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ABSTRACT

CROSSFLOW PERNIEATION OF VISCOUS AND

VISCOELASTIC LIQUIDS THROUGH ARRAYS OF

CIRCULAR CYLINDERS

By

Craig A. Chmielewski

The flow of viscous and viscoelastic liquids transverse to periodic arrays of

circular cylinders is studied. Two array geometries, square and hexagonal, are

examined; each having a void fraction of- 70 percent. Particular attention is devoted to

the influence of macromolecular conformation on the enhanced pressure drop across the

arrays. The flow kinematics in both arrays is elucidated by laser'Doppler velocimetry

and streak photography. These techniques reveal a flow transition from steady to

unsteady motion at Deborah numbers corresponding to the onset of enhanced pressure

drop. This result indieates that any attempt to predict the relative flow resistance

increases observed with the viscoelastic fluids must describe the transition to unsteady

flow.

The elastic fluids consist of four polyisobutylene (PiB) solutions; three non-shear

thinning and one shear thinning. The non-shear thinning liquids are 0.2 wt. 96 P13 in

polybutene solutions which differ only by the molecular weight of the solute. As these

solutions are 0—systems, the square of the degree ofpolymer extensibility associated with



Craig A. Chmielewski

each of these solutions is proportional to their molecular weight. This is consistent with

extensional viscosity measurements made by fiber spinning.

The initial departure from Darcy’s law for the non-shear thinning solutions is an

enhancement in flow resistance and occurs at Deborah numbers of 0.80 and 0.35 for the

square and lwxagonal arrays respectively. These onset values are independent of

molecular weight. At a given Deborah number above the onset, the flow resistance is

greater for higher molecular weights. Even after resealing to obtain the same onset

Deborah number for the two arrays, the relative flow resistance is higher for the

hexagonal array than the square array. At large values of Deborah number the relative

flow resistances in both arrays become independent of Deborah number. These

asymptotic values are shown to be proportional to the molecular weight and hence to the

square of the polymer extensibilities for these 0-systems.

The initial departure from Darcy’s law for the shear thinning solution is a

decrease in the relative flow resistance followed by an increase. This increase occurs at

Deborah numbers of 4.2 and 3.0 for the square and hexagonal array respectively.
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Chapter 1

INTRODUCTION

1.1 Matizattim

The flow of rheologically complex fluids in random porous media has long been

of interest to the oil industry for use in oil recovery processes. With conventional

recovery methods, a large amount of oil often remains in the ground after regular

production ceases, requiring other innovative techniques to extract the residual oil.

These ancillary techniques fall under the heading of ”tertiary oil recovery”. Tertiary oil

recovery processes typically involve pumping dilute polymer solutions in wells to

displace inaccessible oil from porous rock. Small amounts of high molecular weight

polymers are added to increase the viscosity of the displacing fluid and prevent viscous

fingering during permeation. However, the fluid rheology becomes complex,

complicating the recovery process at high permeation rates.

Thematefialprocessingmdumyalsohasgareratedanecdmunderstandtheflow

ofviscousandviscoelasticliquidsthroughporousmedia, suchasfibermats, inorderto

produce lower cost and higher quality composite materials. Traditionally, the challenge

had been to wet out bundles of ten to twenty micron fibers with viscous epoxy resins.

1
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More recently this problem has been expanded to wetting out fiber bundles with

viscoelastic fluids. The complex rheology of high molecular weight materials and fast

curing epoxy resins complicate composite manufacturing processes by introducing elastic

effects. The magnitude of these effects may vary, and can be quantified by a

dimensionless group named the Deborah number, De; the ratio of the characteristic fluid

time scale to the flow or processing time scale. For example, impregnation and

consolidation flows of rubber modified resins and thermoplastics, having time constants

in the range of 0.1 to 10 seconds, achieve Deborah numbers of order one as they flow

past 10 micron fibers at velocities as slow as 0.0001 to 0.01 cm/s.

Continued growth in the use of rapidly curing thermosetting systems for liquid

molding operations also provides impetus for studying viscoelastic fluid effects in

composite processes. Figure 1.1 shows the time evolution of the viscosity and relaxation

time ofa 5 minute epoxy, undergoing a thermosetting reaction at room temperature. The

initial magnitude of the relaxation time is relatively low, but quickly develops so that

over the last 50 percent of the epoxy’s fluid life the liquid is considerably elastic. This

sort of rheological complexity affects the time and pressures needed to ensure the

complete saturation of a fiber preform.

Thus, complex fluid rheology must be accounted for in order to obtain a basic

understanding of the flow of high molecular weight (or growing molecular weight)

materials in porous media. This is particularly a concern to the composite industry,

where the ability to move these advanced materials into high volume commercial use
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depends in part on reducing processing time. A fundamental approach to the solution of

this problem entails the study of the dynamics of liquids, characterized rheologically

under both shear and extension, flowing through uniform arrays of circular cylinders.

11W

The earliest scientific work on low Reynolds number flows of Newtonian liquids

through isotropic porous media was done by H.P.G. Darcy (1856). He found that the

superficial velocity of fluid through a porous medium was proportional to the pressure

gradient across the medium. This result is now known as Darcy’s law, and in its general

form is:

v, - .’T‘<Vp> . (1.1)

Here v.is the superficial velocity, u is the shearviscosity, Kis thepermeability tensor,

defined solely by the geometry of the media and <VP> is the mean pressure gradient

in the liquid. For random media, such as packed beds of spheres, the permeability

tensor is isotropic. However, for the uniform arrays of circular cylinders studied here,

four components of the tensor in general are necessary to describe the permeability: K“,

K,,, Km and K3,. In addition, for cylinder arrays with rotational symmetry, such as

square and hexagonal pitches, there are only two unknown components, the transverse



and axial permeabilities.

The study of the flow resistance offered by arrays of cylinders has its origins in

the design of tubular heat exchangers. The need for more efficient heat transfer

equipment continues today, and has prompted the theoretical study of low Reynolds

number viscous flows through periodic arrays of cylinders by Sangani and Acrivos

(1982). They calculate the drag of a Newtonian liquid on cylinders arranged in square

and hexagonal pitches over a wide range of loadings. For void fractions greater than 70

percent, both array geometries offer the same resistance to flow; with void fractions of

50 percent or lower, the square array offers more resistance to the flow of a Newtonian

liquid.

Recently, the composite industry has motivated further study of permeation

through fiber preforrns. Adams et al. (1986) have developed a planar flow technique to

studythepermeabilitiesofwoven fiber mats. Intheirexperimentsanepoxyresinwas

injected under a constant pressure into a variety of fiber mats, each having various weave

patterns and ranging in void fractions from so to 91 percent. The epoxy was forced to

flowradiallyintheplaneofapreform, andtheprogress oftheflowfrontwas monitored

over time. For the case of isotropic mats, the flow front was circular, indicating a

radially uniform in-plane permeability which could be backed out by an unsteady material

balance and Darcy’s law. In the ease ofanisotropic mats, however, the flow front was

elliptic, but also could be predicted using an unsteady material balance and Darcy’s law.

The in-plane permeability was not constant, however, and had to be described by a linear

combination of the permeabilities measured along the principal axes of flow (the
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directions of maximum and minimum flow). More recently, Adams and Rebenfeld

(l991a,b) have used this same technique to study the in-plane flow through multilayer

fabric assemblies, and found that the overall permeability differs from that of the

individual constituent layers. Furthermore, they found that flow transverse to the plane

was important in maintaining a macroscopically uniform flow front.

1.3W

One of the earliest studies of non-Newtonian flow through porous media was that

of Sadowski and Bird (l965a,b). They studied the flow of shear thinning aqueous

polymer solutions through random media. These solutions were virtually inelastic; the

maximum time constant being 0.07 seconds. They correlated their data by modifying

Darcy’s law to include the fluid’s shear thinning viscous behavior. This was done by

replacing the constant viscosity in Darcy’s law with an appropriate generalized

Newtonian fluid model-inthiscasetheEllismodel-whoseparameters werechosenby

fittingtheshearviscositydata. Thismethod described thepressuredrop-flowratedata

well, and has been used in subsequent analyses ofthe permeation of weakly elastic, shear

thinning liquids through random porous media ((12 Christopher and Middleman, 1965).

It was not until the work of Marshall and Metzner (1967) that sufficiently high nominal

bedstrainrateswerereached, resultinginflowresistancesuptotentimestheNewtonian

value. Theseresearchersargued thattheenhancedpressuredropwastheconsequence

of molecular extension due to the converging-diverging nature of the packed bed; a
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featurethecapillarymodelsdonotcontain.

1-4W

The inadequacy ofthe combination Darcy law/generalized Newtonian fluid models

to predict the large increases in flow resistances of polymer solutions flowing through

randommediahasleadtonewefforts-toformulatemodelswhichtakeintoaccountthe

converging-diverging nature of porous media. The model which has garnered much

attention lately is the corrugated tube which is an axisymmetric tube with a sinusoidally

varying radius. Over the past twenty years several experimental and numerical

investigations concerning the flow of elastic liquids in corrugated tubes has been

undertalmn (cf Dodson er al., l97l).

James er al. (1990) report experimental measurements ofpressure drop in slow

flow of an elastic liquid through a corrugated tube. Their results show little deviation

fromNewtonianbehavior,evenatDe = 3,andagreeverywellwiththenumerical

predictions of Pilitsis and Beris‘ (1989) and Burdette er al. (1989). The more recent

numerical work includes calculations by Pilitsis and Beris (1989), who use an upper

convected Maxwell model and a pseudospectral/finite difference method, and Burdette

er al. (1989), who also use an upper convected Maxde model but an explicitly elliptic

momentum equation formulation. The results of these two numerical experiments are

inexcellentagreement, evenatDe =10, and, liketheexperiments, predictvirtuallyno

variationintheflowresistancefromtheNewtonianvalue. Onlythroughtheinclusion
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of inertia have Pilitsis and Beris (1991) been able to predict a substantial enhancement

in the flow resistance. These results, both experimental and numerical, indicate that the

conugatedtubemodelisnotadequatefordescribingtheflowofviscoelasfic fluidsin

porous media.

A deficiency of the corrugated tube model is its lack of stagnation points (of

course, near the tube wall the fluid moves slowly as a result of the no slip condition).

The term stagnation point will be used here not only to refer to a point of zero velocity,

but also to a point situated in a flow region containing large extensional deformation

rates. A macromolecule, flowing into the neighborhood of a stagnation point, will

experience high residence times while simultaneously being stretched by the extensional

flow. Hence, a stagnation point within the flow ensures the existence of the necessary

criteria for a coiled macromolecule to undergo elongation: large residence times and

large extension rates.

Stagnation points abound in porous media. For example, each sphere comprising

the model random media of the above experiments contains two stagnation points, each

located at the poles. Neglecting the complications resulting from sphere-sphere contacts,

thefluiddirectlyupstreamofasphereexperiencesabiaxialextensionwhilethefluid

directly downstream of a sphere undergoes uniaxial extension. A similar situation occurs

intwodimensionsfortheflowothuidsu'ansversetocircularcylinders. Acylinder

alsohastwostagnationpoints;againeachlocatedatthepoles. Becausctheflowistwo

dimmsional,mefluidbomupsueunmddownmeamofmesmgnafimpommexperiurces

planar elongation.



1.5 Wan

To demonstrate the effect an extensional flow has on flow dynamics, we shall

examine the stress developed in a model viscoelastic liquid undergoing a pure

elongational flow; the relevant kinematics for this study being planar elongation. The

velocity components for a steady planar elongational flow are given by,

vJr = xé (1-2)

V, = -yé , (1.3)

whereéisflreextensionmteandxandyrepresentperpendicflarCanesiancoordinate

directions. The rate of deformation tensor for this flow is represented by the matrix, D,

,, . .[g 31} . (1...,

For this example, a dilute solution of finitely extensible non-linear elastic (FENE)

durirbbells will be used as a ”realistic" representation of a dilute polymer solution. In

thepresentcontext,theFENEdumbbellmodelisrealisticinthesensethatthetotal

extension of its macromolecular components, the dumbbells, is limited. This prevents

the stress from becoming infinitely large in regions of high extension rates. Figure 1.2
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shows the steady planar extensional viscosity behavior with Deborah number of Chilcott

and Rallison’s (1988) FENE dumbbell liquid. The important features of this model

prediction are that over a very small range of Deborah numbers the extensional viscosity

increases appreciably over the Newtonian value, and that for sufficiently high Deborah

numbers the extensional viscosity becomes independent of the Deborah number. Based

on this prediction, it is reasonable to expect that at an onset Deborah number the relative

flow resistance of viscoelastic liquids, flowing through arrays of cylinders (and for that

matter, through any porous media peppered with stagnation points), will increase and

then eventually become independent of the Deborah number.

1.6W

This study is a fundamental investigation of the flow of viscous and viscoelastic

liquids through arrays of circular cylinders. Chapter two focuses on the problem of how

geometry and fluid rheology affect the flow resistance through model arrays of circular

cylinders. Rheologically characterized fluids in both shear and extension are used to

elicit what fluid and geometric parameters are important in predicting the dynamic

behavior of fluids in cylinder arrays. In chapter three laser Doppler velocimetry and

streak photography are used to examine how the kinematics of the cylinder array flows

are affected by the fluid rheology. Chapter four presents experimental data showing the

effects of array geometry on macromolecular chain scission of a high molecular weight

polymer solution flowing through rectangular array and in a hexagonal arrays. Chain
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extension calculations based on the Stokes flow field are presented to support the

experimental observations. Finally, whereas the previous chapters consider the effect of

fluid elasticity on the permeation of liquids through cylinder arrays, chapter five

considers the effects of cylinder array compliance on crossflow permeation. This is done

through an analysis of the hot melt impregnation process which is used in the

manufacture of composite prepreg. In this chapter it is shown that fiber bundle elasticity

has a profound effect on the permeation of viscous liquids into fiber arrays.



Chapter 2

THE EFFECT OF POLYMER EXTENSIBILITY ON

THE FLOW OF POLYMER SOLUTIONS THROUGH

CYLINDER ARRAYS

2.1 Smut

The effects of fluid rheology on low Reynolds number flows transverse to

periodic arrays of circular cylinders have been investigated with several solutions of

polyisobutylene. Care was taken to avoid degradation of the polymer during the

measurements. These solutions were theologically characterized in both shear and

extension. Three of the solutions are dilute solutions of different molecular weight

polyisobutylenes in polybutene at the same concentration. These are o-systems at room

temperature and have a constant shear viscosity over strain rates up to 10 3". Fiber

spinning of these solutions indicates that the apparent Trouton ratio at an average stretch

rate of 15 s" is proportional to the molecular weight. This is consistent with predictions

of FENE dumbbell models for higher elongation rates (cf Chilcott and Rallison, 1988;

Biller et al. , 1986). A fourth solution of polyisobutylene in decalin was used to evaluate

13
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the flow resistance for shear thinning solutions.

The resistance to flow of the non-shear thinning solutions in both square and

hexagonal pitch arrays is above the Newtonian value at onset Deborah numbers of 0.80

and 0.35 respectively. These onset values are independent of solute molecular weight.

Higher molecular weight fluids produce higher flow resistances relative to the Newtonian

value for Deborah numbers greater than the onset value. At large Deborah numbers (De

> > 1) the relative flow resistances in both arrays become independent of Deborah

number, and scale linearly with the molecular weight. The asymptotic value of the

resistance ratio is consistently higher for the hexagonal array than for the square array

for the same molecular weight. This is shown to be a result of these transverse flows

being dominated by planar extension at high Deborah numbers.

mm

It is well recognized that the dynamics of shear thinning polymer solutions may

be affected by the finite extensibility of its macromolecular components (cf. , Christiansen

and Bird, 1977/1978). In spite of this, the effect of varying polymer extensibility on the

fluid dynamics of non-shear thinning elastic liquids, the so-called Boger liquids (Boger,

1977/1978), has not adequately been explored. A reason for this may be that the

polybutene based Boger liquids have been shown to behave in both shear and extension

as a dilute solution of infinitely extensible, linear dumbbells at low to moderate

deformation rates (see Prilutski er al., 1983 and Sridhar er al., 1986 respectively). In
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strong flows, however, where the Deborah number (De) is much greater than one, this

model breaks down because a linear dumbbell will extend without bound in such a flow

(Rallison and I-Iinch, 1988). This may be one reason that numerical simulations using

Oldroyd type constitutive models fail quantitatively, and sometimes even qualitatively,

to account for important flow phenomena observed for Boger fluids undergoing complex

flows. Only recently have researchers begun to explore other models in order to better

understand the physics behind the flow properties of polymer solutions. For example,

Chai and Yeow (1990) use a multiple relaxation time constitutive model (KBKZ model)

to describe the flow of a Boger fluid in a gravity drawn jet. They found better

agreement with experimental data using the KBKZ model than with the Oldroyd-B

model.

In the present investigation the effect ofvarying finite extensibility of the polymer

on the dynamics of complex flows of Boger liquids will be examined. This study is

partially motivated by the work of Chmielewski er al. (1990a) who observed opposite

trends with Deborah number in the relative drag on spheres, translating in corn syrup

based polyacrylarnide solutions versus polybutene based polyisobutylene solutions. This

difference was attributed to differences in the extensions of the polymers from

equilibrium. Polyacrylamide molecules tend to be relatively elongated in aqueous

solutions at equilibrium while polyisobutylene molecules in polybutene tend to be

relatively coiled at equilibrium.

In a previous investigation, Chmielewski er al. (1990b) reported that the pressure

drop in flow transverse to arrays of circular cylinders is much greater for an elastic
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Boger liquid than the pressure drop for Newtonian liquids of equivalent viscosity; similar

to that of polymer solutions in isotropic porous media. The focus of their study,

however, was on how differences in the extensional flow field between hexagonal and

rectangular pitch geometries affected polymer extension, and in turn molecular chain

scission.

In this work three Boger fluids are prepared with varying degrees of polymer

extensibility in order to understand its effect on the flow resistance of these fluids in

cylinder arrays. Two array geometries are studied, square and hexagonal, both having

a void fraction of 70 percent. Unsteady extensional viscosity data, obtained by fiber

spinning, is correlated with high Deborah number flow resistance asymptotes found in

both array geometries via molecular finite extensibility. A fourth, more concentrated

polymer solution is also examined in order to compare the effects of shear thinning on

fiber spinning and cross flow resistance.

23W

2.3.1 Materials

Three classes of liquids were used in this study: two Newtonian liquids of widely

different viscosities, three non-shear thinning, elastic liquids which differed only by their

solute molecular weights, and a highly shear thinning, viscoelastic polymer solution. A

comparison of some of the material properties of these fluids can be found in Table 2.1.

The two Newtonian liquids were 610 and 1290 weight average molecular weight
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Table 2.1 Properties of the test fluids at 20 °C.

FLUID

   NEWTONIAN

   

 

   Polybutene, H25
 

     

 

Polybutene, H300

7.45 % Kerosene

VISCOELASTIC

Boger Liquids

Solvent

    

 

93.0 96 PB, H25

7.0 96 Kerosene
 

Sohrtiom
 

0.20 % PIB L-80 0.90x10‘ "
 

0.20 96 PIB L-lOO 1.25x10‘ " 
 

0.20 96 PIBL-14O

VISCOELASTIC

Shear Thinning
 

Solvent

Decalin

Solution

2 96 PIB B200

 

2.11x10‘ "

138.25

4.30x10‘

* Viscosity averaged molecular weight

** Zero shear viscosity

   

 

0.258

I 0.0027 I
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polybutenes (PB) supplied by Amoco Chemical Company. A small amount of kerosene

(7.45 96) had to be added to the higher molecular weight grade in order to reduce its

viscosity to a manageable level. The three Boger solutions were all prepared by

dissolving an appropriate amount of polyisobutylene (PIB), supplied by Exxon Chemical

Company, into kerosene and then mixing the solution into Amoco’s 610 molecular weight

(MW) grade PB for a final composition by weight of 0.20 96 PIB, 7.00 % kerosene and

92.80 % PB. Three PIBs, having different molecular weights, were used: (1) Exxon’s

Vistanex L-80 with a viscosity. average molecular weight of 0.90 (1: 0.15) x 10‘, (2)

Vistanex L-100 with a viscosity average molecular weight of 1.25 (:l: 0.19) x 10‘ and

(3) Vistanex L-l40 with a viscosity average molecular weight of 2.11 (:1: 0.24) x 10‘.

The shear thinning, viscoelastic liquid was a 2 96 solution of PIB (BASF B200)

in a cis and trans decalin mixture. This fluid was supplied by Professor Walters, and its

preparation and composition were identical to the D1 liquid used in the Second Normal

Stress Difi'erence Projea (Walters, 1983).

2.3.2 Shear flow properties

Rheological measurements in steady and oscillatory shear were made on a

Rheometrics RFS-8400 Fluids Spectrometer at rates ranging between 0.1 and 100 s".

Thesetestswereperformedusinga0.02radianconeanda5cmdiameterplate.

Measurements made on the Newtonian and Boger liquids were performed at 10, 20 and

30 °C, while tests made on the remaining liquid were performed at 0, 20 and 40 °C.

Attempts to study the PIB/decalin solution at temperatures higher than 50 °C were
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unsuccessful due to enhanced solvent evaporation. Figure 2.1 (a) shows the solvent

viscosity, 1),, and the steady shear viscosity, 1;, of the three PBIPIB solutions as a

function of the shear rate. None of these liquids were significantly shear thinning over

the range of shear rates tested. On the other hand, the shear viscosity of the PIB/decalin

solution was constant only up to 0.1 s", and then decreased with increasing shear rates

(see Fla-Ire 2.1 (b))-

Intrinsic viscosity, [1)],, measurements were made on the PBIPIB solutions to

assess the thermbdynamic solvent quality near 20 °C. This was accomplished by

calculating the relative viscosities, 11,, of three different concentrations of each of the

PBIPIB solutions. A linear extrapolation of ln(11,,)/c to infinite dilution was made to

determine [1;], (see Figure 2.2 (a)). In Figure 2.2 (b) the relationship between [11], and

M, is shown to follow the Mark-Houwink relation,

[n], = K’M,‘ . (2.1)

The Mark-Houwink exponent, a, is approximately 0.5, indicating that the PBIPIB

solutions of this study were examined under theta conditions. The pre-exponential factor,

K’, is 0.40 cm’lg.

Figure 2.3 (a) shows the storage modulus, G', of the three PBIPIB solutions. A

relaxation time for each of the solutions (see Table 2.1) is calculated by,
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I

A . G . 2.2 

The value of the storage modulus is taken from the low frequency region where G’ is

quadratic in frequency. Figure 2.3 (b) shows the dynamic moduli, at 20 °C, of the

PIB/decalin solution. The storage modulus of this fluid also shows quadratic behavior

with frequency, but at much lower rates than the liquids of Figure 2.3 (a).

2-4W

2.4.1 Extensional flow apparatus

The unsteady elongational flow properties of the elastic fluids were measured by

fiber spinning. The apparatus, shown schematically in Figure 2.4, is similar to that of

other researchers (see Hudson at al. , 1974, for example), and utilizes a bending beam

load cell to measure the force exerted by test fluids on the capillary. Nitrogen pressure

is used to pump fluid from a reservoir and through a 20 cm long stainless steel capillary

(0.238 cm I.D.). The capillary pivots at its upstream end via a miniature ball bearing

and is attached to the load cell at its downstream end.

The bending beam load cell consists of a 7.0 cm by 1.3 cm by 0.013 cm strip of

spring steel, actingasacantileverbeam. Thefreeend ofthebeamis attached totheend

of the capillary. At the fixed end of the beam, four encapsulated foil strain gages

(Omega Engineering, model DYl l) are arranged to form a Wheatstone bridge. The
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Figure 2.4 Schematic of the fiber spinning apparatus.
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bridge is powered with 10 volts and emits a millivolt signal proportional to the bending

strain in the beam. The beam strain, 15,, is proportional to both the applied force, F,,

and the moment arm, 1,, according to,

6 FBI,
5 a

" 2.12113

. (2-3)

where b is the width of the beam, h, is the beam thickness and E, is the beam modulus.

The load cell is sensitive to 0.1 mN and the signal output is linear over the range of

forces measured in this study (4 to 50 mN). The utility of this force measurement

method is not only its cost effectiveness, but it also provides a convenient way of

adjusting the sensitivity of the load cell to meet the needs of a particular application.

Steady extension of a liquid filament extruding from the capillary is maintained

by an adjustable speed take-up drum at the downstream end of the fiber. Still photograph

enlargements of an elongated liquid fiber are used to obtain filament diameter profiles.

Table 2.2 lists the operating parameters of the elongational flow experiments performed

on each of the PIB test solutions.

2.4.2 Extensional flow results and discussion

The fiber spinning experiments were conducted under isothermal conditions and

such that gravity, surface tension and fluid inertia were all very small compared to the

tensile force. The cross sectional average of the tensile stress at any axial location, 2,
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Table 2.2 Operating parameters in fiber spinning experiments.

    

Boger unids

 

0.20 96 PIB L—80

0.20 96 PIB L-lOO

 

 

    0.20 96 PIB L-140

Shear'l‘hinning

 

2%PIBB2001.
 

 

 

 

     



down the fiber was calculated by,

45’,

nD(z)3

 T“(z) -r,,(z) = (2.4)

where T, and T, are components of the total stress tensor, F, is the tensile force and

D(z) is the diameter of the filament at location 2. The extensional strain rate will be

represented by the average, <é> ,

v(L,,) - v(0)
<e> =

LPS

 . (2.5)

where LP, is the length of the fiber, and v(0) and van) are the axial velocities at the

capillary outlet and at the take-up drum respectively. Since the axial velocity profiles in

these spinning experiments are nearly linear, the local extensional strain rates at all axial

locations are approximately equal to the average extensional strain rate. Combining Eqs.

2.4 and 2.5, the transient extensional viscosity can be represented as,

T.‘(Z) - Tzr(z)
(t) (2.6) n,‘(z) -

The fiber spinning results of the PBIPIB solutions are shown in Figures 2.5 (a)
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and (b). In Figure 2.5 (a) the transient extensional viscosity is scaled with 311 and the

time is scaled with x,. This figure indicates a molecular weight effect on the transient

extensional viscosity independent of the dominant molecular time scale. An average

extensional viscosity between two points on the spin line may be calculated as suggested

by Mackay and Petrie (1989),

_ 4 15L”

'1: g -

zD(O)’v(0)1n(l‘-{1‘l) (2'7)
v(0)

 

The ratio of the extensional viscosity to the shear viscosity, accounting for the polymer

contribution, is plotted against molecular weight in Figure 2.5 (b) . Since these fluids

had similar pre-shear histories and were spun at approximately the same extension rate

(5' ~ 15 s"), these results demonstrate that the apparent Trouton ratio scales linearly with

the molecular weight. This result can be anticipated by treating the Boger fluids as a

dilute solution offinitely extensible non-linear elastic (FENE) dumbbells. At sufficiently

large Deborah numbers (De > 1) the extensional viscosity in a uniaxial extensional flow

scales with the square of the extensibility parameter, L (cf Chilcott and Rallison, 1986

and Bird et al., 1987),

°‘ Lz-l , (2.8)
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where L2 represents the ratio of the mean square end-to—end distance for the fully

extended polymer molecule to its equilibrium value. For a theta system, the mean

squareend-to—end distance of a polymer molecule scales linearly with the molecular

weight.

at M, , (2.9)

The mean square end-to-end distance of the fully extended chain scales with the square

of the molecular weight,

(13> or MS . (2-10)

Thus, by definition the square of the extensibility of a polymer molecule in a theta

solvent is proportional to its molecular weight,

L2 = (I2)

8 M I (Zell)
2 W

and hence,



.. M, . (2.12)

The fiber spinning experiments on the PIB/Decalin solution were performed over

a range of flow rates, fiber lengths and draw ratios (see Table 2.2). Figure 2.6 shows

the apparent Trouton ratio plotted against the extension rate for five different tests.

Here, the average extensional viscosity is divided by the shear viscosity evaluated at a

shearstrainrateofj=fié

2.5Wm

2.5.1 Permeation apparatus

The experimental apparatus used in this study was similar to that of Chnrielewski

er al. (1990a) with modifications aimed at minimizing polymer degradation and providing

a means of flow visualization. A set of experiments was initiated by charging the

holding tank with a fresh 8 liter batch of test fluid (see Figure 2.7). Approximately 2

liters of this fluid was then pumped via a peristaltic pump (TAT Engineering, model 110-

43E) into a reservoir. Regulated nitrogen was used to move the fluid from the reservoir,

through the permeation apparatus and back into the holding tank. Pressure transducers

on either side of the cylinder array provided pressure drop measurements, and the flow

rate wasobtained by monitoring the change in liquid level within the reservoir over time.

The same 8 liter charge was used throughout the permeation testing of one cylinder pitch

type. When the cell geometry was changed a fresh batch of fluid was employed.
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Figure 2.7 Schematic of the permeation apparatus.
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Two permeation cells are used which differ only in the packing geometries of the

cylinder arrays they contain. Figure 2.8 shows a schematic of the permeation cells. The

test fluid enters the cell through a 2.5 cm I.D. pipe and travels through a 7.6 cm long

transition region before reaching the cylinder array. The cross section of the cell is

rectangular and measures 6.3 cm by 3.8 cm. As shown in the top view on Figure 2.8,

solid wedges fill the comers of the cell to facilitate a smooth transition of the fluid as it

enters and leaves the cell.

The arrays are composed of acrylic circular cylinders, 0.476 cm in diameter and

3.8 cm long. The cylinders are situated so that their axes are perpendicular to the flow,

and they are flush with the cell walls to prevent fluid channeling. Wall and end effects

are known to be negligible (see Chmielewski er al. , 1990a). Cylinder bed lengths in

both cells are approximately 9.3 cm (12 rows) and contain flush mount diaphragm type

pressure transducers (Omega Engineering, model PX102) on either side. A chart

recorder was used to monitor the upstream and downstream pressures over the duration

of each test. Figure 2.9 shows the square and hexagonal pitch geometries. As shown

in Figure 2.9, the cylinders in the square pitch are spaced 0.771 cm from center to

center and in the hexagonal pitch the cylinders form equilateral triangles which are 0.828

cm on a side and 0.717 cm in height.

2.5.2 Flow unsteadiness

Both upstream and downstream pressure traces of the Newtonian fluids showed

no variation with time. This was not the case with the viscoelastic fluids. Small
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Figure 2.8 Schematic of the permeation cells (all dimensions in cm).



 

 

Figure 2.9 Geometry of the circular cylinders (radius = 0.238 cm) (a) square pitch (b)

hexagonal pitch.
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amplitude oscillations were recorded by the downstream pressure transducer at a Deborah

number of 1.2 for all of the non-shear thinning elastic fluids. Above this onset, the

pressure oscillations grew in amplitude up to 2 percent of the average pressure with

increasing Deborah number; the Deborah number was controlled by the flow rate. At

no time were pressure fluctuations observed upstream of the cylinder arrays. No

pressure fluctuations were recorded in flow through a blank channel at Deborah numbers

up to 4. This indicates that the unsteadiness resulted from fluid elasticity in flow through

the array of cylinders.

Two examples of pressure traces for the square and hexagonal array of the 2.11

x 10‘ molecular weight solution at De ~ 2.6 are given in Figure 2.10. In both traces

the upstream and downstream measurements are on a different scale. Figure 2.10 (11)

represents the pressure over time of a test run in the hexagonal array. At a flow rate of

81 cm’ls the upstream pressure measured 2.92 x 10’ Pa (42.3 psi), while the downstream

pressure fluctuated around an average value of 0.11 x 10’ Pa (1.6 psi). At this Deborah

number the amplitude of oscillation is approximately 2 percent of the average pressure

and the dominant frequency is approximately 0.2 Hz. A pressure trace at De = 2.6 for

the square array is given in Figure 2.10 (b). Here the flow rate is 113 cm’ls, and the

corresponding upstream pressure is 1.78 x 10’ Pa (27.8 psi). The downstream pressure

oscillates around the mean of 0.17 x 10’ Pa (2.5 psi). Again the amplitude of oscillation

is about 2 percent of the mean pressure, and the dominant frequency is approximately

0.4 Hz. Though this estimate of a. characteristic frequency of the pressure fluctuations

is crude, it still bears pointing out that these frequencies are of the same order of
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“in" 2.10 (a) Pressure traces for the 2.11 x 10' molecular weight PIB/PB solution in

hexagonal array at De = 2.6 (Q = 81 cm’ls, upstream P = 29.2 x 10‘ Pa,

dowastr'eaml’ = 1.1 x 10‘ Pa).
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Figure 2.10 (b) Pressure tracesforthe2.ll x 10‘ molecular weight PIB/PB solutionin

thesquarearray ”De =2.6(Q =113cm’ls,upstreamP =17.8x10‘Pa,

downstreamP - 1.7x10‘Pa).
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magnitude as the velocity fluctuations found by McKinley et al. (1991) near the lip of

a 4:1 axisymmetric contraction flow using similar viscoelastic solutions.

2.5.3 Polymer degradation

Thepermeation apparatus had several design features which had been incorporated

to minimize the severe polymer degradation found by Chmielewski et al. (1990a) - see

Chapter 4. These features included a reduction in the expansion and contraction ratios

at the entrance and exit of the permeation cell, and an increase in the reservoir size,

reducing the frequency in which a batch of fluid is cycled through the cell. Also, lower

molecular weight PIBs were used in this investigation.

In order to assess the extent of polymer degradation the shear viscosity and

storage modulus were measured on fluid samples taken from an 8 liter fluid batch after

it had passed through an array several times. This information was used to determine

the number of runs after which fresh batches of each fluid were required. Very little

degradation was observed for all of the solutions used in this study. This is in contrast

to the extreme amounts of chain scission found when eare was not taken to minimize

degradation (see Chapter 4).

2.5.4 Permeation of Newtonian fluids

The flow resistance of the test fluids passing through the arrays may be

represented by the friction factor, f,
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a (-AP) Zap e3

f 1 G, (l-e) (2°13)

where p is the fluid density, -AP is the pressure drop, 6 is the void fraction of the bed,

lis the bed length, a is the cylinder radius and G, is the superficial mass flux. The

Reynolds number, Re, is defined by,

ZaGO 1

11 ———(1_£) (2.14) 

In this study two Newtonian fluids, whose shear viscosities differ by nearly an order of

magnitude, are used to obtain friction factor results for Reynolds numbers ranging from

0.001 to 0.3. Figure 2.11 shows no significant difference in the flow resistance of the

Newtonian fluids in the square and hexagonal arrays at the void fraction level of 70

percent. The theoretical calculations of Sangani and Acrivos (1982) also predict little

difference in the flow resistance for these two array types at this void fraction level. For

example, the product of the friction factor and Reynolds number, which is inversely

proportional to the transverse permeability, has a theoretically predicted value of 150 for

the square array and 141 for the hexagonal array at a void fraction level of 70 percent.

Figure 2.11 reveals very good agreement between the experimentally measured friction

factors for the two arrays and the theoretically predicted values over the range of

Reynolds numbers studied. This agreement is also evidence of the insignifieance of wall
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Figure 2.11 Friction factor vs. Reynolds number of two Newtonian PB liquids

compared to the theoretical prediction of Sangani and Acrivos (1082) rn square and

hexagonal arrays (closed symbols represent the higher molecular werght PB).
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and end effects.

2.5.5 Permeation of viscoelastic liquids

The departure of the friction factor from Newtonian behavior for the elastic

liquids is shown in Figures 2.12 (a) and (b). The Re at which the onset of elastic effects

occurs decreases with increasing molecular weight just as it does in the random packed

bed experiments of Kuliclre and Haas (1984). Also, at the same molecular weight the

onset Re is consistently lower for the hexagonal pitch geometry than square pitch.

In order to scale out molecular relaxation time differences related to the PIB

molecular weights, Figures 2.13 (a) and (b) present the relative fluid resistance,

f-Re/(f-Re)”, versus the Deborah number,

V

where v, is the superficial velocity. With this definition of De, a clear distinction may

be made of the onset of viscoelastic effects between the two array types, 0.80 for the

square pitch array and 0.35 for the hexagonal pitch array. The onset Deborah number,

however, is independent of molecular weight. At sufficiently large Deborah numbers the

relative flow resistance becomes independent of the Deborah number. This has also been

observed by Kulicke and Haas (1984) and James and McLaren (1975) for the flow of

polymer solutions through random beds of spheres. The asymptotic value of the
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resistance ratio increases with increasing molecular weight in both arrays, but is

consistently lower in the square array than the hexagonal array at comparable molecular

weights. Figure 2.14 is a plot of the numerieal value of the asymptotic ratio versus

molecular weight of the polymer solute for each array. In both arrays the value of the

flow asymptote seales linearly with the molecular weight,

f°Re

fife-Elm»: “ M, , (2-15)

just as the apparent Trouton ratio of these solutions does (Figure 2.5 (b)). This is

reasonable beeausc the kinematics of the flow ofpolymer solutions transverse to cylinder

arrays is dominated by planar extension at high Deborah numbers. In planar extensional

flows, as in uniaxial extensional flows, the extensional viscosity of a FENE model fluid

at high Deborah numbers is proportional to L’, and thus to the molecular weight,

"3.2“;

“La-IO‘M . (2.17)

n-n. '

Hence,
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fits a "ls-2n:

f.ReTN|D.>>1 —'I5'": ' (2'18)

This relationship between the asymptotic values of the relative flow resistance and the

solution molecular weight comes about as a result of differences in the degree of

extensibility of the polymer molecules. For theta systems the square of the extensibility

is proportional to the molecular weight (Eqs. 2.9-2.11). These results also indicate that

even though fiber spinning is an axisymmetric extensional flow, the results are quite

relevant to the planar geometry of flow through cylinder arrays.

Figure 2.15 shows the flow resistance results for the PIB/Decalin solution in both

the square and hexagonal pitch cylinder arrays. Here the Deborah number is defined

With AK‘S'),

I

A ' = —fl‘2—)— . 2.19

1”) wG”(o)) I”? ( )

These data show a plateau at a flow resistance less than 1 for both the square and

hexagonal arrays for Deborah numbers in the range of 0.3 to 1. We were not able to

work at sufficiently low Deborah numbers to observe Newtonian behavior. This

reduction in the flow resistance was not observed for the Boger liquids and is a result of

the highly shear thinning nature of the PIB/Decalin solution. As the Deborah number

is increased further, the flow resistance increases, and at De = 3 for the hexagonal array
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and De = 4.2 for the square array the flow resistance crosses the relative f-Re axis at

1. This enhancement in the flow resistance at high Deborah numbers is a result of

extensional viscosity effects dominating the shear viscosity effects. This is similar to the

fiber spinning results where it was found that the averaged extensional viscosity of the

PIB/Deealin solution increased with increasing extension rate.

2.6 Cnnrlusians

The effect of varying polymer extensibility on the dynamics of polymer solutions

flowing transverse to cylinder arrays is studied. The polymer extensibility of each

solution is controlled through the molecular weight of the polymer solute. Average

extensional viscosity measurements affirrn that increasing molecular weight corresponds

to increasing polymer extensibility. The apparent Trouton ratio at a fixed stretch rate

seales linearly with the molecular weight. The pressure drop of non-shear thinning

elastic liquids flowing through both square and hexagonal pitch cylinder arrays at a void

fraction of 70 percent is enhanced at onset Deborah numbers of 0.8 and 0.35

respectively. At high values of Deborah number the relative flow resistances in both

arrays become independent of the Deborah number. This was observed after care was

taken to avoid degradation of the polymer. The magnitude of the high Deborah number

flow resistance asymptote seales linearly with the molecular weight, and hence correlates

well with the apparent Trouton ratios measured.



Chapter 3

THE KINEMATICS OF VISCOUS AND

VISCOELASTIC LIQUID FLOWS WITHIN ARRAYS

OF CIRCULAR CYLINDERS

3.1 Summary

The kinematics and hydrodynamic stability ofviscous and viscoelastic liquid flows

transverse to periodic arrays of circular cylinders has been studied at Reynolds numbers

less than 0.5. Both streak photography and laser Doppler velocimetry were used to

observe flow transitions resulting from fluid elasticity in square and hexagonal pitch

arrays at a porosity level of 70 percent. Below an onset Deborah number, the flow of

a non-shear thinning elastic liquid was steady, spatially periodic, and identieal to the

experimentally observed Newtonian kinematics and Stokes flow simulations. LDV

measurements made above the onset Deborah number reveal flow unsteadiness in both

array types. Particle path asymmetry is also observed above the onset Deborah number.

The onset Deborah number corresponds approximately to the onset of elastic effects in

flow resistance measurements found in the previous chapter: 0.70 for the square array

57
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and 0.25 for the hexagonal array. Results with a shear thinning liquid underline the

elastic origin of the instability observed. Also, these results indicate that any attempt to

predict flow resistance increases must describe the viscoelastic transition to unsteady

flow.

33W

The question addressed in this chapter is whether fluid elasticity, resulting from

the dissolution of small amounts (0.2 wt. 96) of a high molecular weight polymer into

a viscous liquid, affects the flow kinematics within periodic arrays of circular cylinders.

This issue is examined with two experimental techniques - streak photography and laser

Doppler velocimetry (LDV).

The study of how velocity fields are affected by fluid rheology is important to

both the experimentalist, who uses this information to evaluate flow dynamics, and to the

theorist, who uses the data to evaluate constitutive models and computational methods.

The flow of non-Newtonian liquids past a cylinder provides a good example of this.

Using tracer dyes, Manero and Mena (1981) visualized the slow flow (Re < 0.01) of

shear thinning elastic liquids around circular cylinders. They found that in the range 0.2

< De <1thestreamlinesshifieddownsneamfromflresymmeuicpanerncharactefisfic

ofNewtonian fluids. This was in qualitative agreement with the perturbation calculations

of Mena and Caswell (1974), using an Oldroyd constitutive model. At De ~ 1 there

was no displacement in streamlines, and for De > 1 the streamlines moved upstream of
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the Newtonian pattern.

In the present study another flow visualization method, streak photography, is

used to qualitatively examine the flow field within arrays of cylinders. In this method

small particles in the fluid reflect light from a sheet of light illuminating the flow field.

Theflowisthenphotographedatlongexposuretimessothatthepathsofseveral

particles showupasstreaksonthefilm. 'l‘histechniquehasbeenusedextensivelyby

several researchers to visualize flow pattern changes and instabilities, resulting from fluid

elasticity, in axisymmetric entry flows through circular tubes. For example, Nguyen and

Boger (1979) present a series of photographs revealing several flow transitions with

increasing Deborah numbers for non-shear thinning, elastic fluids - Boger fluids - flowing

through a 7.675:l axisymmetric contraction. At sufficiently low Deborah numbers (~

0.5),theflowpattemwassimilartotheNewtonianfluidpattem,havingasmall

secondaryvortexinthecorneroftheupstrearn tube. Astheflowrateincreased sodid

thesizeofthevortex, beyondwhatisseenwithNewtonianliquids. AtDe ~ 3the

vortex continued to grow and became asymmetric. At De ~ 6 the asymmetric vortex

began to rotate around the tube. Finally, at De ~ 15 the flow beeame chaotic.

In addition to flow visualimtion, laser Doppler velocimetry (LDV) has been used

to obtain quantitative local velocity measurements within cylinder arrays. LDV is an

experimental technique which measures point velocities within a fluid flow by detecting

the Doppler shift of light scattered from solid particles in the fluid. Presumably these

particles are small enough so that their velocity corresponds to the loeal fluid velocity.

Since this technique’s introduction by Yeh and Cummins (1964), LDV has been
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widely used on both laminar and turbulent flows of gases and Newtonian liquids. The

use of LDV on flows of viscoelastic liquids, however, has not been as extensive. An

LDV study particularly relevant to this investigation has been made by Lawler at al.

(1986). They examined the velocity field and flow transitions of an elastic, non-shear

thinning polyisobutylene solution (a Boger fluid) in a 4:1 axisymmetric contraction flow.

For De < 0.8 the flow was steady and identical to the predicted Newtonian flow field,

but at De = 0.8 the flow became time periodic with a fluctuating tangential velocity

component. At De = 1.2 the flow again beeame time independent, but was no longer

identical to the Newtonian velocity field. It is interesting that the flow transition at De

= 0.8 is lower than the onset Deborah number for the appearance of large corner

vortices, indieating that the LDV technique is sensitive to flow transitions, particularly

temporal transitions, which otherwise could not be detected by more conventional flow

visualization techniques.

The work presented here examines the kinematics of viscous and viscoelastic

liquids in periodic arrays of circular cylinders. The flow field is explored by both streak

photography and by laser Doppler velocimetry. LDV provides point velocity

measurements of both viscous and viscoelastic liquids in cylinder arrays for comparison

with numerieal simulations, while streak photography provides global comparisons of

flows at Deborah number of 0(1) with the Newtonian flow field. In both the square and

hexagonal arrays a flow transition is observed for the viscoelastic liquid near the Deborah

number where onset of elastic effects is observed in the flow resistance data.
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3.3W

3.3.1 Basic principles

A dual beam, single component LDV system is used in this study, and is shown

schematieally in Figure 3.1. Plane polarized light, emitted from a 35 mW He-Ne laser

at a wavelength of 632.8 nm, is split into two beams of equal intensity and focused by

a transmitting lens. The receiving optics and photomultiplier are set up in the forward

seatter mode, directly in line with the transmitting lens. It is in this direction that the

intensity of seattercd light, resulting from small particles moving through the beam

intersection, is the greatest. Velocity measurements are made in the ellipsoid, known as

the “measuring volume", formed by the beam intersection and it is in this location,

between the transmitting and receiving lenses, that the permeability cells were placed.

The simplest and most widely used explanation of the operation of the dual beam

LDV system is based on the fringe model. This model avoids reference to the Doppler

shift effect and yet provides many correct results in terms of the velocity measurement.

It breaks down, however, in the calculation ofpredicted signal intensity of light seattered

from the measuring volume.

The fringe model is based on the interference of intersecting waves at the

measuring volume, producing a fringe pattern with spacing, df,



 
 

 

 

4
]
!
 

 

 
 

  
 
 

 

F
i
g
u
r
e
3
.
1

S
c
h
e
m
a
t
i
c
o
f

l
a
s
e
r
D
o
p
p
l
e
r
v
e
l
o
c
i
m
e
t
e
r
s
y
s
t
e
m
(
c
o
m
p
o
n
e
n
t
s
a
r
e
i
d
e
n
t
i
fi
e
d

i
n
T
a
b
l
e

3
.
1
)
.

 

62



63

Table 3.1 Components of the laser Doppler velocimeter system shown in Figure 3.1.

 

 

 

 

 

 

 

 

 

 

 

Component TSI Model Description

1 9126-255 Laser power supply

2 9126-105A 35 mw lie-Ne laser, A 632.8 nm

3 9115-2 Beam Splitter, 50 mm separation

4 9118 Transmitting lens, f = 250 mm

5 9165 Photomultiplier power supply

6 9118 Receiving lens, f= 250mm

‘7 9160A Photomultiplier

8 9126, 9121 Optical rails

9 1980 Signal Processor, 100 MHz clock

10 465 M Portable Oscilloscope

11 ~—-- Apple IIe computer  
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A

Zainht) (3.1)

f.

where x is the wavelength of the laser light and x is the half angle of the intersecting

beams (x = 5.71 °). In the present system the fringe spacing is 3.18 um, resulting in 64

fringes within the measuring volume. These fringes are set in planes perpendicular to

the plane in which the beams lie, and run parallel to the line bisecting the angle formed

by the beam crossing. Figure 3.2 shows a schematic of the ellipsoid and fringe pattern

at the beam intersection. Here the beams cross in the x-z plane and the z axis lies along

the bisector of the angle formed by the beams.

The velocity measurement of fluid flowing through the measuring volume relies

on small solid particles, traveling with the flow, to scatter light. As a particle moves

through the fringe pattern, past the light and dark hands, it reflects light with an

oscillating intensity. This reflected light is picked up by the photomultiplier and

converted into an electronic signal. The signal, shown in Figure 3.3, contains a mean

low frequency component known as the pedestal and a sinusoidal component which

oscillates at the Doppler frequency (ran). During processing of the signal, the pedestal

is usually removed, leaving an which is proportional to the velocity,

v .Jfl . (3.2)
D d!



 

 

 

 

 

Figure 3.2 Measuring volume and fringe pattern formed by the beam intersection. The

beams intersect in the x~z plane and the z axis follows the bisector of the angle of beam

crossing (Dabir, 1983).
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Figure 3.3 A typical signal from the photomultiplier (Dabir, 1983).
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Hence, calculated fluid velocity is based solely on the measured Doppler frequency, the

wavelength of laser light and the half angle of the beam crossing. The dual beam system

measures only velocity components perpendicular to the plane of the fringes (the x

direction in Figure 3.2) since the other components represent particle motion within a

fringe plane, producing no oscillating signal.

The absolute value in Eq. 3.2 indieates this technique’s inability to determine

flow direction. A particle traveling through either end of the measuring volume at the

same speed will result in an identical signal. In flows where the loeal direction of fluid

motion is unknown a technique eallcd frequency shifting is employed. Instead of the

measuring volume containing a stationary interference pattern, the frequency of one of

the transmitted beams is shifted by 0,, causing a moving wave-like fringe pattern. Thus,

particles in the measuring volume moving in the same direction as the fringes will result

in experimentally measured frequencies less than u,, while particles moving in the

opposite direction will result in frequencies greater than 0,.

3.3.2 Experimental LDV system

Figure 3.1 shows the dual beam Thermo-Systems Inc. (TSI) LDV system used

in this study. Each of the individual components is listed and described in Table 3.1.

All experiments are performed in the forward scatter mode and frequency shifting is not

employed. The light source is a 35 mw He-Ne laser, emitting light at a wavelength of

632.8 nm. The major optical components consist of a beam splitter, which divides the

incident beam into two equal intensity beams separated by 50 mm, and transmitting and
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receiving lenses, each having a focal length of 250 mm. This lens system produces a

beam halfangle of 5.l7° and an ellipsoid measuring volume with dimensions: A2 = 1.9

mm, Ax = 0.18 mm and Ay = 0.18 mm (see Figure 3.2). As shown earlier by Eq.

3.1, the fringe spacing is 3.18 um, resulting in 64 fringes across the measuring volume.

Also, the industrial grade solvents used in this study are sufficiently contaminated with

dust and other forms of dirt that seeding the flow is unnecessary. The velocities

measured in this study typically are in the range of 0.5 to 5 cm/s, which correspond to

Doppler frequencies of approximately 1.6 to 16 kHz.

The processing of the Doppler signal begins at the photomultiplier which picks

up photons from the receiving optics and converts them into a voltage signal. The

voltage signal is then sent to a TSI model 1980 signal processor where it passes through

an input conditioner and a timer. The input conditioner amplifies and filters the signal

with 1 kHz and 10 kHz (or 100 kHz) high and low pass filters. The conditioner also

contains a Schmitt trigger. If the signal amplitude is greater than 50 mV the trigger is

activated, converting the sinusoidal wave into a square wave. Otherwise, the output is

not updated. The timer’s function is to measure the length of the envelope containing

N cycles from the Schmitt trigger; the numbers of cycles per burst, N, is set externally

andforthisstudyisS. Thetimeralsomeasuresthelength ofanenvelopeNlchcles

long. If the average signal frequency of the first N/2 cycles is not within 5 percent of

that of the N cycles then the data point is rejected and the system is reset without

updating the output. Otherwise, the frequency is latched to output.



3.3.3 LDV meamrernent difficulties

The LDV measurements, made on both the viscous and viscoelastic liquids within

the cylinder arrays, suffered from low data rates. Data rates of approximately 1 to 5 Hz

wereobtained. ThisisincomparisontoratesoflOOtoSOOszhicharenecessaryin

order to obtain temporal information about the velocity. As a result, sampling was

limited to the ”handshake" mode of data collection. Typically, at data rates of 100 Hz,

data can be collected every 100 ms with confidence that every data point is independent.

\Vrth a data rate of 1 Hz and sampling every 100 ms, however, every tenth data point

is independent. The other nine represent the same point because the previous signal will

remain in memory until a new point replaces it. In the handshake mode ofoperation data

points are sampled only as frequently as they arrive. Thus, making accurate velocity

measurements of steady flows was not a problem. Obtaining temporal information from

unsteady flows, however, was not possible as a result of the low data rates.

During this investigation, sets of 256 data points were sampled at each location

intheflowfield;atdataratesoflHzthisprocesstookmorethan4minutesperset.

A TSI data reduction program, running on an Apple IIe, collected the frequencies from

the signal processor, calculated the corresponding velocities and presented a statistical

evaluation of the data which included the probability distribution function, the mean

velocity and standard deviation. Collecting data this way worked well since the standard

deviations of the data sets were less than 1 percent of the mean values for the stable

flows.

Theprecisecauseofthelowdataratesisunknown. Whatisknownisthatthe
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low rates were not a result of infrequent Doppler bursts, but rather small signal

amplitudes. The amplitude of the electronic signal received from the photomultiplier was

usually lower than the 50 mV necessary to activate the Schmitt trigger. Thus, the timer

infrequently received data to compare and latch to output. This occurred even though

the signal gain was set at maximum. The cause of this low output amplitude was initially

thought to be the result of a faulty photomultiplier. However, a TSI inspection has

revealed that this is not the case. Furthermore, the entire LDV system was tested by

measuringthevelocityofwaterstirredinaglass beaker. GoodDopplersignals were

obtained with data rates of 100 Hz. Seeding the flow with spherical 5 micron Nylon

particleswasalsotested. ThisappearcdtoslightlyincreasethefrequencyofDoppler

bursts, but had no effect on the signal amplitude.

The most likely cause of the low signal intensities is optical inhomogeneities in

the Plexiglas windows of the permeability cells. Because the cylinders are tightly press

fit into the windows, much residual stress remains in the material. This is confirmed by

the asymmetric stress patterns observed in the Plexiglas when they are examined between

two polarizing lenses. These patterns are the result of local index of refraction

differences caused by residual stresses. Thus, light exiting the permeability cell is

scattered by the Plexiglas window, reducing the intensity of light picked up by the

receiving optics.
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3.4 Maternal

3.4.1 Test fluids

Three test fluids were used in this study: a Newtonian fluid, a non-shear thinning,

elastic fluid (a Boger fluid) and an elastic shear thinning fluid. The Newtonian liquid is

a pure polybutene (PB), Amoco grade H25, whose material and rheological properties

can be found in the preceding chapter. The Boger liquid is a polyisobutylene! kerosene!

polybutene mixture, having the following composition by weight: 0.25 % PIB/ 7 96

kerosene! 92.75 % PB H25. The PIB is a 4 to 6 million molecular weight polymer

purchased from Aldrich Chemical Co. This solution is a Boger fluid similar to the M1

standard (Sridhar, 1990) with the shear viscosity nearly constant over shear rates up to

10 s" (see Figure 3.4). The shear viscosity, shown in Figure 3.4, is 2.8 Pa-s at 25 °C

and the relaxation time, x“ calculated from the quadratic region of the storage modulus

vs. frequency curve (see Figure 3.5) is 0.86 s. The shear thinning liquid is a 2 wt.%

PIB in decalin solution whose rheological properties are presented in the preceding

chapter.

3.4.2 Apparatus

Theflowloopandperrneabilitytestcellshavebeendescribedindetailinthe

previous chapter, and only the important features of the apparatus are discussed here.

AschematicoftheapparatusisshowninFigureZJ. Testfluidispumpedviaa

peristaltic pump from the holding tank into the liquid reservoir. From here the test fluid
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either flows freely or is forced by regulated nitrogen pressure through the cells. Flow

rate measurements are made by weighing fluid samples collected over time or by

monitoring the reservoir liquid level with time. Pressure transducers on either side of

thecylinderarray measurethemeanpressuredropacross thebedasshowninFigure

2.7.

The kinematics of flow transverse to a square array and to a hexagonal array of

circularcylindersis studied. Each arrayhasavoid fractionof70percentandis

composed of acrylic cylinders (radius = 0.238 cm) arranged as shown in Figure 2.9.

Localized velocity measurements within the cylinder arrays are made by LDV and have

been discussed above.

3.4.3 Streakphotography

Theflowpattemsaremappedbystreakphotography. Thisisdonebypassing

a light beam (from the 35 mW laser used in the LDV experiments) through a cylindrical

lenstoformathinsheetoflight. Thissheetisthenreflectedoffasurfacecoatcdmirror

andpassedthroughawindowinthetopofthepermeabilitycell,illuminatingtheflow

field. Thelightsheet liesperpendiculartotheaxes ofthecylinders andintheplaneof

the2dimensional flow. Picturestakenwitha35 mm camera, usingatime exposure of

1.5 seconds,capturethepathof 50 pm silicon carbide particlesseeded(0.033 gramsper

liter fluid) in the flow.
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3.5We

3.5.1 Stokes flow simulation

Finite element simulations have been carried out for two dimensional Stokes flow

inthedomainsshowninFigure3.6. Thesedomainsrepresentrepeatunitsofthe

periodic square and hexagonal cylinder arrays used in the experimental section of this

chapter. Both the x and y coordinates are sealed with the cylinder radius and the velocity

with the superficial velocity. Over the entire boundary of both domains the y component

of the velocity is zero. This is the result of no-slip at cylinder surfaces and symmetry

along all other boundaries. The x component of the velocity is set to zero only at the

cylinder surfaces. Otherwise, it is specified at the upstream portion of the domain

boundary (x = -1.62 and x = -3.01 for the square and hexagonal pitch geometries

respectively). The periodicity of both geometries requires that the x velocity component

along the downstream domain boundary be equivalent to the upstream boundary. This

condition is satisfied by iterating; the boundary velocities upstream are replaced by

calculated downstream velocities until convergence is attained. The results of the

simulations are shown in Figure 3.7. As expected for linear fluids with periodic

boundary conditions, the streamlines in both the square and hexagonal arrays are

symmetric around the cylinders.

3.5.2 Newtonian liquid flow vbualization

Theflowpanernsforthepmepolybumneinboththesquareandhexagonalanays
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Figure 3.6 Geometric domains used for the Stokes flow simulations (a) square array and

(b) hexagonal array.
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1“igure 3.7 Streamline output from the Stokes flow simulations (a) square array and (b)

hexagonal array.
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at Re = 0.027 and Re = 0.013 respectively, are shown in Figure 3.8. The fluid is

travelling from right to left. The particle paths in the photographs are symmetric,

reflecting the periodicity of the arrays, and are identical to the streamline calculations in

Figure 3.7. In the square array no streaklines are visible in the space between cylinder

stagnation points because of extremely low velocities (compared to the bulk flow)

between rows of cylinders. Streak photographs for Reynolds numbers up to 0.5 in both

arrays have also been taken but are not presented here. These photos show the same

patterns as those in Figure 3.8. Also, flow resistance measurements for these tests are

in good agreement with Darcy’s law (see Chapter 2), and at no time did the flow exhibit

any instability.

3-5.3 Newtonian liquid LDV measurerrrents

The results ofLDV measurements taken along lines of geometric symmetry, y =

l .62 and y = 1.74 for the square and hexagonal arrays respectively, are shownin Figure

3-9. Along these lines the geometric symmetry requires that the y component of the

Velooity vanish at steady state. Again, good agreement is found between the numerical

Simulations and the velocity measurements.

3-6WM

345.1 Flow visualization on the PIB/PB liquid

Figures 3.10 (a)-(e) and 3.11 (aHd) show a series of streak photographs, each



..
.
H
u
m

‘
t

‘,
.‘

 

  L
l“igure 3.8 Streak photographs for a Newtonian polybutene liquid in the cylinder arrays

at a void fraction of 70 percent (flow from right to left) (a) square array, Re = 0.027

and (b) hexagonal array, Re = 0.013.
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at a consecutively higher De, of the PBIPIB solution flowing through the square and

hexagonal arrays. In all photographs the fluid is travelling from right to left and the

Reynolds number is less than 0.5. The relative flow resistances, corresponding to the

flow situation in each photograph, are given in Figure 3.12. The flow resistance data

are consistent with those presented in the previous chapter, showing an elastic onset at

De = 0.70 in the square array and at De = 0.25 in the hexagonal array. Sufficiently

large Deborah numbers were not attained in either array to observe the asymptotic high

Deborah number limit of flow resistance for this high molecular weight PIB.

The photos in Figures 3.10 (a) and 3.11 (a) were taken of flows at De = 0.16

and De = 0.06 respectively. As seen in Figure 3.12 these Deborah numbers are below

the onset values. Accordingly, the particle paths in these photos are symmetric and

match both those found with the Newtonian fluids and those calculated in the computer

simulation. As the Deborah number increases past the onset values, the flow in both

arrays go through a transition from a steady Newtonian flow to an unsteady flow. This

has been observed in both arrays through the downstream pressure fluctuations discussed

in the previous chapter and by LDV measurements discussed in the next section. The

streak photographs presented here also capture this unsteadiness.

In the case of the square array, both flow unsteadiness and asymmetry are

observed. The progression of the asymmetry with Deborah number can be observed in

the photographs shown in Figures 3.10 (b)-(1). This asymmetry is characterized by

particles which follow flow paths winding randomly between cylinders and crossing

through lines of geometric symmetry. This becomes more apparent as the Deborah
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Figure 3.10 Streak photographs for the viscoelastic liquid in the square array having a

void fraction of 70 percent (flow from right to left) (a) Re = 0.039, De = 0.16 (b) Re

= 0.19, De = 0.80.
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Figure 3.10 (c) Re = 0.25, De = 1.09 (d) Re = 0.36, De = 1.44.
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Figure 3.10 (e) Re = 0.48, De = 1.91 (f) Re = 0.48, De = 1.91.
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(b)

Figure 3.11 Streak photographs for the viscoelastic liquid in the hexagonal array having

a void fraction of 70 percent (flow from right to left) (a) Re = 0.015, De = 0.059 (b)

Re = 0.069, De = 0.28.
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= 0.14, Dc = 0.56.0.43 (d) Re,De=0.11Figure 3.11 (c) Re
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number is increased. The flow unsteadiness is apparent by comparing streak lines in

photos taken at the same Deborah during two different experiments. From one snap shot

to the next the particle paths differ - even at the same Deborah number! For example,

Figures 3.10 (e) and (f) are photographs taken oftwo separate test runs, both at De =

1.91 and both at the same location in the flow field. Besides noting the asymmetry of

the streak lines, one can also observe identical regions in the flow field where the particle

paths are completely different from each other, indicating flow unsteadiness.

Particle path asymmetries and flow unsteadiness are not as easily observed in the

photographs taken here of the high Deborah number flows with the hexagonal array (see

Figure 3.11 (b)-(d). Close examination of the photos reveal many areas where the

particle paths cross each other. This is most apparent in the highest Deborah number

flow shown in Figure 3.11 (d). Particle path crossing is evidence of flow unsteadiness

in the hexagonal array.

3.6.2 LDV measurements on the PIB/PB liquid

Laser Doppler velocimetry measurements of the PIB/PB liquids made along y =

1.62 and y = 1.74, in the square and hexagonal arrays respectively, confirm that for

Deborah numbers below the onset values the kinematics of the flow are identical to those

of Stolm flow (see Figure 3.13). This is no longer true when the Deborah numbers

exceed the onset values.

The LDV measurements made in both arrays at Deborah numbers above the onset

values resulted in Doppler signals which appeared extremely ”noisy" . The Doppler burst
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Figure 3.13 (a) LDV measurements and the Stokes flow prediction for the 0.25 %

PIB/PB elastic liquid in the square array along y = 1.62.
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wasnotcomposedofasinglefrequencyasillustratedinFigure3.3butcontained

multiple frequencies. A local velocity unsteadiness will produce this result. Multiple

scattering particles within the measuring volume, each moving at different velocities, will

result in a Doppler signal containing several frequencies, as illustrated in Figure 3.14

(b). Figures 3.14 (a) and (b) show the probability distribution of 1024 velocity data

pointstakenatx = -1.58andy =1.74inthehexagonalarrayattwodifferentDeborah

numbers, De = 0.085 and De = 0.36 respectively. The extremely narrow velocity

distribution shown in Figure 3.14 (a) indicates the steadiness of the flow below the onset

Deborah number. Above the onset Deborah number, the velocity distribution is very

broad (Figure 3.14 (h)), demonstrating the flow unsteadiness. Similar trends in the

velocity probability distributions below and above the onset Deborah number were seen

in the square array also. As a result of the handshake mode of data collecting it is

impossible to determine whether the fluctuating velocity measurements in either array

were time periodic.

3.6.3 LDV measurements on the PIB/decalin liquid

Figure 3.15 (a) shows velocity data in the square array along the symmetry line

y = 1.62 for De = 0.69 and De = 0.82. At these Deborah numbers the flow is steady,

and the shear thinning properties of the fluid dominate the flow dynamics, resulting in

relative flow resistances below the Newtonian value (see Figure 2.15). The velocity

profiles of Figure 3.15 (a) show higher velocities than the predicted Newtonian values

along y =1.62. This is consistent with thereduced pressure dropobserved atthese
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Figure 3.14 Probability distribution function of the elastic fluid’s velocities measured

in the hexagonal array at x = -l.58 and y = 1.74 (a) De = 0.085 (b) De = 0.36.
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Figure 3.15 (a) LDV measurements and the Stokes flow prediction for the PIB/Decalin

liquid in the square array along y = 1.62.
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Figure 3.15 (b) LDV measurements and the Stokes flow prediction for the PIB/Decalin

liquid in the hexagonal array along y = 1.74.
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Deborah numbers. As the Deborah number is increased above 1.0 the extensional

properties of the fluid begin to dominate and the relative flow resistance increases. As

this occurs, a velocity transition similar to that found with the Boger liquid, is observed.

For De > 1, the LDV signal becomes “noisy”, indicating a transition from a steady to

an unsteady flow.

Figure 3.15 (1)) presents the velocity profiles along the line connecting two

stagnation points (y = 1.74) in the hexagonal array for De = 0.63 and De = 0.94.

Along this symmetry line the velocities agree with the Stokes flow prediction even though

at these Deborah numbers the flow resistance curve of Figure 2.15 reveals a large shear

thinning effect. As a result of the stagnation points on this particular symmetry line, the

flow along this line is dominated by elongational properties. Shear thinning effects must

occur in the narrow gaps that are not aligned in the x-direction. As the Deborah number

increases above 1, extensional effects begin to dominate the flow and the relative flow

resistance begins to increase. At this point the flow becomes unsteady.

The significance of these results is that at flow conditions where shear thinning

effects dominate the flow is steady, even at Deborah numbers as high as 1. It is not until

the extensional effects begin to dominate the flow at higher Deborah numbers that the

flow becomes unsteady.

3.6.4 Discussion of flow unsteadiness

That the onset of flow unsteadiness occurs at the same Deborah number as the

onset of the excess pressure drop suggests that the nature of the two phenomena are the
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same. In the previous chapter it has been shown that increases in the relative flow

resistance are consistent with and can be correlated by extensional viscosity increases

occurring in localized regions within the cylinder arrays. This is evident in the

hexagonal array. Stokes flow calculations show that along streamlines connecting

stagnation points extension rates of up to 3.5 times the nominal shear rate are obtained.

The large extension rates coupled with the high fluid residence time near the stagnation

points cause macromolecules in these areas to elongate several fold and even break. This

is supported not only by the chain extension calculations of Chmielewski et al. (1990),

but also by the birefringence data of Cressely and Hocquart (1980). Cressely and

Hocquart (1980) studied the flow of polymer solutions around a circular cylinder and

found very localized birefringence along the streamline emanating from the stagnation

point on the downstream side of the cylinder. In the case of the square array the region

of the highest extension rates is localized along the symmetry line running between

cylinder rows (y = 1.62).

At comparable Deborah numbers, the maximum extension rate in the square array

is lower than that in the hexagonal array, resulting in differences in the onset Deborah

number for the two arrays, 0.25 and 0.70 respectively. This difference in onset Deborah

number can be accounted for quantitatively by redefining the Deborah number in terms

of the maximum array extension rate instead of the nominal strain rate, 4,,

De‘ = 1.1-(«7.) , (3.3)
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where a is 1.5 for the square array and 3.5 for the hexagonal array based on Stokes flow

calculations. Thus, the onset of elastic effects occurs at De‘ ~ 1 for both arrays. This

value corresponds to the Deborah number where macromolecules in extensional flows

undergo the transition from a coiled to an elongated state - the coil to stretch transition

(De ~ 1). Hence, at De' ~ 1 macromolecules in the polymer solutions become

elongated in localized regions within the cylinder arrays, resulting in an excess pressure

drop across the arrays.

The complex fluid dynamics resulting from high extensional stresses generated

in the extensional flow regions may result in the observed flow unsteadiness. An

indication of the apparent Trouton ratio attained in the cylinder arrays can be obtained

from the fiber spinning experiments of the previous chapter. The ratio of the average

extensional viscosity to the shear viscosity of a 2.11 million molecular weight pm in PB

solution is 1500 at De = 3.6. Also, data on a PIB in decalin solution show that this

ratio increases with increasing Deborah number.

The onset of flow unsteadiness, occurring at the same Deborah number where

localized regions of large stress appear is consistent with the observations reported by

Ambari et al. (1984) on laminar flow around a single cylinder. They used an

electrochemical technique to study the mass transfer from a circular cylinder in dilute

polyethylene oxide solutions. At an onset Deborah number of approximately 3 they

observedalargedecreaseinthemasstransferratewithrespecttotheNewtonianvalue.

This decrease was accompanied by an onset of fluctuations of the limiting diffusion

current. TheRMSvaluesofthesefluctuationsincreasedwithincreasingchorah
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numbers, but eventually reached a plateau. Ambari er al. (1984) attributed these

fluctuations to the high extensional viscosities localized near the upstream cylinder

stagnation point.

Similar to the observations of Ambari et al. (1984), LDV measurements taken at

a single point in the flow field demonstrate an increase in the ”degree" of flow

unsteadiness with increasing Deborah number. The degree of unsteadiness is quantified

by the ratio of the standard deviation of a set of velocities measured at a point to the

mean value. As the Deborah number of the flow is increased the standard deviation ratio

increases. This is shown in Figure 3.16 which represents LDV data taken in the

hexagonal array at a point approximately one half cylinder radius behind a stagnation

point (x = -1.58 and y = 1.74). Figure 3.16 shows that at De ~ 0.2 we ~ 1) there

is a large jump in the degree of unsteadiness, confirming that this Deborah number

indeed represents a transition point for viscoelastic flow in the hexagonal array. Unlike

the observations of Ambari er al. (1984), the standard deviation of the fluctuations does

not level off for the Deborah number range shown in Figure 3.16 .

3.7 Concussion:

The kinematics of viscous and viscoelastic liquids flowing through square and

hexagonal cylinder arrays has been studied. Both streak photographs and LDV

measurements indicate that below an onset Deborah number, De' ~ 1, the flow of non-

shear thinning elastic fluids is identical to the Stoles flow field. However, above the
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Figure 3.16 Growth of the flow instability in the hexagonal array for the 0.25 %

PIB/PB elastic liquid as measured by LDV at x = -l.58 and y = 1.74.
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onset Deborah number the flow becomes unstable. The results with the shear thinning

liquids underline the elastic origin of the instability observed.

The steady Newtonian flow changes to an unsteady and spatially aperiodic flow

field at an onset Deborah number where elongational flow dominates. This onset

Deborahnumbercorresponds totheonsetoffluidelasticity effectson thepressure drop

across the array. Thus, any attempt to predict flow resistance increases must describe

the viscoelastic transition to unsteady flow.



Chapter 4

THE DEGRADATION OF POLYMER SOLUTIONS

FLOWING THROUGH ARRAYS OF CIRCULAR

CYLINDERS

This chapter was published in the Journal ofNon-Newtonian Fluid Mechanics 35, 309-

325 (1990), with eo-authors C.A. Petty and K. Jayaraman.

4.1 Sumarx

The flow of a dilute solution of polyisobutylene in polybutene transverse to

unidirectional arrays of cylinders has been investigated at Reynolds numbers less than

0.1. No different arrays were used - a triangular pitch array and a rectangular pitch

array. Both arrays have a porosity of 0.704, the same bed length and comprise identical

cylinders. Steady state permeation experiments were run over a range of superficial

velocities in both arrays, to study the onset of departure from Darcy’s law. The

rheology of the fluid was evaluated in shear before and after each set of runs.

While departures from Darcy’s law occurred in both arrays at similar values of

102
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Deborah number, mechanieal degradation of the polymer solution was much more severe

with the triangular pitch array than with the rectangular pitch array. Specifically, after

several runs through the triangular array the relaxation time was halved while the change

in viscosity was relatively minor; this reveals loss of the high molecular weight tail in

the original polymer. This degradation was irrecoverable; no recovery was noted after

two weeks. Measurements of molecular weight distribution on the same samples in

Odell’s laboratory confirm that the highest molecular weight components are degraded.

Finite element simulations of Stokes flow were carried out for the two different

geometries to determine extensional strain rates along the flow direction in several

regions. This was followed by calculations of polymer chain deformation in these

regions, with the nonlinear elastic dumbbell model. These ealculations reveal that the

maximum stretch rate in the triangular pitch array occurs along the streamline joining the

stagnation points on adjacent cylinders; this leads to nearly complete extension of the

polymer chain at a nominal Deborah number of l in the triangular array. However, in

the rectangular pitch array, the maximum stretch rate occurs along streamlines

considerably removed from the stagnation points, and the polymer chains are not

extended along those streamlines up to a Deborah number of 1.

MW

The flow of liquids through regular arrays of cylinders arises in a variety of

applieations ranging from heat exchangers with tube bundles, to manufacture of fiber
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reinforced composites. Darcy’s law is often employed as a macroscale model for flow

of incompressible, Newtonian fluids through porous media at low Reynolds numbers.

This macroscale representation of the superficial velocity v in anisotropic media can be

written as

Mrs -x-<VP>, (4-1)

where n is the viscosity of the fluid, K is the permeability tensor defined entirely by the

geometry of the array and <VP> is the mean pressure gradient in the fluid. The

longitudinal permeability K33 describes flow along the direction of the aligned axes of the

cylinders, x3. Flow in the plane transverse to the cylinder axis may be described in

general by three constants - K“, K”, Kn, for any given configuration - cf Sangani and

Yao (1988). These constants represent the transverse permeability which is generally

much lower than the longitudinal permeability. In arrays with additional rotational

symmetry such as square or hexagonal packing of cylinders, one parameter suffices to

describe the transverse permeability. Theoretieal values of this quantity have been

tabulated for both square and hexagonal arrays by Sangani and Acrivos (1982). These

values were obtained by numerical solution of the creeping flow equations over

representative cells for these arrays. They have also provided analytical expressions for

this quantity in dilute arrays and in concentrated arrays. For arrays with void fraction

greater than 0.5, the predicted values of transverse permeability with square packing and

hexagonal packing are not significantly different.

No quantitative results are available from experiments or from theory for the
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permeation of viscoelastic liquids transverse to regular arrays of cylinders. The flow of

viscoelastic liquids at low Reynolds numbers through packed beds of spheres has been

studied experimentally by Marshall and Metzner (1967). The fluids they used has a

shearratedependentviscosityasthatthesefluidsobeyEq.4.lonlyuptoacertain

critiealvalueofnominalstrainrateinthebed. Asthestrainratewasincreasedabove

this threshold, the pressure gradient or frictional resistance increased progressively from

theDarcyvalueby factors of lOormore. This increasewascorrelated withaDeborah

number, which is the product of a fluid relaxation time and strain rate. Other workers

(James and McLaren, 1975, Kulicke and Haas, 1984 and Durst er al. , 1981) have studied

the resistance to flow of very dilute (”drag reducing”) solutions of polymers passing

through packed beds of spheres. These workers have reported an onset Reynolds number

at which the flow resistance increased suddenly from Newtonian behavior by an order

of magnitude. For example, James and McLaren (1975) worked with dilute aqueous

solutions of polyethylene oxide passing through packed beds at low Reynolds numbers.

They observed that the onset Reynolds number decreased with increasing concentration

and with increasing molecular weight of polymer. They reported also that degradation

occurred especially with larger bead sizes (0.045 cm diameter). Kulicke and Haas (1984)

have shown that, for a given solvent polymer pair, the onset Reynolds numbers may be

used to infer the weight average molecular weight of the polymer. Both effects-the

increase in flow resistance, and degradation-have been attributed to the strong extensional

flow component in such flows (see Durst er al., 1981).

The object of this paper is to report specific features of this extensional flow
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component that appear to be critical in crossflow of viscoelastic liquids through

unidirectional cylinder arrays with different packing geometries at a given level of

porosity. The work involves both ealculations of chain extension in specific geometries

and steady state permeation experiments through such arrays. The liquids used have

constant shear viscosity and significant elasticity. The results show that the packing

geometry has a signifieant effect on the extent of degradation of the polymer in the

porous medium. This result is explained with model ealculations of polymer chain

extension in the two arrays.

4.3 Experimental

4.3.1 Materials

Three test fluids were used in this investigation-the elastic Ml liquid, another

dilute solution ofpolyisobutylene in polybutene and a Newtonian analog to the M1 fluid.

It was necessary to prepare another dilute polyisobutylene solution similar to the M1 fluid

because only a limited supply of the M1 liquid was available. This elastic analog was

prepared by first dissolving the polyisobutylene (Vistanex L-120 from Exxon Chemieal

Company, M. = 1.66x10‘) in kerosene. This solution was then mixed with an

appropriate amount of polybutene (Indopol H300 from Amoco Chemieal Company) in

order to obtain a shear viscosity similar to that of the M1 fluid (see Figure 4.1). The

Newtonian analog was prepared by mixing 17% by weight kerosene into polybutene,

againin order to obtaina shear viscosity similarto thatofthe Ml fluid (seeFigure 4.1).
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Figure 4.1 Steady shear viscosity of the fresh test fluids.
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4.3.2 Rheological properties

All viscometric measurements were obtained with a Rheometrics RFS-8400 fluids

spectrometer. Viscosity measurements were made under steady shear at rates ranging

from 0.1 to 10 s" and at six temperatures ranging between 15 and 30 °C. The dynamic

moduli of the elastic fluids were measured under oscillatory shear at frequencies ranging

from 0.1 to 100 rad/s. Measurements on the M1 liquid were made at six temperatures,

also ranging between 15 and 30 °C. The elastic analog was tested only at 22 °C.

Figure 4.1 is a plot of the steady shear viscosity, n, of the test fluids. The test fluids

do not exhibit any shear thinning for strain rates less than 1 3". Only slight shear

thinning ean be observed for the M1 fluid and the elastic analog for rates greater than

1 s“. This figure also shows that these fluids have similar viscosities near room

temperature. This can be seen more clearly in Table 4.1 where the properties of the

flesh test fluids are compared at the same temperature. Figure 4.2 shows the results of

the oscillatory and steady shear experiments, using the M1 liquid, at 20 °C. These data

extend to low enough frequencies and shear rates where the dynamic viscosity matches

the steady shear viscosity. A relaxation time A, may be calculated from the low

frequency region of the storage modulus, G', where G’ is quadratic in to, as follows:

A. =- . .
1 62(fla'fl,) (4 2)



 

Table 4.1 Properties of the fresh test fluids.

 

Fluid Temp.

 

o 1

'C Pe-s kg/e3 see.

H1 Fluid 22.0 2.73 866. 0.220

Newtonian.Anelog 22.0 2.58 873. ---

838 Polybutane

178 Kerosene

Other PIB Solution 22.0 2.28 871. 0.102

818 Polybutene

18.7. Kerosene

0.25. P18 L-120       
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Here n, is the zero shear viscosity of the solution and n, is the solvent viscosity. This

relations provides a good estimate for the FENE dumbbell model in the form used by

Chilcott and Rallison (1988) if the ratio of fully extended dumbbell length to equilibrium

length is 10 or more for the polyisobutylene is polybutene (cf. Chmielewski at al. , 1990).

Acomparisonoftheproperties fortheMl fluidandtheelasticanalogisalsogivenin

Table 4.1.

4.3.3 Apparatus

A diagram of the experimental apparatus is shown in Figure 4.3. The apparatus

consists of a reservoir connected at one end to a nitrogen cylinder and at the other end

to the permeability cell. During an experimental run, the reservoir is charged with the

test fluid. A constant pressure is then supplied to the reservoir via a nitrogen tank and

pressure regulator. The flowrate was varied by varying the upstream reservoir pressure.

As the fluid exits the reservoir, it passes through a 5.3-to—1 contraction; the fluid then

flows through a 20 cm long pipe to enter the permeability cell with a 2-to-1 expansion.

The permeability cell (with cross-sectional view shown in Figure 4.3) consists of three

sections. The cross-section of the cell is rectangular, measuring 5.33 cm by 1.9 cm.

The enhance section leading to the array is 7.62 cm long. The length of the cylinder bed

is 2.24 cm. This consists of five rows of cylinders with a maximum of ten cylinders per

row; the cylinders are aligned along the 1.9 cm gap. The exit section is 2.54 cm long.

The test fluids exit the permeability cell by going through a 2—to—1 contraction and into

a short exit pipe.
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Figure 4.3 (A) Schematic of experimental apparatus and (B) a cross-sectional view of

the permeability cell (all dimensions are in centimeters).
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Two different cylinder arrays were used in this study as shown in Figure 4.4.

In one array, the rows are aligned one behind the other to produce a rectangular pitch;

in the other array, successive rows are staggered to produce an equilateral triangle pitch.

The cylinder radius a is 0.159 cm and the porosity is 0.704 in both arrays. The gap

between two cylinder surfaces in a row (i.e. perpendicular to the flow direction) is 0.238

cm for either array. The spacing between cylinder axes in successive rows of the

staggered array forms an equilateral triangle. This array is equivalent to the hexagonal

packing referred to by Sangani and Acrivos (1982). However, in the rectangular array,

the gap between cylinder surfaces in successive rows is 0.163 cm. The cylinder ends are

threaded to fit into the top and bottom plates in corresponding patterns. In the rows

containing ten cylinders, the cylinder on either end is tangent to the channel wall.

The pressure drop across the bed of cylinders was measured by two Omega PX-

610 miniature pressure transducers connected to a strip chart recorder. The bed length

I was the same (2.24 cm) in all experiments. The flow rates were measured

gravimetrically. All experiments were conducted at Reynolds numbers (see Eq. 4.4)

ranging from 0.005 to 0.1. The temperature of the fluid was monitored by a small

thermocouple contacting the fluid at the exit of the permeability cell.

4.3.4 Wall and end effects

Larson and Higdon (1987) have analyzed the flow near the surface in transverse

flow of a Newtonian fluid at low Reynolds numbers through periodic arrays of cylinders.

They concluded that the effect of external velocity is damped out well before the second
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Figure 4.4 Cylinder array geometries: (A) rectangular pitch array; (B) triangular pitch

array (radius = 0.159 cm and porosity = 0.704).



115

row of the array for a solids concentration of 0.3. A crude estimate of the distance into

the array for effective damping (c1: Larson and Higdon, 1986) is given by Vic, where k

is a relevant permeability. Using the transverse permeability values reported in the next

section, we may then estimate that end effects are damped within 0.05 cm. The effect

ofthesidewallsisexpectedtobesmallbeeausetherearetencylindersineveryrow.

Finally, good agreement between the experimentally determined permeability for the

triangle array and the theoretieally value obtained by Sangani and Acrivos (1982)

confirms that the wall and end effects in these experiments are acceptably small.

4.4W

4.4.1 Transverse permeability of Newtonian liquid

The magnitude of the mean pressure gradient is plotted against superficial velocity

in Figure 4.5 for the Newtonian fluid flowing transverse to the two arrays. The flow

in either bed is seen to follow Darcy’s law. Both lines drawn through the data on this

log-log plot are of slope l and the nansverse permeability may be determined from the

intercepts of these lines. The value of 2.71 x 10" m2 for the array with triangular pitch

compares very well with the theoretieally predicted value of 2.86 x 10” m". The

theoretical value of transverse permeability for the triangular array may be obtained from

the results of Sangani and Acrivos (1982) [in Table 2 of their paper]. The transverse

permeability for the rectangular array with the same porosity is found to be 4 x 10'7 m’.

This is higher than the theoretical value of 2.67 x 10” m2 for a square array with the
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Figure 4.5 Mean pressure gradient vs. superficial velocity for the Newtonian fluid.
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same area void fraction presumably because the gap between cylinder surfaces in one

direction (0.238 cm) is considerably higher than the gap in another direction (0.163 cm);

either gap would be 0.2 cm for the square array of the same porosity.

4.4.2 Departure from Darcy’s law for elastic liquids

The onset of viscoelastic effects may be conveniently represented on a plot of the

porous bed friction factor against a Reynolds number. The porous bed friction factor

is defined conventionally by

f: ('AP)P’28€3

162(1-6)

 

(4.3)

where p is the fluid density, -AP is the pressure drop, e is the void fraction of the bed

and G. is the superficial mass flux. The Reynolds number is defined by

am,

Re .3 n,(1-e)'

(4.4)

For Newtonian liquids, the friction factor is inversely proportional to the Reynolds

number. The data for Newtonian liquids flowing through the rectangular array ean be

correlated by the product f-Re = 100 while the data for the triangular array ean be

correlated by an: = 150.
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The friction factor is plotted against Reynolds number for the M1 fluid through

the triangular and rectangular pitch arrays in Figures 4.6 and 4.7, respectively. Since

only a limited supply of the M1 fluid was available, each of the experimental runs was

made with the same charge ofMl fluid. The first set ofexperiments using the fresh Ml

fluidwasmadewiththetriangularpitcharrayandisdenotedasSetlinFigure4.6.

During this set of experiments the superficial velocity varied from 0.17 cm/s to 1.34

cm/s. The onset Reynolds number is 0.01 for the first set of runs with fresh M1 liquid.

Asecond setofrunswas madewiththesame fluidinthetriangularpitcharrayisorder

to check for polymer degradation. Figure 4.6 shows that the onset Reynolds number for

this set has increased to 0.02, indicating degradation of the polymer solute. This

observation is consistent with the increase in the onset Reynolds number observed by

James and McLaren (1975) and by Kulicke and Haas (1984) upon lowering the polymer

molecular weight in a polymer solution. Only a few of the data points after the onset are

shown on Figure 4.6 for either set beeause degradation changes the properties of the

fluid progressively during the course of several runs. Data for the rectangular pitch

array in Figure 4.7 were also obtained from runs with degraded M1 liquid and the onset

Reynolds number was around 0.026.

Measurements of relaxation times reported in the next section for the M1 liquid

at various stages of degradation show that the superficial velocity at the onset of

viscoelastic effects seales inversely with relaxation time. This may be restated in terms

of the Deborah number - a dimensionless product of the nominal strain rate (vJa) and

the relaxation time M:
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Figure 4.7 Friction factor vs. Reynolds number for the M1 fluid flowing through the
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De 8 ° (4.5) 

The Deborah number at onset of viscoelastic effects is about 0.3 for the triangular array

and 0.4 for the rectangular array. This may be seen on a plot of the ratio f-Re/(f-Re),.

against the Deborah number in Figure 4.8. The magnitude of the resistance ratio is

consistently lower for the runs through the rectangular array than for the triangular array.

This difference may be due in part to the degradation of the M1 before it is passed

through the rectangular array. Fresh batches of another PIB solution have been used to

explore the extent of degradation alone.

4.4.3 Degradation of elastic liquids

The steady shear viscosity and dynamic shear storage modulus were evaluated for

samples of the M1 fluid taken at three different stages to assess the extent of degradation.

These measurements at 23 °C are reported in Table 4.2. The first sample was taken of

the fresh liquid. The second sample was taken after the fluid was passed 20 times

consecutively through the triangular array at nominal strain rates ranging from 0.5 to 8.4

s“. The relaxation time changed from 0.19 s for the fresh fluid to 0.098 s for the second

sample; the shear viscosity change was relatively minor-less than 10% . This trend is

fluid property change is typically associated with changes in molecular weight

distribution. The third sample was taken after the degraded fluid was passed 13 times
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Table 4.2 Properties of elastic liquids before and after crossflow runs in different

 

 

 

arrays.

State "a 11

Pa-s sec.

Kl Fluid at 23'C

Fresh 2.53 0.190

After 20 passes through 2.30 0.098

triangular pitch array

After runs through 2.26 0.080

both array types

Two weeks following 2.26 0.080

runs in both array types

Other P18 solution at 22'C

Fresh 2.28 0.102

.After 14 passes through ‘ 2.17 0.065

triangular pitch array only .

After 14 passes through 2.28 0.094

rectangular pitch array only      
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throughtherectangulararrayatnominalstrainratesranging from 1 to 11 s‘. The

relaxation time changed from 0.098 s for the second sample to 0.08 s for the third

sample with an insignificant change in shear viscosity. The rheologieal measurements

were repeated after a period of two weeks and the results indieated little recovery.

Molecular weight distributions were determined for the first and third samples by Odell’s

groupandarereportedinMiilleretaI. (1990). T'hesemeasurementsconfirmthatthe

highest molecular weight components in the fresh sample - with molecular weights of up

to 32 x 10‘ - were lost after these runs. The highest detectable component in the

degraded sample had a molecular weight of 13 x 10‘.

The measurements on Ml reported in the preceding paragraph do not compare

the potential for degradation of identieal fresh batches in either array. This comparison

was made with fresh batches of another polyisobutylene solution. The fresh

polyisobutylene here had a weight average molecular weight of 1.66 x 10‘, leading to a

relaxation time of 0.102 s for the solution. It should also be pointed out that a number

of passes were required to degrade a substantial fraction of the liquid. A fresh batch of

this polyisobutylene solution was passed 14 times through either array at a fixed reservoir

pressure. In the case of the triangular array, the nominal strain rate was around 78 s.

The relaxation time was reduced by 40% under these conditions. In the case of the

rectangular array, the relaxation time was reduced only by 10%. The viscosity change

was insignificant in both cases. These experimental results established the much greater

extent of degradation in the triangular array for a range of PIB solutions.
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4.4.4 Analysisofchainextensioninarrays

It is widely recognized (see Ghoneim, 1985, for example) that the converging

diverging geometry of the pores in porous media causes an extensional flow component

thatmaybeassociatedwiththeassociatedwiththeincreased flowresistance for

viscoelastic liquids. However, the strain required for chain scission is typically generated

near stagnation points, where the fluid transit time is highest. Both the arrays in this

study consist of an equal number of stagnation points. However, the experiments clearly

indieate that variations in packing of cylinders at the same porosity and nominal strain

rates have a profound effect on the stretching of high molecular weight polymer chains,

leading to chain scission. Hence, the extent of polymer chain stretching in the two

arrays, especially along the streamlines joining stagnation points, is explored analytically.

The strategy adopted here is that, close to the onset Deborah number, calculations

of chain extension may be based on the Stokes flowfield. Hence, finite element

simulations were earricd out for two-dimensional Stokes flow within the two arrays to

determine the velocity component it and the stretching component (du/dx) of the velocity

gradient along segments marked in Figure 4.9. The streamline segment joining two

adjacent stagnation points is chosen in either array. The length of this segment within

the rectangular array is only one-fourth of the corresponding segment within the

triangular array. In addition, a segment of the streamline bisecting the gap between the

cylinders is chosen for the rectangular array. These segments are aligned with the bulk

flow direction 1; they coincide with the lines of symmetry in the mesh and with

streamlines in the flow. The only non-zero component of velocity on these segments is
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(I)

Figure 4.9 Streamlines computed by finite element simulation of Stokes flow through

(A) the rectangular pitch array and (B) the triangular pitch array (i and ii

denote selected streamline segments).
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the velocity u in the bulk flow direction. This is plotted for all segments on Figure 4.10.

The velocity varies from 0 to 3 times the superficial velocity over a distance of two

cylinderradfialongthestagnafionsueamlinewiflrintheuiangulararray. Thereisflow

mversalalongthestagnafionsfieamfinemtherectangularanaywithmtherlow

velocities. The velocity along the bisecting streamline in the rectangular array is much

higher but the variation is significantly lower. Figure 4.11 shows that the strain rate

magnimdeswitlfintheuiangruaranayvaryfiomOtoSfimesthenominalsUainrate

while they vary from 0 to 1 times the nominal strain rate within the rectangular array.

The latter variation occurs along the bisecting streamline where the velocity is at a high

level throughout. The strain rates along the stagnation streamline within the rectangular

array are less than 10% of the nominal strain rate. To summarize, the maximum strain

rate within the triangular array occurs in the region of maximum transit time. However,

themaximumsuainmtewithindierectangularamyoccursalongfliesueunlme

bisecting the gap, where the transit time is low.

We proceed to calculate the chain extension with a FENE model. The elastic

liquidsusedinthiswork maybedescribedbyaFENEdumbbell modelintheform used

by Chilcott and Rallison (1988). This model includes a parameter L which is the ratio

of fully extended dumbbell length to equilibrium length. The extensional viscosity in

uniaxialextensionofthismodeltendstoafinitelimitthatisproportionaltoL’athigh

strain rates (cf Rallison and Hinch, 1988). For example, the value of L = 10 chosen

here would lead to prediction of a uniaxial extensional viscosity that is 100 times the

shear viscosity. Chilcott and Rallison have shown that flow past an obstacle of a Boger
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liquidismodeledbyvaluesforthispararneterof3-20. Itappearsthatsimilarvalues

model the degradation behavior observed in this work. .

The ordinary differential equations, which describe the evolution of the two

components R1, and R22 of the normalized mean square end-to-end distance R2 of the

polymerchain, aregiveninSection4.5. ThenormalizationissuchthatR’is l at

equilibrium. These were solved with periodic boundary conditions at the ends of the

segments indicated above. A Tchebychef polynomial fit was used for the velocity along

these segments. The results of these computations are plotted for Deborah numbers of

0.4 and 1 in Figures 4.12 and 4.13, respectively. Each figure shows the ratio of

stretched length to equilibrium length along all three streamline segments. The curves

for the two segments of the rectangular array coincide in both figures. It is clear from

these figures that the chain is signifieantly extended only within the triangular array. The

maximumstretch ratioisS foraDeborahnumberof0.4and9foraDeborahnumber

of 1. There is virtually no extension within the rectangular array along either streamline

at Deborah numbers of 1 or less. This is consistent with our experimental observations

on degradation in flow of elastic liquids transverse to aligned cylinder arrays.

4.4-5W

The force law for the FENE dumbbell is given by

g ;__L__f(R) R3 (4.6)
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Figure 4.13 Computed stretch ratio of a polymer chain along selected streamline

segments: De = 1.0.
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where R2 is the normalized mean end-to-end distance squared:

R’-R,’+R.’+R§. (4.7)

At equilibrium

1
R3” —3-. (4.8)

Inplanar flow,

R33 . 3- (4.9)

The evolution of R,‘I and R22 along selected streamlines, where u is the only nonzero

component, is described by the nondimensional differential equations (see Rallison and

Hinch, 1988)

 

 

de 2 du f 2 1 (4 10)

d-R: a du f a 1 (4 11)
U dx ZR; 3 B; (R; 3 )_.

The boundary conditions are periodic:
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R1(x=0) = Rdxss), (4.12)

thx-o) = R,(x=s). (4.13)

where 0 and s denote ends of the segmt.

4.5 Conehrsians

The flow of dilute solutions of polyisobutylene in polybutene transverse to

unidirectional arrays of cylinders at low Reynolds numbers is sensitive to packing

geometry with a fixed porosity. These liquids have a constant shear viscosity and

relaxation times ranging from 0.1 to 0.2 s. The onset of elastic effects on the permeation

rateordepaerefiomDarcy’slawoccursatsimilarvaluesofDeborahnumberinthe

two arrays tested here. The extent of degradation of the polymer above this onset

Deborah number, however, is much higher in the triangular pitch array with staggered

rows than in the rectangular pitch array. Calculations of chain extension with a FENE

model of the form used by Chilcott and Rallison reveal that nearly complete extension

of the polymer chain occurs along streamlines joining the stagnation points in the

triangulararray. Thisisbasedonthefactthatthemaximumstretchratewithinthe

triangular array is attained along the streamline joining the stagnation points. However,

in the rectangular array, the stretch rates along the streamline joining the stagnation
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points are negligible; the maximum stretch rate occurs along streamlines considerably

removed from the stagnation points so that the total strain is insufficient to extend the

polymer chain.



Chapter 5

VISCOSITY EFFECTS IN THE PRODUCTION OF

COMPOSITE PREPREG BY HOT MELT

INIPREGNATION

5.1 Summary

An experimental and theoretieal investigation ofthe hot melt impregnation process

is discussed. Experimental data show that when a fiber tow is pulled through a resin

bathand thenthroughawedgeshapeddie, thetotalresinmassfractionaswellasthe

extent of resin impregnation in the tow depend on the processing viscosity. The

penetration of resin into a fiber bundle is greater when the resin viscosity is higher.

Thiseannotbeexplainedbyeapillarity,andthesefeaturesarenotaffectedbytow speeds

up to 25 cm/s. A theoretical model is developed to describe the dependence of

impregnation on viscosity. This model incorporates tow consolidation through both

transverse compression and tension mechanisms. Good agreement with experimental

observation is obtained with a viscosity dependent effective tensile modulus of the

partially wetted fiber bundle.
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5.2W

A key step in the manufacture of complex composite structures is the

impregnation of a bundle of fibers with a liquid resin. The goal of this processing step

is to fully wet all of the individual filaments which comprise the fiber tow, producing

”prepreg” with a predetermined and uniform resin mass distribution. Hot melt

impregnation (HMI) is one such process (Lee et al., 1986). During hot melt

impregnation, a fiber tow is unwound from a feed spool, pulled through a resin bath and

then wound up on a large drum (see Figure 5.1 (a)). The actual impregnation of the

fiber bundle occurs in the resin pot (see Figure 5.1 (b)) where the tow is pulled through

the liquid resin, past stationary “impregnation” bars and then out through a die located

at the bottom.

The stationary bars have an important role in the impregnation process. Bascom

and Romans (1968) pulled a bundle of glass fibers past stationary bars submerged in

epoxy resin. They observed that as the fiber bundle wound around the stationary bars,

resin was squeezed into the tow while air was simultaneously squeezed out, thereby

reducing the tow’s void content. In a study of the HMI process, Chmielewski er al.

(1988) found that when impregnation bars are employed, the resin mass fiaction of the

prepreg product is independent of both the processing viscosity and speed. Lee er al.

(1988a) have made similar observations with an identieal HMI process. These results

are in contrast to those obtained when the impregnation bars are not employed. When

prepregging without impregnation bars, lower prepreg resin mass fractions are obtained,
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Figure 5.1 Hot melt impregnation (a) schematic of the hot melt prepregger (b)

schematic of the resin pot.
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andtheresinmassfmcfionisdependurtmflwresinviscositydufingpmcessing.

Greater resin viscosities produced prepreg with higher resin mass fractions. However,

the effect of tow speed on the resin mass fraction remains insignifieant (see Figure 5.2).

TheimpregnationbarshaveonefurthereffectontheHMIprocessandthatisto

reduce the maximum tow speed at which the process can operate. Chmielewski er al.

(1988) found that without the bars, speeds of 25 cm/s could be attained, but with the

bars, line speeds greater than 10 cmls result in the fiber tow fraying and incipient

breakage at the die. Also, a combination of higher resin viscosities with the bars eauscd

the tow to break at even lower speeds. Using impregnation bars, Lee et al. (1988a) also

found increased tow damage and breakage as larger resin viscosities and line speeds were

employed. They attribute this to increased shear stress and friction within the exit die

alone. However, the above results suggest that greater drag around the impregnation

bars, resulting from higher viscosities and tow speeds, promotes fraying of the fiber tow

and then eventual breakage in the die.

Therefore, at fast processing rates that are typieally necessary in order to produce

relatively low cost materials, the HMI process is most efficiently operated without the

impregnation bars. This investigation has been undertalmn with the ultimate goal of

increasing theHMIprocessingratebyremovingtheimpregnationbars, andyetstill

producing quality prepreg. This can be accomplished only by understanding both the

impact of processing conditions and the role of the exit die on the impregnation of a fiber

bundle.

Experimental work has been done to reveal the distribution of resin within a fiber
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bundle when a tow is passed through epoxy resins of widely different viscosities. A

lubrication model is developed to explore the role of the exit die in fiber impregnation.

This model incorporates tow consolidation by means of a compressive force due to

hydrodynamic loading and a tensile force resulting from drag on the tow as it travels

through the die.

53W

The effect of processing conditions on the resin content of composite prepreg is

studied via a bench scale hot melt prepregger (Model 30, Research Tool Corporation).

ResinwntentmeasummamaremadeonprepregproceswdmspeedsmngingfiomOJ

to 25 cm/s and with resin viscosities ranging from 0.1 to 26.6 Pa-s. Resin viscosities

arecontrolledbyregulatingtheresinpottemperamre. Prepregresinmassfractionis

calculated from gravimetric measurements made on tow pieces, 20 cm long, cut from the

tapeexitingtheresinpot. TheresinsusedinthisstudyareaNewtonian,highviscosity

polybutene liquid (Amoco Indopol H300) and an epoxy resin system. The epoxy is

diglycidyl ether of bisphenol-A (DGEBA) and it is mixed in stoichiometric proportions

with m-phenylenediamine (anDA). A 12k tow ofHercules AS4 carbon fibers constitutes

the reinforcement phase.

In order to assess how the resin is distributed, between fiber bundle coating and

bundle penetration, photographs of the cross section of the fiber tows impregmrted with

the epoxy resin were tam. Two fiber tow samples processed at 18.3 cm/s but at
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different viscosities, 4.5 Pa-s and 0.1Pa-s, were cured at room temperature for 48

hours while being held at the same tension observed during processing. Cross sections

of the cured tow samples were cut and mounted in a quick setting epoxy. These samples

were then polished and photographed at a magnification of 12.5x.

5.4 Rainmfrastinnandjistrihutiun

The experimental results of Figure 5.2 indicate that the resin content of a prepreg

tape is nearly independent of the rate at which it is processed. However, these same

results show a significant viscosity effect on the resin content. As the processing

viscosity is varied from 0.1Pa-s to 26.6Pa-s tbeprepreg resin mass fraction increases

from 19 to 28 percent. Since the data presented in Figure 5.2 offer no information on

the distribution of resin between the surface and the interstices of the impregnated fiber

tow, photographs ofthe cross section ofthe epoxy impregnated fiber tow were taken (see

Figure5.3). InFigureS.3, thedarkareaswithinthetowsareregions voidofresin

while the white portions of the tow are resin impregnated areas; at this magnification

individual fibers cannot be resolved. The dark regions surrounding the fiber tows,

however, are not void of resin and yet still prevent the measurement of resin coating

thiclmess. However, a comparison of resin penetration can be made. A qualitative

comparison between Figures 5.3 (a) and 5.3 (b) reveals that higher resin viscosities lead

to greater penetration of resin into the fiber bundle! The void content of the fiber tape

manufactured witharesinviscodty of0.l Pa-sis much higher (darkareasinFigure5.3
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Figure 5.3 Two 12kAS4 carbon fibutowsimpregnated with aDGEBA/mPDA epoxy

resin system under the following processing conditions: tow velocity - 18.3 cm/s (a)

resinviscosity = 4.5 Pa-s (b)resinviscosity = 0.1Pa-s.
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(b)) than that manufactured using a resin viscosity of 4.5 Pa-s (Figure 5.3 (a)). even

though the capillary number of the former situation is much lower, 0.4, than the latter,

18.0. Thus, eapillarity certainly cannot account for the differences in resin penetration.

5.5 Mathmtisalnadelins

To assist in the understanding of the observed viscosity effect on prepreg quality

a mathematical model is developed, describing the flow processes within the exit die.

A lubrication model is used to describe the liquid flow within the die proper while

Darcy’s law is employed to control the penetration of liquid into the fiber tow. Because

the fiber tow is not rigid but compliant, its response to external forces is also considered,

and modeled as that of a non-linear spring. The elastic response of a fiber network

saturated with resin is an important physical phenomena in all types of composite

processes, and is used in this study to explain how larger processing viscosities result in

prepreg with greater resin penetration.

5.5.1 Tow consolidation models

Fiber tow consolidation is accounted for through two mechanisms: (1) transverse

compression, and (2) tension. The hydrodynamic pressure developed in the die as a

result of its converging geometry will place a compressive load on the fiber bundle,

resulting in higher fiber volume fractions. Likewise, the pulling force needed to move

the tow through the die at a constant velocity will place a tensile stress on the fibers
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causing them to straighten and consolidate, also increasing the fiber volume fiaction.

Gutowski er al. (1987) have modeled compressive loadings on composite

laminates by making an analogy between the deformation of a fiber in a network of fibers

and beam deflection. This resulted in the following relationship for the elastic

deformation of composite laminates under a compressive load, P.‘(x‘),

l V,(x‘)

V - 1

Pc‘(x‘) = it; °

1 V.
- 1

V,(x‘)

 

‘ a (5-1)

 

h
a

where V. is the available fiber volume fraction (0.907 for hexagonally packed cylinders),

V, is the inlet fiber volume fraction and x.’ is the spring constant. This relationship,

along with the experimentally determined value of x.‘ = 158.6 Pa for well aligned AS4

carbon fibers (Gutowski er al., 1987), is used in this study.

Where the transverse consolidation mechanism provides for non-uniform fiber

volume fraction profiles, a consolidation mechanism based on fiber tension is developed

to provide the inlet fiber volume fraction. To develop a tension consolidation model, we

assume that under a tensile force, each fiber comprising the tow will support the load

equally. Furthermore, we assume that as the tensile force increases, the tow will

consolidate uniformly. An iterative procedure, described in Section 5.5.3, is employed

to relate the tension on the fiber tow to the inlet fiber volume fraction. A relationship,

similar to Eq. 5.1, is constructed by making an analogy between fiber load bearing and
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the mechanics of column buckling (Gere and Timoshenko, 1984). Figure 5.4 shows

schematically a portion of a fiber located within a network of fibers. In the stress free

state the fiber is buckled and males several contacts with surrounding fibers. Ifa length

I of this fiber is isolated between adjacent contact points and subjected to a tensile force,

FT', the fiber’s response is to straighten. This process is modeled as ifthe fiber were

abuckled column respondingtoanaxialtensileloadwhere,

FJ-«l'z . (5.2)

Using similar geometric arguments as Gutowski (1985), the relation between the tensile

force acting on the fiber tow and the inlet fiber volume fraction is,

 

_1__ -3.

o: o Vain Va
FT ‘11.]. - 1? 1 (5'3)

[7; 7;]

where x,‘ is the effective tensile modulus associated with the tensile force and V... is the

fiber volume fraction based on the cross sectional area of the die (V... = 0.65 for these

experiments). The term (l/V... - l/V.) in the numerator has been included to preserve

the conservation of fibers within the die when the fiber bundle is free of a tensile force.

Figure 5.5 illustrates the relationship, given by Eq. 5.3, between the inlet fiber volume

fraction and the ratio of the tow’s tension to its modulus. It shows that in the limit of



147

  

(a) (b) (c)

Figure 5.4 An illustration of the straightening of a portion of a bent fiber isolated from

a network of fibers; (a) the buckled portion of fiber under consideration in an unstressed

fiber network; (b) as the fiber network is placed under tension, the fiber portion of

interest takes up some of the load; (c) the result is that the fiber straightens.
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Figure 5.5 Model non-linear tow consolidation behavior as a result of tension on the

fiber tow.



149

small forces, V, approaches Vi, while in the limit of large forces, V, approaches V,.

5.5.2 Impregnation model

Figure 5.6 defines the class of impregnation dies studied. The wedge die

geometry is characterized by thedielength, L, thehalfgap, law” and thediehalfangle

0. The specificshapeofthedieisgiven by thedistancebetween thediewalland the

cerrterline of the die:

L

‘5"2

 H+1= tan(0)(1-x)+1,
(5.4)

wherethexcoordinateis scaled withLandHisscaledwith 5W2. Theremaining

variables of interest are sealed in the following way:

P' = Pr. r. = awe/aw.) (5.5a,b)

u' = “U. y‘ = yt’AWz) (5.6a.b)

81' = 8i(%Wz) 82' = 82(‘1‘2Wzl (5.7m)

F' = 2Fr,w,L Q‘ = Q(%W,_)U. (5.8a,b)

r; = r.r, r.‘ = 2r..r,w,L (5.9a,b)

Here the asterisks indicate dimensional quantities, and U, is the tow velocity, W, is the

diewidth,Fistheforceneededtopull thetowatspeed U,and Q'isthefluidphase
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flowrateperunitwidth. r,isacharacteristic stress and represents thewallshear stress

for pure Couette flow with a uniform gap KW? A nominal value for r, is 237.2 Pa,

based on a typical HMI line speed of 4.6 cm/s and resin viscosity of 0.41 Pa-s. The

fiber tow profile is given by 52(2) and the impregnated region by (s, - s,).

A lubrication approximation (see Dean, 1980, for example) is used to simplify

the equation of motion, yielding the following expression for the axial component of the

resin velocity and the shear stress at the tow-resin interface:

  

  

1
—w

__y-sz _1_2’dpl._2__

u 1 (H+1)-82+ 2 L d'fil‘" 53) (3’ 82)((H+1)+82)

(5.10)

11W:

_ _ 1 .l 2 d? __ (5.11)

nyIy-I. (H+1)—sz + 2 L dxHHH') 82]

These expressions are derived by satisfying the no-slip conditions at the tow surface and

at the die wall. It should be noted that Beavers and Joseph (1967) propose a slip

boundary condition to be used at the interface of a permeable surface. The work of

Taylor (1971) and Richardson (1971), however, indicates that at the fiber volume

fractions of interest here (> 50 %) this condition is unnecessary. The first two terms

in Eq. 5.10 are due to Couette flow caused by the moving tow, whereas the third

contribution stems from an induced Poiseuille flow due to the wedge geometry. The

force needed to pull the tow through the die is calculated by:
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1

p- . f "rely-u. dx (5.12)

0

Mass balances on the resin within the die gap and the tow yield the following

results:
r
o
l
l
-

W3 io‘f—up, forsl>o (5.13)

L dx i O. forslso

 

1

3 ”a

L

d
_[+u . fors >0 (5.14)

E[(Sz-81)(1‘Vf)] "l g , for 81"0

In the above expressions, s10!) represents the resin impregnau'on front within the fiber

bundle, where s,(x) = 0 indicates a fully impregnated tow, and Vfoc) is the fiber volume

fraction. The resin phase flow rate is represented by:

3’1

0 - fulx.yldy (5.15)
a,

The normal component of the resin velocity, u,,, at the tow interface is related to the

local transverse pressure drop within the tow by using Darcy’s law:
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P-( ,-P)
up.xr{ 3:3, } (5.16) 

In theaboveexpression Kris thetransverse permeability, l‘ is tlreresinpressure dueto

eapillarity and p, is the atmospheric pressure. The longitudinal flow of resin within the

fiber bundle as the result of a local axial pressure gradient will be neglected. Only the

case where the tow velocity is much greater than the longitudinal Darcy velocity is

considered.

The Blake-Kozeny-Carman equation (Bird er al. , 1960) is used to relate the

transverse permeability to the fiber volume fraction:

(I'V:)3 1 2

V: 4k(V:) I! (5.17)KTI'

where the dependence of the Kozcny constant, kW), on the fiber volume fraction is

based on model calculations of a Newtonian fluid flowing through an infinite array of

circular cylinders (Sangani and Acrivos, 1982). The fiber radius is r,

The capillary pressure is given by:
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P = 2“;:::1’) (5.18)

The resin-fiber contact angle is represented by a, and Na, is the capillary number:

- "U° (5.19)

Yr!

 

where his the resin-fiber surface tension. Variables found in Eqs. 5.16-5.19 are scaled

as follows:

Kr' = 190151112)2 (51kb)up. = “DU.

1" = Pr, r,’ = rK‘AWz) (521a,b)

For these calculations 7,, is taken to be the surface tension of DGEBA (44 dynes/cm at

60 °C) as determined by the pendant drop method (Weaver, 1982). It is more diffith

to find a value for ¢, however. Because impregnation flows are non-equilibrium

prosesses, the dynamic contact angle, and not the static one, is more important when

describing the advancing liquid flow front. Inverarity (1969) studied the wetting of glass

and polymeric fibers with viscous liquids and found that the advancing contact angle is

a complex function of both the fiber velocity and the fluid viscosity. We will take 35°

to be the nominal value of ¢ (Lee et al., 1988b), and note, that although Ahn er al.
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(1991) found significant interfacial effects when impregnating a woven fabric

reinforcemert at high fiber loadings (V, > 0.50), the capillary pressure had little

influenceon the results of these model calculations at the NO, levels studied here.

Eqs. 5.13-5.19 constitute the physieal model used to find the pressure,

impregnation and flow rate profiles within the die. To this end, Eqs. 5.13-5.15 are

 

 

reanangedas:

732;“: 11' B(x)[20- [(H+1)‘52]}
(5.22)

5”:

d _ L . - .. _33-2 1WK,.(1 Vt) [P (P. Pl] (5,23)

- 2

2

Q=Qe+fl;-‘/3
(5.24)

where

B”) ‘5 (5.25) 

[(31’1) '52]3

In Eq. 5.23 the effective impregnation is represented for convenience by the quantity:
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s= [(83-81)(1-V,)]’ (5.26)

Eqs. 5.22-5.24 are analyzed according to the following boundary conditions:

(i) P=P,=0atx=0 (5.27)

(ii)S=S,=0atx=0 (5.28)

and

(iii)P =p. =0 at x =1 (5.29)

Neglecting the liquid head in the resin pot, no net pressure drop will be imposed across

the die. Also, for the situations studied experimentally in this paper, Na, > 0.4 and the

tow residence time in the liquid bath is at most three seconds. Hence, it will be assumed

the tow entering the die contains no resin. This boundary condition allows for the study

of the factors which affect the impregnation process within the die proper.

5.5.3 Solution procedure

These equations are solved by a semi-implicit Runga-Kutta method with variable

step size (hiichelsen, 1976 and Villadsen and Michelsen, 1978). At x = 0, the

conditions for P and S are provided, and an initial guess for the inlet flow rate, 9,, is

obtained from the non-porous situation (Middleman, 1977). Also, initially a constant tow

profile is assumed, s2 = s2, for all x. A shooting strategy is employed to reach the

boundary condition at x = l. A means of updating Q, for the ensuing iteration is

obtained by integrating Eq. 5.22 over the die length and then rearranging the result.
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Msleadstomefouowingintegralpropertyfora:

 0. = , 1 [ism (JS-Jggldx + éiem [(H+1>-s,1dx]

IBM) dx ° o (5.30)

O

The calculation strategy entails three nested iteration loops in order to find the

pressure, impregnation, flow rate and tow profiles. During the inner iteration loop, a

constant tow profile s,(x) is assumed and Eqs. 5.22-5.24 are repeatedly solved to find

the correct inlet flow rate. The pressure profile resulting from this calculation is then

used to evaluate the transverse consolidation. Eq. 5.1 utilizes the loeal hydrodynamic

pressure in the die to calculate the loeal fiber volume fraction. The revised tow profile,

s,(x), is found by recognizing that the cross sectional area of the tow fibers are

conserved:

V0

5,00 = 3,00 + W (520’51(x” (5.31)

Subsequently, this updated tow profile is used to find new pressure, impregnation and

' flow rate profiles.

In the outermost iteration loop, the fiber tension is determined by Eqs. 5.11 and

5.12, and Eq. 5.3 is used to amend the inlet fiber volume fraction, V,. Then a revised
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inlettow positionisfoundbyagainrecognizingthatthccross sectionalareaofthefibers

passing through the die is conserved:

 (5.32)

5L6 gkmnuafienrenuhuuuthrmsmni

Figures 5.7 (a), (b) and (c) show several pressure, impregnation and flow rate

profiles based on the following dimensionless parameters:

a = 15° umwg = 69.2 (5336.6)

r/(‘AWQ = 0.05 v, = 0.76 (53m)

v, = 0.90 x. = 0.67 (5356.6)

Theseparametersconespondtothedesignandoperafingcondifionsusedinflte

experiments of Figures 5.2 and 5.3. (Although the correct shape of the experimental

exit die is a wedge followed by a short rectangular slit region, previous calculations

indicate that the rectangular region has little effect on the computed profiles.) The actual

die dimensions and fiber radius are:
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Figure 5.7 (a) Calculated pressure profiles for several different values of the effective

tensile modulus.
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W, = 0.0159 cm L = 0.550 cm (53am

W, = 0.5588 cm r, = 3.9 x 10" cm (S.37a,b)

Figure 5.7 (a) shows that the peak pressure is strongly dependent on the fiber

bundle’s effective tensile modulus. As it, is increased from 0.001 to 10.0 the peak

pressure increases from 20 to 70 times the characteristic stress. Over this range of x,-

the ealculated dimensionless tensile force on the fiber tow changes from 0.60 to 0.87 (8.7

to 12.7 mN or 2.2 to 3.2 psi for a 12k fiber tow moving at 4.6 cm/s through a 0.41

Pa- 3 viscosity resin). Thus, as x,- is increased by 4 orders of magnitude the ratio F1/x,

decreases nearly the same amount and, as is shown in Figure 5.5, the inlet fiber volume

fraction decreases. This leads to smaller clearances between the tow and the die (Eq.

5.32). And, similar to the non-porous lubrication flows (Middleman, 1977), the peak

pressure in the die is sensitive to this gap, where smaller gaps result in larger pressures.

The pressure profiles of Figure 5.7 (s) also show that the greatest contribution

of thepressure loading on the tow occurs in the last 15 percent of the die. As a result,

tow consolidation due to the transverse loading has an insignificant effect on the

calculated resin mass fraction of the tow. For example, for the situation where the peak

pressure is the greatest, x,- = 10.0, the outlet fiber volume fraction is less than 8 percent

greater than the inlet value.

0n the other hand, the impregnation profiles of Figure 5.7 (b) show that the
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calculated fiber tow penetration is sensitive to fiber tension effects. The increase in tow

impregnation with x, at each location along the die can be explained by again noting the

decrease in V, withincreasesinx, Asthefibervolumefractiondecreases,boththe

transverse permeability of the tow and the hydrodynamic pressure in the die will

increase. According to Darcy’s law (Eq. 5.16), this will result in higher resin penetration

rates.

Figure 5.7 (c) presents the dimensionless resin phase flow rate profiles. At each

location along the die the flow rate decreases with increasing x1, opposite to the trend in

FigureSJ (b), inordertopreserve themassbalance. ThedecreaseinQalongthe

length of the die for each value of It, reflects the loss of fluid from the resin phase to the

tow. However, atx = 0.97 for the x,- = 10.0 curve, the flow rate profile changes from

a decreasing function of x to an increasing function. At this location, the tow is fully

impregnated and yet still is being consolidated by the hydrodynamic pressure. The tow

consolidation causes fluid to move from the fiber bundle into the resin phase, resulting

in an increase in Q.

Figure 5.8 (a) shows model calculation results on how the resin coating and resin

impregnation depend on the effective tensile modulus. These results are combined in

Figure 5.8 (b) which presents the predicted resin mass fraction versus the effective

tensile modulus. Varying the modulus from 0.06 to 10 results in an increase in the

predicted resin mass fractions from approximately 20 to 27 percent. This is similar to

the mass fraction changes observed experimentally by varying the resin viscosity from

0.1Paos to 26.6Pa- s (Figure 5.2). Moreover, Figure 5.8 (a) shows that this increase
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is a result of greater impregnation of the fiber tow. Again, this same effect is seen

experimentally when the viscosity is increased (Figure 5.3).

The simplest model relating the effective fiber tow tensile modulus to the viscosity

canbeconstructedbyamixingrule:

‘1' 3 V:.Gp + (1'Vg) .G1 (5.38)

where G, and G, are the partially wetted fiber tensile modulus and resin tensile modulus

respectively. The resin modulus should be approximately proportional to the resin

viscosity and, based on the experimental observations, the resin volume fraction will be

an increasing function of the viscosity. The experimental results suggest that the

effective tensile modulus of a partially wetted fiber tow varies with viscosity in the

manner shown in Figure 5.9.

5.7 (landmine

The effect of processing conditions on the resin mass fraction of prepreg tape

produced by hot melt impregnation without the assistance ofimpregnation bars is studied.

Experiments performed with polybutene and epoxy resin show, not only an increase in

the prepreg resin content with increasing resin viscosity, but also greater penetration of

resin into the fiber tow with larger processing viscosities. These observations cannot be

explained by capillarity. A lubrication model of a wedge shaped impregnation die is
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developed which incorporates fiber tow consolidation through a fiber tension

mechanism.This model is able to predict the experimental observations with a tensile

modulus that increases with resin viscosity, in a partially impregnated fiber tow.



Chapter 6

CONCLUSIONS AND RECOMNIENDATIONS

6.1 mm

The flow of viscous and viscoelastic liquids transverse to periodic arrays of

circular cylinders is studied. Two array geometries, square and hexagonal, are

examined; each having a void fraction of 70 percent. The elastic fluids include several

non-shear thinning dilute polymer solutions composed of a wide range of molecular

weight polyisobutylenes (0.9 to 6 million) dissolved at a concentration of 0.20 wt. % in

a purely viscous polybutene solvent. These fluids are standard type Boger fluids. In

addition, a shear thinning 2 wt. 96 polyisobutylene in decalin solution is studied.

At a void fraction of 70 percent Stokes flow simulations indicate little difference

in the flow resistance between periodic square and hexagonal arrays. Using purely

viscous liquids, these predictions are confirmed here for Reynolds numbers less than

0.30.

In this study particular attention is devoted to the influence macromolecular

conformation on the enhanced pressure drop across the arrays. The Boger liquids used

in this study are formulated to produce solutions with different levels of relative

168
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macromolecular extensibility. Being theta systems, the square of the degree of polymer

extensibility associated with each of these solutions is proportional to their molecular

weight. This is consistent with extensional viscosity measurements made by fiber

spinning.

The initial departure from Darcy’s law for the non-shear thinning solutions is due

to enhancement in flow resistance and occurs at Deborah numbers of 0.80 and 0.35 for

the square and hexagonal arrays respectively. These onsa values are independent of

molecular weight. Thus, the influence of molecular weight on the onset of elastic effects

can only be accounted for through the solution’s relaxation time. The differences in the

onsetDeborahnumbers between thetwo array typesaretheresult ofdifferentdegrees

of stretch rates occurring at a constant superficial velocity. By redefining the Deborah

number in terms of the maximum anay extension rate, as determined by the Stokes flow

field, instead of the average strain rate, the onset Deborah number in both arrays collapse

to approximately 1. This Deborah number corresponds to the coil-to-stretch transition,

whereamacromoleculeundergoesanabrupttransitionfromacoilcdstatetoan

elongated uncoiled state. This provides evidence that extensional flow effects determine

the onset of elastic effects and dominate the flow processes at high Deborah numbers (De

> 1).

At a constant Deborah number above the onset, the flow resistance is greater for

higher molecular weights, and is consistently higher for the hexagonal array than the

square array. At large values of Deborah number the relative flow resistances in both

arrays become independent of Deborah number. The magnitude of these asymptotic
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values are proportional to the molecular weight. Differences in the relative flow

resistance at De > 1 when plotted versus the Deborah number indicate that the solution’s

relaxation time alone is not sufficient for parameterizing the enhanced pressure drop.

The influence of the relative polymer extensibilities of each solution must also be taken

into account. The asymptotic flow resistance - molecular weight relationship is consistent

with the extensional viscosity measurements since the transverse cylinder array flows are

dominated by extensional flow effects at high Deborah numbers. Thus, the experimental

results follow the expected trend of the asymptotic flow resistance with molecular weight

for theta systems.

Measurements of the extent ofpolymer degradation for non-shear thinning elastic

fluids in rectangular and hexagonal arrays are also studied. The extent of degradation

in both arrays is characterized by large reductions in the polymer relaxation time after

the fluid passes several times through the arrays. At a comparable number of tests, the

amount of degradation observed in the hexagonal array is much more severe than in the

rectangular array. Further evidence that molecular extension in the hexagonal array is

greaterthanthatinflierectangularanayisgivenbychainextensioncalculafionsbascd

on the Stokes flow field.

The initial departure from Darcy’s law for a shear thinning solution passing

through a cylinder array is a reduction in the flow resistance. This is eventually followed

by an enhancement as the Deborah number is increased, and occurs at Deborah numbers

of 4.2 and 3.0 for the square and hexagonal array respectively. These data illustrate

another important feature of fluid rheology on the transverse flow past cylinder arrays.
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The flow dynamics are dominated by shear effects at low to moderate Deborah numbers

which result in a reduced pressure drop across the array for shear thinning fluids. At

high Deborah numbers the extensional effects become important, however.

The flow kinematics in both arrays is elucidated by laser Doppler velocimetry and

streak photography. These techniques reveal a flow transition from steady to unsteady

motion at Deborah numbers corresponding to the onset ofenhanced pressure drop for the

non-shear thinning elastic fluids. These results, along with the failure of current steady

state flow calculations to predict the large experimentally measured flow resistances,

imply that proper mathematical modeling of these type of flows must take into

consideration the viscoelastic transition from steady to unsteady flow.

Finally the effect of shear viscosity on the permeation of a viscous liquid through

a compliant array of cylinders is studied. This is accomplished by an experimental and

theoretical investigation of the hot melt impregnation process. It has been found that by

pullingafibertow throughaviscousresin, andthenthroughawedgeshapeddie, the

amount of material impregnating the tow is a function of the resin viscosity; the higher

the resin viscosity, the better the penetration of resin into the fiber tow. A mathematical

model, incorporating two fiber bundle consolidation mechanisms, results in good

agreement with experiments with a viscosity dependent partially wetted tow modulus.
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Thisshrdyisafintstepinundershndingtheflowofviscoelasficfiquidsflowing

transverse to arrays of cylinders. Its motivation has been to identify and solve some of

the problems associated with processing composite materials containing a viscoelastic

component. Continuing on toward this goal, the next phase of this study should include

conducting crossflow experiments with model arrays at smaller void fractions (most

composite materials have void fractions of 30 to 40 percent rather than 70 percent).

Next, the hot melt impregnation study of Chapter 5 presents interesting and counter-

intuitive results in that higher resin viscosities lead to better impregnated fiber tows.

This may be the result of tow consolidation effects caused by the tensile load placed on

thefibers. Anexperimentalstudyrelatingthefibertensiontoprepregqualityis

suggested. This should accompany consolidation experiments using model cylinder

arrays and both viscous and viscoelastic liquids.

Finally, the unsteadiness of the viscoelastic flows has not sufficiently been

explored. The implication that theoretical study of viscoelastic fluids flowing transverse

to cylinder arrays must involve unsteady state calculations should make further study of

the phenomena a high priority of non-Newtonian fluid machinists. The investigation of

the unsteadiness should begin with the analysis of the fluctuating downstream pressure

signals for high Deborah number flows. Next, the problems encountered with the LDV

system (specifically the poor signal quality) must be resolved. Suggestions for modifying
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the LDV set-up to obtain quantitative information about the flow unsteadiness include the

following items. The use of new optics to reduce the size of the measuring volume.

This would reduce the number of scattering particles in the measuring volume and reduce

the fringe spacing, assisting in the measurement of low velocities. Furthermore, the

cylinder arrays and windows should be made of optical glass to reduce unwanted light

scattering. Also, the index of refraction should be matched between the test liquid and

cylinder arrays in order to be able to map the velocity in the entire flow field without

being hindered by reflections from curved surfaces. Lastly, a frequency analyzer is

needed to obtain the power spectrum of the unsteady flows.
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WEDGE DIE/FIBER IMPREGNATION

FORTRAN PROGRAM
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Figure A.1 Schematic of the computer algorithm.
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Integrate to find
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Figure A.l Schematic of computer algorithm (continued).
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Tow Consolidation
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Figure A.l Schematic of computer algorithm (continued).
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Figure A.I Schematic of computer algorithm (continued).
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Routing

. PREPREG

AJACOB

BETA

BJACOB

CONSLP

CONSLT

CSFIT

DFDX

DWALL

ERROR

FLOW1

FLOW2

FORCE

auction

Main Program

Calculate the Jacobian of

the equation set

Miscellaneous functions

Modification of the

Jacobian

Consolidation of fiber

tow due to hydrodynamic

pressure

Consolidation of fiber

tow due to fiber tension

Cubic spline fit of tow

profile and fiber volume

fraction profile

Derivative

set

of equation

Slope of die wall

Maximum difference

between full and half

steps during integration

Inlet flow bounds for

initial guess of Q(0)

Integral property for the

update of Q(0)

Calculate force needed to

pull tow
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

23.
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Routine

FUNCT

KOZ

Kt

MATINV

MATMULT

RUNGKUT

F52

SEVAL

SIGMA

SIMPSON

SPLINE

START

STEP

FV

WALL

Bustier

Equationset

Calculate the Kozeny

constant

Calculate the transverse

permeability by the

Blake-Kozeny-Carman

equation

Invert 2 by 2 matrix

2 b y 2

multiplication

matrix

Semi-implicit

integration

Runga-Kutta

Value of the fiber tow

boundary position at

locationx

Cubis spline intepolation

Non-linear spring law

describing tow during

transverse consolidation

Integation

rule

by Simpson’s

Cubic spline fit

Euler scheme to start

integration

Calculate next step size

Value of the fiber

fraction at location x

volume

Calculate the location of

the die wall
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A.3 flagrant

c prepreg

c updated: 02 May 1991

c craig chmialawski

c sunanary: lubrication model of a Newtonian fluid impregnating

c a continuous fiber tow as it is being pulled through

c an exit dis. Darcy's law models the impregnation and

c the tow is modeled as a non-linear elastic network.

implicit integer (i,j,n)

implicit double precision (A-H,K-M,O-Z)

parameter (inc-50001)

dimension Ptinc), Q(inc), S(inc), s2(inc), Vtinc), x(inc)

dimension arr(2), y(2), y0(2), yl(2), y2(2)

common c, DELTAP, GAMMA, kappaP, kappar, Patm

common Pin, 00, rt, 80, s20, theta, V0, Va, Vt

common/ERROR] Btol

common/CSPL/ xxtinc), 822(inc), VV(inc)

common/CSPLsZ/ Bs2(inc), Cs2(inc), Ds2(inc), ndatsz

common/CSPLVI BV(inc), CVtinc), DV(inc), ndatV

external CONSLP, CONSLT, CSFIT, ERROR, FLOII, PLOWZ

external FORCE, Ps2, EV, RUNGKUT, STARE, STEP

naorax(dsg) - deg*pi/180.

c ***** input dimensionless parameters *****

open (unit-1,£ila-'in.put',status-'old'i

raad(l,*) theta, c

read(l,*) rt, Vt, Va

read(1,*) kappaP, kappa?

raad(l,*) Ca, phi

raadtl,*) Pin, Pout, Patm, pct

read(1,*) rhor, rho!

raadt1,*) Ctol, Etol, Qtol, rtol

close (unit-1)

c ***** mdsc parameters *****

pi - 4.*oarau(1.o+000)

theta - RADIANttheta)

phi - RADIAN(phi)

GAMMA - 2.*pi*DCOS(phi)/(Ca*r£)

DELTA? - Pout - Pin

c ***** initial tow-die clearance: s20 - 2.*rf *****

320 - 1. - 2.*rf

V0 - Vt/s20
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iterT - 0

iterr - iterr + 1

write(*,999) iterr

s10 - s20*(1. - pct/100.)

SO - DSQRT((sZO-s10)*(1.-V0))

***** initial s2 and V *****

inc0 - 10

do 10, i-1, inc0 + 1

x(i) - (i-1)/DFLOAT(inc0)

s2(i) - s20

V(i) - V0

n - incO + 1

iterc - 0

call CSFIT(n,x,s2,V)

iterc - iterc + 1

write(*,1000) iterC

***** initial flow rate guess *****

call FLON1Cle,Qub)

00 - 01b

iterQ - 1

RES - 1.

write(*,1010)

it (mascara .gt. Qtol) then

***** boundary conditions *****

n - 1

x(n) - 0.D+000

P(n) - Pin

8(n) - $0

0 (n) - 00

s2(n) - s20

V(n) - V0

dz - 1./1000.

***** start integration *****

do 35, i-2, 3

3(1) - x(i-1)

P(i) - P(i-1)

8(1) - 8(1-1)

call START (dx,x(i) ,P‘i) ,S(i) ,Q(i))

82(1) - Fs2(x(i))

V(i) ' FV(X(1))
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ttttt main *tttt

n - 3

:0 - x(n)

y0(1) - P(n)

y0(2) - S(n)

40 if (:0 .lt. 1.) then

***** init full step calc *****

do 50, i-l, 2

50 y(i) - yOCi)

call RUNGKUT¢X0,dx,y)

do 60, i-l, 2

60 y1(i) - y(i)

***** half step calc *****

qq - 1.

70 it (qq .ge. 1.) then

do 80, i-1, 2

30 Y“) ' YOU.)

:1 - 80

dx - 0.5‘dx

do 100, i-1, 2

call RUNGKUT(xl,dx,y)

it (1 .eq. 1) then

do 90; j-1' 2

so we» - yd)

else

endit

100 :1 - :1 + d:

it (y(l) .eq. 0.D+000 .or. y(2) .eq. 0.D+000) then

err(l) - 0.0D+000

err(2) - 0.0D+000

qq - 2.5D-001

else

call BRROR(y1,y,err,qq)

endif

if (dz .lt. 1./FLOAT(inc-1)) qq - 2.50-001

do 110, i-l, 2

110 y1(i) - y2(i)

goto 70

else

endit
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***** reinitialize *****

dx - 2.*dx

:0 - x0 + dx

do 120, i-l, 2

120 y0(i) - y(i) + 1./7.*err(i)

if (y0(1) .lt. 0.D+000) y0(1) - 0.D+000

***** adjust step size *****

call STEPtqq,dx)

***** final step: adjust step to die exit *****

if (30+dx .gt. 1.) dx - 1.-xO

***** full impregnation limitation *****

if (DSQRI(S(n)) .ge. s2(n)*(1.-V(n))) then

y0(2) - (Fs2(x0)*(1.-FV(80)))**2

else

endif

n - n + 1

x(n) - 30

Pm) -y0(1)

8(n) - y0(2)

Q(n) - 00 + DSQRT(SO) - DSQRI(S(n))

s2(n) - Ps2(x(n))

V(n) - £1”me

goto 40

else

call PLOW2(n,x,s,RES)

write(*,1020) iterQ, 00, RES

endif

***** convergence (regula falsi) to proper QO *****

if (iterQ .eq. 1) then

A - 00

PA - R38

00 - Qub

elseif (itero .eq. 2) then

B - 00

EB - R88

00 - (A*FB - B*FA)/(FB - EA)

elseif (EA*RES .lt. 0.) then

B - 00

PB - R38

00 - (awe - B*FA)/(FB - FA)
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else

a - co

m - R88

00 - (A*FB - B*FA)/(FB - FA)

endif

itero - iterQ + 1

goto 30

else

endif

***** tow consolidation by pressure *****

do 130, i-2, n

if (9(1) .gt. P(i-1)) then

Xnax - x(i)

Pmax - P(i)

call CONSLP(P(i),S(i),s2(i),V(i))

else

s2(i) - s2(i-1)

V(i) - V(i-l)

endif

continue

if (iterc .lt. 10) then

do 140, i-2, n

conerr - DABS((Fs2(x(i))-s2(i))/s2(i))

if (conerr .gt. Ctol) goto 20

continue

else

endif

tiiit c‘lc forc‘ *tttt

print*, ' '

print*, 's20- ', s20

print*, 'VO - " V0

print*, ' '

call FORCB(n,x,P,s,forc,1oad)

**‘** tow consolidation by tension *****

s200 - s20

call CONSLT(forc)

ptiht‘, '820- 'g 320

print*, 'V0 - ', V0

print‘, ' '

if (DABS(s200-s20)ls20 .ge. Ttol) goto S

***** calc coating thickness *****

coat - 0(a)
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***** calc fiber vol fract *****

Vf - s20*V0/(s2(n) + coat)

****‘ calc fiber mass tract *****

denratio - rhor/rhof

Hf - s20*V0/(s20*V0 + (DSQRT(S(n)) + coat)*denratio)

eeaaeattaeeeeeeeeeee OUTPUT aeeeeeeeaeeeteetttee

open(unit-1,fi1e-'out.dat',status-'nev')

openIunit-2,file-'P.dat',status-‘new')

open(unit-3,file-'Q.dat',status-'new')

open(unit-4,file-'impreg.dat',status-'neu')

open(unit-5,file-'s2.dat',status-'nev')

open(unit-6,file-'V.dat',status-'new')

write(1,1030) 'theta (deg) ', theta*180./pi

write(1,1030) 'L/(1/2*W2) ', c

write(1,1030) 'rf/(1/2*W2) ', rf

write(1,1030) 'Vf init ', Vt

write(1,1030) 'kappaP*(1/2*l2)/(eta*00)', kappa?

write(1,1030) 'kappar*(1/2*l2)/(eta*00)', kappa!

write(1,1030) 'Ca - (eta*00)/gama ', Ca

urite(1,1030) 'Contact ang. (deg) ', phi*180./pi

write(1,1000)

jsize - 50

jstep - 1

if (n/jaize .ne. 0) jstep - n/jsize

do 150, i-1, n, jstep

pctimpg - DSQRT(S(i))/(s2(i)*(1.-V(i)))

write(1,1050) i, x(i), 2(1), 0(1), Pctimpg, s2(i), V(i)

write(2,1090) 8(1), P(i)

write(4,1090) 8(1), pctimpg

urite(5,1090) 1(1), s2(i)

urite(6,1090) x(i), V(i)

if (i-jstep .ne. n) then

pctimpg ' DSQRT(S(n))/(82(n)*(1.-V(n)))

uncoudosm n. 3(a), 9(a). 0(a). Pctimpq: 32m). V(n)

write(2,1090) 3(a), P(n)

urite(3,1090) x(n), 0(a)

write(4,1090) 1(a), Pctimpg

write(5,1090) x(n), s2(n)

write(6,1090) x(n), V(n)

else

endif
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write(1,1060) 'Pin ', Pin

write(l,1070) 'Pmax ', Pmax

write(l,1070) 'Xmax ', Xmax

write(1,1080) '0 (x - 0) ', 00

write(1,1070) '0 Lower Bound ', le

write(1,1070) '0 Upper Bound ', Qub

urite(1,1080) 'rorce ', forc

urite(1,1070) ’Load ', load

write(1,1080) 'Coat Thickness ', coat

urite(1,1080) 'tiber Vol tract ', Vt

write(1,1070) 'tiber Mass tract ', Mt

urite(1,1070) 'Resin Mass tract ', 1.0D+000 - Mf

close(unit-1)

close(unit-2)

close(unit-3)

close(unit-4)

close(unit-5)

close(unit-6)

999 format(/1x,'Tension Consolidation Iter.:',16)

1000 format(/3x,'Pressure Consolidation Iter.:',16)

1010 format(/T6,'iterQ',T10,'Q(0)',T31,'P(Q(0))'l)

1020 format(1x,18,2015.5)

1030 format(T15,324,T40,'-',T45,811.4)

1040 format(/T4,'Pt',T13,'x',T24,'P',T35,’Q’,T43,'§ IMPG',

8 756,'82',T68,'V'/)

1050 format(1x,IS,T10,P6.0,5P11.4)

1060 format(ll/T20,Al9,T40,'-',T45,F9.4)

1070 format(T20,Al9,T40,'-',T45,P9.4)

1080 format(/T20,h19,T40,'-',T45,r9.4)

1090 format(2t10.5)

end

***** sub: jacobian *****

subroutine AJRCOB(x,y,RJ)

implicit double precision (A-Z)

dimension RJ(2,2), y(2)

common c, DBLTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, $0, s20, theta, V0, va, Vt

external BETA, FV, Kt

V - FV(x)

call BETA(x,Bl,BZ,B3)

AJ(1,1) - o.o+ooo

AJ(1,2) - -c*B3/DSQRT(y(2))

AJ(2,1) - 2.*c*Kt(V)*(1.-V)

AJ(2,2) - o.n+ooo

return

end



181

***** sub: misc functs *****

subroutine BETA(x,BETA1,BETA2,BBTA3)

implicit double precision (A-Z)

external Ps2, WALL

s2 - Fs2(x)

H - WALL(x) + 1.D+000

BETAI - 1./3.*H**3 - 82**2*H + 2./3.*32**3

BETAZ - 1./2.*(fl - :2)**2

BETA3 - -6./(H-82)**3

return

end

***** sub: modified jacobian *****

subroutine BJACOB(AJ,dx,BJ)

implicit double precision (A-Z)

dimension AJ(2,2), BJ(2,2)

a - 4.35866524D-001

BJ(1,1) - 1.D+000

BJ(1,2) - -1.*dx*a*AJ(1,2)

BJ(2,1) - -l.*dx*a*AJ(2,1)

BJ(2,2) - 1.D+000

return

and

***** sub: regula falsi - pressure consolidation *****

subroutine CONSLP(P,S,s2,V)

implicit double precision (A-Z)

common c, DBLTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, so, s20, theta, V0, Va, Vt

RBS(Vf) - (DSQRTWa/Vf) - 1.)": - kappaP/P*(DSQRT(Vf/V0) - 1.)

s1 - :2 - DSQRT(S)/(l. - V)

***** note: tol <- (DSQRT(Va/V) - 1.)**4 *****

tol - 1.D-010

aa - V0

bb - Va

cc - V0
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if (DABS(RES(cc)) .ge. tol) then

cc - («mas (bb) -bb*RES (aa) ) / (RES (bb) -RES (aa))

if (RES(aa)*RBS(cc) .lt. 0.D+000) then

bb - cc

else

aa - cc

endif

goto 10

else

endif

V - cc

s2 - s1 + V0/V*(s20 - s1)

return

and

***** sub: regula falsi - tension consolidation *****

subroutine CONSLT(forc)

implicit double precision (A-Z)

common c, DBLTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, $0, s20, theta, V0, Vs, Vt

RES(Vf) ' (1./Vf - 1./Va)**2 - kappaT/forc*(1./Vt - 1./Vf)

***** note: tol <- (l./V - 1./Va)**2 *****

tol - 1.D-010

aa - Vt

bb - Va

cc - Vt

if (DABS(RBS(cc)) .ge. tol) then

cc - (aa*RBS(bb)-bb*RBS(aa))/(RBS(bb)-RBS(aa))

if (RBS(aa)*RBS(cc) .lt. 0.D+000) then

bb - cc

else

aa - cc

endif

goto 10

else

endif

V0 - cc

s20 - Vt/VO

return

end
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***** sub: cubic spline fit of s2 and V *****

subroutine CSFIT(n,x,s2,V)

implicit integer (i,n)

implicit double precision (A-R,J-M,o-Z)
parameter (inc-50001)

dimension s2(inc), V(inc), x(inc)
common/CSPL/ xx(inc), 822(inc), VV(inc)
common/CSPLsZ/ Bs2(inc), Cs2(inc), Ds2(inc), ndats2common/CSPLV/ BV(inc), CV(inc), DV(inc), ndatV
external SPLINE ,

do 10' 1-1, H

18(1) -x(i)

822(1) - s2(i)

VV(i) -V(i)

ndats2 - n

ndatV - n

call SPLINE(ndats2,xx,s22,Bs2,Cs2,Ds2)
call SPLINE(ndatV,xx,VV,BV,CV,DV)

return

end

tease sub: dfi/dx state

subroutine DFDX(dx,x,f,y,df)

implicit double precision (A-Z)

dimension df(2), f(2), y(2)

common c, DELTAP, GAMMA, kappaP, kappaT, Penn

common Pin, 00, rf, $0, s20, theta, V0, Va, Vt

external BETA, DWALL, Fs2, FV, Kt, MALL

V - BV(x)

s2 - Ps2(x)

H - WALL“) + 1.

call BETA(x,Bl,BZ,B3)

***** approx derivatives: ds2/dx, dV/dx, dB3/dx, th/dx *****

s22 - Ps2(x+dx)

V2 - FV(x+dx)

ds2 - (s22-s2)/dx

dV - (V2-V)/dx

th - (Kt(V2)-Kt(V))/dx

dB3 - BZ*B3**2*(DWALL(x) - ds2)

terml - f(1)/B3*dB3

term2 - -c*B3*(f(2)/DSQRT(y(2)) + DWALL(x) - ds2)
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df(1) - terml + term2

terml - 2.*c*Kt(V)*(1.-V)*f(l)

term2 - -2.*c*Kt(V)*(y(1)-(Patm-GAMMA))*dV

term3 - 2.*c*(1.-V)*(y(l)-(PaterAMMA))*th

df(2) - terml + term2 + term3

return

end

***** fcn: derivative of wall boundary *****

sweat WEDGE tests

double precision function DWALL(x)

implicit double precision (A-Z)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

connon Pin, 00, rf, SO, s20, theta, V0, Va, Vt

DMALL - -c*DTAN(theta)

return

end

***** sub: max diff between full and half steps ***

subroutine ERROR(y1,y2,err,q)

implicit integer (i)

implicit double precision (A-R,J-2)

dimension err(2), to1(2), y1(2), y2(2)

column/ERROR] Etol

do 10, 1-1, 2

tol(i) ' y2(i)

do 20, i-l, 2

err(i) - y2(i) - y1(i)

q - DMAX1(DABS(err(1)/tol(1)1, DABS(err(2)/tol(2)))

q - q/Etol

return

end

***** sub: flowl (inlet flow bounds) *****

subroutine PLOW1(le,Qub)

implicit integer (i)

implicit double precision (A-H,J-Z)

parameter (inc-10000) '

dimension F1(inc+1), F2(inc+l), F3(inc+1)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, SO, s20, theta, V0, Va, Vt

external BETA, Fs2, FV, SIMPSON
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do 10, i-l, inc+1

x - (i-l)/DFLOAT(inc)

s2 - Ps2(x)

V - FV(x)

call BETA(X,81,82,B3)

F1(1) - 83

F2(1) 1./82

S (sZ*(1.-V))**2

P3(i) 33*(DSQRI(S) - DSQRT(SO))

call SIMPSON(inc,F1,P1int)

call SIMPSON(inc,F2,F2int)

call SIMPSON(inc,F3,F3int)

01b - l./F1int*(0.S*DELTAP/c - 3./2.*F2int)

Qub - 1./Plint*(0.5*DELTAP/c - 3./2.*F2int + F3int)

return

end

***** sub: integral property to find 00 *****

subroutine PLOW2(n,x,S,RES)

implicit integer (i,n)

implicit double precision (A-H,J-M,O-2)

parameter (inc-10000, isp1-50001)

dimension F1(inc+1), F2(inc+1), P3(inc+1)

dimension S(ispl), x(ispl)

dimension BS(isp1), CS(ispl), BS(ispl)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, SO, s20, theta, V0, Va, Vt

external BETA, F82, PV, SPLINE, SEVAL, SIMPSON

call SPLINE(n,x,S,BS,CS,DS)

do 10, i-l, inc+1

x1 (i-1)/DFLOAT(inc)

SS - SEVAL(n,xl,x,S,BS,CS,DS)

s2 Fs2(x1)

V - l'V(x1)

call BETA(X1,BI,BZ,83)

F1(i) - 83

32(1) - 1./82

F3(i) C B3*(DSQRI(SS) - DSQRT(SO))

call SIMPSON(inc,F1,Flint)

call SIMPSON(inc,F2,F2int)

call SIMPSON(inc,P3,PBint)

RES - 00 - l./Plint*(0.S*DELTAP/c - 3./2.*F21nt + FBint)

return

end
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***** sub: calc tow force and die load *****

subroutine FORCE(n,x,P,S,forc,load)

implicit integer (i,n)

implicit double precision (A-H,J-M,O-Z)

parameter (inc-10000, ispl-50001)

dimension dP(ispl), PP(ispl), F1(inc+1), F2(inc+1)

dimension P(isp1), S(isp1), x(ispl), P(2), y(2)

dimension BdP(ispl), CdP(ispl), DdP(ispl)

dimension BPP(ispl), CPP(isp1), DPP(ispl)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, $0, s20, theta, V0, vs, Vt

external BETA, Ps2, SPLINE, SEVAL, SIMPSON, WALL

do 10, i-l, n

9(1) - P(i)

y(2) - S(i)

call FUNCT(x(i),y,f)

dP(i) - f(l)

call SPLINE(n,x,dP,BdP,CdP,DdP)

call SPLINE(n,x,P,BPP,CPP,DPP)

do 20, i-1, inc+1

x1 - (i-l)/DFLOAT(ino)

dex - SEVAL(n,x1,x,dP,BdP,CdP,DdP)

PP(i) - SEVAL(n,xl,x,P,BPP,CPP,DPP)

s2 - Ps2(x1)

ll - WALL(x1) + 1.

rl(i) - 1./(H - s2)

call BETA(xl,Bl,BZ,B3)

P2(i) - 1./c*dex*BZ*P1(1)

call SIMPSON(inc,Fl,P1int)

call SIMPSON(inc,F2,P2int)

call SIMPSON(inc,PP,load)

forc - Flint + FZint

load - load

return

and

****Q sub: eqn set *ittt

subroutine FUNCT(x,y,f)

implicit double precision (A-Z)

dimension f(2), y(2)

common c, DELTAP, GAMMA, kappaP, kappaT, PaUm

common Pin, 00, rf, SO, s20, theta, V0, va, Vt

external BETA, Ps2, FV, Kt, WALL

s2 - Ps2(x)

V - FV(x)

11 - MALL“) + 1.

call BETA(x,Bl,BZ,83)
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Q - 00 + DSQRT(SO) - DSQRT(y(2))

{(1) - c*B3*(2.*Q - (8-3211

f(Z) - 2.*c*Kt(V)*(1.-V)‘(y(1) ' (Patm - GAMMA))

return

end

***** fcn: Kozeny constant *****

double precision function KOZ(V)

implicit double precision (A-Z)

Bl - 1.068136D-008

B2 - 2.5010250+001

B3 - 7.7435060+000

K02 - BI*DEXP(BZ*V) + B3

return

end

***** fcn: permeability *****

double precision function Kt(V)

implicit double precision (A-Z)

counon c, DELTAP, GAINA, kappaP, kappaT, Patm

common Pin, 00, rt, 80, s20, theta, V0, va, Vt

external xoz

Kt - (l. - V)**3/V**2*1./(4.*K02(V))*rf**2

return

end

***** sub: inverse of dim 2 matrix *****

subroutine MATINV(A,AINV)

implicit double precision (A-Z)

dimension A(2,2), AINV(2,2)

doth - A(1o1)*A(2o2) - A(1.2)*A(2,1)

detinv - 1./detA

Ainv(1,1) - detinv*A(2,2)

Ainv(l,2) - -detinv*A(1,2)

Ainv(2,1) - -detinv*A(2,1)

Ainv(2,2) - detinv*A(1,1)

return

end
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***** sub: matrix mult *****

subroutine MATMULT(N,A,x,y)

implicit integer (i,j,N)

implicit double precision (A-n,K-M,o-2)

dimension A(N,N), x(N), y(N)

do 20, i-l, M

y(i) - 0.D+000

do 10, j-l, N

P(i) ' 3(1oj)*8(j) + V(i)

continue

continue

return

end

***** sub: 3rd order semi-implicit Runga-Kutta *****

subroutine RONGKUT(x,dx,y)

implicit integer (i)

implicit double precision (A-B,J-z)

dimension AJ(2,2), BJ(2,2), BJIMV(2,2)

dimension df(2), f(2), k1(2), k2(2), k3(2), y(2), Yl(2)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, SO, s20, theta, V0, Va, Vt

external moon, Baacoa, omx, tuner, mum, MATMULT

a - 4.3586652400-001

b2 - 7.5000000000-001

b31 - -6.3020209OOD-001

b32 - -2.423378910D-001

Bl - 1.037609497D+000

32 - 8.349304840D-001

call AJACOB(x,y,AJ)

call BJACOB(AJ,dx,BJ)

call MATINV(BJ,BJINV)

call PUMCT (xoyo i)

call DPDX(dx,x,f,y,df)

do 10, i-l, 2

f(i) - f(i) + dx*a*df(i)

CALL HAMILT (2, BJINV, f, k1)

x1 - x + b2*dx

do 20, i-l, 2

y1(i) - y(i) + b2*k1(i)*dx

if (y1(i) .lt. 0.D+000) y1(i) - 0.D+000

continue

call PUNCT(x1,y1,f)





0
0
0
0

30

40

50

10

20

195

do 30, i-l, 2

f(i) - f(i) + dx*a*df(i)

CALL MATMULT (2, BJINV, f, k2)

do 40, i-1, 2

terml - k1(i)*dx + a*df(i)*dx**2

term2 - k2(i)*dx + a*df(i)*dx**2

f(i) - b31*term1 + b32*term2

CALL HAMILT (2, BJINV, f, k3)

do 50, 1-1, 2

y(i) - y(i) + R1*k1(i)*dx + R2*k2(i)*dx + k3(i)

if (y(1) .lt. 9.0+000) y(1) - o.o+ooo

return

end

'**** fcn: determine $2 at x *****

double precision function Ps2(x)

implicit integer (i,j,n)

implicit double precision (A-H,K-M,O-z)

parameter (inc-50001)

common/CSPL/ xx(inc), s22(inc), VV(inc)

common/CSPLsZ/ Bs2(inc), Cs2(inc), Ds2(inc), ndats2

external SEVAL

Ps2 - SEVAL(ndats2,x,xx,s22,Bs2,Cs2,Ds2)

return

and

seval

from: G. Porsythe, M. Malcolm, and c. Moler

Computer Methods for Mathematical Computations

Prentice-Hall, 1977.

***** cubic spline interpolation - function *****

double precision function SEVAL(M,u,x,y,B,C,D)

implicit integer (i-k,N)

implicit double precision (A-H,L-M,o-Z)

dimension x(N), y(N), B(N), C(N), D(N)

DATA 1/1/

if (i .ge. n) i - 1

if (u .lt. x(i)) goto 10

if (u .le. x(i+1)) goto 30

i - 1

j - n+1

k - (1+J)/2
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if (u .lt. x00) 1- k

if (u .ge. x(k)) 1 ' k

1: (j .gt. 1+1) goto 20

dx - u - 3(1)

SEVAL - y(i) + Dx*(B(i) + Dx*(C(i) + DX*D(i)))

return

end

***** fcn: non-linear spring *****

double precision function sigma(V)

implicit double precision (A-Z)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, SO, s20, theta, V0, Va, Vt

sigma - kappaP*(DSQRT(V/V0) - lJ/(DSQRTWa/V) - 1.)“4

return

end

***** sub: integration - Simpson's rule *****

subroutine SIMPSON(inc,f,simp)

implicit integer (i)

implicit double precision (A-B,J-z)

dimension f(inc+1)

dx - 1./inc

simpO - f(l) + f(inc+1)

simpl - 0.D+000

simp2 - 0.D+000

60 10, 1-2, inc, 2

simpl - simpl + f(i)

d0 20' 1-3; inc-1' 2

simp2 - simp2 + f(i)

simp - dx/3.*(simp0 +4.*simp1 + 2.*simp2)

return

and

spline

from: G. Forsythe, M. Malcolm» and C. Moler

Computer Methods for Mathematical Computations

Prentice-Hall, 1977.

***** cubic spline interpolation *****
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subroutine SPLINE(N,x,y,B,C,D)

implicit integer (i,N)

implicit double precision (A-H,J-M,o-Z)

dimension x(N), y(N), B(N), C(N), D(N)

NMl - N-l

if (N .lt. 2) return

if (N .lt. 3) goto 50

0(1) - x(2) - 1(1)

C(2) - (V(Z)‘Y(1))/D(1)

do 10, i-2, NM1

D(i) - x(i+1) - x(i)

B(i) - 2.*(D(i-1) + D(i))

C(i+1) ' (Y(1+1) - V(i))/D(i)

C(i) - C(i+1) - C(i)

8(1) ' -D(1)

B(N) - -D(N-l)

C(1) - 0.

C(N) - 0.

if (N .eq. 3) goto 15

C(1) - C(3)/(x(4)-x(2)) - C(2)/(x(3)-8(1))

C(N) - C(N-1)/(x(N)-X(N-2)) - C(N-2)/(X(N-1)-X(N-3))

C(1) - C(1)*D(1)**2/(X(4)-x(1))

C(N) - -C(N)*D(N-1)**2/(x(N)-x(N-3))

do 20, i-2, N

T - D(i-1)/B(i-1)

3(1) ' 8(1) - T*D(1-1)

C(1) - C(1) - T*C(i-l)

C(N) - C(N)/B(N)

do 30, ib - 1, NMl

i - N - ib

C(1) - (C(1) - D(i)*C(i+1))/B(1)

B(N) - (y(N)-y(NH1))/D(NM1) + D(NM1)*(C(NM1) + 2.*C(N))'

do ‘0, i-l, NMl

3(1) ' (Y(1+1) ' Y(111/D(1) - D(i)*(C(i+1) + 2.*C(1))

D(i) ' (C(1+1) ' C(i))/D(i)

C(1) ' 3-*C(1)

C(N) - 3.*C(N)

D(N) - D(N-l)

return

3(1) - (P(Z) - Y(1))/(x(2) - x(1))

C(1) - 0.

0(1) - 0.

3(2) - 3(1)

6(2) - 0.

D(2) - 0.

return

end
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***** sub: start integration (Euler method) *****

subroutine START(dx,x,P,S,Q)

implicit double precision (A-Z)

dimension f(2), y(2)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, SO, s20, theta, V0, Va, Vt

external FUNCT

y(l) - P

y(2) - S

call FUNCT(x,y,f)

+ dx

+ dx*f(1)

+ dx*£(2)

+ DSQRT(SO) - DSQRT(S)O
M
'
U
N

I
I

I
I

O
M
'
U
N

***** sub: step size adjustment *****

subroutine STEP(q,dx)

implicit integer (i)

implicit double precision (A-H,J-z)

d1 - dx’DHIN1((4.*q)**(-.25),3.D+000)

return

end

***** fcn: determine V at x *****

double precision function EV(x)

implicit integer (i,j,n)

implicit double precision (A-H,R~M,o-Z)

parameter (inc-50001)

common/CSPL/ xx(inc), s22(inc), VV(inc)

comon/CSPLV/ BV(inc), CV(inc), BV(inc), ndatV

external SEVAL

EV - SEVAL(ndatV,x,xx,VV,BV,CV,DV)

return

end



199

c ***** fcn: wall boundary *****

C than WEDGE fitter

double precision function WALL(x)

implicit double precision (A-Z)

common c, DELTAP, GAMMA, kappaP, kappaT, Patm

common Pin, 00, rf, SO, s20, theta, V0, Va, Vt

WALL - c*DTAN(theta)*(1. - x)

return

end

AA WE:

.OOOOOOD+000, 6.926950D+001

.899200D-002, 6.428700D-001, 9.070000D-001

.676200D-001, 1.0000000-003

.1451000-001, 3.000000D+001

.000000D+000, 0.000000D+000, 0.000000D+000, 0.000000D+000

.137000D+000, 1.8000000+000

.OOOOOOD-OOQ, 1.000000D-005, 1.000000D-010, 1.0000000-003H
H
O
D
G
D
N

theta

rf

kappaP

Ca

Pin

rhor

Ctol

c

Vt , Va

kappaT

phi

Pout , Patm , pct

rhof

Etol , Qtol, , Ttol

‘
Q
‘
Q
‘
Q
‘
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