





ABSTRACT

FREE PERIODIC VIBRATIONS OF CONTINUOUS
SYSTEMS GOVERNED BY NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS

by Paul Thomas Blotter

Approximate expressions are obtained for the frequency-
amplitude relations and for the nonlinear mode shapes for a general
class of continuous systems governed by nonlinear partial differential
equations. The formulation applies to problems in one space vari-
able and one time variable, in which nonlinearities in the displace-
ment aﬁd its spatial derivatives are involved. Some typical systems
in this general class include strings, circular membranes, beams
and circular plates on nonlinearielastic foundations or with immov-
able boundary supports vibrating at large amplitudes, as well as
elastic media with ﬂonlinear constitutive equations.

Two different techniques are developed and used. The first
involves a modified perturbation approach. The second approach
involves a linearization using ultraspherical polynomials.

The general expressions obtained are applied to several dyn-
amic systems. Numerical results are cataloged in the form of
graphs and tables and compared with those obtained by other authors
using different methods. The results include those for several non-
linear continuous systems whose solutions are not available in the

literature.
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I. INTRODUCTION

The primary objective of this research is to develop approxi-
mate expressions for the frequency-amplitude relations and for the
nonlinear mode shapes for a general class of nonlinear continuous
systems, the free periodic motions of which are governed by nonlinear
partial differential equations, The formulation is sufficiently general
and applies to a wide class of nonlinear elastic continua problems in
one space variable and one time variable. The governing equation of
motion is assumed to contain a restoring function that is nonlinear in
the transverse displacement and its spatial derivatives. Some typical
systems in this general class, to which the analytical results are
eventually applied, include continuous structures such as strings,
membranes, beams, and plates on nonlinear elastic foundations, or
with immovable boundary supports vibrating at large amplitudes, as
well as elastic media with nonlinear constitutive relations.

Essentially two different techniques are developed. The
first is a modified perturbation approach and the second involves a
linearization using ultraspherical polynomials.

In Chapter II the modified perturbation method is presented.
The historical development of the perturbation technique as applied
to nonlinear dynamic systems and other more recent contributions
are briefly discussed. The fundamental differences of the method

developed in this paper are compared with those approaches used by






other authors. Since a more detailed introduction to the analytical
procedure forms part of Chapter II, it is only emphasized at this point
that the final integral expressions for frequency and displacement are
of a general nature and require only that the type nonlinearity be speci-
fied and that the eigenfunctions and eigenvalues for the associated
linear problem be known. Both first and second order approximations
to frequency-amplitude response and transverse displacement are
found. The linear case is taken as the zeroth order.

In Chapter III these general expressions are applied to partic-
ular continuous systems. Solutions are found for uniform strings,
prismatic and variable cross-section beams, and circular plates
resting on nonlinear elastic foundations. As examples of dynamic
systems having a restoring function that is nonlinear in the derivatives
of the transverse displacement, solutions for vibrating beams with
immovable or springed end supports, circular plates and membranes
vibrating at large amplitudes, and beams made of materials with
nonlinear constitutive equations are also considered. The applications
demonstrate the relative simplicity of the perturbation method devel-
oped here as compared with other existing perturbation approaches.

The particular results obtained in Chapter III are further
specialized in Chapter IV by specifying various boundary conditions
for the above mentioned systems, which then lead to the linear eigen-
functions and eigenvalues. Numerical results are then presented.
These numerical approximations are compared with those obtained
by other authors using different methods. The results also include
those for several nonlinear systems whose solutions are not available

in the literature.



In Chapter V a method independent of the perturbation theory
is presented whereby a class of nonlinear partial differential equa-
tions are approximated by equivalent linear partial differential
equations with variable coefficients. It is then necessary to solve
the linear equations. The linearization is achieved by approximating
the nonlinear restoring force over the amplitude span by the linear
term of a set of ultraspherical polynomials. This method is an
extension of a similar one previously used for problems of a single
degree of freedom. Geﬁeral expressions obtained are again applied
to the dynamic systems considered in Chapter lll and the results
are found to be in good agreement with those obtained by the pert-
urbation methods.

A brief summary of results as well as conclusions are con-

tained in Chapter VI,



II. PERTURBATION METHOD

2.1. Introduction and Historical Background

A classical approach for treating nonlinear partial differential
equations is the method of perturbation. The method is reliable in
finding an approximation to some unknown solution in the neighborhood
of another solution which either is known or can be found with relative
ease. The method is generally very cumbersome when applied to
nonlinear partial differential equations.

Several variants of the perturbation method have recently
appeared in the literature dealing with the nonlinear vibrations of
continuous systems. Stoker [1] studied the problem of a tightly
stretched elastic vibrating string with fixed end points, embedded
in nonlinear restoring springs distributed continuously along its length.

.He developed the nonlinear infinite degree of freedom problem as an
analogue of the one treated in Poincare's theory [41] with finite degree
of freedom and governed by nonlinear ordinary differential equations.
As a specific application, a procedure customarily followed for treating
Duffing's equation was used by Stoker to establish the first order
frequency-amplitude relationship in the case of a continuous string
on a Duffing-type nonlinear elastic foundation. THe partial differential
equation of motion was modified slightly by adding frequency terms to
both sides of the equation, whereby in effect the homogeneous part

was in resonance with the external periodic forcing function. This

-



particular maneuver, however, was avoided in his book [2] published
sometime later, where this so-called degenerate case was solved by
assuming a linear mode shape as a first approximation and following
the Lindstedt [2] perturbation scheme, terms contributing to aperiodic
motion were made to disappear. (It is interesting to note that higher
order free periodic vibrations described by Stoker's equation of motion
with the forcing function evanescent exist only if the coefficient on the
cubic nonlinearity is identically zero.)

Han [3] made a somewhat different modification of the classi-
cal Lindstedt method to study a simpl'y supported beam on a nonlinear
elastic foundation vibrating at amplitudes compatible with the assump-
tions of the small displacement theory, First order terms were
obtained through the usual concept of balancing coefficients of equal
powers of a perturbation parameter. To obtain second and higher
order terms would require additional series expansions involving the
perturbation parameter. The approach would become unwieldy when
applied to more complicated systems.

Carrier [5] applied the perturbation method to study a vibrat-
ing string having fixed ends and at displacements sufficiently large to
induce a variable tension. Chu and Herrmann [6] solved the nonlinear
coupled equations of motion of a vibrating rectangular elastic plate
with hinged immovable edges. Eringen [7], along with Chobotov and
Binder [8], developed an analogous procedure in order to solve the
coupled equations describing the vibration of membranes at large
amplitudes. | |

Keller and Ting [9] presented another perturbation approach

to nonlinear problems. Rather than substituting power expansions of



some small parameter directly and equating coefficients of like powers,
they used Taylor's series and repeated differentiations to establish a
system of inhomogeneous linear equations. Orthogonality conditions
of the solution of the homogeneous equation and the inhomogeneous
parts of equations that are necessary for the existence of solutions

of the system of equations then yield higher order approximations for
frequency-amplitude relations and mode configurations. Evensen [10]
has recently applied the approach developed by Keller and Ting to
obtain first order frequency-amplitude relations for uniform beams
with clamped-clamped and clamped-supported immovable boundary
conditions.

The perturbation scheme considered in this section is a
generalization of an approach initially developed by McQueary and
Clark [4], who determined first and second order approximations to
the nonlinear frequency and mode shape of a continuous string and
first order approximations to a membrane, both supported by nonlinear
elastic foundations. The approach was later followed by Mack and
McQueary [11] to obtain second order results for a membrane on a
Duffing-type nonlinear elastic foundation. The set of recursive inho-
mogenous linear equations, found through the usual power expansion
technique or by the method of Keller and Ting, is solved by series
expansions in the product space of linear spatial eigenfunctions and
trigonometric time functions. First and second order frequency-
amplitude relations and mode shapes for nonlinear dynamic systems
are found by substituting this general series type solution into the
linear recursion formulae and using the orthogonality properties of

both the spatial and time functions. No restrictions are made a priori
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to limit the procedure to a particular type of vibrating elastic continua,
such as a beam, plate, membrane or string. Furthermore, the expres-
sions developed allow a general nonlinear function of the displacement
and its derivatives and are applicable to a broad class of dynamic
systems to be solved.

The final results are explicit once a knowledge of the spatial
eigenfunctions of the associated linear problem, along with the linear
frequencies is available. Particular applications of the general solu-
tions are made to vibrating elastic continua on nonlinear foundations,
continua experiencing large deflections, systems with immovable

supports and materials having nonlinear constitutive equations.
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2.2 General Perturbation Method for a Class of Nonlinear Partial
Differential Equations.

A method is developed to determine periodic solutions and fre-
quency-amplitude relations for equations of motion governing free vibra-
tions of nonlinear continuous systems. The dynamic system includes a
general type restoring force nonlinear in the displacement function and its
spatial derivatives.

Consider the periodic motion governed by the following nondimen-
sional equation

M

Lxu+w3utt+€j2=laiju=0 (2.2.1)
where L, is an autonomous™ linear differential operator of order 2n, u
is a dependent function of the spatial variable x and time t, w? is a fre-

' quency parameter, € is a small parameter which depends upon the physi-
cal constants of the system and either occurs naturally or is artificially
introduced. The &; are coefficients dependent upon x and the Nj are non-

J

linear autonomous differential operators given by

Nj u = fj (U, uy, uyy ==-====-= ug) (2.2.2)
where fj is a polynomial of finite degree in u, uy, uy, ----- ue with the

notation that u, = u .
g P & <Y

2n

It will be assumed that the operator L, is self adjoint for every
t in the space of functions defined by the homogeneous boundary conditions
Dju (0,t) =0 i=12-0-c-a- )

(2.2.3)
Dju(L,t)=0 j Tprl, —--e- 2n

» An operator in which the time t does not appear explicitly, ,but
only as a differential dt, is called autonomous.






9

where the D's are also autonomous linear differential operators of degree
< 2n. For periodicity it is assumed that

ﬁ(x. t) = ulxt+2r) (2.2.4)

Furthermore, without loss of generality, the origin of the time scale will
be selecéed so that
u (x, 0) = 0 (2.2.5)
i, e. the system has zero initial velocity. The initial configuration will
not be specified.
Now to apply the perturbation method the dependent variable
and the square of the nonlinear frequency parameter are expanded in

infinite series in € as follows

(-]
- i - 2
u -.E_ € u = u, +€u. +¢€ w +-- (2.2.6)
i=0
w 3
W2 =2 € w?=-w?+ ew? + w? (2.2.7)
i =0 1 [¢] 1 3

where € is the so called perturbation parameter.

Before the above expansions are substituted into the equation
(2.2.1), special attention must be given to the nonlinear function fj.
Each f; may be expressed as a Taylor's series for a function of several
variables about a given geometric configuration, which is taken to be the

solution or mode shape of the associated linear problem defined by setting

€ equal to zero in equation (2.2.1). The function {; is then written as

J
f: (u, ug-=--ug) =N2—1 1 [ (u - uA-—a——+ (uy - )-S_L
Jyo tx § k=0 k! Buo x " Uy U

k
4 cmccamaaa- (ug-uoE]fj (uo’u°x ----- \Jo€)+Rn (2.2.8)
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where R is some remainder defined in the usual sense of Taylor's

theorem. The following notation has been implied in equation (2. 1. 8),

namely
ij (g, Uy -..-uog) ) ij (u,uy, ----ug) (2.2.9)
du du u=u,
> x x™ Yox
u
£="0t
whereu_ , u , ---u refer to the linear mode and its derivatives
o’ “ox 0§

with respect to x.
Replace the displacement function u by the perturbation expansion

(2.2.6) and fj is written

- 2 -]
. -- = . + + - - + +
f (u, ux, ug) f_] (u €u €”u ’ uo €u € u ' ,

———-, u

o€+ €u1£+ €2u3€+ """) (2.2. 10)

Upon substituting the function (2. 2.10) into (2. 2. 8) Taylor's expansion

about the linear mode u, follows as

f.=f + f [(u + €2u + ----] + f [eu + €y +---)
J u 1 X 1 X X
_J .
+f [Eu + €3u + ---] + mmmmem——————
XX 1 3 Xx
- 2 -j 3
+ %fuu[eu +€2u + --_-:l + 31 [(u +€2u _+ ----]
Uy L 1 X 3X
+ % ? + €2 °
fuM.xu L‘ulxx € ugxx t - tooommmmemmmm e



————

with

beiy
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=]
3 + ""'JL 1XX

with the notation

;J - aafj (u, uy, ---ué
uux au aux
= uo
= ox
ug = uog

being understood.

4
+f [Gu + €u r(u +€2u + ---:]-l- ———-
uuxx 1 2XX

(2.2.11)

Return now and consider the equation of motion in its entirety.

Substitute the expansions (2. 2. 6)and (2. 2. 7) into equation (2.2.1), remem-

bering that fj have already been expanded as given in equation (2.2.11).

Collecting coefficients of like powers of € and equating these to zero lead

to a system of equations as follows

(]

€: Lyu +wiu,, =0 (2.2.12a)
€: Lou + =-w - Ig a;j
Pl T W T, Uy a1 9 (2.2.12b)
2. 3 —w? L wd
€°: Lxua + wouatt --Lo)3 uott (‘|.>lultt
M ['j - -j -
_.z; aj fu u + f uxu1x +eoe-- fugulej (2.2.12c)
j=1
3, 3 Y- - w3 - 3
€° Lxu3 + wo uatt -wa Uit wa u;tt w1 uatt
T o [+ ' £
3}31 e N M LR T S
=) -j + ]
+fuuxu1 - fuuxxu Uyt ----

(2.2.124d)
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In the recursion formulae (2.2.12), all the displacement functions

will be assumed to satisfy the same boundary conditions as given in

Ui

equations (2.2. 3), the same initial condition (2.2.5),and (2.2.4) for period-
idty. Te initial configurations u; (x,0) are assumed unspecified. It is noted

that the inhomogeneous part N; appearing in the (i + 1) th equation only

depends upon the solutions u;; j<i and that Nj = 0. It is therefore possible

to solve these equations in a sequential manner for u, and w?; i=0,1,2,---,

beginning with the linear equation (2. 2. 12a).
The linear problem as governed by equation (2.2.12a) can be solved

by the method of separation of variables. It has periodic solutions of the

form
uo(x,t)=Vk (x) cos t k=1,2---- (2.2.13)

where V. is the ktheigenfunction satisfying the equation

LV - Qv =0 (2.2.14)

and the boundary conditions (2. 2. 3). In equation (2.2.14), QR is the cor-

responding eigenvalue. Upon substitution of (2.2.13) into (2.2.12a) and

then comparing it with (2. 2. 14), it follows that

wh = a3 (2.2.15)

It is to be noted that in expressing u, (x,t) in equation (2.2.12) it has been
assumed that the dimensionless t has been scaled so that the period of
vibration in the kP mode is 27. The corresponding frequency is then
given through ff(

| By the assumption of the self-adjointness of the operator L, on

the space of functions defined by (2. 2. 14), the set of eigenfunctions Vk
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are orthogonal in the sense

L

J; r(x)Vk(x)Vq(x)dx=0 k #q (2.2.16)

where r (x) is some weighting function. Without loss of generality it will

also be assumed that the V) are normalized such that

L

L r (x) Vk(x}Vk(x) dx =1 (2.2.17)

In the above it has been tacitly assumed that the eigenvalues
01? are simple. In what follows it will also be assumed that the V. are
complete in the usual sense of eigenfunction expansions (401 Finally,

it will be assumed that all the Qak are positive, which is equivalent to the

assumption that the operator L be positive definite.

In order to solve the nonlinear problem in the neighborhood of the

kth linear mode, the linear solution u, (x,t) is taken in the form
u(x,t) =A Vp(x)cost (2.2.18)
o 1k

where Alk is a constant and w: = Qak. To solve the equations (2. 2.12a),

(2.2.12b) ---- and in view of the boundary conditions, initial conditions

and periodicity, solutions are expressed in the form

(- -] @® .
u; (x,t) = z Zz A(rlrinvn(x) cosmt i=1,2----(2.2.19)
m=0n=1

where A(i) =0fork=1,2,
1k

These series given in (2.2.19) are substituted into the dif'ferential

equations (2.2.12) and solved recursively. The only unknowns in the (i+1)



M
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th equation are uj and w?. All U, and wja j<i are known. As will be
illustrated below, in order to solve this one equation with two unknowns,

the orthogonality properties of both the spatial eigenfunctions and trig-

onometric time functions will be utilized.

Substituting ul(x, t) as given by (2.2.19) into (2. 2. 12b) yields

. 2 2 2, 1) 3
Z Z (g -m wo) AmnnVn(x) cos mt - w Alka(x) cos t
m=0n=1
M -j
+ ajf =0 (2.2.20)
j=1

Multiply both sides of equation (2.2.20) by r (x) Vq (x) and cos pt and

integrate with respect to x and t, from x to L. and from 0 to 27 respectively.
By virtue of the orthogonality and normality conditions (2.2.17) of the spatial

functions and the orthogonality property

2T
fo cos pt cos mt =8, (2.2.21)

the equation follows as

Lar .
=)
Q° - 20 A(l)-wSAﬁ o] +l £ \ t dxdt = O
( q P k! #pq 1 1k Kqap "J;J;jﬂ r(x) q(x)cosp X

(2.2.22)

where Q<p is the Kronecker delta.

For p=1, q = k and recalling the conditions upon the amplitude

parameter (2.2.19), a closed form expression for the first order frequency-

amplitude relation is obtained as follows



The

are |
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= 1o -LJ. E o -f r(x)V n (x) cos t dxdt (2.2.23)

The amplitude parameters Agzl other than AE lk)’ which is zero by \2 2.15)

are also given by equation (2. 2.23) as

L ag
all) - f T o? v t dxdt (2.2.24)
mn w(msna - 02 o %o 12) o r(x)V,(x) cos m (

Thus the first order nonlinear correction W? and u (x,t) are completely
1 1 P

determined as

u = z z Agn)l Va(x) cos mt morni#1 (2.2.25)
m=0 n=1

provided that m 03 - 02 # 0. When the provision fails, the nonlinear
problem has no solution unless the integral on the right hand side of equa-
tion (2. 2. 24) also vanishes. This degenerate case may be treated by the
method of Keller and Ting [9] and will not be considered here.

The second order corrections for the nonlinear mode shape and
frequency may be found in exactly the same manner by solving equation
(2.2.12c). Substitution of equations (2.2.18), (2.2.19) for i = 2 and
(2.2.25) into equation (2.2.12c), along with equation (2. 2. 14) yields the

following equation for u and w: .

@® © 2
nio E:l (Q: - m"‘wg ) As,nzlvn(x) cos mt - w: A1 kVk(x) cos t

® o M 1
-w? Z I paA(;(;V (x)cos pt+ Z a[f E E Ay (x) cos pt
' p0 @l j=1 p0gil PY 9
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..j ® ©® - ® ®
+f, T Z A(;% dVglx) (g pt+ ------ £, Zz A(;(;
X p=0g=1 dx £ p=0 =1

d®Vy(x) cos pt] =0 (2.2.26)
dx>"

Now multiply both sides above by r(x) V,(x) and cos kt, and integrate

with respect to x and t as before. Owing to the orthogonality conditions

(2.2.16) and (2.2.21) the result follows as

2, Al2) 3 A (1)
(QF -k 203 Ayy - WA, 6,6 - Wik PAY
L an :
M e @
1 (1)
+ FL .[, jE:I Otj [fu p-—i qzz;l qu Vq(x) cos pt

(-]
z A(;}c: qu(x) cos pt +------
p_—_o q:l dx

I3 s (1) @V _(x)
r z qu q cos pt]r(x)Vi(x)cos kt dxdt = 0
q=1 dx2n

(2.2.27)

Setting i = k and k = 1 and by the conditions of A(:{( = 0 by (2.2.19)

the second order frequency-amplitude relation is determined as

1 mM S0 A
3 Z o.r(x) [fu Z ZA VqVx cos pt cos t
j=1 p=0 q=1 P4

[ -]
+ f z qu) V:;Vk cos pt cos t

_j @® ® 1
+ f z Zz A;q) V'é V) cos ptcost



_j ® @® an
+f, T T All) 47V Vi cospt cos't ]d.xdt
£ p=0 q=1 Pq dxR
(2.2.28)

The corresponding amplitude parameters necessary for determining the

second order terms are likewise found to be

2 1 (1)
Af_nl)lz (03 -maqi) [O): ma Amn

-1 j ® @ (1) ‘
ii?n- m’!i’k) ﬂL L .?1 o5 (x) [fu pfo qulqu Van cos ph-cos mt

(-] (-]
+ f r ¢ Ay V, cos pt cos mt

U 20 q-1 P49
F e e e —————
- @® @©
1) d**v Vv
t 1y EO El A(Pq)_a—nq' N cos pt cos mt ]dxdt=0
p=V g= dx’

(2.2.29)

Third, fourth and higher order approximations can also be found
by continuing this procedure, but the results will not be presented.

It is seen that the general expressions developed for frequency-
amplitude relations and nonlinear mode shape approximations involve only
the linear eigenfunctions and eigenvalues of the associated linear problem.
Consequently, the nonlinear results for vibrating elastic media such as

beams, strings, membranes and plates are readily obtainable by direct
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substitution once the linear eigenfunctions and eigenvalues are available.
Several applications will be made in the next chapter, following which

numerical results will be presented.

2. 3. Mode Configuration and Amplitude for Nonlinear Dynamic Systems.

The definition of normal modes in nonlinear vitrations must be
clearly distinguished from that in the linear theory. In the linear theory
the terminology '"normal solutions'" refers to a fundamental set of mathe-
matical solutions, which are orthogonal and span the solution space of
the system. The normal mode depicts a geometrical configuration that
is maintained throughout one period of oscillation. Nonlinear systems,
however, do not have such superposition properties and the geometrical
configuration changes with respect to time. For example, it will be
shown in a later chapter that the location of the maximum amplitude
of vibration of a clamped-supported beam does not even remain fixed
in the nonlinear theory.

Normal modes for nonlinear vibrating systems with a finite num-
ber of degrees of freedom have been verbally defined by Rosenberg’12]
as occuring when (a) all masses execute periodic motion of the same
period, (b) all the masses pass through the equilibrium position at the
same instant, and (c) at any time t, the position of all masses is
uniquely defined by the position of any one of them.

Thein Wah [13] concluded that in a nonlinear continuous system
the separation of space and time variables is a sufficient condition
for satisfying Rosenberg's criteria, Furthermore, for separable equ-
ations of motion it was notéd that (a) the commdnly called normal

modes are mathematically orthogonal, (b)the principle of superposition
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is not valid, (c) the nonlinear frequencies are functions of the amplitude,

and (d) the linear frequency is approached in the limit as the amplitude

parameter tends to zero. Although Wah has defined the normal mode for

a class of nonlinear systems, his criteria are not applicable for systems

considered in this paper since the governing nonlinear equations treated

here are not separable.
A less restrictive definition of normal modes for nonlinear dyna-
mic systems is that given by McQueary and Clark [4] as follows: "A

nonlinear periodic mode is any state configuration, ‘of a nonlinear system,

that is periodically repeated in finite time."
The amplitude parameters introduced in the previous sections are
for dimensional lateral displacement. From equations(2.2.6)and (2.2.19)

it follows that

@ ® -]

ulx,t) = T Z

i=om=0n-=1

Ei AS‘!il)n Vn(x) cos mt (2.3.1)

Let A represent the maximum displacement of the nonlinear mode

and denote the spatial point at which this maximum occurs by x = X and

As will become more evident in later applications,
(i) _ ~(i) ,2i+1r (i) is some constant and A_, is associated
Amn = CmnAlk '!where Cmn 1k
with the linear mode such that

at timme t = 0.

u = Alka(x) cos t (2.3.2)
Equation (2.3.1) can now be rewritten as
® 2 ® (i) =i +1
A_A1k+._2 z 23 € Cmn Alk Vn(x) (2. 3.3)
i=]l m=0 n=1
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For small € the maximum lateral displacement of the linear mode
is therefore

A=A1klvk|max (2.3.4)

(x)

Since the linear eigenfunctions Vi  are normalized according to equation

(2.2.17),

IV, | max #1 (2. 3. 5)

in general, but (2. 3.4) clearly indicates that the amplitude parameter

A is related to the maximum lateral displacementI. A1 K will be

regarded as a normalized amplitude.
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It should be pointed out that there is no loss of generality in
omitting the term linear in u in this series (3.1.1), for it may be
absorbed into the operator Lx' The problem is equivalent to continuous
media resting on Duffing-type nonlinear elastic foundations.

The first order frequency amplitude relation follows from

equation (2. 2. 23) established in Chapter II. Upon setting

M =1

j (3.1.4)

H
I\
c
>
<
w
(9]
0
(7]
‘-*»
o
I
=

of
~

and integrating with respect to time, the result follows as

w12= 2 a5 j o r(x)V (x) dx (3.1.5)

First order amplitude parameters An(ql; are determined from

equation (2. 2. 24) to be

L
3
37, Joalr (%W v (x)dx

2 2
-4 - 9)

(1)
ln

(3.1.6)

3 3
A o, r(x) Vi, Vp(x)dx
(1) 11 J‘O 1 k'n
3n

2 2
-4(2%- 90%)

with all other Arr(111)1 = 0. The first order approximation to the non-

linear mode shape follows as






III. APPLICATION OF PERTURBATION RESULTS

3.1. Restoring Force Nonlinear in Displacement

Several continuous systems governed by partial differential
equations containing nonlinear forcing functions in the displacement
will be considered in this section. The systems include strings,
beams, plates, etc., which are attached to nonlinear elastic found-
ations of nonlinear springs. Now in the general equation of motion
(2.2.1), the nonlinear restoring function is a function of u which

‘may be expressed as

M

M
€ z o_szju = € z aju
=1 j=1

+
23+l (3.1.1)

Cbserve that in arriving at the series (3.1.1) the nonlinear function

has been assumed to be odd in u so that
M
)+
u € z mjuz:l 1 >0 (3.1.2)
j=1

For practical purposes, the series (3.1.1) is now truncated after

the first term. Thus the equation (2. 2.1) becomes

2 3
L + + =
xu w utt € alu 0 (3.1.3)

21
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(-]

u A V(x)cost+ G[ZA()Vcost+z(l)Vncos 3t]

n=2 n=1
(3.1.7)
In addition to the above, the following functions as defined
in Chapter II will be needed to determine the second order frequency-

amplitude relations for continua on Duffing-type foundations;

(3.1.8)

Upon substitution of equations (3.1.4) and (3.1, 8) into equation

(2.2.28), the second order frequency-amplitude relation follows as

8
|

lk[ 224Iarv de+ (324Ja1rVkax]

(3.1.9)

If the first order expressions for amplitude (3.1. 6) are substituted

into equation (3.1.9), the second order frequency-amplitude relation

becomes

2

, (ILazlrvk3 qux) (j o TV, 3y dx) i
2 16 1k[2 (q_ka) ; (Qk'gnk) ]

(3.1.10)




24

These above expressions for continuous media vibrating on non-
linear elastic foundations will be further applied to more specific systems,
such as strings, beams, plates, and membranes, in the remaining parts

of this section.

3.1.1. Uniform String

Let us consider a taut uniform string, fixed at both ends and
attached to an elastic foundation which has both linear and a cubic
spring response. It is assumed that the initial tension and subsequent
displacements are of such magnitude that the tension is considered
constant throughout the motion. The displacements, however, may be
sufficiently large relative to the supporting foundation to warrant the
inclusion of a small nonlinear term in the restoring function.

The equation of motion is written as

a2y 223 - -3
-7 + P + Ku + Knu™ =0 (3.1.1.1)
-2 -2
3 x d t

where T is the constant tension, 0 mass per unitlength, K the linear
spring parameter, K7 the nonlinear spring parameter and u represents
the transverse displacement that depends on the spatial variable x and
time t.

The equation (. l.lJ) may be nondimensionalized so that the

string is of length 5+ and the period of vibration fixed at 27 by intro-

ducing
2
u=>Lu t=wt al=&-
T
T = QL2 ;5- 7T2
X =71 X Sl W w € =nL
T

(3.1.1.2)
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The nondimensional equation of motion takes the form

2 3
u + u . + a,u + aleu =0 (3.1.1.3)

which is similar to equation (3. 1. 3) if the operator Lx is defined as

(3.1.1.4)

To determine the first order frequency-amplitude relation one
simply employs equation (3.1.5). For the boundary conditions of the

problem, the normalized linear eigenfunctions are

Vk(x) = /2/7 sin kx (3.1.1.5)

Let us consider perturbation near the first linear mode. By taking

2_ Q 2 _ 1, the first order is

uo(x,t) = Allvl(x)cos t so that W 1
given by
2 3.2 " 4
L =% All jodl (V2/7 sin x)° dx (3.1.1.6)

For constant a, the equation (3.1.1. 6) is easily integrated and

the frequency-amplitude response is given by

2 o 2 2 2 9
- - + —
w wo + ea)l 1l + al EalAll 81 .

(30101.7)
which agrees with those of Stoker [1], Keller and Ting (9] and McQueary

and Clark [4] obtained previously upon replacing A lbY/?r—/Z A , where

1

A is the maximum amplitude.
The amplitude parameters for the first order nonlinear mode
are obtained through a straight-forward substitution of equation (3.1.1.5)

into equation (3.1. 6). The only nonzero terms remaining are
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(L _ _ 3 (o + w2

Ay = 3/16 A~ /(-9 + w_ al)

(1) _ 3 2

A31 = 3/16 A~ /(-1 + 9(1)0 - al) (3.1.1.8)
(L _ 3 (- 2 _

A33 = 1/16 A~ /(-9 + 9a>o °‘1)

and the mode shape is written as

(1)

u=uo+€u = A sin x cos t + €A

1 13 g8in 3x cos t

(1)

+ €A (1)

sin x cos 3t + €A

31 33 sin 3x cos 3t (3.1.1.9)

The second order frequency-amplitude relation may be deter-

mined in a similar manner. Recall that

V, = /2/7 sin kx (3.1.1.10)
and
=% + o, (3.1.1.11)

Equation (3.1.10) then yields

w2 = 3/256 (/277 a..)% [ 2 (3.1.1.12)
2 11 2
(-9 + o~ - a,)
o 1
+ 92 + l2 ]
- - -9 + -
(1 9(0o al) (-9 9wo a_l)

In order to reduce (3.1.1.12) to its previously published form

2 2 9 21 2. 4

@” = W] + 1e €A - 2096 A (3.1.1.13)
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one simply makes the substitution All = /71/2 A and sets o = 1.

3.1. 2. Prismatic Beams

The dimensional nonlinear differential equation of motion of a
vibrating prismatic beam resting upon a nonlinear elastic foundation

and restricted to small displacement theory may be written as

4 2
EI a_‘i—+yA 3%4_ Ku + Knu° =0
3 x I 3k

(3.1.2.1)

where E is the elastic modulus of the material, I the second moment
of area, 7Y the weight per unit volume, A the cross sectional area,
u the transverse displacement as a function of x measured along the
beam and time £, K andK?7 the linear and nonlinear foundation par-
ameters respectively and g the acceleration due to gravity.

Performing the variable changes

4
u=>Lu t=wt al=KL‘
4' X EIT
x=IIr:x (3=ZEIIE4 o €="1'2 (3.1.2.2)
YAL

\

one obtains from (3.1. 2.1) the following nondimensional equation of motion

for a beam of length T and fixed period of vibration of 2T

2
u + W u + o

3

which is of the general form of equation (3. 1. 3) if the operator L. is

defined as

(3.1.2.4)
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The corresponding linear equation is found by setting € equal

to zero in (3. 1. 2. 3).

u + wu + a,u =0 (3.1.2.5)

Assuming that harmonic motions of the beam exist, one finds that by
separation of variables the mode shapes of the motions must satisfy
the following ordinary differential equation
vV - (@ - a) Vo (3.1.2.6)
where (2 is the vibration frequency.
It is easily shown that for nontrivial solutions V(x) of (3.1.2.6)

to exist, Qz must exceed a To see this let us multiply both sides of

1
(3.1.2.6) by V and integrate over the span of the beam

L L
j vviVax - (22 - a) j viax = 0 (3.1.2.7)
0 0

which may be rewritten as

L
[ vvt¥ax
(@ - ) = o (3.1.2.8)
1 2

["vPax

o
Upon integrating the numerator by parts, it follows that
L L L L
J vviVax = vviit | - viviT |+ I (VII)zdx (3.1.2.9)
o o O O

Now the first two terms on the right vanish upon applying the boundary
conditions, a fact that is implied by the assumption of self-adjointness

of the operator Lx' Hence
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L
J' (VII)Z ax
- 0)

QO - «

1 >0 (3.1.2.10)

L
2
jov dx

Thus the numerical value of &,, if it is positive, determines a lower
bound of the vibration frequencies of the system.

Results on beams available in the literature obtained by perturb-
ation techniques have been limited to first order only when boundary
conditions are other than simply-supported. However, beams with
other common boundary conditions such as fixed-fixed, fixed-hinged
and cantilevers, even though they involve complicated eigenfunctions,
can be easily programmed to the computer and higher order nonlinear
approximations are readily obtained by using the integral form of
Chapter II. The numerical results of several beam problems will be

presented in the following sections.

3.1. 3. Beams with Variable Geometry

Beginning with Kirchhoff's work in 1879 the literature contains
several investigations of linear transverse vibrations of beams with
variable cross sections. A synopsis of the historical development with
references may be found in the work of Wang (14], who applied hyper-
geometric series to such problems. Relatively little, however, isavail-
able concerning nonlinear oscillations of such beams, Variations in cross
section offer no restriction to the general expressions of the previous
chapter., and section 3.1, provided that knowledge of the linear problem

is available.
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The dimensional nonlinear partial differential equation of motion
for a beam with a variable cross section with linear and cubic restoring

forces is given by

- -
22 Bzu)+'YA 3% 3 - -3

EI — +ku +knu =0 (3.1.3.1)
3 % 3 %2 9 g’

Let us consider the case in which cross section varies in the following

manner

YA n
ya _’oo (x (3.1.3.2)
g g L
% n+2
ET = E I (_) (3.1.3.3)
o o\L
- n
Xk = k (_) (3.1.3.4)
o \L

where the constants are previously defined and n, which specifies the

particular geometry, may be either an integer or noninteger.

Upon making the changes of variables 4
k L
u=1Lu t=0t a, = ——
1 EI 1r2
4-2 o'l (3.1.3.5)
vy A L
T = 2 oo _ 2
x =7 X w = ———2 € =nL
EOIOg‘Tr
+the nondimensional equation becomes
2 2 2
+ n
'——37 x 2 8_1.21__+ (szn 2 3 + alxnu + a€ex u3= 0
o x d x ot
(3.1.3.6)

The equation is again similar to equation (3.1. 3), after being divided

through by x®, if Lx is taken to be
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2 2
L = —lr; 2 > xn+2 -, oy (3.1.3.7)
X X" ax 3 x2

The linear equation corresponding to (3.1. 36) merits some
attention at this point, which is found by setting € equal to zero. After

separation of variables the spatial part of the linear equation is

4 3 2

x2 Q—Z + 2(n+2) x <_i_\3’ + (n+1) (n+2) sz. - ?(4V =0
dx dx dx

(3.1.3.8)

4

where ‘Iv(4 = (Qz—al), and () the frequency, and V describes the mode
shape of vibration. Upon introducing the operator notation D = g—;

the above equation is factorable to the form

(xD2 + PD + ®2) (xD> + QD - %)V = 0 (3.1.3.9)

where P and Q are constants to be determined. When the factorizations
are expanded, one can show that

P=Q=n+1 (3.1.3.10)
Substitution of P, Q, and D into the factored equation (3.1. 3.9) yields

the equivalent pair of equations to be solved as
2

X av, (n+1) av ﬁz V=0 (3.1.3.11)
2 dx
dx
d2V dv ~2
Xx——+ (n+tl) —— -K v =0 (3.1.3.12)
3 2 dx

These expressions are forms of Bessel's equation and the solutions

follow as
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V(ix) = x -n/Z[ ClJn(ka;E) + C Y (2kx;5) + C3In(2kx;5)
+ C K (2kx;5)] (3.1.3.13)
if n is zero or a positive integer and
Vix) = x_n/z[ClJn(zkx;i) + C2J_n(2kx!5) + C3In(2kx;5)
+ C4I_n(2kx%)] (3.1.3.14)

if n is neither zero nor a positive integer.

Further development of the linear problem to obtain eigenfunctions
and eigenvalues requires a knowledge of the boundary conditions. Several
particular examples will be considered later. However, one important
point to be emphasized here is that well known solutions of variable
section beams without a foundation term can be readily adapted to the
similar problem with a foundation only if the foundation parameter varies
in the same manner as the mass or cross sectional area, the density
of the material being assumed constant. In particular,aWinkler type
foundation can be easily coped with only when the beam height is constant
with respect to length. With n =1 the ¢ross section is a wedge of
constant depth and it represents a Winkler type problem, in the case
n = 2 the cross section is a double wedge or pyramid and a Winkler
foundation is not implied. For n - 3/2 a parabolic-wedge type section

again excludes the Winkler definition. The nonlinear problem is
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by no means restricted by the preceding remarks, and several examples
are worked out in the sequel, including other cross sections, such as

those with an exponential varying geometry.

3.1. 4. Thin Circular Plates

The partial differential equation for vibrating plates on nonlinear

foundations under the classical small displacement assumptions is

given by

2 -
- d - -
Dv4u+ [o] _121 + ku +k11u3=0 (3.1.4.1)
d t

where, in addition to the constants defined earlier, D is the conventional
3 =

plate stiffness IZ(EI:-}:) y p is the mass per unit area and V4 stands

for the biharmonic operator. To nondimensionalize the equation the

following variable changes are made

= - ka4
u = t = = =—
au wt al D
r =ar w = 4 w € =na
p a

where a is the radius of the plate. The nondimensional equation of motion

of a circular plate of unit radius becomes

4 2 3
vu + o u + o,u + aleu =0 (3.1.4.3)

which again is similar to equation (3. 1. 3) with the operator

d
ar)+°‘1

()
[}
2]
N
+
R
]
o
N
+
N |
o
V
(o7}
o
N
+
K |~

(3.1.4.4)
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The linear mode shape and calculated frequencies for plates
without a foundation for various boundary conditions are well known in
the literature [21, 22, 26, 31). Direct substitution of these well known
results on the corresponding linear problem into equations (3.1.5),
(3.1.6), and (3.1.10) yields first order frequency-amplitude relations,
mode shapes and second order frequency - amplitude relations for the

nonlinear problem.

3.2. Continua Having Immovable Supports and Large Deflections

3.2.1. Elastic Bars

In the classical theory for the transverse vibration of elastic
bars, axial extensions of the bars are not considered. One end of the
bar is usually considered free to move such that the effect of the changes
in axial tension during motions is negligible. Woinowsky-Krieger [15]
studied the transverse vibrations of hinged bars using elliptic functions
and showed that the axial tension increased the frequency of vibration.
Burgreen 6], Eringen [17]and McDonald (18] studied similar problems,
for simply supported beams. Recently, Evensen L10] obtained first
order perturbation approximations for the frequency-amplitude relations
for clamped-clamped and clamped-hinged beams of uniform cross sections,
as well as for hinged-hinged beamnts.

Periodic vibrations studied in this section include systems for
which the above-mentioned classical theory is not applicable. Both the
initial tension and that induced by deflections are considered. The present
approach leads to results that agree with those in the existing literature.
In addition, second order frequency terms and nonlinear mode configura-

tions are also presented.
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When longitudinal inertia is neglected the free vibration of a
uniform beam with end conditions ranging from spring-supported to

immovablle is [15].

243 223 223
EIST, - (T,+T S +pS=0 (3.2.1.1)
dx d x 3t

where To is the initial axial tension and T the induced tension, which is

approximated ~ L -\ 2 _
2 L 0. 0 x
with ]
A=a[1-~ —ﬁ 2 (3.2.1.3)

where Kis the spring constant of the supports relative to the axial
displacement. Other symbols are defined a priori. Note that for
immovable supports K is infinite and A = A,

Upon introducing the following variable changes and definitions

_ o TOL2
u==~Lu t=wt g = 2
EITw
4 5 (3.2.1.4)
_ I = 2 (pL -2 _AL
X=p* ® = 4) ® €= 271
IT7/
and the dimensionless equation of motion becomes
LI 2
u - Bu -ej(u)dxu + ou,, =0 (3.2.1.5)
XXXX XX o) X XX tt
which is in the form of equation (2. 2.1)
Lu+a>2u + €a,Nu =0
x tt 11
h
where a4 32
L ={ - ﬂ - (30201.6)
X 4 2
Q x ox

N.u = £3 (u ,u
X

1 1 xX

T
_ 2
) = ~].O(ux) dx u . (3.2.1.7)
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and

o = -1 (3.2.1.8)

To determine first order frequency-amplitude results use is
now made of the general form given by equation (2. 2. 23). With the

weighting function taken as unity one obtains

2 ) R L :
w a . f'(u_,u (x) cos t dAxdt j=1
1 WAll“[O Jol x )

(3.2.1.9)

Note that the linear mode vibration is written as

u (x) cos t (3.2.1.10)

o 111

i. e. perturbations in the neighborhood of the first linear mode are

considered. The nonlinear function fJbecomes

=3 3 3 T 2
£ =
(ux,uxx) A11V1, cos  t J (Vl,x) dx (3.2.1.11)

j=1
After direct substitution and integration with respect to time, (3.2.1.9)

reduces to

™ 2
of = - 4 A’ j vV, ax jo (v ) ax (3.2.1.12)

which can be shown to agree with those of Evensen.
The complete set of nonzero amplitude parameters is obtained

fromrm equations (2. 2. 24) as
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3,3

q> a m 2

Al - 4 iH J Ve V1,0 I (v, ) ax

ql 2 1,x

(wq o]
(3.2.1.13)
q>0 i 3
A T T
AL 4 11 2
Az ° 7 2 7 | Va V1, xx® [ vy, 0 e

(wq - 9(1)0 ) o]
(3.2.1.14)

Thus, the first nonlinear mode of vibration is

(- -
(1) (1)
= + +
u A11V1>cos t qul cos t z V cos 3t
q=2 (3.2.1.15)

To compute second order terms derivatives of the nonlinear

restoring function fj are needed. These are

. T
-3 _ _ J‘ 2 f
£ - fl(ux'uxx) 4 .u oxx J  “ox dx  J=1
ox’ oxx (3.2.1.16)
. 3 f T
£ = 1 u__,u =u J 2 u dx j=1
ux d u ox’' oxx oxXx 0 ox
(3.2.1.17)
. 3 f T
=3 _ 1 _ 2 .
fa d u ox’' Yoxx J (uox) dx =1
XX (0]
(3-2.1018)

with all other derivatives of fj being zero. The second order frequency-
amplitude relations now follows from equation (2. 2. 28) with the weight-

ing function again being equal to unity as

“’22= 111[ JV dxj lexi f;ll) @x V1 &
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+%Iv dx_[lexz (l) vq,xvldx

+
D |w

[y 0% | Z al Vg V1

T

* % fo(v dx J Z (ql3) qoxx V1 X ] (3.2.1.19)

Numerical results corresponding to several particular boundary con-

ditions will be discussed later.

3.2.2. Elastic Plates

The dynamic analogue of the von Karman large deflection plate
theory of equilibrium was proposed by Herrmann [19]. In a later paper
[6]Herrmann applied these earlier results to study free vibrations of
rectangular plates with hinged immovable supports.. The coupled non-
linear equations of motion were solved by a perturbation method and
frequency-amplitude relations for moderately large deflections were
obtained. However, the recursion formulae involved in the perturbation
scheme remained coupled and the iterative process became somewhat
involved.

Berger [20] decoupled the static nonlinear deflection equations
such that one of them assumes a quasilinear form and is integrable by
assuming that the strain energy due to the second invariant of the

middle surface strains may be neglected. Wah [21] extended the
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Berger formulation to large amplitude vibrations of rectangular and
circular plates. A modified Galerkin approach was proposed whereby
the first of a system of nonlinear equations was solved in terms of
elliptic functions to approximate some salient parameters of the non-
linear system, such as the frequency of vibration. Gajendar [22]
followed the same method of Wah for large amplitude vibrations of plates
on elastic foundations.

In the following, the Wah decoupled nonlinear equations of motion

describing axisymmetric plate vibrations are taken to be

2 -

v4a -%vzﬁ +-§a_‘; =0 (3.2.2.1)
3t
where
a -
N 12 du 2 -_-
- = — rdr (3.2.202)
D a2h2 Jo dr
which further reduces to
a
%=% j u(VZu) rdr (3.2.2.3)
ah o

for simply supported or clamped edge conditions. The independent
spatial variable is now r instead of x while other symbols remain as
previously defined.

The following variable changes and dimensionless constants

2
azau t=wt =12;
r=ar w = w

4
pa

are introduced so that the nondimensional equation of motion is



40

4 2
+ - =
vutofu, -ef =0 (3.2.2.5)
where
1 2 2
£, = j (u )® rar vu (3.2.2.6)
0 r

The above is of the form of equation (2. 2.1) with

o, = -1 M=1
Lx - V4 =(322+% aar) (322 + 1 air) (3.2.2.7)
or dr r
With the nonlinear function defined as
fyupou ) o= (u 4 % u ) f: (ur)2 rdr (3.2.2.8)

the first order frequency-amplitude relations follows immediately
from equation (2. 2. 23) with the weighting function now equal to r.

After perfosming integration with respect to time the result is

1 1
2__3,2 2
@) = = 4 ALy ~[Or(er) dr Io(r vlvl’rr + V1V1,r) dr
(30202-9)
The amplitude parameters follow from the expression (2. 2. 24)
o, - 1 2r 1
Al) 1 2
= - vV, )7 rdr (r vV
2 2 2 \[ (
® r@w-0) ‘o l.x J'o J.o ql,zrr
° q
+ V V., )dr cos pt cos>t at (3.2.2.10)
ql,r
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and after integration with respect to time one has

q> (1) 2« 1

4 ,
ql = ” 2 w I (V r rdr Io(r qul,rr+ Vqu’r)dr

° (3.2.2.11)

i o
(1) 4 1 2
= (v, )7 rar rvyv + Vv, ) dr

q3 (9 02 © ”[0 1l,r '[0( ql,xr ql,r

(3.2.2.12)

The first order mode shape is of the form of equation (2. 2. 25) with
the constants defined as above.
For the second order approximation, the following nonzero

derivatives of the function f. are needed

2L =u qu rdr+lu JZu rdr+lju2rdr
aur r r r r r r r
1 (3.2.2.13)
ab £ . J u 2 rdr (3.2.2.14)
u o
rr 0]

Upon substitution into equation (2. 2. 28) and factoring out Afl one finds

&22 111[ ) 1p %63;;] [ I 2V rrdrj (r Vl,rr+vl,r)
® @
LTAY v v ar s [y )7 car j zz Wy v
qap
1 12
+ J vy rdr J‘ 22 (l) Vq rr Vl rdr ] (3.2.2.15)
0 ’

Obv1ously, the normalized eigenfunctions v, are the familar
Bessel functions for circular plates. Detailed computations are
programmed on a digital computer and the results will be presented

in the next chapter.
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3.2.3. Membranes

The question naturally arises as to whether the relative magnitude
of the strain energy introduced by the second strain invariant is negligible
in large amplitude vibrations of membranes as was found to be the case
for vibrating plates. Since the formulation of the membrane problem
excludes any contribution due to bending, the reliability of results
obtained in such a manner is speculative from a theoretical point of
view. The fact that the Berger - Wah development of the plate problem
found justification upon comparison with known results suggests that
the validity of the membrane analogy be studied in a similar manner.

So Eringen[7] and Chobotov [8] have studied the membrane problems
using the coupled nonlinear equations. Their results can be used for
comparison purposes.

Timoshenko [23] gives the strain energy due to stretching of

a membrane as ¢ - ——Eh—g I I [ez - 2(1-1;)@2 ] dxdy (3.2.3.1)
2(1-v°)

where e = the first invariant of strain

= € + € in rectangular coordinates
X

€ + €
r 0

the second invariant of strain

in cylindrical coordinates

and e

e €€ -y in rectangular coordinates
2 Xy 4 "xy

=€ _€g in cylindrical coordinates with circular symmetry.
r
Upon neglecting the second strain invariant and including the work of

some external load q (3.2.3.1) reduces to
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0 = —EB—[ [ e axay = [ [ qwaxay (3.2.3.2)

The first strain invariant expressed in rectangular coordinates is
2 2
du Qv l1dw l (3w
=T+ +<\) +=

where u and v are displacements in the plane of the plate and w the

e

transverse deflection. By principles of the calculus of variations and

integration by parts

6¢=-fja H[—au%%-avi—;- vir €3 )
(Bw)]dxdy—j‘[qﬁw 0

(3.2.3.4)

Since 6y §v and Oware arbitrary, the coefficients must vanish in-

dependently. Therefore

de _ de _
So =0 > =0 (3.2.3.5)

<

2
d d -
- Qe a:) + =2 (e -a—“-) pall-u) (3.2.3.6)
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From the first set of equations one deduces that e is constant with respect

tox and y. Defining q as the inertia term one then has the following

equation of motion

2 2
2 1- 3

m eyl 420D Y. _o9 (3.2.3.7)
Eh > 12

It is now convenient to consider cylindrical coordinates and write

Hooke's law as
1

€ == (N - uN,)
h

r hEr 8 (3.2.3.8)
1

€9 = he Ng ~ ON.)

where N designates the stress and ¢ the strain. The total strain e can

be written as

1l
e = € + €9 = € + eel + ‘o = constant (3.2.3.9)

where €, is initial strain and the primed quantities refer to the induced

stress and strain. Since the sum is constant it follows that

1 1 _ (1-v) 1 1
‘r + ‘9 = “hE (Nr +Ne) (3.2.3.10)

which may again be written as

2 2
{1-y) 1 1l du 1 dw u l3v 1 dw
N + - —— — - —— — cn—— em—
hE (r NG) r+2 3 r +r+?B +2;2 386

(3.2.3.11)

Equation (3. 2.3.11) is now multiplied by rdrde and integrated
over the area. Assuming circular symmetry and that on the boundary

v is continuous and u evanescent, one obtains
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2
€ 1. ‘el = 12 j (g—”;’—) rdr (3.2.3.12)
r 2ra A

By equation (3.2.3.9) and (3.2.3.12) the equation of motion including

the initial stress is written as

2 - 2
-No Vzw-——Eh > j (—g:_’) rdr V2w+ p——v{'a ) =0
(1-v) 27a A A3 t
(3.2.3.13)

where No is the initial tension in the membrane.

After the following variable changes and definitions are introduced

w=au t=wt
- .. . - Eh (3.2.3.14)
(1-v)N_
the nondimensional equation of motion takes the form
- V2 u + w2 u + o, €f, =0 (3.2.3.15)
tt 1 1l
where
1 2
du 2
£, = | (ar> rdr v° u (3.2.3.16)
0
a, =1

and u is now the transverse displacement. The remaining manipulations
to obtain the nonlinear dynamic results are identical with those in the

plate problem.
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The results will involve the expressions Vr and (Dn, the linear membrane

eigenfunctions and eigenvalues respectively.

3.3. Nonlinear Material Properties

Free vibrations of continuous structures with nonlinear material
properties represent another cla;ss of problems that can be treated by
the general theory presented in Chapter II . In this section the motion
of a homogeneous slender beam of uniform cross section and having a
longitudinal plane of symmetry passing through the centroid will be
considered as an example. The usual small deflection theory is also
assumed. Obviously, the method could be extended to other elastic
structures, and continua with combinations of large deflections, elastic
foundations etc.

The equation of motion for the free vibrations of a beam with
nonlinear vi‘scoelastic material properties as presented by Sethna [24]
is modified such that material time dependency is excluded. For a

material described by

N=E(e+hc3

) (3.3.1)

where N is stress, € strain in the x direction, E and h constants,

the equation of motion is written as

4- 2 - 2 - 4- 2-(.3-\2
9 )
m e e B () e 233
dx 3t dx 0 x dx \dx
=0 (3.3.2)
The following variable changes and definitions are introduced
4
- - I _h3rw
u =Lu t=wt € = —2-—2—-—
4 1,L (3.3.3)
I - 9EI,m \ %
x oL )

L



47

where ].1 and 12 are the second and so called fourth moments of inertia
and other notation has already been defined. The nondimensional equation

of motion now becomes

2 2 2
+ + ¢ =
u w u e[(u ) u + 2u (u ) ] 0

(3.3.4)
which is again similar to the general equation (2. 2.1) with
a4
L = 2 a, =1 M=1 (3.3.5)
dx
and the nonlinear function f, is defined as
2 2
= +
fl (uxx) u 2 uxx(uxxx) (3.3.6)

With a knowledge of the nonlinear restoring function and the
linear mode, the first order frequency-amplitude relations follows

directly from equation (2. 2. 23) as

2 3 2 (" 2 2
wl T4 A11 jo [Vl(vl,xx) Vl,xxxx * 2 Vlvl,xx(vl,xxx) ]dx

(3.3.7)

The nonzero amplitude parameters for the nonlinear mode shape

are easily determined to be

33
- A T
a>1 A(ll)"'iz—n_z— [ v vy )2"1 2V,
al  (,2_ 42, o @ L,xx » XXXX q 1l,xx
o q
(v 12 ax

1, xxx’ |
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(3.3.8)
q>0 (l)

q3 (9w

I [v (V Vl,xxxx

Ownhll-'

2
+2qu (v )]dx

l,xx" 1,xxx

After differentiating the function f with respect to u, U, u o o---
and evaluating the results at points along the linear mode shape as
before, the second order frequency-amplitude relations faollow from

equation (2. 2. 28) directly as

™
w22= A Jo [2 Vl,xxvl,xxxx * 2(Vl,xxx 2]2 (qpl) Vq,xxvl
q=1

* [ 4v 1, xx l XXX ] Zi 2: q,xxxvl
q=

v 1xx2]Z o Ve, xxxx' 1 ( dx(%61p+%63p)

(3.3.9)

It is important to note that a third power of the amplitude is implicitly
contained in the amplitude parameters, consequently the first order
frequency depends on the square of the amplitude, the second order

on the quadruple and so forth.



IV NUMERICAL RESULTS

Numerical results obtained through using the expressions
derived in the previous chapters are presented in this chapter.
Whenever possible, the results are compared with those existing
in the literature. Higher order approximations to the nonlinear
frequency-amplitude relations and to the nonlinear mode shapes
are given which complement the existing solutions. In addition,
numerical results are also presented for a number of nonlinear
continuous systems for which nothing has been published in the
literature. A CDC 3600 digital computer and a Newton-Cotes

numerical integration technique were used in obtaining the results.

49
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4.1 Solutions for Equations of Motion with Restoring Forces
Nonlinear in Displacement.

4.1.1. String

Perhaps the simplest example to which the methods developed
in the previous chapter may be applied is that of a vibrating string.
In section 3.1]1.1 the first order frequency-amplitude relation is found

from equation (3.1.1.7) to be

w® = ws +oa A (4.1.1.1)

where o is a dimensionless quantity and A is the amplitude of vibration

defined such that

A = Aulv1 | o (2.3.4)

It is to be noted that the amplitude A represents the maximum displace -
ment of the linear mode and since € and Alzl occur only through the

producteA2 we may for convenience set€ =1 and regardAIZ1 as being

11°
small.

The first order nonlinear mode shape as written in equation (3.7)
with o = 1 has nonzero amplitude parameters as contained in Table 4.1-1.

The normalized linear and nonlinear mode shapes are plotted in figure

4.1-1, where the amplitude is not taken as A but defined such that

€Ay = iz ea
(4.1.1.2)
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The determination of the second order correction term to the
nonlinear frequency requires additional eigenfunctions and eigenvalues
from the linear problem. However, in the case of a string, spatial
eigenfunctions beyond n = 3 contribute nothing as a consequence of
the special nonlinearity assumed. With the information from table

4.1-2, the second order frequency-amplitude response is

2 2 .9 2_ 21 2 .4 4.1.1.3
W' o= Wy QA -Toge Y A ( )

Figure 4.1-1 compares the first and second order approximations for
small amplitudes. As mentioned earlier, the first order result given

as (4.1.1.1) agrees with those obtained by other authors.
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Table4,1.1-1.Frequency numerical values for a uniform string
resting on a cubic nonlinear elastic foundation.

LINEAR |LINEAR FREQ| FIRST ORDER SECOND ORDER |

MODE o = “S“f A® 2 A*107°  A*107°
1 2 0.5625 0.3581
2 5 6.59179 2.67155
3 10 -5.12695 -2.07787
4 17 -5.12695 -2.07787
5 26 -5.12695 -2.07787
6

1

Table4.1.1-2.Nonlinear ,amplitude parameters for a uniform
string resting on a cubic nonlinear elastic foundation.
f

1 1
n = spatial function 5 Ari'xr)l = amnA11’
- m = time function ! Arg& _ dmnA3
amn
|
m 1 2 3 4 5 6 7
1.4920
1 . 0.0 0.0 0.0 0.0
0.0 10-2
7.4603 -4.9735
. . 0.0 0.0
3 10-3 0.0 10-3 0.0 0.0
dmn
2.3437
1 0.0 10-2 0.0 0.0 0.0 0.0
1.1718 -7.8125
3 10-2 0.0 0.0 0.0 0.0 0.0
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Second Order
Response

Linear Response

First Order
Response

—7 4 : ‘ + + 4 +
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
Frequency Ratio w/w,

Figure4.1.1-2. Frequency-amplitude response for a uniform
string resting on a Duffing type nonlinear foundation.
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4.1.2. Prismatic Beams

Uniform beams on nonlinear Winkler type foundations as
described in section 3.1.2 are considered here for simply supported,
clamped-clamped, clamped-hinged and cantilevered boundary condi-
tions. The first order nonlinear frequency-amplitude relation with
r(x) = 1 was found to be

w? = 24 ‘Iralle‘idx
° (3.1.5)
The dimensionless parameter o, may be taken as unity and the maxi-

mum amplitude of vibration A is related to Ay by

A= AL Vi | max (2.3.4)

Wylie [ 25] , along with several other authors gives the exact
linear eigenfunctions for the above -mentioned boundary conditions.
Substitution of these eigenfunctions into equation (3.1.5) gives the
correction term w? to be added to the linear frequency in order to
obtain the nonlinear response. After substituting these linear eigen-
functions into (3. 1.5) and performing the integrations the first order
frequency-amplitude relations for beams with the various boundary

conditions are, simply supported

wz = wz -i-.35812€A2

0 11 4.1.2.1)
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clamped -supported

w? = wg +.4o324eAi
(4.1.2.2)
clamped-clamped
2 2 2
W = W-. + .44210 €A
0 11 (4.1.2.3)
and for a cantilever beam
w? - wg +.56o70eAﬁ
(4.1.2.4)

Linear eigenfunctions and frequencies beyond the fundamental
mode necessary for nonlinear mode shapes and second order nonlinear
frequency terms are taken from reference 26). To determine the

amplitude parameters for the nonlinear configuration it is recalled that

m
3
(1) _ =3 AL[ 4v3 >
n T % 11 Oalvl Vndx n-=>1
2 2 3.1.6
(W, - wg) ( )
m 3
A(31rz :-Zl-Afl 0 OLIVIVndx n >0
2 2
(w/ - 9w, )
wii:ht)tl ’wrzl , wg and Vn known, the constants are determined as

shown in tables 4.1.2-1, 4.1.2-2, 4.1.2-3, and 4.1.2-4. A continuous

graph of these nonlinear mode shapes appears in figure 4.1.2-1.

The second order frequency-amplitude results are obtained from

equation (3.1.10) by direct substitution of the linear information and then
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followed by integration. Since the integration involves a series, a suf-
ficient number of linear eigenfunctions must be taken to insure conver -
gence is relatively good using only a limited number of linear functions.
Nonlinear frequency-amplitude relations that include the second order

approximation are taken to be

2 2

. 2 2,4
w” = wg+0.35812€A] +.002063€ A} (4.1.2.5)

for the simply-supported,

2 2

w? = w?+0.40324€A% + . 001376622

0 11 11 (4.1.2.6)

for clamped-supported,

2 2 2 N
w” = wy +0.44210€A7 + .000743€° AT 4.1.2.7)

for clamped-clamped, and

2 _ 2 2 4
w® = Wl +0.56070€AZ - .01995€AT (4.1.2.8)

for a cantilever beam. These results are plotted as continuous curves
for small amplitudes in figure 4.1.2-2.

Den Hartog L27], by applying Rayleigh's energy method, has
approximated the linear frequencies of vibration by assuming some
spatial function which does not satisfy the differential equation of motion,
but satisfies the boundary conditions. For the case of a cantilever beam
without a foundation term, a quarter cosine wave approximation yields

an approximate linear frequency only 4% above the exact value. A full
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cosine wave approximates the linear frequency of a clamped-clamped
beam within 1.3%. These results can be extended to linear beams on

linear elastic foundations by including an additive constant, i.e. the

2 2

linear frequency p~ now becomes p“ - o, and close agreement between
the approximate and the exact is again obtained.

For the case of beams on nonlinear elastic foundations, approxi-
mate spatial functions also yield results similar to those obtained from

exact eigenfunctions. The nonlinear analogues of the above -mentioned

linear systems result in the frequency-amplitude relations as

2 2 2
5 + 0.6075€An (4.1.2.9)

for the cantilever with a quarter cosine wave approximation and

2 2

_ 2
w” = w0+0.4642€A11 (4.1.2.10)

for the clamped-clamped beam with a full cosine approximation. These

results are plotted in figure 4.2 -3.



fﬁ:’
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Table 4.1.2-1. Nonlinear amplitude parameters for a uniform beam
simply supported and resting on a cubic nonlinear elastic foundation.

1

g n = spatial function ri({% = A113 :
X = ti i 3 i
i m = time functmr} dxnnA 1
i 2mn %
' : ' T i
o 2 3 4 | 5 6 | |
; 1.4920 i |
s 0.0 10-3 0.0 0.0 0.0 , |
! 74603 50 |6:2169) 5.0 | 0.0 0.0 i |
Ll 10 | |
; :
R dmn f
‘ 2.3437 5
3 0.0 0.0 0.0 0.0 3

. | ¢

i

‘ 1.1718 9.7656
; 10'2 0.0 10'4 0.0 0.0 0.0

Table 4.1.2-2. Nonlinear amplitude parameters for a uniform beam
clamped-supported and resting on a cubic nonlinear elastic foundation.

|
n = spatial function ,},1,2 = amnA113 !
m = time function (1) 3
mn h dmnA
R |
2Amn
- i
1 2 3 4 5 16
1.1718 | 1.1952 {-1.2506| -5. 1047 | 3
10-3 10-3 104 10-6 !
4.8836 | -2.0894 | 5.3277 | -4.5560| -1.7657 |
10-3 10-3 1 104 10-5 10-6 |
dmn
i ;-1.8260 -8.0384| 3.6351] 6.4116
' 10-6 10-8] 10-10f j0-13
5-1.7125! 3.2558| -3.5832| 1.3242|2.2178
| .
L - 01074 1076]  10-8]  10-100  p-13 !




Table 4.1.2-3. Nonlinear amplitude parameters for a uniform beam
clamped-clamped and resting on a cubic nonlinear elastic foundation.

60

|
1 3 ;
n = spatial function ( ) = amnfq !
m = time function 1
ém?l = dmnA3
2mn
|
o1 2 3 4 | s 6 7
‘ 1.0 -2 -3.
| 1 0.0 6935 0.0 936: 0.0 3 93173
N 10~ 10~ 10~
3.0007 00 5.3925 o0 -1.0346 0.0 -1.3311
3 10-3 ’ 104 ' 10-3 ‘ 10-7
dmn
2.8144 -1.4429 -3.6174
1 0.0 10-8 0.0 10-12 0.0 10-17
; 4.0827 00 1.4189 0.0 -5.0842 o0 -1.2248
307 ' 108 ' 10713 1017

Table 4.1.2-4. Nonlinear amplitude parameters for a uniform canti-
lever beam resting on a cubic nonlinear elastic foundation.

|
n = spatial function Aén)l = amnA113 |
m = time function (1) . 3
Amn = dmnA
amn
1| i i
- 1 2 3 4 5 | 6 i 7
4.9370 |-2.1920{1.9292 | -3.4120] |
1 2 3 l
10 10~ 104 10 -5 :
, |2-0731|-1.9225 | -9.5072 6.8424 | -1.1629)] 5 i
102 102 1074 10°5 1073 } 5
dmn o
: | -3.6140] 6.6730 |-2.5422] 1. 9427 l |
1! !
i 104 | 107 10 -9 | 10 -11 1 |
| 5 ; -1.9673; 1.4073 |2.8942 |-9. 0163!6 6214 | i i
[ 70 1073 10| 1077 10710 12 | | ;
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Table 4.1.2-5. Frequency numerical values for a uniform beam
simply supported and resting on a cubic nonlinear elastic foundation.

'LINEARLINEAR FREQ. FIRST ORDER W°  SECOND ORDER w3

MODE “’i_i“4+a N A5, A%10)7  Afj0)73
] 2 0.56250  0.35812

2 17 , 6.59179  2.67155

3 82 _ 5.09033  2.06303

4 257 . . 15.09033  2.06303

5 626 5.09033  2.06303

Table 4.1.2-6. Frequency numerical values for a uniform beam
clamped - supported and resting on a cubic nonlinear elastic foundation.

:LI{ANOEIA)AER!LJNE?R‘}FREQ. FIZRST ORDERZ w? SZIIEZCOE\I?’D ORDZILE)R u%;;

;- MO  uenTta A AQ A (10) le(lO)___
; | 2 - 0.55635  0.40324 -
2 17 . 3.67310  1.93057
3 82 : '2.65111  1.39341
4 257 » ' 2.61869  1.37637

5 626 f 1 2.61856  1.37630

. ' ]
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Table 4.1.2-7. Frequency numerical values for a uniform beam
clamped-clamped and resting on a cubic nonlinear elastic foundation.

Lﬁ\gsﬁqER LINEAR FREQ.. ng{s'r ORDER ‘20';’ _SECOND ORDER ?33 3
N P A Ay - A(10) A7 (10)

1 2 10.55067 0.44210 |
2 o | 2.05826 1.32667
3 82 | 1.15694  .745720
4 257 . 1.15694  .745720
5 626 1.15286  .743089
9 6562 1.15286  .743088

Table 4.1.2-8. Frequency numerical values for a uniform beam
cantilevered and resting on a cubic nonlinear elastic foundation.

"LINEAR|| 'Nb 2 FREQ. FIRST ORDER wy SECOND ORDER wa 4

_n_MC,ZDE | A2 A% a%0® Ao
;__-.- 1 2 |0.44037 0.56070
2 17 : -1.18956 -1.92844
3 82 - -1.22¢2)  -1.99271
4 257 -1.23035 -1.99458

5 626 -1.23045 -1.99474

——— . s | - . -
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Figure 4.1.2-2. Frequency-amplitude curves for various
beams resting on Duffing type nonlinear elastic foundations.
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Figure 4.1.2-3. Nonlinear frequency-amplitude responses for
various beams resting on Duffing type nonlinear elastic founda-
tions. Results from using approximate linear mode shapes are
compared with results from linear eigenfunctions.
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4.1.3. Beams with Variable Cross Section

The following nonlinear results are examples of the theory
and application of section (3.1.3). Beams and restoring functions
as described by taking particular values of n in equations (3.1.3.2),
(3.1.3.3), and (3.1.3.4) are considered. Linear transverse vibra-
tions of beams of variable section without any restoring force are
treated by Cranch and Adler [ 28] using simple beam thory and the
solutions involve Bessel functions. These linear results are ex-
tended to include a linear restoring function and thereby supply the
necessary linear eigenfunctions and eigenvalues for computing the
results.

Let us consider a cantilever beam with a coordinate system
so chosen that the distance x measured along the beam originates at

the free end. The boundary conditions at the clamped end give the

frequency equation

1 1 1 1
2 2 2y -
Jn (ZkLg) In+1(2kL ) + Jn+1 (2kL )In(ZkL )=0 (4.1.3.1)

and the linear mode configuration follows as

n 1 1 1
-~ "2 3 3, z ‘b]
V (x)=C 2 [In(ZkL )3, (2kx7) -3 @kLE) L kx| g,
where k4 = wz - Oi , L =M , x is the dimensionless length variable, J,
and In are the Bessel and Modified Bessel functions of the first kind.

Example 1. We now consider a cantilever beam with rectangular cross
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section and setn = 1. If o, and E in equations (3.1.3.2), (3.1.3.3)
and (3.1.3.4) are both constant, then the cross section varies in such
a manner that the beam depth is constant, the height varies linearly
and the foundation parameter varies as the area. Upon substitution

of the linear eigenfunction into equation (3.1.5) with n = 1 and arbitrarily

setting o = 1 , the first order nonlinear frequency approximation is
found as
2 _ 2 2
wo o= wy t 0.7665 GAH 4.1.3.3)

To compute the nonlinear mode shapes, the first five linear
eigenfunctions are taken. The amplitude parameters for the nonlinear
mode shape are given in table 4.1.3-1 . Furthermore, the normalized
nonlinear mode shape is graphed in figure 4.1.3-1.

Inspection of the results given in table 4.1.3-3 indicates good
convergence of the second order frequency (3.1.10) including second

order corrections is given as

4
11 (4.1.3.4)

w? = wg + 0.7665€A121- 0861€%A

The results are plotted in figure 4.1.3-3.
Example 2. By setting n = 2 both the width and depth are a linearly tapered
if a rectangular cross section is assumed and the beam represents a pyra-

mid. Also, by the change of variables

-

1}
Wy
L2 ]
ow

= =72
r ro(x/L) AO 171.0

(4.1.3.5)
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the results with n = 2 represent a circular cross section with a uniform
taper. Both o and E are again assumed constant.

The first order nonlinear frequency-amplitude response is

2 2 2

W™ = w, +0.8257€ A} (4.1.3.6)

The nonlinear mode shape is described by equation (3.1.7) with the
constants defined in table 4.1.3-2. These mode shapes are plotted in
figure 4.1.3-1.

The second order frequency-amplitude relation, again computed
by truncating after the fifth linear eigenfunction, is found from table

4.1.3-4 as

2 2

4
11 - .08257¢"A

w = wo + 0.8257¢€A 11 (4.1.3.7)

A frequency graph appears in figure 4.1.3-4.
Example 3. If one sets n = 3/2, the beam has a parabolic width and
linearly tapered height with ¥, and E constant. Again the restoring

parameter varies as the area. Upon substitution into equation (3.1.5)

with@ =1 | the first order approximation of frequency is
2 .2 2
w = wo + .7961€A11 (4.1.3.8)

The nonlinear mode shape has constants according to table

4.1.3-6 and the nonlinear frequency-amplitude relation including the
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second order perturbation from table 4.1.3-5 is

2 2
0

2
11

4

2
- .0876€"A,, (4.1.3.9)

+ .,7961€ A

These results are graphed in figure 4.1.3-5.
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Table 4. 1. 3-1. Nonlinear amplitude parameters for a variable section
cantilever beam with a nonlinear displacement dependent forcing func-

tion as described in Example 1.

T Al |
n = spatial function mn mn’ 11
{ = ti functi Am = A3 3
! m = time iunction mn mn l
| 2mn |
) 1 2 3 4 | 5 6 1 |
: ~3.8703 | -7.1743|-2.0219;-6. 9666 g 2
P! 102 | 1073 | 107 | 107* | z
| 8.2756 | 2.5774 | -3. 6437|-7.7010]-2. 4564 | !
b3 ] 1072 ] 102 | 107 10 107 - |
; d
¥ mn
| "4, 6487 |-4. 0444 |-5.6202]-8.1320 |
1 - - - - ;
| 1005 | 107 | 100?| 107 | 3
[, [1.9388 | 3.0958 |-2.0540|-2.1405 |-2.8676 |
1 1074 107° 1077 | 1007 | 1078

Table 4. 1. 3-2.

Nonlinear amplitude parameters for a variable sec-

tion cantilever beam with a nonlinear displacement dependent forcing
function as described in Example 2.

T 3 |
n = spatial function Ain)n = amnAll i
m = time function Al g A3 ;
mn mn
a
mn
T )
N 1 2 3 4 5 | 6 1 7
72,4515 |-6.0515 -2. 0445 -8. 2047 ;
1072 10°3] 1073 107* | 5 |
3.9439| 9.5634 |-3.9678] -8. 4143]-3. 0024 | i
30 103 107 | 1073 | 10| 107% | |
3
mn S
1 [-5-2391 | -4.2723|-5. 0183)-7. 0747
L 10° 108 | 10719 10712
3.1824 | 2.0437 |-2.8012|-2.0652|-2. 5889
31 107° 10| 1078 | 10719 10712
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Table 4.1.3-3. Frequency numerical values for a variable section
cantilever beam with a nonlinear displacement dependent forcing
function as described in Example 1.

LINEAR | NEAR FREQ, FIRST ORDER .  SECOND ORDER w:

M_gDE .56%342;?1;—-)%& A% Af  A%107° Afllo'ZEL
1 Y, =4.61 0.4035 0.7665

2 % =7.80 . -1.81787  -6.56106

3 Y3 =11.0 . . -2.26738 -8.18345
4 Yy = 14.1  2.36215  -8.52547
5 = Y =17.3 . ~ -2.38759 -8.61730

Table 4.1.3-4. Frequency numerical values for a variable section
cantilever beam with a nonlinear displacement dependent forcing
function as described in Example 2.

'LINEARTINEAR FREQ.”  FIRST ORDER W, ' SECOND ORDER &2 |

| MODE gv..:f,’:(?;’rT)‘*m A2 AL atl072 Aﬁlo-z
1 ¥ =5.91 . 0.3988 0.8257
2 ¥, =9.20 -1.30134  -5.57869
3 v, = 12.4 _1.74476  -7.47958
4 Yy = 15.6 -1.86696 -8.00342

n

~<
5
"

18.8 '-1.90836  -8.18092




Table 4.1. 3-5,
cantilever beam with a nonlinear dis

72

function as described in Example 3.

'LINEAR (LINEAR FREQ

Frequency numerical values for a variable section
placement dependent forcing

FIRST ORDER w? :SECOND ORDER &

;M(zDE §u§=(:_:1,{)4+°‘ A2 A2 | a%10°2 Aﬁlo-z—_
1 ,’ Y, = 5.27 0.4010 0. 7961
2 | Y, = 8.51 -1.58874 -6.25986 |,
3 vy = 11.7 -2.06616  -8.14098 ,
4 | Yy = 14. 84 -2.18589 -8.61271 :
; 5 Yg = 18.01 -2.22290 -8.75856 }
L 1 |

Table 4.1. 3-6.

Nonlinear amplitude parameters for a variable

section cantilever beam with a nonlinear displacement dependent
forcing function as described in Example 3.

n = spatial function Al _ o A3 !
. rP)n mn 51
m = time function ( -
A d A
mn mn
a
mn
o 1 2 3 4 5 6 7
-3.0800 |-6.8065]-2.1441 |-8.1026
1 10°2 1073 | 1073 1074
5.6373{ 1.5512 |-3.8700 -8.4259 -2.9078
31 10 10° 1073 | 10” 10~
i -
mn
' -1.4963 |-1.3062|-1.7203 |-2.5772
1] i -7 -9 -1
i 10 10 10 10
5 | 7-5420 | 7.5360 [-7.4272[-6.7924 -9.242;
{107 | 107 1078 | 10710 10 l
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Frequency-amplitude response curves for

cantilever beam with constant cross section.
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Figure 4.1.3-3. Frequency-amplitude response curves
for cantilever beam with variable cross section as des-
cribed in Example 1.
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Figure 4.1.3-4. Frequency-amplitude response curves for
cantilever beam with variable cross section as described in
Example 2.
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Figure 4.1.3-5. Frequency-amplitude response curves
for a cantilever beam with variable cross section as
described in Example 3.
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In order to include examples of variable section beams involv-
ing trigonometric solutions rather than the Bessel functions, let us
consider the nonlinear vibration of beams with cross sectional areas,
moments of inertia and displacement dependent restoring functions
that vary in an exponential manner. The nonlinear partial differential

equation of motion is taken as equation (3.1.3.1). By making the vari-

able changes

— 4
u=Ly t=wt a = Kol A=t
7
EIm
0 1=pe*/t
4 2
2 _gEL T w
x:%.; w '——0——4— ¢ = nL® K=Koex/L
'onL

The dimensionless equation of motion follows as

2% x/L Fu 2 x/L Pu 4 g oyt aee®lyd 20
dx2 (e Ez—'l'we ;{2— ale u Otle u

The linear frequencies and mode shapes as given by Suppiger

[29] are extended to include foundation terms. They are

4
2 _ 3.12

X
Vl(x) = Ce” 2T [cos h 3'#7 X -1.115s8in h 31"17 X - cos 3‘"09 x

+ 7.43 sin 31'709 X ]
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for a simply supported beam, and

Wl o s @Iy

x
V.(x) = Ce zn [cos h4'75 x -0.98 sinh4'75x + 0.99 sin 4'71x
1 m n m
4.7 ]
-cos x
for a clamped-clamped beam. L

The first order nonlinear frequency for the simply supported

system follows from equation (3.1.5) upon integration as

2 .2 2
w® = wy + 0.3578€ A

and for the clamped-clamped beam
2 _ 2 2
w" = wy 0.4325 (An

where the amplitude A ) is again defined in the normalized sense. These

results are plotted with®=1 in figure 4.1.3-6.
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First order amplitude-frequency curves for

beams with exponential varying cross sections resting on non-
linear elastic foundations.
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4.2. Numerical Solutions for Continua Having Immovable Supports
and Large Amplitudes of Vibration.

4.2.1. Elastic Beams with Immovable Supports

Numerical results for the nonlinear problem of a uniform
beam with immovable end supports are given in this section. The
system is described in section 3.2.1 and the dimensionless equation
of motion is taken as equation (3.2.1.5). Linear frequencies and
eigenfunctions are again taken from Wylie [25] for simply supported,
clamped-supported and clamped -clamped boundary conditions.

The first order nonlinear frequency-amplitude relation is given

by equation (3.2.1.12) as

2 3 2 oF " 2
W = =74 Io vlvl,xxdx«ro (V) ) ax

(3.2.1.1.12)

Upon substituting the linear eigenfunctions and performing the integra-
tions on the computer one obtains

2 2

0 + 1.17809 €A2

(4.2.1.1)

for the simply supported,

w? = wl + 1.40748 €A 4.2.1.2)
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for the clamped-supported, and
w? = uf +1.45168 € AZ (4.2.1.3)

for the clamped-clamped end conditions. The amplitudes are defined

as before, where

i.e. A is the maximum dimensionless deflection and A}) is agsociated
with the normalized eigenfunction. It is to be note‘d that the product € A2
is equivalent to i multiplying the dimensionless ratio of the deﬂectioﬁ
to the radius of gyration of the beam cross section. These first order
results are identical with those of Evensen [10].

The nonlinear mode shapes are determined upon substituting
higher modes and cor‘respon’ding fréquencies of the linear problem into
equation (3.2.1. 15). The amplitude parameters are éiven in tables
4.2.1-1, ard 4.2.1-2. The mdde shapes are graphed in figures 4.2.1-2
and 4.2.1-2.

Second order frequency-amplitude results follow directly from

equation (3.2.1.19) and tables 4.2.1-3, 4.2.1-4 a.nd 4.2.1-5 as .

w? = w5 + 1.17809 €A? - 0192765 €A% (4.2.1.4)

for simply supported,

2 2 2

+1.40748 €A’ 4

- .0119564 €2 A% (4.2.1.5)
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for clamped-supported, and

w? = w ® +1.45168€ A% - . 00602962 € A*
(4.2.1.6)

for clamped-clamped end conditions. These results are plotted in

figure 4.2.1-3. There are no second order approximations available

for comparison.

Table 4.2.1-1. Nonlinear amplitude parameters for a uniform beam
clamped-hinged with immovable supports.

: (1) _ < 3
n = spatial function Amn * 2mnA1l
m = time function (1) _ 3
Amn - dmnA
amn
1 2 3 4 5 6 7
1.6373 | 3.0874 | 9.0027 | 3.3543 | 1.4718 |7.2679
1 10-2 103 1004 | 1004 | 1074 10°3
1.7423 | 3.4531 | 1.2534 ] 3.1934| 1.1477| 4. 9697 |2.4399
3 | 1072 1072 103 107%] 1074 1074 107>
dmn
-2.5514 |-2.0765]-2. 6168|-4.2139]-7. 9930 |-1. 7074
1 103 ] 1007 107%] 107 10713 10714
-6.1097|-5.3810|-8.4298|-9. 2823 |-1. 4418 -2. 6989 |-5. 77319
3 1004 1073 10781 10719 q10°M| 10713 10713




Table 4.2.1-2.

84

Frequency numerical values for a uniform

beam with simply supported immovable supports.

—LI{/INg:ﬁqER LINEAR FREQ FIRST ORDER W SECOND ORDER w3
.n wo=n A A%10”

1 2 1.17809

& 16 1.92765
3 81 1.92765
4 256 o 1.92765
5 625 1.92765
6 1296 1.92765
{ 2508 1.92765

Table 4.2.1-3.

Frequéncy numerical values for a uniform

beam with clamped-supported immovable supports.

LINEAR'I INEAR FREQ.

FIRST ORDER W:

"SECOND ORDER_ W3

MODE | w2-gn)* Al A0

1 y1= 3.9266023 1.40748

2 |ve= 7.0685827 - .886755
3 |%=10.2101761 -1.111530
4 |7,=13.3517688 -1.167424
5  |%-16.4933614 -1.185525
6 ly,=19.6349541 -1.192560
7 |w%=22.7765468 -1.195649
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Table 4.2.1-4. Frequency numerical values for a uniform beam with
clamped-clamped immovable supports.

LINEAR [LINEAR FREQ| FIRST ORDER af SECOND ORDERwW?
M(%DE %a: (%h_)ca. a2 A"%lo'a 2—

1 'y1= 4.7300408 1.45168

2 %= 7.8532046 5.695165

3 ¥%=10.9956078 -4.837814

4 %=14.1371655 -4,.837814

5 Ye=17.2787596 -5.839504

6 %=20 4203525 -5.839504

7 v,=23.561945 -6.029620 A

Table 4.2.1-5. Nonlinear amplitude parameters for a uniform beam
clamped-clamped with immovable supports.

1 3
n = spatial function Agm)l = a'mnAH
m = time function A(nrln)1= dmnA3
2mn
n 7
- ] 2 3 4 5 6
~3. 6299 |6.3668 |-2.3333|7.9605 [1.1222 [1.8453
1 10” 1073 108 | 1074 107 10
9.4495 [5.6967 [2.9627 |-8.6565[2.7790 3. 8291 6.2323
3] 103 | 1077 1073 1077 | 10° 10” 10
dmn
[2.2138 [1.6753 [-2.6538 [3.9139 |2.3862 |1.7004
1 10710 | 1077 10~ 10-11 10° 10-1
T 2856 13.4743 |7.7960 |-9.8456 |1.3663 |8.1422 |5. 7428
- - - -18 -15
3 1107 10710 | 1078 108 1001 | 10 10
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Figure 4.2.1-3. Frequency-amplitude curves for beams vibrating
with large amplitudes and having various boundary conditions.
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4.2.2 Vibration of Circular Plates at Large Amplitudes

The numerical solutions contained in this section pertain
to axisymmetric clamped and simply supported plates vibrating at
- large amplitudes as described in section 3.2.2, where the dimen-
sionless equation of motion is given as equation (3.2.2.5).

Information on the corresponding linear problem is taken

from reference [26]. For a clamped axisymmetric plate with zero

initial radial tension the frequency equation is

J n+1 (7) + In+1 (‘)’) = 0

Ta (7) I,(%) 4.2.2.1)

4
and for the simply supported plate the frequency equation is taken as

T+, (¥) + Int2(y) __2_
To) Lty '° 4.2.2.2)

The corresponding linear eigenfunction for both boundary conditions
follows in the form
Va(r) = C [L(y,2)T o (7ar) - T4 (¥n2) Lo (vyr) |
(4.2.2.3)
Notice that Poisson's ratio appears explicitly in the frequency
equation for a simply supported plate, but not in the linear frequency
equation fcr a clamped plate. Consequently, clamped plate vibrational

response is independent of v , but this is not true for the simply supported

plate. As pointed out by Berger [20] in the case of the static analogue,
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neglecting the strain energy due to the second strain invariant can be
interpreted as neglecting part of the variation of the deflection caused
by a change in V.

Cognizant of the linear results for the problem, the first order

approximation to the nonlinear frequency follows from equation (3.2.2.9)

as

w® = wl + 3.28138 c A (4.2.2.4)
for the clamped plate, and

o = w? + 3,59788 € A (4.2.2.5)

0
for the simply supported plate.

The amplitude parameters are computed according to equations
(3.2.2.11) and (2.2.2.12) and appear in table 4.2.2-1 and 4.2.2-2. The
mode shapes for both boundary conditions are plotted in figure 4.2.2-1.

Substitutions of the linear frequencies and eigenfunctions into
equation (3.2.2.15), along with the already computed amplitude para-

meters yields the second order approximation to the nonlinear frequency

as

w® = wl + 3.28138 ea® - .03258¢°A" (4.2.2.6)
in the case of a clamped plate, and

w® = wl + 3.59788€A% + .02572%A% (4.2.2.7)

for a simply-supported plate. In order to compare these results with
those obtained by Wah using a modified Galerkin approach, the dimen-

sionless amplitude is plotted against the ratio of the nonlinear period
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to the linear period in figure 4.2.2-2. Tables 4.2.2-3 and 4.2.2-4 con-
tain the nonlinear results corresponding to the order of the linear eigen-

function used in the series of equation (3.2.2.15).

Table 4.2.2-1. Nonlinear amplitude parameters for a clamped
circular plate vibrating at large amplitudes.

(1) _ 3

n = spatial function Amn * 2mnfy)

m = time function (1) _ 4 A3
n = 9mn

-1.2213 |1.9440 | -5.2062

10 10 10

1.4371 |-9.3599]7.2529 |-1.7955

1072 1003 | 100% | 107¢




Table 4.2.2-2.
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Nonlinear amplitude parameters of a simply sup-

ported circular plate vibrating at large amplitudes.

A

3

n = spatial function Amn = amnfll
m = time function 1(11121 = dmnA3
2mn
n
N I 1 2 3 4 5 6 7
2.9392 | -3.2279
! 10°3 1074
4.3281 | 1.2666 |-1.1155
3] 102 | 10°3 10

Table 4.2.2-3.

plate vibrating at large amplitudes.

Frequency numerical values for a clamped circular

LINEAR |LINEAR FREQ| FIRST ORDER W2 SECOND ORDERW2 |
MaDE w: - y; A® Ail A ‘ Atu
1 Y =3.1961| 3.281.38 35.7989
2 Y, =6.3064 -.036912 -4.35053
3 Y3 =9.4395 -.031483 -3.70157
4 Y =12.577 -.032580 -3.84009

Table 4.2.2-4. Frequency numerical values for a simply supported
plate vibrating at large amplitudes.

LINEAR |LINEAR FREQ FIRST ORDER w? SECOND ORDER w$
MODE 3 _ .4
2 & =Yy A2 A2, A% A;
1 W =2.22 3.59788  25.2322
2 Y, =5.45 .026509 1.30368
3 Y3 =8.61 .025724 1.26519
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1.0 Clamped Plate
(All Values of V)
0.9¢
Simply Supported Plate
0.8 (v = 0.3)
0.771
_ Wah's Galerkin Solution
First Order Perturbation N\
1 — — — _ __Second Order Perturbation \\
0.6 N
0.2 0.4 0.6 0.8 1.0
AMPLITUDE
THICKNESS

Figure 4.2.2-2. Ratio nonlinear-linear period vs ratio
amplitude-thickness for circular plates with various boundary
conditions.
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4.2.3. Vibration of Membranes at Large Amplitudes

The following numerical results are obtained through the expres-
sions developed in section 3.2.3 describing large amplitude vibrations
of circular membranes. Using the linear theory from reference (31]
and substituting into equation (3. 2.2.9), one obtains the first order fre-

quency-amplitude relation

wz = wg + 3.375 €A2 (4.2.3.1)

The nonlinear modal constants are found from equations (3. 2.2.11)
and (3.2.2.12}. Numerical values are given in table 4.2.3-1 and the
mode configuration at different times are plotted in figure 4.2. 3-1.

By equation (3.2.2.15) and after some manipulation the second

order frequency-amplitude relation is

wz = wg + 3.375€A2 + .0609€2A4 (4.2.3.2)
The relationship between the amplitudes is again
A = A \v1 | hax (2.3.4)

where A is the maximum deflection of the linear mode, \Vl lmax is the

maximum value of the normalized eigenfunction, € the perturbation para-
meter and A11 the amplitude associated with the normalized linear mode.

In order to compare the results with those of Chobotov and Binder (8]
the ratio of the nonlinear to linear period is plotted against a dimension-
less amplitude parameter defined as
2
>‘2 _ 6W0 Eh
4-2
a W, pl1-v) (4.2.3.3)
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where in the notation of Chobotov, W0 is the maximum central displace-
ment of the nonlinear mode. Figure 4.2.3-2 indicates exceptionally good

agreement even at large amplitudes.



Table 4.2.3-1.

97

Frequency numerical values for a circular membrane
vibrating at large amplitudes.

L:ANOEsER LINEAR FREQ| pjRsT ORDER %2 SECOND ORDERY, |
n W = Y?l AB Ail A4 A:l
1 |% =2.404 | 3.3756 25.0323
2 |% =5.520 06219  3.42018
3 |7 =8.654 .06142  3.37775
4 |m  =11.792 .06097 _ 3.35286

Table 4.2.3-2.

Nonlinear amplitude parameters for a circular mem-
brane vibrating at large amplitudes.

n = spatial function Al('rllz-‘ = amn li
m = time function Al(’l’llZI = dppA3
2mn
ImN] 1 2 3 4 5 6 7

1.9470 | -2.5605| -1.7831
1 104 10*] 10
1.8046] -7.4388] -2.5783| -9.101
31 10'] 103 10| 107
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—— - —— Chobotov and Binder's First Order
Perturbation of Couples Equations

First Order Perturbation of Uncoupled
Equations

— — —Second Order Perturbation of
Uncoupled Equations

2.0 4,0 6.0 8.0 10.
Dimensionless Amplitude A

Figure 4. 2. 3-2. Ratio of the nonlinear to linear period vs
nondimensional displacement for vibration of a circular
membrane with large amplitudes.
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4.3 Numerical Solutions for Continuous Media Having Nonlinear
Constitutive Equations.

Several different types of dynamic systems including plates,
membranes and beams with nonlinear elastic materials are solvable
by means of the general theory presented in Chapter II. However,
in order to illustrate the numerical procedure, only application to
beams as developed in section 3. 3 is considered. The motion is as-
sumed to be defined by the dimensionless equation of motion (3. 3. 4).

The necessary results on the linear problem for beams with
various boundary conditions are contained in Wylie [25] Substituting
these results into equation (3. 3.7) and performing the integrations on
the computer, one obtains the first order frequency-amplitude relations
as

w? = wg + .18750 €AZ (4.3.1)

for the simply supported beam,

w? = wg + 1.1042 €A (4.3.2)

for the clamped-supported, and

2 g + 4.8474 € A (4.3.3)

for the clamped-clamped beam. The amplitude A has been previously
defined as the maximum deflection of the linear mode.

After truncating the series in equation (3. 3. 8) to include the
sixth linear eigenfunction, the amplitude parameters follow as in tables
4.3-1, 4.3-2, and 4.3-6, where A, is associated with the normalized

11

eigenfunction as before.
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Second order nonlinear frequency-amplitude relations follow
from equation (3. 3.9) as

w? = wg + .18750 €A% - .011865¢2A%*  (4.3.4)

for the simply supported case,

2 (2) + 1.1042 € A% - .38317&a% (4.3.5)

for the clamped-supported, and

w? = w(z) + 4.8474€ A% - 4.12345¢a% (4. 3. 6)

for the clamped-clamped beam.

Kauderer [32] has approximated the case of the simply supported
beam by assuming a particular solution of higher harmonics and equating
coefficients. The first order frequency relation obtained here is identical
with his approximation. Figure 4.3-4 shows the frequency response for
all three boundary conditions. Figures 4.3-1, 4,3-2, and 4.3-3 are
graphs of the nonlinear mode shapes compared with the corresponding
linear configuration at different times. It is interesting to note how the
nonlinear contribution changes the algebraic sign during a period of vibra-
tion and the maximum deflection of the clamped-supported beam changes

position along the span at different times.
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Table 4. 3-1. Nonlinear amplitude parameters for a uniform beam
simply supported and having the nonlinear constitutive equation as
N = E (€ + hé¥)

1 3
n = spatial function Ain)n = amnAll
m = time function A(l) -4 A3
- mn mn
a '
e mn i
NI 2 4 5 | 6 o7
m ' i | '
? S 4.4762 { |
i1 0. 10” 0.0 | 0.0 ! 0.0
by | 497351 1.6578 00 | o0 : o | |
3 10'3 5 . 10-3 . . ' e i
Y
i d
4 mn
; 7.0312 | i | §
} 1 0.0 103 | 0.0 L 00 | 00 | 5
1 : ! !
1 7.8125 2. 6041 6 o o | oo |
3 - B - .
U L B I .

Table 4.3-2. Nonlinear amplitude parameters for a uniform beam

clamped-supported and having the nonlinear constitutive equation
as N =E (€+ he3)

n = gpatial function A&)n = amnAfl ‘
m = time function A(l) =d 3
- mn mn !
a J
mn
N\l 1 2 3 4 ] 5 6 i 1
-2.1%?8 -5.1031]-1.0420| -3.0343! -1, 2659 '
-2 | i !
. 10 103 1072 | 1073 | 107? |
5 | 1.3670)-4.4729 p2.07}§¥-3.6963;-1.0382;-4_2744;
1072 . 102 | 107 103 i 1073 ; 1074
d
mn
| | 3.3048 | 3,432]1 | 3.0288, 3.8111i 6.8748 |
1 ! : 10'5 ’ 10’:7 -8 -10 -12 ‘
! ! i 10 10 | 10
{-4.7938{ 6.9701 | 1.3933| 1.0744! 1.3039, 2.3213 | (
317" % § -5 -7 -8 -10 ¢ . -12 1 {
;10 [ 10 10 10 10 ¢ 10 i
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Table 4.3-3. Frequency numerical values for a uniform
beam simply supported and having the nonlinear constitutive
equationas N = E (€ + he?®)

'LINEAR LINEAR FREQ. FIRST ORDER w? SECOND ORDER w2

MODE | w2 AL af107% afpo”?
1 1 . 0.18750 0.1194 -
2 16 -1.46484 .5936785
3 ' 81 ! ' -1.18652 -4.80879v
4 256 l -1.18652  -4.80879
5 625 -1.18652  -4.80879
6 1296 ; -1.18652  -4.80879

Table 4.3-4. Frequency numerical values for a uniform beam
clamped-supported and having the nonlinear constitutive equa-
tion as N = E(€+he2)

LINEAR L INEAR FREQ. FIRST ORDER_W; ' SECOND ORDER W3 |

. MODE | y2.gut [ 42 aAf | oa%0™ AJj10T
1 % =3.9266023( 1.1042 0.8006 |
2y =7.0685827, | -.805985  -.423622
3 % =10.2101761) | -.990191  -.520440
4 7, =13.3517688) ©-3.23279  -1.69914
5 % =16.4933614 | -3.67639  -1.93229
6 % =19.6349541, ©-3.83178  -2.01396
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Table 4.3-5. Frequency numerical values for a uniform beam clamped-
clamped and having the nonlinear constitutive equation as N = E (€+ heé )

LINEAR |LINEAR FREQ.| FIRST ORDER &2 SECOND ORDER%¥
MODE w2___ (yn\4‘ 2 ' 2 4 4
n o~ \‘m’ A AL A Al
1 'Yl= 4.7300408 4.8474 3.8953
2 'Ya = 7.8532046 . 19074 12294
3 Y, =10.9956078 -1.26516 -.81547
4 D, = 14.1371655 -1.26516 -.81547
5 Y, = 17.2787596 -3.54851 -2.28723
6 Y% 20.4203525 -4.12345 -2.65782
Table 4.3-6. Nonlinear amplitude parameters for a uniform beam

clamped-clam
N = E (€ + he?3

§>ed and having the nonlinear constitutive equation as

3
n = spatial function Ar(nlr)l = amndll
m = time function Ar(nlrl _ dmnA3
amn
oo 2 3 4 5 6 7
m '
>.7386 | -4.32258.5521 |-2.1976|-7.8798
1 106 1072 1077 10| 103
3.1573 [-4.2980 [ -2.01143.1728 |-7.6719| 2. 6887
31 1072 10°8 10° 10° 10” 10°
dTnn
1. 6702 | -1.1374| 9.7250 |-1.0799| -7.2610
1 109 106 1013 109| 10713
4.2956 | -2.6212 | -5.2927| 3.6079 |-3.7700| -2.4775
31 10 1077 1071 1013 10719 10713
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Figure 4.3-1. Normalized mode shape for uniform beam
simply supported and having a nonlinear constitutive equation
of N = E (€ + he?),
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Figure 4. 3-4. Frequency-amplitude curves for uniform
beams having a nonlinear constitutive equation of the form
N =E (€ + he®),
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V. A GENERAL SOLUTION USING ULTRASPHERICAL POLYNOMIALS

5.1. Introduction

In this chapter a method is presented for determining the amplitude-
frequency relations for a class of nonlinear continuous systems under-
going periodic motions. The method applies to systems governed by
nonlinear partial differential equations in one space variable and one
time variable, in which the nonlinear terms are assumed due to non-
linear forcing functions which depend on the displacement and its spatial
derivatives, but do not depend on time explicitly.

Recently Denman et al [33,34] developed a method for treating
nonlinear vibration problems with one degree of freedom. By lineariz-
ing the nonlinear spring forces using a set of ultraspherical polynomials
over the interval over which the motion takes place, they were able to
obtain approximate amplitude-frequency relations with fair accuracy.
Some attempt has also been made to extend the method to systems with
two degrees of freedom [36] .

In this present chapter, the method of ultraspherical polyno-
mials is extended to nonlinear continuous systems of the type described
above. An obvious difficulty immediately arises because the maximum
displacement varies from point to point and these maximum displace-
ments are not known in advance. To overcome this difficulty and to
achieve the linearization of the nonlinear forces, one must initially

assume some appropriate '""mode of deflection.' In cases where the
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linear mode of small vibration is known, this linear mode is taken
to be the mode of deflection. Otherwise some suitable approximation
to the linear mode has to be used. Next, an amplitude parameter is
introduced so that the maximum displacements are determined by
the product of the amplitude parameter and the normalized linear
mode. Using ultraspherical polynomials, the nonlinear force at
each point is replaced by a force that is linear in the displacement.
This results in a linear partial differential equation. Together

with the initial and boundary conditions, one is thus led to solve a
linear eigenvalue problem and it is the determination of the eigen-
value that leads to the desired amplitude-frequency relation.

In order to illustrate the procedure, the general form of the
nonlinear equation of motion is linearized and a frequency-
amplitude relationship is established in section 5.2. The developed
expressions are then applied in section 5. 3 to typical systems of
strings, bars, circular membranes and plates on nonlinear founda-
tions, vibrating with large amplitudes, vibrating with immovable end
supports, or consisting of nonlinear elastic materials as described
in the previous sections. It is found that for these cases, if the
Tchebycheff polynomials of the first kind (a special case of the
ultraspherical polynomials found by setting A\ = 0) are used, the
frequency results agree exactly with those of the first order pert-
urbation solutions.

In addition to the general solution of the linearized equation
of motion by eigenfunction expansions, a uniform string on a Duffing

type foundation is solved by reducing the linearized equation to the form
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of the well known Mathieu equation, and a circular membrane supported
by the same type foundation is solved by the application of Hankel
transforms. The latter two procedures simply suggest that once
the nonlinear equation of motion has been linearized, several approaches
could be used to obtain the solution to the linearized problem, de-
pending on the type of physical dynamic system.

5.2. Linearization of a Class of Nonlinear Equations of Motion
and a Corresponding Frequency-Amplitude Relationship

Consider the following dimensionless form of a nonlinear

partial differential equation of motion

2
Lu+ w + = 2.
" u qu 0 (5.2.1)
where Lx denotes some linear differential operator of degree 2n in
the spatial variable x. Nx is an operator such that qu denotes

a nonlinear restoring function with the property that

>
uqu >0 (5.2.2)

for all u, and is assumed representable in the form

[--]
- 2n+1
N u = z &, ., u (5.2.3)
n=1

where aanl is either constant or at most a functional of the
associated linear spatial eigenfunctions or derivatives thereof.
N_u must be mathematically well defined at all points along the

continua.
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Eventually periodic solutions u(x,t) = u(x, t+2r) are sought
that satisfy 2n time-independent homogeneous boundary conditions

of the form

]
o
[
1

Diu(O,t) 1,2, ...

P
(5.2.4)

i
o
P

u

Diu(th) pfl, ....Zn

where Di are linear differential operators of order <2n in x, so

that the associated linear time-reduced equation

where V= V(x), together with the boundary conditions

]
o
-
|

DiV(O) =1,2,... p

(5.2.6)

I
o
M

]

DiV(L) p"]-, cooozn

form a properly posed self adjoint boundary value problem.
Henceforth it is assumed also that the boundary value problem
posed in (5. 2.5) and (5. 2. 6) admits nontrivial solutions when Qz

is equal to the eigenvalues

Q7 = Q. i=12,... (5.2.7)

which are all positive and form an infinite discrete set increasing
monotonically to infinity, and that the corresponding orthonormal

eigenfunctions Vi(x) satisfying
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L

jOr(x)vi(x)vj (x)ax = 6 (5.2.8)

are complete in the usual sense of eigenfunction expansions.

The first step in solving the system as previously described
is to linearize the nonlinear equation of motion (5. 2.1) by approximat-
ing N_u by a function that is linear in u. This is done by first assum-
ing that the geometrical configuration of the continuous system is
given by a linear mode AVi(x) and then treating qu at each spatial
point x along the continua, as an analogue to Denmans's single degree
of freedom problem. Thus qu is approximated by some linear

ultraspherical polynomial inthe following manner

- Af—u
qu = g(x,\,A) Pl (AVi(x)) (5.2.9)

where PlX is the linear ultrashperical polynomial of degree A , and
g(x,A,A) is some function yet to be determined.
In order to determine g(x,\,A), equation (5. 2.9) is multiplied

by
u 24 A% )Y u
[1 - (AVi(X)) ] Py (AVi(x) (5.2.10)

and integrated with respect to u from -AVi(x) to AVi(x), x being

treated as a parameter. It then follows that
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J.“AV.1 (x;] r [1 u z]A_;iP A .
-AV (%)X AVi(x) 1l AVi(x)

g(on'A) =

+AV, (x) - 2_ 2%

I-AV (x )[1 (AV (x)) ] [P (AV (x))] du

(5.2.11)

which can be reduced to

1 27\ -%

IONstVi [1 - ] P (s) ds
g(x,A,a) = 1 (5.2.12)

- M)

upon settings = u/AVi(x) and using the fact that both qu and
Pl(u/AVi(x)) are odd functions of u.
When the terms in the series expansion for qu given in

equation (5. 2. 3) along with the normalized P)i (s) * written as

A
Pl (s) = 2As (5.2.13)

are substituted into equation (5. 2.12) one obtains

Appendix A contains a more complete discussion of
ultraspherical polynomials and normalization.
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1 A%
- 2n+1l 2n+2 2
a2n+l(AVi) IO S [1 -8 ]' ds

2\ Jl [1 - sz] A% 32 ds
0

92n+1(x.k,A) =

(5.2.14)

for nonnegative integer n. After making the variable change s = yVZ

and some manipulation, the integrated result follows as

= 2n+1
(x,A,n) = azrn*'@‘i[Aﬁ(X)] (5.2.15)
gzn+1 4 ’ zx . .
A>-1/2
where the constant H2n+1 are given in terms of Gamma functions as
_ I'(n+t3/2) T(A+2)
Hont1l = T(3/2) T(A+n+2) (5.2.16)
Thus, with
-+
g(x,\,B) =) g, . (x,2,A) (5.2.17)
n=o
and from equations (5.2.9) and (5. 2.13) it follows that
(-]
- 2n
N1 :z O n+18one1 [Avi(x)] u (5.2.18)
n=o

Substitution of (5. 2.18) into equation (5. 2.1) reduces the latter to

the following linear form
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-]

2 2n
Lxu + W u . + z a2n+lH2n+l [AVi(x)] u=20 (5.2.19)

n=o0o

The equation (5.2.19) is separable. To solve the self
adjoint boundary value problem now described by the linear equation
(5.2.19) along with the boundary conditions (5. 2. 4), initial conditions
(2.2.5) and periodicity requirement (2.2, 4) as discussed before it

is sufficient to represent the solution in the form

ulx, t) {zApr(x)) cos t (5.2.20)

p=1
where the series in the parentheses is the expansion of the spatial
part of u(x,t) with respect to the linear eigenfunctions V_(x). The
coefficients Ap are yet to be determined. Upon substitution of

(5. 2.20) into (5. 2.19) one obtains

(-] [+
zLAV(x)cost—a)ZZAV(x)cost
XpPp PP
p=1 p=1 (5.2.21)
@® . -]
_ 2n
=0
+ z a2n+1H2n+l [Avi(x)] ZApr(x) cos t
n=o p=1

It is to be noted that a)z appearing above yields the approximate
nonlinear vibration frequency.
Dividing through (5. 2. 21) by cos t and using equation (5. 2. 5)

one obtains
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> ® 2n
2 2 -
2 (2] = o)AV (x) + z a, JH [Avi(x)]
p=1 n=o
(5.2.22)
XA V (x) =0

Upon multiplying by r(x)Vk(x), and integrating with respect to x
from 0 to L. equation (5. 2. 22) reduces, in view of the orthogonality

condition (5. 2. 8) to

(- L (-] (-]
2 2 - 2n 2n
Q° - o} +
Z ( P @) Ap Pk IO 2 a2n+1H2n+l (x) ZA Vo () x (%)
p=1 n=o p=1
Vk(x)dx =0 (5.2.23)
Thus
(- -] 0
2 _ o2, 2n_2n
© = Ak .[ z 2n+1H.‘2n+lA V (x) z
n=o0 p=1
(5.2.24)
Apr(x)r(x)Vk(x)dx k=1,2,3,...

2
The ® above can be interpreted as the square of the nonlinear
frequency found by assuming the ith linear mode in reducing the nonlinear
qu. It is expected that as the nonlinearity tends to zero, u(x,t) tends

to AVi(x) cos t and a)z tends to Qiz. Consequently, only when k = i
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in (5. 2.24) does equation (5. 2. 24) yield a meaningful solution. Upon

setting k=1 and A = A;, the square of the ith nonlinear

frequency w;is given by

2 2 Lo 2n_2n+2
S
a)l i o a2n+1H2n+lAi Vi (x)r(x)dx (5.2.25)
n=o

i=1'200-.

The expressions given in (5. 2. 25) for the nonlinear frequencies will

be applied to a number of particular continuous systems in the subsequent
sections and the results will be compared with those obtained by the
perturbation method in the previous chapters.

5. 3. The Application of Ultraspherical Polynomials to Approximate
Frequency-Amplitude Relationships

5.3.1. The Restoring Force Nonlinear in Lateral Displacement

In this section the frequency-amplitude relationships for
continuous systems supported by nonlinear foundations whose
resistances depend upon the lateral displacements, will be determined
by using the ultraspherical polynomial linearization method as
developed in section 5.2. The motions of the vibrating systems
are governed by equation (5. 2.1), with the boundary conditions in
the form (5. 2. 4), and initial conditions (2.2.5), with the initial
configuration unspecified. The linear eigenvalues and eigenfunctions
follow from the solution of the associated linear problem as posed
by the time reduced equation (5. 2.5) and the boundary conditions

(5.2.6).
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As mentioned above the nondimensional equation of motion is

2 , ‘
+ + = . )
Lxu wutt_, qu 0 (5.2.1)
32 4
= ——4 i = +
where, for example, Lx : x4 ozl for a string, Lx v al
in the case of a circular plate, Lx = =V + oy denotes a membrane
4
and Lx = 2 + al for a uniform beam. The constant Otl is the

d x 2
linear foundation constant and & is a dimensionless frequency

parameter as defined in section 3.1.2 for a beam of length 7.

In order to compare results with those found using the pert-
urbation approach, a Duffing-type foundation is considered by truncating
equation (5.2.3) at n = 1. The nonlinear restoring function is written

as

Nu-=a.u (5.3.1.1)
X

where c-r3 is a dimensionless constant similar to . as defined in
section 3.1,
The lateral displacement at any point is approximated by

assuming the deflected configuration to be one of the linear mode

shapes, say, for example, the first linear mode Vl(x)

u, = AV (x) cos t (5.3.1.2)
where A11 is the so-called normalized amplitude, Vl(x) is the
spatial eigenfunction that corresponds to the square of the linear
2

frequency §.” satisfying (5.2.5). From equation (5. 2. 25) with

1

n = 1 the frequency-amplitude relationship follows as
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- 2 ] 4 ]
— 5-30 .3
w = O+ H3a3All r(x) Vl(X) dx ( )

where H3 is found from equation (5.2.16) with n =1 as

- —3 .3.1.
Hy = Ja+2) (5.3.1.4)

If A= 0 (Tchebycheff polynomials of the first kind), the
frequency-amplitude response as determined by the method of ultra-
shperical polynomials is identical to the first order frequency-
amplitude relationship as found by the perturbation approach, which

was given as equation (2. 2.23) in section 2. 2.

5.3.2 Elastic Beams with Immovable Supports

A prismatic vibrating beam having immovable or axially
springed end supports represents a dynamic system whose governing
equation of motion contains a restoring function nonlinear in the
derivatives of the lateral displacement. The system was considered
previously in section (3. 2.1), and the nondimensional equation of

motion given as

T
u - ,Bu + wzu - e] uzdx u =0 (3.2.1.5)
XXXX XX tt X XX

Equation (3. 2.1.5) may be brought to the general equation

(5.2.1) if one sets
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4 2
_ 9 _ a9
Lx = n p 2 (5.3.2.1)
dx dx
and
T
b4 o x XX

In order to represent qu in the desired form of equation (5. 2. 3) the

linear mode shape for u is again assumed as

u = Allvl(x) cos t (3.2.1.10)

2
1

If one takes the first and second spatial derivatives of

where Vl(x) together with its corresponding ). satisfy (5.2.5).

equation (3. 2.1.10) and then substitutes the results into equation

(5.3.2.2), it follows that

T
_ 3 2 3 _
qu = eAll J le dx lex cos” t =
o)
™ (5.3.2.3)
2 3
ejole dx lex u
3
Y1
which can also be written as
N u = a u3 (5 3 2 4)
% 3 .3.2.
where T
2
_ ‘Iole dx lex
o, = (5.3.2.5)
3 V3
1

When one substitutes equation (5. 3. 2.5) inta the expression

(5.3.1.3) and sets both n =1 and r(x) =1, the frequency-amplitude

relationship follows as
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T T
2 _ 2 _ 2 2 ' |
w? = 0% - enf H Jovlle dx dror(x)lex dx (5.3.2.6)
where 3
H3 = m— (5.3.2.6)

If A =0, the ultraspherical polynomial results agree with
the perturbation first order approximation to frequency-amplitude
response as given in equation (3. 2.1.12) of section 3.2.1 and

equation (2.2.7).

5.3.3. Circular Plates Vibrating with Large Amplitudes

The vibrating plate systems considered in this section are
those described previously in section 3.2.2. However, frequency-
amplitude relationships are now found by the ultraspherical polynomial

method. The nondimensional equation of motion is

1
4 2 2
vu + w - =
u u Gjourrdr v u 0 (3.2.2.5)

as given in section 3.2.2. Egquation (3.2.2.5) takes the form of

equation (5. 2.1) if r is now considered as the spatial variable instead

of x and
2 2
— o) 1 2 d 1 23 4

L = = - - =

o Lr (a 2+rar)(a 2+rbr) v (5.3.3.1)
r r

1 2 2
qu._—__ Nru = - E‘[‘our rdr v'u (5.3.3.2)

The nonlinear restoring function Nru is represented in the
form of equation (5. 2. 3) by first assuming the mode configuration

to be

u Vl(r) cos t (2.3.2)

o= 211
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After the first and second spatial derivatives of the lateral
displacement as approximated by the linear mode are substituted

into equation (5. 3. 3. 2), the restoring function reduces to

3

Nru = a,u (5.3.3.3)
where 2
_ 1 Vlrrdr 1
0, = - I —E— (v, * T V) (5.3.3.4)
0 Vl

If equation (5. 3. 3. 4) is substituted into equations (5. 2. 25),
with n = 1 and the weighting function r(r) = r, the frequency

amplitude relationship follows as

1 1
2 _ ,2_ 2 2
W< = Ql € Ay} Hy j'orvlr dr jo(r ViVipe * vlvlr) dr
(5.3.3.5)
where
H = —3— (5.3.3.6)

3 2(\+2)

2
and Ql is the eigenvalue corresponding to Vl(x).
Again if the Tchebycheff polynomials are used, i.e. A=0 the
approximation to frequency-amplitude is identical with the results

obtained from the perturbation method given in section 3. 2. 2.

5.3.4. Beams Having Nonlinear Constitutive Equations

Another class of dynamic systems having nonlinear restoring
forces depending on the displacement and its derivatives is that of
vibrating beams with nonlinear material properties. The particular

type of material stress-strain relationship to be considered in this
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section is taken to be that already discussed in section 3.3. The

nondimensional equation of motion is given as

u + wzu + e[u2 u + 2 u u2 =0 (3.3.4)
XXXX tt XX XXXX XX XXX
which is equivalent to equation (5. 2.1) with
a4
L = (5.3.4.1)
X 4
3 x
and
2 2
Nu-= € [u u + 2u u (5.3.4.2)
X XX KXXX AKX XXX

The configuration of the nonlinear system is again approximated
by the linear mode and after taking spatial derivatives up to the

fourth order, the restoring function of equation (5. 2. 3) is written as

Nu=ou (5.3.4.3)
X 3

where

€ 2 2
a - - °
3 v3 [vl vy + 2 vy vl ] (5.3.4.4)
1

Upon substitution of equation (5. 3. 4. 4) into equation (5. 2.2.5) and with

n = 1, the frequency-amplitude relationship follows as

@ 1 2 (A\+2)

o T
All Ior(x)
(5.3.4.5)

2 2
+
[lexlexxx 2 lexlexx]
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If X =0, the Tckebycheff approximation is identical with
first order frequency-amplitude responses given by equation (3. 3. 7),
which follow from the perturbation theory.

5. 4. Alternate Methods to Approximate Frequency-Amplitude
Relations by using Ultraspherical Polynomials

After the nonlinear equation of motion (5. 2.1) has been
reduced to an approximate linear form by using the ultraspherical
polynomial expansion and retaining only the linear term, the so
called '"linearized' equation (5.2.19) may be solved by a variety
of methods. In the previous sections of this chapter a general
type solution for frequency-amplitude relations was developed in
terms of the eigenfunctions and eigenvalues of an associated
linear problem. There are, however, occasions in which the
particular linear systems may be solved more directly by applying
other methods to the linearized equation of motion. As illustrations,

two examples are given below.

5.4.1. Nonlinear Vibrating Spring Reduced to the Mathieu Equation

The nondimensional "linearized' equation of motion govern-
ing a stretched string of length 7+ undergoing periodic vibrations
in the presence of a nonlinear Duffing-type foundation force follows

from equation (5.2.19) as

2 2 3a
d_u 23 u 1 2
3 x2 3 t2 [ 1 2(A+2)

(5.4.1.1)
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32
where Lx =—g-§— + al , the linear mode Vl(x) = /2/7 sin x,
X
3 -

n is truncated after unity, H1 3 =m, a3

, along with A = /2/7 A

=1, H is taken to

be equal to ¢ , and wz as defined

1 11
previously. The equation (5.4.1.1) is justified on the physical

ground if the original length of the string is sufficiently long so

that even though the slopeg : is small compared with unity, the
deflection u may become moderately large.

Since equation (5. 4.1.1) is linear, it follows that the motions
are harmonic in time. Writing

sin t

cos t (5.4.1.2)

ulx,t) = X(x)

for motions that have a fundamental period of 27 , one finds that

X(x) satisfies

2 3a
daxX 2 - . 1 2 ., 2 _
—_de + \:w - al 2 (\+2) A sin x ] X =0

(5.4.1.3)
with the boundary conditions X(0) = X¢r) = 0. Now since sinzx =

(1 - cos 2x)/2, equation (5.4.1. 3) may be written as

2
%;fé+-(p - 2q cos 2x) X = 0 (5.4.1.4)

with the constant being defined by

2 2
5 _ 3alA’ 30,A

17 2(A+2) qd= 7 g(a+2)

(5.4.1.5)
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Equation (5. 4.1. 4) will now be recognized as the Mathieu equation,
and the solution which vanishes at x = 0 and x = 7+ and reduces

to sin x for small q (or A) occurs when

- -1 - g2, 1 3
P —bl(q) =1-gq s d tesd --- (5.4.1.6)

The corresponding solution of X(x) is given by

X(x) = sel(x,q) = sin x - % sin 3x

(5.4.1.7)
2 [31n 5x sin 3x _ sin x +
192 64 128 ttc

Both functions bl(q) and sel(x, q) are plotted in [37].
Combining (5. 4.1.6) and (5.4.1.5) one obtains the following
amplitude-frequency relation

2
2 2 oA 9 (h )

9 4P
@ =0+ g r2)” 512 (\+2)2

+ ... (5.4.1.8)

where Ql is the fundamental frequency for the linear problem

2
Ql =1+ al (5.4.1.9)

Stoker [1]has given the first order perturbation solution
for this same problem. Except for some differences in the notations

he obtained




128

2 2 9 2
W = Ql + 16 alA (4.1.1.3)

which coincides with the first two terms of the results: given in
(5.4.1,8) if one sets A = 0, i.e., if the Tchebycheff polynomials

of the first kind are used. . -

5.4.2. Integral Transform Methods

The frequency-amplitude relations for nonlinear systems can
also be obtained by applying integral transform techniques to the
linearized equation of motion. For example, the nonlinear vibrating
string of the previous section, or likewise a simply supported uniform
beam, could be investigated by using the sine integral transform. In
order to illustrate the general procedure, the Hankel transform is
used in this section to predict frequency-amplitude relations for a
nonlinear vibrating membrane.

The dimensionless dynamic equation governing the axisymmetric
motion of a vibrating circular membrane attached to a cubic founda-

tion is taken to be

2 2
[}
-(au+l——au)+a)zau+au+au3=o
2 r o

r or 9 t2 3
(5.4.2.1)
Equation (5. 4. 2.1) is of the form (5. 2.1) if
2
- - 1 3
Lx-"( 2 T 7 ar)+°‘o (54.2.2)
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Nu=au (5.4.2.3)

It is observed that for a3= 0, the first linear mode of vibration
is Jo(klr), where Jo is the Bessel function of the first kind of order
zero and k1 = 2.40483... is the first zero of Jo. Introducing the
amplitude parameter A one may represent the maximum displacement

at r by AJo(klr). The nonlinear force given in (5. 4. 2. 3) is then

AM—u
AJO (kl r)
in the same manner as was done in Section 5.1. Thus by equation

approximated by the linear ultraspherical polynomial Pl

(5.2.19) with Vl(x) = Jo(klr) one has

2w ., 1.3 _ 223%u e L2
+
3 2 rdr 3 t2 o 2(\+2)
(5.4.2.4)
2_2
AT (klr)] u=0
Upon separating variables by writing
u(r,t) = R(r) sin t (5.4.2.5)
! cos t

one finds that R(r) satifies

2
dR , 1lgr , [p rqad?x r)] R=0 (5.4.2.6)
a 2 r dr o 1
r
, 3.2
where p = w -ao and q =~ 2(0+2) In addition R(r) satisfies

the boundary conditions

R(0) = Finite R(1l) =0 (5.4.2.7)




130
It is noted that (5. 4. 2, 6) plays the same role as the Mathieu equation
(5.4.1. 4) does in the string problem.
To solve the eigenvalue problem posed by (5. 4. 2. 6) and

(5.4.2.7) the method of Hankel transforms is employed. Let

1
R = j rR(x)J_(k_r)dr (5.4.2.8)

Y
where kn denotes the nth zero of Jo‘ Equation (5. 4. 2. 6) is now
multiplied by rJo(knr) and integrated with respect to r from 0 to 1.

After integrating the first two terms by parts one obtains

2,= J‘ 2
- + =
(p kn )Rn q| r R(r)Jo (klr)Jo(knr)dr 0
(5.4.2.9)
To simplify the integral on the left it is noted that R(r) has the
following eigenfunction expansion in terms of Jo(knr)
(k_r)

R(r) = 22 “m ° m (5.4.2.10)
(k )

Substituting (5. 4. 2.10) into (5. 4. 2. 9) and interchanging the order of

summation and integration, one obtains

[--]
2 - -
-%x’) R +2q)a R =0 (5.4.2.11)
m=1
where
1 1
amn = —2—-—-J rJ (k r)J (k r)J (k r)dr
Jl (km) 0

(5.4.2.12)
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The integrals that appear above have been computed and tabulated by
McQueary and Mack in [38].

In order to obtain the desired amplitude-frequency relation
it is necessary to determine the relations between p and q in (5. 4. 2.11)
under which nontrivial solutions for Rn occur. To achieve this
the series in (5.4.2.11) is now truncated after m = N, Equation
(5.4.2.11) then becomes a set of N homogeneous linear algebraic
eugations in En’ n=12,...... » N. By setting the determinant
of the coefficients equal to zero N general relations between p and
q result. The desired relation is the one for which all the nontrivial
Rn except Rl should tend to zero as q(proportional to AZ) tends to
zero. The relations may be improved by taking a larger N.

Let us instead describe here an alternative iterative pro-
cedure by which the desired relation between p and q may be developed
as a power series in q for p. It is observed that by setting N =1

one obtains from (5. 4. 2.11) and (5. 4. 2.12) the following solution.

R =0 n>1l, R, #£0 (5.4.2.13)
n 1

and
p = k12 (5.4.2.14)

Equation (5. 4. 2.14) simply states that for linear vibrations in the

first mode the frequency
w = w = k + o (5.4.2.14)

is independent of the amplitude A. Now taking N = 2 one obtains

from (5. 4. 2.11) the following second order determinantal equation
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[(p - klz) + 2qa11:\ [(p - k22) + 2qa22]

2
- 4qa,,a, =0 (5.4.2.15)
which may be rewritten as
p -k = -2q a - —-22 + 0(gq")
1 11 2
P -k, )
(5.4.2.16)

where O(qz) stands for terms which are at least quadratic in q.

By (5.4.2.14) as a first approximation the second term on the

right may be dropped. Equation (5. 4. 2.16) then states that p - k12 =
0(q), which in turn shows that the second term on the right is of
the order O(qZ). Thus
= k2 -2 +0(gd)  (5.4.2.17)
p =k qa;, q .4.2.
Or, in terms of (.02 and Az.
2
3a.2,,A
2 2 3711 4
w” = o+ (A+2) + 0(Aa7) (5.4.2.18)

By increasing N, higher order terms on the right hand side of
(5.4.2.16) can likewise be determined. However, it can be shown
that terms involving lower powers of A2 which have already been
determined will not be affected.

Mack and McQueary have obtained the first order perturbation

solution for the same membrance problem 01l Again, except for some

differences in notations, their result is

b

TS w RS
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2
(klr) dr A

w = w_ + (5.4.2.19)

Recalling the definition of a,» one sees that (5. 4. 2. 20) agrees
with (5. 4.2.19) up to terms in AZ, provided that A is taken to be
zero, i.e., provided that we use the Tchebycheff polynomial of

the first kind.




V. SUMMARY AND CONCLUSIONS

Oscillations of both discrete and continuous systems outside
the classical linear domain are no longer independent of amplitude.
Two approximate formulations were developed in this research to
determine the frequency-amplitude relations and solutions for a
general class of nonlinear continuous vibrating systems whose
motions are governed by nonlinear partial differential euqations in
one spatial variable and one time variable. The nonlinearity was
assumed in the form of a restoring function of the dependent
variable and its spatial derivatives.

The first approach involved a modified version of the usual
perturbation theory, The nonlinear equation was first reduced to a
system of linear equations which were then solved in a recursive
manner by expanding the solutions as series of products of some set
of spatial eigenfunctions and time harmonic functions. Both first
and second order approximations to the frequency-amplitude
relations and to the vibration configurations were obtained for a
number of nonlinear continuous systems.

A second approximate formulation leading to the solution of
the above-mentioned systems was also presented. The nonlinear
functional in the equation of motion was reduced to an approximately
equivalent linear form by using the linear term of a set of ultraspherical
polynomials over the interval described by the amplitude of the motion.

The linearized equation was then solved for the frequency-amplitude

134
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relations. The results were found to be identical with the first
order results obtained by perturbation theory if the Tchebycheff
polynomials, a subset of the ultraspherical, were used. Although
the numerical results were given only for the first nonlinear mode,
the analytical expressions are sufficiently general to be extended
to study higher modes of vibration.

The general expressions developed through both the perturba-
tion and ultraspherical polynomial approaches for the frequency-
amplitude relations and the mode shapes 6f vibrations were applied
to a number of dynamic systems. One need specify the differential
operator, nonlinear restoring function, boundary conditions, and
linear spatial eigenfunction. A total of twenty-eight solutions to
different nonlinear systems were programmed on the computer
and the results were catalogued in the form of graphs and tables.

As the literature contains some solutions obtained by other authors
using different methods, comparisons and justifications of the
results presented herein are thus possible.

For the particular case of continuous systems on nonlinear
elastic foundations, our first order frequency-amplitude relations
for the uniform string and simply supported beam agree with those
of Stoker and of Han respectively. Second order string and membrane
results agree with those of McQueary, Mack and Clark. In addition,
first and second order approximations to the frequency-amplitude
relations and first order nonlinear mode shapes were graphed
for prismatic beams with fixed-fixed, fixed-hinged and simply-
supported boundary conditions as well as for uniform cantilever

beams. Another contribution includes beams with variable cross
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sections. Cantilever beams with single and double wedge, circular

and parabolic type cross sections were solved. First order results
for fixed-fixed and simply-supported beams with exponentially
varying cross sections were also presented. For the class of
problems just mentioned, our results indicated that the general
trend is for the first order nonlinear frequency to increase greatly
as compared with the linear problem for a specified amplitude and
the second order response to decrease only slightly from the first
order frequency, while still remaining greater than the linear
response. The increase in frequency for a specified amplitude due
to the nonlinear foundation was inversely proportional to the stiffening
imposed by the boundary conditions, i.e. the simply supported beam
showed the greatest increase. The mode shape was generally
flattened as compared to the linear problem. The location of the
maximum displacement was found to shift in the case of fixed-hinged
beams, supporting the time dependency concept of nonlinear modes.
It was also noted, that by approximating the linear mode shape for
fixed-fixed and cantilever beams with a cosine wave type solution
instead of the exact eigenfunction, the approximation to the geo-
metrical configuration is not extremely critical insofar as obtaining
the frequency-amplitude results is concerned.

In the special case of continuous systems vibrating with
immovable end supports, the first order frequency-amplitude results
were identical with those of Evensen for simply supported, fixed-
fixed and fixed-hinged beams. The second order frequency approxim-
ations presented are new but were found almost negligible. The

nonlinear mode shapes were also presented and found to flatten at
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small amplitudes and more bell shaped at larger amplitudes. Again
the maximum amplitude of the fixed-hinged beam shifted along the
beam as the motion went through a complete period.

The numerical results obtained for both simply supported
and clamped circular plates vibrating at large amplitudes were in
good agreement with results obtained by Wah who used a modified
Galerkin approach. Our first order results predict a period
slightly less for a specified amplitude as compared with those
results of Wah. Wah did not determine the second order results.
Our second order results showed an even greater trend to a lower
period for a specified amplitude. The nonlinear mode shape again
was flattened, with the simply supported plate being more so than
the clamped plate.

In the case of a membrane vibrating at large amplitudes,
our results were compared with those obtained by Chobotov and
Binder. The latter authors applied a perturbation approach and
reduced the nonlinear coupled equations to a system of rather
complicated linear equations. They then solved the first few linear
equations by a Galerkin technique. The dynamic analogue of Berger's
assumption for static plates with large deflections as applied to
vibrating plates by Wah was used here to decouple the governing
equations of motion. The results obtained in a relatively simple
manner agree exceptionally with those of Chobotov.

Another interesting case investigz?.ted was that of vibrating
systems with nonlinear material equations. The complexity of

governing equations of motion has in the past greatly limited
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research in this area. However, in the simple case of a simply
supported beam with a constitutive equation of the form N = E( €+h 53) '
Kauderer contributed a lower order approximation to the frequency
and to the nonlinear mode shape. The general equations developed

in this study produced the same results when applied to Kauderer's
problem. Furthermore, both the firstand the second order frequency-
amplitude relations as well as the first order nonlinear mode shapes
were determined for beams of a similar constitutive equation with
fixed-fixed, fixed-clamped and simply supported boundary con-
ditions. Our results are qualitatively comparable to those for beams
with immovable supports, but the differences from the linear

solution are more pronounced.

It is to be noted that the ultraspherical approach was used
only for first order results. An attempt was made to reduce the
ultraspherical polynomial approximations so that they may agree
with higher order results obtained by the perturbation theory.

The attempt was not successful.

Several avenues of research suggested by this study are as
follows. Systems involving more than one variable, such as rectang-
ular plates vibrating at large amplitudes, could be investigated.
Also, with suitable adaptations, systems with time dependent non-
linearities, such as those involving small damping and external
forcing fuctions might also be studied. Finally, systems with
complicated material equations could perhaps be st':udied by con-
sidering their vibratory behavior. Comparison of the analytical
findings with experiments , might yield fruitful results on the

material properties.
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APPENDIX A
THE ULTRASPHERICAL POLYNOMIALS

A
The ultraspherical polynomials denoted by Pn(x) represent

a subset of the more general Jacobi polynomials Pg' ?ﬁ:) with o=8
Another more specialized case of the Jakobi set is the Legendre
polynomials where @=8=0 ., The later may be generalized to the
so-called Gegenbauer polynomials C::(x). It can be shown that
the ultraspherical and Gegenbauer polynomials are essentially
equivalent [39] and consequently, both names are commonly used
interchangeably in the literature.

The ultraspherical polynomials are orthogonal on the intervé.l
2%

[-1,1] with respect ot the weighting function (1-x and may be

obtained from Rodrigue's formula [40]as

Y n -
p M) = 2t (1-x’ +;5(£<_> (1-x2) "%

(A.1)

where An is some normalization constant, n is any nonnegative
integer commonly referred to as the order of the polynomial and
the index A takes on the values=% < A < ® | Other sets of
polynomials may be determined as a subset of the ultraspherical
polynomial by assigning particular values of A . For example, if
A=0 the Tchebycheff polynomials of the first kind are defined, if
A=1 the Tchebycheff polynomials of the second kind are determine,
for A=% the Legendre polynomials and if \=® the expansion

corresponds to a Taylor's series of an analytic function about the origin.
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A function f(x) expandable over the interval [-A,A] in these

polynomials may be written (33).

£ (x) =2AﬁPﬁ(w%) (A.2)

n=0

where the coefficients are obtained in the usual way by multiplication

of the weighting function and integration over the span as

+1
[ timr Mova 1 - k)1 ax
A -1

A" = 5 (A.3)
: j+l[PnA(x/A)]2(l - x))l dx

-1

It is important to observe that i\nPg(x/A) is unchanged if
Pn(x/A) is multiplied by some constant. Consequently, the normaliz-
ation factor Ar?from equation (A.2) is not unique and any convenient
normalization constant is permissible. In this treatise Anxis taken

as

n
ar -4l T+ %) T'(n + 23) (A.4)

T ™) P T (k)

for all subsets except A=0 . Since I'(0) is undefined, for the case
of the Tchebycheff polynomials for the first kind the constant is

taken to be
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n._n |
(o) _ _1 2 N.
An = (2n) ! (a.5)

As already mentioned, the approximating function is not altered by

A
redefining An'






