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ABSTRACT

NEURAL NETWORKS FOR DYNAMIC PROGRAMMING

By

Chinchuan Chiu

This dissertation presents a fundamentally new and different artificial neural

network approach to dynamic programming, including network formulation, analysis,

simulation, implementation, and applications. The proposed artificial neural network

method is attractive due to its robustness and radically improved speed over conventional

techniques. The network, based on the Hopfield model, is defined by an energy function in

which the optimal solution corresponds to the lowest energy state. The functionality and

the equilibria of the formulated network are analytically proved from the energy function

point of view. The quality of the solutions, the network behavior, and the basins of

attractions are thoroughly investigated by simulation. An architecture design well-suited to

current VLSI technology, in which the network is constructed from neuron array and

weight assignment chips, is described. Furthermore, this new approach has been

successfully applied to different applications such as optimal control, autoasssociative

memory, and speech recognition.
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Chapter 1
   

1.0 Introduction

Artificial neural networks are a fundamcntally new and different approach to

information processing. They have proven to be very efi’ective in various applications such

as pattern recognition, associative memory, control, robotics, and combinatorial

optimization. This dissertation presents a new methodfor dynamic programming using a

feedback Hopfield-Tank type network, including network formulation, theory,

implementation, and applications.

This Chapter begins with a briefoverview of thefield ofneural networks. The

problem to be solved in this dissertation is then stated,followed by the research tasks.

Finally, the organization of this dissertation is outlined.

1.1 Overview of Neural Networks

The past few years have seen a resurgence of research in the field of neural

networks promoted by advances in electronic circuit technology as well as a deeper

understanding of the functioning of brain[1-3]. One motivation is a desire to build a new

breed of powerful computers (the sixth generation) to solve a variety of problems that are

very difficult to solve, or at least computationally cumbersome, with conventional digital
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computers. Cognitive tasks such as recognizing a familiar face, learning to speak, and

understand a natural language, retrieving contextually appropriate information from

memory, and guiding a mechanical hand to grasp objects of different shapes and sizes are

representative examples of these problems [4-6]. All require some form of pattern

recognition, pattern matching, nonlinear discrimination, and/or combinatorial

optimization. Quite interestingly, these tasks are analogous to those typically performed

naturally and robustly by the brain. For example, humans can usually recognize a familiar

face in about 200 milliseconds [7]. The state-of-the—art image processing system can not

even come close to this performance. Moreover, the brain is remarkable in that this

performance is obtained by a system whose individual components, neurons, are

individually much slower than currently used electronic components [7,8].

Another motivation is a desire to develop cognitive models that can serve as a

foundation for artificial intelligence [9-11]. Although it is well known that the brain is not

as good as a digital computer at performing arithmetic operations, there are several aspects

of brain function that we are not able to duplicate with conventional computers. Some of

these are association, categorization, generalization, feature extraction, and optimization

[12,13].

Many researchers have been developing models to study neural networks. These

models fall into two categories. One is biological modeling with a goal to study the

structure and functions of the real brain in order to explain biological behaviors. The other

is technological modeling which studies brains in order to extract concepts to be utilized in

new and more powerful computer architectures [14-16]. Although there is a controversy

over which one of these two branches should constitute the true focus of research in neural

network modeling, the latter path has been taken by many working in the area of what has

come to be called artificial neural networks (ANN).

An ANN is a parallel distributed information processing system which consists of

processing elements (neurons) and connections (synapses). Each processing element,
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characterized by its working function, can receive input signals from a certain number of

incoming connections and produce output signals to a certain number of outgoing

connections. Table 1-1 contains a comparison of some of the characteristics of neural

networks and conventional digital computers. Stored information and network output of

ANN is determined by its structure, processing elements, and connections. Since the output

results are collective decisions of all parameters together, the loss of information due to

faults such as damaged connections and malfunctioning processing elements will still result

in correct outputs as long as other parts of the network overrule the faulty parts. This

provides the inherent fault tolerance property for ANNs. The ability of massive parallel

computation due to many processing elements operating in parallel is another important

feature possessed by ANNs, which is essential for the applications requiring high

computation rate such as pattern recognition, and combinatorial optimization.

The history ofneural network research has been intertwined with symbolic artificial

intelligence since the beginning of both fields [17-19]. In the late 1950s, when a group of

scientists turned their attention to attempting to build intelligent systems, two different

approaches emerged. One focused on how the brain did things, the other concentrated on

what the brain did regardless of how it was accomplished biologically. The second

approach, artificial intelligence, became favored over the first approach because of rapid

advances in software technology which provided flexible and powerful tools for testing

models and concepts. In the early 1980s, several key papers published by Hopfield,

Grossberg, and Rumelhart spurred a revival of interest in the first approach - neural

networks [2-4].

The Hopfield-Tank network, one of the most well-known artificial neural networks,

has been applied to combinatorial optimization problems such as the traveling salesman

problem (TSP) [20-23], linear programming problems [24,25], nonlinear programming

problems [26,27], communication network routing problems [28,29], and others [30-33].

Due to the gradient pr0perty of the Hopfield-Tank network [2], each of these problems can



 

 

 

Characteristics Neural Networks Conventional Computers

Memory Structure Distributed System-Dependent

Memory Recall Associative Specific Input

Fault-Tolerance Inherent Not Inherent

Pattern Recognition Excellent Poor

Classification Excellent Poor

Learning Excellent Poor

Arithmetic Operation Poor Excellent

Tinting Scheme Asynchronous System-Dependent

Degree of Parallelism High System-Dependent

Processing Element Simple Complex

Degree of Connectivity High Low  
 

Table 1-1. Characteristics of neural networks and conventional computers.
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be solved by designing an appropriate network whose minimum energy states correspond

to the problem’s solutions.

In particular, a dynamic programming neural network has been developed for

dynamic programming problems using a feedback Hopfield—Tank type network [34,35].

This network formulation has been shown to robustly provide near-optimal solutions in a

very short period of time independent of network size. It has also been shown to be a

gradient system based on the fact that the derivative of the associated energy function along

all trajectories is less than or equal to zero. The network can converge to one of the stable

equilibria (minimum states of the associated energy function) if the initial conditions are

sufficiently close to the stable equilibrium. The stable equilibria can be regarded as the

near-optimal solutions to the problem.

1.2 Statement of Problem

A typical dynamic programming problem (DPP), shown in Figure 1-1, can be

modeled as a set of source and destination nodes with n intermediate stages, m states in each

stage, and metric data dxi’ (x+I)j’ where x is the index of stages, and i and j are the indices

of the states in each stage. The object is to find an optimal path composed of one and only

one state in each stage fiom source to destination.

The conventional approach uses the principle of optimality which requires a large

number of computations to determine the optimal solution [35]. In fact, the number of

computations is so great for large dynamic programming problems, that the conventional

algorithms are not effective in many applications. This is especially true for those requiring

fast, perhaps real-time, solutions. Additionally, computation in the conventional algorithms

for dynamic programming is executed often sequentially, therefore the computation time is

proportional to the problem size. This is primarily due to the fact that the basic algorithms

are only partially parallelizable.

Interestingly though, in many real-time dynamic programming applications, the



stage 1

stage 2

stage 3

 
Destination

Figure 1-1. A 3x6 dynamic programming problem (full interconnection not shown).
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rapid calculation of near-optimal solutions is sufficient when contrasted to a slowly

computed globally optimal solution. For example, robot trajectory planning problems,

aircraft trajectory control problems, and other optimal control problems that must respond

quickly to radically changing environmental conditions are of this type.

To solve dynamic programming problems with an artificial neural network, an

appropriate network formulation must first be determined such that the problem solution

corresponds to the global optimal solution, or at least a local near-optimal solution. The

essential issues of stability and convergence of the formulated network must be ensured so

that the network always converges to one of the stable equilibria. In order to obtain good

solutions for problems, the qualitative network behavior must be understood. As will be

seen in Chapter 3, this network characteristic is determined by its associated energy

function. Finally, some of the implementation problems for this network and networks of

this type must be addressed.

1.3 Research Tasks

The tasks of this research are to (l) formulate an artificial neural network for

dynamic programming; (2) analyze the formulated network from the view point of

associated energy function; (3) verify the formulation and analysis through network

simulation; (4) demonstrate the applicability of the formulated network by solving optimal

control, associative memory, and speech recognition problems; and (5) propose an

architecture for the formulated network.

The network formulation will be based on the I-Iopfield-type network. To design an

Hopfield-type network for solving a specific problem and determine the connection

weights and parameters to achieve the best solutions to the problem, a general procedure

goes as follows:

(1) Select an encoding procedure such that the outputs of the network correspond to

the solutions of the problem.
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(2) Choose a proper energy function, bounded from below, whose minimum

corresponds to the optimal solution of the problem.

(3) Determine connection weights and bias current which properly represent the

objective function and constraints of the problem.

To formulate a neural network for dynamic programming, each state node will be

considered as an individual neuron. Examining the characteristics of the optimal path

carefully, two constraints become evident. First, the optimal path must visit one and only

one state in each stage (a structural constraint). Secondly, the optimal solution must have

the minimum total cost based on the given performance measure (a cost constraint). Thus,

the energy function has two requirements. The structural constraint implies that the energy

function must converge to stable states where one and only one state in each stage is active.

The cost constraint dictates that the energy function must converge to stable states

representing a minimum path. After the associated energy function has been determined,

the network can be formulated as will be shown in Chapter 3.

The second task is a two-fold analysis of the network. The first objective is to

explain why the formulated network is functional by investigating the following properties.

(1) The network must possess a unique solution for every initial condition.

(2) The time derivative of the associated energy function decreases monotonically

along the trajectories and becomes zero only at equilibrium points.

(3) The network must have a finite number of equilibrium points.

(4) Every equilibrium point of the network must be a local minimum of the

associated energy function.

Property 1 will ensure the existence and uniqueness of the solution. Property 2 will

guarantee the stability and convergence of the network. The possibility of existing periodic

solutions will be avoided by Property 3. Finally, Property 4 will provide a way to find the

equilibria from the associated energy function. Once the above properties are verified, the

network will be shown to converge to one of the equilibria, if the initial condition is in one
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of the basins of attraction of the equilibrium points.

The goal of designing the network is to obtain near-optimal solutions for dynamic

programming problems. Therefore, the equilibria must reside in the regions which can be

regarded as valid and near-optimal solutions. The second objective then is to analyze the

relationship between the quality of the solutions and the parameters of the associated

energy function, derivation of the locations and numbers of the minimum states for

different components of the energy function, and the locations of the minimum states of the

energy function with different values of parameters.

The third task involves a simulation which will demonstrate the functionality of the

formulated network and show that it can produce near-optimal solutions for DPPs. Since

the network is described by a set of first order differential equations, the network can be

simulated by solving the associated differential equations with numerical analysis

techniques running on a conventional computer. Simulation programs written in C and

based on a fourth-order Runge-Kutta method for the formulated network will be developed.

This task will be divided into four sub-tasks which are to:

(l) depict the relationship between the quality of solutions and the parameters of the

associated energy function;

(2) simulate different networks ranging from 2 x 2 to 64 x 64;

(3) simulate networks with random errors to connection weights;

(4) simulate networks with different initial conditions and different parameters of

the associated energy function; and

(5) simulate large-scale dynamic programming problems with networks of smaller

size by decomposing the problems.

The first sub-task can provide appropriate values of the parameters for the

subsequent simulations. The results of the second sub-task will serve as an index to the

success of the formulation of the networks. The Hopfield-Tank networks are shown to be

gradient systems only when the networks are symmetric. However, it is believed that
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sufficiently small changes of the connection weights will not alter the qualitative properties

of the networks [37]. The third sub-task will show the network sensitivity to errors in the

connection weights. The fourth sub-task will qualitatively show how the parameters affect

the basins of attraction of the equilibrium points.

The implementation of large scale neural networks has been severely restricted by

current technology. One way to cope with this problem is to use a divide-and-conquer

method. The advantage of this method is that the size of the network used to solve larger

problems will remain small. However, the time to find a solution will increase accordingly.

In the last sub-task, the reduction of the network connectivity, the problem-solving time,

and the quality of the solutions will be examined.

For the fourth task, three problems in different applications, optimal control,

associative memory, and speech recognition, will be solved by the formulated network.

Dynamic programming is one of the methods which have been used to solve optimal

control problems. A continuous system described by a first order differential equation will

be used as an example to show how dynamic programming neural networks can produce

near-optimal solutions based on a predefined perfomrance measure. Before the network

can be applied, the system differential equation must be approximated by a corresponding

difference equation, and the performance measure must be expressed or approximated in a

discrete form. Then the structure and connection weights of the network can be determined.

The solutions produced by the networks will be compared to the optimal solutions.

One of the most useful and most explored areas of applications for artificial neural

networks is associative memory. Suppose that a set of memory patterns [Y1 , Y2,..., 1"} is to

be stored, where Y' e R" for r = 1 to 1. Given a stimulus X = I" + e where e is sufficiently

small, an associative memory is designed in such a way that the output pattern I" can be

recalled successfully. The Hopfield—Tank model is reportedly capable of implementing

associative networks [7]. However, some of the proposed networks do not guarantee that
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each desired memory pattern can be stored [7,38,39], and some of them suffer from a rather

complex synthesis procedure [40,41]. The network can be used to store patterns by

selecting an appropriate working function for processing elements and connection weights

between processing elements so that the patterns correspond to the minima of the network.

In the template matching approach for speech recognition, the time scales of a test

and a reference speech pattern are generally not perfectly aligned, therefore a nonlinear

time warping is required to compensate for local compression and/or expansion of the time

scales in order to find the best difference measure between them. Dynamic time warping

methods based on dynamic programming techniques have been developed to perform time

alignment and evaluate the difference between a test and a reference speech pattern [42-

45]. The network for dynamic time warping is designed in such a way that the minimum

states of the network’s energy function correspond to the near-best correlation between a

test and a reference pattern [46].

Although artificial neural networks are composed of basic circuits emulating

neurons and synapses, the implementation ofANNs has been seveme restricted in size by

current VLSI technology limits such as real-estate considerations, and fan-in, fan-out, and

connectivity limitations [47, 48]. To alleviate some of these implementation problems, a

building block paradigm, in which neural networks are constructed by numbers of VLSI

chips implementing neurons and synapses separately, will be used. Eberhardt, et. al. have

designed various CMOS VLSI building block components in a single chip, such as a

synapse chip and neuron array chip, for feed-forward networks [47]. Based on their

designs, a simple, regular, and implementable architecture will be proposed for dynamic

programming neural networks. In addition, the proposed architecture can serve as a co-

processor such that the connection weights can be programmed via a host computer so that

different DPPs may be solved.
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1.4 Organization of This Dissertation

This dissertation is organized as follows. Chapter 2 contains a background discussion

of the appropriate topics. Chapter 3 presents a general neural network structure for dynamic

programming and analyzes the network formulation. For the first part, an artificial neural

network formulation for solving the dynamic programming problem is presented. The

formulation procedure is implemented and demonstrated using a modified Hopfield-Tank

ANN. In the second part, an analytical examination of the energy function associated with a

dynamic programming neural network is presented. The analysis is carried out in two steps.

First, the locations and numbers of the minimum states for different components of the

energy function are investigated in the extreme cases. Then, the locations of the minimum

states of the energy function using different parameter values are derived. This analysis

provides a theoretical foundation for dynamic programming neural networks.

Chapter 4 presents simulation results which will demonstrate the functionality of the

formulated network and show that it can produce near-optimal solutions for different

problems. The relationship between the quality of solutions and the parameters of the

associated energy function, the network behavior due to random errors in connection

weights, and the basins of attraction of the network’s equilibria are studied. Moreover, the

simulation results of different networks ranging from 2 x 2 to 64 x 64; are also presented

Chapter 5 proposes an building block architecture for dynamic programming neural

networks and a problem decomposition method The proposed architecture can serve as a co-

processor such that the connection weights can be programmed via a host computer so that

different DPPs may be solved The problem decomposition based on a divide-and-conquer

method can be used to solve large-size dynamic programming problems with networks of

smaller size.

Chapter 6 presents a new autoassociative memory network using dynamic

programming neural networks.The formulation, based on dynamic programming techniques

used to find minimum cost paths, is very simple and straightforward in the sense that memory
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patterns can be easily added to an existing associative memory without any modification to

the previous network connections. Two examples, with the first one designed to correct

single-error codes and the second to distinguish three images, are used to demonstrate the

power of the formulated network. The issue of fault tolerance on the autoassociative

memory network is also considered. Comparisons between the proposed network and the

other two networks are also given in this chapter.

Chapter 7 presents a neural network method for dynamic time warping on speech

recognition. The network for dynamic time warping is designed in such a way that the

minimum states of the network’s energy function correspond to the near-best correlation

between a test and a reference pattern. To achieve real-time applications, an architecture

based on this method is also proposed.

Finally, Chapter 8 describes the contributions and conclusions of this dissertation.



 

Chapter 2
   

2.0 Background

This chapter begins with an introduction of artificial neural network models. The

Hopfield model is then presented. Finally, the dynamic programming problems which will

be dealt with in this dissertation are defined.

2.1 Artificial Neural Network Models

Scientists and researchers have been trying to build neural network models for the

purpose of studying the function of the brain for many years. These models, generally

involving very complicated mechanisms and structures, fall into two categories. In

biological modeling, which is of primary interest to neurobiologists, the goal is to study the

structure and function of the real brains in order to explain biological behaviors. In

technological modeling, which is ofprimary interest in this work, the goal is to study brains

in order to extract concepts for the new generation computer architectures. Although there

is a controversy over which one of these two branches should constitute the true focus of

research in neural network modeling, the latter path has been taken by many working in the

area of artificial neural networks.

An artificial neural network is a parallel distributed information processing system

14
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consisting of processing elements (neurons) and connections (synapses). Each processing

element, characterized by its working function, can receive input signals from a certain

number of incoming connections and produce output signals to a certain number of

outgoing connections [49].

Neural networks incorporate a combination of certain features of various

information processing systems together with some special features. These special features

include the use of simple processing elements, learning abilities to adjust parameters and

connection weights to give the desired responses as well as to compensate for inaccuracies

and faults in the hardware, and fine-grain and massive-scale parallel problem solving

ability. The combination of these features results in significant advantages for several

classes of information processing problems. Massively parallel algorithms can provide

rapid processing if implemented on an appropriate processing architecture, especially one

which is matched to the algorithm. The use of only a few different type of simple

processing elements can facilitate fabrication of such massively parallel systems. The

adaptive feature of the processing elements also allows some element inaccuracies to be

compensated. Learning ability also provides a very important advantage in dealing with the

detailed knowledge necessary to build the system.

A neuron is the basic cell of a neural network. The simplest artificial neuron model

was introduced by McCulloch and Pitts [50]. This model sums the weighted inputs and

passes the result through a certain function. The output of the function, considered as the

output of the neuron, is branched out via weighted connection to the inputs of other

neurons. This simplified representation is shown in Figure 2-1 where xi’s are the inputs

from other neurons, wij is the weight of the connection from the output of neuron i to the

input of neuronj, g(.) is the neuron working function, 0- is the threshold value, and yj is the

output.
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Figure 2- 1. Simplified representation of a neuron.

The neuron working function is commonly one of the three types: hard limiters,

threshold logic elements, and sigmoid nonlinearities. These input/output relationships are

shown in Figure 2-2. A more complex neuron may include temporal integration or other

types of time dependencies and more complex mathematical operations than summation

[51]. The sigmoid nonlinearity is the most commonly used because it is bounded,

monotonically increasing, and most resembles a real neuron working function. The range

of the sigmoid function can be [0, 1] for binary mode or [-1, 1] for bipolar mode, depending

on the application.

Groups of artificial neurons can be interconnected in a variety of ways to form

ANNs. Many topological configurations for ANNs have been proposed. These networks

fall into two categories: feed-forward and feedback networks. A feed-forward network is

shown in Figure 2—3. The signal flow of a feed-forward network is unidirectional. Feed-

forward networks can be single-layered or multi-layered Figure 24 shows a feedback

network. Both forward and backward connections exist in feedback networks. Feed-

forward networks have been used in applications such as pattern recognition [52-56],
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Figure 2-2. Neuron working functions.
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Figure 2-3. A 2-layered feed-forward neural network (connections

are not fully shown).

 
Figure 2-4. A feedback neural network.
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robotics [57], and control problems [58-60]. However, feedback networks are useful in

optimization [61,62], object recognition [63-65], and associative memory problems

[11,12].

2.1.1 Single-layered Perceptrons

A single-layered feed-forward ANN can be created from an array of n artificial

neurons. Each of these receives m inputs x1, x2,..., xm, via corresponding weights. This

network is able to learn to recognize simple patterns via a convergence procedure for

adjusting weights which stores patterns in a collective fashion [66,67]. This convergence

procedure goes as follows. First, connection weights and the threshold values, each of

which can be considered as another weight associated with a fixed input value, are

initialized to random nonzero values. Second, a training pattern with n features is applied

to the input and then the output is computed. Third, the connection weights are adapted

according to the following equation

Wij(t+1) = W3} (0 +11 [dj(t) ‘Yj (0], (2'1)

where d}(t) is the desired output of neuronj, t is the number of iterations, and n is a positive

gain factor less than 1. The procedure is repeated until the values of Wij(t+1) - Wi}(t) are

less than a predefined value for all i and j.

In the simplest case with n = l, the network is a single-neuron network shown in

Figure 2-1. This network, called a perceptron, can decide whether an input belongs to one

of two classes (denoted as class A or B) after a sufficient training process. The perceptron

uses a hard limiter such that the output is either 1 or -1. The network will respond as class

A if the output is 1 and class B ifthe output is -1.

Unfortunately, the single-layered perceptron is not able to solve problems where

classes cannot be separated by a hyperplane or a line in two dimension [19,25]. The XOR
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problem which is nonseparable by a line is an example of this problem type.

2.1.2 Multi-layered Perceptrons

Multi-layered perceptrons are feed-forward networks with one or more layers of

neurons between the input and output layer. A two-layered perceptron with one hidden

layer is shown in Figure 2-3. With the development of the back-propagation training

algorithm, multi-layered perceptrons overcome many of the limitations of single-layered

perceptrons [3]. The multi-layered perceptrons with a back-propagation training algorithm

have been tested successfully with a number of deterministic problems such as the XOR

problem [3], pattern recognition problems [11], and others [68,69].

The back-propagation algorithm uses a gradient search technique to minimize a cost

function equal to the mean square difference between the desired and the actual outputs [3].

The network is trained by initially selecting the weights randomly and then the intermediate

outputs corresponding to a given input pattern from layer to layer in a forward fashion are

calculated. The final layer output is compared to the desired output and the error is passed

in a backward direction to adjust the connection weights. The modification of weights is

carried out from layer to layer in a backward fashion. The weights are adjusted after each

trial until weights converge and the cost function is reduced to an acceptable value [3].

2.1.3 An Example

One of the most famous backpropagation networks is the XOR multi-layered

perceptron. This network was used to solve the logic exclusive-or problem by training with

examples and can be also used to show how neural networks do information processing.

Though not particularly interesting from an application perspective, the exclusive-or

problem was not solvable using the neural networks of the early 60’s [8].

Figure 2-5 shows this network. Processing elements 1 and 2, which are in the input

layer, simply pass whatever input is applied to them directly to their output. Processing
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elements 3 in the hidden layer and 4 in the output layer function the same way as shown in

Figure 2-1. The internal activation level for processing elements 3 and 4 is computed from

the weighted sum of the inputs. This internal activation level is transformed into the output

by its sigmoid function. The lines between processing elements are connections. The

arrows show the direction of information flow of a connection. The weight for each

connection modulates the output value of the source processing element before it is passed

on to the destination. The two inputs, T1 and T2, can take on any value between 0.0 and

1.0. The output ranging from 0.0 to 1.0 ofprocessing element 4 is the output of the network

The training process involves applying T1 and T2 to the network, and presenting

the corresponding output to the network. With each iteration, the network slightly changes

the strength of the connection weights. Over the course of about 100 iterations of each case

in the training set, the weights converge to the results shown in Figure 2-5.

W4,2

W3’0 = 2.8, W3’1 = ~7.4, W32 = -7.4

“(4,0 = 8.6, W4’1 = -5.6, W42 =-5.6

 

   
inputs

T1 T2

Figure 2-5. An XOR network.
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2.2 The Hopfield-Tank Model

The Hopfield-Tank model falls into the feedback network category. One of the

major contributions of the Hopfield-Tank model is that it can be built with analog

components and is suitable for analog VLSI implementation [70-74]. In this model, each

neuron with input u,- and output v,- is modeled as an amplifier with a capacitive element C,-

and a resistive element p,- at the input node. These components define the time constant of

the neuron. The output of neuron j is connected to the input of neuron i via a conductance

Tij- Figure 2-6 illustrates the basic neuron structure used in the Hopfield-Tank model. The

input-output relationship of the amplifier is sigmoidal.

A general Hopfield-Tank network is shown in Figure 2-7. This network can be

described by a set of first-order differential equations of the form [14,15]

dui " u,-

whme

1 1 ”
_. = 35—- + 2 Ti}, (2-2.2)

r t i=1

V: = Kiwi) ) (2'23)

n is the number of neurons, I,- is the external input current, and gi is a sigmoid function.

The energy function selected by Hopfield for this network is

1 n n n n lvi -

i=1 i=1 ‘0

such that
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Figure 2-6. A basic neuron of the Hopfield-Tank model.
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Figure 2-7. A general Hopfield-Tank artificial neural network.
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d .

00%) = -35 (23.2)

1

Suppose Tij- =Tji for all i and j, then the time derivative of the energy function along the

trajectories can be derived by applying the chain rule as

dE_ 8E dv du 1 dg.—(u-) (235

ziza—vdudt = Cdu (37.

(2-4)

Since g,(u,~) is monotonically increasing, E S 0 for all t. As a result, the value of the

dt

energy function is strictly decreasing and becomes zero only at equilibrium points where

dE _ d“: _ .
717 — Ci-dT — 0 forallr.

If “i is replaced by hui in equation (2-2.3), where 2. is a constant representing the

neuron gain, then we have

vi = giOcui), (2'51)

1 -r

u. = x8.- (Vt): (25.2)

and

—%)_: ZTi-21v+2fi—Ig71(§)d§ (2-5.3)

i= lj=l i=1 i=1

If it is chosen to be very large, then the integral term of the energy function is negligible

compared to the other terms. This leads to the following:
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dui N (261)

i=1

and

1 n I! n

i=1j=l i=1

These two equations are valid only for high gain limit, that is, when A is very large.

Equations (2-2.l) - (2-4) actually define a gradient system and thus guarantee no

oscillation or any complicated behavior in the system [14,75,76]. Furthermore, it has been

proven that such a system has only a finite number of equilibria if the equilibria are isolated

[40,41]. Those isolated equilibria may correspond to memory patterns in associative

memory, feature patterns in pattern recognition problems, or solutions to an optimization

problem.

2.3 Dynamic Programming Problems

Dynamic programming is a very useful mathematical technique for making a

sequence of interrelated decisions. It provides a systematic procedure for determining the

combination of decisions that maximizes or minimizes overall performance measures.

However, there does not exist a standard formulation for dynamic programming problems.

Rather, dynamic programming is a general approach to problem solving, and the particular

equations must be developed to fit each individual situation. The following example shows

how it can be solved by traditional dynamic programming procedures. This dynamic

programming problem has been shown in Figure 1- 1. A performance measure is defined as

the total length of a valid path from the source node to the destination node. Given the

source and destination nodes, the number of stages n, the number of states in each stage m,

and the metric data dxi, “+1”, where x is the index of stages, and i andj are the indices of
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states in each stage, the problem is to find an optimal path from source to destination. This

optimal path is measured with respect to a performance criterion.

To illustrate the conventional algorithm for solving the DPP, the principle of

optimality is presented first. Suppose the optimal path for a multistage decision problem

starting at w and reaching 2 consrsts of segment w-x wrth cost wa and segment x-z wrth

cost cm. The minimum cost 0" is equal to the sum of wa and Cu. The principle of

optimality states that if w-x-z is the optimal path from w to 2, then x-z is the optimal path

from x to z. This principle can be proven by contradiction. Suppose there exists an optimal

path x-y-z which is different from x-z. Then Cx 2 must be less than sz and

y

wa + nyz < wa + sz = 0“.

Since 0" is the minimum cost from w to z, the principle of optimality is proved.

Traditional dynamic programming is a computational technique which makes a

sequence of decisions to define an optimal path based on the principle of optimality. The

conventional algorithm begins by finding the optimal path for the last stage and moves

backward stage by stage until the optimal path starting at the source node is found. This

procedure can be stated with the help of Figure 1-1 as follows.

At the final stage (i.e, stage 3),

”st 40 = d3: 40

= the minimum length from state i of stage 3 to the destination.

At stages k=2 and k=l,

”a40 = mi" {did (k+I)j + L*(k+1)j 40 l

= the minimum length from state i of stage k to the destination.

At the source node

L"'00 40 = mi" {doo Ij + L"'11'401

= the minimum length from the source to the destination,

where i= 0,1...,5 andj=1,.,3.
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Since the conventional algorithm finds the optimal path in a sequentially backward

stage-by-stage fashion, the algorithm cannot be fully parallelized. In addition, due to the

limitations of computation capacity, synchronization, communication, and data

distribution problems, high-speed digital computers with some degrees of parallelism may

have difficulties in dealing with large-scale problems.

The previous problem is a typical example ofdynamic programming problems. One

way to recognize a situation that can be formulated as a dynamic programming problem is

to notice its basic structure is analogous to that of the previous problem. For this

dissertation, the dynamic programming problems which are considered solvable by the

proposed neural network method have the following basic features.

(1) The problems can be divided into stages, with a deterministic policy decision

required at each stage.

(2) Each stage has a finite number of states associated with it.

(3) The effect of the policy decision at each stage is to transform from the current

state into a state associated with next stage.

(4) The solution procedure is designed to find an optimal solution for the problems.

(5) Given the current state, an optimal sub-solution for the remaining stages is

independent of the sub-solution adopted in previous stages.



 

Chapter 3
   

3.0 Network Formulation

and Analysis

Chapter 3 consists oftwo major parts, networkformulation and network analysis.

For the first part, an artificial neural network formulation for solving the dynamic

programming problem is presented. The problem entails finding an optimal path from a

source node to a destination node which minimizes (or maximizes) aperformance measure

of the problem. The optimization procedure is implemented and demonstrated using a

modified I-Iopfield-Tank network. The proposed network for dynamic programming is

attractive due to its radically improved speed over conventional techniques, especially

where real-time near-optimal solutions are required.

In the second part, an analytical examination of the network is presented. First of

all, propositions related to thefunctionality ofthe network are proved. Second, a two-step

energyfunction analysis is carried out in order to explain how the dynamic programming

neural network can provide near-optimal solutions, since the network behavior is

intimately related to the associated energyfunction. First, the locations and numbers ofthe

minimum states for difi’erent components of the energy function are investigated in the

extreme cases. A clearer insight of the energy fitnction can be visualized through the

minimum states ofdifi'erent components. Second, the locations ofthe minimum states ofthe

28
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energyfunction using difl‘erentparameter values are derived. It is shown that the minimum

states can reside in regions which are regarded as valid solutions with certain conditions.

3.1 Network Formulation

Generally, the procedure for solving a specific problem using the Hopfield network

involves three steps. First, an encoding procedure is selected such that the outputs of the

network correspond to the solution(s) of the problem. Second, a proper energy function,

whose minimum corresponds to the optimal solution of the problem, is determined. Third,

according to the determined energy function, connection weights and bias currents which

properly represent the objective function and constraints of the problem are defined

By giving an appropriate working function to each processing element and an

associated weight for each connection between two processing elements, a properly

configured network can rapidly and robustly provide at least a locally optimal solution due

to the nature of the collective computations. Although the topology of the optimization

surface in the solution space is so complicated that the globally optimal solution is not

guaranteed, many good solutions which are at least locally similar to the optimal solution

can be obtained

Consider again the 3x6 DPP shown in Figure 1-1. The goal is to find a valid path

which starts at the source node, visits one and only one state node in each stage, reaches the

destination node, and has a minimum total length (cost) among all possible paths. A

properly designed network is defined by an energy function in which the optimal solution

corresponds to the lowest energy state of the network. Examining the characteristics of the

optimal path carefully, two constraints become evident. First, the optimal path must visit

one and only one state in each stage (a structural constraint). Secondly, the optimal solution

must have the minimum total cost based on the given performance measure (a cost

constraint). Thus, the energy function has two requirements. The structural constraint

implies that the energy function must converge to stable states where one and only one state

in each stage is active. The cost constraint dictates that the energy function must converge
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to stable states representing a minimum path.

Each state node can be conveniently considered as an individual processing

element. To develop an appropriate energy function for the network, V”. is taken as the

output of a processing element of the ith state in the xth stage, where n is the number of

intermediate stages. The following formal constraints are thus defined.

To satisfy the structural constraint, one and only one processing element must be

active in each stage and the number of active processing elements equal to the number of

stages. This constraint is embedded in

2

E1 = 222_vxivxj+ (zzvxi_n) . (3'1)
x 11¢!

And, the corresponding cost constraint is given by

32 = zzzdxi,(x+l)jvxiv (x+1)j+d(x-l)j.xivxiv(x-1)j' (3-2)
x t j

E1 will vanish for a valid path. For a minimum cost path, 52 takes on a minimum

value. Let the sigmoid function g(ux,-) =(1/2)(1 + tanh(ux,- / 2.)). From equation (2.3.1), we

define the energy function for the dynamic programming network as

V .

It

_ a b 1 -1

E - 551+352+22jflgn (§)d(§) (3-3)

0.5

where a and b are positive numbers.

The quadratic terms in equation (3-3) define the connection weight matrix T and the

linear term defines the bias current vector 1. From the circuit equation of the Hopfield

network,

duxi uxi

Ct“ (71?) = gaudy" 1.5;: ‘th' (3'4)
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the weight of the connection linking the ith neuron of stage x with the jth neuron of stage y

is

bd +8
xi.yj(5(x+1>y )

(It-1)) 3_5
2 ( )Txiyj= -a8xy(1—8.J.)—a—

where

a8xy(1 - 81-1.) is the inhibitory connection within each stage,

a is the global inhibition,

bdno, yJ( 8(x+1) y + 80M) y )/2 is the strength of the distance metric,

1 ifi=j(x=y)

0 otherwise,

and the input bias current of ith neuron of stage x is

Ifi=an.

Therefore, the dynamic programming network can be described by the following

differential equation and is conceptually depicted in Figure 3-1:

dun.

Cx-(d—ti) i#ajgivxj— aEZvyfi-an

—:2(dxi(x+1)lv(x+1)1+d(x 1)].Xiv(x_1)j) (3-6.1)

where

1 1
R:— 5:- +ZTI,” (3-6.2)

)1

Moreover, equation (3-2) can be rewritten as
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Figure 3-1. A conceptual 3x6 dynamic programming network (full interconnections

not shown) and its processing element.
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in

E=--2222T~W.-,,fiver-+22!R—e;<é>d<é> (3'7)
x 105 It.

3.2 Network Analysis

To represent equation (3-4) in terms of the variables inr it can be written as

 

dvxi dvxi duxi 1

a: (17;? ‘27.; a—_g;.-<v.,> (21,,£331..)-f.t<v>-

dvxi

(3-8)

Therefore, the network will be considered as an autonomous system since the functionf,“-

is not dependent on time.

3.2.1 Definitions

The following definitions will be used in the remainder of this dissertation.

i) The domain and range of the sigmoid function g are defined as U=RN and V=(0, 1)”,

respectively, where N = m x n. Every vector v e V can be expressed as

[vll,v12,... ,vmn]T, where 0 < th' < 1. The zero vector of V is denoted as 0N- The

closure and the boundary of V are denoted as l7 and 8V, respectively.

ii) A vector c e V is said to be a valid corner state if Cxi is either unity or zero and

Ecxi = l forx=l to n.

t‘

iii) The valid corner set C is defined as the set of all valid corner states.

iv) A vector v e V is said to be in an h-neighborhood of a valid comer state c if

[I c — v”... < h, where H c — vll .. is the infinite norm and h is a constant.
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v) A vector v e V is said to be in an h-neighborhood ofC if minll C — VII... < h'

c e C

vi) The set Ch is defined as the set of vectors which are in the h-neighborhood of C, i.e.,

Ch=[v 6 VI minllc—vl|”< h, where c e V].

vii) The set Q is defined as the set of vectors q=[q11, q12,..., qmn]T where 4xi=0 if enco,

and l— h < qxi 51 if exi=1, for every 0 e C. The set QC is a subset of Ch.

viii) A vector of convergence, v e V, is interpreted as a valid solution if it is in the h-

neighborhood of C where h is usually chosen to lie between (0, 0.2) [34].

V

ix) Given .2 > o, the set 05 is defined as [5, 1— 8] N such that o s j g‘1(§)d§s e for all

0.5

v 6 D5. Note that 0 < 8 < 0.5 and is a function of the gain it such that as 7t —) co,

5 -—> 0. Also note that as l —9 oo, 05 —~) V.

x) The set 55 is defined as V—Da.

xi) The open set B (o, 8) is defined as

B(o,8) = {veRNl (IV-0l<5)}'

xii) A vector v0 5 V is said to be an equilibrium point of the system described by equation

(3-8) if and only if f)“. (v0) 5 O for all x and i.

xiii) The equilibrium point 0 is said to be stable if, for each 8 > 0, there exists a E, (e) > 0

such that

"NW ‘0“ <§(e) =>||V(t) -0|| <8, V(t2t0)-
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xiv) The equilibrium 0 is unstable if it is not stable.

xv) The equilibrium 0 is asymptotically stable if (1) it is stable, and (2) there exists a

number £1 > 0 such that

||v(t0) -o|| <§1=>||v(t) —o|| —)O, as (t—ieo).

xvi) A system on an open set W c R" is said to be a gradient system if

9% = —grad L(x),

where L is a C2 function, and

_ 8L 8L
grad L — [a—xl ,..., ax—J

is the gradient vector field.

3.2.2 Analysis of Network Functionality

The following propositions set forth to explain why the formulated network can

solve dynamic programming problems. Some similar results have been derived for general

Hopfield-type networks [40,41], nevertheless, they are restated for the formulated network

in this dissertation for completeness.

Proposition 1. For any initial state v e V, there is a unique solution for the system

described by equation (3-8).

Proof: From equation (3-8),f(vn~) and a—e—flvxi) are continuous. According to the theory

I!

of global uniqueness and existence in systems of differential equations, the network
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satisfies a global Lipschitz condition [75]. That is

||f(X) -f(y) II 5 MIX -y||

and

llf(xo) II S h

where x, y, and x0 6 V, and k and h are finite constants. Then the network has exactly one

solution.

Proposition 2. The vector 0 e V is an equilibrium point of the system described by

equation (3-8) if and only if

 

8 5‘” = 0 (39.1)av,“-

for all x and i.

Proof: Necessary condition:

If a is an equilibrium point of the system described by equation (3-8), then

vxi _ _
E _ fn.(v) .. 0 (3-92)

for all x and i. Therefore, we have

 

27"an;,,-7+1: 8 EM = (3-93)
It avxi
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for all x and i.

Sufficient condition:

If

8 _
Evy-E (v) -— 0

then

1 1
“xi ]

_x————x T. .v.__+1_ =f.(v)=o.

C11. dg;i1 (in)
(g 11, y} y] in II x;

dvxi

for all x and i. Q.E.D.

Proposition 3. The energy function E decreases monotonically along the trajectories and

becomes zero only at equilibrium points.

Proof: Since the network is symmetric, that is, Txi’ychw-fi, the derivative of E along the

trajectories with respect to time can be derived as

2

d5 __ 3E dvxi d“xi __ duxi d

H? - 21:; (37,5) (37;) (a; - -;;Ci(d—t ) d—untg (“1a) . (3‘10-1)

Since gxi is monotonically increasing, dE/dt is less than or equal to zero. dE/dt

equals zero only when

 

 

xi _ a _ _

dt — av .E (v) — O (3 10.2)

X!

for all x and i. Q.E.D.
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Proposition 4. Assume that each equilibrium point of the system described by equation (3-

8) is isolated, then there are a finite number of equilibrium points in the system [40,41].

Proof: Since g: (in) —> + co as in approaches 1, and g: (in) —~) —oo as in approaches

0, then

3
8v 50’)

xi

 

 
'-'-C‘Cad—t (3-11)

 

 RX!

_8;.-(vs) 1

2]?xi yjVyj , xi

 

will approach infinity as v approaches the boundary of V. Therefore, there exists a i, such

 33 E(v) #0, outside of C = (0+ g, 1 — 5)”, where O <§< %. By proposition 2,

xi

that

every equilibrium point must be in the closure of C, [O + g, 1 - é] N. Since the closure of

C is compact, and every equilibrium point is isolated, it can be concluded that there are a

finite number of equilibrium points in the system. Q.E.D.

Proposition 5. Every isolated equilibrium point of the system described by equation (3-8)

is asymptotically stable.

dE (v)

dt

 Proof: Since 5 O and E(v) > 0 for all v, the energy function E is a strict Liapunov

function in some neighborhood of every isolated equilibrium point. Hence, every isolated

equilibrium point is asymptotically stable. Q.E.D.

Proposition 6. o is an equilibrium point of the system described by equation (3-8) if and

only if 0 is a local minimum state of the energy function E [40,41].

Proof: Necessary condition:

If 0 is an equilibrium point, then 0 is asymptotically stable according to proposition

5. For the purpose of contradiction, assume that o is an equilibrium point and is not a local
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minimum state of E. Then there exists a sequence

{0,} c: (0.1)”

such that

E (om) < E (0)

and

1

O<|om-o| <31-

where om e {on} . Srnce 0 is an isolated equilibrium pornt, there exrsts an e > 0 such that

there are no equilibrium points in B (o, e) - {o}. For any 8, e > 8 > 0, choose m such that

—1— < 6. Therefore,

m

ome B (0, 5) — {0} CB (0,8) - {o}

and om is not an equilibrium point. Suppose the solution (1) (om) with initial state om

converges to an equilibrium point 6. Then

5(a) <E(om) <E(0)

by proposition 3. Consequently, 6 is not contained in the region of attraction associated

with equilibrium point 0. Moreover, a is not asymptotically stable. Hence, the necessary

condition is proved by contradiction.

Sufficient condition:

Assume that o is a local minimum staterof E and is not an equilibrium point. Since

0 is a local minimum state of E, there exists an e > 0 such that



E(0) <E(5)

for all 5 e B (o, e) . Suppose the solution (p (o) with initial state 0 converges to an

equilibrium point a at 0. Two cases may occur. First, if b e B (o, e) , then

53(6) <E(0)

Secondly, if b e B (o, e) , then there exists a state 0° 6 B (o, e) in the trajectory (p (0)

such that

E(o°) <E(o)-

Contradictions occur in both cases, therefore the sufficient condition is proved. Q.E.D.

In summary, Proposition 1 ensures the existence and uniqueness of the solution.

Propositions 2, 3, and 5 guarantee the stability and convergence of the network. The

possibility of periodic solutions is avoided by Proposition 4. And Proposition 6 provides a

way to find the equilibria from the associated energy function.

3.2.3 Analysis of Minimum States

Many approaches have been developed for analyzing general Hopfield-type

networks. For examples, the work by Aiyer, et al., based on the geometry of the subspace

set up by the degenerate eigenvalues of the connection matrix, has given an answer to why

the Hopfield network frequently converges to invalid solutions when applied to the

traveling salesman problem, and suggests some ways to solve the problem reliably [77-79].

Moreover, they have proved that spurious fixed points can occur at any comer of the

solution hypercube in the case of content addressable memory, which is consistent with our

results obtained by analyzing the network’s associated energy function. The work by Abe
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has clarified by an eigenvalue analysis, the conditions to converge to a vertex, a point on

the edge, or an interior point of the hypercube [80].

Since the network behavior is intimately related to the associated energy function,

it is necessary to investigate the characteristics of the energy function in order to explain

how the dynamic programming neural network can provide near-optimal solutions. In this

dissertation, a two-step analysis is carried out. First, the locations and numbers of the

minimum states for different components of the energy function are investigated in the

extreme cases. Second, the locations of the minimum states of the energy function using

different parameter values are derived.

Let L be a real-valued function on V. For v e V, denote

F“, v) = [f1 (L, v), ...,f,I (L. ‘01fo

where

and

G (L, v) = [GO- (L, v)]~x~

where
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P31”,- (L, V)—

8va

Bf,- (L, v)

Gij (L, V) = avjz

812(L, V)

8v-
[”3

- —me  

The following two applied matrix theorems are also required.

Theorem 1: If A is an n x n positive definite symmetric matrix, then every principal

submatrix of A is also positive definite [81].

Theorem 2: If A is an n x n positive definite symmetric matrix, then every eigenvalue of

A is positive [81].

If a high-gain limit is assumed as is common, then the minimum states of the energy

3E1 + 2E2, as the integral term of equation (3-6) canfunction are very close to those of 2 4

then be neglected[5—8].

The following propositions help to provide a clearer insight into the associated

energy function by explicitly showing the minimum states of El and E2.

Proposition 7. There are no local minimum states of E1 in the interior of V.

Proof: A state vector v is a local minimum state of E1 if the N-vector F(E1,v) is zero and

the N XN matrix G(E1,v), which is the Hessian matrix associated with E1, is positive-

definite. The first condition leads to N linear equations of the form
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8E1
._._ = 2( v .+ v .—n) = 0, (3-12.1)

8"11 j; U g y]

8E1
__ = 2( v .+ v --n) = O, 3-12.2

aV12 jg'z 1’ g y] ( )

and

8E1

a = 2<zv,.-+zvs-n> = 0- “-1230
vnm in: yj

The only solution for the N linear equations is

9 = [911, 912, ..., Orrin] E V

where

n

"i _ mn+m—1 .

This can be illustrated by the following example with n=2 and m=2. The four linear

equations are

3E1

av = 2(v12+ (v11+v12+v21+v22) —2) = 0, (343.1)

11

3E1

8E1
5v— = 2(v22+ (v11+v12+v21+v22) —2) = O, (3-13.3)

21



and

BE 1

From the first two equations, v11=v12 and from the last two equations, v21=v22.

Substituting v12 with VII and v22 with v21 into the first equation, v22 is found to be identical

to V11. Therefore, v11=v12=v21=v22=2l5=n/(mn+m-l).

To find out if 9 is a local minimum ofE1, it is usually necessary to lmow if G(E1,v)

is positive-definite when evaluated at 0. However, from Theorem 1, if any principal

submatrix of G(E1,v) is not positive-definite, then G(E1,v) is not positive-definite. The

leading principal submatrix of G(E1,v) of order m is

32151 32 E1 32 El

avzl a"rravrz a"ira‘fim

——§-:—El iElH __.<32__51

Gll(E1,v)-_—.— avtzavu 31,32 avtzavi... (313.5)

82 32 a
El E1

avlmavn avlmav12 3v?” J

—
mxm

  

which can be further calculated to be

2 4... 4

G11(E1,v) = 4 2'" 4 (3-13.6)

_4 4.. 2]  

Theorem 2 states that if 011(E1,v) is positive-defmite, then every eigenvalue of

GI 1(E1,v) must be positive.The eigenvalues of 011(El,v) satisfy the following condition

det(G,,(El,v) —M) = 0, (313.5)
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where 2. is an eigenvalue of 011(E1,v) and I is the m x m identity matrix. Therefore, -2 is

an eigenvalue of 011(E1,v) because det(Gll(E1,v)+21)=0. Also 4(m-1)+2, which is

positive, is another eigenvalue. Since Gll(E1,v) is neither positive-definite nor negative-

definite, v is a saddle point of E1. It is thus concluded there are no local minimum states in

the interior of V. Q.E.D.

Proposition 8. v is a valid comer state if and only if v is a global minimum state of E1 in V.

Proof: For every state vector v e V,

E1(V)= 222v,.v.)+(22v..-- n) 20 (3—14)
x int:

If v e C, by the definition of valid corner state, it follows that 22v”. =

x i

andz2vinv,” = 0. Consequently, El(v)=0 and v is a global minimum state ofE1. On the

i j¢i

other hand, if v is a global minimum state of E1, then E1(v) = O. This implies that

22in = n ”“122thij = 0. Consequently, in is either unity or zero and

ijati

2v“. = 1 forx = 1 to n. Therefore, v is a valid comer state. Q.E.D.

Proposition 9. The zero state vector ON is the unique minimum state of E2 in V.

Proof: For every state vector v e V,

E2 = zzzdxi, (x+l)jvxiv(x+l)j+d(x- l)j,xivxiv(x— l)j20 (3'15°1)

x t 1

E2 is zero only at ON. Since the first partial derivative of E2 with respect to th
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8E2

ET = z (dxi,(x+ 1)j"(x+ 1)j + d(x— l)j,xiv(x-1)j): (3-15.2)

I! J

is greater than zero when v at ON and equal to zero when v = 0N for everyx and i, it follows

that E2 is monotonically increasing. Therefore ON is the unique minimum state of E2.

Q.E.D.

Propositions 7 and 8 state that there are exactly n’" valid solutions since E1 consists

of exactly n’" minimum states. Proposition 9 shows that the zero state vector ON is the

unique minimum state of E2. These three pmpositions together imply that the minimum

a

states ofE will be close to comer states if 2E 1 dominates over %E2; they will be close to

ON if the reverse is true.

Proposition 10. There are no local minimum states of E = g-E 1 + 2E2 in the interior of

V.

Proof: The proof is similar to that of Proposition 7. We have that

. 8E 8E 8E

f1(E,V) = [Barman-9m] (3-16.1)

where

3E b

Bit—1. = a ( évli + 2‘91 " n) + 22(d1i,2j"2j+ doom-"00)» (3-16.2)

‘ J I yr 1

and v00 is the source node and d00,1i is the distance between the source node and nodej of

the first stage. It can be shown that Gll (E, v) , the leading principal submatrix of G (E, v)

of order m, is equal to a x Gll (E1, v) . Since Gll(E1,v) is not positive-definite, G11 (E, v)
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is not positive-def'mite. Therefore, Proposition 10 is concluded. Q.E.D.

According to Proposition 10, the local minimum states of E, i.e., the equilibrium

points, are in the set B5. This means the equilibrium points are very close to the boundary

of V when a high-gain limit is assumed. Finally, due to the gradient system property, which

states that every equilibrium point is stable [76], the following corollary must be true.

Corollary 1. The network does not possess periodic trajectories.

3.2.4 Location of Minimum States

In this section, the possible locations of the minimum states of the associated

energy function of the dynamic programming neural network will be discussed. With every

dxi,(x+1)j fixed, the minimum states of the network can be approximately placed in a

neighborhood of C such that the minimum states can be interpreted as a valid path with a

locally minimum cost by appropriately adjusting parameters a and b. Assume that b is

fixed, three cases may occur relating to different values of a.

Case 1: a —)oo.

The energy function E is approximately equal to gEl and the minimum states will

be determined by El exclusively. Therefore, the minimum states are in the neighborhood

of C and the number of minimum states is equal to n’". However, the corresponding paths,

which can be considered as randomly selected paths, may be unacceptably far from

optimal.

Case 2: a=0.

Since the minimum state is determined by E2, there is a unique minimum state, i.e.,

the zero state.

Case 3: O < a < ea.

In this case, a qualitative discussion is appropriate. As a decreases, the minimum

states may move away from comer states in C. The following proposition indicates the



48

possible locations of the minimum states if they are in the neighborhood of C.

Proposition 11. Assume there is at most one minimum state vector win the h-

neighborhood of a valid corner state c where

2a+bd
min

hs

2a (n+ l) +bdmin

 

(3-17)

and dmin is the minimum value of metric data. Then the minimum state

vector w belongs to Q, which has been defined in Section 3.1. In other

words, waO ifcxi=0, andl—hwaiS 1 ifch-l forallx and i.

Proof: Every vector v in the h-neighborhood of c can be decomposed as

v = v + v-
C C

where

vc = [cllvll’c12vl2’ "” cnmvnm] E Qc

and

v5 = [(1—c11)v11, ..., (l-cm)vm]°

Then, E1(v) and E2(v) can be expressed as follows.

151 (v) = 222 [cxivxi + (1 — on.) vxi] x [cxjvxj+ (1 - an.) vxj]

x ij¢i

2

+ {[zzcxivxi + (l — cxi) vxi] _ n} (3-18.1)

and



para

@811)

‘(I(1—x)A(I([-x)9_I)31rA(31t'9_I)+I([—x)“(I([-x)9_I)3xA3x3)3x‘I([—x)p+

I.1r

(I(1+x)A(I(1+x)a_[)3xA(3xa_I)+I(1+x)A(I(1+x)a_I)rx1x9)I(1+x)‘3poZZ%

3¢I3x

+("‘a("a—I)ZZ)§+"A(”‘9-I)“A(”a—r)ZZZ}--<a)Is

(9'81'8)

.I(1—”AI([—x)93x43103x‘I(1—x)p+I([+x)AI(I+1)9!"A!7‘3[(I+1)ipoKK=(94)zg

3¢I3x

(7.814;)‘(it—#1612923)+IxAIn"93xAIXDZKZ=(91013

Z

araqm

(981-9)(4)zs+(4)13+(”4)zsg+(’4)13%=(a)3
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(Z'SI-E)
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+[!(t+r)A(!(r+r)9_I)+I(I+[x)AI(I+x)9]

X[31tA(3x.9_.[)_+_3:rA3x:J]I(1+x)‘3xP333:(4)23

617



50

52 (V) = a (226%vxi —n) (;;(1— cxi) vxi)+ g2212icxivxi( 1may) vxj

b

+5222Qj“xj -cxi) in+ zzzzdxi, (x+ 1)jc(x+ 1)jv(x+ 1); (1 " 613) V,“-
x t j

+ zXZZdu—1)}.xi"(x—1)1"(x—1)1‘(1‘ Cxi) Vt“
xtj

(3-18.7)

Each term of S1 (v) 2 O is greater than or equal to zero. Since v is in the h-neighborhood

of c, there exists one and only one k for every x = l to n, where l S k S m, ka = l, and ex]-

=Oifj¢k, suchthat1—h<vxk_1.Thenwehave

Zea-Vxi = vxk — -»h (318.8)

and

222' cnvn (1cx1)vxj=22Zijvxj (1 1')in

x ijati x ijati

= Ezzcxjvxj (1- c.,) v.,-2 (1- h) (22 (1 - c...) v.,-) ~ (3-18.9)

x i j x 3

Therefore, equation (3-18.7) can be rewritten as

 

bd .

52 (v) z 22 (1 - cm.) via (1 - h) + 5"” (1 — h) —anh:|- (348.10)

x i

Furthermore, if

2a+ bdmm

 

Smi2a(n+1)+bdn

then S2(v) is greater than or equal to zero. Therefore, E (v) > E (vc) for every v = vc + v5

and v5 at: ON. Thus, if w is the only minimum state of E in Ch, then w must be in QC. Q.E.D.
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With certain conditions, it has been shown that the assumption used in Proposition

5 is valid [45]. According to Proposition 5, the associated energy function can be expressed

as

E(v) = E(vc) = g51(vc)+§ez(vc)- (319)

Therefore, if the minimum states are in the h—neighborhood of C, they can be obtained from

equation (3—19) with only n unknown variables, instead of the original

E(v) = 5255100 +2520)

which consists of n x m variables. This reduction will be very helpful in finding the

minimum states of the associated energy function.

For a minimum state v, suppose that vJr = max (Van) for i=1 to n, O is the output

state vector, E, is the processing element associated with vx in stage x, dx, x + 1 is the metric

data between E, andi'x... 1, and dx_1’xis the metric data betweenf'x and 133-1. Without

loss of generality, assume that gn-=g, in=R, and CxFC for every x and i. Also redefine

0t=a/C and B=b/C.

Better quality paths result when a is small [39]. Therefore, it is desirable to use a

smaller value of a and also keep the minimum states in the neighborhood of C so that the

minimum states can be regarded as valid and quality solutions. However as a is decreased

to a modest value, two cases may occur. First, the ideal case where the output state vector

0 stays in the h-neighborhood of C could occur when the sum of dx, ,.. 1 and 33.1,; are

very close to each other for all x. Second, 0 may fall outside the h-neighborhood of C if

there is at least one E, where the sum of dz,“1 and fix- 1,, is very large compared to

others. To prevent the second case from occurring, a maximum value v' which satisfies the

following conditions is set to limit vx.

For the particular processing element B, in stage x,
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others. To prevent the second case from occurring, a maximum value it which satisfies the

following conditions is set to limit vx.

For the particular processing element P, in stage x,

513
dt = -i‘t—0tm7—[3vdavg+om>0, (3-20.l)

where £2 = g-1 (5) , then

.. < an — It

an + Bdavg (3-20.2)

For the other processing elements in stage x,

g; = m— ai— anv + an— pidm,,,< o- (321.1)

Therefore,

(In-rum

3-21.2
”>ot(n+1)+otdm,.n ( )
 

where um is the maximum allowable value of u due to circuit considerations, rim,g is the

average of the local distances dxt,(x+1)fit and d,,,,-,, is the minimum of the local distances.

These two conditions are derived from the network dynamical equation (3-S.1) with

an assumption that the sum of 21“,, and 33-1,, is less than “mg The first condition

guarantees that every waith output value less than i5 will increase its output value until

reaching v. The second Condition guarantees that the output values of the inactive

processing elements will decrease until they become very close to zero. Ultimately, for

each stage x, the trajectory will be forced to reach the state where only E, has an output

value equal to § and all others are very close to zero.

From equation (3-20.2), with O = 1 - h, a lower limit for at can be derived as

Bd..,<1—h) +g“(1—h)
a) .nh (3-22) 

As a is decreased below the value given in equation (3-22), the minimum states
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move too far away from the h-neighborhood ofC such that they can no longer be regarded

as valid paths.

3.2.5 Example

The following example demonstrates the theoretical results presented in this

section. Figure 3-2a shows a simple problem which has an optimal path with a total distance

of 2 units. The energy function in the form of equation (3-6) is composed of

and

E2 = 2v11+18v12~ (3432)

There are two minimum states (1, 0) and (0, l) in El according to Figure 3-2b.

Additionally, the saddle point of El is (1/3, 1/3). The state (0, 0) is the unique minimum

state of E2 shown in Figure 3-2c. Choosing a=50 and b=4, Figure 3-2d shows the

associated energy function possesses only one minimum state which is close to the comer

state (1, 0). The accurately calculated minimum state is (0.96, 0) as determined by equation

(3-19).

3.3 Summary

This chapter presented a dynamic programming artificial neural network that can

rapidly and robustly provide a near-optimal solution for the DPP. Since dynamic

programming is a very useful technique for solving optimal control problems, the proposed

network is quite practical.

The core of this chapter is an analytic exploration of the proposed dynamic

programming neural network. First of all, propositions related to the functionality of the

network were proved. Secondly, a two-step energy function analysis was carried out in
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Figure 3-2. a) Data for demonstrating the example, b) Energy surface for El, c) Energy

surface for E2, and d) Energy surface for E=25E1+E2.
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order to explain how the dynamic programming neural network can provide near-optimal

solutions. Each component of the associated energy function has been discussed in the

extreme cases. With a —-> co, the minimum states are the valid corner states representing

valid solutions. With a = 0, the zero state is the unique minimum state. Then, the possible

locations of the minimum states of the associated energy function for different parameter

values a and b have been derived. We also have shown that a must be sufficiently large to

ensure that the minimum states reside in the regions which can be regarded as valid

solutions. Through the minimum states, the network behavior can be predicted and the

near—optimal solutions can be obtained. The analysis developed in this paper can be further

extended to other networks, such as the TSP Hopfield-Tank network.

It is more interesting to investigate the region of attraction of every stable

equilibrium point so that the initial conditions can be appropriately given to obtain the

desired solutions. How the parameters a and b affect the number of minimum states of the

associated energy function is another issue to be studied further.



4.1



 

Chapter 4
  
 

4.0 Network Simulation

This chapter describes a simulation of the formulated network to validate the

analysis in Chapter 3. Three items are studied by the simulation: the relationship between

the quality ofsolutions and the parameters of the associated energyfunction, the network

behavior due to random errors in connection weights, and the investigation of the basins

of attraction of the network’s equilibria. Results show that the formulated network can

provide a near-optimal solution during an elapsed time of only afew characteristic time

constants ofthe circuitfor differentproblems with sizes as large as 64 stages with 64 states

in each stage. An application of the proposed algorithm to an optimal control problem is

also presented.

4.1 Network Simulation

Since the network is described by a set of first order differential equations, it can be

simulated by solving the associated differential equations with a numerical analysis

techniques running on a conventional computers. Simulation programs written in C

language for the formulated network have been developed

56
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4.1.1 Simulation Algorithm

For convenience, rewrite the network equation (3-6.1) as

duxi uxi

b

’5; (":a'.(:r+1)j"<x+1))+ drx- 1)).xt"(s_ 1);) (4-1.1)

where

1 l
_=__+ T. .- (4-l.2)

in pxi y, “’1’

To simplify the simulation, we assume that gxi = g, in = R, and Cxi = C for all x and i. The

speed of convergence may be altered by the use of different values of electronic

components in the neurons. However, the solutions will remain the same since the network

is a gradient system and the locations of equilibria only depends on the connection weights.

The gain of the sigmoid working function 1/uo is set at 50 as a high gain assumption. The

inputs of the analog processing elements “xi are limited in the range of {-5, 5] since g(5)=

1/2(1+tanh(250)) is very close to 1 and g(-5) is very close to 0. Finally, without loss of

generality, the value ofRC is set to 1. Define a=a/C and B=b/C. Then, equation (4—1.1) can

be rewritten as

(dufi/dt) = -ua- - 0;;er ‘1 2hr '

5’2 E: (dxi (x+1)j"(x+1)j + dot-1)jxi vat-1)j ) + a “ (4'2)

Although the network is considered to be analog in nature, the state of the

processing elements will be defined as active, inactive, or undefined depending on their

output values. As a conservative circuit convention, the processing elements with output
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values greater than 0.90 are considered as active, those with output values less than 0.10

are considered as inactive, while those with output values in-between are undefined. Thus

a valid path is defined as one which corresponds to a state with one and only one value of

output greater than 0.90 and the others less than 0.10 in each stage.

Four major steps are followed:

Step 1. Randomly generate local distances of dxi(x+1)f

Step 2. Set appropriate values for or and B (see below).

Step 3. Set the initial values ufi equal to the sum ofum and Sun- for all x and i, where

the disturbance Sun- is randomly chosen and uniformly distributed in

[- 0.1uo, 0.1uo]. The voltage uoo is a constant such that m*g(uoo) is equal

to unity, where m is the number of states within one stage.

Step 4. Solve equation (7) for all x and i, where

in = g(un.) = (1/2)(1 + tanh(uxl. / uo)).

4.1.2 Quality of Solutions and Function Parameters

An experiment has been done to find an appropriate value for B for 8x8, 16x16 and

32x32 dynamic programming problems. A specified set of 10 examples in which the local

distances are selected from the integer set of [ l, 3, 5, 7, 9] has been simulated with variable

B. The average normalized path length D, which is equal to the sum of the selected paths

divided by the number of simulations, i.e., 10, and the number of stages plus one, is used

in Figure 4—l.a and 4—1.b. The relation between D and B changing from 0 to 7 for the 8x8

and 16x16 problems with a set to 25 is shown in Figure 4-1.a. The network may provide

invalid results when B is greater than 6 in this case. Figure 4—l.b depicts D vs. B changing

from 0 to 3 for the 32x32 problems with or equal to 5. Invalid results may occur if B is

greater than 2.5. It is important to notice that when structure is enforced by using a small

value of B, selected paths are of poor quality and when cost minimization is attempted by

using a large value of B, invalid paths result. Figures 4-1.a and 4-l.b give a broad choice

for parameter B.

Even though the local distances have been selected from the integer set of { 1, 3, 5,
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Figure 4-1. a) The relation between the average normalized path length D and different values

of B for 8x8 and 16x16 DPPs and b) The relation between the average normalized

path length D and different values of B for 32x32 DPPs.
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7, 9} in the previous experiment, it is not absolutely necessary to do so. Table 4-1 shows

the comparison of results between simulations with local distances selected from the set of

{1, 3, 5, 7, 9] (group I) and simulations with local distances selected from the set of {0.1,

0.2,....9.8, 9.9} (group H). The percentiles of the same size problems are almost the same.

Table 4-1 also reveals a promising property. That is, shorter average normalized lengths are

found more easily for larger problem sizes.

 

size

group

group I 2.00 1.85 1.61

groupII 1.74 1.44 1.10

8x8 16x16 32x32

 

 

      
Table 4-1. Comparison of D between two

groups of simulations.

 

D |1.oo 1.50 2.00 |2.50]3.oo|

P |o.oo 113-5 313-4 [213-3 ] 2E-2I

 

    

Table 4—2. Lookup table of P for some values of

D.

The proposed algorithm can provide better outputs if the local distances are

randomly selected from a set whose components are unifome distributed in a positive real

region. For those cases where the local distances are not uniformly distributed, a method of

normalization can be utilized so that good results can be obtained. In the following

simulations, local distances was selected from the set {1, 3, 5, 7, 9] for simplicity.

To ascertain the true quality of a selected path, its percentile among all possible

paths should be known. However, due to the huge computation time needed to obtain the

percentile of a selected path even for medium size problems, the average normalized path

length can not be calculated in each simulation. Given D, the percentile P of a selected path
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can be approximated by the values given in Table 4-2 which has been constructed from 106

randomly generated paths.

4.1.3 Neural Network Solutions for Different Problems

A 6x6 DPP is presented to demonstrate the behavior of the dynamic programming

network. This example shows how the dynamic programming network indeed converges

to an optimal solution. Table 4-3 gives the local distances for the 6x6 DPP whose optimal

path total length is known to be 13. Table 4-4a gives the neuron initial outputs and Tables

4—4b, 4-4c and 4-4dd show the neuron outputs after 25, 50, and 100 iterations, respectively.

It can be seen that the network reaches a nearly stable state after 50 iterations. Figures 4-

2a, b, c, and (1 give a graphic view of the time evolution of the dynamic programming

network. It is noticed that there are two optimal solutions. The first one, which is the one

found by the neural network algorithm is 3-1-1-3-3-1-1, and the other is 1-1-3-3-1-1-3.

To show that the proposed algorithm can provide near-optimal solutions robustly,

many different DPP instances have been simulated. Table 4-5 lists the simulation results.

For those instances with sizes less than 32x32, each has been simulated 20 times with

random initial conditions and local distances. Other cases have been simulated 10 times.

The average percentiles P are obtained from Table 4-2. The asterisked percentiles are the

exact values computed by exhaustive comparisons. The results in Table 45 show that

indeed the formulated network produces near-optimal solutions for these problems. For

example, P is less than 3 x 10'3 and D is about 1.85 which is much less than the average

value 5 for the 16x16 problems.

4.1.4 Basins of Attractions

Given a 4x8 network, shown in Figure 4-3, which consists of two global minimum

cost paths with total distance = 0, denote the first minimum path as path A which passes

through state 0 of each stage and is tagged as code A = (O, 0, 0, 0, 0, 0, O, 0), and the second

minimum path as path B which passes through state 3 of each stage and is tagged as code
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Table 4-3. Local distances and path found by the algorithm for the 6x6 DPP. The
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i=0 1 2 3 4 5

0.191 0.147 0.165 0.144 0.193 0.143

0.149 0.195 0.195 0.190 0.187 0.181

0.174 0.144 0.149 0.182 0.161 0.144

0.179 0.148 0.188 0.153 0.195 0.168

0.168 0.187 0.195 0.168 0.146 0.171

0.162 0.178 0.178 0.170 0.163 0.175

m

>
4
<

H II N

 0
0
1
t
h

<

xi i=0 1 2 3 4 5

0.178 0.029 0.411 0.046 0.087 0.046

0.026 0.081 0.492 0.043 0.039 0.074

0.098 0.038 0.013 0.257 0.305 0.031

0.066 0.048 0.162 0.076 0.270 0.052

0.056 0.040 0.482 0.015 0.039 0.101

0.060 0.003 0.135 0.788 0.000 0.003

W

 

H II N
G
U
I
-
5
0
0
1
9

 

i
f

i i= 1 2 3 4 5

0.985 0.000 0.000 0.000

0.000 0.000 0.993 0.000 0.000 0.000

0.001 0.000 0.000 0.033 0.821 0.000

0.000 0.000 0.011 0.000 0.844 0.000

0.000 0.000 0.991 0.000 0.000 0.000

0.000 0.000 0.000 0.999 0.000 0.000
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0.000 0.000 0.000 0.922 0.000 0.000

m

Table 4—4. a) Initial neuron outputs for the 6x6 DPP; b—d) Neuron outputs after 25,

50, and 100 iterations, respectively.



3956921

. 169917 ‘

 
. 1‘131'12 ‘

 

 

.7aeooo ‘

.39‘1000 "

 
0.00000 ‘

 
(b)

Figure 4-2. a) Initial neuron outputs for the 6x6 DPP; b-d) Neuron

outputs after 25, 50, and 100 iterations, respectively.
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Figure 4—2. (cont’d)
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# of stages # of states D P

2 2 3.25 0.05*

4 4 3.12 0.03*

8 8 2.00 ~ 3E-4

l6 16 1.85 3E-4>P>1E-5

32 32 1.61 3E-4>P>1E—5

64 64 1.39 1E-5>P>0.0

l6 2 3.21 0.02*

16 4 2.98 0.005*

16 8 1.85 3E-4>P>lE-5

16 32 1.79 BE-4>P>lE-5

2 16 1.53 0.02*

4 16 1.60 0.004“

8 16 1.76 3E-4>P>lE-5     
 

Table 4—5. Simulation results for DPPs with different sizes. The parameter pair (a,

B) has been chosen as (50, 3) for instances with the number of stages

less than 8, (5, 1) for instances with the number of stages greater than

16, and (25, 3) for instances with the number of stages in between.
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B = (1, 1, 1, 1, 1, 1, 1, 1). 23 = 256 different codes are used to define initial conditions as

follows. If the ith bit of the initial condition code is 0, then the neuron 0 of the ith stage is

given 0.9 as an initial output value and the other neurons of the ith stage are given 0.1 as

their initial value. On the other hand, if thejth bit of the initial condition code is 1, then the

neuron 3 of the jth stage is given 0.9 as a initial output value and the other neurons of the

jth stage are given 0.1 as their initial value.

 
Figure 4—3. A problem consisting two minimum paths shown in thick lines. The

local distances for the two minimum paths are all zero, other local dis-

tances, not shown, are all set to 50.

Table 4-6 shows the number of attracted initial conditions to global minimum states

and local minimum states of the network with or = 50 and B = 4, where H is the Hamming

distance between code A or B and the initial condition codes. As can be seen in the table,

the number of attracted initial conditions increases when h which is defined in Chapter 3 is

increased. The case of h = 0.20 gives the largest number (184) of attracted initial conditions.

To understand how the parameters at and B affect the basins of attraction of the

global minimum states, the following experiment has been done using the previous

example. With h and or fixed to 0.10 and 50, respectively, B is changed from 1 to 5. For

every value of B, 28 = 256 initial conditions have been fed to the network. The numbers of
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attracted initial conditions of different Hamming distances to code A and B for each value

of B is listed in Table 4-7. It can be seen that the number of attracted initial conditions,

which may be used as an index of the basins of attraction, increases when B is increased.

However, the network may converge to local minimum states as B becomes greater than 4.

 

 

 

 

 

 

 

$31323“ Globalminima . .

init. cond’s. 0 s H s 4 5 s H s 6 L°°al 1mm”

11 = 0.01 91 0 165

h = 0.05 107 0 149

h = 0.10 107 0 149

h = 0.15 131 o 125

h = 0.20 184 41 31     
 

Table 4-6. Number of attracted initial conditions to global and

local minima with different initial conditions.
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4.1.5 Network Behavior due to Connection Weight Errors

The Hopfield-Tank networks have been shown to be gradient systems only when

the networks are symmetric [14,15]. The connection weights may not be as accurate as

desired in a real hardware implementation, therefore the networks are not exactly

symmetric. However, it is believed that sufficiently small changes of the connection

weights will not alter the qualitative properties of the networks [83].

In this simulation, the previous simple example is used again. With a = 50, B = 4,

and initial condition code being set either (0, 0, 0, 0, 0, 0) or (1, 1, 1, l, l, l), simulation

shows that these two minimum states are still preserved if the errors of connection weights

are less than 5% of the original values. As the errors increases over 5%, the network may

become unstable or the minimum states may move away from their original locations such

that they can not be considered as minimum cost paths any longer. It is worthy noting that

the allowable error in connection weights for the minimum states to remain in the valid

regions heavily depends on the problems themselves. In general, the smaller the

corresponding total path of a minimum state is, the more likely the minimum state can be

preserved in its associated valid region.

4.2 Application to an Optimal Control Problem

Consider a continuous system described by the first order differential equation

dx (t)

dt = —20x(t) +u(t) (43)

where x(t) and u(t) are the state and control variables, respectively. The performance

measure to be minimized is

‘1

J = 5033(9) + j (0.1u2(t) +x2(t) )dt (4-4)

0
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where tfis the specified terminal time. This performance measure tends to drive the final

state x(tf) close to zero without wasting too much energy. The admissible values of the state

and control variables are constrained by

-1.0 Sx(t) 51.0, (4-5-1)

and

-5.0 S u (t) S 5.0 - (4-5.2)

Before the dynamic programming neural network algorithm can be applied, the

system differential equation must be approximated by a corresponding difference equation,

and the integral in the performance measure must be approximated by a summation. The

system difference equation and the performance measure can be written as follows [10]

x(k+1) = (1-20At)x(k)+Atxu(k), (46.1)

and

N-l

J = 50x2(N) +At 2 (0.1112 (k) +x2(k+ 1)), (4-6.2)

k=0

where At is small enough so that the control signal can be approximated by a piecewise-

constant function that can change only at the time instants t = 0, At,....(N-1)At. N is the

number of time instants from 0 to tfand k is the index of time instants.

It is assumed in this problem that the state and control variables are allowed to take

on only quantized values of the state set X={-1.0, -0.9,..., 0,..., 1.0] and the control set

U=[-5.0, -4.0,..., 5.0}. In addition, tfwill be specified as 1.0. Therefore, a 10x21 network
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is needed to solve this problem. The kth stage of the network represents the time instant kAt

and the processing elements correspond to the allowed values of state variables. Assume

xi(k) is the state i of the kth stage time instant and uiflk) is the control signal which drives

xlflc) tox}(k+I). The cost ofoperation in the interval k to k+ I for specified quantized control

uiflk) is 1,..- «+1», where 0 3k SN-I. It is equal to o. lAtufj (k) +xj2(k+1) ifx,(k+1) belongs

to the state set X. Otherwise, Jk; (1H1)!- will be set to a very high value to prevent the sub-

path xi(k) to x10”1) from being selected. In addition, JNi (N+1)0 is equal to 50 times x?(N)

which is the square of the difference between the final state and the zero state. Therefore,

the connection weight Txi.yj is defined as

[31
_ 5 xi. yJ' (4’?)

T +8
xi, yj = “won-51'9”“ (5mm (Jr-1n)

Figure 4-4a shows the optimal state trajectory and the state trajectory found by the

proposed algorithm with initial state x(0)=1.0. The selected control signals u(k) are equal

to {5, -3, 2, 0, 0, 0, -1, 0, 1, 0]. These are very close to the optimal control signals u*(k)=

{5, -5, 0,..... , 0}. Figure 4-4b depicts the optimal state trajectory and the selected state

trajectory with initial state x(0)=-l. The optimal control signal sequence is {-5, 5, 0...... 0}

and the obtained control signal sequence is {-5, 3, -2, -1, 0, 0, 0, l, 0, 0]. Again, these two

state trajectories are very close.

4.3 Summary

Simulations of the network have been developed to demonstrate the robustness of

the network. The neural network can provide a near-optimal solution in an elapsed time of

only a few characteristic time constants of the circuit This has been found to apply for

DPPs as large as 64 stages with 64 states in each stage. The relationship between the quality

of solutions and the parameters of the associated energy function was explored. Simulation

shows that the minimum states can be preserved if the errors of modified connections is
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0))   
Figure 4-4. a) Optimal state trajectory and selected state trajectory for x(0)=1.0. b)

Optimal state trajectory and selected state trajectory for x(0)=-1.0. The

curves of state trajectories have been smoothed.
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small. Moreover, the basins of attractions of the network’s equilibria can be increased by

appropriately increasing the parameters of the associated energy function. Finally, an

application of the new network to an optimal control problem demonstrated the capability

of the network.



 

Chapter 5]

 

5.0 A Building Block

Architecture and

Problem Decomposition

In the first part of this chapter, an architecture for the dynamic programming

neural network is presented. The architecture is based on a building block paradigm in

whiCh the network is constructedfrom neuron array and weight assignment chips. Because

Of its simple and regular structure, the architecture is a feasible implementation for

dynamic programming neural networks with current VLS'I technology. Moreover, this

architecture can befitrther extended to other Hopfield-Tank type networks. Following the

pr€Sentation ofthe architecture, a divide-and-conquer methodfor solving very large scale

dynamic programming problems is described. A flight planning problem is used to

nIINitrate the advantages and disadvantages of this method in terms of the network size,

processing time, and quality ofsolutions.

74
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5.1 A VLSI Building Block Architecture

Although artificial neural networks are composed of basic circuits emulating

neurons and synapses, direct hardware implementation has been severely restricted in size

by constraints of current VLSI technology. These constraints include real-estate

considerations, and fan-in/fan-out and connectivity limitations. To alleviate these

problems, especially in the case of moderate to large size networks, a building block

paradigm in which a neural network is constructed by several VLSI chips implementing

various components has been used for feed-forward networks [83]. Even though this

paradigm may reduce the processing speed over that of single-chip designs due to off-chip

routing, it allows the construction of networks with arbitrary feed-forward architectures by

these pre-designed building blocks [83].

An architecture for dynamic programming neural networks is presented following

this paradigm. For convenience, the network dynamic equation is written again.

dun-

Cx-(71%)“. J—i-azvxj— azzvyj+an

xi phi

:22(dxxi,(x+l)jv(x+1)j+d(1 1).]lx‘v (x- 1)j) (5-1.1)

Where

1 1_ = _ (5-1.2)

in pxi+§j1TxiJj

E(Elation (5-1. 1) can be expressed as

duxi __ uxi

Cxi(—d,—) “-R:+f(x-l)i(vx-l) +f(x+1)i(Vx+l)

—a2vch -a2vyj+an

j¢i

(5-2. 1)

where
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vx = [VXP Vx2’ ..., vxm]T, (5-2-2)

b -

f(x-1)i(vx—1) = ‘5 . (d(x—l)j,xiv(x—l)j)’ (5 2'3)

1

__ b

f(x+l)i(vx+l) — —§2(dxi,(x+l)jv(x+l)j)’ (5.24)

J

and m is the number of neurons in each stage. Let

__ “xi uxi (5_3 1)

wn- — CIA—ET) +§—. +a2.vxj+02vyj—an, .

1“ NH )1

T -
wx = [va Wx2’ ..., Wm] , (5 3.2)

T

F1 : [.fo (vx) ’fxz (vx)’ “°!fxm (vx)] 9 (5-3°3)

and

b "I

Der-1):: = 5&3 r.j=1’“'h"e Ci} = dtx-l)i.x1" (5‘34)

From equation (5-1.1), it can be shown that

T T

Wx = Fx-1+Fx+l = D(x-1)x. (_vx-1) +D(x+l)x. (_vx+l) ' (5-4)

Therefore, the network can be decomposed into an element (chip) implementing the

wx’s and connection chips implementing the D(x_1)x’s. Figure 5-1 shows part of such a
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decomposed architecture for the dynamic programming neural network. Consider an n x m

network with n neuron array chips and 2n-2 connection chips. Each neuron array chip,

shown in Figure 5-2a, has m processing elements, shown in Figure 5-2b, and each

connection chip, shown in Figure 5-3, consists of m x m matrix-like connections. Notice

that every neuron array chip has connections to its two neighbor chips, a global input

Va,1 = zvyj, and an output Vsub (x) = 2v?!" Va” is the sum of all neuron outputs and

w J

can be implemented by an analog adder shown in Figure 5-1. Vsub(x) is the sum of neuron

outputs in stage x. Notice that the network connectivity of this architecture is 0(nm2)

instead of 0(n2m2), which is generally required for a Hopfield-type network with n x m

totally connected neurons.

The resistance elements of the connection chips and the input capacitances of the

neuron array chips may be designed as adaptable circuits to allow the circuit to be used to

SOIVe different problems. Many methods have been deve10ped for adaptable capacitors and

reSistors, including implementations of connection weights and input capacitances with

digital and analog programmable circuits [83-86]. Eberhardt, et al., have designed a

32 X 32 connection chip which utilized the four-quadrant Gilbert multiplier to convert

charge stored on capacitors into conductances for feed—forward neural networks. These

Clesigns can be utilized to implement this network.

If a host computer, an interface between the host and the network, and an AID

converter are considered along with the dynamic programming neural network, then this

integrated system is capable of solving different problems. This system, shown in Figure

5‘4. works as follows. Initially, a problem is specified in the host computer. Then, the

conlputer will calculate the connection weights, download the weight values to connection

chips, and set up initial conditions via the interface. To download a weight value to a

reSistance element and an initial value to an input capacitance, each adaptive resistance and

capacitance must be addressable. With the associated address selected by the host
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Figure 5-1. A building block architecture (only 3 stages shown) for

the dynamic programming neural network.
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computer, each connection and iniu'al condition can be “programmed” by downloading the

corresponding values which are converted into analog signals by the interface. The host

computer then starts the dynamic programming neural network and samples each

processing element output at a certain rate to check if the network reaches a steady state.

The steady state can be read via the AID converter after the network has converged.

    

    
  

    
  

address

.———>

Front-end control output

Computer ._—. Interface data ANN .r__.’ A/D

signals .__> signals

+ digital output signals

 

Figure 5-4. A neuronprocessing system for dynamic pro-

gramming.

5-2 Problem Decomposition

The implementation of large scale neural networks has been severely restricted by

Curr62m technology. One way to cope with this problem is to use a divide—and-conquer

Su’ategy. The advantage is that many smaller and feasible networks can be used to solve

larger problems. However, the time to find a solution will increase accordingly, and the

80111tion quality may not be as good as that for the solutions found without decomposition.

5~2-l Algorithm

This decomposition method is described as follows.

(1) Decompose the problem to be solved into sub-problems with size less than or

equal to that of the available smaller network. Figure S-Sa depicts a

decomposition which divides a 4 x 4 problem into 4 2 x 2 sub-problems.



82

With each sub-problem representing a state node, a new problem is formed

which is shown in Figure S-Sb using the same example. The new metric

distances between two nodes in two adjacent stages will be assigned by a

predefined function of the metric distances of the original problem.

(2) Find a near-optimal solution for the new problem.

(3) Find a near-optimal solution for every sub-problem which corresponds to a state

visited by the near-optimal path of the new problem.

(4) Link the near-optimal solutions found in step (3) as a complete solution.

5.2.2 Examples

The problem to be solved is to find a minimum cost path from a start point to an end

Point in a map consisting of 50 x60 points. Each point has an associated cost. The set of 50

X60 cost values is given in Appendix A. The total cost of the path is the sum of the costs of

the POints along the path. To reduce the network size, a divide-and-conquer strategy is used.

This method divides the 50x60 map into 100, 5x6 regions. Then, with each region

Considered as a point, the 50x60 map can be reduced to a 10 x10 map. The cost ofeach point

0f the reduced 10x10 map is simply the sum of the costs of the 30 points in the

correSpending 5x6 region. The set of cost values for the reduced 10x10 map is given in

ApPCDdix B. A minimum cost path in the reduced map then can be obtained using a smaller

netVvork. Finally, a minimum cost path in thc original 50x60 map can be generated by

finding each sub-path in each corresponding 5x6 region which is visited in the minimum

cost Path of the 10x10 map.

To convert the problem to a neural network, the number of stages of the network and

the States in each stage must be determined first. Assume the desired path is regular and

SmOOIh, the number of stages for a start point (sx, sy) and an end point (ex, ey) can be set to

M = c xmax (lex—sxl, |ey-sy|)
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(b)

Figure 5-5. a) A 4 x 4 problem is divided into 4 2 x 2 sub-problems.

b) A new 2 x 2 problem with each state representing a

2 x 2 sub-problem.
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where c > 1. The larger the coefficient c is, the more potential solutions the network will

have. However, the network size will increase. In simulations, c is chosen as 1.5 S c S 2.0

which gives a reasonable trade-off between the solution quality and network size.

Let T(i) be the set of states in the ith stage. Assume the path directions are only

allowed in the -45, 0, and 45 degree directions. The possible states in the ith stage are

derived in two steps. The first step where 0 5 stage (i) S [g] begins from the start point

to the half-way point of the path as follows. Let T(0) be the set of the starting state (sx, sy).

The state set of the first stage is defined as

T(l) = {qqsx-qsr, lsy—ty|Sl) and (lex—IIISM (Icy-ty|SM))}°

The states in T(I) are those which are the neighbor states of (3, 3).) and whose

distances along x and y axis to (ex, ey) are less than the number of stages M. Define

dir (p, q) as the direction fromp to q, where p e T (i— 2) and q 6 T(i- 1) . Then each

state t in T(i) where i > 1 must satisfy the following four conditions:

1. |qx—tx| S 1, lqy-tyl $1

2. I: q

3.|ex-tx|SM-1, ley—ty|_<.M—1

4. dir (p, q) —dir (q, t) = —45, 0, or 45 degrees.

The second step, [1%,] < i S M, starting from the end point to the half-way point of the path

in backward fashion, follows the same procedure as the first step.

Figure 5-6 depicts parts of the network construction procedure in a 10x10 map. The

starting point is (1,1) and the ending point is (9,9). Suppose M=14, then the first step goes

from stage 1 to stage 7, and the second step goes from stage 14 to stage 8. As can be seen

in Figure 5-6, the states in the first stage are (0,0), (0,1), (0,2), (1,0), (1,2), (2,0), (2,1), and
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(2,2). The states in the second state are (0,3), (1,3),..., (3,1), and (3,0). The final stage, i.e.,

stage 14, consists of states (9,8), (9,9), (8,9), and (8,8).

After the stage number and the number of states in each stage have been

determined, the connection weights d(u,v) where u e T(i) andv e T (i + 1) need to be

selected to build a network. There are three cases:

Case 1: u = v.

Then d(u, v) = 0.

Case 2: lax—VII $1 andluy—vy| S 1 but u¢v.

d (u, v) = f(cost (v)) if f(cost (v)) S threshold , else

d (u, v) = D, where1%) is a function which normalizes cost (v) such that

the function values fall in [0, 10], threshold is an adjustable positive value

in [5, 10] and D is set to a large value (over 100).

Case 3: lux-vxl >1 or|uy-vy|>1.

To prevent an illegal sub-path from being selected, the connection weight

is set to a large value as

d(u,v) = max (thresholdx (lax-VII +|uy-vy|),D) .

5.2.3 Simulation

In the first example starting from (7, 15) and ending at (37, 21) in the original 50x60

map (from point (1,2) to point (7, 3) in the reduced 10x10 map), 8 stages are used for the

network and the average number of states in each stage is about 15. The path shown in

Figure 5-7, with a cost 16.83, is obtained by the method with decomposition. Figure 5-7

also shows the path found by the method without decomposition, with a cost 15.54, and the

optimal path. Figure 5-8 shows the path with a cost 11.96 from point (2, 3) to point (28,

39) in the original 50x60 map (from point (0, 0) to point (5 , 6) in the reduced 10x10 map)

for the second example. The path, also shown in Figure 5-8, selected by the method without
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decomposition has a cost of 12.21. Table 5-1 is a comparison of solution quality,

processing time, and the network size required for the methods with and without

decomposition in the first example. With the time increment step set to 0.01 in the

simulation, the networks for the problems with the 5x6, 10x10, and 50x60 maps

approximately require 200, 300, and 1,000 iterations to converge, respectively. Therefore,

the number of iterations required for the method with decomposition in the first example is

calculated as 8 x 200 + 300 = 1, 900. With decomposition, the network size required is

about 8x15 for the first example. However, the network is as large as 60x200 if the problem

is not decomposed.

5.3 Summary

A building block based neural network architecture for dynamic programming was

presented. The advantage of this proposed architecture is that the networks can be

implemented with some simple well-designed VLSI chips and a reduced network

connectivity. This architecture can also be extended to some other Hopfield—type networks.

A problem decomposition method was described with a large-scale flight planning

problem as an example.

 

 

 

Processing .
Method Cost iterations Network srze

With decomposition 16.83 ~1,900 ~8x15

Without decomposition 15.54 ~1,000 ~60x200      
Table 5-1. Comparisons of solution quality, processing time, and the network

size required for the methods with and without decomposition for

the first example.
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O 10 20 30 40 50

Optimal solution

_____ Neural net solution with decomposition

__ __ _ Neural net solution without decomposition

Figure 5-7. Different solutions for the first example.
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10 20 30 ' 40

_ __ Optimal solution

_____ Neural net sdution with decomposition

__ .____ _ Neural net solution without decomposition

Figure 5-8. Different solutions for the second example.

 



 

Chapter 6
  

6.0Application: Incremental

Autoassociative Memory

For an autoassociative memory, each desired memory pattern can be considered

as a state (path) with minimum energy (cost). Thus, the autoassociative memory problem

can be viewed as a problem offinding the minimum energy state in a constrained search

space dependent on the initial condition. The application, based on dynamicprogramming

techniques used tofindminimum costpaths, is very simple and straightforward in the sense

that memory patterns can be easily added to an existing associative memory without any

modification to theprevious connections. Analysis reveals that each storedmemorypattern

corresponds to a global minimum state of theformulated network. Simulation also shows

that every desired pattern can be successfully stored and recalled and the extent of the

basins ofattraction ofthe global minima can be adjusted by selecting the parameters ofthe

network energyfunction. Two examples, with thefirst one designed to correct single-error

codes and the second to distinguish three images, are used to demonstrate the power ofthe

formulated network. The issue offault tolerance ofthe autoassociative memory network is

also considered. The network can recall the stored memorypatterns very successfully even

when noise is added to the inputs. Moreover, the network can detect, locate, and recover

from a single stuck-atfault. Comparison with two other networksfrom the literature shows

that the incremental autoassociative memory network is moreflexible and robust.

90
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6.1 Introduction

Suppose that a set of memory patterns [1’1 , Y2...., 1”} is to be stored, where I" e R"

for r = 1 to 1. Given a stimulus X = Y' + e where e is sufficiently small, an autoassociative

memory is designed in such a way that the output pattern I" can be recalled successfully.

In other words, an autoassociative memory is designed to store a set of desired memory

patterns where each pattern is attractive in the sense that any input pattern in its region of

attraction will eventually converge to it.

The Hopfield-Tank model is capable of implementing associative networks [14].

However, some of the proposed networks do not guarantee that each desired memory

pattern can be stored [14.38.39]. Moreover, some of them suffer from rather complex

synthesis procedures such that, in order to store large memory patterns, the network

connection weights must be determined by solving a large number of equations[4l].

Additionally, a major drawback against them is that the whole network must be

reconstructed if additional memory patterns are to be stored.

It has been noted that the associative memory problem can be considered as an

optimization problem [7]. For example, the problem of recognizing a familiar face can be

interpreted as finding which one of those acquainted faces in the memory most closely

resembles the test face. That is, to find which one maximizes the overlap between the test

face and the acquainted faces.

Dynamic programming, one of the techniques used to solve combinatorial

optimization problems, can be used to find optimal paths from source to destination. Ifeach

desired memory pattern is considered as a shortest path, then the associative memory

problem can be regarded as a dynamic programming problem, i.e., finding the shortest path

within a constrained search space dependent on the initial condition.

A coding procedure for autoassociative memory based on dynamic programming

neural networks will be presented. It will be shown that each desired memory pattern can
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be successfully stored in the network and each memory pattern corresponds to a global

minimum state of the associated energy function. Furthermore, the extent of the basins of

attraction of the stored memory pattern can be controlled by selecting the parameters of the

associated energy function.

One of most significant advantages of this autoassociative memory network is the

inherent fault tolerance. The fault models considered in this chapter are noisy inputs and

single stuck-at faults. The network can recall the stored memory patterns in a very noisy

environment. Moreover, the network has the ability to detect, locate, and recover from a

single stuck-at fault.

This chapter explores the autoassociative network as follows. Section 6.2 presents

the network formulation procedure and analysis. Simulations and examples are given in

Section 6.3. The issue of fault tolerance is addressed in Section 6.4 and Section 6.5

compares the proposed network to two other known networks.

6.2 Autoassociative Memory Network

6.2.1 Formulation

Assume that a set of memory patterns Y = {Y1 , Y2,..., Y’} is to be stored in an

autoassociative memory, where Y' = [Yi’ 3’; ..., y;] e R" is in binary form, i.e., y: is

either 1 or 0. To design an autoassociative memory using a dynamic programming network,

the minimum paths corresponding to the desired memory patterns must be defined.

Assume a dynamic programming network with n stages and 2l states for each stage.

Let Path(r) be the minimum path associated with memory pattern I", where Path(r) starts

from the source node, passes through states Pi: p3, ..., and p; in stage 1,2...,n,

respectively, and finally ends at the destination node. The distance between p; and p;H

is defined as d (x, p;, p;+1) . Let p6 be the source node, p; +1 be the destination node, and
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s(x, i)be the ith statein stagex. Wedefinep; = s (x, r+y; x l) , and d(x,p;,p;+ l) = 0,

where 0 S x S n and 1 S r S l. The other distances, between any two states in two adjacent

stages, are all set to a large positive number D. Therefore, the total distance of each

minimum path is zero and the others are at least D.

Figure 6-1 shows the network which can store three memory patterns. It will be

shown later that the designed network has exactly 1 global minimum states which

conespond to the desired memory patterns in a one-to-one fashion.
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Figure 6-1. A 6 by 6 network (full connection not shown) which can store pat-

terns (0,0,0,1,1,1), (1,1,1,0,0,0) and (1,0,1,0,1,0). Three shortest

paths are shown in thick lines.

6.2.2 Definitions

The following definitions will be used in the remainder of this chapter.

i) The domain and range of the sigmoid function g are defined as U=RN and V=[0, 1]”,
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respectively, where N = m x n. Every vector v e V can be expressed as

[vn,v12,...,vmn] T, where 0 S ”in S 1. The zero vector of V is denoted as 0N.

ii) A vector c e V is said to be a valid corner state if cn- is either unity or zero and

26”- = 1 forx=l to n.

1

iii) The valid corner set C is defined as the set of all valid corner states.

iv) The path vector 1" associated with memory pattern Y’ is defined as

T' = “i”; ...,t;] ,where t; = r+2lxy;, and 1 SxSn.

v) The minimum state Vim." associated with memory pattern 1" is defined as

f f f r r . o r .

Vmin = [vn,v12, ...,vmn] ,where v“. = 1 if t = tx,and00therwrse, 1 SxSn,

1SiS2l,and1SrSI.ThusV'min is a valid corner state.

6.2.3 Analysis

The following propositions provide a theoretical insight into the autoassociative

memory network. For completeness, some of the relevant propositions which were

presented in Chapter 3 are restated here without proof.

Proposition 1. v is a valid comer state if and only if E1(v) = 0.

Proposition 2. Every V'min rs a global mmrmum state.

Proof: Since V'
min

is a valid comer state, E 1 (VIM

r r

5'2 (Wm-n) = zzzdxi,(x+ 1)}inV(x+ 1)j+ d(x-— 1)j,xi";i"r(x— 1);
x i j

=22d(x,p;,p;+1)=0~
x l

) = 0. Furthermore, we have

Therefore, it follows that
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E(v'.) = geuv'
mm min

)+§-E2(V'
min)=0-

Since E(v) 20 for every v e V, V’m." is a global minimum state. Q.E.D.

Proposition 3. There are exactly 1 global minimum states.

Proof: Suppose there is another global minimum state v which does not correspond to any

of the minimum paths. Since v is a global minimum state, E2(v) is equal to zero.

Consequently, v must be the zero state 0N. However, 0N is not a valid corner state.

Therefore, according to Pr0position 1, v is not a global minimum state. Q.E.D.

Some undesired local minimum states, which correspond to paths that are either

invalid or with a total distance greater than or equal to D, may also exist in the network.

However, the following proposiu'on states that they are all on the boundary of the unit

hypercube. This gives a guide as to how to set the initial conditions as described in the next

section.

Proposition 4. Every local minimum state of E is on the boundary of V.

6.3 Examples

For convenience, rewrite the simplified network equation as

du .

C11. (—d—:‘) = "' 6.2.ij- (122131"!- an

1“ y I

l3

“2‘; (dxit(x+l)jv(x+1)j+ d(x—
1)j,xiv (x_ 1),.) °
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6.3.1 Initial Conditions

The initial condition Z' associated with memory pattern I" for the input pattern X =

[x1,x2,...,x,,] is defined as Z’ = [2:1, 2:2, ..., zfnn] 6 R" where 2;,- = h ifi = r+xk x l,

and 1 - h otherwise. h is usually selected in the range (0, 0.2) depending on the application

[8]. Since Proposition 4 shows that the undesired local minimum states lie on the boundary

of V, the initial conditions should not be set too close to the boundary to keep them from

falling into the basins of attraction of the undesired local minima.

Given two memory patterns [0, 0, 0, 0, O, 0, 0, 0] (code A)and[1,1,1,1,1,1,1,1]

(code B), a network with at = 50 and B = 4 has been designed. Table 6-1 shows the number

of attracted patterns to global minimum states and local minimum states of the network

with different initial conditions, where H is the Hamming distance between the stored

patterns. As can be seen in Table 6-1, the number of attracted patterns increases when h is

increased. The case of h = 0.20 gives the largest number (184) of attracted patterns;

however, classification errors also occur since 41 patterns with Hamming distancesS or

more units away from the stored patterns are attracted.

 

 

 

 

 

 

 

Number? Global minima

333$? 0SHS4 ssnso “calm

h = 0.01 91 o 165

h = 0.05 107 o 149

h = 0.10 107 o 149

h = 0.15 131 o 125

h = 0.20 184 41 31     
 

Table 6- 1 . Number of attracted patterns for global and local min-

ima with different initial conditions.
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6.3.2 Simulation

Three major steps are followed to verify the above by simulation.

Step 1.0 The memory patterns to be stored and the test pattern X are specified.

Step 2.0 The local distance dxi.(x+1)j is generated according to Section 6.2.1.

Step 3.0 Set r = 1;

While (r S l)

3.1 Set the initial condition associated with memory pattern I”;

3.2 Relax the network;

3.3 Check the network for convergence;

3.4 If the converged state corresponds to memory pattern I”

then stop;

Else increase r by 1;

3.5 Reject the test pattern X and stop;

6.3.3 Basins of Attraction

To understand how the parameters a and b affect the basins of attraction of the

global minimum states, the following experiment has been done using the previous

example in Section 6.3. 1. With h and a fixed to 0.10 and 50, respectively, B is changed from

1 to 5. For every value of B, 28 = 256 test patterns have been fed to the network. The

numbers of attracted patterns of different Hamming distances to code A and B for each

value of B is listed in Table 6—2. It can be seen that the number of attracted patterns, which

may be used as an index of the basin of attraction, increases when B is increased. However,

classification errors occur as B becomes greater than 4. It also can be seen, interestingly,

that the network perfectly recovers the codes with H = 2 in the case of B = 5.
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Table 6-2. Number of attracted patterns for global mini-

ma with different values of B.

6.3.4 Examples

With at = 15, B = 2, and h = 0.05, the first example shows that a network can be

designed to correct single-error codes. Eight six-bit code words shown in Figure 6-2a with

three message bits and three check bits have been stored in a 16 x 6 network. The code

words of Figure 6.2a are plotted on the 6-cube map of Figure 6.2b. Each code word is

indicated by the corresponding letter and all cells one distance away from a code word are

marked with an x. As can be seen in Figure 6.2b. each code word is surrounded by 6 single-

error codes. Simulations show that the network converges to the conect code word when

each of the 6 single-error codes is fed to the network.

The second example demonstrates the power of the artificial neural networks in

distinguishing among three patterns, an English letter, a Chinese character, and a Greek
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Figure 6-2. a) Eight single-error-correcting code words composed of 3 message

bits and 3 check bits and parity check table. b) 6—cube map for the

code of (a).
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letter, as shown in Figure 6.3a. The network with parameters (it = 15, B = 2.5, and h = 0.10

has been tested with hundreds of patterns with randomly introduced noise. The noise is

added to the patterns in such a way that every pixel may be reversed as detemrined by a

probability p. Table 6-3 shows the success rate of recall with p being varied from 5% to

33%. 100 test patterns with random noise have been fed to the network for each stored

pattern and for each p. It can be seen that the network performs well when p S 20%. Figure

6.3b shows some of the test patterns. Furthermore, three test patterns with part of the

images opaque, as shown in Figure 6.3c, have been also successfully recalled.

For a third example, the same procedure has also been run through with airplane,

tank, and helicopter patterns as used in [39]. The simulation results are also listed in Table

63. Notice that the results in both examples are very close.

 

I p% 5% | 10% 15% l 20% l 25% 30%

lFigureSexamples 100%| 100% 98.5%| 98%| 88% 70.5%

IExamples from [39] 100% I 100% 97.7%] 97%] 86% 65.7%

 

 

     

Table 6-3. Success rate of recall for the second and third ex-

ample with different percentages of pixels being

incorrect.

6.4 Fault Tolerance in the Autoassociative Memory Network

Unlike conventional computers, stored information in a neural network is

determined by its structure, processing elements, and connections. Since the output results

are collective decisions of all parameters together, the loss of information due to faults,

such as damaged connections and malfunctioning processing elements, will still often

result in the network obtaining a correct output. This provides an inherent fault tolerance

property for neural networks. However, the fault tolerance works only when the neural
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(C)

Figure 6-3. a) Three stored patterns. b) Three test patterns with random

noise. c) Three test patterns with opaque image.
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network is large enough to store the pieces of information in a redundant way [87].

Moreover, if faults occur in some important neurons, the fault tolerance ability may be

degraded. For example, if stuck-at faults occur in some of the output neurons in a feed-

forward network, the results will always be incorrect. If other neurons are faulty, the

learning process may be slowed or divergent, and stored information may be lost.

Fault models to be examined in this chapter include noisy inputs and single stuck-

at-faults. Neural networks are expected to operate in noisy environments, where the

received inputs do not exactly match the desired inputs, such as in pattern recognition

problems where only partial information is provided as the input. This partial information

can be viewed as noisy input. In the binary domain, a noisy input is considered as a vector

with some bits complemented. For such noisy input, the results in Table 6-3 show the

success rate of recall withp being varied from 5% to 33%. It can be seen that the network

can recall very successfully when p S 20%.

Let neuron(x, i) denote the ith neuron of stage x. Neuron(x,i) is said to be stuck at 1

or 0 if in is equal to 1 or 0 for all t (time), respectively. For a single stuck-at fault, only two

cases, stuck-at-l and stuck-at-O, are considered. From the definitions in Section 6.2.2, the

neuron in the xth stage of Path(r), which corresponds to the memory pattern Y', is

neuron (x, r + 21 x y;) . For the first case, assume neuron(x,i) is stuck at 1. If

i t r + 21 x y;, then the network will not converge when the memory pattern I" is applied,

since the output of neuron (x, r + 21 x y;) will be forced to 0. This is because neuron(x, i)

is stuck at l and one neuron’s output can, by definition, be one. On the other hand, if

i = r+ 21 x y;, i.e., neuron (x, r + 21 x y;) is stuck at 1, then the memory pattern 1" can

be recalled when it is applied. For the second case, assume neuron(x, i) is stuck at 0. If

i = r + 21 x y;, i.e., neuron (x, r + 21 x y;) is stuck at 0, then the memory pattern Y' will

not be recalled when it is applied since the output of neuron (x, r + 21 x y;) is always 0.

However, if i at r + 21 x y; the memory pattern Y' will be recalled when it is applied since

the network’s convergence is not affected by the faulty neuron.
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To locate a stuck-at neuron, it is necessary to apply every memory pattern to the

network. Four cases can occur according to the stuck-at-fault analysis derived in the

previous paragraph.

Case 1: The network converges only when the memory pattern 1" is applied.

There is a stuck-at-l fault in one of the neurons in Path(r). Moreover, the divergent

neurons must be in the same stage, say x, when memory patterns other that I" are applied.

Then neuron (x, r + 21 x y;) is the faulty neuron.

Case 2: The network diverges only when I" is applied.

There is a stuck-at-O fault in one of the neurons in Path(r). Suppose the faulty

neuron is in stage x, then neuron (x, r + 21 x y;) is the faulty one.

Case 3: The network diverges when each memory pattern is applied.

There is a stuck-at-l faulty neuron which is not in Path(k) where k = l to l. The

neuron is the one whose output is always one when each memory pattern is applied.

Case 4: The network converges when each memory pattern is applied.

There is either no faulty neuron or a stuck-at-O neuron which is not in Path(k) where

k = 1 to 1. In either case, no memory is lost.

In the first three cases, if the fault has been located, the network can be restored by

replacing the faulty neuron with a spare fault-free neuron. This fault-recovery method,

shown in Figure 6-4, is to add one spare row of neurons to the original network. Suppose

that only one neuron in each stage can be faulty, one spare row is sufficient to recover the

faults. The recovery process is also shown in Figure 6-4 where the stuck-at—O neuron is

removed and a new minimum path passing through the spare neuron in stage it is assigned.
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Figure 6-4. Fault recovery process. The thick line represents the new

minimum cost path.

6.5 Comparisons

Table 6-4 shows the comparisons between the proposed network and two other

networks proposed by Kosko [38] and Wang, et al [39]. The network proposed by Wang,

et al., which used the multiple training encoding strategy, is an enhanced version of

Kosko’s network. The data shown in Table IV was obtained from [39]. In both networks,

the maximum number of stored patterns is limited. For example, the maximum number of

stored patterns is 8 for Kosko’s network and 11 for Wang’s network when the length of the

stored patterns is 100 bits. The stored patterns correspond to local minima in both Kosko’s

and Wang’s networks, while they correspond to global minima in our network.

Both other networks will fail to work if any neuron is damaged. The proposed

network can continue to work in general if the simple fault recovery mechanism discussed
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in Section 6.4 is adopted. One other major shortcoming for both Kosko and Wang’s

network is that if additional memory patterns are to be stored, the network connection

matrix must be recalculated. One the other hand, the additional patterns can be easily added

incrementally in this proposed network without any modification to previous connections

provided there are enough spare neurons.

The disadvantage of this network formulation is that the number of neurons

required is proportional to the number and length of stored patterns. However, an

architecture design using VLSI building blocks for networks of this type has been discussed

in Chapter 5. Moreover, only two types of connection weights, 0 or D are required. Thus,

it can be envision that this type of structure can ultimately be implemented using cell-based

computer-aided design much like the current compilation techniques used to configure

memory circuits.

6.6 Summary

In this chapter, an incremental autoassociative memory network based on dynamic

programming neural networks was pr0posed. The formulation of this network is very

simple and straightforward in the sense that memory patterns can be easily added to an

existing associative memory without any modification to the previous connections. It has

been shown that each stored memory pattern corresponds to a global minimum state.

Moreover, the inherent ability for fault tolerance makes the proposed network more robust.

Simulation has shown that every desired pattern can be successfully stored and recalled.

Furthermore, the extent of the basins of attraction of the global minimum state can be

adjusted by controlling parameters a and b. Even though there exist some undesired local

minimum states, it has been shown that the local minima are all on the boundary of the

domain of interest. Two examples for code recovery and pattern recognition have been

presented to demonstrate the network’s storage ability and flexibility.
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Kosko [38] Wang [39]

Network (bipolar mode) (bipolar mode) Preposed

N 8 11 not limited

# of neurons

required 200 200 N*200

global or local
minima local local global

add extra change all change all add extra

memory connections connections connections

one neuron the network the network the network can be

damaged will fail will fail I easily restored

3?:6333', unknown unknown I excellent

 

Table 6-4. Comparisons of Kosko, Wang, and the proposed

network for memory patterns with a length of 100

bits.

 



 

Chapter
 
 

7.0 Application: Dynamic

Time Warping in

Speech Recognition

This Chapter presents a neural network application for dynamic time warping in

speech recognition. The network, based on a feedback-type network for dynamic

programming, is designed such that the minimum states of the network’s energyfunction

correspond to the near-best correlation between a test anda referencepattern. Simulations

for classifying speaker-dependent isolated words, consisting of0 to 9 andA to Z, show that

the recognition rate ofthe method is as good as that ofconventional methods with the same

vocabulary set. To achieve real-time applications, a speech recognition system based on

this method, which can recognize an utterance in 200 ms with a set of1,000 references, is

also proposed.

7.1 Introduction

To classify human utterances in speech recognition systems, the utterances are

generally preprocessed into a set of spectral feature vectors or an acoustic model, and then

compared to some pro-stored reference patterns either in a deterministic (template

matching approach) or stochastic process (Hidden Markov model) [88,89]. In the template

107
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matching approach, a nonlinear time warping is required to compensate for local

compression and/or expansion of the time scales in order to find the best difference measure

between the test and reference pattern since their time scales are generally not aligned.

Dynamic time warping methods, based on traditional dynamic programming, have been

developed to perform time alignment and evaluate the difference between patterns resulting

in improved accuracy of speech recognition systems [90-92]. Computational problems,

however, exist when the difference measure is computed sequentially. The computation

time depends on the length of the feature patterns and the dimension of the search space for

evaluating the best difference measures.

Neural networks have been shown to be effective in speech recognition due to the

high computation rate attained by the use of many simple processing elements (neurons)

operating in parallel and the ability to learn by altering network parameters and connection

weights[93,94]. In this chapter, the dynamic programming neural network method is

applied to speech recognition of speaker-dependent isolated words. The neural network

method for dynamic time warping is introduced in Section 7.2. Simulations and results of

recognition of speaker-dependent isolated words, in this case the digits 0 to 9 and English

letters A to Z, are shown in Section 7.3. To perform the recognition task in real time, a

speech recognition system based on the proposed network is proposed in Section 7.4.

7.2 Dynamic Time Warping

Dynamic programming based on the Principle of Optimality has been an important

tool in speech recognition. In the recognition task, the distance between the pattern to be

recognized and each of the reference patterns has to be evaluated. Each speech pattern is

represented by a set of feature vectors regularly spaced along a time axis. These vectors can

be the outputs of a set of filters, LPC coefficients, or cepstral coefficients as will be used in

the simulations described in this chapter. Since the time scales of a test and a reference

speech pattern are generally not perfectly aligned, alignment becomes necessary in order to
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obtain the difference measure. In most cases, a nonlinear time warping technique is

required to obtain the optimal alignment since the differences between patterns in time,

frequency, and amplitude are nonlinear. Therefore, a class of algorithms known as dynamic

time warping (DTW) have been developed to perform the optimal alignment and evaluate

the difference between two patterns [90-92].

Suppose that the kth reference pattern, Rk: is a sequence of vectors Rpm, where m =

1, 2,..., M(k), and the test pattern T is a sequence of vectors Tn where n = 1, 2,..., N. An

example of time warping function w(n) is shown in Figure 7-1 with the boundary conditions

[95]

w(l) = 1, and w(N) = M(k), (7-1.1)

and continuity conditions

0,1,2 for w(n)¢w(n-1)
_ _—_- 7'1.2

w(n+1) w(n) 1,2 for w(n) =w(n-1) ( )

Equations (7-1.1) and (7-1.2) determine the dimension of the search space and each time

warping function produces a specific path in the search space.

Throughout this paper, it is assumed that the beginning and the ending points of the

test and reference patterns have been accurately located. The distance between vector Tn

and Ran) is defined as

L

2 (7",,111 —R,,,,,(,,, [1112

, _l=1 7-2d(n,w(n),k)— 1024XL ( ) 

where L is the dimension of feature vectors, and Tn[l] and Rk.w(,,)[l] are the lth component

of vector Tu and Ran), respectively. The value of every component of the feature vectors

is in the range of [0, 1024], and so is every d(n, w(n), k) for all n and k. The total distance
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Figure 7-1 An example of the time warping function and search space of the optimal

path. The path corresponding to this warping function is shown by the

hatched line.
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for the path resulting from the time warping function, that starts at grid point (1, l) and ends

at grid point (N, M(k)), can be defined as a sum of local distance d(n, w(n); k) for each (n,

w(n)) grid point of the path. Then the problem of dynamic time warping is to find an

optimal path which minimizes the sum of d(n, w(n); k) among all possible time warping

functions. The distance of the optimal path is expressed as

L

N N 2 (Tulll “Rhwpo ““2

D(k) =min2d(n,w(n);k) =min2’=1 .
 

W(') n = 1 W() n = 1 1024 X L (7-3)

Define the partial distance ofD(k) from time instantj = 1 to n as

n

D (n, w (n) ;k) = min 2 d(i, w (j) ;k) - (7-4)

“’0 j=1

The distance D(k) in the example can be efficiently computed, using the algorithm of

dynamic programming, by the following recursive equation

D(n+1,w(n+1);k) =d(n+1,w(n+1);k) +

min{D(n,w(n+1);k) xg(n)),D(n,w(n+1) -1;k),D(n,w(n+1) -2;k)}

(7-5.1)

where

00 for w(n) =w(n-1)

= 7—5.2

g(n) 1 for w(n) ¢w(n-l) ( )

such that the continuity conditions of equation (7-1.2) are satisfied [90]. In equation (7-5.1),

it is assumed that d(n, m; k) outside the search space is infinitely large.

Notice that the computation of the conventional dynamic time warping algorithm is

executed sequentially, therefore the computation time depends on the length of feature
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patterns and the dimension of the search space. On the other hand, the following method

based on a dynamic programming neural network, performs distance calculations fully in

parallel. Thus the computation time is significantly reduced and is much less dependent on

the length of patterns and the dimension of the search space.

7.2.1 A Neural Network for Dynamic Time Warping

Consider Figure 7-1 again. Assume each warping function w(n) has one and only

one value for each time instant. A valid and optimal path associated with the test pattern T

and the kth reference pattern Rk is the one which starts at grid point (1, 1), visits one and

only one grid point in each time instant, reaches grid point (N, M(k)), and has a minimum

total distance among all possible paths.

Each grid point can be conveniently considered as an individual processing

element. To develop an appropriate energy function for the network, vm. is taken as the

output of a processing element in the position (n, l); the weight for the connection cm; (“1)!-

between the grid point (n, t) and (n+1,j) is defined as w = d (n +1,j;k) for] -i
ni. (n + 1)J'

= 0, 1, and 2, or infinity. The following formal constraints are thus defined.

Following the same procedure as in Chapter 3, the neural network for dynamic time

warping can be described by the following simplified differential equation

duxi

[3
—§; (dxi,(x+1)jv(x+ 1)j+ d(x-1)j,xiv(x_1)j) (7.91)

where

_L ._— _1_ ,t anm. (79.2)

Rni pni r} '
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7.3 Network Simulation

Although it is not guaranteed that the networks can provide the globally optimal

paths, simulation results in Chapter 4 have shown that the generated paths are very close to

the optimal paths. The distances for the selected paths can then be used as difference

measures to classify speech patterns.

7.3.1 Vocabulary Set

The vocabulary set consists of 36 isolated words which are the letters A -Z and the

digits 0 - 9. Each word was spoken 15 times by a male speaker with the first 5 utterances

for reference patterns and the other 10 utterances for test patterns. The number of segments

of utterances is in the range of 30 to 50 with each segment corresponding to 10 to 20 ms of

acoustic signal. Each segment is represented by a 6-dimensional vector of cepstral

coefficients.

7.3.2 Initial Conditions

The selection of initial conditions for the networks is very important since there is

more than one equilibrium point in each associated energy function. Experiments have

shown that the optimal path usually occurs near the diagonal connecting the grid point (1,

1) and (N, M(k)) [95]. Moreover, the grid points with larger local distance should be

penalized to prevent them from being selected as valid paths. Suppose the diagonal can be

expressed as y = f(x,' k). The initial condition is defined as

vm = 0.05 x |m-f(n;k)| x 61 (3 - Im -f(n;k)|)

300 - d (n, m;k)

3000

 x 51(300— d (n. m;k)) + 0.05 (7-10)

where 81 (c) = 1 if c 2 0, and otherwise 0. Since each value of d(n, m; k) belongs to [0,

1024] in the simulation, vnm is in the range of [0.05, 0.3] for all n, and m.
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7.3.3 Results

In the simulation, the parameters or and B are set to 25 and 0.01, respectively. To

simplify the calculations, each d(n, m; k) is rounded to the nearest integer. Three methods

are simulated. The first uses the conventional time warping method described in Section

7.2 with one reference pattern. The other two, based on the neural network method for

dynamic programming described in Section 7.2.1, use one and five reference patterns,

respectively. The method with five reference patterns follows a similar classification

procedure as that of the 5-nearest-neighbor method [46]. The threshold to classify a test

pattern into a category is 2. Therefore, this method classifies a test pattern to the category

which has more than three best scores. In the case of a tie, where two categories have 2 best

scores among the best five, a test pattern will be classified into the category which has the

lowest sum of scores. Ten test patterns are used for each word to test the performance of

the networks. Therefore there are 360 test patterns in the simulation.

The recognition rates for these three methods are 87.22%, 86.66%, and 92.22%.

Note that the first two results are very close. Table 7-1 compares some distances found by

the conventional method which obtains the optimal path distances and the neural network

method for dynamic time warping with only one reference for a test utterance of A. In this

example, it happens that both methods correctly classify the test pattern. However, it is not

always true for every test pattern. In some cases, misclassifications occur in either method

or both. A similar recognition rate for the same vocabulary set and using LPC coefficients

obtained by Itakura is 88.60% for 720 utterances [90]. This is not surprising since they all

are based on dynamic time warping. Notice that the one with 5 reference patterns has much

better recognition rate than that with only one reference pattern. This fact affirms that the

k-nearest~neighbor method is superior to the nearest-neighbor method with appropriate

value of k. However, the penalty is the increase in classification time.
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Reference A B C D E F G H 1

Conventional 432 463 5534 549 2247 1711 6398 2107 1940

Neural net. 702 750 6187 739 2565 2490 9020 2158 2590

 

 

            
Table 7-1 Comparisons of distances obtained by the conventional and neural

network method for DTW for one of the test pattern A.

All digits are correctly recognized in the simulation. Most of the rnisclassifications

occur in utterances where the vowel part is identical and the difference of the consonant

part is relatively small. For example, B is often misclassified as D or V. Major

misclassifications for the neural network methods are listed in Table 7-2. It is worthy to

notice that the E test utterances are totally misclassified if only one reference pattern is

used. However, only 2 errors occur when 5 reference patterns are used.

7.4 A Speech Recognition System Based on the Proposed Network

Dynamic time warping is often implemented either on general digital signal

processors or some specially designed processors [96-99]. In this section, we propose a

neural network architecture for dynamic time warping with three salient advantages. The

first is the high computation rate due to many simple processing elements operating in

parallel, a typical feature of artificial neural networks.The second one is the attribute of

hardware fault tolerance due to the nature of collective computation in neural networks.

The network can still provide good solutions even in situations where some of the

processing elements fail to work. This is primarily due to the fact there is more than one

minimum state in the associated energy function. The third advantage comes from the

inclusion of simple processing elements and a regular structure of this architecture making

implementation of this architecture more feasible with current VLSI technology.
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Number of Errors

Test Pattern Misclassified as

1 ref. 5 ref.

B D or V 4 2

D B or V 5

E B 10 2

I Y 2 l

N M 2 2

T D or P 5 5

others 19 1 1

Total errors 48 28      
Table 7-2 Major misclassifications of the simulation for the neural network

methods. The second column lists the misclassified patterns for some

of the test patterns in the first column. The third column lists the

number of misclassifications. For example, B is misclassified 4 and 2

times in 10 attempts as D or V in the methods with one and five

reference patterns, respectively.

Figure 7-2 shows the block diagram of a speech recognition system including the

artificial neural network for dynamic time warping. This system consists of four major

parts: a signal preprocessor, a pipelined distance calculator, a control unit, and the artificial

neural network itself. An utterance signal is preprocessed by the signal processor into a

sequence of feature vectors of cepstral coefficients. The local distances, d(n, m; k), for a

test pattern and a reference pattern are calculated by the pipelined distance calculator in

order to speed up the distance calculations. The calculated distances are then sent by the

control unit to the neural network to set the connection weights of the network. The outputs

of the network are fed back to the control unit to determine the difference measure between

the test and reference pattern.

The pipelined distance calculator, shown in Figure 73, has 6 stages corresponding

to the case where the dimension of feature vectors is 8. Four stages are for addition

(subtraction), one for multiplication, and the last stage is for division. This last stage can be
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Figure 7—2. The block diagram of the speech recognition system which includes the

neural network for dynamic time warping.

  
 
  
 
  
 
  
 
  
 
  
 
  
 
   
   

r[1]-t[1] V (rm-till)2

r121-tl2] > (rlzl-tlzzl)2

r[3]-t[3] V (rlsl-tlsl)2

r[4]-l[4] > (r[4]—t[4])2

r[S]-t[51 > (r[5]-t[5])2

r[6]-t[61 V (rlél-t[6])2

r[7]-l[7] > (rm-1171)2

r[8]-t[8] r (rm-1181)2    
Figure 7-3. The pipelined local distance calculator.
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213. The control unitsimply implemented by a shift-right register since the denominator is

sets the initial conditions of the processing elements, determines the weights of the

connections, and selects the best matched reference pattern.

To give an approximate estimation of the processing speed of the system, we

assume that the cepstral coefficients of the test pattern have been obtained by the signal

preprocessor, and the processing time spent in the control unit can be neglected. Let the

maximum delay for a stage of the pipelined distance calculator be Tdelayr the number of grid

points in the search space be Ng, and the convergence time for the neural network be Tc.

Then the total processing time to classify a test pattern is approximately equal to

Kx ((Ng+5) de +Tc) (7-11)
e1ay

where K is the number of reference patterns. The stage with the maximum delay of the

distance calculator is the multiplication stage, and the convergence time of the neural

network is dependent on the RC constants of the network.

A 16-by-16 multiplier, which can be constructed by 4-by-4 binary multipliers

(SN748274) and look-ahead adders (SN74S 182), has a typical multiplication time less than

150 us [100]. Assume the length of the feature vectors is 50, then the number of grid points

in the search space is approximately equal to 500 [90]. From the experiments we have

conducted, ifRC is set to 13000, a network requires approximately 100 us to converge. If

a recognition system has 1000 reference patterns, then the processing time to classify a test

pattern is approximately equal to 200 ms, well within the limits for real-time applications.

7.5 Summary

A neural network method for dynamic time warping in speech recognition has been

proposed. Simulations for classifying speaker-dependent isolated words have shown that

the recognition rate of the method is as good as that of conventional methods with the same



1 19

vocabulary set. The recognition rate can be improved if more reference patterns are used.

An architecture based on this method has also been proposed. There are three advantages

to this proposed architecture. The first is the high computation rate due to many simple

processing elements operating in parallel. The second is the attribute of fault tolerance to

hardware faults due to the nature of collective computation of the neural network. And the

third advantage is that this architecture is simple and regular, making implementation of

this architecture feasible using current VLSI technology.



 

Chapter 8|
  

8.0 Conclusion

Dynamic programming is a very useful technique in many engineering

applications, such as optimal control, optimization, and speech recognition. Due to the

curse of dimensionality and the sequential computation nature, conventional algorithms

are not effective in many applications requiring fast, perhaps real-time, solutions. This

dissertation presents afundamentally new approach to dynamic programming, including

network formulation, analysis, simulation, implementation, and applications. The

described artificial neural network method is attractive due to its robustness and radically

improved speed over conventional techniques especially where real-time near-optimal

solutions are required.

8.1 Summary

This dissertation has presented an intensive study of applying neural networks to

dynamic programming problems. The network formulation was defined by an energy

function in which the optimal solution corresponds to the lowest energy state of the

network. Following the development of the energy function, the network equations were

determined. The network formulation has been shown to be a gradient system which

converges to one of the stable equilibria if the initial conditions are sufficiently close.

The formulated network was analytically examined from the view point of large-
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scale nonlinear systems. Properties related to the functionality of the network were proved. These

include the existence and uniqueness of the solution, the stability and convergence of the network,

the relationship between the equilibria and minima of the energy function, and the finite number

of equilibria of the network. To gain a clearer insight into the nonlinear system, each component

of the associated energy function was discussed in the extreme cases. With a —) co, the minimum

states are the valid corner states representing valid solutions. With a = 0, the zero state is the

unique minimum state. Then, the possible locations of the minimum states of the associated energy

function for different parameter values a and b were derived.

Simulations have shown that the quality of the solutions improves as the value of param-

eter b increases up to a point. However, invalid results may occur if b is greater than a certain

threshold. The network may become unstable or the minimum states may move away from their

original locations if the connection errors exceeds a certain value. In general, the smaller the cor-

responding total path of a minimum state is, the more likely the minimum state can be preserved

in its associated valid region. The basins of attraction of the network’s equilibria were also inves-

tigated. It has been shown that the number of attracted initial conditions, which can be used as an

index of the basins of attraction, increases as b is increased. Moreover, results indicate that the for-

mulated network can provide a near-optimal solution for different problems with sizes as large as

64 stages with 64 states in each stage.

An architecture based on a building block paradigm, in which the network is constructed

from neuron array and weight assignment chips, was described. Because of its simple and regular

structure, the architecture is a feasible implementation with current VLSI technology.

Two significant applications based on dynamic programming neural networks were

described in this dissertation as case studies. First, an incremental autoassociative memory

network, in which memory patterns can be easily added to an existing associative memory without

any modification to the previous connections, was proposed. It has been proven that each stored

memory pattern corresponds to a global minimum state. Simulation has shown that every desired

pattern can be successfully stored and recalled. Furthermore, the extent of the basins of attraction
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of the global minimum state can be adjusted by controlling parameters a and b. Comparison with

two other networks from the literature shows that the incremental autoassociative memory network

is more flexible and robust.

The second application is dynamic time warping in speech recognition. The network was

designed such that the minimum states of the energy function correspond to the near-best

correlation between a test and a reference pattern. Simulations for classifying speaker-dependent

isolated words, consisting of 0 to 9 and A to Z, have shown that the recognition rate of the method

is as good as that of conventional methods with the same vocabulary set. Moreover, a speech

recognition system based on this neural network method, which can recognize an utterance in 200

ms with a set of 1,000 references, was proposed.

8.2 Contributions

This dissertation has the following salient contributions:

(1) This dissertation has presented a fundamentally new and different approach to dynamic

programming. This artificial neural network method is attractive due to its robustness

and radically improved speed over conventional techniques.

(2) This dissertation has provided a new analysis method for neural networks from the

energy function point of view. These analytical results lay a mathematical foundation

for the future research.

(3) This dissertation has successfully applied the dynamic programrning neural networks to

different applications such as optimal control, autoassociative memory, speech

recognition, and flight planning.
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APPENDIX A

The 50x60 cost values:

0.000000 0.084274 0.078459 0.068828 0.044160 0.014342 0.004604 0.004604

0.007609 0.014133 0.034845 0.102514 0.112155 0.108527 0.086704 0.060406

0.042231 0.005931 0.017125 0.018539 0.038956 0.111514 0.132861 0.141905

0.124018 0.097794 0.080150 0.041049 0.044340 0.020466 0.039012 0.111668

0.133011 0.141958 0.124021 0.102154 0.083596 0.042705 0.046155 0.020466

0.039012 0.111668 0.133011 0.142258 0.124221 0.102438 0.083758 0.042992

0.046453 0.020653 0.039210 0.111930 0.134162 0.142304 0.124221 0.102438

0.083758 0.043160 0.046601 0.020745

0.000000 0.078297 0.085005 0.058051 0.038992 0.009139 0.009139 0.009139

0.009139 0.013671 0.019753 0.090301 0.091803 0.099115 0.084584 0.051351

0.011106 0.005291 0.011485 0.018510 0.019753 0.098548 0.095402 0.133081

0.121798 0.087752 0.048353 0.040422 0.041041 0.020563 0.020054 0.098789

0.095651 0.133121 0.140290 0.109107 0.060448 0.043609 0.043095 0.020563

0.020054 0.098789 0.095651 0.133121 0.140471 0.110876 0.061522 0.043877

0.043347 0.020818 0.020236 0.099391 0.095787 0.133121 0.140471 0.110876

0.061522 0.043910 0.043447 0.022108

0.000000 0.065918 0.047892 0.032700 0.018501 0.018501 0.018501 0.018501

0.018501 0.018501 0.031112 0.078490 0.052349 0.074612 0.079573 0.012063

0.029771 0.003365 0.001970 0.000951 0.031239 0.083819 0.071379 0.104705

0.114286 0.047060 0.036348 0.040704 0.006716 0.007825 0.031523 0.083872

0.071427 0.113629 0.138166 0.113242 0.078295 0.048324 0.008667 0.008854

0.031523 0.083872 0.071427 0.113629 0.138302 0.113567 0.078495 0.048604

0.008895 0.009066 0.032291 0.084066 0.071427 0.113629 0.138302 0.113567

0.078495 0.048604 0.009186 0.009891

0.095740 0.024221 0.025691 0.013847 0.008064 0.008064 0.008064 0.008064

0.008064 0.008064 0.021106 0.035518 0.029386 0.018773 0.045479 0.022924

0.016031 0.009240 0.004304 0.004002 0.021124 0.039101 0.040989 0.043687

0.077465 0.053312 0.047119 0.035041 0.007469 0.004574 0.021127 0.039101

0.040989 0.066690 0.122496 0.094759 0.084801 0.073846 0.011204 0.012461

0.021852 0.039101 0.040997 0.066740 0.122733 0.094988 0.084901 0.074097

0.013410 0.012547 0.021880 0.039101 0.040997 0.066740 0.122733 0.094988

0.084901 0.074097 0.013410 0.012817
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0.084196 0.008955 0.001701 0.001701 0.001701 0.001701 0.001701 0.001701

0.001701 0.001701 0.010239 0.013617 0.008643 0.006131 0.018624 0.013942

0.014948 0.008470 0.004492 0.004175 0.010309 0.014043 0.014882 0.020080

0.022032 0.035962 0.035928 0.011133 0.005481 0.004341 0.010374 0.018089

0.082452 0.061164 0.079141 0.131332 0.101828 0.045423 0.008961 0.005942

0.010374 0.018089 0.082465 0.061231 0.079410 0.131669 0.102035 0.045789

0.009334 0.006072 0.010374 0.018089 0.082465 0.061231 0.079410 0.131669

0.102035 0.045789 0.009334 0.006072

0.079307 0.079307 0.079307 0.079307 0.079307 0.079307 0.079307 0.079307

0.079307 0.079307 0.079307 0.001504 0.001664 0.003166 0.003734 0.003317

0.003722 0.001779 0.001067 0.000816 0.000985 0.001587 0.001764 0.007138

0.010230 0.010728 0.004610 0.002269 0.001519 0.000983 0.005858 0.009982

0.018336 0.063641 0.078575 0.027667 0.014481 0.007524 0.003569 0.000983

0.005858 0.009985 0.018355 0.064170 0.078843 0.028146 0.014745 0.007819

0.003909 0.001113 0.005858 0.009985 0.018355 0.064170 0.078843 0.028146

0.014745 0.007819 0.003909 0.001113

0.074540 0.074540 0.074540 0.074540 0.074540 0.074540 0.074540 0.074540

0.074540 0.074540 0.074540 0.074540 0.074540 0.074540 0.002125 0.002196

0.001317 0.000496 0.000330 0.000519 0.000634 0.002134 0.001621 0.001202

0.004060 0.004477 0.001511 0.001702 0.000562 0.000785 0.002441 0.006723

0.011156 0.046189 0.079500 0.017260 0.001511 0.001702 0.000562 0.000785

0.002441 0.006723 0.011194 0.046317 0.079867 0.017833 0.001649 0.001800

0.000680 0.000818 0.002441 0.006727 0.011194 0.046317 0.079867 0.017833

0.001649 0.001800 0.000680 0.000818

0.089847 0.089847 0.089847 0.089847 0.089847 0.089847 0.089847 0.089847

0.089847 0.089847 0.089847 0.001582 0.001582 0.001582 0.001436 0.001436

0.001436 0.001436 0.000840 0.000581 0.000957 0.001808 0.001808 0.001808

0.002554 0.002554 0.002554 0.003443 0.001050 0.000845 0.001096 0.002891

0.005736 0.008696 0.007455 0.004714 0.004714 0.003443 0.002202 0.000845

0.001096 0.002908 0.005802 0.009602 0.007760 0.004991 0.003652 0.003499

0.002309 0.000879 0.001096 0.002908 0.005802 0.009602 0.007760 0.004991

0.003652 0.003499 0.002309 0.000879

0.089367 0.089367 0.089367 0.089367 0.089367 0.089367 0.089367 0.089367

0.089367 0.089367 0.089367 0.001567 0.000687 0.000687 0.000687 0.000687

0.000251 0.000413 0.000326 0.000494 0.001775 0.003315 0.001771 0.001771

0.001771 0.001119 0.000396 0.000718 0.000655 0.000873 0.001995 0.004231

0.003756 0.006838 0.004328 0.001180 0.000396 0.000718 0.000655 0.000873

0.001996 0.004259 0.003909 0.007110 0.004503 0.001435 0.001278 0.000863

0.001953 0.000922 0.001996 0.004259 0.003909 0.007110 0.004503 0.001435

0.001278 0.000863 0.001953 0.000922
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0.096186 0.104923 0.142991 0.139899 0.123460 0.093852 0.044177 0.051987

0.027380 0.021356 0.039847 0.106748 0.143206 0.139971 0.123507 0.093921

0.046200 0.052235 0.027479 0.024214 0.039989 0.106785 0.143207 0.140299

0.123623 0.094110 0.046389 0.053425 0.027684 0.024637 0.040350 0.106988

0.143339 0.140966 0.125173 0.094286 0.046487 0.053489 0.027743 0.024709

0.040439 0.108220 0.143653 0.143040 0.126656 0.094639 0.046665 0.053637

0.028049 0.025566 0.040445 0.108220 0.143653 0.143040 0.126656 0.094639

0.046665 0.053637 0.028049 0.025566

0.074625 0.113498 0.134280 0.142469 0.124337 0.102448 0.083758 0.043160

0.046601 0.020745 0.039501 0.113721 0.134400 0.143201 0.133389 0.106048

0.087341 0.046488 0.052456 0.024666 0.040583 0.114253 0.134449 0.143201

0.133819 0.106195 0.087569 0.046672 0.052620 0.025012 0.040961 0.114555

0.134709 0.143830 0.133936 0.107998 0.087802 0.046803 0.052738 0.025196

0.041180 0.116807 0.136736 0.144040 0.134329 0.108437 0.088521 0.047662

0.053017 0.025350 0.041180 0.116807 0.136736 0.144040 0.134329 0.108437

0.088521 0.047913 0.053023 0.025377

0.075134 0.101420 0.095907 0.134315 0.141322 0.110974 0.061522 0.043910

0.043447 0.022108 0.021378 0.101420 0.095941 0.135529 0.145395 0.126147

0.086452 0.048697 0.051433 0.025200 0.023065 0.102345 0.096234 0.135529

0.145395 0.126200 0.088035 0.048942 0.051521 0.025377 0.023304 0.102509

0.097863 0.135713 0.146094 0.126329 0.088215 0.049067 0.051618 0.025444

0.023454 0.102656 0.097959 0.136141 0.147216 0.126750 0.089733 0.049199

0.051731 0.025444 0.023454 0.102656 0.097959 0.136141 0.147216 0.126819

0.091398 0.049593 0.052151 0.025444

0.088932 0.085376 0.071478 0.114632 0.138420 0.113645 0.078495 0.048604

0.009186 0.009891 0.033774 0.085376 0.071478 0.114812 0.142974 0.121308

0.085924 0.054358 0.027330 0.015630 0.036933 0.085819 0.071777 0.114812

0.142974 0.121308 0.086052 0.054462 0.027375 0.015664 0.036997 0.085899

0.071899 0.116411 0.144107 0.121378 0.086164 0.054533 0.027488 0.015745

0.037034 0.085968 0.072091 0.116626 0.144285 0.121613 0.086410 0.054619

0.027488 0.015745 0.037034 0.085968 0.072124 0.117036 0.145507 0.130535

0.087936 0.055993 0.032256 0.015970

0.091389 0.040357 0.041684 0.068088 0.122892 0.095079 0.084901 0.074097

0.013410 0.012817 0.022078 0.040357 0.041684 0.072424 0.132912 0.116698

0.146721 0.086507 0.018820 0.016978 0.023929 0.041328 0.042153 0.072431

0.132912 0.116698 0.146773 0.086507 0.018820 0.016999 0.023975 0.041385

0.042281 0.072647 0.133180 0.116939 0.146957 0.086507 0.018820 0.016999

0.024044 0.041453 0.042469 0.072806 0.133312 0.117112 0.147021 0.086507

0.018820 0.016999 0.024044 0.041524 0.042621 0.073858 0.135326 0.120654

0.151169 0.105772 0.035364 0.018110
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0.065059 0.019289 0.082968 0.062783 0.081108 0.131742 0.102035 0.045789

0.009334 0.006072 0.011181 0.019289 0.083551 0.066265 0.092754 0.210739

0.154901 0.090700 0.059835 0.015111 0.014591 0.028154 0.084261 0.070244

0.092754 0.210739 0.154901 0.090700 0.059835 0.015125 0.014623 0.028200

0.084337 0.070346 0.092850 0.210884 0.155013 0.090700 0.059835 0.015125

0.014623 0.028200 0.084452 0.070416 0.092884 0.211148 0.155013 0.090700

0.059835 0.015125 0.014623 0.028270 0.085198 0.073440 0.097452 0.217360

0.188825 0.124065 0.086112 0.030682

0.059192 0.011365 0.018425 0.065374 0.079084 0.029137 0.015159 0.007819

0.003909 0.001113 0.005908 0.011440 0.021838 0.071727 0.095355 0.064497

0.054709 0.047702 0.041985 0.038599 0.008802 0.022501 0.026781 0.072783

0.095355 0.064497 0.054775 0.047702 0.041985 0.038602 0.008809 0.022531

0.026812 0.072813 0.095371 0.064539 0.054821 0.047702 0.041985 0.038602

0.008809 0.022531 0.026838 0.073134 0.096962 0.066890 0.055162 0.047702

0.041985 0.038602 0.008809 0.022761 0.032459 0.077636 0.103061 0.103206

0.090400 0.082687 0.075780 0.059898

0.087031 0.008631 0.012501 0.047269 0.080993 0.018009 0.001791 0.001846

0.000680 0.000818 0.002490 0.008631 0.012501 0.054877 0.093342 0.043162

0.038811 0.041978 0.014666 0.029396 0.016179 0.010026 0.016472 0.054877

0.093342 0.043162 0.038940 0.042209 0.014829 0.029525 0.016306 0.010089

0.016488 0.054887 0.093353 0.043179 0.038940 0.042209 0.014829 0.029525

0.016306 0.012688 0.020454 0.062141 0.102047 0.052207 0.043750 0.042409

0.014829 0.029525 0.016306 0.013014 0.028045 0.083752 0.134096 0.087636

0.080198 0.079019 0.049327 0.057656

0.073765 0.004105 0.007291 0.011094 0.008751 0.005700 0.004785 0.003676

0.003106 0.000933 0.001675 0.004157 0.008082 0.017533 0.018797 0.022157

0.028976 0.010188 0.006952 0.002985 0.003010 0.009079 0.011137 0.017533

0.018797 0.022187 0.030298 0.012125 0.007749 0.004068 0.003302 0.009203

0.011209 0.017545 0.018799 0.022187 0.030301 0.012129 0.007749 0.004068

0.003302 0.015053 0.023259 0.036834 0.042815 0.041243 0.047361 0.013460

0.008224 0.004097 0.003302 0.015053 0.024276 0.056289 0.076209 0.077581

0.085022 0.050051 0.042550 0.008519

0.057531 0.005027 0.004842 0.007411 0.006030 0.001863 0.001417 0.001142

0.002213 0.002282 0.002198 0.006177 0.006476 0.011748 0.011158 0.003242

0.003590 0.002511 0.002809 0.003359 0.011633 0.006914 0.007062 0.011748

0.011187 0.003356 0.003788 0.002700 0.002858 0.003505 0.011910 0.007575

0.007251 0.011748 0.011187 0.003356 0.003788 0.002703 0.002858 0.003505

0.014819 0.020207 0.031794 0.043173 0.044164 0.037296 0.029755 0.018699

0.007715 0.003534 0.014819 0.020259 0.035568 0.045513 0.069374 0.071268

0.064554 0.053220 0.036960 0.007050
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0.040026 0.108685 0.143757 0.143217 0.126837 0.095779 0.047268 0.054559

0.029453 0.026731 0.040563 0.109361 0.143905 0.143613 0.127936 0.101525

0.048228 0.060819 0.030344 0.028010 0.041548 0.109680 0.144937 0.143635

0.128047 0.101727 0.049095 0.061472 0.030491 0.028206 0.041716 0.109757

0.145161 0.143642 0.128047 0.101727 0.049095 0.061472 0.030491 0.028415

0.046720 0.128485 0.176477 0.178744 0.165046 0.138163 0.084097 0.065296

0.039891 0.028678 0.046720 0.128505 0.178314 0.187154 0.183469 0.160480

0.111180 0.090787 0.059823 0.038243

0.047013 0.117183 0.136810 0.144576 0.135351 0.110064 0.089556 0.047992

0.054027 0.026606 0.042427 0.117986 0.137684 0.145172 0.135562 0.110433

0.095218 0.052736 0.055827 0.026653 0.042459 0.118032 0.137738 0.145282

0.135686 0.110611 0.095329 0.052873 0.056015 0.026865 0.042587 0.118075

0.137761 0.145292 0.135686 0.110611 0.095329 0.052873 0.056015 0.027079

0.050892 0.140764 0.170776 0.182250 0.172903 0.148729 0.130135 0.079020

0.065624 0.028882 0.050892 0.140764 0.171657 0.184366 0.180301 0.160796

0.144143 0.094425 0.073872 0.034107

0.041253 0.102995 0.098010 0.136720 0.148225 0.127043 0.093088 0.049814

0.053680 0.027087 0.025608 0.104472 0.099459 0.138320 0.150196 0.128968

0.094932 0.053199 0.053984 0.027330 0.025718 0.104563 0.099624 0.138565

0.150356 0.129092 0.096500 0.053474 0.054142 0.027440 0.025820 0.104611

0.099644 0.138604 0.150356 0.129092 0.096500 0.053474 0.054142 0.027440

0.032096 0.124894 0.133494 0.174308 0.188385 0.167040 0.130805 0.076223

0.055975 0.027914 0.032126 0.124894 0.133494 0.174311 0.189647 0.170413

0.136814 0.078218 0.058205 0.028983

0.028983 0.086133 0.072167 0.117093 0.146094 0.131324 0.088969 0.056150

0.033415 0.016084 0.037198 0.086859 0.073255 0.118597 0.146539 0.131541

0.089098 0.056339 0.033698 0.016274 0.037337 0.086953 0.073255 0.118709

0.146666 0.131644 0.089347 0.058012 0.033825 0.016322 0.037402 0.086998

0.073283 0.118713 0.146666 0.131644 0.089347 0.058012 0.033825 0.016322

0.041184 0.089605 0.099125 0.151874 0.153545 0.170811 0.118776 0.081311

0.034687 0.016452 0.041184 0.089605 0.099125 0.151874 0.153545 0.171295

0.119203 0.081311 0.034687 0.016452

0.008839 0.041566 0.042640 0.073895 0.135505 0.120885 0.151201 0.106167

0.036072 0.018172 0.027109 0.041948 0.042771 0.074637 0.135642 0.120990

0.151311 0.106205 0.036177 0.019206 0.027241 0.042024 0.042771 0.074637

0.135704 0.121129 0.151438 0.106991 0.036257 0.019268 0.027283 0.042119

0.042848 0.074673 0.135704 0.121129 0.151438 0.106991 0.036257 0.019272

0.029080 0.050554 0.060769 0.096649 0.162990 0.147307 0.155325 0.108597

0.036442 0.019273 0.029080 0.050554 0.060769 0.096649 0.162990 0.147307

0.155325 0.108597 0.036442 0.019273
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0.019273 0.028270 0.085204 0.073456 0.097540 0.217480 0.188841 0.124287

0.086159 0.030723 0.019661 0.028652 0.085772 0.073541 0.097562 0.217563

0.188844 0.124429 0.086353 0.030978 0.019760 0.028826 0.085772 0.073541

0.097701 0.217821 0.188896 0.124510 0.086422 0.031052 0.019825 0.029074

0.086038 0.073662 0.097701 0.217821 0.188896 0.124521 0.086422 0.031071

0.020523 0.031002 0.093305 0.085795 0.112160 0.233943 0.190266 0.125467

0.086422 0.031071 0.020523 0.031002 0.093305 0.085795 0.112160 0.233943

0.190266 0.125467 0.086422 0.031071

0.031071 0.022761 0.032459 0.077638 0.103061 0.103207 0.090400 0.082687

0.075782 0.059906 0.010543 0.022819 0.032790 0.077677 0.103197 0.103207

0.090532 0.082764 0.075946 0.060039 0.010682 0.022929 0.032790 0.077677

0.103270 0.103315 0.090577 0.082802 0.075977 0.060101 0.010770 0.023272

0.032848 0.077982 0.103575 0.103544 0.090656 0.082914 0.076041 0.060215

0.010815 0.023272 0.034040 0.078579 0.104561 0.103848 0.091061 0.083988

0.076041 0.060215 0.010815 0.023272 0.034040 0.078579 0.104561 0.103848

0.091061 0.083988 0.076041 0.060215

0.060215 0.013014 0.028045 0.083752 0.134096 0.087636 0.080198 0.079019

0.049327 0.057658 0.018233 0.013030 0.028056 0.083837 0.134103 0.087652

0.080247 0.079047 0.049429 0.057733 0.018278 0.013059 0.028056 0.083837

0.134103 0.087681 0.080274 0.079078 0.049469 0.057806 0.018367 0.013111

0.028557 0.084311 0.134757 0.088132 0.080472 0.079324 0.049617 0.057847

0.018588 0.013118 0.028557 0.084757 0.135099 0.088132 0.080472 0.079324

0.049617 0.057847 0.018588 0.013118 0.028557 0.084757 0.135099 0.088132

0.080472 0.079324 0.049617 0.057847

0.000000 0.015053 0.024276 0.056289 0.076209 0.077581 0.085022 0.050051

0.042550 0.008519 0.004797 0.015053 0.024276 0.056298 0.076209 0.077581

0.085030 0.050071 0.042613 0.008554 0.004824 0.015079 0.024276 0.056303

0.076209 0.077609 0.085065 0.050118 0.042736 0.008749 0.004959 0.015168

0.025359 0.057238 0.077264 0.077775 0.086000 0.050877 0.043252 0.008833

0.005397 0.015193 0.025405 0.057238 0.077264 0.077775 0.086000 0.050877

0.043252 0.008833 0.005397 0.015259 0.025405 0.057238 0.077264 0.077775

0.086000 0.050877 0.043252 0.008833

0.000000 0.020259 0.035568 0.045513 0.069374 0.071268 0.064554 0.053220

0.036960 0.007050 0.020442 0.020259 0.035568 0.045515 0.069374 0.071269

0.064554 0.053220 0.037042 0.007060 0.020442 0.020259 0.035568 0.045525

0.069390 0.071293 0.064617 0.053355 0.037191 0.007214 0.020568 0.020437

0.035877 0.045796 0.069609 0.071516 0.066383 0.054909 0.037352 0.007885

0.020697 0.020851 0.035896 0.045901 0.069609 0.071516 0.066383 0.054946

0.037390 0.008062 0.021118 0.021304 0.036060 0.045901 0.069619 0.071534

0.066388 0.054946 0.037390 0.008062
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0.000000 0.128505 0.178314 0.187154 0.183469 0.160480 0.111180 0.090787

0.059823 0.038243 0.048043 0.128505 0.178314 0.187154 0.183469 0.160480

0.111180 0.090787 0.059823 0.038247 0.048043 0.128514 0.178332 0.187170

0.183469 0.160526 0.111261 0.090928 0.059881 0.038310 0.048144 0.128602

0.178496 0.187377 0.184589 0.161360 0.112292 0.091174 0.060054 0.038878

0.048582 0.128728 0.178634 0.187378 0.184589 0.161360 0.112292 0.091630

0.060703 0.040293 0.049975 0.139709 0.184752 0.188268 0.184808 0.161760

0.112414 0.091637 0.060716 0.040295

0.000000 0.140764 0.171657 0.184366 0.180301 0.160796 0.144143 0.094425

0.073872 0.034107 0.050892 0.140764 0.171657 0.184366 0.180301 0.160796

0.144143 0.094425 0.073872 0.034107 0.050903 0.140791 0.171703 0.184385

0.180301 0.160853 0.144329 0.094501 0.073911 0.034159 0.051026 0.140853

0.171823 0.185440 0.181606 0.161755 0.144807 0.095648 0.075274 0.035310

0.051774 0.140958 0.172098 0.185567 0.181720 0.162626 0.145326 0.104534

0.090163 0.055429 0.055113 0.144102 0.173994 0.186744 0.182133 0.162684

0.145385 0.105021 0.090206 0.055451

0.055451 0.124894 0.133494 0.174311 0.189647 0.170413 0.136814 0.078218

0.058205 0.028983 0.032126 0.124894 0.133494 0.174311 0.189647 0.170413

0.136814 0.078218 0.058205 0.028985 0.032138 0.124927 0.133566 0.174338

0.189677 0.170500 0.136995 0.078326 0.058315 0.029075 0.032381 0.125046

0.133760 0.175678 0.191456 0.172373 0.138087 0.078748 0.060046 0.031166

0.033522 0.125861 0.134398 0.175896 0.192218 0.173957 0.151243 0.102475

0.085342 0.063468 0.067472 0.158959 0.161036 0.192567 0.192968 0.174087

0.151317 0.103293 0.085915 0.063849

0.063849 0.089605 0.099125 0.151874 0.153545 0.171295 0.119203 0.081311

0.034687 0.016452 0.041184 0.089605 0.099125 0.151874 0.153545 0.171295

0.119203 0.081311 0.034687 0.016452 0.041194 0.089639 0.099216 0.151975

0.153646 0.171363 0.119311 0.081399 0.034811 0.016681 0.041315 0.089698

0.099893 0.152575 0.155003 0.173385 0.121281 0.082099 0.038341 0.018959

0.042862 0.090982 0.100031 0.153155 0.157773 0.194173 0.126090 0.103422

0.087879 0.061593 0.079755 0.126793 0.133556 0.174598 0.168289 0.194348

0.126221 0.104715 0.089285 0.062824

0.000000 0.050554 0.060769 0.096649 0.162990 0.147307 0.155325 0.108597

0.036442 0.019273 0.029080 0.050554 0.060769 0.096649 0.162990 0.147307

0.155325 0.108597 0.036442 0.019274 0.029097 0.050595 0.060874 0.096852

0.163126 0.147381 0.155374 0.108694 0.036624 0.019741 0.029108 0.050595

0.060875 0.096852 0.166342 0.152923 0.167025 0.119680 0.047138 0.025923

0.030742 0.050858 0.061037 0.098967 0.197857 0.185960 0.200736 0.177100

0.105375 0.077186 0.072076 0.087498 0.095651 0.102021 0.198907 0.186483

0.200989 0.178591 0.106959 0.078820



129

0.000000 0.128505 0.178314 0.187154 0.183469 0.160480 0.111180 0.090787

0.059823 0.038243 0.048043 0.128505 0.178314 0.187154 0.183469 0.160480

0.111180 0.090787 0.059823 0.038247 0.048043 0.128514 0.178332 0.187170

0.183469 0.160526 0.111261 0.090928 0.059881 0.038310 0.048144 0.128602

0.178496 0.187377 0.184589 0.161360 0.112292 0.091174 0.060054 0.038878

0.048582 0.128728 0.178634 0.187378 0.184589 0.161360 0.112292 0.091630

0.060703 0.040293 0.049975 0.139709 0.184752 0.188268 0.184808 0.161760

0.112414 0.091637 0.060716 0.040295

0.000000 0.140764 0.171657 0.184366 0.180301 0.160796 0.144143 0.094425

0.073872 0.034107 0.050892 0.140764 0.171657 0.184366 0.180301 0.160796

0.144143 0.094425 0.073872 0.034107 0.050903 0.140791 0.171703 0.184385

0.180301 0.160853 0.144329 0.094501 0.073911 0.034159 0.051026 0.140853

0.171823 0.185440 0.181606 0.161755 0.144807 0.095648 0.075274 0.035310

0.051774 0.140958 0.172098 0.185567 0.181720 0.162626 0.145326 0.104534

0.090163 0.055429 0.055113 0.144102 0.173994 0.186744 0.182133 0.162684

0.145385 0.105021 0.090206 0.055451

0.055451 0.124894 0.133494 0.174311 0.189647 0.170413 0.136814 0.078218

0.058205 0.028983 0.032126 0.124894 0.133494 0.174311 0.189647 0.170413

0.136814 0.078218 0.058205 0.028985 0.032138 0.124927 0.133566 0.174338

0.189677 0.170500 0.136995 0.078326 0.058315 0.029075 0.032381 0.125046

0.133760 0.175678 0.191456 0.172373 0.138087 0.078748 0.060046 0.031166

0.033522 0.125861 0.134398 0.175896 0.192218 0.173957 0.151243 0.102475

0.085342 0.063468 0.067472 0.158959 0.161036 0.192567 0.192968 0.174087

0.151317 0.103293 0.085915 0.063849

0.063849 0.089605 0.099125 0.151874 0.153545 0.171295 0.119203 0.081311

0.034687 0.016452 0.041184 0.089605 0.099125 0.151874 0.153545 0.171295

0.119203 0.081311 0.034687 0.016452 0.041194 0.089639 0.099216 0.151975

0.153646 0.171363 0.119311 0.081399 0.034811 0.016681 0.041315 0.089698

0.099893 0.152575 0.155003 0.173385 0.121281 0.082099 0.038341 0.018959

0.042862 0.090982 0.100031 0.153155 0.157773 0.194173 0.126090 0.103422

0.087879 0.061593 0.079755 0.126793 0.133556 0.174598 0.168289 0.194348

0.126221 0.104715 0.089285 0.062824

0.000000 0.050554 0.060769 0.096649 0.162990 0.147307 0.155325 0.108597

0.036442 0.019273 0.029080 0.050554 0.060769 0.096649 0.162990 0.147307

0.155325 0.108597 0.036442 0.019274 0.029097 0.050595 0.060874 0.096852

0.163126 0.147381 0.155374 0.108694 0.036624 0.019741 0.029108 0.050595

0.060875 0.096852 0.166342 0.152923 0.167025 0.119680 0.047138 0.025923

0.030742 0.050858 0.061037 0.098967 0.197857 0.185960 0.200736 0.177100

0.105375 0.077186 0.072076 0.087498 0.095651 0.102021 0.198907 0.186483

0.200989 0.178591 0.106959 0.078820
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0.000000 0.031002 0.093305 0.085795 0.112160 0.233943 0.190266 0.125467

0.086422 0.031071 0.020523 0.031002 0.093305 0.085795 0.112160 0.233943

0.190266 0.125467 0.086422 0.031071 0.020540 0.031310 0.093474 0.085988

0.112245 0.234005 0.190362 0.125608 0.086516 0.031087 0.020540 0.031310

0.093474 0.086002 0.119292 0.249645 0.211239 0.151128 0.108303 0.049731

0.028496 0.031885 0.093762 0.087494 0.161705 0.286236 0.247868 0.189686

0.175708 0.105676 0.066388 0.068014 0.129229 0.108173 0.162992 0.286616

0.248051 0.190621 0.176208 0.106599

0.106599 0.023272 0.034040 0.078579 0.104561 0.103848 0.091061 0.083988

0.076041 0.060215 0.010815 0.023272 0.034040 0.078579 0.104561 0.103848

0.091061 0.083988 0.076041 0.060215 0.011054 0.023768 0.034207 0.080103

0.104609 0.103967 0.091331 0.084095 0.076168 0.060215 0.011054 0.023768

0.034207 0.084265 0.120884 0.129146 0.124864 0.118300 0.111812 0.088513

0.026512 0.024997 0.034360 0.084460 0.126202 0.176799 0.165853 0.156333

0.171793 0.126444 0.060578 0.058192 0.061962 0.087260 0.126724 0.177847

0.167075 0.157888 0.172857 0.126538

0.126538 0.013118 0.028557 0.084757 0.135099 0.088132 0.080472 0.079324

0.049617 0.057847 0.018588 0.013118 0.028557 0.084757 0.135099 0.088132

0.080472 0.079324 0.049617 0.057851 0.018644 0.013902 0.028725 0.084980

0.135952 0.089921 0.080706 0.079702 0.049617 0.057851 0.018644 0.013902

0.029001 0.092446 0.155197 0.123206 0.116710 0.116875 0.086617 0.092593

0.041215 0.028283 0.029199 0.092486 0.155257 0.133727 0.165289 0.154661

0.136201 0.132680 0.074098 0.050353 0.046957 0.101128 0.155453 0.135035

0.166705 0.156599 0.138162 0.133725

0.000000 0.015259 0.025405 0.057238 0.077264 0.077775 0.086000 0.050877

0.043252 0.008833 0.005397 0.015259 0.025405 0.057238 0.077264 0.077775

0.086000 0.050877 0.043255 0.008846 0.005446 0.015841 0.025522 0.057474

0.077394 0.077972 0.086143 0.051066 0.043255 0.008846 0.005446 0.015841

0.026942 0.065499 0.102799 0.111010 0.123907 0.088142 0.080180 0.044463

0.032247 0.017881 0.030886 0.065526 0.102849 0.111035 0.135543 0.139015

0.115101 0.069569 0.046775 0.030179 0.031755 0.066304 0.102913 0.111532

0.135930 0.139770 0.116197 0.070718

0.070718 0.024567 0.036060 0.045901 0.069619 0.071534 0.066388 0.054946

0.037390 0.008062 0.021118 0.024567 0.036060 0.045901 0.069619 0.071534

0.066388 0.054946 0.037399 0.008103 0.021185 0.025188 0.036217 0.048039

0.070593 0.071679 0.066545 0.055177 0.037399 0.008103 0.021185 0.025188

0.036217 0.056068 0.090974 0.105671 0.103295 0.092529 0.074999 0.014833

0.044657 0.027209 0.041229 0.056134 0.091043 0.105713 0.103315 0.098465

0.099828 0.018908 0.049272 0.027749 0.042471 0.056170 0.091043 0.105713

0.103315 0.098465 0.100126 0.019830
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0.000000 0.139709 0.184752 0.188268 0.184808 0.161760 0.112414 0.091637

0.060716 0.040295 0.049979 0.139709 0.184752 0.188268 0.184808 0.161760

0.112414 0.091637 0.060724 0.040331 0.050031 0.139768 0.185885 0.188466

0.184886 0.161932 0.112520 0.091828 0.060724 0.040331 0.050031 0.139768

0.185885 0.192661 0.199693 0.188126 0.146766 0.127541 0.096489 0.072710

0.069377 0.140991 0.186069 0.192760 0.200181 0.188154 0.146856 0.130148

0.109018 0.073762 0.069494 0.141052 0.186069 0.192760 0.200181 0.188154

0.146856 0.130148 0.109018 0.074167

0.000000 0.144102 0.173994 0.186744 0.182133 0.162684 0.145385 0.105021

0.090206 0.055451 0.055136 0.144102 0.173994 0.186744 0.182133 0.162684

0.145385 0.105021 0.090212 0.055488 0.055209 0.144423 0.174540 0.189496

0.182459 0.163212 0.145723 0.105272 0.090212 0.055488 0.055209 0.144423

0.174540 0.191818 0.190233 0.180591 0.166442 0.132360 0.121665 0.060357

0.056942 0.144649 0.174739 0.192754 0.190326 0.180605 0.166442 0.132460

0.121986 0.060796 0.057014 0.144649 0.174739 0.192754 0.190326 0.180605

0.166442 0.132460 0.121986 0.060796

0.000000 0.158959 0.161036 0.192567 0.192968 0.174087 0.151317 0.103293

0.085915 0.063849 0.067798 0.158959 0.161036 0.192567 0.192968 0.174087

0.151317 0.103293 0.085921 0.063890 0.067873 0.161062 0.165771 0.201739

0.204946 0.185276 0.152326 0.104707 0.085921 0.063890 0.067873 0.161062

0.165771 0.201800 0.205216 0.190694 0.162218 0.106746 0.101512 0.074500

0.069038 0.161147 0.167737 0.201933 0.205283 0.190708 0.162218 0.106746

0.101549 0.074704 0.069046 0.161147 0.167737 0.201933 0.205283 0.190708

0.162218 0.106746 0.101549 0.074704

0.000001 0.126793 0.133556 0.174598 0.168289 0.194348 0.126221 0.104715

0.089285 0.062824 0.080694 0.126793 0.133556 0.174598 0.168289 0.194348

0.126221 0.104715 0.089290 0.062849 0.080731 0.131140 0.145080 0.195873

0.193692 0.218867 0.129024 0.113841 0.094097 0.063435 0.080731 0.131140

0.145080 0.195873 0.193692 0.219593 0.129719 0.114618 0.094470 0.063765

0.080890 0.131271 0.145164 0.195937 0.193722 0.219593 0.129719 0.114638

0.094553 0.063765 0.080890 0.131271 0.145164 0.195937 0.193722 0.219593

0.129719 0.114638 0.094553 0.063765

0.000000 0.087498 0.095651 0.102021 0.198907 0.186483 0.200989 0.178591

0. 106959 0.078820 0.072310 0.087498 0.095651 0.102021 0.198907 0.186483

0200989 0.178591 0.106960 0.078827 0.074611 0.097926 0.119055 0.132910

0.233182 0.222195 0.204930 0.182597 0.114702 0.080378 0.074611 0.097926

0- l19055 0.132910 0.233182 0.222356 0.205708 0.183887 0.114899 0.081128

0.075752 0.098185 0.119312 0.132988 0.233210 0.222360 0.205730 0.183887

0. 1 14972 0.081318 0.075757 0.098185 0.119312 0.132988 0.233210 0.222360

0.205730 0.183887 0.114972 0.081318
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0.000000 0.068014 0.129229 0.108173 0.162992 0.286616 0.248051 0.190621

0.176208 0.106599 0.066601 0.068014 0.129229 0.108173 0.162992 0.286616

0.248051 0.190621 0.176208 0.107542 0.070766 0.083223 0.157788 0.142298

0.199701 0.325753 0.253098 0.195019 0.190810 0.109497 0.071444 0.083529

0.158170 0.142609 0.200165 0.326739 0.254552 0.196198 0.190908 0.109733

0.071671 0.083804 0.158407 0.142713 0.200212 0.326765 0.254651 0.196198

0.190908 0.109782 0.071671 0.083804 0.158407 0.142713 0.200212 0.326765

0.254651 0.196198 0.190908 0.109782

0.000000 0.058192 0.061962 0.087260 0.126724 0.177847 0.167075 0.157888

0.172857 0.126538 0.060728 0.058192 0.061962 0.087260 0.126724 0.177847

0.167075 0.157888 0.172857 0.126538 0.066673 0.075531 0.091114 0.123350

0.163657 0.217404 0.172067 0.184240 0.186152 0.132903 0.068504 0.076853

0.092280 0.124453 0.165032 0.219513 0.173767 0.184389 0.186403 0.135049

0.068754 0.077170 0.092597 0.124622 0.165115 0.219593 0.173885 0.184389

0.186403 0.135049 0.068754 0.077170 0.092597 0.124622 0.165115 0.219593

0.173885 0.184389 0.186403 0.135049

0.000000 0.050353 0.046957 0.101128 0.155453 0.135035 0.166705 0.156599

0.138162 0.133725 0.074434 0.050353 0.046957 0.101128 0.155453 0.135035

0.166705 0.156599 0.138162 0.133725 0.076810 0.066875 0.074410 0.135521

0.192525 0.172302 0.171228 0.181058 0.150824 0.137905 0.078895 0.068217

0.075507 0.136365 0.193682 0.173548 0.172129 0.181220 0.151089 0.138206

0.079171 0.068901 0.075748 0.136459 0.193705 0.173553 0.172129 0.181220

0.151089 0.138206 0.079171 0.068901 0.075748 0.136459 0.193705 0.173553

0.172129 0.181220 0.151089 0.138206

0.138206 0.030179 0.031755 0.066304 0.102913 0.111532 0.135930 0.139770

0.116197 0.070718 0.047585 0.030179 0.031755 0.066304 0.102913 0.111532

0.135930 0.139770 0.116197 0.070718 0.049797 0.039195 0.053889 0.097568

0.137946 0.146238 0.163959 0.161490 0.124380 0.072223 0.050610 0.040171

0.054877 0.098156 0.138637 0.146752 0.164624 0.163051 0.124561 0.073116

0.051210 0.040335 0.055034 0.098221 0.138646 0.146752 0.164624 0.163051

0.124561 0.073116 0.051210 0.040335 0.055034 0.098221 0.138646 0.146752

0.164624 0.163051 0.124561 0.073522

0.073522 0.027749 0.042471 0.056170 0.091043 0.105713 0.103315 0.098465

0.100126 0.019830 0.050543 0.027749 0.042471 0.056170 0.091043 0.105713

0.103315 0.098465 0.100126 0.019830 0.051697 0.033674 0.054250 0.076674

0.116309 0.108810 0.122090 0.109019 0.103749 0.021322 0.053206 0.035177

0.056358 0.078152 0.117612 0.110205 0.123631 0.109298 0.104989 0.022231

0.053436 0.035348 0.056565 0.078162 0.117612 0.110205 0.123631 0.109298

0.104989 0.022231 0.053436 0.035431 0.056605 0.078162 0.117612 0.110205

0.123631 0.109298 0.105286 0.023150
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0.095740 0.089848 0.070838 0.050209 0.018396 0.003389 0.003389 0.003389

0.017086 0.035827 0.098392 0.122725 0.108403 0.088621 0.057121 0.008801

0.022183 0.022183 0.020133 0.039454 0.103325 0.141772 0.137085 0.123017

0.093501 0.044051 0.051729 0.026937 0.021189 0.039495 0.103325 0.141772

0.137134 0.123059 0.093502 0.044051 0.051729 0.026937 0.021189 0.039495

0.103325 0.141821 0.137982 0.123279 0.093768 0.044177 0.051987 0.027380

0.021291 0.039613 0.103557 0.142056 0.138078 0.123279 0.093768 0.044177

0.051987 0.027380 0.021332 0.039691 0.00 0.00 0.00
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APPENDIX B

The 10x10 cost values:

1.018643 0.622603 1.223525 1.352929 1.360540 2.568414 1.323577 2.765275

1.609030 2.018555

2.699680 2.035996 0.783962 0.519023 0.431838 1.071347 0.381317 1.033432

0.703287 0.646479

2.865651 1.347955 3.175738 1.783549 2.527956 2.816140 1.716187 3.206208

1.804267 2.729310

1.368721 0.403301 1.410983 0.945442 1.126580 1.330500 0.834105 1.907370

1.255636 2.289300

2.871589 1.910008 3.376514 1.909288 2.781388 2.900722 2.015819 4.102083

2.264710 3.335683

2.106268 1.524660 2.603455 1.488128 2.292374 2.129359 1.540216 2.627110

1.524368 2.313778

3.489862 2.263908 4.167512 2.283026 3.338918 3.592025 2.427873 4.705108

3.291558 4.379825

2.357738 1.561198 2.635066 1.536828 2.320528 2.454726 2.375507 3.599548

2.533881 3.858682

3.952441 3.398223 4.921279 3.508700 4.664248 4.758035 3.638731 5.447157

3.619450 4.829804

2.206886 2.684469 2.933323 2.609965 3.726703 3.095605 3.066571 3.733389

2.695374 3.753008
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