgut Honogeneity

Power values for 1 and 1, were compared at a = 0.05.

If the homogeneity was rightly accepted (in cell A) or

rightly rejected (in cell D), the second stage 1 tests which

follow from the stage-one decision are tests with correct

variance components. No comparison was necessary when the

correct 1 test was applied. When homogeneity was falsely

accepted (cell B) or falsely rejected (cell C), the

subsequent 1 test (suggested by the stage-one test) would

use the estimate of the wrong variance and be incorrect.

Since population effects were known values in the

simulation, both 1 tests were calculated for cells B and C.

Simulated power values were compared for the two tests

(i.e., for tests using the correct versus incorrect

variance).

Homogeneous population effects. When effects were

homogeneous and the homogeneity was rejected (in cell C),

the recommended 1 test on the average effect would be

calculated as 1,, that is, using the estimate of the random-

effects variance 035+03(11|61). However, the correct 1_test

(1,) should use the estimate of the fixed-effects variance

03(giI61). Since the estimate of 035 must be greater than

or equal to 0, power values based on 1, and the random-

effects variance should always be less than values based on

the fixed-effects test (1,).

For homogeneous effects with 6 = 0, at a = 0.05, across
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all sample groups the mean power difference between 1, and

1, was .0387 (.0477-.0090), with a paired t = 31.33 (1: =

47, p < .001). When the common effect 6 = 0, the

probability of falsely rejecting the 1 test is the type I

error rate. Mean simulated power values showed that both 1,

and 1, had smaller type I error rates (0.0477 and 0.009)

than the preset a level (0.05). However, the size of 1, is

much lower than either the a level or the size of 1,. When

the number of effects 1 increased, mean differences between

the power of 1, and 1, slightly decreased. Paired t tests

on homogeneous effects with 6 = 0 for each sample-size group

are listed in Table 57.

Table 57

Paired t Tests on Power (size) of 1, versus 1,

for Homogeneous Effects with 6 = 0 (a = 0.05)

and Homogeneity Was Rejected

 

 

 

1 3 Mean Diff.* Sd Se Paired t n; p

5 205 .0434 .004 .002 23.41 3 .000

605 .0432 .005 .003 16.42 3 .000

1205 .0465 .008 .004 11.61 3 .000

2003 .0522 .006 .003 16.37 3 .000

10 203 .0327 .004 .002 15.26 3 .001

603 .0396 .002 .001 41.99 3 .000

1203 .0417 .003 .001 30.66 3 .000

2005 .0419 .001 .001 56.09 3 .000

30 203 .0275 .009 .004 6.44 3 .008

603 .0327 .008 .004 8.14 3 .004

1203 .0305 .003 .001 20.92 3 .000

2003 .0320 .001 .001 52.26 3 .000

Note: * positive mean difference indicates power of 1, >
 

power of 1,.



118

For homogeneous effects with 6 > 0, across all sample

groups the mean power difference between 1, and 1, was .1751

(.7107-.5355), with a paired t = 15.65 (df = 143, p < .001).

Power values increased as either the value of 6 or the

sample size increased. However, power values for fixed-

effects tests (1,) increased faster than those for random-

effects tests (1,) as either the value of 6 or the sample

size increase. When 6 or the sample sizes were large, both

power values approached 1. Mean power values for both tests

for different sample sizes and 6 values are listed in Table

58. Since population effects were homogeneous, the 1 test

should still be the correct test here.

Table 58

Mean 1 Power Values of 1, versus 1,

for Homogeneous Effects with 6 > 0 (c = 0.05)

and Homogeneity Was Rejected

 

 

6 = 0.10 6 = 0.20 6 = 0.30

L H a, an 2., 13 1, an

5 201 .1081 .0186 .2296 .0445 .4036 .1087

601 .2142 .0299 .5015 .1391 .8014 .4012

1201 .3246 .0605 .7630 .3372 .9735 .7619

2001 .4495 .1002 .9200 .5912 .9990 .9609

10 201 .1502 .0415 .3599 .1352 .6292 .3351

601 .3166 .1066 .7669 .4449 .9672 .8331

1201 .5117 .2170 .9561 .7831 .9994 .9876

2001 .6996 .3690 .9971 .9529 1.0000 .9999

30 201 .2939 .1331 .7437 .4971 .9656- .8187

601 .6567 .4396 .9922 .9535 1.0000 .9992

1201 .9061 .7530 1.0000 .9994 1.0000 1.0000

2001 .9830 .9256 1.0000 1.0000 1.0000 1.0000
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When effects were

heterogeneous but homogeneity was accepted (in cell B), the

1 test which follows from the stage-one decision whould

typically be calculated as 1,, using the estimate of the

fixed-effects variance 03(gil61). The correct 1 test,

however, is 1,, which should use the estimate of the random-

effects variance 035+c=(gi|61). Here the power of the

incorrect test (1,) would be expected to be greater than the

power of the correct test.

between 1 minus 1

The mean power difference

across all sample groups was -0.330

(.5122-.5452), paired 1 = - 20.05 (1: = 375, p_ < .001).

Mean power values for each sample group and patterns of 61s

are listed in Table 59.

Table 59

Mean 1 Power values of 1, versus 1

for Heterogeneous Effects (a = 0.05

and Homogeneity Was Accepted

 

One Extreme Three Subsets Five Subsets

 

K H Zp ZR 1p ZR 1p in

5 203 .0792 .0654 .2808 .2389 - -

603 .1387 .1077 .5922 .5214 - -

1203 .1997 .1437 .7745 .7188 - -

200K .2796 .1955 .8638 .8261 - -

10 203 .0895 .0731 .4099 .3591 .4116 .3628

603 .1608 .1284 .7256 .6693 .7258 .6744

1203 .2418 .1986 .8637 .8294 .8596 .8258

2003 .3118 .2623 .9302 .9039 .9683 .9498

30 205 .0747 .0641 .7292 .6989 .7203 .6947

603 .1233 .1053 .9198 .9020 .9224 .9055

1203 .1711 .1490 .9802 .9750 .9806 .9745

200K .2272 .2018 .9958 .9938 .9960 .9941
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The population effects for the pattern with one extreme

case were (0, ..., 0, 6,) and 6, = 0.1, 0.2, or 0.25. The

value of 6 for three or five subsets, varied as 0.1, 0.2, or

0.25, and can also be viewed as the average effect. At a =

0.05, when the average effect was small, the differences

between power values of the fixed- and random-effects tests

increased as sample sizes increased, as was true for the

one-extreme-value case. When the average effect was large,

power values reached 1, and the differences between power

values for the fixed- and random-effects tests were forced

to diminish.

§umma y. The power difference between the fixed- and

random-effects tests at a = 0.05 increased as the value of

the average effect or sample size increased. As the average

effect or sample size became large, power approached 1 and

the differences diminished. Power differences were smaller

when the homogeneity of effects was falsely accepted (cell

B) than when the homogeneity of effects was falsely rejected

(cell C). The fixed-effects 1 test 1, was always the more

powerful test.

‘.'u_ egt . a 1 - ‘ P“. #1 ‘_ ,1. _ _9 ;:te_

Caution needs to be taken in any sequentially related

testing procedure. To achieve the desired significance

level, sometimes, the criteria for the choice of the

significance level at each stage needs to be adjusted. At
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other times, corrections need to be made for estimation and

tests of hypotheses.

In Chapter IV, the actual size of the homogeneity test

for large 1 with all small samples (n, = 20) was found to be

greater than the preset a value (see Table 2 and Figure

4.1.4). In other words, there was a slightly higher chance

(up to about 0.05 more) that homogeneity of effects would be

falsely rejected for large 1 with small samples than for

smaller 1 with large samples. Results in Chapter V showed

that the use of an incorrect 1 test (i.e., with an incorrect

variance) was associated with greater type I and type II

error rates when homogeneity of effects was falsely rejected

than when homogeneity was falsely accepted.

Meta-analysts who encounter many studies all with small

samples need to be aware that the homogeneity test has an

inflated type I error rate. Also subsequent 1 tests,

erroneously computed with random-effects variances, will be

much less sensitive to the magnitude of the common effect.

In order to maintain a desired statistical error rate for E.

for example 0.05, one may want to lower the nominal a level

to 0.025 (for which simulated power was around 0.066) for

the homogeneity test with many studies all having sample

sizes less than or equal 20.

Power values and the type I error rates for the second-

stage 1 tests were computed for selected cases to examine

the consequences of lowering the a level from 0.05 to 0.025
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for the homogeneity test at the first stage. For 1 = 30, n

= 20, and homogeneous effect sizes with common effect 6 ll

0

the actual rejection rate of H was 0.0780 for a nominal a =

0.05. The actual rejection rate for the 1, test was 0.0185

when homogeneity was falsely rejected, and was 0.0435 for 1,

when homogeneity was correctly rejected. For the same

values of 1 and n for the homogeneity test with a = 0.025,

the rejection rate of H was 0.0465. And the rejection rate

for 1, test was 0.020 when homogeneity was falsely rejected,

and the chance of rejecting was 0.0425 when homogeneity was

correctly rejected.

The total rejection rates for the second-stage 1 tests

at the 0.05 level, P(R2), were compared under the first-

stage a values of 0.05 and 0.025 and can be written as

below:

P(R2) = P(R2|R1)P(R1) + P(R2|R°1)[l - P(R1)], (43)

where

P(R1) = the rejection rate of H at stage one,

P(R°1) = 1 - P(R1),

P(R2|R1) = the chance of rejecting Ho: u, = 0,

given that homogeneity has been rejected, and

P(R,|R91) = the chance of rejecting Ho: u, = 0,

given that homogeneity has been accepted.

For a = 0.05 at stage one:

P(R2) = (0.0185)(0.0780) + (0.0435)(0.9220) = 0.0416.
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For a = 0.025 at stage one:

P(R2) = (0.0200)(0.0465) + (0.0425)(0.9535) = 0.0415.

Thus here reducing the first-stage a does not impact

the size of the 1 test procedure at all. When effect sizes

were homogeneous with common effect 6 = 0.2, the rejection

rates at the second stage, for first-stage a values 0.05 and

0.025 are,

for a = 0.05 at stage one,

P(R2) = (0.6100)(0.0860) + (0.7565)(0.9140) = 0.7439,

and for a = 0.025 at stage one,

P(R2) = (0.6140)(0.0465) + (0.7690)(0.9535) = 0.7618.

The lower a value at stage one here is associated with

a slight increase in power at stage 2, which is beneficial

since the stage 2 hypothesis is false (6 = 0.2). When

effect sizes were heterogeneous with average effect u, = 0,

the rejection rates at the second stage under first-stage a

values 0.05 and 0.025 are,

for a = 0.05 at stage one,

P(R2) = (0.0160)(0.1815) + (0.0420)(0.8185) = 0.0373,

and for a = 0.025 at stage one,

P(R2) = (0.0150)(0.1210) + (0.0400)(0.8790) = 0.0370.

Again the change in the type I error rate is minimal,

thus the reduce of stage-one a does not naturally affect the
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stage-two a value. When effect sizes were heterogeneous

with average effect u, = 0.2, the rejection rates at the

second stage for first-stage a values 0.05 and 0.025 are,

for a = 0.05 at stage one,

P(R2) = (0.5865)(0.1890) + (0.7635)(0.8110) = 0.7300,

and for a = 0.025 at stage one:

P(R2) = (0.5775)(0.1235) + (0.7625)(0.8765) = 0.7397.

Again a slight power increase is seen, though it is

only minimal. However, in none of these instances is a

reduction in stage-one 0 associated with detrimental effects

at stage two. From the above comparison, one can conclude

that lowering the significant level for the homogeneity test

at the first stage when 1 2 30, and n s 20, is appropriate.

When the first-stage-test a was lowered from 0.05 to 0.025,

the false rejection rates for the second-stage 1 tests were

slightly decreased (for 6, or #5 = 0), and the total power

of these 1 tests increased (for 6, or ”51¢ 0).

One can also consider other approaches such as

categorizing the data into homogeneous subgroups instead of

using the random-effects test after rejection of

homogeneity, until more is learned about the estimate of the

variance of the p0pulation effects.



CHAPTER VI

CONCLUSIONS AND IMPLICATIONS

This Chapter includes six sections. First I give an

example with empirical data to illustrate how power of the

homogeneity test can be useful to integrative reviewers.

Second I summarize the simulation study. Then I discuss the

results of the simulation, including the power of the

homogeneity test, and the power of the sequential 1 testing

procedure. Fifth, I present some practical implications for

integrative reviews. And finally, I make suggestions for

further research related to effect-size meta-analysis.

Em

The theoretical power of the homogeneity test was

computed for a subset of data originally from the published

reviews by Steinkamp and Maehr (1983, 1984) and reanalyzed

by Becker (1989). Five studies with six samples on gender

and Geology achievement were chosen. Power was computed for

two sets of fixed-effects population effects: (0, 0, 0, 0,

0, 0.5), and (0, 0, 0.2, 0.2, 0.4, 0.4). The number of

effects was 1 = 6, and the sample sizes, conditional

variances of effects 03(gil6i), and noncentrality parameter

A. for the noncentral chi-square are listed in Tables 60 and

61.
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Table 60

Computation of Honcentrality Parameter for

the One-Extreme-Value Example

 

 

 

 

 

 

n n 61 (a, - 5.): w (9161) (a; - 6-)’/c’(911|5_1_)

52 54 0 .00694 .0378 .1839

46 47 0 .00694 .0430 .1614

458 430 0 .00694 .0045 1.5397

47 47 0 .00694 .0426 .1632

64 56 0 .00694 .0335 .2074

48 48 0.5 .24174 .0430 5.6258

A. = 7.8814

Table 61

Computation of Noncentrality Parameter for

the Three-Equal-Values Example

n“ n" a, (61 - 5.): a= (9.16;) (61 - 6.)=/a= (91161)

52 54 0 .04 .0378 1.0596

46 47 0 .04 .0430 .9298

458 430 0.2 .00 .0045 .0000

47 47 0.2 .00 .0428 .0000

64 56 0.4 .04 .0341 1.1714

48 48 0.4 .04 .0425 .9412

 

A. = 4.1020
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For the given samples, power to detect the "true"

heterogeneity for population effects including only one

distinct value of 0.5 was about 0.55 (A. = 7.8814, g; = 5).

With the given set of samples, the homogeneity test can

detect true differences (with the single distinct value

being 0.5) more than half of the time. Power decreases as

the one extreme value decreases. In other words, if the

extreme value was less than 0.5, the homogeneity test would

be less likely to reject the homogeneity of effects.

Power for population effects with three equal values

(with an average of 0.2) was about 0.42 (1. 4.1020, gt = 5).

With the given set of data, homogeneity would be rejected

slightly less than half of the time. Again, when the values

of effects decrease or increase, the power of the

homogeneity test will decrease or increase accordingly.

The homogeneity test is also sensitive to the

dispersion of effects. Even though the mean effect of the

three-equal-values set (0.2) was greater than the mean

effect of the one-extreme-value set (0.0833), power of the

homogeneity was higher for the sets of effects that

contained one extreme values.

Summary

Effect-size meta-analysis has enabled research

syntheses to become quantitatively more precise through

analyses of standardized effect sizes from primary studies.
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Hedges & Olkin (1985) present both an unbiased estimator of

effect size and a homogeneity test for effect-size data.

They recommend examining the consistency of the effect sizes

before applying any test for the magnitude of the common or

average effect across studies. In this research, I derived

an approximate distribution for the homogeneity test under

alternative models, and then studied the power of the

homogeneity test through numerical simulation. I also

explored the impact of decisions about homogeneity of effect

sizes on subsequent tests of effect magnitude. Suggestions

were made to assist meta-analysts in maintaining desirable

statistical error rates.

The Poygr of the Homogeneity Test

The H statistic or homogeneity test had an asymptotic

central chi-squared distribution when effect sizes were

homogeneous, that is, under the null hypothesis. In the

fixed-effects case, when alternative hypotheses were true,

the distribution of the H statistic was well approximated by

a noncentral chi-squared distribution. These theoretical

distributions fit quite well with the simulated

distributions for effect sizes based on large samples. The

asymptotic distributions tended to underestimate power when

some effects had extreme values or when large numbers of

effects were based on small samples (e.g., total within-

study sample sizes of n, = 20).
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When effects are homogeneous, the power of H should

equal the a level or size of the test. In most cases the

nominal and simulated significance levels were quite close.

However, simulation data indicated that for a nominal a

level of 0.05, the proportion of false rejections approached

0.10 for situations in which 1 = 30 and n, = 20. Simulated

significance levels were close to the nominal a level when

sample sizes were larger (n1 2 60). When encountering many

studies (for 1 2 30) all or many of which have small samples

(e.g., n, s 20) meta-analysts may wish to lower the nominal

a level of the homogeneity test to 0.025 to achieve an

actual a nearer to 0.05.

In the random-effects case, under alternative

hypotheses, the distribution of H could not be presented in

a simple form. The nonnull distribution of H is a

combination of many noncentral chi-squared distributions.

Theoretical power values based on the combination of

noncentral chi-squares corresponded closely to the simulated

values for the random-effects case.

The nger of the z Tests

Based on the particular decision about homogeneity from

the H test, a "second-stage" 1 test of effect magnitude can

be calculated. If homogeneity is accepted, the estimate of

the fixed-effects within-study variance is applied in the 1,

test. When homogeneity is rejected, the estimate of the
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random-effects variance would be used to compute 1,. The

power functions of 1, and 1, were examined in this

dissertation. In general, the theoretical power values were

lower than the simulated values for the fixed-effects tests,

and higher for the random-effects tests.

Power values were also compared for 1 tests calculated

with the fixed-effects variance (1,) versus tests with the

random-effects variance (1,), i.e., tests calculated in the

presence of a statistical error at stage one of testing.

Power values were always higher for the fixed-effects tests

(1,) than for the random-effects tests (1,) in these cases.

When homogeneity was falsely accepted, the more powerful

fixed-effects tests would be applied. When homogeneity was

falsely rejected, the much less powerful random-effects

tests would be applied.

To prevent the 1, test from having excessively low

power for homogeneous effects, the Type I error rate (the

rate of false rejection) of the homogeneity test should be

limited. This recommendation is consistent with the

recommendation based on the simulation study of the

homogeneity tests above. In order to maintain, if not to

reduce, the rate of false rejection, the a level of 0.05 for

the homogeneity test may be lowered for effect sizes based

on many small samples.
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r t m c t' s

The study of the power of the homogeneity test and the

power of the subsequent 1 test was useful theoretically in

understanding the distributions of both statistics.

Practically, these distributions enable reviewers to

estimate the power of the homogeneity tests and to adjust

for possible inflation of statistical errors. Studying the

sequential process in meta-analysis gives a sense of the

impact of the first-stage homogeneity test on the second-

stage 1 test.

Simulation results showed that when many studies have

small samples homogeneity tests were likely to be falsely

rejected and thus cause the subsequent 1 test to lack power.

Classifying effects into homogenous subgroups, or applying

more complicated linear models are alternative approaches in

which the reviewer explains variation among the effects.

Meta-analysts were advised to adjust the significance level

of the homogeneity test. However, a more general suggestion

to researchers should be to include more subjects (i.e.,

large samples) in primary studies. It is always better to

integrate studies of higher quality or with stronger

evidence.

Su es '0 s o rt er esearc

More needs to be learned about the estimator of the

population variance component, which figures in random-
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effects 1 tests. The estimator proposed by Hedges 6 Olkin

(1985) had an asymptotic normal distribution but the small-

sample behavior of the estimator is unexplored. The

variance of the estimator as well as the behavior of the

estimator for different numbers of studies or sample sizes

should be further studied.
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CHOOSING THE NUMBER OF REPLICATIONB FOR SIMULATION

Simulated power values are measured by the proportion of

replications. We want to be able to draw a 95% confidence

intervals for these proportions. With 1 replications, the

proportions are approximately normally distributed with an

expected value n, and a variance of u(1-n)/H. We can write:

”(l-n)

2 ~ N (n, ).

n

 

Let n = .95, and let the desired 95% confidence interval for

the proportion be p i .01. That is,

 

 

.95 (1-.95)

R

The solution of this equation gives 1 = 1827. Thus, I choose

1 = 2000 as the number of replications for the simulation.
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Table 62

 

Values of Sample Sizes Used in Simulation Study
 

 

 

   

¢ 1 - 201 601 1201 2001

.5 n; = 10, 10 30, 30 60, 60 100, 100

n; = 10, 10 30, 30 60, 60 100, 100

.35 7, 13 20, 40 42, 78 70, 130

7, 13 20, 40 42, 78 70, 130

.5 6, 6 18, 18 36, 36 60, 60

14, 14 42, 42 84, 84 140, 140

.35 4, 8 12, 24 24, 48 40, 80

10, 18 30, 54 60, 108 100, 180

.5 11 = 10, 10 30, 30 60, 60 100, 100

n; = 10, 10 30, 30 60, 60 100, 100

n; = 10, 10 30, 30 60, 60 100, 100

an = 10, 10 30, 30 60, 60 100, 100

D5 = 10, 10 30, 30 60, 60 100, 100

.35 7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

.5 7, 8 22, 23 45, 45 75, 75

10, 10 30, 30 60, 60 100, 100

10, 10 30, 30 60, 60 100, 100

10, 10 30, 30 60, 60 100, 100

12, 13 37, 38 75, 75 125, 125

.35 4, 11 15, 30 32, 58 52, 98

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

9, 16 26, 49 52, 98 87, 163 
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Values of Sample Sizes Used in Simulation Study

 

 

 

1 n 6 n = 201 601, 1201 2001

10 1 .5 a; = 10, 10 30, 30 60, 60 100, 100

n; a 10, 10 30, 30 60, 60 100, 100

13 = 10, 10 30, 30 60, 60 100, 100

04 = 10, 10 30, 30 60, 60 100, 100

as = 10, 10 30, 30 60, 60 100, 100

n, = 10, 10 30, 30 60, 60 100, 100

n, = 10, 10 30, 30 60, 60 100, 100

61 = 10, 10 30, 30 60, 60 100, 100

ng = 10, 10 30, 30 60, 60 100, 100

1110= 10, 10 30, 30 60, 60 100, 100

.35 7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130'

7, 13 21, 39 42, 78 70, 130

7, 13 21, 39 42, 78 70, 130

2 .5 5, 5 15, 15 30, 30 50, 50

6, 6 18, 18 36, 36 60, 60

7, 7 21, 21 42, 42 70, 70

7, 7 21, 21 42, 42 70, 70

8, 8 24, 24 48, 48 80, 80

8, 8 24, 24 48, 48 80, 80

9, 9 27, 27 54, 54 90, 90

10, 10 30, 30 60, 60 100, 100

15, 15 45, 45 90, 90 150, 150

25, 25 75, 75 150, 150 250, 250

.35 3, 7 10, 20 21, 39 35, 65

4, 8 13, 23 25, 47 42, 78

5, 9 15, 27 29, 55 49, 91

5, 9 15, 27 29, 55 49, 91

6, 10 17, 31 34, 62 56, 104

6, 10 17, 31 34, 62 56, 104

6, 12 19, 35 38, 70 63, 117

7, 13 21, 39 42, 78 70, 130

11, 19 31, 59 63, 117 105, 195

17, 33 52, 98 105, 195 175, 325   
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Table 62 --- Continued

 

Values of Sample Sizes Used in Simulation Study

 

 

 

1 1r 9 n = LO}; 601 12% 2001

30 1 .5 £11 -- 10, 10 30, 30 60, 60 100, 100

n, = 10, 10 30, 30 60, 60 100, 100

13 = 10, 10 30, 30 60, 60 100, 100

:14 = 10, 10 30, 30 60, 60 100, 100

115 = 10, 10 30, 30 60, 60 100, 100

116 = 10, 10 30, 30 60, 60 100, 100

117 =- 10, 10 30, 30 60, 60 100, 100

Be :- 10, 10 30, 30 60, 60 100, 100

119 =- 10, 10 30, 30 60, 60 100, 100

I110 = 10, 10 30, 30 60, 60 100, 100

3211 = 10, 10 30, 30 60, 60 100, 100

1112 == 10, 10 30, 30 60, 60 100, 100

, 1113 =- 10, 10 30, 30 60, 60 100, 100

n“ = 10, 10 30, 30 60, 60 100, 100

115 = 10, 10 30, 30 60, 60 100, 100

116 = 10, 10 30, 30 60, 60 100, 100

I117 = 10, 10 30, 30 60, 60 100, 100

118 = 10, 10 30, 30 60, 60 100, 100

119 = 10, 10 30, 30 60, 60 100, 100

£20 = 10, 10 30, 30 60, 60 100, 100

.021 = 10, 10 30, 30 60, 60 100, 100

122 = 10, 10 30, 30 60, 60 100, 100

123 =- 10', 10 30, 30 60, 60 100, 100

124 = 10, 10 30, 30 60, 60 100, 100

125 = 10, 10 30, 30 60, 60 100, 100

126 =- 10, 10 30, 30 60, 60 100, 100

12., = 10, 10 30, 30 60, 60 100, 100

:12, = 10, 10 30, 30 60, 60 100, 100

1129 =- 10, 10 30, 30 60, 60 100, 100

1130 a 10, 10 30, 30 60, 60 100, 100     
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Table 62 --- Continued

 

Values of Sample Sizes Used in Simulation Study

 

 

 

 

1 1r 6: n = 201 601 1201 2001

30 1 .35 111 = 7, 13 21, 39 42, 78 70, 130

112 = 7, 13 21, 39 42, 78 70, 130

113 = 7, 13 21, 39 42, 78 70, 130

.84 = 7, 13 21, 39 42, 78 70, 130

as = 7, 13 21, 39 42, 78 70, 130

D6 = 7, 13 21, 39 42, 78 70, 130

n, = 7, 13 21, 39 42, 78 70, 130

D8 = 7, 13 21, 39 42, 78 70, 130

119 = 7, 13 21, 39 42, 78 70, 130

1110 = 7, 13 21, 39 42, 78 70, 130

1111 = 7, 13 21, 39 42, 78 70, 130

1112 = 7, 13 21, 39 42, 78 70, 130

1113 = 7, 13 21, 39 42, 78 70, 130

11, = 7, 13 21, 39 42, 78 70, 130

1115 = 7, 13 21, 39 42, 78 70, 130

1116 = 7, 13 21, 39 42, 78 70, 130

£17 = 7, 13 21, 39 42, 78 70, 130

1118 = 7, 13 21, 39 42, 78 70, 130

119 = 7, 13 21, 39 42, 78 70, 130

120 = 7, 13 21, 39 42, 78 70, 130

121 = 7, 13 21, 39 42, 78 70, 130

122 = 7, 13 21, 39 42, 78 70, 130

1123 = 7, 13 21, 39 42, 78 70, 130

12, = 7, 13 21, 39 42, 78 70, 130

1125 = 7, 13 21, 39 42, 78 70, 130

325 = 7, 13 21, 39 42, 78 70, 130

12., - 7, 13 21, 39 42, 78 70, 130

1128 = 7, 13 21, 39 42, 78 70, 130

1129 .. 7, 13 21, 39 42, 78 70, 130

1130 = 7, 13 21, 39 42, 78 70, 130   
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Table 62 --- Continued

 

Values of Sample Sizes Used in Simulation Study

 

 

 

1 n o H = 201 601 1201 2001

30 2 .5 n, a 2, 2 6, 6 12, 12 20, 20

n, = 3, 3 9, 9 18, 18 30, 30

n3 = 3, 3 9, 9 18, 18 30, 30

n4 = 3, 3 9, 9 18, 18 30, 30

ns = 4, 4 12, 12 24, 24 40, 40

ns = 6, 6 18, 18 36, 36 60, 60

n7 = 6, 6 18, 18 36, 36 60, 60

De = 6, 6 18, 18 36, 36 60, 60

n, = 6, 6 18, 18 36, 36 60, 60

nlo = 6, 6 18, 18 36, 36 60, 60

n11 = 6, 6 18, 18 36, 36 60, 60

3112 = 7, 7 21, 21 42, 42 70, 70

1113 = 7, 7 21, 21 42, 42 70, 70

n14 = 7, 7 21, 21 42, 42 70, 70

n15 = 8, 8 24, 24 48, 48 80, 80

n16 = 8, 8 24, 24 48, 48 80, 80

n17 == 8, 8 24, 24 48, 48 80, 80

n18 = 8, 8 24, 24 48, 48 80, 80

n49 = 11, 11 33, 33 66, 66 110, 110

Ibo = 11, 11 33, 33 66, 66 110, 110

n21 = 11, 11 33, 33 66, 66 110, 110

n22 = 12, 12 36, 36 72, 72 120, 120

n23 = 12, 12 36, 36 72, 72 120, 120

n24 a 14, 14 42, 42 84, 84 140, 140

1125 a 17, 17 51, 51 102, 102 170, 170

n26 = 17, 17 51, 51 102, 102 170, 170

n27== 17, 17 51, 51 102, 102 170, 170

n28 = 20, 20 60, 60 120, 120 200, 200

n,, = 20, 20 60, 60 120, 120 200, 200

n30 = 34, 34 102, 102 204, 204 340, 340    
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Table 62 --- Continued

 

Values of Sample Sizes Used in Simulation Study

 

 

1 1r 6 g:- 201 601, ROLL 2001 ,

30 2 .35 D1 ... 2, 2 4, 8 8, 16 14, 26

n; =- 2, 4 6, 12 13, 23 21, 39

n; = 2, 4 6, 12 13, 23 21, 39

:14 =- 2, 4 6, 12 13, 23 21, 39

£5 = 3, 5 8, 16 17, 31 28, 52

16 = 4, 8 13, 23 25, 47 42, 78

117 = 4, 8 13, 23 25, 47 42, 78

Da = 4, 8 13, 23 25, 47 42, 78

n, = 4, 8 13, 23 25, 47 42, 78

1110 = 4, 8 13, 23 25, 47 42, 78

D11 = 4, 8 13, 23 25, 47 42, 78

1112 = 5, 9 15, 27 29, 55 49, 91

113 = 5, 9 15, 27 29, 55 49, 91

11, = 5, 9 15, 27 29, 55 49, 91

115 = 6, 10 17, 31 33, 63 56, 104

1116 = 6, 10 17, 31 33, 63 56, 104

1117 = 6, 10 17, 31 33, 63 56, 104

118 = 6, 10 17, 31 33, 63 56, 104

1119 =- 8, 14 23, 43 46, 86 77, 143

£20 == 8, 14 23, 43 46, 86 77, 143

321 = 8, 14 23, 43 46, 86 77, 143

322 = 8, 16 25, 47 50, 94 84, 156

1123 =- 8, 16 25, 47 50, 94 84, 156

1124 =- 10, 18 29, 55 59, 109 98, 182

1125 a 12, 22 36, 66 71, 133 119, 221

1126 = 12, 22 36, 66 71, 133 119, 221

112, - 12, 22 36, 66 71, 133 119, 221

1128 -- 14, 26 42, 78 84, 156 140, 260

1129 = 14, 26 42, 78 84, 156 140, 260

830 = 24, 44 71, 133 143, 265 238, 422     
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Table 63

 Values of 65s Used in the Simulation for 1 = 2

 

 

   

 

set = 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 .1 .25 .S .75 1

Table 64

Values of s Used in the Simulation for 1 8

S 6 7 8 9

0 0 0

.1 .2

O

0

0 .1 .2

0 .2 .4

7 5 .2 .4
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Table 66 --- Continued

 

Values of 65s Used in the Simulation for 1 8 30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

set 8 12 13 14 15 16 17 18 19 20 21 22

1 0 0 0 0 O 0 0 0 0 0 0

2 0 O 0 0 0 0 O 0 O O 0

3 0 0 0 0 O 0 0 0 0 0 0

4 0 0 O 0 0 0 O 0 0 0 0

S 0 O 0 0 O 0 0 0 0 0 0

6 O 0 0 0 0 0 O 0 O O 0

7 0 0 0 0 0 0 .05 .1 .15 .2 .25

8 0 0 0 0 O 0 .05 .1 .15 .2 .25

9 0 O O 0 O 0 .05 .1 .15 .2 .25

10 0 0 0 0 0 0 .05 .1 .15 .2 .25

11 .1 .2 .25 .3 .4 .5 .05 .1 .15 .2 .25

12 .1 .2 .25 .3 .4 .S .05 .1 .15 .2 .25

13 .1 .2 .25 .3 .4 .5 .1 .2 .3 .4 .5

14 .1 .2 .25 .3 .4 .5 .1 .2 .3 .4 .5

15 .1 .2 .25 .3 .4 .5 .1 .2 .3 .4 .5

16 .1 .2 .25 .3 .4 .5 .1 .2 .3 .4 .S

17 .1 .2 .25 .3 .4 .5 .1 .2 .3 .4 .5

18 .1 .2 .25 .3 .4 .S .1 .2 .3 .4 .5

19 .1 .2 .25 .3 .4 .5 .15 .3 .45 .6 .75

20 .1 .2 .25 .3 .4 .5 .15 .3 .45 .6 .75

21 .2 .4 .5 .6 .8 1 .15 .3 .45 .6 .75

22 .2 .4 .5 .6 .8 1 .15 .3 .45 .6 .75

23 .2 .4 .5 .6 .8 1 .15 .3 .45 .6 .75

24 .2 .4 .5 .6 .8 1 .15 .3 .45 .6 .75

25 .2 .4 .5 .6 .8 l .2 .45 .6 .8 1

26 .2 .4 .5 .6 .8 1 .2 .45 .6 .8 1

27 .2 .4 .5 .6 .8 l .2 .45 .6 .8 1

28 .2 .4 .5 .6 .8 1 .2 .45 .6 .8 1

29 .2 .4 .5 .6 .8 1 .2 .45 .6 .8 1

3O .2 .4 .5 .6 .8 1 .2 .45 .6 .8 1 
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Table 67

s with One Extreme value

‘(a

 

 

 

by H and 1 0.10)

1*n 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .104(4) .123(4) .190(4) .294(4) .421(4) .2265(20)

2(60) .111(4) .167(4) .355(4) .596(4) .800(4) .4062(20)

2(120) .122(4) .235(4) .561(4) .847(4) .969(4) .5470(20)

2(200) .137(4) .319(4) .750(4) .963(4) .998(4) .6333(20)

5(20) .103(4) .120(4) .183(4) .289(4) .426(4) .2245(20)

5(60) .110(4) .163(4) .361(4) .639(4) .857(4) .4260(20)

5(120) .120(4) .230(4) .612(4) .906(4) .990(4) .5694(20)

5(200) .133(4) .321(4) .815(4) .989(4) .000(4) .6515(20)

10(20) .103(4) .121(4) .189(4) .308(4) .462(4) .2365(20)

10(60) .110(4) .166(4) .391(4) .681(4) .867(4) .4431(20)

10(120) .120(4) .241(4) .646(4) .908(4) .986(4) .5803(20)

10(200) .134(4) .346(4) .835(4) .985(4) .000(4) .6598(20)

30(20) .102(4) .116(4) .169(4) .270(4) .406(4) .2128(20)

30(60) .107(4) .151(4) .344(4) .605(4) .773(4) .3960(20)

30(120) .115(4) .213(4) .575(4) .817(4) .944(4) .5327(20)

30(200) .126(4) .302(4) .743(4) .940(4) .996(4) .6213(20)

Note:

(0, ..
’I

The pattern of 6, values with one extreme value was

0, 6).
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Table 67.a

Means of Simulated Power of H for 6 s with One Extreme Value

by H and 1 (c =10.10)

1*n 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .103(4) .131(4) .183(4) .283(4) .415(4) .2228(20)

2(60) .109(4) .163(4) .350(4) .597(4) .800(4) .4038(20)

2(120) .123(4) .233(4) .560(4) .849(4) .974(4) .5475(20)

2(200) .141(4) .320(4) .745(4) .966(4) .996(4) .6334(20)

5(20) .118(4) .130(4) .196(4) .302(4) .447(4) .2386(20)

5(60) .113(4) .166(4) .362(4) .656(4) .871(4) .4337(20)

5(120) .120(4) .235(4) .602(4) .913(4) .993(4) .5726(20)

5(200) .123(4) .319(4) .830(4) .990(4) .000(4) .6524(20)

10(20) .133(4) .147(4) .220(4) .336(4) .502(4) .2677(20)

10(60) .117(4) .177(4) .401(4) .700(4) .883(4) .4556(20)

10(120) .124(4) .241(4) .656(4) .913(4) .992(4) .5853(20)

10(200) .135(4) .344(4) .848(4) .987(4) .000(4) .6626(20)

30(20) .168(4) .173(4) .229(4) .328(4) .466(4) .2727(20)

30(60) .121(4) .166(4) .369(4) .625(4) .801(4) .4163(20)

30(120) .116(4) .226(4) .595(4) .831(4) .961(4) .5457(20)

30(200) .131(4) .312(4) .756(4) .951(4) 1.000(4) .6297(20)

Note:

(0, ..
“I

The pattern of 6, values with one extreme value was

0, 6).
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Table 68

Means of Power of H for 6,s with Two Extreme values

by H and 1 (a = 0.10)

 

1*H 6 = 0.10 0.25 0.50 0.75 1.00 Total

 

10(20) .105(4) .130(4) .232(4) .410(4) .510(4) .2776(20)

10(60) .114(4) .198(4) .524(4) .853(4) .976(4) .5330(20)

10(120) .129(4) .310(4) .819(4) .989(4) 1.000(4) .6495(20)

10(200) .150(4) .460(4) .960(4) 1.000(4) 1.000(4) .7141(20)

30(20) .104(4) .125(4) .216(4) .384(4) .580(4) .2819(20)

30(60) .112(4) .185(4) .495(4) .796(4) .937(4) .5049(20)

30(120) .124(4) .289(4) .766(4) .965(4) .999(4) .6288(20)

30(200) .142(4) .434(4) .915(4) .998(4) 1.000(4) .6979(20)

 

Note: The pattern of 5i values with two extreme values was

(0, ..., 0, 6, 67.

Table 68.a

Means of Simulated Power of H for 6,s with Two Extreme

Values by H and 1 (a = 0.10)

 

1*1 6 = 0.10 0.25 0.50 0.75 1.00 Total

 

10(20) .131(4) .163(4) .254(4) .432(4) .628(4) .3015(20)

10(60) .120(4) .200(4) .535(4) .864(4) .982(4) .5398(20)

10(120) .138(4) .317(4) .827(4) .992(4) 1.000(4) .6547(20)

10(200) .156(4) .472(4) .956(4) 1.000(4) 1.000(4) .7166(20)

30(20) .164(4) .185(4) .274(4) .435(4) .639(4) .3396(20)

30(60) .129(4) .199(4) .516(4) .810(4) .959(4) .5228(20)

30(120) .133(4) .302(4) .775(4) .973(4) .999(4) .6364(20)

30(200) .138(4) .424(4) .921(4) .998(4) 1.000(4) .8957(20)

 

Note: The pattern of 51 values with two extreme values was

(0, ..., 0, 6, 6T.
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Table 69

Means of Power of H for Three Equal Subsets of 61s

by H and 1 (a = 0.10)

 

 

 

1*n 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .110 .140 .163 .191 .265 .356 .2042(24)

5(60) .130 .227 .301 .391 .590 .772 .4019(24)

5(120) .162 .362 .503 .648 .873 .971 .5864(24)

5(200) .206 .529 .713 .855 .980 .999 .7135(24)

10(20) .114 .159 .195 .240 .360 .506 .2622(24)

10(60) .144 .296 .416 .553 .805 .946 .5264(24)

10(120) .192 .508 .704 .858 .985 .999 .7076(24)

10(200) .261 .736 .909 .980 1.000 1.000 .8143(24)

30(20) .123 .206 .277 .369 .595 .805 .3957(24)

30(60) .177 .477 .684 .853 .987 1.000 .6962(24)

30(120) .271 .806 .956 .995 1.000 1.000 .8378(24)

30(200) .410 .968 .999 1.000 1.000 1.000 .8960(24)

Note: The pattern of three equal subsets of 6, values was

(0'00.’ 0, 6,..., 6’ 26,000, 26) .
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Means of Simulated Power of H for Three Equal Subsets of 6,3

by H and 1 (a = 0.10)

 

 

 

1*n 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .122 .160 .173 .216 .273 .372 .2193(24)

5(60) .134 .231 .306 .400 .584 .773 .4046(24)

5(120) .164 .365 .511 .649 .874 .972 .5890(24)

5(200) .206 .528 .710 .856 .981 .999 .7133(24)

10(20) .137 .192 .217 .260 .372 .524 .2837(24)

10(60) .144 .307 .425 .557 .801 .948 .5304(24)

10(120) .195 .503 .709 .853 .987 1.000 .7077(24)

10(200) .250 .740 .905 .980 1.000 1.000 .8125(24)

30(20) .190 .272 .349 .426 .625 .819 .4468(24)

30(60) .190 .487 .689 .851 .987 1.000 .7007(24)

30(120) .269 .802 .959 .992 1.000 1.000 .8370(24)

30(200) .407 .969 .998 1.000 1.000 1.000 .8957(24)

Note: The pattern of three equal subsets of 6, values was

(0,000, 0’ 6,000, 6' 26,000, 26)0
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Table 70

Means of Power of g for Five Equal Subsets of 6;s

 

 

 

by E and L (a = .10)

3*3 £6 = 0.10 0.20 0.30 0.40 0.50 Total

10(20) .112 .149 .216 .316 .442 .2470(20)

10(60) .136 .262 .484 .730 .902 .5029(20)

10(120) .176 .444 .789 .964 .998 .6742(20)

10(200) .234 .657 .955 1.000 1.000 .7690(20)

30(20) .117 .177 .294 .469 .669 .3451(20)

30(60) .156 .374 .723 .944 .996 .6386(20)

30(120) .223 .669 .970 1.000 1.000 .7722(20)

30(200) .323 .898 .999 1.000 1.000 .8442(20)

Note: The pattern of three equal subsets of 8‘6 values was

Table 70.a

(0,..., o, 956,...,!56, 6,...,6, 1355,...,1!5 , 26,...,26).

Means of Simulated Power of H for Five Equal Subsets of 61s

by H and 5 (a = 0.10)

 

 

 

3*g k6 = 0.10 0.20 0.30 0.40 0.50 Total

10(20) .139 .184 .245 .336 .460 .2727(20)

10(60) .143 .270 .485 .737 .902 .5073(20)

10(120) .181 .439 .791 .967 .997 .6750(20)

10(200) .233 .654 .952 .997 1.000 .7675(20)

30(20) .186 .253 .352 .515 .703 .4018(20)

30(60) .185 .388 .729 .943 .995 .6481(20)

30(120) .233 .671 .970 1.000 1.000 .7748(20)

30(200) .324 .904 1.000 1.000 1.000 .8455(20)

Note: The pattern of three equal subsets of 6 values was

(0,..., 0,5k6,...,k6, 6,...,6, 1k6,...,18 , 26,...,26).
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Table 71

Means of Power of g for 6 s with One Extreme Value

by Q and 5 e = 0.025)

3*g 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .027(4) .035(4) .068(4) .126(4) .213(4) .0937(20)

2(60) .030(4) .056(4) .166(4) .362(4) .599(4) .2427(20)

2(120) .035(4) .092(4) .330(4) .668(4) .899(4) .4046(20)

2(200) .014(4) .142(4) .532(4) .885(4) .988(4) .5173(20)

5(20) .026(4) .033(4) .061(4) .119(4) .213(4) .0905(20)

5(60) .029(4) .052(4) .166(4) .404(4) .685(4) .2670(20)

5(120) .033(4) .085(4) .366(4) .768(4) .962(4) .4426(20)

5(200) .033(4) .139(4) .620(4) .956(4) .999(4) .5505(20)

10(20) .026(4) .033(4) .063(4) .132(4) .249(4) .1001(20)

10(60) .027(4) .053(4) .191(4) .472(4) .732(4) .2953(20)

10(120) .033(4) .091(4) .431(4) .799(4) .954(4) .4616(20)

10(200) .033(4) .156(4) .680(4) .950(4) .998(4) .5649(20)

30(20) .026(4) .031(4) .054(4) .109(4) .210(4) .0868(20)

30(60) .028(4) .045(4) .160(4) .414(4) .632(4) .2557(20)

30(120) .031(4) .076(4) .378(4) .687(4) .863(4) .4070(20)

30(200) .035(4) .130(4) .592(4) .857(4) .981(4) .5190(20)

Note:

(0: 0.0,

The pattern of 61 values with one extreme value was

0, 6).
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Table 71.a

Means of Simulated Power of g tor 6 s with One Extreme Value

by H and L (a = .025)

 

 

 

3*3 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .031(4) .041(4) .068(4) .126(4) .211(4) .0953(20)

2(60) .027(4) .052(4) .168(4) .358(4) .602(4) .2412(20)

2(120) .036(4) .097(4) .328(4) .664(4) .902(4) .4054(20)

2(200) .044(4) .142(4) .525(4) .885(4) .986(4) .5162(20)

5(20) .041(4) .044(4) .079(4) .141(4) .241(4) .1091(20)

5(60) .032(4) .056(4) .175(4) .419(4) .713(4) .2790(20)

5(120) .035(4) .084(4) .369(4) .780(4) .971(4) .4476(20)

5(200) .035(4) .138(4) .633(4) .963(4) .000(4) .5537(20)

10(20) .047(4) .055(4) .094(4) .162(4) .291(4) .1298(20)

10(60) .034(4) .061(4) .203(4) .498(4) .763(4) .3117(20)

10(120) .031(4) .097(4) .440(4) .809(4) .970(4) .4692(20)

10(200) .039(4) .160(4) .695(4) .961(4) .000(4) .5706(20)

30(20) .072(4) .071(4) .103(4) .168(4) .284(4) .1395(20)

30(60) .035(4) .053(4) .182(4) .451(4) .671(4) .2783(20)

30(120) .033(4) .087(4) .393(4) .709(4) .896(4) .4235(20)

30(200) .039(4) .141(4) .607(4) .880(4) .989(4) .5308(20)

Note:

I
o, 6).

The pattern of 61 values with one extreme value was

(0' 000



152

Table 72

Means of Power of g for 61s with Two Extreme values

by H and 5'1e = 0.025)

 

5*Q 6 = 0.10 0.25 0.50 0.75 1.00 Total

 

10(20) .027(4) .037(4) .085(4) .201(4) .297(4) .1294(20)

10(60) .030(4) .068(4) .294(4) .687(4) .924(4) .4006(20)

10(120) .036(4) .131(4) .635(4) .960(4) .999(4) .5521(20)

10(200) .045(4) .240(4) .886(4) .999(4) 1.000(4) .6339(20)

30(20) .026(4) .035(4) .076(4) .185(4) .367(4) .1379(20)

30(60) .029(4) .061(4) .230(4) .637(4) .852(4) .3717(20)

30(120) .034(4) .119(4) .596(4) .904(4) .993(4) .5293(20)

30(200) .041(4) .225(4) .814(4) .992(4) 1.000(4) .6145(20)

 

Note: The pattern of 6 values with two extreme values was

(0’ 000' 0' 6' 6 0

Table 72.a

Means of Simulated Power of g for 61s with Two Extreme

Values by g and 5 (a =‘0.025)

 

3*3 6 = 0.10 0.25 0.50 0.75 1.00 Total

 

10(20) .047(4) .064(4) .107(4) .237(4) .336(4) .1581(20)

10(60) .036(4) .075(4) .312(4) .707(4) .940(4) .4141(20)

10(120) .039(4) .130(4) .643(4) .967(4) .999(4) .5556(20)

10(200) .046(4) .249(4) .883(4) .999(4) 1.000(4) .6354(20)

30(20) .068(4) .081(4) .130(4) .245(4) .448(4) .1943(20)

30(60) .037(4) .072(4) .310(4) .662(4) .886(4) .3932(20)

30(120) .037(4) .133(4) .603(4) .920(4) .997(4) .5381(20)

30(200) .040(4) .224(4) .825(4) .993(4) 1.000(4) .6164(20)

 

Note: The pattern of 6 values with two extreme values was

(0' 000' o, 6, 6 0
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Table 73

Means of Power of n for Three Equal Subsets of 6‘s

 

 

 

by n and 3 (a = 0.025)

3*3 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .029 .041 .052 .065 .105 .162 .0757(24)

5(60) .037 .084 .127 .186 .354 .560 .2246(24)

5(120) .051 .166 .274 .413 .709 .906 .4198(24)

5(200) .072 .297 .486 .681 .931 .993 .5766(24)

10(20) .030 .049 .066 .089 .162 .274 .1117(24)

10(60) .042 .121 .202 .315 .603 .846 .3548(24)

10(120) .064 .276 .472 .682 .944 .997 .5725(24)

10(200) .101 .511 .771 .930 .998 1.000 .7185(24)

30(20) .034 .070 .108 .165 .352 .600 .2213(24)

30(60) .056 .246 .446 .673 .951 .998 .5615(24)

30(120) .104 .602 .868 .976 1.000 1.000 .7583(24)

30(200) .194 .898 .992 1.000 1.000 1.000 .8472(24)

Note: The pattern of three equal subsets of 61 values was

(0,000, 0’ 6,..., a, 26,..., 25).
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Means of Simulated Power of B for Three Equal Subsets of 613

by H and 5 (a = 0.025)

 

 

 

3*3 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .044 .059 .066 .085 .123 .192 .0947(24)

5(60) .041 .089 .130 .193 .355 .561 .2282(24)

5(120) .055 .171 .274 .421 .718 .910 .4248(24)

5(200) .071 .294 .485 .679 .939 .993 .5770(24)

10(20) .048 .073 .093 .108 .188 .308 .1362(24)

10(60) .044 .129 .211 .325 .604 .852 .3606(24)

10(120) .070 .281 .481 .682 .946 .996 .5761(24)

10(200) .095 .513 .771 .936 .998 1.000 .7187(24)

30(20) .084 .130 .172 .241 .407 .644 .2797(24)

30(60) .065 .260 .465 .679 .948 .997 .5688(24)

30(120) .111 .595 .869 .973 1.000 1.000 .7580(24)

30(200) .196 .901 .993 1.000 1.000 1.000 .8482(24)

Note: pattern of three equal subsets of 61 values was

6, 26,..., 26).(0,000, 6,000,
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Table 74

Means of Power or n for Pive Equal Subsets or 61s

by H and K (a = 0.025)

 

 

gtn as = 0.10 0.20 0.30 0.40 0.50 Total

10(20) .029 .045 .077 .134 .222 .1012(20)

10(60) .039 .101 .225 .504 .758 .3316(20)

10(120) .057 .223 .581 .888 .987 .5472(20)

10(200) .086 .420 .867 .993 1.000 .6731(20)

30(20) .031 .056 .117 .240 .428 .1746(20)

30(60) .047 .169 .491 .842 .979 .5057(20)

30(120) .078 .429 .902 .997 1.000 .68l3(20)

30(200) .135 .750 .996 1.000 1.000 .7764(20)

 

Note: The pattern of three equal subsets of 61 values was

(0,000, o, 86'000’k6' 8’000'6’ 1%6'000'1%T' 26’000'26)0

Table 74.a

Means of Simulated Power or B for Five Equal Subsets of 618

with H and L (a = 0.025)

 

 

 

3*n %6 = 0.10 0.20 0.30 0.40 0.50 Total

10(20) .049 .068 .104 .163 .261 .1289(20)

10(60) .043 .110 .257 .517 .767 .3387(20)

10(120) .063 .232 .590 .887 .988 .5519(20)

10(200) .086 .424 .863 .994 1.000 .6733(20)

30(20) .082 .113 .181 .306 .484 .2332(20)

30(60) .057 .178 .502 .846 .977 .5119(20)

30(120) .083 .437 .903 .998 1.000 .6841(20)

30(200) .140 .757 .997 1.000 1.000 .7787(20)

Note: The pattern of three equal subsets of 51 values was

(0'000’0’ *6'000’%6' 6’000'6'1%6'000'1%T’26'000’26)0
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Table 75

Means of Power of g for 6 s with One Extreme Value

by g and 5 a = 0.01)

3*3 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .011(4) .015(4) .033(4) .070(4) .129(4) .0517(20)

2(60) .012(4) .027(4) .096(4) .247(4) .467(4) .1699(20)

2(120) .015(4) .048(4) .220(4) .541(4) .828(4) .3303(20)

2(200) .019(4) .080(4) .401(4) .808(4) .974(4) .4563(20)

5(20) .011(4) .014(4) .029(4) .064(4) .129(4) .0495(20)

5(60) .012(4) .024(4) .096(4) .284(4) .563(4) .1956(20)

5(120) .014(4) .043(4) .251(4) .659(4) .927(4) .3788(20)

5(200) .017(4) .077(4) .493(4) .918(4) .997(4) .5005(20)

10(20) .011(4) .014(4) .030(4) .074(4) .160(4) .0577(20)

10(60) .012(4) .024(4) .115(4) .359(4) .639(4) .2299(20)

10(120) .014(4) .047(4) .319(4) .719(4) .922(4) .4041(20)

10(200) .017(4) .091(4) .579(4) .916(4) .995(4) .5196(20)

30(20) .010(4) .013(4) .025(4) .059(4) .132(4) .0478(20)

30(60) .011(4) .020(4) .094(4) .317(4) .555(4) .1994(20)

30(120) .013(4) .038(4) .281(4) .616(4) .804(4) .3502(20)

30(200) .015(4) .073(4) .509(4) .797(4) .964(4) .4713(20)

Note:

(0, ..
'I

The pattern of 61 values with one extreme value was

0’ 6)0
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Table 75.a

Means of Simulated Power of 5 for 6 s with One Extreme Value

by 5 and 5 (a =Jb.01)

5*n 6 = 0.10 0.25 0.50 0.75 1.00 Total

2(20) .014(4) .020(4) .036(4) .074(4) .133(4) .0553(20)

2(60) .011(4) .025(4) .101(4) .242(4) .474(4) .1704(20)

2(120) .016(4) .051(4) .217(4) .537(4) .835(4) .3313(20)

2(200) .020(4) .077(4) .391(4) .807(4) .974(4) .4537(20)

5(20) .021(4) .022(4) .043(4) .082(4) .162(4) .0667(20)

5(60) .016(4) .026(4) .106(4) .301(4) .606(4) .2111(20)

5(120) .017(4) .047(4) .253(4) .673(4) .943(4) .3865(20)

5(200) .017(4) .076(4) .516(4) .934(4) .999(4) .5082(20)

10(20) .027(4) .027(4) .052(4) .102(4) .205(4) .0825(20)

10(60) .013(4) .030(4) .129(4) .393(4) .679(4) .2487(20)

10(120) .012(4) .051(4) .331(4) .740(4) .940(4) .4148(20)

10(200) .018(4) .093(4) .595(4) .928(4) .997(4) .5261(20)

30(20) .044(4) .043(4) .064(4) .109(4) .200(4) .0919(20)

30(60) .016(4) .025(4) .115(4) .356(4) .598(4) .2219(20)

30(120) .014(4) .046(4) .291(4) .634(4) .844(4) .3658(20)

30(200) .017(4) .080(4) .525(4) .825(4) .978(4) .4849(20)

Note: The pattern of 51 values with one extreme value was

(0, .. 0:'I
m."
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Table 76

Means of Power of a for 6 s with Two Extreme values

by E and 5 (a = 0.01)

 

 

 

5*5 6 = 0.10 0.25 0.50 0.75 1.00 Total

10(20) .011(4) .016(4) .043(4) .121(4) .202(4) .0785(20)

10(60) .013(4) .033(4) .193(4) .572(4) .873(4) .3366(20)

10(120) .016(4) .072(4) .514(4) .927(4) .997(4) .5053(20)

10(200) .020(4) .150(4) .819(4) .996(4) 1.000(4) .5971(20)

30(20) .011(4) .015(4) .038(4) .111(4) .263(4) .0875(20)

30(60) .012(4) .029(4) .186(4) .542(4) .788(4) .3115(20)

30(120) .014(4) .065(4) .497(4) .852(4) .985(4) .4826(20)

30(200) .018(4) .142(4) .744(4) .983(4) 1.000(4) .5773(20)

Note: The pattern of 51 values with two extreme values was

(0, ..., 0, 6, 67.

Table 76.a

Means of Simulated Power of g for 61s with Two Extreme

 

 

 

Values by 5 and 5 (a — 0.01)

5*5 6 = 0.10 0.25 0.50 0.75 1.00 Total

10(20) .025(4) .034(4) .063(4) .156(4) .243(4) .1041(20)

10(60) .015(4) .037(4) .206(4) .595(4) .899(4) .3505(20)

10(120) .019(4) .078(4) .528(4) .936(4) .998(4) .5119(20)

10(200) .022(4) .161(4) .819(4) .997(4) 1.000(4) .5997(20)

30(20) .042(4) .048(4) .083(4) .166(4) .353(4) .1383(20)

30(60) .017(4) .036(4) .212(4) .579(4) .835(4) .3358(20)

30(120) .016(4) .072(4) .507(4) .876(4) .992(4) .4926(20)

30(200) .021(4) .141(4) .751(4) .995(4) 1.000(4) .5796(20)

Note: The pattern of 6 values with two extreme values was

(0: 0:.0, 6, 6 .
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Table 77

Means of Power of E for Three Equal Subsets or 6&8

by 5 and 5 (a = 0.01)

 

 

 

5*5 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .012 .018 .024 .032 .055 .093 .0390(24)

5(60) .016 .042 .069 .110 .241 .430 .1514(24)

5(120) .024 .096 .175 .291 .589 .840 .3359(24)

5(200) .036 .193 .358 .558 .877 .985 .5011(24)

10(20) .013 .022 .032 .045 .092 .175 .0631(24)

10(60) .019 .065 .120 .208 .474 .757 .2737(24)

10(120) .031 .176 .345 .559 .898 .991 .5000(24)

10(200) .052 .382 .663 .876 .996 1.000 .6613(24)

30(20) .014 .033 .056 .094 .237 .471 .1508(24)

30(60) .026 .152 .320 .549 .910 .995 .4917(24)

30(120) .054 .472 .783 .953 1.000 1.000 .7110(24)

30(200) .114 .830 .982 .999 1.000 1.000 .8208(24)

Note: The pattern of three equal subsets of 6; values was

(0,000, 6,000, 6' 26,000, 26) .
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Means of Simulated Power of E for Three Equal Subsets of 6&8

 

 

 

by 5 and 5 (a = 0.01)

5*5 6 = 0.10 0.20 0.25 0.30 0.40 0.50 Total

5(20) .023 .031 .034 .045 .073 .123 .0547(24)

5(60) .020 .043 .069 .120 .242 .434 .1554(24)

5(120) .028 .100 .175 .296 .598 .845 .3404(24)

5(200) .035 .192 .360 .561 .883 .983 .5020(24)

10(20) .025 .038 .052 .066 .120 .215 .0857(24)

10(60) .022 .070 .129 .220 .480 .766 .2811(24)

10(120) .038 .186 .349 .559 .901 .992 .5043(24)

10(200) .050 .381 .665 .883 .995 1.000 .6624(24)

30(20) .053 .081 .112 .162 .301 .528 .2060(24)

30(60) .030 .166 .336 .561 .912 .994 .4998(24)

30(120) .060 .467 .791 .949 1.000 1.000 .7110(24)

30(200) .120 .832 .984 .999 1.000 1.000 .8225(24)

Note: The pattern of three equal subsets of 51 values was

(0,000, -6,000, 5, 26,000, 28).
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Table 78

Means of Power of 5 for live Equal Subsets or 61s

by 5 and 5 (a = 0.01)

 

 

 

5*5 k6 = 0.10 0.20 0.30 0.40 0.50 Total

10(20) .012 .020 .038 .073 .135 .0556(20)

10(60) .017 .053 .160 .375 .646 .2502(20)

10(120) .027 .136 .451 .815 .972 .4800(20)

10(200) .043 .297 .785 .984 1.000 .6218(20)

30(20) .013 .026 .062 .147 .304 .1104(20)

30(60) .021 .096 .362 .752 .958 .4380(20)

30(120) .038 .304 .836 .994 1.000 .6343(20)

30(200) .074 .638 .990 1.000 1.000 .7404(20)

Note: The pattern of three equal subsets of 6 values was

(0,..., O, 356,...,356, 6,...,6, 1356,...,135 , 26,...,26).

Table 78.a

Means of Simulated Power of 5 for Five Equal Subsets of 518

by 5 and 5 (a = 0.01)

 

 

 

5*5 %6 = 0.10 0.20 0.30 0.40 0.50 Total

10(20) .023 .037 .060 .104 .169 .0786(20)

10(60) .021 .057 .165 .386 .660 .2575(20)

10(120) .030 .144 .458 .817 .976 .4848(20)

10(200) .042 .295 .785 .986 1.000 .6215(20)

30(20) .051 .067 .119 .214 .372 .1645(20)

30(60) .027 .103 .377 .760 .958 .4449(20)

30(120) .042 .313 .842 .994 1.000 .6383(20)

30(200) .075 .642 .991 1.000 1.000 .7416(20)

Note: The pattern of three equal subsets of 61 values was

(O'eee,o'%6’eee'%6'S'eee's'1%6,eee,1%1,26,eee,26)e
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Table 79

Means of Power of at a = 0.10 for “a = 0

for the Random-effects Model

 

 

616 5 = 205 605 1205 2005, Total

.00 0.10(16) 0.10(16) 0.10(16) 0.10(16) 0.10( 64)

.00-.02 0.12(16) 0.21(20) 0.33(20) 0.45(20) 0.29( 76)

.02-.04 0.17(16) 0.39(20) 0.58(20) 0.70(20) 0.47( 76)

.04-.06 0.22(16) 0.52(20) 0.62(16) 0.73(16) 0.52( 68)

.06-.08 0.27(16) 0.61(20) 0.59(12) 0.71(12) 0.53( 60)

.08-.10 0.33(32) 0.55(28) 0.66(24) 0.76(24) 0.56(108)

.15 0.44(16) 0.61(12) 0.75(12) 0.82(12) 0.64( 52)

.20 0.51(16) 0.67(12) 0.79(12) 0.85(12) 0.69( 52)

.25 0.56(16) 0.71(12) 0.81(12) 0.80( 8) 0.70( 48)
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Table 80

Means of Power of at a = 0.025 for u5 = 0

for the Random-effects Model

 

 

035 5 - 205 605 1205 2005 Total

.00 .025(16) .025(16) .025(16) .025(16) .025( 64)

.00-.02 .033(16) .080(20) .169(20) .288(20) .148( 76)

.02-.04 .054(16) .213(20) .425(20) .579(20) .332( 76)

.04-.06 .081(16) .351(20) .478(16) .615(16) .379( 68)

.06-.08 .114(16) .459(20) .433(12) .587(12) .387( 60)

.08-.10 .169(32) .394(28) .526(24) .660(24) .413(108)

.15 .260(16) .452(12) .646(12) .746(12) .506( 52)

.20 .340(16) .535(12) .706(12) .786(12) .572( 52)

.25 .406(16) .598(12) .741(12) .719( 8) .590( 48)
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Table 81

Means of Power of

for the Random-effects Model

at a = 0.01 for “5 = 0

 

 

035 5 = 205 605 1205 2005 Total

.00 .010(16) .010(16) .010(16) .010(16) .010( 64)

.00-.02 .014(16) .042(20) .110(20) .217(20) .100( 76)

.02-.04 .025(16) .142(20) .346(20) .516(20) .269( 76)

.04-.06 .042(16) .267(20) .404(16) .554(16) .314( 68)

.06-.08 .065(16) .380(20) .351(12) .518(12) .318( 60)

.08-.10 .100(32) .315(28) .450(24) .603(24) .345(108)

.15 .184(16) .370(12) .587(12) .704(12) .440( 52)

.20 .260(16) .460(12) .657(12) .752(12) .511( 52)

.25 .326(16) .531(12) .699(12) .676( 8) .529( 48)
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