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ABSTRACT

CROSSFLOW PERMEATION OF VISCOUS AND
VISCOELASTIC LIQUIDS THROUGH ARRAYS OF
CIRCULAR CYLINDERS

By

Craig A. Chmielewski

The flow of viscous and viscoelastic liquids transverse to periodic arrays of
circular cylinders is studied. Two array geometries, square and hexagonal, are
examined; each having a void fraction of 70 percent. Particular attention is devoted to
the influence of macromolecular conformation on the enhanced pressure drop across the
arrays. The flow kinematics in both arrays is elucidated by laser Doppler velocimetry
and streak photography. These techniques reveal a flow transition from steady to
unsteady motion at Deborah numbers corresponding to the onset of enhanced pressure
drop. This result indicates that any attempt to predict the relative flow resistance
increases observed with the viscoelastic fluids must describe the transition to unsteady
flow.

The elastic fluids consist of four polyisobutylene (PiB) solutions; three non-shear
thinning and one shear thinning. The non-shear thinning liquids are 0.2 wt. % PIB in
polybutene solutions which differ only by the molecular weight of the solute. As these

solutions are 6-systems, the square of the degree of polymer extensibility associated with



Craig A. Chmielewski
each of these solutions is proportional to their molecular weight. This is consistent with
extensional viscosity measurements made by fiber spinning.

The initial departure from Darcy’s law for the non-shear thinning solutions is an
enhancement in flow resistance and occurs at Deborah numbers of 0.80 and 0.3S for the
square and hexagonal arrays respectively. These onset values are independent of
molecular weight. At a given Deborah number above the onset, the flow resistance is
greater for higher molecular weights. Even after rescaling to obtain the same onset
Deborah number for the two arrays, the relative flow resistance is higher for the
hexagonal array than the square array. At large values of Deborah number the relative
flow resistances in both arrays become independent of Deborah number. These
asymptotic values are shown to be proportional to the molecular weight and hence to the
square of the polymer extensibilities for these 8-systems.

The initial departure from Darcy’s law for the shear thinning solution is a
decrease in the relative flow resistance followed by an increase. This increase occurs at

Deborah numbers of 4.2 and 3.0 for the square and hexagonal array respectively.
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Chapter 1

INTRODUCTION

1.1 Motivation

The flow of rheologically complex fluids in random porous media has long been
of interest to the oil industry for use in oil recovery processes. With conventional
recovery methods, a large amount of oil often remains in the ground after regular
production ceases, requiring other innovative techniques to extract the residual oil.
These ancillary techniques fall under the heading of "tertiary oil recovery”. Tertiary oil
recovery processes typically involve pumping dilute polymer solutions in wells to
displace inaccessible oil from porous rock. Small amounts of high molecular weight
polymers are added to increase the viscosity of the displacing fluid and preveat viscous
fingering during permeation. However, the fluid rheology becomes complex,
complicating the recovery process at high permeation rates.

The material processing industry also has generated a need to understand the flow
of viscous and viscoelastic liquids through porous media, such as fiber mats, in order to
produce lower cost and higher quality composite materials. Traditionally, the challenge
had been to wet out bundles of ten to twenty micron fibers with viscous epoxy resins.

1



2
More recently this problem has been expanded to wetting out fiber bundles with

viscoelastic fluids. The complex rheology of high molecular weight materials and fast
curing epoxy resins complicate composite manufacturing processes by introducing elastic
effects. The magnitude of these effects may vary, and can be quantified by a
dimensionless group named the Deborah number, De; the ratio of the characteristic fluid
time scale to the flow or processing time scale. For example, impregnation and
consolidation flows of rubber modified resins and thermoplastics, having time constants
in the range of 0.1 to 10 seconds, achieve Deborah numbers of order one as they flow
past 10 micron fibers at velocities as slow as 0.0001 to 0.01 cm/s.

Continued growth in the use of rapidly curing thermosetting systems for liquid
molding operations also provides impetus for studying viscoelastic fluid effects in
composite processes. Figure 1.1 shows the time evolution of the viscosity and relaxation
time of a 5§ minute epoxy, undergoing a thermosetting reaction at room temperature. The
initial magnitude of the relaxation time is relatively low, but quickly develops so that
over the last 50 percent of the epoxy’s fluid life the liquid is considerably elastic. This
sort of rheological complexity affects the time and pressures needed to ensure the
complete saturation of a fiber preform.

Thus, complex fluid rheology must be accounted for in order to obtain a basic
understanding of the flow of high molecular weight (or growing molecular weight)
materials in porous media. This is particularly a concern to the composite industry,

where the ability to move these advanced materials into high volume commercial use
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Figure 1.1 The evolution of the viscosity and relaxation time of a S minute epoxy resin
reacting at room temperature.



4
depends in part on reducing processing time. A fundamental approach to the solution of

this problem entails the study of the dynamics of liquids, characterized rheologically
under both shear and extension, flowing through uniform arrays of circular cylinders.

1.2 Newtonian liquid flow in porous media

The earliest scientific work on low Reynolds number flows of Newtonian liquids
through isotropic porous media was done by H.P.G. Darcy (1856). He found that the
superficial velocity of fluid through a porous medium was proportional to the pressure
gradient across the medium. This result is now known as Darcy’s law, and in its general

form is:
v, = 'TI<VP> . (1.1)

Here v, is the superficial velocity,  is the shear viscosity, K is the permeability tensor,
defined solely by the geometry of the media and <VP> is the mean pressure gradient
in the liquid. For random media, such as packed beds of spheres, the permeability
tensor is isotropic. However, for the uniform arrays of circular cylinders studied here,
four components of the tensor in general are necessary to describe the permeability: K,
K;;, K and K;;. In addition, for cylinder arrays with rotational symmetry, such as

square and hexagonal pitches, there are only two unknown components, the transverse



The study of the flow resistance offered by arrays of cylinders has its origins in
the design of tubular heat exchangers. The need for more efficient heat transfer
equipment continues today, and has prompted the theoretical study of low Reynolds
number viscous flows through periodic arrays of cylinders by Sangani and Acrivos
(1982). They calculate the drag of a Newtonian liquid on cylinders arranged in square
and hexagonal pitches over a wide range of loadings. For void fractions greater than 70
percent, both array geometries offer the same resistance to flow; with void fractions of
50 percent or lower, the square array offers more resistance to the flow of a Newtonian
liquid.

Recently, the composite industry has motivated further study of permeation
through fiber preforms. Adams ez al. (1986) have developed a planar flow technique to
study the permeabilities of woven fiber mats. In their experiments an epoxy resin was
injected under a constant pressure into a variety of fiber mats, each having various weave
patterns and ranging in void fractions from 56 to 91 percent. The epoxy was forced to
flow radially in the plane of a preform, and the progress of the flow front was monitored
over time. For the case of isotropic mats, the flow front was circular, indicating a
radially uniform in-plane permeability which could be backed out by an unsteady material
balance and Darcy’s law. In the case of anisotropic mats, however, the flow front was
elliptic, but also could be predicted using an unsteady material balance and Darcy’s law.
The in-plane permeability was not constant, however, and had to be described by a linear
combination of the permeabilities measured along the principal axes of flow (the
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directions of maximum and minimum flow). More recently, Adams and Rebenfeld

(1991a,b) have used this same technique to study the in-plane flow through multilayer
fabric assemblies, and found that the overall permeability differs from that of the
individual constituent layers. Furthermore, they found that flow transverse to the plane

was important in maintaining a macroscopically uniform flow front.

1.3 Non-Newtonian flow in random media

One of the earliest studies of non-Newtonian flow through porous media was that
of Sadowski and Bird (1965a,b). They studied the flow of shear thinning aqueous
polymer solutions through random media. These solutions were virtually inelastic; the
maximum time constant being 0.07 seconds. They correlated their data by modifying
Darcy’s law to include the fluid’s shear thinning viscous behavior. This was done by
replacing the constant viscosity in Darcy’s law with an appropriate generalized
Newtonian fluid model - in this case the Ellis model - whose parameters were chosen by
fitting the shear viscosity data. This method described the pressure drop-flow rate data
well, and has been used in subsequent analyses of the permeation of weakly elastic, shear
thinning liquids through random porous media (¢f. Christopher and Middleman, 196S).
It was not until the work of Marshall and Metzner (1967) that sufficiently high nominal
bed strain rates were reached, resulting in flow resistances up to ten times the Newtonian
value. These researchers argued that the enhanced pressure drop was the consequence

of molecular extension due to the converging-diverging nature of the packed bed; a
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feature the capillary models do not contain.

1.4 Corrugated tube models

The inadequacy of the combination Darcy law/generalized Newtonian fluid models
to predict the large increases in flow resistances of polymer solutions flowing through
randommediahasleadtonewefforts-toformulatemodelswhichmkeintoaccountme
converging-diverging nature of porous media. The model which has gamered much
attention lately is the corrugated tube which is an axisymmetric tube with a sinusoidally
varying radius. Over the past twenty years several experimental and numerical
investigations concerning the flow of elastic liquids in corrugated tubes has been
undertaken (¢f. Dodson e? al., 1971).

James et al. (1990) report experimental measurements of pressure drop in slow
flow of an elastic liquid through a corrugated tube. Their results show little deviation
from Newtonian behavior, even at De = 3, and agree very well with the numerical
predictions of Pilitsis and Beris (1989) and Burdette ef al. (1989). The more recent
numerical work includes calculations by Pilitsis and Beris (1989), who use an upper
convected Maxwell model and a pseudospectral/finite difference method, and Burdette
et al. (1989), who also use an upper convected Maxwell model but an explicitly elliptic
momentum equation formulation. The results of these two numerical experiments are
in excellent agreement, even at De = 10, and, like the experiments, predict virtually no

variation in the flow resistance from the Newtonian value. Only through the inclusion
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of inertia have Pilitsis and Beris (1991) been able to predict a substantial enhancement

in the flow resistance. These results, both experimental and numerical, indicate that the
corrugated tube model is not adequate for describing the flow of viscoelastic fluids in
porous media.

A deficiency of the corrugated tube model is its lack of stagnation points (of
course, near the tube wall the fluid moves slowly as a result of the no slip condition).
The term stagnation point will be used here not only to refer to a point of zero velocity,
but also to a point situated in a flow region containing large extensional deformation
rates. A macromolecule, flowing into the neighborhood of a stagnation point, will
experience high residence times while simultaneously being stretched by the extensional
flow. Hence, a stagnation point within the flow ensures the existence of the necessary
criteria for a coiled macromolecule to undergo elongation: large residence times and
large extension rates.

Stagnation points abound in porous media. For example, each sphere comprising
the model random media of the above experiments contains two stagnation points, each
located at the poles. Neglecting the complications resulting from sphere-sphere contacts,
the fluid directly upstream of a sphere experiences a biaxial extension while the fluid
directly downstream of a sphere undergoes uniaxial extension. A similar situation occurs
in two dimensions for the flow of liquids transverse to circular cylinders. A cylinder
also has two stagnation points; again each located at the poles. Because the flow is two
dimensional, the fluid both upstream and downstream of the stagnation points experiences

planar elongation.



1.5 Planar elongation

To demonstrate the effect an extensional flow has on flow dynamics, we shall
examine the stress developed in a model viscoelastic liquid undergoing a pure
elongational flow; the relevant kinematics for this study being planar elongation. The

velocity components for a steady planar elongational flow are given by,

V, = Xx¢ (1.2)

vy, = -y¢ , (1.3)

where € is the extension rate and x and y represent perpendicular Cartesian coordinate

directions. The rate of deformation tensor for this flow is represented by the matrix, D,

p-ef O] . (1.4)

For this example, a dilute solution of finitely extensible pon-linear glastic (FENE)
dumbbells will be used as a "realistic” representation of a dilute polymer solution. In
the present context, the FENE dumbbell model is realistic in the sense that the total
extension of its macromolecular components, the dumbbells, is limited. This prevents

the stress from becoming infinitely largemreglons of high extension rates. Figure 1.2
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shows the steady planar extensional viscosity behavior with Deborah number of Chilcott

and Rallison’s (1988) FENE dumbbell liquid. The important features of this model
prediction are that over a very small range of Deborah numbers the extensional viscosity
increases appreciably over the Newtonian value, and that for sufficiently high Deborah
numbers the extensional viscosity becomes independent of the Deborah number. Based
on this prediction, it is reasonable to expect that at an onset Deborah number the relative
flow resistance of viscoelastic liquids, flowing through arrays of cylinders (and for that
matter, through any porous media peppered with stagnation points), will increase and
then eventually become independent of the Deborah number.

1.6 Dissertation outline

This study is a fundamental investigation of the flow of viscous and viscoelastic
liquids through arrays of circular cylinders. Chapter two focuses on the problem of how
geometry and fluid rheology affect the flow resistance through model arrays of circular
cylinders. Rheologically characterized fluids in both shear and extension are used to
elicit what fluid and geometric parameters are important in predicting the dynamic
behavior of fluids in cylinder arrays. In chapter three laser Doppler velocimetry and
streak photography are used to examine how the kinematics of the cylinder array flows
are affected by the fluid rheology. Chapter four presents experimental data showing the
effects of array geometry on macromolecular chain scission of a high molecular weight

polymer solution flowing through rectangular array and in a hexagonal arrays. Chain
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extension calculations based on the Stokes flow field are presented to support the

experimental observations. Finally, whereas the previous chapters consider the effect of
fluid elasticity on the permeation of liquids through cylinder arrays, chapter five
considers the effects of cylinder array compliance on crossflow permeation. This is done
through an analysis of the hot melt impregnation process which is used in the
manufacture of composite prepreg. In this chapter it is shown that fiber bundle elasticity

has a profound effect on the permeation of viscous liquids into fiber arrays.



Chapter 2

THE EFFECT OF POLYMER EXTENSIBILITY ON
THE FLOW OF POLYMER SOLUTIONS THROUGH
CYLINDER ARRAYS

2.1 Summary

The effects of fluid rheology on low Reynolds number flows transverse to
periodic arrays of circular cylinders have been investigated with several solutions of
polyisobutylene. Care was taken to avoid degradation of the polymer during the
measurements. These solutions were rheologically characterized in both shear and
extension. Three of the solutions are dilute solutions of different molecular weight
polyisobutylenes in polybutene at the same concentration. These are #-systems at room
temperature and have a constant shear viscosity over strain rates up to 10 s*. Fiber
spinning of these solutions indicates that the apparent Trouton ratio at an average stretch
rate of 15 s is proportional to the molecular weight. This is consistent with predictions
of FENE dumbbell models for higher elongation rates (¢f. Chilcott and Rallison, 1988;

Biller ez al., 1986). A fourth solution of polyisobutylene in decalin was used to evaluate

13
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the flow resistance for shear thinning solutions.

The resistance to flow of the non-shear thinning solutions in both square and
hexagonal pitch arrays is above the Newtonian value at onset Deborah numbers of 0.80
and 0.35 respectively. These onset values are independent of solute molecular weight.
Higher molecular weight fluids produce higher flow resistances relative to the Newtonian
value for Deborah numbers greater than the onset value. At large Deborah numbers (De
> > 1) the relative flow resistances in both arrays become independent of Deborah
number, and scale linearly with the molecular weight. The asymptotic value of the
resistance ratio is consistently higher for the hexagonal array than for the square array
for the same molecular weight. This is shown to be a result of these transverse flows

being dominated by planar extension at high Deborah numbers.

2.2 Introduction

It is well recognized that the dynamics of shear thinning polymer solutions may
be affected by the finite extensibility of its macromolecular components (¢f., Christiansen
and Bird, 1977/1978). In spite of this, the effect of varying polymer extensibility on the
fluid dynamics of non-shear thinning elastic liquids, the so-called Boger liquids (Boger,
1977/1978), has not adequately been explored. A reason for this may be that the
polybutene based Boger liquids have been shown to behave in both shear and extension
as a dilute solution of infinitely extensible, linear dumbbells at low to moderate

deformation rates (see Prilutski e al., 1983 and Sridhar er al., 1986 respectively). In



15
strong flows, however, where the Deborah number (De) is much greater than one, this

model breaks down because a linear dumbbell will extend without bound in such a flow
(Rallison and Hinch, 1988). This may be one reason that numerical simulations using
Oldroyd type constitutive models fail quantitatively, and sometimes even qualitatively,
to account for important flow phenomena observed for Boger fluids undergoing complex
flows. Only recently have researchers begun to explore other models in order to better
understand the physics behind the flow properties of polymer solutions. For example,
Chai and Yeow (1990) use a multiple relaxation time constitutive model (KBKZ model)
to describe the flow of a Boger fluid in a gravity drawn jet. They found better
agreement with experimental data using the KBKZ model than with the Oldroyd-B
model.

In the present investigation the effect of varying finite extensibility of the polymer
on the dynamics of complex flows of Boger liquids will be examined. This study is
partially motivated by the work of Chmielewski ez al. (1990a) who observed opposite
trends with Deborah number in the relative drag on spheres, translating in corn syrup
based polyacrylamide solutions versus polybutene based polyisobutylene solutions. This
difference was attributed to differences in the extensions of the polymers from
equilibrium. Polyacrylamide molecules tend to be relatively elongated in aqueous
solutions at equilibrium while polyisobutylene molecules in polybutene tend to be
relatively coiled at equilibrium.

In a previous investigation, Chmielewski ez al. (1990b) reported that the pressure

drop in flow transverse to arrays of circular cylinders is much greater for an elastic
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Boger liquid than the pressure drop for Newtonian liquids of equivalent viscosity; similar
to that of polymer solutions in isotropic porous media. The focus of their study,
however, was on how differences in the extensional flow field between hexagonal and
rectangular pitch geometries affected polymer extension, and in turn molecular chain
scission.

In this work three Boger fluids are prepared with varying degrees of polymer
extensibility in order to understand its effect on the flow resistance of these fluids in
cylinder arrays. Two array geometries are studied, square and hexagonal, both having
a void fraction of 70 percent. Unsteady extensional viscosity data, obtained by fiber
spinning, is correlated with high Deborah number flow resistance asymptotes found in
both array geometries via molecular finite extensibility. A fourth, more concentrated
polymer solution is also examined in order to compare the effects of shear thinning on

fiber spinning and cross flow resistance.

2.3 Experimental

2.3.1 Materials

Three classes of liquids were used in this study: two Newtonian liquids of widely
different viscosities, three non-shear thinning, elastic liquids which differed only by their
solute molecular weights, and a highly shear thinning, viscoelastic polymer solution. A
comparison of some of the material properties of these fluids can be found in Table 2.1.

The two Newtonian liquids were 610 and 1290 weight average molecular weight
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Table 2.1 Properties of the test fluids at 20 °C.

NEWTONIAN
Polybutene, H25

Polybutene, H300
7.45 % Kerosene

VISCOELASTIC
Boger Liquids
Solvent

93.0 % PB, H25

7.0 % Kerosene
Solutions
0.20 % PIB L-80
0.20 % PIB L-100
0.20 % PIB L-140

VISCOELASTIC
Shear Thinning
Solvent
Decalin
Solution
2 % PIB B200

* vViscosity averaged molecular weight
%% Zero shear viscosity



18
polybutenes (PB) supplied by Amoco Chemical Company. A small amount of kerosene

(7.45 %) had to be added to the higher molecular weight grade in order to reduce its
viscosity to a manageable level. The three Boger solutions were all prepared by
dissolving an appropriate amount of polyisobutylene (PIB), supplied by Exxon Chemical
Company, into kerosene and then mixing the solution into Amoco’s 610 molecular weight
(MW) grade PB for a final composition by weight of 0.20 % PIB, 7.00 % kerosene and
92.80 % PB. Three PIBs, having different molecular weights, were used: (1) Exxon’s
Vistanex L-80 with a viscosity‘ average molecular weight of 0.90 (£ 0.15) x 10%, (2)
Vistanex L-100 with a viscosity average molecular weight of 1.25 (+ 0.19) x 10° and
(3) Vistanex L-140 with a viscosity average molecular weight of 2.11 (+ 0.24) x 10°.
The shear thinning, viscoelastic liquid was a 2 % solution of PIB (BASF B200)
in a cis and trans decalin mixture. This fluid was supplied by Professor Walters, and its
preparation and composition were identical to the D! liquid used in the Second Normal

Stress Difference Project (Walters, 1983).

2.3.2 Shear flow properties

Rheological measurements in steady and oscillatory shear were made on a
Rheometrics RFS-8400 Fluids Spectrometer at rates ranging between 0.1 and 100 s™.
These tests were performed using a 0.02 radian cone and a 5 cm diameter plate.
Measurements made on the Newtonian and Boger liquids were performed at 10, 20 and
30 °C, while tests made on the remaining liquid were performed at 0, 20 and 40 °C.

Attempts to study the PIB/decalin solution at temperatures higher than 50 °C were
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unsuccessful due to enhanced solvent evaporation. Figure 2.1 (a) shows the solvent

viscosity, #,, and the steady shear viscosity, », of the three PB/PIB solutions as a
function of the shear rate. None of these liquids were significantly shear thinning over
the range of shear rates tested. On the other hand, the shear viscosity of the PIB/decalin
solution was constant only up to 0.1 s?, and then decreased with increasing shear rates
(see Figure 2.1 (b)).

Intrinsic viscosity, /n/,, measurements were made on the PB/PIB solutions to
assess the thermodynamic solvent quality near 20 °C. This was accomplished by
calculating the relative viscosities, 7,, of three different concentrations of each of the
PB/PIB solutions. A linear extrapolation of In(y,)/c to infinite dilution was made to
determine /1], (see Figure 2.2 (a)). In Figure 2.2 (b) the relationship between [n], and

M, is shown to follow the Mark-Houwink relation,

nl, = k'M,* . (2.1)

The Mark-Houwink exponent, 4, is approximately 0.5, indicating that the PB/PIB
solutions of this study were examined under theta conditions. The pre-exponential factor,
K’, is 0.40 cm*/g.

Figure 2.3 (a) shows the storage modulus, G', of the three PB/PIB solutions. A

relaxation time for each of the solutions (see Table 2.1) is calculated by,
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/
A, = —nuG 2.2

The value of the storage modulus is taken from the low frequency region where G’ is
quadratic in frequency. Figure 2.3 (b) shows the dynamic moduli, at 20 °C, of the
PIB/decalin solution. The storage modulus of this fluid also shows quadratic behavior

with frequency, but at much lower rates than the liquids of Figure 2.3 (a).

2.4 Eiber spinning

2.4.1 Extensional flow apparatus

The unsteady elongational flow properties of the elastic fluids were measured by
fiber spinning. The apparatus, shown schematically in Figure 2.4, is similar to that of
other researchers (see Hudson ez al., 1974, for example), and utilizes a bending beam
load cell to measure the force exerted by test fluids on the capillary. Nitrogen pressure
is used to pump fluid from a reservoir and through a 20 cm long stainless steel capillary
(0.238 cm 1.D.). The capillary pivots at its upstream end via a miniature ball bearing
and is attached to the load cell at its downstream end.

The bending beam load cell consists of a 7.0 cm by 1.3 cm by 0.013 cm strip of
spring steel, acting as a cantilever beam. The free end of the beam is attached to the end
of the capillary. At the fixed end of the beam, four encapsulated foil strain gages

(Omega Engineering, model DY11) are arranged to form a Wheatstone bridge. The
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bridge is powered with 10 volts and emits a millivolt signal proportional to the bending

strain in the beam. The beam strain, e,, is proportional to both the applied force, F;,

and the moment arm, [, according to,

€, =
®  E,bh?

. (2.3)

where b is the width of the beam, A, is the beam thickness and E; is the beam modulus.
The load cell is sensitive to 0.1 mN and the signal output is linear over the range of
forces measured in this study (4 to SO mN). The utility of this force measurement
method is not only its cost effectiveness, but it also provides a convenient way of
adjusting the sensitivity of the load cell to meet the needs of a particular application.
Steady extension of a liquid filament extruding from the capillary is maintained
by an adjustable speed take-up drum at the downstream end of the fiber. Still photograph
enlargements of an elongated liquid fiber are used to obtain filament diameter profiles.
Table 2.2 lists the operating parameters of the elongational flow experiments performed

on each of the PIB test solutions.

2.4.2 Extensional flow results and discussion
The fiber spinning experiments were conducted under isothermal conditions and
such that gravity, surface tension and fluid inertia were all very small compared to the

tensile force. The cross sectional average of the tensile stress at any axial location, z,
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Table 2.2 Operating parameters in fiber spinning experiments.

Boger Liquids

0.20 % PIB L-80
0.20 % PIB L-100

| 0.20 % PIB L-140

Shear Thinning

2 % PIB B200 1.




down the fiber was calculated by,

4 F,
xD(z)?

T, (2)-T, (z) = (2.4)

where T, and 7,, are components of the total stress tensor, F; is the tensile force and

D(z) is the diameter of the filament at location z. The extensional strain rate will be

represented by the average, <é>,

V(Lpg) - v(0)

<&> =
LPS

' (2.5)

where L, is the length of the fiber, and v(0) and v(L.s) are the axial velocities at the
capillary outlet and at the take-up drum respectively. Since the axial velocity profiles in
these spinning experiments are nearly linear, the local extensional strain rates at all axial
locations are approximately equal to the average extensional strain rate. Combining Eqgs.

2.4 and 2.5, the transient extensional viscosity can be represented as,

T, (2) - T, (2)

<&> (2.6)

N (z) =

The fiber spinning results of the PB/PIB solutions are shown in Figures 2.5 (a)
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and (b). In Figure 2.5 (a) the transient extensional viscosity is scaled with 3y and the

time is scaled with A,. This figure indicates a molecular weight effect on the transient
extensional viscosity independent of the dominant molecular time scale. An average
extensional viscosity between two points on the spin line may be calculated as suggested
by Mackay and Petrie (1989),

— 4 FyLyg

e = . 2.7
xD(0)2v(0) 1n("7‘("oi-;’l) (2-7)

The ratio of the extensional viscosity to the shear viscosity, accounting for the polymer
contribution, is plotted against molecular weight in Figure 2.5 (b). Since these fluids
had similar pre-shear histories and were spun at approximately the same extension rate
(é ~ 15 s™), these results demonstrate that the apparent Trouton ratio scales linearly with
the molecular weight. This result can be anticipated by treating the Boger fluids as a
dilute solution of finitely extensible pon-linear elastic (FENE) dumbbells. At sufficiently
large Deborah numbers (De > 1) the extensional viscosity in a uniaxial extensional flow
scales with the square of the extensibility parameter, L (¢f. Chilcott and Rallison, 1986

and Bird ez al., 1987),

ng-3n, L3-1

P 2.8
n-1, ( )
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where L? represents the ratio of the mean square end-to-end distance for the fully

extended polymer molecule to its equilibrium value. For a theta system, the mean

squareend-to-end distance of a polymer molecule scales linearly with the molecular
weight,

<r?>,,= M, . (2.9)

The mean square end-to-end distance of the fully extended chain scales with the square

of the molecular weight,

<ri> « M3 . (2.10)

Thus, by definition the square of the extensibility of a polymer molecule in a theta

solvent is proportional to its molecular weight,

<r2>

L? =
2
<r?>,.

« M, , (2.11)

and hence,
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ﬂ3'3ﬂ.
n-n,

- M, . (2.12)
The fiber spinning experiments on the PIB/Decalin solution were performed over
a range of flow rates, fiber lengths and draw ratios (see Table 2.2). Figure 2.6 shows
the apparent Trouton ratio plotted against the extension rate for five different tests.
Here, the average extensional viscosity is divided by the shear viscosity evaluated at a

shear strain rate of ¥ = {3 ¢.

2.5 Crossflow through cylinder arrays

2.5.1 Permeation apparatus

The experimental apparatus used in this study was similar to that of Chmielewski
et al. (1990a) with modifications aimed at minimizing polymer degradation and providing
a means of flow visualization. A set of experiments was initiated by charging the
holding tank with a fresh 8 liter batch of test fluid (see Figure 2.7). Approximately 2
liters of this fluid was then pumped via a peristaltic pump (TAT Engineering, model 110-
43E) into a reservoir. Regulated nitrogen was used to move the fluid from the reservoir,
through the permeation apparatus and back into the holding tank. Pressure transducers
on either side of the cylinder array provided pressure drop measurements, and the flow
rate was.obtained by monitoring the change in liquid level within the reservoir over time.
The same 8 liter charge was used throughout the permeation testing of one cylinder pitch

type. When the cell geometry was changed a fresh batch of fluid was employed.
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Figure 2.7 Schematic of the permeation apparatus.
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Two permeation cells are used which differ only in the packing geometries of the

cylinder arrays they contain. Figure 2.8 shows a schematic of the permeation cells. The
test fluid enters the cell through a 2.5 cm 1.D. pipe and travels through a 7.6 cm long
transition region before reaching the cylinder array. The cross section of the cell is
rectangular and measures 6.3 cm by 3.8 cm. As shown in the top view on Figure 2.8,
solid wedges fill the corners of the cell to facilitate a smooth transition of the fluid as it
enters and leaves the cell.

The arrays are composed of acrylic circular cylinders, 0.476 cm in diameter and
3.8 cm long. The cylinders are situated so that their axes are perpendicular to the flow,
and they are flush with the cell walls to prevent fluid channeling. Wall and end effects
are known to be negligible (see Chmielewski e al., 1990a). Cylinder bed lengths in
both cells are approximately 9.3 cm (12 rows) and contain flush mount diaphragm type
pressure transducers (Omega Engineering, model PX102) on either side. A chart
recorder was used to monitor the upstream and downstream pressures over the duration
of each test. Figure 2.9 shows the square and hexagonal pitch geometries. As shown
in Figure 2.9, the cylinders in the square pitch are spaced 0.771 cm from center to
center and in the hexagonal pitch the cylinders form equilateral triangles which are 0.828

cm on a side and 0.717 cm in height.

2.5.2 Flow unsteadiness
Both upstream and downstream pressure traces of the Newtonian fluids showed

no variation with time. This was not the case with the viscoelastic fluids. Small
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amplitude oscillations were recorded by the downstream pressure transducer at a Deborah

number of 1.2 for all of the non-shear thinning elastic fluids. Above this onset, the
pressure oscillations grew in amplitude up to 2 percent of the average pressure with
increasing Deborah number; the Deborah number was controlled by the flow rate. At
no time were pressure fluctuations observed upstream of the cylinder arrays. No
| pressure fluctuations were recorded in flow through a blank channel at Deborah numbers
up to 4. This indicates that the unsteadiness resulted from fluid elasticity in flow through
the array of cylinders.

Two examples of pressure traces for the square and hexagonal array of the 2.11
x 10° molecular weight solution at De ~ 2.6 are given in Figure 2.10. In both traces
the upstream and downstream measurements are on a different scale. Figure 2.10 (a)
represents the pressure over time of a test run in the hexagonal array. At a flow rate of
81 cm?/s the upstream pressure measured 2.92 x 10° Pa (42.3 psi), while the downstream
pressure fluctuated around an average value of 0.11 x 10° Pa (1.6 psi). At this Deborah
number the amplitude of oscillation is approximately 2 percent of the average pressure
and the dominant frequency is approximately 0.2 Hz. A pressure trace at De = 2.6 for
the square array is given in Figure 2.10 (b). Here the flow rate is 113 cm¥/s, and the
corresponding upstream pressure is 1.78 x 10° Pa (27.8 psi). The downstream pressure
oscillates around the mean of 0.17 x 10° Pa (2.5 psi). Again the amplitude of oscillation
is about 2 percent of the mean pressure, and the dominant frequency is approximately
0.4 Hz. Though this estimate of a characteristic frequency of the pressure fluctuations

is crude, it still bears pointing out that these frequencies are of the same order of
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Fligure 2.10 (a) Pressure traces for the 2.11 x 10° molecular weight PIB/PB solution in
hexagonal array at De = 2.6 (Q = 81 cm"/s, upstream P = 29.2 x 10* Pa,
dowwnstream P = 1.1 x 10* Pa).
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Figure 2.10 (b) Pressure traces for the 2.11 x 10° molecular weight PIB/PB solution in
the square array at De = 2.6 (Q = 113 cm¥s, upstream P = 17.8 x 10* Pa,
downstream P = 1.7 x 10* Pa).
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magnitude as the velocity fluctuations found by McKinley er al. (1991) near the lip of

a 4:1 axisymmetric contraction flow using similar viscoelastic solutions.

2.5.3 Polymer degradation
The permeation apparatus had several design features which had been incorporated

to minimize the severe polymer degradation found by Chmielewski ez al. (1990a) - see
Chapter 4. These features included a reduction in the expansion and contraction ratios
at the entrance and exit of the permeation cell, and an increase in the reservoir size,
reducing the frequency in which a batch of fluid is cycled through the cell. Also, lower
molecular weight PIBs were used in this investigation.

In order to assess the extent of polymer degradation the shear viscosity and
storage modulus were measured on fluid samples taken from an 8 liter fluid batch after
it had passed through an array several times. This information was used to determine
the number of runs after which fresh batches of each fluid were required. Very little
degradation was observed for all of the solutions used in this study. This is in contrast

to the extreme amounts of chain scission found when care was not taken to minimize

degradation (see Chapter 4).

2.5.4 Permeation of Newtonian fluids
The flow resistance of the test fluids passing through the arrays may be
represented by the friction factor, f,
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£= (-AP) 2ap ¢€
1 G, (1-€)

(2.13)

where p is the fluid density, -AP is the pressure drop, ¢ is the void fraction of the bed,
1 is the bed length, a is the cylinder radius and G, is the superficial mass flux. The

Reynolds number, Re, is defined by,

2aG, 1

Re = N, (1-e€)

(2.14)

In this study two Newtonian fluids, whose shear viscosities differ by nearly an order of
magnitude, are used to obtain friction factor results for Reynolds numbers ranging from
0.001 to 0.3. Figure 2.11 shows no significant difference in the flow resistance of the
Newtonian fluids in the square and hexagonal arrays at the void fraction level of 70
percent. The theoretical calculations of Sangani and Acrivos (1982) also predict little
difference in the flow resistance for these two array types at this void fraction level. For
example, the product of the friction factor and Reynolds number, which is inversely
proportional to the transverse permeability, has a theoretically predicted value of 150 for
the square array and 141 for the hexagonal array at a void fraction level of 70 percent.
Figure 2.11 reveals very good agreement between the experimentally measured friction
factors for the two arrays and the theoretically predicted values over the range of

Reynolds numbers studied. This agreement is also evidence of the insignificance of wall
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Figure 2.11 Friction factor vs. Reynolds number of two Newtonia.n PB liquids
compared to the theoretical prediction of Sangani and Acrivos (19_82) in square and
hexagonal arrays (closed symbols represent the higher molecular weight PB).
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and end effects.

2.5.5 Permeation of viscoelastic liquids

The departure of the friction factor from Newtonian behavior for the elastic
liquids is shown in Figures 2.12 (a) and (b). The Re at which the onset of elastic effects
occurs decreases with increasing molecular weight just as it does in the random packed
bed experiments of Kulicke and Haas (1984). Also, at the same molecular weight the
onset Re is consistently lower for the hexagonal pitch geometry than square pitch.

In order to scale out molecular relaxation time differences related to the PIB
molecular weights, Figures 2.13 (a) and (b) present the relative fluid resistance,
S*Re/(f*Re)y, versus the Deborah number,

De = A,—2 (2.15)

where v, is the superficial velocity. With this definition of De, a clear distinction may
be made of the onset of viscoelastic effects between the two array types, 0.80 for the
square pitch array and 0.35 for the hexagonal pitch array. The onset Deborah number,
however, is independent of molecular weight. At sufficiently large Deborah numbers the
relative flow resistance becomes independent of the Deborah number. This has also been
observed by Kulicke and Haas (1984) and James and McLaren (1975) for the flow of

polymer solutions through random beds of spheres. The asymptotic value of the
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resistance ratio increases with increasing molecular weight in both arrays, but is
consistently lower in the square array than the hexagonal array at comparable molecular
weights. Figure 2.14 is a plot of the numerical value of the asymptotic ratio versus
molecular weight of the polymer solute for each array. In both arrays the value of the

flow asymptote scales linearly with the molecular weight,

fRe
ml;lpo»x o« My , (2.16)

just as the apparent Trouton ratio of these solutions does (Figure 2.5 (b)). This is
reasonable because the kinematics of the flow of polymer solutions transverse to cylinder
arrays is dominated by planar extension at high Deborah numbers. In planar extensional
flows, as in uniaxial extensional flows, the extensional viscosity of a FENE model fluid

at high Deborah numbers is proportional to L?, and thus to the molecular weight,

nl-znl 2
—E "% w2-] «pM, . 2.17)
n-1, v (

Hence,
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This relationship between the asymptotic values of the relative flow resistance and the
solution molecular weight comes about as a result of differences in the degree of
extensibility of the polymer molecules. For theta systems the square of the extensibility
is proportional to the molecular weight (Eqs. 2.9-2.11). These results also indicate that
even though fiber spinning is an axisymmetric extensional flow, the results are quite
relevant to the planar geometry of flow through cylinder arrays.

Figure 2.15 shows the flow resistance results for the PIB/Decalin solution in both
the square and hexagonal pitch cylinder arrays. Here the Deborah number is defined

with Ay(%),

v =_ﬂ‘.'.’_)__ 2.19
A (¥) mG”(m)I“'1 ) (2-19)

These data show a plateau at a flow resistance less than 1 for both the square and
hexagonal arrays for Deborah numbers in the range of 0.3 to 1. We were not able to
work at sufficiently low Deborah numbers to observe Newtonian behavior. This
reduction in the flow resistance was not observed for the Boger liquids and is a result of
the highly shear thinning nature of the PIB/Decalin solution. As the Deborah number

is increased further, the flow resistance increases, and at De = 3 for the hexagonal array
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and De = 4.2 for the square array the flow resistance crosses the relative f-Re axis at

1. This enhancement in the flow resistance at high Deborah numbers is a result of
extensional viscosity effects dominating the shear viscosity effects. This is similar to the
fiber spinning results where it was found that the averaged extensional viscosity of the

PIB/Decalin solution increased with increasing extension rate.

2.6 Conclusions

The effect of varying polymer extensibility on the dynamics of polymer solutions
flowing transverse to cylinder arrays is studied. The polymer extensibility of each
solution is controlled through the molecular weight of the polymer solute. Average
extensional viscosity measurements affirm that increasing molecular weight corresponds
to increasing polymer extensibility. The apparent Trouton ratio at a fixed stretch rate
scales linearly with the molecular weight. The pressure drop of non-shear thinning
elastic liquids flowing through both square and hexagonal pitch cylinder arrays at a void
fraction of 70 percent is enhanced at onset Deborah numbers of 0.8 and 0.35
respectively. At high values of Deborah number the relative flow resistances in both
arrays become independent of the Deborah number. This was observed after care was
taken to avoid degradation of the polymer. The magnitude of the high Deborah number
flow resistance asymptote scales linearly with the molecular weight, and hence correlates

well with the apparent Trouton ratios measured.



Chapter 3

THE KINEMATICS OF VISCOUS AND
VISCOELASTIC LIQUID FLOWS WITHIN ARRAYS
OF CIRCULAR CYLINDERS

3.1 Summary

The kinematics and hydrodynamic stability of viscous and viscoelastic liquid flows
transverse to periodic arrays of circular cylinders has been studied at Reynolds numbers
less than 0.5. Both streak photography and laser Doppler velocimetry were used to
observe flow transitions resulting from fluid elasticity in square and hexagonal pitch
arrays at a porosity level of 70 percent. Below an onset Deborah number, the flow of
a non-shear thinning elastic liquid was steady, spatially periodic, and identical to the
experimentally observed Newtonian kinematics and Stokes flow simulations. LDV
measurements made above the onset Deborah number reveal flow unsteadiness in both
array types. Particle path asymmetry is also observed above the onset Deborah number.
The onset Deborah number corresponds approximately to the onset of elastic effects in

flow resistance measurements found in the previous chapter: 0.70 for the square array
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and 0.25 for the hexagonal array. Results with a shear thinning liquid underline the

elastic origin of the instability observed. Also, these results indicate that any attempt to
predict flow resistance increases must describe the viscoelastic transition to unsteady

flow.

3.2 Introduction

The question addressed in this chapter is whether fluid elasticity, resulting from
the dissolution of small amounts (0.2 wt. %) of a high molecular weight polymer into
a viscous liquid, affects the flow kinematics within periodic arrays of circular cylinders.
This issue is examined with two experimental techniques - streak photography and laser
Doppler velocimetry (LDV).

The study of how velocity fields are affected by fluid rheology is important to
both the experimentalist, who uses this information to evaluate flow dynanﬁcs, and to the
theorist, who uses the data to evaluate constitutive models and computational methods.
The flow of non-Newtonian liquids past a cylinder provides a good example of this.
Using tracer dyes, Manero and Mena (1981) visualized the slow flow (Re < 0.01) of
shear thinning elastic liquids around circular cylinders. They found that in the range 0.2
< De < 1 the streamlines shifted downstream from the symmetric pattern characteristic
of Newtonian fluids. This was in qualitative agreement with the perturbation calculations
of Mena and Caswell (1974), using an Oldroyd constitutive model. At De ~ 1 there

was no displacement in streamlines, and for De > 1 the streamlines moved upstream of
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the Newtonian pattern.

In the present study another flow visualization method, streak photography, is
used to qualitatively examine the flow field within arrays of cylinders. In this method
small particles in the fluid reflect light from a sheet of light illuminating the flow field.
The flow is then photographed at long exposure times so that the paths of several
particles show up as streaks on the film. This technique has been used extensively by
several researchers to visualize flow pattern changes and instabilities, resulting from fluid
elasticity, in axisymmetric entry flows through circular tubes. For example, Nguyen and
Boger (1979) present a series of photographs revealing several flow transitions with
increasing Deborah numbers for non-shear thinning, elastic fluids - Boger fluids - flowing
through a 7.675:1 axisymmetric contraction. At sufficiently low Deborah numbers (~
0.5), the flow pattern was similar to the Newtonian fluid pattern, having a small
secondary vortex in the corner of the upstream tube. As the flow rate increased so did
the size of the vortex, beyond what is seen with Newtonian liquids. At De ~ 3 the
vortex continued to grow and became asymmetric. At De ~ 6 the asymmetric vortex
began to rotate around the tube. Finally, at De ~ 15 the flow became chaotic.

In addition to flow visualization, laser Doppler velocimetry (LDV) has been used
to obtain quantitative local velocity measurements within cylinder arrays. LDV is an
experimental technique which measures point velocities within a fluid flow by detecting
the Doppler shift of light scattered from solid particles in the fluid. Presumably these
particles are small enough so that their velocity corresponds to the local fluid velocity.

Since this technique’s introduction by Yeh and Cummins (1964), LDV has been
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widely used on both laminar and turbulent flows of gases and Newtonian liquids. The

use of LDV on flows of viscoelastic liquids, however, has not been as extensive. An
LDV study particularly relevant to this investigation has been made by Lawler ez al.
(1986). They examined the velocity field and flow transitions of an elastic, non-shear
thinning polyisobutylene solution (a Boger fluid) in a 4:1 axisymmetric contraction flow.
For De < 0.8 the flow was steady and identical to the predicted Newtonian flow field,
but at De = 0.8 the flow became time periodic with a fluctuating tangential velocity
component. At De = 1.2 the flow again became time independent, but was no longer
identical to the Newtonian velocity field. It is interesting that the flow transition at De
= (.8 is lower than the onset Deborah number for the appearance of large corner
vortices, indicating that the LDV technique is sensitive to flow transitions, particularly
temporal transitions, which otherwise could not be detected by more conventional flow
visualization techniques.

The work presented here examines the kinematics of viscous and viscoelastic
liquids in periodic arrays of circular cylinders. The flow field is explored by both streak
photography and by laser Doppler velocimetry. LDV provides point velocity
measurements of both viscous and viscoelastic liquids in cylinder arrays for comparison
with numerical simulations, while streak photography provides global comparisons of
flows at Deborah number of O(1) with the Newtonian flow field. In both the square and
hexagonal arrays a flow transition is observed for the viscoelastic liquid near the Deborah

number where onset of elastic effects is observed in the flow resistance data.
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3.3 Laser Doppler velocimetry (LDV)

3.3.1 Basic principles

A dual beam, single component LDV system is used in this study, and is shown
schematically in Figure 3.1. Plane polarized light, emitted from a 35 mW He-Ne laser
at a wavelength of 632.8 nm, is split into two beams of equal intensity and focused by
a transmitting lens. The receiving optics and photomultiplier are set up in the forward
scatter mode, directly in line with the transmitting lens. It is in this direction that the
intensity of scattered light, resulting from small particles moving through the beam
intersection, is the greatest. Velocity measurements are made in the ellipsoid, known as
the "measuring volume”, formed by the beam intersection and it is in this location,
between the transmitting and receiving lenses, that the permeability cells were placed.

The simplest and most widely used explanation of the operation of the dual beam
LDV system is based on the fringe model. This model avoids reference to the Doppler
shift effect and yet provides many correct results in terms of the velocity measurement.
It breaks down, however, in the calculation of predicted signal intensity of light scattered
from the measuring volume.

The fringe model is based on the interference of intersecting waves at the

measuring volume, producing a fringe pattern with spacing, d;,
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Table 3.1 Components of the laser Doppler velocimeter system shown in Figure 3.1.

9126-255

Laser power supply

9126-105A

35 mW He-Ne laser, A = 632.8 nm

9115-2

Beam Splitter, S0 mm separation

9118

Transmitting lens, f = 250 mm

9165

Photomultiplier power supply

9118

Receiving lens, f = 250 mm

9160A

Photomultiplier

9126, 9121

Optical rails

1
2
3
4
S
6
7
8
9

1980

Signal Processor, 100 MHz clock

465 M

Portable Oscilloscope

Apple Ile computer
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A

Zein(®) (3.1)

d, =

where A is the wavelength of the laser light and « is the half angle of the intersecting
beams (x = 5.71°). In the present system the fringe spacing is 3.18 um, resulting in 64
fringes within the measuring volume. These fringes are set in planes perpendicular to
the plane in which the beams lie, and run parallel to the line bisecting the angle formed
by the beam crossing. Figure 3.2 shows a schematic of the ellipsoid and fringe pattern
at the beam intersection. Here the beams cross in the x-z plane and the z axis lies along
the bisector of the angle formed by the beams.

The velocity measurement of fluid flowing through the measuring volume relies
on small solid particles, traveling with the flow, to scatter light. As a particle moves
through the fringe pattern, past the light and dark bands, it reflects light with an
oscillating intensity. This reflected light is picked up by the photomultiplier and
converted into an electronic signal. The signal, shown in Figure 3.3, contains a mean
low frequency component known as the pedestal and a sinusoidal component which
oscillates at the Doppler frequency (¥,). During processing of the signal, the pedestal

is usually removed, leaving », which is proportional to the velocity,

v S.M R (3.2)

D d(



Figure 3.2 Measuring volume and fringe pattern formed by the beam intersection. The
beams intersect in the x-z plane and the z axis follows the bisector of the angle of beam
crossing (Dabir, 1983).
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Figure 3.3 A typical signal from the photomultiplier (Dabir, 1983).
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Hence, calculated fluid velocity is based solely on the measured Doppler frequency, the

wavelength of laser light and the half angle of the beam crossing. The dual beam system
measures only velocity components perpendicular to the plane of the fringes (the x
direction in Figure 3.2) since the other components represent particle motion within a
fringe plane, producing no oscillating signal.

The absolute value in Eq. 3.2 indicates this technique’s inability to determine
flow direction. A particle traveling through either end of the measuring volume at the
same speed will result in an identical signal. In flows where the local direction of fluid
motion is unknown a technique called frequency shifting is employed. Instead of the
measuring volume containing a stationary interference pattern, the frequency of one of
the transmitted beams is shifted by v,, causing a moving wave-like fringe pattern. Thus,
particles in the measuring volume moving in the same direction as the fringes will result
in experimentally measured frequencies less than v,, while particles moving in the
opposite direction will result in frequencies greater than v,.

3.3.2 Experimental LDV system
Figure 3.1 shows the dual beam Thermo-Systems Inc. (TSI) LDV system used

in this study. Each of the individual components is listed and described in Table 3.1.
All experiments are performed in the forward scatter mode and frequency shifting is not
employed. The light source is a 35 mw He-Ne laser, emitting light at a wavelength of
632.8 nm. The major optical components consist of a beam splitter, which divides the
incident beam into two equal intensity beams separated by 50 mm, and transmitting and
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receiving lenses, each having a focal length of 250 mm. This lens system produces a

beam half angle of 5.17° and an ellipsoid measuring volume with dimensions: Az = 1.9
mm, Ax = 0.18 mm and Ay = 0.18 mm (see Figure 3.2). As shown earlier by Eq.
3.1, the fringe spacing is 3.18 um, resulting in 64 fringes across the measuring volume.
Also, the industrial grade solvents used in this study are sufficiently contaminated with
dust and other forms of dirt that seeding the flow is unnecessary. The velocities
measured in this study typically are in the range of 0.5 to 5§ cm/s, which correspond to
Doppler frequencies of approximately 1.6 to 16 kHz.

The processing of the Doppler signal begins at the photomultiplier which picks
up photons from the receiving optics and converts them into a voltage signal. The
voltage signal is then sent to a TSI model 1980 signal processor where it passes through
an input conditioner and a timer. The input conditioner amplifies and filters the signal
with 1 kHz and 10 kHz (or 100 kHz) high and low pass filters. The conditioner also
contains a Schmitt trigger. If the signal amplitude is greater than 50 mV the trigger is
activated, converting the sinusoidal wave into a square wave. Otherwise, the output is
not updated. The timer’s function is to measure the length of the envelope containing
N cycles from the Schmitt trigger; the numbers of cycles per burst, N, is set externally
and for this study is 8. The timer also measures the length of an envelope N/2 cycles
long. If the average signal frequency of the first N/2 cycles is not within 5 percent of
that of the N cycles then the data point is rejected and the system is reset without

updating the output. Otherwise, the frequency is latched to output.



3.3.3 LDV measurement difficulties

The LDV measurements, made on both the viscous and viscoelastic liquids within
the cylinder arrays, suffered from low data rates. Data rates of approximately 1 to S Hz
were obtained. This is in comparison to rates of 100 to 500 Hz which are necessary in
order to obtain temporal information about the velocity. As a result, sampling was
limited to the “handshake" mode of data collection. Typically, at data rates of 100 Hz,
data can be collected every 100 ms with confidence that every data point is independent.
With a data rate of 1 Hz and sampling every 100 ms, however, every tenth data point
is independent. The other nine represent the same point because the previous signal will
remain in memory until a new point replaces it. In the handshake mode of operation data
points are sampled only as frequently as they arrive. Thus, making accurate velocity
measurements of steady flows was not a problem. Obtaining temporal information from
unsteady flows, however, was not possible as a result of the low data rates.

During this investigation, sets of 256 data points were sampled at each location
in the flow field; at data rates of 1 Hz this process took more than 4 minutes per set.
A TSI data reduction program, running on an Apple Ile, collected the frequencies from
the signal processor, calculated the corresponding velocities and presented a statistical
evaluation of the data which included the probability distribution function, the mean
velocity and standard deviation. Collecting data this way worked well since the standard
deviations of the data sets were less than 1 percent of the mean values for the stable
flows.

The precise cause of the low data rates is unknown. What is known is that the
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low rates were not a result of infrequent Doppler bursts, but rather small signal

amplitudes. The amplitude of the electronic signal received from the photomultiplier was
usually lower than the 50 mV necessary to activate the Schmitt trigger. Thus, the timer
infrequently received data to compare and latch to output. This occurred even though
the signal gain was set at maximum. The cause of this low output amplitude was initially
thought to be the result of a faulty photomultiplier. However, a TSI inspection has
revealed that this is not the case. Furthermore, the entire LDV system was tested by
measuring the velocity of water stirred in a glass beaker. Good Doppler signals were
obtained with data rates of 100 Hz. Seeding the flow with spherical 5 micron Nylon
particles was also tested. This appeared to slightly increase the frequency of Doppler
bursts, but had no effect on the signal amplitude.

The most likely cause of the low signal intensities is optical inhomogeneities in
the Plexiglas windows of the permeability cells. Because the cylinders are tightly press
fit into the windows, much residual stress remains in the material. This is confirmed by
the asymmetric stress patterns observed in the Plexiglas when they are examined between
two polarizing lenses. These patterns are the result of local index of refraction
differences caused by residual stresses. Thus, light exiting the permeability cell is
scattered by the Plexiglas window, reducing the intensity of light picked up by the

receiving optics.
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3.4 Experimental

3.4.1 Test fluids

Three test fluids were used in this study: a Newtonian fluid, a non-shear thinning,
elastic fluid (a Boger fluid) and an elastic shear thinning fluid. The Newtonian liquid is
a pure polybutene (PB), Amoco grade H25, whose material and rheological properties
can be found in the preceding chapter. The Boger liquid is a polyisobutylene/ kerosene/
polybutene mixture, having the following composition by weight: 0.25 % PIB/ 7 %
kerosene/ 92.75 % PB H2S. The PIB is a 4 to 6 million molecular weight polymer
purchased from Aldrich Chemical Co. This solution is a Boger fluid similar to the M1
standard (Sridhar, 1990) with the shear viscosity nearly constant over shear rates up to
10 s* (see Figure 3.4). The shear viscosity, shown in Figure 3.4, is 2.8 Pa-s at 25 °C
and the relaxation time, A, calculated from the quadratic region of the storage modulus
vs. frequency curve (see Figure 3.5) is 0.86 s. The shear thinning liquid is a 2 wt. %
PIB in decalin solution whose rheological properties are presented in the preceding
chapter.

3.4.2 Apparatus

The flow loop and permeability test cells have been described in detail in the
previous chapter, and only the important features of the apparatus are discussed here.
A schematic of the apparatus is shown in Figure 2.7. Test fluid is pumped via a
peristaltic pump from the holding tank into the liquid reservoir. From here the test fluid
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Figure 3.4 Steady shear viscosity of a 0.25 % PIB/PB solution at 25 °C.
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cither flows freely or is forced by regulated nitrogen pressure through the cells. Flow
rate measurements are made by weighing fluid samples collected over time or by
monitoring the reservoir liquid level with time. Pressure transducers on either side of
the cylinder array measure the mean pressure drop across the bed as shown in Figure
2.7.

The kinematics of flow transverse to a square array and to a hexagonal array of
circular cylinders is studied. Each array has a void fraction of 70 percent and is
composed of acrylic cylinders (radius = 0.238 cm) arranged as shown in Figure 2.9.
Localized velocity measurements within the cylinder arrays are made by LDV and have
been discussed above.

3.4.3 Streak photography

The flow patterns are mapped by streak photography. This is done by passing
a light beam (from the 35 mW laser used in the LDV experiments) through a cylindrical
lens to form a thin sheet of light. This sheet is then reflected off a surface coated mirror
and passed through a window in the top of the permeability cell, illuminating the flow
field. The light sheet lies perpendicular to the axes of the cylinders and in the plane of
the 2 dimensional flow. Pictures taken with a 35 mm camera, using a time exposure of
1.5 seconds, capture the path of 50 um silicon carbide particles seeded (0.033 grams per
liter fluid) in the flow.
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3.5 Yalidation of experimental technique

3.5.1 Stokes flow simulation

Finite element simulations have been carried out for two dimensional Stokes flow
in the domains shown in Figure 3.6. These domains represent repeat units of the
periodic square and hexagonal cylinder arrays used in the experimental section of this
chapter. Both the x and y coordinates are scaled with the cylinder radius and the velocity
with the superficial velocity. Over the entire boundary of both domains the y component
of the velocity is zero. This is the result of no-slip at cylinder surfaces and symmetry
along all other boundaries. The x component of the velocity is set to zero only at the
cylinder surfaces. Otherwise, it is specified at the upstream portion of the domain
boundary (x = -1.62 and x = -3.01 for the square and hexagonal pitch geometries
respectively). The periodicity of both geometries requires that the x velocity component
along the downstream domain boundary be equivalent to the upstream boundary. This
condition is satisfied by iterating; the boundary velocities upstream are replaced by
calculated downstream velocities until convergence is attained. The results of the
simulations are shown in Figure 3.7. As expected for linear fluids with periodic
boundary conditions, the streamlines in both the square and hexagonal arrays are
symmetric around the cylinders.

3.5.2 Newtonian liquid flow visualization

The flow patterns for the pure polybutene in both the square and hexagonal arrays



76

- 162
_/\ _
l | | | | X
1.62 1 0 1 1.62
(a)
y \
1.74
- 0.74
:
| | | l | X
-3.01 -1 0 1 3.01
(b)

Figure 3.6 Geometric domains used for the Stokes flow simulations (a) square array and
(b) hexagonal array.
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Figure 3.7 Streamline output from the Stokes flow simulations (a) square array and (b)
hexagonal array.
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at Re = 0.027 and Re = 0.013 respectively, are shown in Figure 3.8. The fluid is

travelling from right to left. The particle paths in the photographs are symmetric,
reflecting the periodicity of the arrays, and are identical to the streamline calculations in
Figure 3.7. In the square array no streaklines are visible in the space between cylinder
stagnation points because of extremely low velocities (compared to the bulk flow)
between rows of cylinders. Streak photographs for Reynolds numbers up to 0.5 in both
arrays have also been taken but are not presented here. These photos show the same
patterns as those in Figure 3.8. Also, flow resistance measurements for these tests are
in good agreement with Darcy’s law (see Chapter 2), and at no time did the flow exhibit

any instability.

3.5.3 Newtonian liquid LDV measurements
The results of LDV measurements taken along lines of geometric symmetry, y =
1.62 and y = 1.74 for the square and hexagonal arrays respectively, are shown in Figure
3.9_ Along these lines the geometric symmetry requires that the y component of the
Velocity vanish at steady state. Again, good agreement is found between the numerical

Simnulations and the velocity measurements.

3.6  Eastic liquid results and discussion

3.6.1 Flow visualization on the PIB/PB liquid
Figures 3.10 (a)-(e) and 3.11 (a)-(d) show a series of streak photographs, each



(b)

Figure 3.8 Streak photographs for a Newtonian polybutene liquid in the cylinder arrays
at a void fraction of 70 percent (flow from right to left) (a) square array, Re = 0.027
and (b) hexagonal array, Re = 0.013.
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Figure 3.9 (a) LDV measurements and the Stokes flow prediction for the inelastic
Newtonian fluid in the square array along y = 1.62.
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Figure 3.9 (b) LDV measurements and the Stokes flow prediction for the inelastic
Newtonian fluid in the hexagonal array along y = 1.74.
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at a consecutively higher De, of the PB/PIB solution flowing through the square and

hexagonal arrays. In all photographs the fluid is travelling from right to left and the
Reynolds number is less than 0.5. The relative flow resistances, corresponding to the
flow situation in each photograph, are given in Figure 3.12. The flow resistance data
are consistent with those presented in the previous chapter, showing an elastic onset at
De = 0.70 in the square array and at De = 0.25 in the hexagonal array. Sufficiently
large Deborah numbers were not attained in either array to observe the asymptotic high
Deborah number limit of flow resistance for this high molecular weight PIB.

The photos in Figures 3.10 (a) and 3.11 (a) were taken of flows at De = 0.16
and De = 0.06 respectively. As seen in Figure 3.12 these Deborah numbers are below
the onset values. Accordingly, the particle paths in these photos are symmetric and
match both those found with the Newtonian fluids and those calculated in the computer
simulation. As the Deborah number increases past the onset values, the flow in both
arrays go through a transition from a steady Newtonian flow to an unsteady flow. This
has been observed in both arrays through the downstream pressure fluctuations discussed
in the previous chapter and by LDV measurements discussed in the next section. The
streak photographs presented here also capture this unsteadiness.

In the case of the square array, both flow unsteadiness and asymmetry are
observed. The progression of the asymmetry with Deborah number can be observed in
the photographs shown in Figures 3.10 (b)-(f). This asymmetry is characterized by
particles which follow flow paths winding randomly between cylinders and crossing

through lines of geometric symmetry. This becomes more apparent as the Deborah
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Figure 3.10 Streak photographs for the viscoelastic liquid in the square array having a
void fraction of 70 percent (flow from right to left) (a) Re = 0.039, De = 0.16 (b) Re
= 0.19, De = 0.80.
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Figure 3.10 (c) Re = 0.25, De = 1.09 (d) Re = 0.36, De = 1.44.
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Figure 3.10 () Re = 0.48, De = 1.91 (f) Re = 0.48, De = 1.91.
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Figure 3.11 Streak photographs for the viscoelastic liquid in the hexagonal array having
a void fraction of 70 percent (flow from right to left) (a) Re = 0.015, De = 0.059 (b)
Re = 0.069, De = 0.28.
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Figure 3.12 Relative flow resistance of a 0.25 % PIB/PB elastic liquid in both square
and hexagonal cylinder arrays.
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number is increased. The flow unsteadiness is apparent by comparing streak lines in
photos taken at the same Deborah during two different experiments. From one snap shot
to the next the particle paths differ - even at the same Deborah number! For example,
Figures 3.10 (e) and (f) are photographs taken of two separate test runs, both at De =
1.91 and both at the same location in the flow field. Besides noting the asymmetry of
the streak lines, one can also observe identical regions in the flow field where the particle
paths are completely different from each other, indicating flow unsteadiness.

Particle path asymmetries and flow unsteadiness are not as easily observed in the
photographs taken here of the high Deborah number flows with the hexagonal array (see
Figure 3.11 (b)-(d). Close examination of the photos reveal many areas where the
particle paths cross each other. This is most apparent in the highest Deborah number
flow shown in Figure 3.11 (d). Particle path crossing is evidence of flow unsteadiness

in the hexagonal array.

3.6.2 LDV measurements on the PIB/PB liquid

Laser Doppler velocimetry measurements of the PIB/PB liquids made along y =
1.62 and y = 1.74, in the square and hexagonal arrays respectively, confirm that for
Deborah numbers below the onset values the kinematics of the flow are identical to those
of Stokes flow (see Figure 3.13). This is no longer true when the Deborah numbers
exceed the onset values.

The LDV measurements made in both arrays at Deborah numbers above the onset

values resulted in Doppler signals which appeared extremely "noisy”. The Doppler burst
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Figure 3.13 (a) LDV measurements and the Stokes flow prediction for the 0.25 %
PIB/PB elastic liquid in the square array along y = 1.62.
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Figure 3.13 (b) LDV measurements and the Stokes flow prediction for the 0.25 %
PIB/PB elastic liquid in the hexagonal array along y = 1.74.
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was not composed of a single frequency as illustrated in Figure 3.3 but contained

multiple frequencies. A local velocity unsteadiness will produce this result. Multiple
scattering particles within the measuring volume, each moving at different velocities, will
result in a Doppler signal containing several frequencies, as illustrated in Figure 3.14
(b). Figures 3.14 (a) and (b) show the probability distribution of 1024 velocity data
points taken at x = -1.58 and y = 1.74 in the hexagonal array at two different Deborah
numbers, De = 0.085 and De = 0.36 respectively. The extremely narrow velocity
distribution shown in Figure 3.14 (a) indicates the steadiness of the flow below the onset
Deborah number. Above the onset Deborah number, the velocity distribution is very
broad (Figure 3.14 (b)), demonstrating the flow unsteadiness. Similar trends in the
velocity probability distributions below and above the onset Deborah number were seen
in the square array also. As a result of the handshake mode of data collecting it is
impossible to determine whether the fluctuating velocity measurements in either array

were time periodic.

3.6.3 LDV measurements on the PIB/decalin liquid

Figure 3.15 (a) shows velocity data in the square array along the symmetry line
y = 1.62 for De = 0.69 and De = 0.82. At these Deborah numbers the flow is steady,
and the shear thinning properties of the fluid dominate the flow dynamics, resulting in
relative flow resistances below the Newtonian value (see Figure 2.15). The velocity
profiles of Figure 3.15 (a) show higher velocities than the predicted Newtonian values

along y = 1.62. This is consistent with the reduced pressure drop observed at these
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Figure 3.14 Probability distribution function of the elastic fluid’s velocities measured
in the hexagonal array at x = -1.58 and y = 1.74 (a) De = 0.085 (b) De = 0.36.
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Figure 3.15 (a) LDV measurements and the Stokes flow prediction for the PIB/Decalin
liquid in the square array along y = 1.62.
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Figure 3.15 (b) LDV measurements and the Stokes flow prediction for the PIB/Decalin
liquid in the hexagonal array along y = 1.74.
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Deborah numbers. As the Deborah number is increased above 1.0 the extensional

properties of the fluid begin to dominate and the relative flow resistance increases. As
this occurs, a velocity transition similar to that found with the Boger liquid, is observed.
For De > 1, the LDV signal becomes "noisy", indicating a transition from a steady to
an unsteady flow.

Figure 3.15 (b) presents the velocity profiles along the line connecting two
stagnation points (y = 1.74) in the hexagonal array for De = 0.63 and De = 0.94.
Along this symmetry line the velocities agree with the Stokes flow prediction even though
at these Deborah numbers the flow resistance curve of Figure 2.15 reveals a large shear
thinning effect. As a result of the stagnation points on this particular symmetry line, the
flow along this line is dominated by elongational properties. Shear thinning effects must
occur in the narrow gaps that are not aligned in the x-direction. As the Deborah number
increases above 1, extensional effects begin to dominate the flow and the relative flow
resistance begins to increase. At this point the flow becomes unsteady.

The significance of these results is that at flow conditions where shear thinning
effects dominate the flow is steady, even at Deborah numbers as high as 1. It is not until
the extensional effects begin to dominate the flow at higher Deborah numbers that the

flow becomes unsteady.

3.6.4 Discussion of flow unsteadiness
That the onset of flow unsteadiness occurs at the same Deborah number as the

onset of the excess pressure drop suggests that the nature of the two phenomena are the
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same. In the previous chapter it has been shown that increases in the relative flow

resistance are consistent with and can be correlated by extensional viscosity increases
occurring in localized regions within the cylinder arrays. This is evident in the
hexagonal array. Stokes flow calculations show that along streamlines connecting
stagnation points extension rates of up to 3.5 times the nominal shear rate are obtained.
The large extension rates coupled with the high fluid residence time near the stagnation
points cause macromolecules in these areas to elongate several fold and even break. This
is supported not only by the chain extension calculations of Chmielewski et al. (1990),
but also by the birefringence data of Cressely and Hocquart (1980). Cressely and
Hocquart (1980) studied the flow of polymer solutions around a circular cylinder and
found very localized birefringence along the streamline emanating from the stagnation
point on the downstream side of the cylinder. In the case of the square array the region
of the highest extension rates is localized along the symmetry line running between
cylinder rows (y = 1.62).

At comparable Deborah numbers, the maximum extension rate in the square array
is lower than that in the hexagonal array, resulting in differences in the onset Deborah
number for the two arrays, 0.25 and 0.70 respectively. This difference in onset Deborah
number can be accounted for quantitatively by redefining the Deborah number in terms

of the maximum array extension rate instead of the nominal strain rate, v,

De* = A, (ay,) (3.3)
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where a is 1.5 for the square array and 3.5 for the hexagonal array based on Stokes flow

calculations. Thus, the onset of elastic effects occurs at De’ ~ 1 for both arrays. This
value corresponds to the Deborah number where macromolecules in extensional flows
undergo the transition from a coiled to an elongated state - the coil to stretch transition
(De ~ 1). Hence, at De’ ~ 1 macromolecules in the polymer solutions become
elongated in localized regions within the cylinder arrays, resulting in an excess pressure
drop across the arrays.

The complex fluid dynamics resulting from high extensional stresses generated
in the extensional flow regions may result in the observed flow unsteadiness. An
indication of the apparent Trouton ratio attained in the cylinder arrays can be obtained
from the fiber spinning experiments of the previous chapter. The ratio of the average
extensional viscosity to the shear viscosity of a 2.11 million molecular weight PIB in PB
solution is 1500 at De = 3.6. Also, data on a PIB in decalin solution show that this
ratio increases with increasing Deborah number.

The onset of flow unsteadiness, occurring at the same Deborah number where
localized regions of large stress appear is consistent with the observations reported by
Ambari er al. (1984) on laminar flow around a single cylinder. They used an
electrochemical technique to study the mass transfer from a circular cylinder in dilute
polyethylene oxide solutions. At an onset Deborah number of approximately 3 they
observed a large decrease in the mass transfer rate with respect to the Newtonian value.
This decrease was accompanied by an onset of fluctuations of the limiting diffusion

current. The RMS values of these fluctuations increased with increasing Deborah
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numbers, but eventually reached a plateau. Ambari er al. (1984) attributed these

fluctuations to the high extensional viscosities localized near the upstream cylinder
stagnation point.

Similar to the observations of Ambari ef al. (1984), LDV measurements taken at
a single point in the flow field demonstrate an increase in the “"degree” of flow
unsteadiness with increasing Deborah number. The degree of unsteadiness is quantified
by the ratio of the standard deviation of a set of velocities measured at a point to the
mean value. As the Deborah number of the flow is inW the standard deviation ratio
increases. This is shown in Figure 3.16 which represents LDV data taken in the
hexagonal array at a point approximately one half cylinder radius behind a stagnation
point (x = -1.58 and y = 1.74). Figure 3.16 shows that at De ~ 0.2 (De’ ~ 1) there
is a large jump in the degree of unsteadiness, confirming that this Deborah number
indeed represents a transition point for viscoelastic flow in the hexagonal array. Unlike
the observations of Ambari ez al. (1984), the standard deviation of the fluctuations does

not level off for the Deborah number range shown in Figure 3.16 .

3.7 Conclusions

The kinematics of viscous and viscoelastic liquids flowing through square and
hexagonal cylinder arrays has been studied. Both streak photographs and LDV
measurements indicate that below an onset Deborah number, De’ ~ 1, the flow of non-

shear thinning elastic fluids is identical to the Stokes flow field. However, above the
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Figure 3.16 Growth of the flow instability in the hexagonal array for the 0.25 %
PIB/PB elastic liquid as measured by LDV at x = -1.58 and y = 1.74.
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onset Deborah number the flow becomes unstable. The results with the shear thinning

liquids underline the elastic origin of the instability observed.

The steady Newtonian flow changes to an unsteady and spatially aperiodic flow
field at an onset Deborah number where elongational flow dominates. This onset
Deborah number corresponds to the onset of fluid elasticity effects on the pressure drop
across the array. Thus, any attempt to predict flow resistance increases must describe

the viscoelastic transition to unsteady flow.



Chapter 4

THE DEGRADATION OF POLYMER SOLUTIONS
FLOWING THROUGH ARRAYS OF CIRCULAR
CYLINDERS

This chapter was published in the Journal of Non-Newtonian Fluid Mechanics 35, 309-

325 (1990), with co-authors C.A. Petty and K. Jayaraman.

4.1 Summary

The flow of a dilute solution of polyisobutylene in polybutene transverse to
unidirectional arrays of cylinders has been investigated at Reynolds numbers less than
0.1. Two different arrays were used - a triangular pitch array and a rectangular pitch
array. Both arrays have a porosity of 0.704, the same bed length and comprise identical
cylinders. Steady state permeation experiments were run over a range of superficial
velocities in both arrays, to study the onset of departure from Darcy’s law. The
rheology of the fluid was evaluated in shear before and after each set of runs.

While departures from Darcy’s law occurred in both arrays at similar values of

102
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Deborah number, mechanical degradation of the polymer solution was much more severe

with the triangular pitch array than with the rectangular pitch array. Specifically, after
several runs through the triangular array the relaxation time was halved while the change
in viscosity was relatively minor; this reveals loss of the high molecular weight tail in
the original polymer. This degradation was irrecoverable; no recovery was noted after
two weeks. Measurements of molecular weight distribution on the same samples in
Odell’s laboratory confirm that the highest molecular weight components are degraded.

Finite element simulations of Stokes flow were carried out for the two different
geometries to determine extensional strain rates along the flow direction in several
regions. This was followed by calculations of polymer chain deformation in these
regions, with the nonlinear elastic dumbbell model. These calculations reveal that the
maximum stretch rate in the triangular pitch array occurs along the streamline joining the
stagnation points on adjacent cylinders; this leads to nearly complete extension of the
polymer chain at a nominal Deborah number of 1 in the triangular array. However, in
the rectangular pitch array, the maximum stretch rate occurs along streamlines
considerably removed from the stagnation points, and the polymer chains are not

extended along those streamlines up to a Deborah number of 1.

4.2 Introduction

The flow of liquids through regular arrays of cylinders arises in a variety of

applications ranging from heat exchangers with tube bundles, to manufacture of fiber
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reinforced composites. Darcy’s law is often employed as a macroscale model for flow

of incompressible, Newtonian fluids through porous media at low Reynolds numbers.
This macroscale representation of the superficial velocity v in anisotropic media can be

written as

nv = -K-<Vp>, (4.1)

where 7 is the viscosity of the fluid, K is the permeability tensor defined entirely by the
geometry of the array and <VP> is the mean pressure gradient in the fluid. The
longitudinal permeability K;; describes flow along the direction of the aligned axes of the
cylinders, x;. Flow in the plane transverse to the cylinder axis may be described in
general by three constants - K;;, K;,, Ky, for any given configuration - ¢f. Sangani and
Yao (1988). These constants represent the transverse permeability which is generally
much lower than the longitudinal permeability. In arrays with additional rotational
symmetry such as square or hexagonal packing of cylinders, one parameter suffices to
describe the transverse permeability. Theoretical values of this quantity have been
tabulated for both square and hexagonal arrays by Sangani and Acrivos (1982). These
values were obtained by numerical solution of the creeping flow equations over
representative cells for these arrays. They have also provided analytical expressions for
this quantity in dilute arrays and in concentrated arrays. For arrays with void fraction
greater than 0.5, the predicted values of transverse permeability with square packing and
hexagonal packing are not significantly different.

No quantitative results are available from experiments or from theory for the
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permeation of viscoelastic liquids transverse to regular arrays of cylinders. The flow of

viscoelastic liquids at low Reynolds numbers through packed beds of spheres has been
studied experimentally by Marshall and Metzner (1967). The fluids they used has a
shear rate dependent viscosity as that these fluids obey Eq. 4.1 only up to a certain
critical value of nominal strain rate in the bed. As the strain rate was increased above
this threshold, the pressure gradient or frictional resistance increased progressively from
the Darcy value by factors of 10 or more. This increase was correlated with a Deborah
number, which is the product of a fluid relaxation time and strain rate. Other workers
(James and McLaren, 1975, Kulicke and Haas, 1984 and Durst ez al., 1981) have studied
the resistance to flow of very dilute ("drag reducing”) solutions of polymers passing
through packed beds of spheres. These workers have reported an onset Reynolds number
at which the flow resistance increased suddenly from Newtonian behavior by an order
of magnitude. For example, James and McLaren (1975) worked with dilute aqueous
solutions of polyethylene oxide passing through packed beds at low Reynolds numbers.
They observed that the onset Reynolds number decreased with increasing concentration
and with increasing molecular weight of polymer. They reported also that degradation
occurred especially with larger bead sizes (0.045 cm diameter). Kulicke and Haas (1984)
have shown that, for a given solvent polymer pair, the onset Reynolds numbers may be
used to infer the weight average molecular weight of the polymer. Both effects-the
increase in flow resistance, and degradation-have been attributed to the strong extensional
flow component in such flows (see Durst ez al., 1981).

The object of this paper is to report specific features of this extensional flow
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component that appear to be critical in crossflow of viscoelastic liquids through
unidirectional cylinder arrays with different packing geometries at a given level of
porosity. The work involves both calculations of chain extension in specific geometries
and steady state permeation experiments through such arrays. The liquids used have
constant shear viscosity and significant elasticity. The results show that the packing
geometry has a significant effect on the extent of degradation of the polymer in the
porous medium. This result is explained with model calculations of polymer chain

extension in the two arrays.

4.3 Experimental

4.3.1 Materials

Three test fluids were used in this investigation-the elastic M1 liquid, another
dilute solution of polyisobutylene in polybutene and a Newtonian analog to the M1 fluid.
It was necessary to prepare another dilute polyisobutylene solution similar to the M1 fluid
because only a limited supply of the M1 liquid was available. This elastic analog was
prepared by first dissolving the polyisobutylene (Vistanex L-120 from Exxon Chemical
Company, M, = 1.66x10°) in kerosene. This solution was then mixed with an
appropriate amount of polybutene (Indopol H300 from Amoco Chemical Company) in
order to obtain a shear viscosity similar to that of the M1 fluid (see Figure 4.1). The
Newtonian analog was prepared by mixing 17% by weight kerosene into polybutene,
again in order to obtain a shear viscosity similar to that of the M1 fluid (see Figure 4.1).
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Figure 4.1 Steady shear viscosity of the fresh test fluids.
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4.3.2 Rheological properties

All viscometric measurements were obtained with a Rheometrics RFS-8400 fluids
spectrometer. Viscosity measurements were made under steady shear at rates ranging
from 0.1 to 10 s™ and at six temperatures ranging between 15 and 30 °C. The dynamic
moduli of the elastic fluids were measured under oscillatory shear at frequencies ranging
from 0.1 to 100 rad/s. Measurements on the M1 liquid were made at six temperatures,
also ranging between 15 and 30 °C. The elastic analog was tested only at 22 °C.
Figure 4.1 is a plot of the steady shear viscosity, 5, of the test fluids. The test fluids
do not exhibit any shear thinning for strain rates less than 1 s!. Only slight shear
thinning can be observed for the M1 fluid and the elastic analog for rates greater than
1 s!. This figure also shows that these fluids have similar viscosities near room
temperature. This can be seen more clearly in Table 4.1 where the properties of the
flesh test fluids are compared at the same temperature. Figure 4.2 shows the results of
the oscillatory and steady shear experiments, using the M1 liquid, at 20 °C. These data
extend to low enough frequencies and shear rates where the dynamic viscosity matches
the steady shear viscosity. A relaxation time A, may be calculated from the low

frequency region of the storage modulus, G’, where G’ is quadratic in w, as follows:

/
l = —G . 4.2
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Table 4.1 Properties of the fresh test fluids.

Fluid

Temp.

% 1
°C Pa-s kg/-3 sec.
M1 Fluid 22.0 2.713 866. 0.220
Newtonian Analog 22.0 2.58 873. ce-
838 Polybutene
17% Kerosens
Other PIB Solution 22.0 2.28 871. 0.102

81% Polybutene
18.7% Kerosene
0.25% PIB L-120
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Here 1, is the zero shear viscosity of the solution and 1, is the solvent viscosity. This
relations provides a good estimate for the FENE dumbbell model in the form used by
Chilcott and Rallison (1988) if the ratio of fully extended dumbbell length to equilibrium
length is 10 or more for the polyisobutylene is polybutene (¢f. Chmielewski ez al., 1990).
A comparison of the properties for the M1 fluid and the elastic analog is also given in

Table 4.1.

4.3.3 Apparatus

A diagram of the experimental apparatus is shown in Figure 4.3. The apparatus
consists of a reservoir connected at one end to a nitrogen cylinder and at the other end
to the permeability cell. During an experimental run, the reservoir is charged with the
test fluid. A constant pressure is then supplied to the reservoir via a nitrogen tank and
pressure regulator. The flowrate was varied by varying the upstream reservoir pressure.
As the fluid exits the reservoir, it passes through a 5.3-to-1 contraction; the fluid then
flows through a 20 cm long pipe to enter the permeability cell with a 2-to-1 expansion.
The permeability cell (with cross-sectional view shown in Figure 4.3) consists of three
sections. The cross-section of the cell is rectangular, measuring 5.33 cm by 1.9 cm.
The entrance section leading to the array is 7.62 cm long. The length of the cylinder bed
is 2.24 cm. This consists of five rows of cylinders with a maximum of ten cylinders per
row; the cylinders are aligned along the 1.9 cm gap. The exit section is 2.54 cm long.
The test fluids exit the permeability cell by going through a 2-to-1 contraction and into

a short exit pipe.
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Figure 4.3 (A) Schematic of experimental apparatus and (B) a cross-sectional view of
the permeability cell (all dimensions are in centimeters).
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Two different cylinder arrays were used in this study as shown in Figure 4.4.

In one array, the rows are aligned one behind the other to produce a rectangular pitch;
in the other array, successive rows are staggered to produce an equilateral triangle pitch.
The cylinder radius a is 0.159 cm and the porosity is 0.704 in both arrays. The gap
between two cylinder surfaces in a row (i.e. perpendicular to the flow direction) is 0.238
cm for either array. The spacing between cylinder axes in successive rows of the
staggered array forms an equilateral triangle. This array is equivalent to the hexagonal
packing referred to by Sangani and Acrivos (1982). However, in the rectangular array,
the gap between cylinder surfaces in successive rows is 0.163 cm. The cylinder ends are
threaded to fit into the top and bottom plates in corresponding patterns. In the rows
containing ten cylinders, the cylinder on either end is tangent to the channel wall.

The pressure drop across the bed of cylinders was measured by two Omega PX-
610 miniature pressure transducers connected to a strip chart recorder. The bed length
! was the same (2.24 cm) in all experiments. The flow rates were measured
gravimetrically. All experiments were conducted at Reynolds numbers (see Eq. 4.4)
ranging from 0.005 to 0.1. The temperature of the fluid was monitored by a small

thermocouple contacting the fluid at the exit of the permeability cell.

4.3.4 Wall and end effects

Larson and Higdon (1987) have analyzed the flow near the surface in transverse
flow of a Newtonian fluid at low Reynolds numbers through periodic arrays of cylinders.
They concluded that the effect of external velocity is damped out well before the second
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Figure 4.4 Cylinder array geometries: (A) rectangular pitch array; (B) triangular pitch
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