




ABSTRACT

FREE PERIODIC VIBRATIONS OF CONTINUOUS

SYSTEMS GOVERNED BY NONLINEAR

PARTIAL DIFFERENTIAL EQUATIONS

by Paul Thomas Blotter

Approximate expressions are obtained for the frequency-

amplitude relations and for the nonlinear mode shapes for a general

class of continuous systems governed by nonlinear partial differential

equations. The formulation applies to problems in one space vari-

able and one time variable, in which nonlinearities in the displace-

ment and its spatial derivatives are involved. Some typical systems

in this general class include strings, circular membranes, beams

and circular plates on nonlinear elastic foundations or with immov-

able boundary supports vibrating at large amplitudes, as well as

elastic media with nonlinear constitutive equations.

Two different techniques are developed and used. The first

involves a modified perturbation approach. The second approach

involves a linearization using ultraspherical polynomials.

The general expressions obtained are applied to several dyn-

amic systems. Numerical results are cataloged in the form of .

graphs and tables and Compared with those obtained by other authors

using different methods. The results include those for several non-

linear continuous systems whose solutions are not available in the

literature.
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I. INTRODUCTION

The primary objective of this research is to develop approxi-

mate expressions for the frequency-amplitude relations and for the

nonlinear mode shapes for a general class of nonlinear continuous

systems, the free periodic motions of which are governed by nonlinear

partial differential equations. The formulation is sufficiently general

and applies to a wide class of nonlinear elastic continua problems in

one space variable and one time variable. The governing equation of

motion is assumed to contain a restoring function that is nonlinear in

the transverse displacement and its spatial derivatives. Some typical

systems in this general class, to which the analytical results are

eventually applied, include continuous structures such as strings,

membranes, beams, and plates on nonlinear elastic foundations, or

withimmovable boundary supports vibrating at large amplitudes, as

well as elastic media with nonlinear constitutive relations.

Essentially two different techniques are developed. The

first is a modified perturbation approach and the second involves a

linearization using ultraspherical polynomials.

In Chapter H the modified perturbation method is presented.

The historical development of the perturbation technique as applied

to nonlinear dynamic systems and other more recent contributions

are briefly discussed. The fundamental differences of the method

developed in this paper are compared with those approaches used by





other authors. Since a more detailed introduction to the analytical

procedure forms part of Chapter H, it is only emphasized at this point

that the final integral expressions for frequency and displacement are

of a general nature and require only that the type nonlinearity be speci-

fied and that the eigenfunctions and eigenvalues for the associated

linear problem be known. Both first and second order approximations

to frequency-amplitude response and transverse displacement are

found. The linear case is taken as the zeroth order.

In Chapter III these general expressions are applied to partic-

ular continuous systems. Solutions are found for uniform strings,

prismatic and variable cross-section beams, and circular plates

resting on nonlinear elastic foundations. As examples of dynamic

systems having a restoring function that is nonlinear in the derivatives

of the transverse displacement, solutions for vibrating beams with

immovable or springed end supports, circular plates and membranes

vibrating at large amplitudes, and beams made of materials with

nonlinear constitutive equations are also considered. The applications

demonstrate the relative simplicity of the perturbation method devel-

oped here as compared with other existing perturbation approaches.

The particular results obtained inChapter III are further

specialized in Chapter IV by specifying various boundary conditions

for the above mentioned systems, whichthenlead to the linear eigen-

functions and eigenvalues. Numerical results are then presented.

These numerical approximations are compared with those obtained

by other authors using different methods. The results also include

those for several nonlinear systems whose solutions are not available

in the literature.



In Chapter V a method independent of the perturbation theory

is presented whereby a class of nonlinear partial differential equa-

tions are approximated by equivalent linear partial differential

equations with variable coefficients. It is then necessary to solve

the linear equations. The linearization is achieved by approximating

the nonlinear restoring force over the amplitude span by the linear

term of a set of ultraspherical polynomials. This method is an

extension of a similar one previously used for problems of a single

degree of freedom. General expressions obtained are again applied

to the dynamic systems considered in Chapter 111 and the results

are found to be in good agreement with those obtained by the pert-

urbation methods.

A brief summary of results as well as conclusions are con-

tained in Chapter V1.



II. PERTURBATION METHOD

2. 1. Introduction and Historical Background
 

A classical approach for treating nonlinear partial differential

equations is the method of perturbation. The method is reliable in

finding an approximation to some unknown solution in the neighborhood

of another solution which either is known or can be found with relative

ease. The method is generally very cumbersome when-applied to

nonlinear partial differential equations.

Several variants of the perturbation method have recently

appeared in the literature dealing with the nonlinear vibrations of

continuous systems. Stoker [ll-studied the problem of a tightly

stretched elastic vibrating string with fixed end points, embedded

in nonlinear restoring springs distributed continuously along its length.

.He developed the nonlinear infinite degree of freedom problem as an

analogue of the one treated in Poincare's theory [41] with finite degree

of freedom and governed by nonlinear ordinary differential equations.

As a specific application, a procedure customarily followed for treating

Duffing's equation was used byStoker to establish the first order

frequency-amplitude relationship in the case of acontinuous string

on a Buffing-type nonlinear elastic foundation. The partial differential

equation of motion was modified slightly by adding frequency terms to

both sides of the equation, whereby. in effect the homogeneous part

was in resonance with the external periodic forcing function. This

O



particular -maneuver, however, was avoided in his book [2] published

sometime later, where this so-called degenerate case-was solved by

assuming a linear mode shape as a first approximation and following

the Lindstedt [2] perturbation scheme, terms contributing to aperiodic

motion were made to disappear. (It is interesting to note that higher

order free periodic vibrations described by Stoker's equation of motion

with the forcing function evanescent exist only if the coefficient on the

cubic nonlinearity is identically zero. )

Han [3] made a somewhat different modification of the classi-

cal Lindstedt method to study a simply supported beam on a nonlinear

elastic foundation vibrating at amplitudes compatible with the assump-

tions of the small displacement theory. First order terms were

obtained through the usual concept of balancing coefficients of equal

powers of a perturbation parameter. To obtain second and higher

order terms would require additional series expansions involving the

perturbation parameter. The approach would become unwieldy when

applied to more complicated systems.

Carrier [5] applied the perturbation method to study a vibrat-

ing string having fixed ends and at displacements sufficiently large to

induce a variable tension. Chu and Herrmann [6] solved the nonlinear

coupled equations of motion of a vibrating rectangular elastic plate

with hinged immovable edges. ,Eringen [7], along withV'Chobotovand

Binder [8], developed an analogous procedure in order to solve the

coupled equations describing the vibrationof membranes'at large

amplitudes. .. .

Keller and Ting [9] presented another "perturbationapproach

to nonlinear problems. Rather than substituting power expansions of



some small parameter directly and equating coefficients of like powers,

they used Taylor's series and repeated differentiations to establish a

system of inhomogeneous linear equations. Orthogonality conditions

of the solution of the homogeneous equation and the inhomogeneous

parts of equations that are necessary for the existence of solutions

of the system of equations then yield higher order approximations for

frequency-amplitude relations and mode configurations. , Evensen [10]

has recently applied the approach developed by Keller and Ting to

obtain first order frequency-amplitude relations for uniform beams

with clamped-clamped and clamped-supported immovable boundary

conditions.

The perturbation scheme considered in this section is a

generalization of an approach initially developed by McQueary and

Clark [4], who determined first and second order approximations to

the nonlinear frequency and mode shape of a continuous string and

first order approximations to a membrane, both supported by nonlinear

elastic foundations. The approach was later followed by Mack and

McQueary [11] to obtain second order results for a membrane on a

Duffing-type nonlinear elastic foundation. The set of recursive inho-

mogenous linear equations, found through the usual power expansion

technique or by the method of Keller and Ting, is solved by series

expansions in the product space of linear spatial eigenfunctions and

trigonometric time functions. First and second order frequency-

amplitude relations and mode shapes for nonlinear dynamic systems

are found by substituting this general series type solution into the

linear recursion formulae and using the orthogonality properties of

both the spatial and time functions. No restrictions are made a priori
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to limit the procedure to a particular type of vibrating elastic continua,

such as a beam, plate, membrane or string. Furthermore, the expres-

sions deve10ped allow a general nonlinear function of the displacement

and its derivatives and are applicable to a broad class of dynamic

systems to be solved.

The final results are explicit once a knowledge of the spatial

eigenfunctions of the associated linear problem, along with the linear

frequencies is available. Particular applications of the general solu-

tions are made to vibrating elastic continua on nonlinear foundations,

continua experiencing large deflections, systems with immovable

supports and materials having nonlinear constitutive equations.
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2. 2 General Perturbation Method for a Class of Nonlinear Partial

Differential ELuations.

[A method is developed to determine periodic solutions and fre—

quency-amplitude relations for equations of motion governing free vibra-

tions of nonlinear continuous systems. The dynamic system includes a

general type restoring force nonlinear in the displacement function and its

spatial derivatives.

Consider the periodic motion governed by the following nondimen-

sional equation

M

2 _

where Lx is an autonomous* linear differential operator of order 2n, u

is a dependent function of the spatial variable x and time t, to” is a fre-

- quency parameter, 6 is a small parameter which depends upon the physi-

cal constants of the system and either occurs naturally or is artificially

introduced. The a - are coefficients dependent upon x and the Nj are non-
J

linear autonomous differential operators given by

Nju = fj (u’ux'uxx """"”B (2. 2. 2)

where fj is a polynomial of finite degree in u, ux, uxx -----ug with the

notation that u E u .
g 9:90,”

n

It will be assumed that the operator Lx is self adjoint for every

t in the space of functions defined by the homogeneous boundary conditions

Diu(0,.t)=0 i =1,2------p

(Z. Z. 3)

Dju(L,t)=0 j=p+l, ----- 2n

 

a An Operator in which the time t does not appear explicitly..,but

only as a differential dt, is called autonomous.
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where the D's are also autonomous linear differential operators of degree

< 2n. For periodicity it is assumed that

u-(Xi t) = Dix: t + 211’)
(2. 2. 4)

Furthermore, without loss of generality, the origin of the time scale will

be selected so that

ut (x, O) = O (2.2. 5)

i. e. the system has zero initial velocity. The initial configuration will

not be specified.

Now to apply the perturbation method the dependent variable

and the square of the nonlinear frequency parameter are expanded in

infinite series in 6 as follows

m

u =23 £1 ui = uo + Eul. + 621123 +-- (2.2.6)

1 = O

a: .
.

we a 2': £1 (0?: (.03 + use + 63009 .. (2,2,7)
i=0 1 O 1 2

where 6 is the so called perturbation parameter.

Before the above expansions are substituted into the equation

(2. 2. 1), special attention must be given to the nonlinear function fj‘

Each fj may be expressed as a Taylor's series for a function of several

variables about a given geometric configuration, which is taken to be the

solution or mode shape of the associated linear problem defined by setting

6 equal to zero in equation (2. 2. l). The function fj is then written as

N ‘1 1 a a

E '1?! [‘“W’Rf‘s‘wtr
f- (u, u ---u) =
J x € :0

k

+ _________ (u€-%€]fj(u09uox
-----uo€)+Rn (2.2.8)
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where Rn is some remainder defined in the usual sense of Taylor's

theorem. The following notation has been implied in equation (2. 1. 8),

  

namely

ij (uo, uOX, ""uog) _ ij (u, ux, ----u€) (2. 2. 9)

BuOX aux u _=_ 3:

x‘ x

u

where u u

0 ’ ox

, --- uog refer to the linear mode and its derivatives

with respect to x.

Replace the displacement function u by the perturbation expansion

(2. 2. 6) and fj is written

'
_ o

---

o“ €u1€+ €2u2€ + ----) (2.2.10)

Upon substituting the function (2.. 2. 10) into (2. 2. 8) Taylor's expansion

about the linear mode 110 follows as

f- = f + f [Gu + (an + —---J + f [Gu + 6211 +---)

1 2 11x 1x axJ u

_j 2

+ f [Cu + 6 u + ---] + ------------

uxx 1xx 2xx

%“j 2 2 1"" a a

+ + + nu] + [c + + nu]fuul:€u1 E u2 'gfuxux 111x 6 u3x

_j r 2 3

+éfu u Lcu1xx+£ uaxx+---] + ---------------

xx xx

-1'
+ f [cu + (211 + -H] [fu x + £211 + ---]+ ---------

uux 1 a 1 3X



 

 

with

be'u
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-j

 

 

-' a
+fuu [£111 + (Qua + ---_J[€u1xx + 6 uaxx+ ---]+ ---- (2.2.11)

xx

with the notation

:3 ___ Bafj (u, ux, ---u€) ‘—

uu}{ an all):

z ox

11g : uog

being unde rstood.

Return now and consider the equation of motion in its entirety.

Substitute the expansions (2. 2. 6) and (2. 2. 7) into equation (2. 2. 1), remem—

bering that fj have already been expanded as given in equation (2. 2. ll).

Collecting coefficients of like powers of 6 and equating these to zero lead

to a system of equations as follows

6°: Lxuo + 01:intt = 0 (2.2. 12a)

1 ' 2 3 1% -5

‘ ' Lxui + “5 u1tt ”“1 uott ' .=1 “1“ (2.2. 12b)

9 2 = a _ a
E . Lxua + wouatt 402 nott (lulu1tt

M 'j -j 'j n

_ E a.[fu 111 + f uxulx +---- fugung (2. 2.12c)

i=1 J

3. a = 2 _ 3 _ 3

E . Lxu:3 + (.00 uatt «a uott (.02 ultt €01 uatt

1:17 “j -1 + +1}? 3 + it t?

3:101ij us + f uxuax ----- uuul ‘1qu 1x+ ""

-i 'j + ]

+fuuxu1u1x + fuuxx u1uxx ----

e' = Lxui + w: uitt = Ni (2.2. 12d)



 

ui Will

equati.

tilt. In

that ti

depen

i0 501

btgm

by tk

fora



12

In the recursion formulae (2. 2. 12), all the displacement functions

will be assumed to satisfy the same boundary conditions as given in
“1

equations (2.2.3), the same initial condition (2. 2. 5),and (2. 2.4) for period-

icity. ']he initial configurations ui (x, 0) are assumed unspecified. It is noted

that the inhomogeneous part Ni appearing in the (i + 1) th equation only

i

; j<i and that N0 = 0. It is therefore possibledepends upon the solutions uJ

to solve these equations in a sequential manner for ui and (0?; i = 0, l, 2, ---,

beginning with the linear equation (2. 2. 12a).

The linear problem as governed by equation (2. 2. 12a) can be solved

by the method of separation of variables. It has periodic solutions of the

form

uo(x.t) =Vk (x) cost k: 1,2---- (2.2.13)

where Vk is the ktheigenfunction satisfying the equation

1.ka - nivk = 0 (2.2.14)

and the boundary conditions (2. 2. 3). In equation (2. 2. 14), 01% is the cor-

responding eigenvalue. Upon substitution of (2. 2. 13) into (2. 2. 12a) and

then comparing it with (2. 2. 14), it follows that

t02 = 0: (2.2.15)

It is to be noted that in expressing uO (x, t) in equation (2. 2. 12) it has been

assumed that the dimensionless t has been scaled so that the period of

vibration in the kth mode is 217. The corresponding frequency is then

given through {a

I By the assumption of the self-adjointness of the operator Lx on

the space of functions defined by (2. 2. 14), the set of eigenfunctions Vk



 

  

are

C0

ll
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are orthogonal in the sense

L

J; r (X)Vk(X)Vq(x)dx = 0 k #q (2.2.16)

where r (x) is some weighting function. Without loss of generality it will

also be assumed that the Vk are normalized such that

L

L r (x) Vk(x:=Vk(x) dx =1 (2.2.17)

In the above it has been tacitly assumed that the eigenvalues

02 are simple. In what follows it will also be assumed that the Vk are

complete in the usual sense of eigenfunction expansions [40]. Finally,

it will be assumed that all the 03k are positive, which is equivalent to the

assumption that the Operator Lx be positive definite.

In order to solve the nonlinear problem in the neighborhood of the

kth linear mode, the linear solution uo(x, t) is taken in the form

u0(x, t) = Alka(x) cos t (2. 2. 18)

where A1k is a constant and a): = 02k" To solve the equations (2. 2. 12a),

(2. 2. 12b) -~-- and in view of the boundary conditions, initial conditions

and periodicity, solutions are expressed in the form

as on '

ui (x,t) == 23 E A(I1Iinvn(x) cos mt i=1, 2-....- (2. 2.19)

m=On=l

where A813 2 Ofork= 1,2, -------- ------ , andi= 1,2,3, --------- .

1

These series given in (2. 2. 19) are substituted into the differential

equations (2. 2. 12) and solved recursively. The only unknowns in the (i+l)
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th equation are ui and (0:. All uj and to; j<i are known. As will be

illustrated below, in order to solve this one equation with two unknowns,

the orthogonality pr0perties of both the spatial eigenfunctions and trig-

onometric time functions will be utilized.

Substituting u1(x, t) as given by (2. 2. 19) into (2.2.12b) yields

a m

(1)

E E (0?, - m2 0):) AmnVn(x) cos mt - c013 Alka(x) cos t

m=On=1

M 'J’

+Zajf =0 (2.2.20)

i=1

Multiply both sides of equation (2. 2. 20) by r (x) Vq (x) and cos pt and

integrate with respect to x and t, from x to L and from O to 217 respectively.

By virtue of the orthogonality and normality conditions (2. 2. 17) of the spatial

functions and the orthogonality prOperty

217

L cos pt cos mt 2' "émp (2. 2.21)

the. equation follows as

L2H -
\ "J

2 23 (1’- 3 60 +l f V tddt=0(nq p 0k)qu (.01 A1k kq 1p 1’ 1616' r(x) q(x)cos p x

(2.2.22)

where q<p is the Kronecker delta.

For p = l, q = k and recalling the conditions upon the amplitude

parameter (2. 2. 19), a Closed form expression for the first order frequency-

amplitude relation is obtained as follows



 

The ;

are E

Thu

(it:
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L:WM 'j

           k (x) cos t dxdt (2.2.23)

‘gkl

The amplitude parameters A9121 other than A: is), which is zero by (2. 2. 15)

are also given by equation (2. 2. 23) as

 

L211 .

Amn :r(m202 _ 02) L j; :10!jf r(x)Vn(x) cos mt dxdt (2.2.24)

Thus the first order nonlinear correction w: and 111 (x, t) are completely

determined as

u = E 2 Ag) Vr1(x) cos mt morn¢ 1 (2.2.25)

1 m=0 n=1

provided that m202 - 02 ,e 0. When the provision fails, the nonlinear

problem has no solution unless the integral on the right hand side of equa-

tion (2. 2. 24) also vanishes. This degenerate case may be treated by the

method of Keller and Ting [9] and will not be considered here.

The second order corrections for the nonlinear mode shape and

frequency may be found in exactly the same manner by solving equation

(2. 2. 12c). Substitution of equations (2. 2.18), (2. 2.19) for i = 2 and

(2. 2. 25) into equation (2. 2. 12c), along with equation (2. 2.14) yields the

following equation for 112 and w: .

11:0 [21:1 (0”- m;3 w: )Ainz) Vn(x) cos mt - (0: A1 ka(x) cos t

°° ° 1) M (1)
4103 E E paA( qV (x)cos pt + 2 diff) E 2 A Vq(x) cos pt

1 p=O q=l P q j: l p=0q=l pq
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2: 2311'"
"j (1) dvq(x)

A cos pt + ------ f 1 pq+ f 23 Z;

11xxp=0 (1:1 pq ‘32! ug p=O q=

daan(x) cos pt] = 0 (2.2.26)

dxan

Now multiply both sides above by r(x) Vi(x) and cos kt, and integrate

with respect to x and t as before. Owing to the orthogonality conditions

(2. 2.16) and (2. 2. 21) the result follows as

a Ami) a a a (1)

(01 'k “akA) -waA1k6ki61k - (01k Am

L

+ F o O 321 ozj [fu pgél ApqVq(x) cos pt

'j °° °° (1) dV(x) .
11x E E qu d: cos pt+--.-----

'j a °-° A(1) dBnVq(x)
__COS pt]r(X)Vi(x) cos kt dx dt = O

p=0 q=l qu dxan

(2.2.27)

Setting i = k and k = 1 and by the conditions of ATL = 0 by (2. 2. 19)

the second order frequency-amplitude relation is determined as

 3 Z} Ot-r(x) fu E E A quk cos pt cos t

1k i=1 ' p=0 q=1 Pq

“j °° ° (1)
+f EA V'V cosptcost

“x [3:0 q=1 Pq q k

-j on on A“)

+f E E V‘c'1 Vk cos pt cost

U’XJ‘ pzo (1:1qu



‘1, 2 2 A”) ‘13an Vk cospt cos t ]dxdt

S p=O q=1 pq dxan

(2. 2. 28)

The corresponding amplitude parameters necessary for determining the

second order terms are likewise found to be

2 1 (1)

14131:“)?1 450:) [0): m2 Amn

fiz_mzfiz)1rLI Z} oz-r(x)[f 2 EA VV cospt-cosmt

n k 0 J.___1 J upzoqz1 pq q n

-j m as (1)

+ f E E A V' V cos pt cos mt

ux _ _ Pq q n

9-0 q-1

+ ...................................

”j °° °° 1 danV v
+ fu 20 El Aim) —31'13' n cos pt cos mt 1 dx dt = O

P: 9: dx

(2.2.29)

Third, fourth and higher order approximations can also be found

by continuing this procedure, but the results will not be presented.

It is seen that the general expressions deve10ped for frequency-

amplitude relations and nonlinear mode shape approximations involve only

the linear eigenfunctions and eigenvalues of the associated linear problem.

Consequently, the nonlinear results for vibrating elastic media such as

beams, strings, membranes and plates are readily obtainable by direct
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substitution once the linear eigenfunctions and eigenvalues are available.

Several applications will be made in the next chapter, following which

numerical results will be presented.

2. 3. Mode Configuration and Amplitude for Nonlinear Dynamic Systems.

The definition of normal modes in nonlinear viL rations must be

clearly distinguished from that in the linear theory. In the linear theory

the terminology "normal solutions" refers to a fundamental set of mathe-

matical solutions, which are orthogonal and span the solution Space of

the system. The normal mode depicts a geometrical configuration that

is maintained throughout one period of oscillation. Nonlinear systems,

however, do not have such superposition prOperties and the geometrical

configuration changes with respect to time. For example, it will be

shown in a later chapter that the location of the maximum amplitude

of vibration of a clamped-supported beam does not even remain fixed

in the nonlinear theory.

Normal modes for nonlinear vibratingsystems with a finite num-

ber (of degrees of freedom have been verbally defined by RosenbergClZ]

as occuring when (a) all masses execute periodic motion of the same

period, (b) all the masses pass through the equilibrium position at the

same instant, and (c) at any time t, the position of all masses is

uniquely defined by the position of any one of them.

Thein Wah [13J concluded that in a nonlinear continuous system

the separation of space and time variables-is a sufficient condition

for satisfying Rosenberg's criteria. Furthermore, for separable equ-

ations of motion it was noted that (a) the commonly called normal.

modes are mathematically orthogonal, (b)the principle of superposition
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is not valid, (c) the nonlinear frequencies are functions of the amplitude,

and (d) the linear frequency is approached in the limit as the amplitude

parameter tends to zero. Although Wah has defined the normal mode for

a class of nonlinear systems, his criteria are not applicable for systems

considered in this paper since the governing nonlinear equations treated

here are not separable.

A less restrictive definition of normal modes for nonlinear dyna-

mic systems is that given by McQueary and Clark [4] as follows: "A

nonlinear periodic mode is any state configuration, ‘of a nonlinear system,

that is periodically repeated in finite time. "

The amplitude parameters introduced in the previous sections are

for dimensional lateral displacement. From equations(2. 2. 6) and (2. 2. 19)

it follows that

ca ‘30

u(x,t)= E 23

1= om=O n=1

6i Aggn Vn(x) cos mt (2.3.1)

Let A represent the maximum displacement of the nonlinear mode

and denote the spatial point at which this maximum occurs by x = x0 and

As will become more evident in later applications,

(i) _ (i) 2 i +1. (1) is some constant and A is associated
Amn - CmnAlk «Ewhere Cmn 1k

with the linear mode such that

at time t = O.

u0 = Alka(x) cos t (2. 3. 2)

Equation (2. 3. 1) can now be rewritten as

m m m (1) 2' + 1_ _ 1 1

A—A1k+.-E E} 22 6 Cmn A1k Vn(x) (2.3.3)

1—1m-0 n—l
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For small 6 the maximum lateral displacement of the linear mode

is therefore

A=A1klvkimax (2.3.4)

x

Since the linear eigenfunctions Vk are normalized according to equation

(2.2.17),

\VT1 max #1 (2.3.5)

in general, but (2. 3. 4) clearly indicates that the amplitude parameter

Alk is related to the maximum lateral displacementI. A1 k will be

regarded as a normalized amplitude.
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It should be pointed out that there is no loss of generality in

omitting the term linear in u in this series (3.1. l), for it may be

absorbed into the operator Lx' The problem is equivalent to continuous

media resting on Duffing-type nonlinear elastic foundations.

The first order frequency amplitude relation follows from

equation (2. 2. 23) established in Chapter II. Upon setting

M = 1

f. = u3 j=1
3

(3.1.4)

f3 = u3 = A3 V cos t j=l

8

O

u

.
5
3

and integrating with respect to time, the result follows as

L

2__3_ 3 4
(01 - 4 Alk foa1r(x)vk (x)dx (3.1.5)

First order amplitude parameters Aniilri are determined from

equation (2. 2. 24) to be

3 L

3 A11 foalr (xlvivrgxmx

 

 

A(1) ___

1n 2 2

”HQ. - 3.)

(3.1.6)

3 L 3
All I alr(x)VkVn(x)dx

(1) o

A3n = _4(92_ 9 2)

n “u

with all other Arhlri = O. The first order approximation to the non-

linear mode shape follows as





III. APPLICATION OF PERTURBATION RESULTS

3. l. Restoring Force Nonlinear in Displacement

Several continuous systems governed by partial differential

equations containing nonlinear forcing functions in the displacement

will be considered in this section. The systems include strings,

beams, plates, etc. , which are attached to nonlinear elastic found-

ations of nonlinear springs. Now in the general equation of motion

(2. 2.1), the nonlinear restoring function is a function of 11 which

may be expressed as

M M

2j+1
c E: .N.u = e a.u 3.1.1

Z. < >
is1 i=1

(bserve that in arriving at the series (3.1.1) the nonlinear function

has been assumed to be odd in u so that

'+
a,u2J 1 > 0 (3.1.2)

3

1

s
:

m

H
M
:

3'

For practical purposes, the series (3.1. 1) is now truncated after

the first term. Thus the equation (2. 2.1) becomes

2 3

L + + -.-.Xu (1) utt 6 alu 0 (3.1.3)

21
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u = Alka(x)cos t + £[r1215‘(in)vncos t +3:13“A”) Vncos 3t ]

(3.1.7)

In addition to the above, the following functions as defined

in Chapter II will be needed to determine the second order frequency-

amplitude relations for continua on Duffing-type foundations;

(3.1.8)

Upon substitution of equations (3. 1. 4) and (3.-1. 3) into equation

(2. 2. 28), the second order frequency-amplitude relation follows as

3Alk[q::324J‘:1arvk3qux-t

N
M
8

I

;:i(31q)4 i:°‘1rvk3vqdx]

(3.1.9)

If the first order expressions for amplitude (3.1. 6) are substituted

into equation (3. l. 9). the second order frequency-amplitude relation

becomes

2 2

L 3
(I0aerk qux) J‘LkalrvBqVdx

C”22"'13"1”‘1k[q229 (92 + (O )

- 33) E1 (3. - 9:.)

  

(3.1.10)
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These above expressions for continuous media vibrating on non-

linear elastic foundations will be further applied to more Specific systems,

such as strings, beams, plates, and membranes, in the remaining parts

of this s ection.

3.1. 1. Uniform String
 

Let us consider a taut uniform string, fixed at both ends and

attached to an elastic foundation which has both linear and a cubic

spring response. It is assumed that the initial tension and subsequent

displacements are of such magnitude that the tension is considered

constant throughout the motion. The displacements, however, may be

sufficiently large relative to the supporting foundation to warrant the

inclusion of a small nonlinear term in the restoring function.

The equation of motion is written as ,

  

a2; a2; - —3
-'I' + o + Ku + Knu = 0 (3.1.1.1)

-2 -2

Ex at

where T is the constant tens ion, 0 mass per unit length, K the linear

spring parameter, K 71 the nonlinear spring parameter and 11 represents

the transverse displacement that depends on the spatial variable x and

time t.

The equation (5'. 1.1.1) may be nondimensionalized so that the

string is of length “IT and the period of vibration fixed at 2 ‘n' by intro-

ducing

2

u=Lu t=a)t a1=££—

T
IL_ L2 %_ 7T2

x=Lx a) “9—; a) €=nL

T1r

(3.1.1.2)
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The nondimensional equation of motion takes the form

2 3

uxx + a) utt + alu + aliu — 0 (3.1.1.3)

which is similar to equation (3.1. 3) if the operator Lx is defined as

 

(3.1.1.4)

To determine the first order frequency-amplitude relation one

simply employs equation (3.1. 5). For the boundary conditions of the

problem, the normalized linear eigenfunctions are

Vk(x) = J27w sin kx (3.1.1.5)

Let us consider perturbation near the first linear mode. By taking

2
uo(x,t) = A11V1(x)cos 1: so that (130 = {22: 1, the first order is

1

given by

L

2 _ g 2 ,7— . 4 .

For constant 011 the equation (3. l. l. 6) is easily integrated and

the frequency-amplitude response is given by

2~ 2 2 2 9
w wo+£wl 1+0:l (alAll Br. (3117)

which agrees with those of Stoker [l] , Keller and Ting [9] and McQueary

and Clark [4] obtained previously upon replacing A IbYfir—fé A , where

1

A is the maximum amplitude.

The amplitude parameters for the first order nonlinear mode

are obtained through a straight-forward substitution of equation (3.1.1. 5)

into equation (3.1. 6). The only nonzero terms remaining are
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(1) _ _ 3 _ 2 __

(1) _ 3 2
21.31 — 3/16 A /(-1 + 9(00 - a1) (3.1.1.8)

A33 —- 1/16 A /( 9 + 9000 al)

and the mode shape is written as

u=u +€u = Asinxcost+EA(1)sin3xcost

o 1 13

+ €A(311) sin x cos 3t + (A213) sin 3x cos 3t (3.1.1.9)

The second order frequency-amplitude relation may be deter-

mined in a similar manner. Recall that

vk = f7’2'n' sin kx (3.1.1.10)

and

5213: k2 + a1 (3.1.1.11)

Equation (3. 1.10) then yields

 

 
 

(02: 3/256 (J2/7r A )4[ 9 (3.1.1.12)

2 11 2
(-9 4. a) .. a )

o 1

+ 92 + 12 1
— - - + -(1 9wo a1) ( 9 9000 041)

In order to reduce (3.1.1.12) to its previously published form

2 2 9 21 24
a) = (13° + 3'3 6A - 4096 6 A (3.1.1.13)
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one simply makes the substitution A = J'n'72 A and sets a = 1,

11

3. l. 2. Prismatic Beams
 

The dimensional nonlinear differential equation of motion of a

vibrating prismatic beam resting upon a nonlinear elastic foundation

and restricted to small displacement theory may be written as

 

4— .—

EIB_:+x-A-a—2—-_‘21+KE -3-0

Bx g at

(3.1.2.1)

where E is the elastic modulus of the material, I the second moment

of area, 'y the weight per unit volume, A the cross sectional area,

13 the transverse displacement as a function of 52 measured along the

beam and time t, K andKfl the linear and nonlinear foundation par-

ameters respectively and g the acceleration due to gravity.

Performing the variable changes

4

u=Lu t=a>t al=—I'<—L_:

EI'rr

x =IIEX (I) =(\E145w 6 = an (3.1.2.2)

7AL4

one obtains from (3.1. 2. l) the following nondimensional equation of motion

for a beam of length “IF and fixed period of vibration of 277‘

2 3
u + + = I O Ox +wutt alu aleu O (3123)

which is of the general form of equation (3.1. 3) if the operator Lx is

defined as

(3.1.2.4)
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The corresponding linear equation is found by setting c equal

to zero in (3.1. 2. 3).

u + a) u + a u = 0 (3.1.2.5)

Assuming that harmonic motions of the beam exist, one finds that by

separation of variables the mode shapes of the motions must satisfy

the following ordinary differential equation

V 2

VI - (Q - (11

where Q is the vibration frequency.

) v = 0 (3.1.2.6)

It is easily shown that for nontrivial solutions V(x) of (3. l. 2. 6)

to exist, 92 must exceed a To see this let us multiply both sides ofl .

(3.1. 2. 6) by V and integrate over the span of the beam

L L

jvade - ((22 - a1) jvzdx = 0 (3.1.2.7)

o o A

which may be rewritten as

 

L

j vade

($22 - a) = (1), (3.1.2.8)
1 2

I v dx

0

Upon integrating the numerator by parts, it follows that

L L L

I vade = vaII .- vIvII + I (VII)2dx (3.1.2.9)

O O O O 

 

Now the first two terms on the right vanish upon applying the boundary

conditions, a fact that is implied by the assumption of self-adjointness

of the operator Lx‘ Hence
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L

J" (VII)2 dx

= O
 

52—0:
1 a 0 (3.1.2.10)

L
2

[CV dx

Thus the numerical value of (11, if it is positive, determines a lower

bound of the vibration frequencies of the system.

Results on beams available in the literature obtained by perturb-

ation techniques have beenlimited to first order only when boundary

conditions are other than simply-supported. However, beams with

other common boundary conditions such as fixed-fixed, fixed-hinged

and cantilevers, even though they involve complicated eigenfunctions,

can be easily programmed to the computer and higher order nonlinear

approximations are readily obtained by using the integral form of

Chapter II. The numerical results of several beam problems will be

presented in the following sections.

3.1. 3. Beams with Variable Geometry
 

Beginning with Kirchhoff's work in 1879 the literature contains

several investigations of linear transverse vibrations of beams with

variable cross sections. A synopsis of the historical development with

references may be found in the work of Wang [.14], who applied hyper-

geometric series to such problems. Relatively little, however, is avail-

able concerning nonlinear oscillations of such beams, Variations in cross

section offer no restriction to the general expressions of the previous

chapter, and section 3.1, provided that knowledge of the linear problem

is available .
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The dimensional nonlinear partial differential equation of motion

for a beam with a variable cross section with linear and cubic restoring

forces is given by

 

  

2 2- 2-

62 E1 8:21 + yA B 121 + ku + k'nu3 = 0 (3.1.3.1)

Bx Bx 9 BE

Let us consider the case in which cross section varies in the following

manner

 

— y A n

31-5— : ° ° 3‘- (3.1.3.2)

9 g L

x n+2

E1 = E I (—) (3.1.3.3)
o o L

n

k = k (5) (3.1.3.4)
o L

where the constants are previously defined and n, which specifies “ the

particular geometry, may be either an integer or noninteger.

 

Upon making the changes of variables 4

'k L

1.1 '-"- L11 ‘1‘; ‘-"'— a) E a = _____O

1 E I 'rrz
4-2 0 1 (3.1.3.5)

'y A L

IE - 2 O O _ 2
x = X (D = 6 — ”L

L E I 2

O 097T

the nondimensional equation becomes

 

2 2 2
n

”3+2- xn+2 i—g-wy wzxn B )2] + alxnu + alex u3= O

Bx Bx Bt

(3.1.3.6)

The equation is again similar to equation (3.1. 3), after being divided

through by x“, if Lx is taken to be
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2 2

L = J;- a 2 3:“2 —§-— + 011 (3.1.3.7)

x x Bx Bx2

The linear equation corresponding to (3.1. 36) merits some

attention at this point, which is found by setting 6 equal to zero. After

separation of variables the spatial part of the linear equation is

4 3 2

2 ii!- + 2(n+2) x {-1—} + (n+1) (n+2) d_’\21 - K4V = 0

dx dx dx

(3.1.3.8)

I

where R4 = (QZ—al), and $2 the frequency, and V describes the mode

shape of vibration. Upon introducing the operator notation l) E g;

the above equation is factorable to the form

(xD2 + pp + $82) (xD2 + on - Ezw = 0 (3.1.3.9)

where P and Q are constants to be determined. When the factorizations

are expanded, one can show that

P = Q = n + l (3.1.3.10)

Substitution of P, Q, and D into the factored equation (3.1. 3. 9) yields

the equivalent pair of equations to be solved as

2

x d—y- + (n+1) Q + K2 v = o (3.1.3.11)
2 dx

dx

dzv dv ~2

x —— + (n+1) — - K v = 0 (3.1.3.12)

dxz dx

These expressions are forms of Bessel's equation and the solutions

follow as
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_ -n/2 1: 15 L2
V(x) — x [ ClJn(2kx ) + C2Yn (2kx ) + C3In(2kx )

. 15
+ C4Kn (2kx )] (3.1.3.13)

if n is zero or a positive integer and

_ -n/2 8 45 1:
V(x) — x [Cth(2kx ) + C2J_n(2kx ) + C31n(2kx )

+ c I (21935)] (3 1 3 14)4 _n . . .

if n is neither zero nor a positive integer.

Further development of the linear problem to obtain eigenfunctions

and eigenvalues requires a knowledge of the boundary conditions. Several

particular examples will be considered later. However, one important

point to be emphasized here is that well known solutions of variable

section beams without a foundation term can be readily adapted to the

similar problem with a foundation only if the foundation parameter varies

in the same manner as the mass or cross sectional area, the density

of the material being assumed constant. In particular,'aWinkler type

foundation can be easily coped with only when the beam height is constant

with respect to length. With n =1 the cross section is a wedge of

constant depth and it represents a Winkler type problem, in the case

n = 2 the cross section is a double wedge or pyramid and a Winkler

foundation is not implied. For n - 3/2 a parabolic-wedge type section

again excludes the Winkler definition. The nonlinear problem is
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by no means restricted by the preceding remarks, and several examples

are worked out in the sequel, including other cross sections, such as

those with an exponential varying geometry.

3.1. 4. Thin Circular Plates
 

The partial differential equation for vibrating plates on nonlinear

foundations under the classical small displacement assumptions is

given by

2 _

u

2

4- B
DVu+p _ 3

Bt

+ k5 + knu = 0 (3.1.4.1)
 

where, in addition to the constants defined earlier, D is the conventional

. E 113 . -' . 4
plate stiffness 120"“ ) , p is the mass per unit area and V stands

for the biharmonic Operator. To nondimensionalize the equation the

following variable changes are made

 

- - ka4
= t = ._._.

u an wt (11 D

r = ar a) = 4 a) E = 17a

0 a

where a is the radius of the plate. The nondimensional equation of motion

of a circular plate of unit radius becomes

4 2
Vu+wu +au+a

3

tt 1 lEu - 0 (3.1.4.3)

which again is similar to equation (3.1. 3) with the operator

2 2

4 B + l B B. B

x V 011 r2 r Br) 2 Br) + a1
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(3.1.4.4)



I
t
‘
l
l
-
l
l

I
I
-
l

l
l
!

0
'
I
’
l
l
:

I
‘
l
l

 

 

 



34

The linear mode shape and calculated frequencies for plates

without a foundation for various boundary conditions are well known in

the literature [21, 22, 26, 31]. Direct substitution of these well known

results on the corresponding linear problem into equations (3. l. 5),

(3. l. 6), and (3. 1.10) yields first order frequency-amplitude relations,

mode shapes and second order frequency - amplitude relations for the

nonlinear problem.

3. 2. Continua Having Immovable Supports and Lage Deflections
 

3. 2. 1. Elastic Bars
 

In the classical theory for the transverse vibration of elastic

bars, axial extensions of the bars are not considered. One end of the

bar is usually considered free to move such that the effect of the changes

in axial tension during motions is negligible. Woinowsky-Krieger [15]

studied the transverse vibrations of hinged bars using elliptic functions

and showed that the axial tension increased the frequency of vibration.

Burgreen L16], Eringen [l7]and McDonald [.18] studied similar problems,

for simply supported beams. Recently, Evensen 1.10] obtained first

order perturbation approximations for the frequency-amplitude relations

for clamped-clamped and clamped-hinged beams of uniform cross sections,

as well as for hinged-hinged beams.

Periodic vibrations studied in this section include systems for

which the above-mentioned classical theory is not applicable. Both the

initial tension and that induced by deflections are considered. The present

approach leads to results that agree with those in the existing literature.

In addition, second order frequency terms and nonlinear mode configura-

tions are also presented.
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When longitudinal inertia is neglected the free vibration of a

uniform beam with end conditions ranging from spring-supported to

immovable is [.15] .

   

345 326 325
E I _4 - (To + T) _2 + p _2 = 0 (3.2.1.1)

B2: Bic B‘t .m-

where T0 is the initial axial tension and Tthe induced tension, which is

approximated ~- L — 2 _

T =‘E'L-Aj (L3) dx (3.2.1.2)
2 L -_ B x

with 0‘53 A

"’ = ,. — 3.2.1.3A A 1 L K ( )

where K is the spring constant of the supports relative to the axial

displacement. Other symbols are defined a priori. Note that for

immovable supports K is infinite and A = A.

Upon introducing the following variable changes and definitions

 

 

- _ TOL2

u = L u t = a) t (3 = 2

EI‘H‘

4 2 (3.2.1.4)

_ 1L - 2 _ LIL ‘2 = L

x .- L X a) - 4) a) E 21TI

I'rr '

and the dimensionless equation of motion becomes

7’ 2 2
u -Bu -€J(u)dxu +cnu =0(3.2.1.5)
xxxx xx 0 x xx tt

which is in the form of equation (2. 2. l)

Lu+w2u +60£Nu=0

x tt ' 1 1

hw ere B4 B2

L = — - f3 _ (3.2.1.6)

x 4 2
B): B3:

= j
Nlu f1 (ux,u

X

7" 2
xx) = Jo(ux) dx ux (3.2.1.7)
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and

a = -1 (3.2.1.8)

To determine first order frequency-amplitude results use is

now made of the general form given by equation (2. 2. 23). With the

weighting function taken as unity one obtains

 

2 1 ' 21)“ 7T -j ,

a) = I I a f (u ,ux (x) cos t dxdt j=1

1 7r A11 0 O 1 x x) v1

(3.2.1.9)

Note that the linear mode vibration is written as

u = A V (x) cos t (3.2.1.10)
o 111

i. e. perturbations in the neighborhood of the first linear mode are

considered. The nonlinear function fjbecomes

-j 3 3 7T 2
f =(ux,u x) Allvl,xx cos t I (V1,x) dx (3.2.1.11)

i=1

After direct substitution and integration with respect to time, (3. 2.1. 9)

reducesto

2 _ 7T 2
a) _ Z111le: V11Vxxdxj (V1.23 dx (3.2.1.12)
1

which can be shown to agree with those of Evensen.

The complete set of nonzero amplitude parameters is obtained

from equations (2. 2. 24) as



 

 

q > 1 (1) i-Afl 7f W

A 1 - 2 7-f‘2 v v1 dx I (v1 ) dx

q (w - w ) 0 q ' O '

q o

(3.2.1.13)

q > 0 l 3

A 7r 7r

(1) 4. 1 2
A = L__ v v dx (v ) dx
q3 (0)2 _ 9(02) [0 q 1.xx )0 1.x

(3.2.1.14)

Thus, the first nonlinear mode of vibration is

G O

(1) (13)
= + +u A11V1.cos t EAql Vq cos t ZAq Vq cos 3t

q=2 q=1 (3.2.1.15)

To compute second order terms derivatives of the nonlinear

restoring function fj are needed. These are

 

 

 

 

. w

‘J _ = I t 2 .=

f — f1(ux'uxx) u u uoxx O ox dx 3 l

ox' oxx (3.2.1.16)

_. B f1 2

f3 = = I 2 u dx 3:1
ux B u ox oxx oxx 0 ox

(3.2.1.17)

. B f V

-J _ 1 = I 2 =

fu B u ox oxx (nox) dx 3 1

xx 0

(3.2.1.18)

with all other derivatives of fj being zero. The second order frequency-

amplitude relations now follows from equation (2'. 2. 28) with the weight-

ing function again being equal to unity as

W

“’22 = “finigio‘fl,2::de lexZAi111)Vq,xV1dx
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+-:-j:1vxdxj:v1quzlAq(13)vq'xvldx

+

a
b
l
w

J:(v,21x)dxi;2:(qll)vq,xxvldx

'TT

)OWLX) 6‘" i: 31’"A213”q,xx Vldx] (3.2.1.19)

+

A
l
i
-

Numerical results corresponding to several particular boundary con-

ditions will be discussed later.

3. 2. 2. Elastic Plates
 

The dynamic analogue of the von Karman large deflection plate

theory of equilibrium was proposed by Herrmann [l9] . In a later paper

[6] Herrmann applied these earlier results to study free vibrations of

rectangular plates with hinged immovable supports.. The coupled non-

linear equations of motion were solved by a perturbation method and

frequency-amplitude relations for moderately large deflections were

obtained. However, the recursion formulae involved in the perturbation

scheme remained coupled and the iterative process became somewhat

involved.

Berger [20] decoupled the static nonlinear deflection equations

such that one of them assumes a quasilinear form and is integrable by

assuming that the strain energy due to the second invariant of the

middle surface strains may be neglected. Wah [21] extended the
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Berger formulation to large amplitude vibrations of rectangular and

circular plates. A modified Galerkin approach was preposed whereby

the first of a system of nonlinear equations was solved in terms of

elliptic functions to approximate some salientparameters of the non-

linear system, such as the frequency of vibration. Gajendar [22]

followed the same method of Wah for large amplitude vibrations of plates

on elastic foundations.

In the following, the Wah decoupled nonlinear equations of motion

describing axisymmetric plate vibrations are taken to be

 

 

2 .—

B t

where

N 12 a at": 2 - -

D 2 2 dr

a h 0

which further reduces to

a

;i = LL2— u(V2u) rdr (3.2.2.3)

D 2 2

a h

for simply supported or clamped edge conditions. The independent

spatial variable is now r instead of x while other symbols remain as

previously defined.

The following variable changes and dimensionless constants

 

2
- -- 1

u=au t= t €=‘——2:

- -2 D 2 h (3.2.2.4)

r=ar (D = (1)

4
pa

are introduced so that the nondimensional equation of motion is
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4 2

V u + w utt - 6 f1 — 0 (3.2.2.5)

where

1

2 2

f1 = I (u ) rdr V u (3.2.2.6)
O r

The above is of the form of equation (2. 2. l) with

a1 = -l M = 1

2 2

4 B 1 B B

Lx = v =(_—2+;B—;) (——2 + '1‘ 53-1) (3.2.2.7)

B.r B:r r

With the nonlinear function defined as

f(uu)=(u +"]"'u)j‘1()2d 32 8)
1 r' rr rr r r 0 ur r r ( ' '2'

the first order frequency-amplitude relations follows immediately

from equation (2. 2. 23) with the weighting function now equal to r.

After performing integration with respect to time the result is

1

2 3 2
_ - n—A

(1)1 — 4 1] [r(Vl V1, + Vlv], ) dr

I

1

)Zdrj (r V1

r 0

(3.2.2.9)

The amplitude parameters follow from the expression (2. 2. 24)

 

a ‘ 1 2w 1
A1) _ 1 2

" 2 I (V ) rdr (r V V

(JP V(q2m2_ a) ) 0 1,]? IO Jo q l,rr

0 q

+ v v )dr cos pt cos3t dt (3.2.2.10)

q 1,1:
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and after integration with respect to time one has

 

q > 1 3- a 1

A(1)- AL 1‘ I (V )2 rdrj‘ (rVV + VV )dr
ql ((1)2- (132) 0 1,r q 1,rr q 1,r

° q ’ (3.2.2.11)

l
q > 0 (1) _—Z___—a 1.

= +7Aq3 (9w 2 ):J‘ (v1r1rdrio (r qul,rr qu1,r) dr

0 .

(3.2.2.12)

The first order mode shape is of the form of equation (2. 2. 25) with

the constants defined as above.

For the second order approximation, the following nonzero

derivatives of the function f. are needed

 

"a'i-=u IZu rdr+luJ2u rdr+1ju2rdr

Bur r r r r r r 'r

1 (3.2.2.13)

B f =J u 2 rdr (3.2.2.14)
Bu t

rr 0

Upon substitution into equation (2. 2. 28) and factoring out A31 one finds

(”221111141p10715391):izvm:d:io,(rvirr1vl,r)

2 Ag; vq,r V1 dr + j:(V11)2 rdr 1:22Ap(1q)vq,rv1 dr

q P

,1 1 °° °° *

+ J V120rer ZZAPq(1) Vq rr Vl rdr] (3.2.2.15)

0 Oq p '
Obviously, the normalized eigenfunctions Vn are the familar

Bessel functions for circular plates. Detailed computations are

programmed on a digital computer and the results will be presented

in the next chapter.



42

3 . 2 . 3 . Membranes
 

The question naturally arises as to whether the relative magnitude

of the strain energy introduced by the second strain invariant is negligible

in large amplitude vibrations of membranes as was found to be the case

for vibrating plates. Since the formulation of the membrane problem

excludes any contribution due to bending, the reliability of results

obtained in such a manner is speculative from a theoretical point of

view. The fact that the Berger - Wah development of the plate problem

found justification upon comparison with known results suggests that

the validity of the membrane analogy be studied in a similar manner.

So Eringen [7] and Chobotov [8] have studied the membrane problems

using the coupled nonlinear equations. Their results can be used for

comparison purposes.

Timoshenko [23] gives the strain energy due to stretching of

amembrane as (b = —Ell—§ I I [e2 - 2(1-1))e2 ] dxdy (3.2.3.1)

2(1-1) )

where e = the first invariant of strain

= 6 + 6 in rectangular coordinates

X

= (r + (a in cylindrical coordinates

and e2 2 the second invariant of strain

e g g .. — 7 in rectangular coordinates

2 x y 4 xy

: £ 69 in cylindrical coordinates with circular symmetry.

r

Upon neglecting the second strain invariant and including the work of

some external load q (3.2. 3.1) reduces to
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¢= jinn—271162 dxdy = I J qwdxdy (3.2.3.2)

The first strain invariant expressed in rectangular coordinates is

2 2
Bu Bv 1 Bw 1 Bw
=— ——+-_ _

where u and v are displacements in the plane of the plate and w the

transverse deflection. By principles of the calculus of variations and

integ ration by pa rt 3

_ Eh _ Be_ Be_ B Bw

61-1432 iiiéuax évay 5wa %Bx)

_6w_a§_;(e_:_%)]dxdy-Ij1q6wdxdy=0

(3.2.3.4)

Since 51.], 5V and 5ware arbitrary, the coefficients must vanish in-

dependently. Therefore

B_e_ _ 22.-Bx _ o a _ 0 (3.2.3.5)

"
<

2
_5_ Q3311) + .5— (e in) + 9153—)— = 0 (3.2.3.6)
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From the first set of equations one deduces that e is constant with respect

to x and y . Defining q as the inertia term one then has the following

equation of motion

2 2

 

2 -

Eh at2

It is now convenient to consider cylindrical coordinates and write

Hooke's law as

1

E = "" (N - uN )
hE

r r 6 (302.308)

4L.

66 - hE (N6 UNr)

where N designates the stress and c the strain. The total strain e can

be written as

e = 6 + 69 = 6 + 69 + 60 = constant (3.2.3.9)

where 60 is initial strain and the primed quantities refer to the induced

stress and strain. Since the sum is constant it follows that

1 1 (11;) 1 1

- hE (Nr + N9 ) (3.2.3.10)

which may again be written as

2 2
_(1_-g_)_ 1 1 Bu 1 Bw u le l Bw

hE (r N6) r12 Br +r+EB +2?) B9

(3.2.3.11)

Equation (3. 2.3.11) is now multiplied by rdrde and integrated

over the area. Assuming circular symmetry and that on the boundary

v is continuous and u evanescent, one obtains
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' 2

c 1 + £61 = 12 I (%-¥*) Ed; (3.2.3.12)

r 27ra A

By equation (3.2. 3. 9) and (3.2. 3.12) the equation of motion including

the initial stress is written as

 

2" 2

- - a
-No vzw- Eh 2 I (:—¥-) rdr V2w+o-—g‘=0

(1-u)27ra A at

(3.2.3.13)

where No is the initial tension in the membrane.

After the following variable changes and definitions are introduced

 

w = an t = 56?:

E = ar 6 = Eh (3.2.3.14)

(1-u)No

the nondimensional equation of motion takes the form

-V2u+w2u +0: 6f =0 (3.2.3.15)
tt 1 l

where

1 2

f =1. 5 u rdr V2 u (3.2.3.16)

1 a r

O

a = 1

and u is now the transverse displacement. The remaining manipulations

to obtain the nonlinear dynamic results are identical with those in the

plate problem .
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The results will involve the expressions V1. and (Dn, the linear membrane

eigenfunctions and eigenvalues respectively.

3. 3. Nonlinear Material Properties
 

Free vibrations of continuous structures with nonlinear material

prOperties represent another class of problems that can be treated by

the general theory presented in Chapter II . In this section the motion

of a homogeneous slender beam of uniform cross section and having a

longitudinal plane of symmetry passing through the centroid will be

considered as an example. The usual small deflection theory is also

assumed. Obviously, the method could be extended to other elastic

structures, and continua with combinations of large deflections, elastic

foundations etc.

The equation of motion for the free vibrations of a beam with

nonlinear viscoelastic material properties as presented by Sethna [24]

is modified such that material time dependency is excluded. For a

material described by

N=E(€+h£3 ) (3.3.1)

where N is stress, E strain in the x direction, E and h constants,

the equation of motion is written as

 

 

|
_
_
_
.
|

4- 2’- — _ - .. ‘
EI 5__.l1__+QAau+EIh|:3§_2_u_ fi+682u/83g_2

l -4 -2 - - - _

ax 9 at 2 3x2 8x4 ‘3x3\3x3

= 0 (3.3.2)

The following variable changes and definitions are introduced

4

- - ._ I h37r

u = Lu 1: = wt 5 = ‘2'?-

4. 11L (3.3.3)

It _ gEIl'IT 8

x = L x w "-4— w
L
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where 11 and I2 are the second and so called fourth moments of inertia

and other notation has already been defined. The nondimensional equation

of motion now becomes

 

uxxxx + wzutt + {(uxx)2 uxxxx + 2 uxx(uxxx)2] = 0

(3.3.4)

which is again similar to the general equation (2. 2.1) with

64

LX = 5x4 011 = 1 M = 1 (3.3.5)

f = (u ) u + 2 u (u .) (3.3.6)

With a knowledge of the nonlinear restoring function and the

linear mode, the first order frequency-amplitude relations follows

directly from equation (2. 2. 23) as

2__3_ 2 ”’T 2 2

ml — 4 A11 Jo [v1(v1,xx) V1.xxxx + 2 V1V1,xx(vl,xxx) ]dx

(3.3.7)

The nonzero amplitude parameters for the nonlinear mode shape

are easily determined to be

3 3
"A

A(1)_4 11
(1)]. ql —

7T 2

«02-a32) Jo [Vq(vl,xx) V1.xxxx + 2 qu1.xx

0 q

>21 dxV

( l I -XXX .1
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1A 3 (3.3.8)

q>0 A( 13) = (:2 A112)I: [V(V,1 xx) V1 xxxx

2

+ 2 vq Vl, xx(v1, xxx) 1 dx

After differentiating the function f with respect to u, ux, uxx ---

and evaluating the results at points along the linear mode shape as

before, the second order frequency-amplitude relations follow from

equation (2. 2. 28) directly as

7r

U322: All Jo [2 Vl,xxvl.xxxx + 2(V1 xxx’q2121AA2913 vq.xxv1

+ [ 4v1,xxvl,xxx] Mtg];q,xxx 1

q=1

+[(V,)lxx2]zA(qpl)vq,xxxxV1dx(;6 +£6)

q"1 4 1p 4 3p

(3.3.9)

It is important to note that a third power of the amplitude is implicitly

contained in the amplitude parameters, consequently the first order

frequency depends on the square of the amplitude, the second order

on the quadruple and so forth.



IV NUMERICAL RESULTS

Numerical results obtained through using the expressions

derived in the previous chapters are presented in this chapter.

Whenever possible, the results are compared with those existing

in the literature. Higher order approximations to the nonlinear

frequency~amplitude relations and to the nonlinear mode shapes

are given which complement the existing solutions. In addition,

numerical results are also presented for a number of nonlinear

cpntinuous systems for which nothing has been published in the

literature. A CDC 3600 digital computer and a Newton-Cotes

numerical integration technique were used in obtaining the results.

49
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4. 1 Solutions for Equations of Motion with Restoring Forces

Nonlinear in Displacement.

 

 

4.1.1. String

Perhaps the simplest example to which the methods developed

in the previous chapter may be applied is that of a vibrating string.

In section 3. l. l the first order frequency-amplitude relation is found

from equation (3.1.1.7) to be

w2 = wz +0: 35.42 (4.1.1.1)

where (11 is a dimensionless quantity and A is the amplitude of vibration

defined such that

A = Alllvl \max (2.3.4)

It is to be noted that the amplitude A represents the maximum displace-

ment of the linear mode and since 6 and A51 occur only through the

2
11 , we may for convenience set€ = l and regardAlz1 as beingproductcA

small.

The first order nonlinear mode shape as written in equation (3. 7)

with 0Ll g 1 has nonzero amplitude parameters as contained in Table 4.1-1.

The normalized linear and nonlinear mode shapes are plotted in. figure

4. 1-1, where the amplitude is not taken as A but defined such that

CA11 : “577- EA
(4.1.1.2)
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The determination of the second order correction term to the

nonlinear frequency requires additional eigenfunctions and eigenvalues

from the linear problem. However, in the case of a string, spatial

eigenfunctions beyond n = 3 contribute nothing as a consequence of

the special nonlinearity assumed. With the information from table

4.1-2, the second order frequency -amplitude response is

Z _ 2 .2. 2,21. 2 4 4.1.1.3

w ‘ “’0 +160‘1A 4096"“1A ( )

Figure 4. 1-1 compares the first and second order approximations for

small amplitudes. As mentioned earlier, the first order result given

as (4.1.1.1) agrees with those obtained by other authors.
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Table 4, l, 1-1,Frequency numerical values for a uniform string

resting on a cubic nonlinear elastic foundation.

 

LINEAR FREQ
 

 
 

 

 

 

 

  

LIE’INEAR a a FIRSTDRDER SECOND QRDER _.

(RIDE k"0 = n “f ‘ A3 A: .4410"3 A?110'3

1 2 0.5625 0.3581

2 5 6.59179 2.67155

3 10 -5.12695 -Z.07787

4 17 -5.12695 -Z.07787

5 26 -5.12695 -2.07787

6      
1

Table 4. 1. l-2.Nonlinear;amplitude parameters for a uniform

string resting on a cubicE nonlinear elastic foundation.

 

 

 

 

 

 

 

        
 

 

 
 

 

I 1
n = spatial function 3 AA”), = amnA113

_ m = t1me function i A143,; : dmnA3

aOrnn

n

m l 2 3 4 5 6 7

1.4920

1 . 0.0 0.0 0.0 0.00 0 10_2

7.4603 4.9735 0 0 0 0 0 0 0 0

3 10.3 0.0 10_3 . . . .

dmn

2.3437

1 0.0 -2 0.0 0.0 0.0‘ 0.0
10

1.1718 -7.8125

3 10—2 0.0 0 0 0.0 0.0 0.0          
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Second Order

Response

—. Lmear Response/

First Order

Response

   % J. i ‘ + : 1+ 1 1

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Frequency Ratio w/wo

Figure4.1. 1-2. Frequency-amplitude response for a uniform

string resting on a Duffing type nonlinear foundation.
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4.1.2. Prismatic Beams
 

Uniform beams on nonlinear Winkler type foundations as

described in section 3.1.2 are considered here for simply supported,

clamped-clamped, clamped-hinged and cantilevered boundary condi—

tions. The first order nonlinear frequency-amplitude relation with

r(x) = l was found to be

a)? = 231-11211 fralle‘ldx

° (3. l. 5)

The dimensionless parameter a1 may be taken as unity and the maxi-

mum amplitude of vibration A is related to All by

A=A11|V1lmax (2.3.4)

Wylie [25] , along with several other authors gives the exact

linear eigenfunctions for the above -mentioned boundary conditions.

Substitution of these eigenfunctions into equation (3. 1. 5) gives the

2
correction term ml to be added to the linear frequency in order to

obtain the nonlinear response. After substituting these linear eigen-

functions into (3. l. 5) and performing the integrations the first order

frequency—amplitude relations for beams with the various boundary

conditions are, simply supported

wz = (02 +.35812€A2

0 11 (4.1.2.1)
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clamped -suppor ted

(02 = (0(2) + .40324 (A121

(4.1.2.2)

c lamped -clampe d

2 2 Z

w = w + .44210 (A

0 ll ( (4.1.2.3)

and for a cantilever beam

(02 = (0% + .56070 (A121

(4.1.2.4)

Linear eigenfunctions and frequencies beyond the fundamental

mode necessary for nonlinear mode shapes and second order nonlinear

frequency terms are taken from reference (26]. To determine the

amplitude parameters for the nonlinear configuration it is recalled that

 

 

11'

3
(1) _ i A f 3 >
n - 4 11001V1Vndx n 1

2 2 3.1.6

17 3

(1 __'i 3 V V dx
A3n-4A11J‘00211n2 n>0

(wn - 9w0)

with .602 , (.02 andV known, the constants are determined as

0'1 n 0 n

shown in tables 4.1.2-1, 4.1.2-2, 4.1.2-3, and 4.1.2-4. A continuous

graph of these nonlinear mode shapes appears in figure 4. 1.2 -l.

The second order frequency-amplitude results are obtained from

equation (3. l. 10) by direct substitution of the linear information and then
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followed by integration. Since the integration involves a series, a suf-

ficient number of linear eigenfunctions must be taken to insure conver-

gence is relatively good using only a limited number of linear functions.

Nonlinear frequency -amplitude relations that include the second order

approximation are taken to be

a)?” = (.03 + 0. 35812€A121 + .002063624111 (4.1.2.5)

for the simply-supported,

w2 = 01% + 0.403246A121+ .001376c2Af1 (4.1.2.6)

for clamped-supported,

(.02 = (0(2) + 0. 44210€A121+ . 000743€2A11l (4.1.2.7)

for clamped-clamped, and

w2 : 0102+ 0.560706A121- .0199562A111 (4.1.2.8)

for a cantilever beam. These results are plotted as continuous curves

for small amplitudes in figure 4. l. 2 -2.

Den Hartog [271 , by applying Rayleigh's energy method, has

approximated the linear frequencies of vibration by assuming some

spatial function which does not satisfy the differential equation of motion,

but satisfies the boundary conditions. For the case of a cantilever beam

without a foundation term, a quarter cosine wave approximation yields

an approximate linear frequency only 4% above the exact value. A full
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cosine wave approximates the linear frequency of a clamped-clamped

beam within 1. 3%. These results can be extended to linear beams on

linear elastic foundations by including an additive constant, i. e. the

2 2
linear frequency p now becomes p — 011 , and close agreement between

the approximate and the exact is again obtained.

For the case of beams on nonlinear elastic foundations, approxi-

mate spatial functions also yield results similar to those obtained from

exact eigenfunctions. The nonlinear analogues of the above -mentioned

linear systems result in the frequency-amplitude relations as

2 _ 2 2
w _ (00 + 0.60756A11

(4.1.2.9)

for the cantilever with a quarter cosine wave approximation and

2 2 2

for the clamped-clamped beam with a full cosine approximation. These

results are plotted in figure 4.2 -3.
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Table 4. 1.2 -1. Nanlinear amplitude parameters for a uniform beam

simply supported and re stingon a cubic nonlinear elastic foundation.

1

 

 

 

 

 

 

       
 

 

 

 

 

  

' 1
g n = spatial function Aiéz= amnAll3

5 m time function "drnnA ,

1 1 a'rnn )

1 f 1

inin' .1 2 3 4 3 5 6 l 7 j

i 1.4920 g

g 1 0 0 10.3 0 0 0.0 0 0 0 0 5

1 3 7‘469: 0.0 6'2169 0.0 ‘ 0.0 0 0 0 0 '
g 10' ,

i am. '1

1 2.3437 E
3 1 0 o 0 0 0.0 0 0 o 0 g

3 1.1718 9,7656 3

L .10‘2' 0.0 10-4 0.0 0.0 0.0 0.0 E       

Table 4. 1.2 -2. Nonlinear amplitude parameters for a uniform beam

clamped-supported and resting on a cubic nonlinear elastic foundation.

 

 

 

 

 

 

 

       
 

 

 
 

 

   

)

n : spatial function A3912 = amnAu3 i

m = time function 161-“) 3

‘ v '
Amn " dmnA

‘“
—1

amn

n
T in, 1 2 3 1 4 5 l 6 i 7

1.1718 1.1952 -1.2506 -5.1047‘ 3

1 10'3 10‘3 10'4. 10‘6 i

3 4.8836 -2.0894 5.3277 —4.5560 -l.7657

10‘3 10‘3 10'4 10'5 10'6 1

dmn

1 ) -1 8260 -8.0384 3.6351 6.4116

. 2 10-6 10-8 10-10 10"13

2 t
3 é-1.7125: 3.2558 -3.5832 1.3242 .2.2178

g 3 10'4J 10'6 10‘8 10‘10 10713, i 3      
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Table 4. 1.2 -3. ,Nonlinear amplitude parameters for a uniform beam

clamped-clamped and resting on a cubic nonlinear elastic foundation.

 

 

 

 

 

  
 

       
 

 

 

 

 

(l) _ 3 a

n = spatial function Amn - amnAn )

‘ m = time function A1921 : dmnA3

i a'rnn

n

m 1 2 3 4 l 5 6 7

~ ' 1.0695 -2.9363 -3.9313

1 0.0 0.0 0.0 _

. 10"3 10'5 , 10 7

3 3.0007 5.3925 0 0 -1.0346) 0 0 —1.3311

3 10‘3 0'0 10‘4 ' 10'5 ' 10'7

1 dun,

, 2.8144 -1.4429 -3.6174

A 1 0.0 10-3 0.0 10-12 0.0 10.17

4.0827 1.4189 0 0 -5 0842 0 0 -l.2248

0 0 . _ _

3 .10'5 10'8 10 13 10 17          
 

Table 4. 1.2-4. Nonlinear amplitude parameters for a uniform canti-

lever beam resting on a cubic nonlinear elastic foundation.

 

 

 

 

 

 

 

 

     
 

 

 

   
 

 

l

1 3 '
n 2 spatial function Ariiri = amnAll 1

m = time function 1 .

Ariiri = drnnA3

amn

r1
‘ i“L 1 2 3 4 5 1 6 1 7

1 4.9370 -2.1920 1.9292 -3.4120 i

1072 10‘3 10'4 10'5

2.0731 -1.9225 -9.5072 6.8424 -1.1629) ;

, 1

3 10'2 10‘2 10‘4 10‘5 10'5' 1 1

dmn __= R_~"_..i_..w. 1., “.1, ...._.._...._....__..).

1 , )-3.6140 6.6730 -2.542211.9427 ;

i 10'4 10'7 10’9 10"11 j 1

g 3 3.1.9673§1.4073 2.8942 -9.0163 6.6214 3 i
' 1 _ ‘ _ - _ ' -1 1 10 31 10 4 10 7 1010 1012. 1 1    
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Table 4.1.2 -5. Frequency numerical values for a uniform beam

simply supported and resting on a cubic nonlinear elastic foundation.

  -..W -
 

”LINEARLINEAR FREQ.‘ FIRST ORDER w, SECOND-ORDER mg “
 

 

 

 

 

 
 

 

 

M21333 .___f*’2_:n4+f" 5 A2 A21: 114(10)‘3 14111103

1 '2 0.56250 0.35812

2 17 . 6.59179 2.67155

-211- 82 ___ .2193933__ 2.06303

--,_ 4 257 -1... ___ 5.09033 2.06303

5 626 ' 5.09033 2.06303
 

 

Table 4.1.2 -6. Frequency numerical values for a uniform beam

clamped - supported and resting on a cubic nonlinear elastic foundation.

 

 

 
 

 

 

 

 

 

-L114NOE§1ERL1NE£°1R4FREQ. jIZRST ORDERZ wf spoon-51) 01111213211 11%;;

n i (00m +01 A All 'A_(10) A1100).~

' $1“ ; 2 . 0.55635 0.40324 1

2 17 . 7 3.67310 1.93057

__» 3 1 82 i = 2.65111 1.39341

4 e 257 1 f 2.61869 1.37637

5 ‘ 626 3 2.61856 1.37630
 

“—n...“ 0 .
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Table 4.1.2 -7. Frequency numerical values for a uniform beam

clamped-clamped and resting on a cubic nonlinear elastic foundation.

 

 

LINEARLINEAR FREQ; FIéiST ORDER ‘0? : SECOND ORDER «)3

 

 

  

 

 

 

 

if?” 2 A 14.121 f A4(10)"3 1».ff(10)'3

1 ; 2 :0.55067 0.44210)

2 Q ' 17 i 1 2.05826 1.32667

3 5 82 1 1 1.15694 .745720.

4 3 257 ; 5 1.15694 .745720-

5 ? 626 . 1.15286 .743089

9 ' 6562 : 1.15286 .743088:
 

Table 4. 1.2 -8. Frequency numerical values for a uniform beam

cantilevered and resting on a cubic nonlinear elastic foundation.

 

 

.9 LINEAR) LINEAR FREQ. FIRST ORDER w? ESECOND ORDER 093

 

 

 

 

 

.MMODEl 1 A2 A2 i A4(10)'3 Af‘luor3

1.7””1 1 2 10.44037 0.56070;

.fl_ 2 1 17 3 A -1.18956 -1.92844

‘*_ 3 . ' 82 - .1.22920 -1.99271

4 L 257 -1.23035 -l.99458
 

5 626 ~l.23045 —l.99474

fi‘w«m' ‘- r~m~mh 1“...-
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_ Clamped- Clamped /

, Clamped-Hinged / /

/ /

/ /

4+- /

/

/

" /

/

.. / Simply Supported

/

/

.- . Cantilever /

/

/

/

., /

/

/

/

" / First Order

Response

Second Order

1" Response

  1 l 1 I

& ' ' I I r

1.0 l. l 1.2 1.3 1.4

Frequency Ratio (0.3/0.)o

Figure 4. 1. 2-2. Frequency-amplitude curves for various

beams resting on Duffing type nonlinear elastic foundations.
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Clamped- Clamped

Beam

  

    

 

Cantileve r

Beam

_ _ _ Exact Linear Mode

Approx. Linear Mode

1 J A J
r

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Frequency Ratio w/wo

Figure 4. 1. 2-3. Nonlinear frequency-amplitude responses for

various beams resting on Diffing type nonlinear elastic founda-

tions. Results from using approximate linear mode shapes are

compared with results from linear eigenfunctions.
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4.1. 3: Beams with Variable Cross Section
 

The following nonlinear results are examples Of the theory

and application of section (3. 1.3). Beams and restoring functions

as described by taking particular values of n in equations (3. l. 3.2),

(3. 1.3.3), and (3.1.3.4) are considered. Linear transverse vibra-

tions of beams of variable section without any restoring force are

treated by Cranch and Adler [28] using simple beam thory and the

solutions involve Bessel functions. These linear results are ex-

tended to include a linear restoring function and thereby supply the

necessary linear eigenfunctions and eigenvalues for computing the

results.

Let us consider a cantilever beam with a coordinate system

so chosen that the distance x measured along the beam originates at

the free end. The boundary conditions at the clamped end give the

fr equency e quation

1 l 1 l

" '2‘ R ‘2' _
Jr1 (ZkLa) In+l(2kL )+ 1n+1 (ZkL )In(2kL )_ 0 (4.1.3.1)

and the linear mode configuration follows as

n 1 1 1

_ '- E ‘2’ _ E %]
Vn(x) — Cx 2 [In(2kL )Jn(2kx ) Jn(2kL )In(2kx ) (4.1.3.2)

where k4 = (02 - Oi , L :17 , x is the dimensionless length variable, Jn

and In are the Bessel and Modified Bessel functions of the first kind.

Example 1. We now consider a cantilever beam with rectangular cross
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section and set 11 = 1. If 011 and E in equations (3.1. 3.2), (3. 1. 3. 3)

and (3. 1. 3.4) are both constant, then the cross section varies in such

a manner that the beam depth is constant, the height varies linearly

and the foundation parameter varies as the area. Upon substitution

of the linear eigenfunction into equation (3. l. 5) with n = l and arbitrarily

setting a1 : 1 , the first order nonlinear frequency approximation is

found as

2 _ 2 2

w — 000 + 0.7665 (All (4.1.3.3)

To compute the nonlinear mode shapes, the first five linear

eigenfunctions are taken. The amplitude parameters for the nonlinear

mode shape are given in table 4.1. 3-1 . Furthermore, the normalized

nonlinear mode shape is graphed in figure 4. 1. 3-1.

Inspection of the results given in table 4. 1. 3-3 indicates good

convergence of the second order frequency (3.1. 10) including second

order corrections is given as

4

11 (4.1.3.4)
2 (2) + 0.76656A121- .086162A

The results are plotted in figure 4.1. 3-3.

Example 2. By setting 11 = 2 both the width and depth are a linearly tapered
 

if a rectangular cross section is assumed and the beam represents a pyra-

mid. Also, by the change of variables

H

I
I

M
:

H

o
a
:

0
r = rO(X/L) A = "r20 (4. 1.3.5)
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the results with n = 2 represent a circular cross section with a uniform

taper. Both 0L1 and E are again assumed constant.

The first order nonlinear frequency-amplitude response is

2_ 2 2
w -w0+0.8257(An

(4.1.3.6)

The nonlinear mode shape is described by equation (3. 1.7) with the

constants defined in table 4. 1. 3-2. These mode shapes are plotted in

figure 4.1. 3-1.

The second order frequency-amplitude relation, again computed

by truncating after the fifth linear eigenfunction, is found from table

4.1.3-4 as

2_ 2 2 2 4
w — “’0 + 0.8257(A11 - .08257£ A11 (4,3,7)

A frequency graph appears in figure 4. 1. 3-4.

Example 3. If one sets 11 = 3/2, the beam has a parabolic width and

linearly tapered height with 'yl and E constant. Again the restoring

parameter varies as the area. Upon substitution into equation (3.1. 5)

withOl E 1 , the first order approximation of frequency is

2 _ 2 2
w — “’0 +.’7961£A11 (4.1.3.8)

The nonlinear mode shape has constants according to table

4. 1. 3-6 and the nonlinear frequency-amplitude relation including the
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second order perturbation from table 4.1.3-5 is

2 2 2 4

0 + .7961 (All
2

..08766 All
(4.1.3.9)

These results are graphed in figure 4.1. 3-5.
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Table 4. 1. 3-1. Nonlinear amplitude parameters for a variable section

cantilever beam with a nonlinear displacement dependent forcing func-

tion as described in Examjle 1.
 

 

 

 

 
 

 

 

       
 

  

 

 

 

   
 

A“) = a 3 a

n = spatial function mn mn ll

.
I.

1 m = time function ASL} = dmn 3 1

1
amn

1

1n,“ 1 2 3 4 1 5 6 1 7 1

1 -3.8703 -7.1743 -2.0219 -6.9666 1 5

1 1 10’2 10'3 10"3 10'4 1

1 8.2756 2.5774 -3.6437 -7.7010 -2.4566 1 l

1 3 10'3 10‘2 10"3 10‘4 10'4 3 1

1
d 1" i

1
mn

. -4.6487 -4.0444 -5.6202-411320’ ,

1
- - - -

'.

. 10 5 10 7 10 9 10 11 1

1 3 1. 9388 3. 0958 -2. 0540 -2.1405 -2. 8676

-4 -5 -7 -9 -11

10 10 10 10 10        
 

Table 4. 1. 3-2. Nonlinear amplitude parameters for a variable sec-

tion cantilever beam with a nonlinear displacement dependent forcing

function as described in Example 2.

 

 

 

 
 

 

 

 

     
 

 

 

 

 

  

n = spatial function A2111 = amnAfl :

m = time functiOn A“) :-d A3 1

W mn mn

a

mn

n 1 1
nn 1 2 3 4 5 1 6 1 7 1

-2.4515 -6 0515 -2.0445 -8.20471 1

1 .2 -3 —3 -4 1 :
10 10 10 10 1

- 1

3.9439 9.5634 -3.9678 -8.4l43 -3.0024( <

3 10"3 10‘3 10'3 10‘4 10'4 1 1

{1”

__fi_ mn A $W1W~M‘__W‘

1 1-5.2391 -4.2723 -5.0183 -7.0747

1 .10‘ 10'8 10'1010'12

3 3.1824 2.0437 -2.8012 -2.0652 -2.5889

10'5 10"6 10‘8 10'10 10'12 1        
 





Table 4.1. 3-3.

function as described in Example 1.

71

Frequency numerical values for a variable section

cantilever beam with a nonlinear displacement dependent forcing

 

 

 

 

 

 

 

 

_L§AN(§JISAER gig-NEAR EREQ§__E1ZI{ST ORDER 71f: SECOIZVD CREEK-g);

-31- 1.9- ”a 3 A. A11 .A 10. A1110

1 )1 =4.61 0.4035 0.7665

_ 1 2 12 = 7.80 =’ -1.81787 -6. 56106

1.. 3 Y3 = 11.0 -2.26738 —8. 18345

4 74 = 14.1 -2.36215 -8.52547

5 V5 = 17. 3 -2. 38759 -8. 61730

 

 

Table 4.1. 3-4.

function as described in Example 2.

Frequency numerical values for a variable section

cantilever beam with a nonlinear displacement dependent forcing '

 

 

 

 

 

 

 

 

1L§4N§ISAER£EF RES-310.: FZIRST ORDERZEf r SEC-3ND ORDER-2.9;

f .n 1° _'_jr? 1 A All ‘A 10 A1110

1 1 71 = 5.91 1 0.3988 0.8257

‘ 2 72 =9.20 “ 4.30134 -5.57869

3 V3 = 12.4 —1.74476 -7.47958

4 74 = 15.6 41.86696 -8.00342

5 75 = 18.8 34.90836 -8.18092
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Table 4. 1. 3-5. Frequency numerical values for a variable section
cant11ever beam With a nonlinear displacement dependent forcing
function as described in Example 3. '

 

LINEAR (LINEAR FREQ? FIRST ORDER of" 'é'sEEOND ORDER E
 

 
  

 

 

 
 

 

  

; MiDE @:%)4+a 1 A2 , A2 1A410-z Aim-7.:

1 . 71= 5.27 10.4010 0.7961 1

2 1 7’2 :1 8°51 ' -1.58874 -6.25986 .7

3 1 73 = 11.7 -206616 -8. 14098 1

4 g 74 = 14. 84 -2.18589 -8.61271 1

1 5 75 = 18.01 1 222290 -8. 75856 1

L ‘ 1 1  
 

Table 4. 1. 3-6. Nonlinear amplitude parameters for a variable

section cantilever beam with a nonlinear displacement dependent

forcing function as described in Example 3.

 

 

 

 

 

 

 

       
 

 

 

 

  

n = spatial function A”) = a A3 w1

_ , f _ (fin mm 31 '

m - t1me unction A = d A 1

mn mu 3

. 1mn _‘

g

m“ 1 2 3 4 5 6 7

1.. -3.0800 -6.8065-2.1441 -8.1026

1 10“2 1 10‘3 10'3 10'4

5.6373 1.5512 -3.8700—8.4659 -2.9078

3; 10‘3 10'2 10'3 10'4 10'

d
mu

1 -1.4963 -1.3062 -1.7203 -2.5772

11 10'5 10'7 10'9 10‘11

3 7.5420 7.5360 -7.4272-6.7924 -9.2493

g 1015 10'6 10‘8 10'10 10‘12 1       
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— Linear /

/ Response /

/

Second Order

Response

     

First Order

Response

 
 
% L ; : ; .L ! J 1 1

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Dimensionless Frequency 00

Figure4. 1.3-2. Frequency-amplitude response curves for

cantilever beam with constant cross section.
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Linear

Response
Second Order

Response '

   
First Order

Response

 

 

l l l l L l A 1

r T v

.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Dimensionless Frequency 0)

Figure 4. 1. 3-3. Frequency-amplitude response curves

for cantilever beam with variable cross section as des-

cribed in Example 1.
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\
Second Order

\/ Response

Linear

/-Response

/——First Order

Response

 Ir 1 l 1 l l l l
W— v— 1 f

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7

Dimensionle s 3 Frequency 0)

Figure 4. 1. 3-4. Frequency-amplitude response curves for

cantilever beam with variable cross section as described in

Example 2.
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Linear

Response

Second Order

Response

 

 

 

First Order

Response

 

>_.__

1 L 4 J J j l
I f V f

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

Dimensionless Frequency w”

<
1
-

Figure 4. 1. 3-5. Frequency-amplitude response curves

for a cantilever beam with variable cross section as

described in Example 3.
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In order to include examples of variable section beams involv-

ing trigonometric solutions rather than the Bessel functions, let us

consider the nonlinear vibration of beams with cross sectional areas,

moments of inertia and displacement dependent restoring functions

that vary in an exponential manner . The nonlinear partial differential

equation of motion is taken as equation (3. l. 3. 1). By making the vari-

able changes

 

 

—— 4

'uzLE t’wt 01=K0L Aon‘BX/L
4

E117

O I---'1.0ex/L

4 2

2 _gEI‘lTw

x={—; w — 0 4 ean2 K=K0ex/L

yAOL

The dimensionless equation of motion follows as

2 2
a x/L azu Zx/L 66+ x/L+ (x/L3=o

5.29 v. H“ 3:2" “1"“ ““16 u

The linear frequencies and mode shapes as given by Suppiger

[2.9] are extended to include foundation terms. They are

2 _ 3.12

x

Vl(x) = Ge. 77- [cos h 3'17 X - 1.115 sin h 31117 x - cos 31,109 x  

 

 + 7.43 sin 31,09 x]
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for a simply supported beam, and

 
  

 

w: = a +14.fl73)4

-_x.

V1(x) = Ce 2" [cos h 41,75 x - 0. 98 sin h 41,75 x + 0.99 sin 411711:

4. 71 1
-cos x

for a clamped-clamped beam. 7'

The first order nonlinear frequency for the simply supported

system follows from equation (3. 1. 5) upon integration as

2 _ 2 2
w — “’0 + 0.3578(An

and for the clamped-clamped beam

2 _ 2 2

w — (.00 + 0. 4325 (All

where the amplitude A11 is again defined in the normalized sense._ These

results are plotted with015 l in figure 4.1. 3-6.
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Clamped- Clamped

_.._. Simply Supported

 1! A I L l l I
v I v v y I v

1.0 1.1 1.2 1.3 1.4

Frequency Ratio (51 )

o

7
1

Figure 4. 1. 3-6. First order amplitude-frequency curves for

beams with exponential varying cross sections resting on non-

linear elastic foundations.
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4.2. Numerical Solutions for Continua 1'1an Immovable Supports

and Large Amplitudes of Vibration.

4.2. 1. Elastic Beams with Immovable Supports

Numerical results for the nonlinear problem of a uniform

beam with immovable end supports are given in this section. The

system is described in section 3.2. l and the dimensionless equation

of motion is taken as equation (3.2. l. 5). Linear frequencies and

eigenfunctions are again taken from Wylie [ 25] for simply supported,

clamped—supported and clamped-clamped boundary conditions .

The first order nonlinear frequency-amplitude relation is given

by equation (3.2.1.12) as

2 3 2 " ’7 2

“’1 : 'ZAII ~10 V1V1,xxdx‘fo (V1.11) d"

(3.2.1.1.12)

Upon substituting the linear eigenfunctions and performing the integrad

tions on the computer one obtains

2 2 2

w - coo + 1.17809 (A (4.2.1.1)

for the simply supported,

(.02 = w?) + 1.407486A2 (4.2.1.2)
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for the clamped-supported, and

2
012 = «1(2) + 1.45168 (A (4.2.1.3)

for the clamped-clamped end conditions. The amplitudes are defined

as before, where

A = All 1V1 1max (2. 3.4)

i. e. A is the maximum dimensionless deflection and A11 is associated

with the normalized eigenfunction. It is to be noted that the product 6 A2

is equivalent to 1517 multiplying the dimensionless ratio of the deflection

to the radius of gyration of the beam cross section. These first order

results are identical with those‘of Evensen [10].

The nonlinear mode shapes are determined upon-substituting

higher modes and corresponding frequencies of the linear problem into

equation (3. 2. l. 15). The amplitude parameters are given in tables

4. 2. 1-1, and .4. 2.1-2: The mode shapes are graphed in figures 4. 2. 1-2

and 4. 2. l -2.

Second order frequency-amplitude results follow directly from

equation (3.2. 1.19) and tables 4. 2. 143, 4. 2. 1-4 and 4. 2. 1-5 as .

002 = (0(2) + 1.17809 6A2 - .0192765 €2A4 (4.2.1.4)

for simply supported,

2 2 2
+ 1. 40748 (A. 4- .0119564 52A (4.2.1.5)
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for clamped - supported, and

w3 = 6003 + 1.45168eA2 - .00602962 (314‘

(4.2.1.6)

for clamped-clamped end conditions. These results are plotted in

figure 4.2. 1-3. There are no second order approximations available

for comparison.

Table 4. 2. 1-1. Nonlinear amplitude parameters for a uniform beam

clamped-hinged with immovable supports.

 

 

 

 

 

 

n = spatial function A6114 7 amnAll3

m = time function A1111: = dmnA3

amn

l 2 3 4 5 6 7

1. 6373 3. 0874 9. 0027 3. 3543 1. 4718 7. 2679

l 10'2 10’3 10'4 10'4 10"4 10‘5
 

1.7423 3.4531 1.2534 3. 1934 1.1477 4.9697 2.4399

3 10'2 10'2 10'3 10'4 10'4 10'4 10'5       
 

 

 

 

-2.5514 -2.0765 -2.6l68 -4.2139l-7.9930 -l.7074

10 10 '11 10'13 10’14

-6.1097 -5.3810 -8.4298 -9.2823 -l.4418 -2.6989 -5.77319

'5 10'8 10'10 10 10'13 10'15

 

         
 



Table 4.2.1-2.

84

Frequency numerical values for a uniform

beam with simply supported immovable supports .

 

 

 

 

 

 

 

 

 

    

"LEI/INgfiiER LINEAQR fREQ FIRST QZRDER J‘i SECONP OZRDER 03%

«1.1 wozn A A 10-

1 2 1.17809

2 16 1.92765

3 81 1.92765

4 256 4- 1:92765

5 625 1.92765

6 1296 1.92765

7 2508 1.92765    
Table 4.2.1-3. Frequency numerical values for a uniform

beam with clamped-supported immovable supports.

 

 

 

 

 

 

 

 

 

  

LINEAR LINEAR FREQ, FIRST ORDER (.0? 'SECOND ORDER—63:

MSDE «934114? A2 A41o'2

1 91: 3.9266023 1.40748

2 72: 7.0685827 - .886755

3 93:10.2101761 -1.111530

4 9g=13.3517688 -1.167424

5_#_ 3g=16.4933614 -1.185525

6 3%;19.6349541 -1.192560

7 97:22.7765468 -1.195649     
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Table 4. 2. 1-4. Frequency numerical values for a uniform beam with

clamped-clamped immovable supports.

 

 

 

 

 

 

 

     
 

LINEAR INEAR FREQ. FIRST ORDER of SECOND ORDERwa

MOIDE “62: (Hr—)4 A2 A4110'3 8—1

1 91: 4. 7300408 1. 45168

2 )5: 7. 8532046 5. 695165

3 )3: 10. 9956078 -4. 837814

4 31:14. 1371655 -4. 837814

5 yg=17.2787596 -5.839504

6 36:20 4203525 -5.839504

7 77:23. 561945 -6. 029620

Table 4. 2.1-5.

clamped-clamped with immovable supports.

Nonlinear amplitude parameters for a uniform beam

 

 

 

 

 

 

 

       
 

 

 

 

 

    

1 3
n = spatial function A1131 = amnAn

m = time function A9111: dmnA3 ‘

amn

'1
6 7

m 1 2 3 4 5

—3.6299 6.3668 -2.3333 7.9605 1.1252 1.84453

1 10'7 10'3 10‘8 10'4 10' 10

9.4495 5.6967 2.9627 -8.6565 2.7790 3.82291 6.23%3

3 10"3 10‘7 10‘3 10'9 10‘ 10’ 10

dmn

-2..2138 1.6753 -2.6538 3.9139 2.386% 1.70112

1 10'10 10'7 10‘14 10'11 10' 10-

1.2856 3.4743 7.7960 -9.8456 1.3663 8.1422 5.7428

- - - ‘ -18 -15

3 10'4 10‘10 10 8 10 15 1 10 11 10 10
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.- Simply Supported

_ \_ Clamped-Supported

— Clamped- Clamped

First Order Perturbation Results

Identical with Evensen's

1- —

Second Order Perturbation

Results   W l l I l A

l T F I I

1.'0 1.1 1.2 1.3 1.4 1.5

Frequency Ratio (w/ 41))

Figure 4. 2. 1-3. Frequency-amplitude curves for beams vibrating

with large amplitudes and having various boundary conditions.
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4. 2.2 Vibration of Circular Plates at Lag Amplitudes

The numerical solutions contained in this section pertain

to axisymmetric clamped and simply supported plates vibrating at

~ large amplitudes as described in section 3.2.2, where the dimen-

sionless equation of motion is given as equation (3. 2.2. 5).

Information on the corresponding linear problem is taken

from reference [26]. For a clamped axisymmetric plate with zero

initial radial tension the frequency equation is

Jn+1 (Y) + In+1(Y) = 0

Jn M InM (4.2.2.1)

4,

and for the simply supported plate the frequency equation is taken as

Jn+1(7) + In+1 (7) 2

My) 1.49) 1'” (42-2-2)

The corresponding linear eigenfunction for both boundary conditions

follows in the form

Vn(r) = C1Io('yna)d’o (Vnr) - Jowna) 10(7’n1') 1

(4. 2 . 2. 3)

Notice that Poisson's ratio appears explicitly in the frequency

equation for a simply supported plate, but not in the linear frequency

equation for a clamped plate. Consequently, clamped plate vibrational

response is independent 0f 1) ,but this is not true for the simply supported

plate. AS pointed out by Berger [20] in the case of the static analogue,



90

neglecting the strain energy due to the second strain invariant can be

interpreted as neglecting part of the variation of the deflection caused

by a change in U .

Cognizant of the linear results for the problem, the first order

approximation to the nonlinear frequency follows from equation (3. 2. 2. 9)

as

2 (2) + 3.28138 5A2 (4.2.2.4)

for the clamped plate, and

a? = 003 + 3.59788 6A2 (4.2.2.5)

for the simply supported plate.

The amplitude parameters are computed according to equations

(3. 2. 2.11) and (2. 2. 2. 12) and appear in table 4. 2. 2-1 and 4. 2. 2-2. The

mode shapes for both boundary conditions are plotted in figure 4. 2. 2-1.

Substitutions of the linear frequencies and eigenfunctions into

equation (3. 2. 2. 15), along with the already computed amplitude para-

meters yields the second order approximation to the nonlinear frequency

as

4
002 = 013 + 3.28138 6A2 - .0325862A (4.2.2.6)

in the case of a clamped plate, and

(.02 = 40(2) + 3.59788eA2 + .0257ZEZA4 (4.2.2.7)

for a Simply—supported plate. In order to compare these results with

those obtained by Wah using a modified Calerkin approach, the dimen—

sionless amplitude is plotted against the ratio of the nonlinear period
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to the linear period in figure 4. 2. 2-2. Tables 4. 2. 2—3 and 4. 2. 2-4 con—

tain the nonlinear results corresponding to the order of the linear eigen-

function used in the series of equation (3. 2. 2.15).

Table 4. 2. 2-1. Nonlinear amplitude parameters for a clamped

circular plate vibrating at large amplitudes.

 

 

 

 

 

 

 

 

  
 

   

(1) _ 3

n = spatial function Am“ - amnAll

: ' ' (1) _ 3
m time function 11 _ dmnA

L 1 =—

amn

n

1 2 3 4 5 6 7

m

-1.2213 1.9440 -5.2062

1

10'2 10'3 10'4

1.4371 -9.3599 7.2529 -1.7955

3

10' 10'3 1 10'4 10'4
 

 

 

 

   



Table 4 . 2.2-2.
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ported circular plate vibrating at large amplitudes.

Nonlinear amplitude parameters of a simply sup-

 

 

 

 

 

 

 

       
   
 

(1) 3
n = spatial function Amn = amnAll

.. . - l
m - time function Aénh _._ dmnA3

amn

1: n1
m 1 2 3 4 5 6 7

2.9392 -3.2279

1 10'3 10‘4

4.3281 1.2666 -l.1155

3 10‘2 10'3 10‘4

Table 4.2.2 -3. Frequency numerical values for a clamped circular

plate vibrating at large amplitudes.

 

 

 

 

 

 

 

   

LINEAR LINEAR FREQ FIRST ORDER 031’; SECOND ORDER??—

“‘3.“ w? = 711 As A: A‘ A:

1 71 = 3.1961 3.281.38 35.7989

2 72 = 6.3064 -.036912 -4.35053

3 Y3 = 9.4395 -.031483 -3.70157

4 74 = 12.577 -.O32580 -3.84009  
 

Table 4.2.2-4. Frequency numerical values for a simply supported

plate vibrating at large amplitudes.

 

 

 

 

 

    

LINEAR LINEAR FRE FIRST ORDER 0:? SECOND ORDERw§

14 11E 2.. 4

(1)1 “'9 “ 7n A1; A5 A“ A1:

1 ‘n =52.22 3.59788 25.2322

2 7% = 5.45 .026509 1.30368

3 73 = 8. 61 .025724 1.26519
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l. 0 . Clamped Plate

(All Values of V)

\ \

\

\\

0. 9 '1' \\ \

\

\ \\

\

Simply Supported Plate

0. 8 v (v = 0. 3)

\

\

\

\

0. 7 " \

\ \

__ _ Wah's Galerkin Solution \\

First Order Perturbation \

.. . _ _ _ __ Second Order Perturbation \\

0. 6 \

0T2 o'.4 0.6 018 1'.0

AMPLITUDE

THICKNESS

Figure 4. 2. 2-2. Ratio nonlinear-linear period vs ratio

amplitude-thickness for circular plates with various boundary

conditions.
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4. 2. 3. Vibration of Membranes at Large Amplitudes
 

The following numerical results are obtained through the expres-

sions deve10ped in section 3. 2. 3 describing large amplitude vibrations

of circular membranes. Using the linear theory from reference [31]

and substituting into equation (3. 2. 2. 9), one obtains the first order fre-

quency - amplitude relation

(.02 = 00(2) + 3.375 6A2 (4.2.3.1)

The nonlinear modal constants are found from equations (3. 2. 2.11)

and (3. 2. 2.12). Numerical values are given in table 4. 2. 3-1 and the

mode configuration at different times are plotted in figure 4. 2. 3-1.

By equation (3. 2. 2. 15) and after some manipulation the second

order frequency-amplitude relation is

402 2 403 + 3.3756A2 + .060962A4 (4.2.3.2)

The relationship between the amplitudes is again

A = All Ivl [max (2.3.4)

where A is the maximum deflection of the linear mode, 1V1 )max is the

maximum value of the normalized eigenfunction, E the perturbation para-

meter and All the amplitude associated with the normalized linear mode.

In order to compare the results with those of Chobotov and Binder [8]

the ratio of the nonlinear to linear period is plotted against a dimension-

less amplitude parameter defined as

2
A2 _ 6WO Eh

4—2

a “’0 P‘l'”) (4.2.3.3)
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where in the notation of Chobotov, W0 is the maximum central displace—

ment of the nonlinear mode. Figure 4. 2.3-2 indicates exceptionally good

agreement even at large amplitudes.
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Table 4.2. 3-1. Frequency numerical values for a circular membrane

vibrating at large amplitudes.

 

 

 

 

 

 

LINEAR L11§EAR FREQ FIRST ORDER w? SECOND ORDERwa
MODE w : Y9 2 a 4 4

n O n A A11 A All

1 ‘n .22.404 3.3756 25.0323

2 7g =:5.520 .06219 3.42018

3 73 ==8 654 .06142 3.37775

4 74 =       11.792 .06097 3.35286

Table 4.2. 3-2. Nonlinear amplitude parameters for a circular mem-

brane vibrating at large amplitudes.

 

 

 

 

 

 

 

n : spatial function A5711; r: amn 11

m : time function A1111; : dmnA3

amn

m n 1 2 3 4 5 6 7

1.9470 2.5605 -l.7831

l 10‘4 10’4 10‘4

1.8046 -7.4388 «2.5783 -9. 1010

3 10“1 10"5 10"4 10‘5           
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— -— Chobotov and Hnder's First Order

Perturbation of Couples Equations

Equations

_ __ _..Second Order Perturbation of

Uncoupled Equations

2. 0 4. 0 6. 0 8. 0 10.

Dimensionless Amplitude A

Figure 4. 2. 3-2. Ratio of the nonlinear to linear period vs

nondimensional displacement for vibration of a circular

membrane with large amplitudes.

First Order Perturbation of Uncoupled
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4. 3 Numerical Solutions for Continuous Media Havirg Nonlinear

Constitutive Equations.

Several different types of dynamic systems including plates,

membranes and beams with nonlinear elastic materials are solvable

by means of the general theory presented in Chapter II. However,

in order to illustrate the numerical procedure, only application to

beams as developed in section 3. 3 is considered. The motion is as-

sumed to be defined by the dimensionless equation of motion (3. 3. 4).

The necessary results on the linear problem for beams with

various boundary conditions are contained in Wylie [25]. Substituting

these results into equation (3. 3. 7) and performing the integrations on

the computer, one obtains the first order frequency-amplitude relations

as I

012 = mg + .18750 (A2 (4.3.1)

for the simply supported beam,

0.12 = on?) + 1.1042 (A2 (4.3.2)

for the clamped-supported, and

2
(.0 = w 2(2) + 4.8474 (A (4.3.3)

for the clamped-clamped beam. The amplitude A has been previously

defined as the maximum deflection of the linear mode.

After truncating the series in equation (3. 3. 8) to include the

sixth linear eigenfunction, the amplitude parameters follow as in tables

4. 3-1, 4. 3-2, and 4. 3-6, where A11 is associated with the normalized

eigenfunction as before.
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Second order nonlinear frequency-amplitude relations follow

from equation (3. 3. 9) as

2 2 4
O) = to: + .18750 (A - .01186562A (4.3.4)

for the simply supported case,

(.02 = (.03 + 1.1042 (A2 - .3831762A4 (4.3.5)

for the clamped-supported, and

(3)2 = 602 + 4. 8474 G A2 - 4.12345€2A4 (4. 3. 6)
0

for the clamped—Clamped beam.

Kauderer [32] has approximated the case of the simply supported

beam by assuming a particular solution of higher harmonics and equating

coefficients. The first order frequency relation obtained here is identical

with his approximation. Figure 4. 3-4 shows the frequency response for

all three boundary conditions. Figures 4. 3-1, 4. 3-2, and 4. 3—3 are

graphs of the nonlinear mode shapes compared with the corresponding

linear configuration at different times. It is interesting to note how the

nonlinear cOntribution changes the algebraic sign during a period of vibra-

tion and the maximum deflection of the clamped—supported beam changes

position along the span at different times.
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Table 4. 3-1. Nonlinear amplitude parameters for a uniform beam

simply supported and having the nonlinear constitutive equation as

N = E (6 + bee)
 

 

 

 
 

  

 

  

 

 

     
   
 

 

 

 

 

 

_. - . (1) __ 3

’ n - spatial function Amn - amnAll

3. m = time function A“) = d ‘A3

3-- mn mn

F"” a
’ L mn 1,

8

S n a ;
3&1 1 2 1 3 4 1 5 l 6 7

g 0 0 4.47f2 i

3 1 . 10- 0.0 0.0 l 0.0

5 3 4.9735; 0 0 1.6578 0 0 0 0 f 0 0 1

1 - O O O i

10-3 l ' 10 3 3 I i

3 53 '" I
__ mn

i 1 7.03HL7 ‘ i

3 0 0 10.3 0.0 0 0 0 0 . 5

J 7.8125 2.6041 ;

'3 -3 0~0 -3 0.0 0 0 0 0 1

) 10 10 1 l      
 

Table 4. 3-2. Nonlinear amplitude parameters for a uniform beam

clamped-supported and having the nonlinear constitutive equation

as N = E (6+ hi3)

 

 

 

 

 

 
 

  
 

   
 

 

  

 

   

n = spatial function A”) = a A3

mn mn 11 1

m = time function A”) _ d . 3 I

- _ mn mn j

a. a l

mu

”1“ 1 2 3: 4 I 5 I 6 g 7

-2.1208 -5.1031 -1.0420 -3.03433-1.2659f
- - I i 7

1 10 10‘.3 10’2 . 10'3 i 10‘3 a

1.3670 -4.4729 p2.0716i-3.6963'-1.0382;-4.2744i

3 -2 -2 43 3 -3 é -4 E
10 10 l 10: 10 10 3 10 g '

a
mu _‘ _......._. , _

11 i 3 3048‘ 3.432? w3.0288(38111) 6 8748‘

1 ' E 10 10 l 10 .

‘-4.7938‘ 6.9701 1.3933 1.07441 1.3039; 2.3213 ‘ .
3 i -4 , -5 -7 -8 ~10 1 -12 I s

. 10 r 10 10 10 10 4 10 , é  
 



Table 4. 3-3.
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Frequency numerical values for a uniform

beam simply supported and having the nonlinear constitutive

equation as N = E (E + his)

.-
 

.'L1NEAR*L1NEAR FREQ. FIRST ORDER Aw? * SECOND ORDER 0.13
 

 

 

 

 

 

 

 

 

' MgDE w§=n‘ : A2 A11 A4104 1411110"3

1 1 g 0.18750 0.1194 Q

2 16 3 3-1.46484 .5936785

3 81 i F -1.18652 -4.80879“

4 256 -1.18652 -4.80879

5 625 , -1.18652 -4.80879

6 1296 ‘ -1.18652 -4.80879

Table 4. 3-4. Frequency numerical values for a uniform beam

clamped-supported and having the nonlinear constitutive equag

tion as N = E(€+h€3)

 

ELINEARLLINEAR FREQ; FIRST ORDER «if % SECOND ORDER mgr“;
 

 

 

 

 

 

 

 

i MEDE l ”53%“? E A2 A121 A410"I 1471*110‘I -

g 1 ‘ 71 — 3.9266023g1.1042 0.8006i

2 172 = 7.0685827; } -.805985 -.423622

3 d3 :10.2101761§ ; -.990191 -.520440‘

4 £74 :13.3517688i it 323279 -l.69914

5 .95 =16.4933614§ '- -3.67639 4.93229

6 "376 =19.6349541§ i -3.83l78 -2.01396§
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Table 4. 3-5. Frequency numerical values for a uniform beam clamped-

Clamped and having the nonlinear constitutive equation as N = E (6+hé3 )

 

 

 

 

 

 

 

      
 

 

 

 

 

 

 

 

        
 

 

 

 

LINEAR LINEAR FREQ. FIRST ORDER 915 SECOND ORDER“?

MODE 2_ ‘Y 4 fl

n “’6 ‘ (1,9)“ A2 A3 A4 A‘
11 11

1. 71: 4.7300408 4.8474 3.8953

2 72 = 7.8532046 .19074 .12294

3 74 = 10. 9956078 -l.26516 -.81547

4 ); 14.1371655 -1.26516 -.81547

5 3g = 17.2787596 -3.54851 -2.28723

6 3; 20.4203525 -4.12345 -2.65782

Table 4. 3 -6. Nonlinear amplitude parameters for a uniform beam

clamped-clam ed and having the nonlinear constitutive equation as

N = E (e + he 3))

. . (1) 3
n : spatial function Amn = amnAn

m = time function AI(I'111’)1 -._-. dmnA3

a’mn

“ 1 2 3 4 5 6 7
m

2.7386 -4.3225 8.5521 -2.1976 -7.8798

1 10‘6 10'2 10‘7 10“2 10‘3

3.1573 -4.2980 —2.0114 3.1728 4.67119 —2.68837

3 10‘2 10‘6 10‘2 10‘7 10’ 10'

drnn

1.6702 -l.1374 9.7250 -1.0799 -7.2610

1 10"9 10‘6 10’13 10'9 10'13

4.2956 --2.6212 -5.2927 3.6079 -3.7700 ~2.4775

3 10'4 10‘9 10’7 10'13 10‘10 10'13          
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_Time : 0. 0

Linear Mode
 

_ _ _ Nonlinear Mode  
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Figure 4. 3-1. Normalized mode shape for uniform beam

simply supported and having a nonlinear constitutive equation

of N = E (c + hez).
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Clamped-Clamped

_ Clamped-Supported

Simply-Supported

First Order Identical

with Kauderer's Solution

 

First Order

Response

_. — — Second Order

Response 
 -’\/~ + 1r : s

1.0 1.1 1.2 1.3 1.4

Frequency Ratio (119/61)o

Figure 4. 3-4. Frequency-amplitude curves for uniform

beams having a nonlinear constitutive equation of the form

N = E (c + h (3).
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V. A GENERAL SOLUTION USING ULTRASPHERICAL POLYNOMIALS

5. 1. Introduction
 

In this chapter a method is presented for determining the amplitude-

frequency relations for a class Of nonlinear continuous systems under-

going periodic motions. The method applies to systems governed by

nonlinear partial differential equations in one space variable and one

time variable, in which the nonlinear terms are assumed due to non-

linear forcing functions which depend on the displacement and its spatial

derivatives, but do not depend on time explicitly.

Recently Denman et a1 [33, 34] developed a method for treating

nonlinear vibration problems with one degree of freedom. By lineariz-

ing the nonlinear spring forces using a set of ultraspherical polynomials

over the interval over which the motion takes place, they were able to

obtain approximate amplitude-frequency relations with fair accuracy.

Some attempt has also been made to extend the method to systems with

two degrees of freedom [36] .

In this present chapter, the method of ultraspherical polyno-

mials is extended to nonlinear continuous systems of the type described

above. An obvious difficulty immediately arises because the maximum

displacement varies from point to point and these maximum displace-

ments are not known in advance. To overcome this difficulty and to

achieve the linearization of the nonlinear forces, one must initially

assume some appropriate “mode of deflection. " In Cases where the
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linear mode of small vibration is known, this linear mode is taken

to be the mode of deflection. Otherwise some suitable approximation

to the linear mode has to be used. Next, an amplitude parameter is

introduced so that the maximum displacements are determined by

the product of the amplitude parameter and the normalized linear

mode. Using ultraspherical polynomials, the nonlinear force at

each point is replaced by a force that is linear in the displacement.

This results in a linear partial differential equation. Together

with the initial and boundary conditions, one is thus led to solve a

linear eigenvalue problem and it is the determination of the eigen-

value that leads to the desired amplitude-frequency relation.

In order to illustrate the procedure, the general form of the

nonlinear equation of motion is linearized and a frequency-

amplitude relationship is established in section 5. 2. The developed

expressions are then applied in section 5. 3 to typical systems of

strings, bars, Circular membranes and plates on nonlinear founda-

tions, vibrating with large amplitudes, vibrating with immovable end

supports, or consisting of nonlinear elastic materials as described

in the previous sections. It is found that for these cases, if the

Tchebycheff polynomials of the first kind (a special case of the

ultraspherical polynomials found by setting A = 0) are used, the

frequency results agree exactly with those of the first order pert-

urbation solutions.

In addition to the general solution of the linearized equation

Of motion by eigenfunction expansions, a uniform string on a Duffing

type foundation is solved by reducing the linearized equation to the form
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of the well known Mathieu equation, and a Circular membrane supported

by the same type foundation is solved by the application of Hankel

transforms. The latter two procedures simply suggest that once

the nonlinear equation of motion has been linearized, several approaches

could be used to Obtain the solution to the linearized problem, de-

pending on the type of physical dynamic system.

5. 2. Linearization of a Class of Nonlinear Equations of Motion

and a CorrespondingFregency-Amplitude Relationship

Consider the following dimensionless form Of a nonlinear

partial differential equation of motion

2
L 11 + 00 + =

x utt qu 0 (5'2°1)

where Lx denotes some linear differential operator of degree Zn in

the spatial variable x. Nx is an Operator such that qu denotes

a nonlinear restoring function with the pr0perty that

>uqu _ 0 (5.2.2)

for all u, and is assumed representable in the form

on

- 2n+l

qu — 2012!?”- u (5.2.3)

n=1

where ‘1an is either constant or at most a functional of the

associated linear spatial eigenfunctions or derivatives thereof.

qu must be mathematically well defined at all points along the

continua.
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Eventually periodic solutions u(x, t) = u(x, t+27r) are sought

that satisfy 2n time-independent homogeneous boundary conditions

of the form

ll O H

IIDiu(0,t) 1,2,...
p

(5.2.4)

Diu(L,t) II

0 1.
:

II

pil, ....2n

where Di are linear differential operators of order <2n in x, so

that the associated linear time-reduced equation

va - 02V = 0 (5.2.5)

where V: V(x), together with the boundary conditions

D.v(0)
1

II 0 I
“ I" 1,2,... p

(5.2.6)

11 O [.
1

ll

DiV(L) p+lg oooozn

form a properly posed self adjoint boundary value problem.

Henceforth it is assumed also that the boundary value problem

2
posed in (5. 2. 5) and (5. 2. 6) admits nontrivial solutions when 9

is equal to the eigenvalues

Q = (2.. i' = 1,2,... (5.2.7)

which are all positive and form an infinite discrete set increasing

monotonically to infinity, and that the corresponding orthonormal

eigenfunctions Vi(x) satisfying
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L

j0r(x)vi(x)Vj(x)dx = Gij (5.2.8)

are complete in the usual sense Of eigenfunction expansions.

The first step in solving the system as previously described

is to linearize the nonlinear equation of motion (5. 2. l) by approximat-

ing qu by a function that is linear in u. This is done by first assum-

ing that the geometrical configuration of the continuous system is

given by a linear mode AVi(x) and then treating qu at each spatial A

point x along the continua, as an analogue to Denmans's single degree

of freedom problem. Thus qu is approximated by some linear

ultraspherical polynomial in the following manner

_ X ___u___
qu — g(x,>\,A) Pl (AVi(x)) (5.2.9)

where P1A is the linear ultrashperical polynomial of degree )1 , , and

g(x.>\.A) is some function yet to be determined.

In order to determine g(x,A,A), equation (5. 2. 9) is multiplied

u 2 0'45 X u

[1 - (pvi(x)) ] P1 (5Vi(x)) (5°2°10)

and integrated with respect to u from -AVi(x) to AVi(x), x being

treated as a parameter. It then follows that
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. A-

I.AVJ'MIZI u 1 _(_____u) 2] 15P A ___u) du

-AVi(x)x Avi(x) 1 Avi(x’

 

 

9094.1” =

+AV. (x) - 2 145

I-.. .,[1- (r:.———.—.)1 IP (.—;———.2:.)1 ..

(5.2.11)

which can be reduced to

1 2 A -%
JONstVi [l - s] P: (s ) ds

g(x.A.A) = 1 (5.2.12)

1. [1 — 31302602 ..

upon setting 3 = u/AVi(x) and using the fact that both qu and

P1(u/AVi(x)) are odd functions of u.

When the terms in the series expansion for qu given in

equation (5. 2. 3) along with the normalized P}; (s) * written as

A

Pl (3) = 213 (5.2.13)

are substituted into equation (5. 2.12) one Obtains

 

Appendix A contains a more complete discussion of

ultraspherical polynomials and normalization.
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1 A-k
- 2n+1 2n+2 2

a2n+1(Avi) i0 5' [1 - S 1‘ d8

 

92n+1(x.A.A) =

21 J1 [l - 32] X-% 32 ds

0

(5.2.14)

for nonnegative integer 11. After making the variable change 3 g ylV/Z

and some manipulation, the integrated result follows as

 

- 2n+1

gzn+1 I I " 2A 0 o

X) - 1/2

where the constant H2n+l are given in terms of Gamma functions as

= F(n+§(2) L(A+2)

H2n+1 r(3/2) r<i+n+21 (5'2'16’

Thus, with

a:

n=o

and from equations (5. 2. 9) and (5. 2.13) it follows that

an

__ 2n

qu :2 a2n+1H2n+1 [AVi(x)] u (5.2.18)

n=O

Substitution of (5. 2. 18) into equation (5. 2. 1) reduces the latter to

the following linear form
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2n

2

Lxu + 00 utt + Z a2n+lH2n+l [AVi(x)] u — 0 (5.2.19)

n=0

The equation (5. 2.19) is separable. To solve the self

adjoint boundary value problem now described by the linear equation

(5. 2.19) along with the boundary conditions (5. 2. 4), initial conditions

(2. 2. 5) and periodicity requirement (2. 2. 4) as discussed before it

is sufficient to represent the solution in the form

u(x,t) =(ZApr(x) cos t (5.2.20)

p=1

where the series in the parentheses is the expansion of the spatial

part of u(x, t) with respect to the linear eigenfunctions Vp(x). The

coefficients Ap are yet to be determined. Upon substitution of

(5. 2. 20) into (5. 2. 19) one Obtains

an on

E LxApr(x) cos t - (1)2 Z APVP(x) cos t

p=1 P=1 (5.2.21)

m __ 2n

= O+ Z a2n+1H2n+1 [AVi(x)] ZAprhc) cos 1:

n=0 p=1

It is to be noted that (1)2 appearing above yields the approximate

nonlinear vibration frequency.

Dividing through (5. 2. 21) by cos t and using equation (5. 2. 5)

one Obtains
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0° a 2n
2 2 -

Z (Op - a) )Apr(x) + 2 ot2n-+-1H2n+l [Avihd]

p=1 n=o

(5.2.22)

pZIApVp (x) = 0

Upon multiplying by r(x)Vk(x), and integrating with respect to x

from 0 to L equation (5. 2. 22) reduces, in view of the orthogonality

condition (5. 2.. 8). to

2 mp2” (”2) Apépk + Q: a2n+1H2n+lA2nVznb‘ ) ZAppV (”I”)
p=1 n=o p=1

Vk(x)dx = 0 (5.2.23)

Thus

”2:054” Iii—i: Mia2HAVn+12n+12nznb‘p)z1

(5.2.24)

Apr(x)r(x)Vk(x)dx k=l,2,3,...

The (1) above can be interpreted as the square of the nonlinear

frequency found by assuming the ith linear mode in reducing the nonlinear

qu. It is expected that as the nonlinearity tends to zero, u(x,t) tends

to AVi(x) cos t and (1)2 tends to Qiz. Consequently, only when k : i
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in (5. 2. 24) does equation (5. 2. 24) yield a meaningful solution. Upon

setting k = i and A = Ai’ the square of the ith nonlinear

frequency wiis given by

2 2 L °° - 2n 2n+2

' = Q. + J z

(111 1 0 a2n+1H2n+1Ai Vi (x)r(x)dx (5.2.25)

n=o

i=1'20000

The expressions given in (5. 2. 25) for the nonlinear frequencies will

be applied to a number of particular continuous systems in the subsequent

sections and the results will be compared with those obtained by the

perturbation method in the previous chapters.

5. 3. The Application of Ultraspherical Polynomials to Approximate

Frequency-Amplitude Relationships

 

 

5. 3.1. The Restoring Force Nonlinear in Lateral Displacement
 

In this section the frequency-amplitude relationships for

continuous systems supported by nonlinear foundations whose

resistances depend upon the lateral displacements, will be determined

by using the ultraspherical polynomial linearization method as

developed in section 5. 2. The motions of the vibrating systems

are governed by equation (5. Z. l), with the boundary conditions in

the form (5. 2. 4), and initial conditions (2. 2. 5), with the initial

configuration unspecified. The linear eigenvalues and eigenfunctions

follow from the solution of the associated linear problem as posed

by the time reduced equation (5. 2. 5) and the boundary conditions

(5.2. 6).
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As mentioned above the nondimensional equation of motion is

 

2 , .

'1' + = _ ~ '
Lxu c0 utt” qu 0 (5.2.1,)

-82 4
= :-———+ ° = +where, for example, Lx 5 X4 011 f<;r a string, Lx V 011

in the case of a circular plate, Lx = "V + 011 denotes a membrane

4

5

and L = + at for a uniform beam. The constant a is the
x 8 x4 1 1

linear foundation constant and (1)2 is a dimensionless frequency

parameter as defined in section 3.1..2 for a beam of length 7r .

In order to compare results with those found using the pert-

urbation approach, a Duffing-type foundation is considered by truncating

equation (5. 2. 3) at n =- l. The nonlinear restoring function is written

as

N u = E: 11 (5.3.1.1)
X

where 313 is a dimensionless constant similar to a as defined in

section 3. l.

The lateral displacement at any point is approximated by

assuming the deflected configuration to be one of the linear mode

shapes, say, for example, the first linear mode V1(x)

no = A11V1(x) cos t (5.3.1.2)

where A11 is the so-called normalized amplitude, V1(x) is the

spatial eigenfunction that corresponds to the square of the linear

frequency 912 satisfying (5. 2. 5). From equation (5. 2. 25) with

n = l the frequency-amplitude relationship follows as
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- 2 1‘ 4
= 5.30103w 9 + H3a3Al1 J0r(x)V1(x)dx ( )

where H3 is found from equation (5. 2.16) with n = 1 as

_._;1___ . .1.

H3 ‘ 2(i+2) (5 3 4)

If )x = 0 (Tchebycheff polynomials of the first kind), the

frequency-amplitude response as determined by the method of ultra-

shperical polynomials is identical to the first order frequency-

amplitude relationship as found by the perturbation approach, which

was given as equation (2. 2. 23) in section 2. 2.

5. 3. 2 Elastic Beams with Immovable Supports
 

A prismatic vibrating beam having immovable or axially

springed end supports represents a dynamic system whose governing

equation of motion contains a restoring function nonlinear in the

derivatives of the lateral displacement. The system was considered

previously in section (3. 2. l), and the nondimensional equation of

motion given as

"' 2
u - pu + wzu - if u dx u = 0 (3.2.1.5)

xxxx xx tt x xx

Equation (3. 2.1. 5) may be brought to the general equation

(5. 2.1) if one sets



  

4 2

_ a _ a
Lx — 4 p 2 (5.3.2.1)

Bx 6x

and

W

N u = - (I u dx u (5.3.2.2)

x o x xx

In order to represent qu in the desired form of equation (5. 2. 3) the

linear mode shape for u() is again assumed as

110 = Allv1(X) cos t (3.2.1.10)

2

1

If one takes the first and second Spatial derivatives of

where V1(x) together with its corresponding 0 satisfy (5. 2. 5) .

equation (3. 2. 1.10) and then substitutes the results into equation

(5. 3. 2. 2), it follows that

 

 

7T

_ 3 2 3 _

qu — (All I le dx lex cos t —

o

_ (Ivvz dx v 3 (5.3.2.3)

1x lxx u

0

3

Vi

which can also be written as

N u - (.1 u3 (5 3 2 4)

x 3 ° ° °

where W 2

_ - cjovl dx lex

013 = 3 (5.3.2.5)

V

When one substitutes equation (5. 3. 2. 5) into the expression

(5. 3.1.3) and sets both n = l and r(x) = l, the frequency-amplitude

relationship follows as
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7r 7r

2 _ 2 _ 2 2 '

0) — Q 6 All H3 jovlle dx uror(X)lex dx (5.3.2.6)

where 3

If A = 0, the ultraspherical polynomial results agree with

the perturbation first order approximation to frequency-amplitude

response as given in equation (3. 2.1.12) of section 3. 2.1 and

equation (2. 2. 7).

5. 3. 3. Circular Plates Vibrating with Large Amplitudes
 

The vibrating plate systems considered in this section are

those described previously in section 3. 2. 2. However, frequency-

amplitude relationships are now found by the ultraspherical polynomial

method. The nondimensional equation Of motion is

1

4 2

V u + CL) 11 - (I u rdcr Vzu = 0 (3.2.2.5)

tt 0 r

as given in section 3. 2. 2. Equation (3. 2. 2. 5) takes the form of

equation (5.2.1) if r is now considered as the spatial variable instead

 

Ofxand

2 2

.. B 1 a a 1 a 4
L = = +——— —— -— =x LJ: (8 2 rar)(a 2 + rbr) v (5.3.3.1)

r r

l 2 2
qug Nru = - Ejour rdr V u (5.3.3.2)

The nonlinear restoring function Nru is represented in the

form of equation (5. 2. 3) by first assuming the mode configuration

to be

u0 = All V1(r) cos t (2.3.2)
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After the first and second spatial derivatives Of the lateral

displacement as approximated by the linear mode are substituted

into equation (5. 3. 3. 2), the restoring function reduces to

- 3

where 2

_ 1 Vlrrdr 1

a3 = - cf —3—— (Vlrr + I: vlr) (5.3.3.4)

0 V1

If equation (5. 3. 3. 4) is substituted into equations (5. 2. 25),

with n = l and the weighting function r(r) = r, the frequency

amplitude relationship follows as

i 1
2 2 2 2

w — 01 - 6 All H3 (Orv1r dr (0(r Vlvlrr + Vlvlr)dr

(5.3.3.5)

where

H =-—3—- (5.3.3.6)
3 2014-2)

2

and 91 is the eigenvalue corresponding to Vl(x).

Again if the Tchebycheff polynomials are used, i. e. X=O the

approximation to frequency-amplitude is identical with the results

Obtained from the perturbation method given in section 3. 2. 2.

5. 3. 4. Beams Having Nonlinear Constitutive Equations
 

Another class of dynamic systems having nonlinear restoring

forces depending on the displacement and its derivatives is that Of

vibrating beams with nonlinear material properties. The particular

type of material stress-strain relationship to be considered in this
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section is taken to be that already discussed in section 3. 3. The

nondimensional equation of motion is given as

u + (Dzu + ([u2 u + 2 u u2 ]= 0 (3.3.4)

xxxx tt xx xxxx xx xxx

which is equivalent to equation (5. 2.1) with

 

64

L = (5030401)

x 4

Bx

and

N u = E [u2 u + 2 u u2 1 (5.3.4.2)

x xx xxxx xxxxx

The configuration of the nonlinear system is again approximated

by the linear mode and after taking spatial derivatives up to the

fourth order, the restoring function of equation (5. 2. 3) is written as

N u = E u3 (5.3.4.3)
x 3

where

2
2 lexlexx] (5.3.4.4)

- E 2
a = ——

3 3 [lexlexxx 4'

Vi

Upon substitution Of equation (5. 3. 4. 4) into equation (5. Z. 2. 5) and with

n = l, the frequency-amplitude relationship follows as

2 (22 3g
2 7T

w = 1 + 2(A+2) A11 ior(X)

(5.3.4.5)

2 2
+

[lexlexxx 2 lexlexx]
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If A = 0, the Tchebycheff approximation is identical with

first order frequency-amplitude responses given by equation (3. 3. 7),

which follow from the perturbation theory.

5. 4. Alternate Methods to Approximate Frequeng-Amplitude

Relations by using Ultraspherical Polynomials

 

 

After the nonlinear equation Of motion (5. 2.1) has been

reduced to an approximate linear form by using the ultraspherical

polynomial expansion and retaining only the linear term, the 30

called "linearized" equation (5. 2.19) may be solved by a variety

of methods. In the previous sections Of this chapter a general

type solution for frequency-amplitude relations was developed in

terms of the eigenfunctions and eigenvalues of an associated

linear problem. There are, however, occasions in which the

particular linear systems may be solved more directly by applying

other methods to the linearized equation of motion. AS illustrations,

two examples are given below.

5. 4.1. Nonlinear Vibrating Spring Reduced tO the Mathieu Equation

The nondimensional "linearized" equation Of motion govern-

ing a stretched string of length 7T undergoing periodic vibrations

in the presence Of a nonlinear Duffing-type foundation force follows

from equation (5. 2.19) as

azu 28211 _[a 30‘1

1 + 2n+2) A

  

sin2 x] u = 0

(5.4.1.1)
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where Lx =—:-§— + a1 , the linear mode Vl(x) = 227v sin x,

X

3

1 3 _ 201+2) ' 013

along with A = f2/7r A

n is truncated after unity, H = l, H is taken to

be equal to a and 032 as defined

1 ’ 11 '

previously. The equation (5. 4.1.1) is justified on the physical

ground if the original length of the string is sufficiently long so

 

that even though the slope: : is small compared with unity, the

deflection u may become moderately large.

Since equation (5. 4.1.1) is linear, it follows that the motions

are harmonic in time. Writing

sin t

COS t (50401-2)u(x,t) = X(X)

for motions that have a fundamental period of 277' , one finds that

X(x) satisfies

 

gfiz+[w2-a“3al Azsinzx]x-O

dx 1 2(1+2) —

(5.4.1.3)

with the boundary conditions X(0) = X6r) = 0. Now since sinzx :

(l - cos 2x)/2, equation (5. 4.1. 3) may be written as

2

(1332+ (P - 2q cos 2x) X = 0 (5-4-1°4)

with the constant being defined by

2 2

2 _. 3011A! 301 A

1 " 4014-2) q = ' '8(>.+2)

  

(5.4.1.5)
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Equation (5. 4.1. 4) will now be recognized as the Mathieu equation,

and the solution which vanishes at x = 0 and x = V and reduces

to sin x for small q (or A) occurs when

.. ___.1_2_1.-_3
p — b1(q) _ l q 8 q + 64 q ... (5.4.1.6)

The corresponding solution of X(x) is given by

X(x) = se1(x,q) = sin x - % sin 3x

(5.4.1.7)

q2 [Si___l‘_1___5x sin 3x _ sin x +

192 64 128

Both functions b1(q) and se1(x, q) are plotted in [37] .

Combining (5. 4.1. 6) and (5. 4.1. 5) one Obtains the following

amplitude-frequency relation

A2 2 2

2 .2 9 “1A 9 (51A )

l + 8 (1+2) 512 71:2)7— + "’ (5'4'1'8)

where Q is the fundamental frequency for the linear problem

1

2

91 _ 1 + a1 (5.4.1.9)

Stoker [1]has given the first order perturbation solution

for this same problem. Except for some differences in the notations

he Obtained
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2 2 _9_ 2
a) — $21 + 16 alA (4.1.1.3)

which coincides with the first two terms of the results: given in

(5.4.1. 8) if one sets A = 0, i. e., if the Tchebycheff polynomials

of the first kind are used. ' P”!

5. 4. 2. Integgal Transform Methods
 

 The frequency-amplitude relations for nonlinear systems can

also be Obtained by applying integral transform techniques to the

linearized equation of motion. For example, the nonlinear vibrating

string of the previous section, or likewise a simply supported uniform

beam, could be investigated by using the Sine integral transform. In

order to illustrate the general procedure, the Hankel transform is

used in this section to predict frequency-amplitude relations for a

nonlinear vibrating membrane.

The dimensionless dynamic equation governing the axisymmetric

motion of a vibrating circular membrane attached to a cubic founda-

tion is taken to be

  

2 2 ‘
a

-(au+l§'l)+wzau+au+au3=o

rar O2

r B t2 3

(5.4.2.1)

Equation (5. 4. 2. l) is Of the form (5. 2.1) if

2

_9_ .1. .5.

'5 r 0 ‘

 



and

N u = a 11 (5.4.2.3)

It is observed that for 013: 0, the first linear mode of vibration

is Jo(k1r), where Jo is the Bessel functiOn of the first kind of order

zero and k1 = 2. 40483. . . is the first zero of Jo. Introducing the

amplitude parameter A one may represent the maximum .displacement

at r by AJo(klr). The nonlinear force given in (5. 4. 2. 3) is then

A _E.__

AJO (kl r)

in the same manner as was done in Section 5.1. Thus by equation

 

approximated by the linear ultraspherical polynomial Pl

(5. 2. 19) with V1(x) = Jo(k1r) one has

  

BZu +1 8 _w282u _[a + 30‘3
+

6 r2 r B r 6 t2 0 20. 2)

'(5.4.2.4)

2 2

A Jo (klr)] u — 0

Upon separating variables by writing

sin t
u(r,t) — R(r) cos t (5.4.2.5)

one finds that R(r) satifies

2

Q—B + $93 + [p + q .12 (k r)] R = 0 (5.4.2.6)
2 1' dr 0 1

dr

2
3a A

where p = 602-010 and q =- ail-3) '. In addition R(r) satisfies

the boundary conditions

R(O) = Finite R(l) = 0 (5.4.2.7)
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It is noted that (5. 4. 2. 6) plays the same role as the Mathieu equation

(5. 4.1. 4) does in the string problem.

To solve the eigenvalue problem posed by (5. 4. 2. 6) and

(5. 4. 2. 7) the method of Hankel transforms is employed. Let

l

in = JOrR(r)Jo(knr)dr (5.4.2.8)

where kn denotes the nth zero of Jo. Equation (5. 4. 2. 6) is now

multiplied by rJo(knr) and integrated with respect to r from 0 to 1.

After integrating the first two terms by parts one Obtains

2 - 2
- + =(p kn )Rn q I r R(r)JO (klr)Jo(knr)dr 0

(5.4.2.9)

To simplify the integral on the left it is noted that R(r) has the

following eigenfunction expansion in terms Of Jo(knr)

R J (k r)

R(r) =2“;1 m2° m (5.4.2.10)

(k)

 

Substituting (5. 4. 2.10) into (5. 4. 2. 9) and interchanging the order of

summation and integration, one Obtains

Q

(p-k2)I-2+2q2a R=O (54211)
n 11 Inn 111 "'

m=1

where

1 1

a =————'J rJo (kmr)Jo2 (k1C)r)J (knr)dr

run 2

J1(km) 0

(5.4.2.12)
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The integrals that appear above have been computed and tabulated by

McQueary and Mack in [38] .

In order to Obtain the desired amplitude-frequency relation

it is necessary to determine the relations between p and q in (5. 4. 2.11)

under which nontrivial solutions for Rn occur. To achieve this

the series in (5. 4. 2.11) is now truncated after m = N. Equation

(5. 4. 2. 11) then becomes a set of N homogeneous linear algebraic

euqations in Rn, n = l, 2, ...... , N. By setting the determinant

of the coefficients equal to zero N general relations between p and

q result. The desired relation is the one for which all the nontrivial

Rn except R1 should tend to zero as q(proportional to A2) tends to

zero. The relations may be improved by taking a larger N.

Let us instead describe here an alternative iterative pro-

cedure by which the desired relation between p and q may be developed

as a power series in q for p. It is observed that by setting N = 1

one obtains from (5. 4. 2.11) and (5. 4. 2.12) the following solution.

R = 0 n > 1 , R 95 0 (5.4.2.13)
n l

and

p = ((12 (5.4.2.14)

Equation (5. 4. 2. l4) simply states that for linear vibrations in the

first mode the frequency

(1) = 03 = k + a (5.4.2.14)

is independent of the amplitude A. Now taking N = 2 one Obtains

from (5. 4. 2.11) the following second order determinantal equation
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[(p - 1.12).» 2qall] [(p - 1.22) + 2:21.422]

2

  

 

- 4q 312321 = 0 (5.4.2.15)

which may be rewritten as PM”

2 l
2qa (p - k )

p - k2 = -2qa - #224 1 + o<q2)
1 11 2

(p - k2 )

(50402016)

where 0(q2) stands for terms which are at least quadratic in q.

By (5. 4. 2. 14) as a first approximation the second term on the

 

right may be dropped. Equation (5. 4. 2.16) then states that p - klz =

0(q), which in turn shows that the second term on the right is of

the order 0(q2). Thus

-k2-2 +0(2) (54217)p - l qall q o o 0

Or, in terms Of (1)2 and A2.

2

301 a A

2 _ 2 3 1; 4
(1) — 000 + 0&2) + 0(A ) (5.4.2.18)

By increasing N, higher order terms on the right hand side of

(5. 4. 2. 16) can likewise be determined. However, it can be shown

that terms involving lower powers Of A2 which have already been

determined will not be affected.

Mack and McQueary have obtained the first order perturbation

solution for the same membrance problem [11]. Again, except for some

differences in notations, their result is
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(klr) dr A2

(5.4.2.19)

Recalling the definition of all, one sees that (5. 4. 2. 20) agrees

with (5. 4. 2.19) up to terms in A2, provided that A is taken to be

zero, i. e. , provided that we use the Tchebycheff polynomial of

the fir st kind.

 



VI. SUMMARY AND CONCLUSIONS

Oscillations Of both discrete and continuous systems outside

the classical linear domain are no longer independent of amplitude.

Two approximate formulations were developed in this research to

determine the frequency-amplitude relations and solutions for a

general class of nonlinear continuous vibrating systems whose

motions are governed by nonlinear partial differential euqations in

one spatial variable and one time variable. The nonlinearity was

assumed in the form of a restoring function of the dependent

variable and its spatial derivatives.

The first approach involved a modified version of the usual

perturbation theory, The nonlinear equation was first reduced to a

system of linear equations which were then solved in a recursive

manner by expanding the solutions as series of products of some set

of spatial eigenfunctions and time harmonic functions. Both first

and second order approximations to the frequency-amplitude

relations and to the vibration configurations were obtained for a

number of nonlinear continuous systems.

A second approximate formulation leading to the solution Of

the above-mentioned systems was also presented. The nonlinear

functional in the equation of motion was reduced to an approximately

equivalent linear form by using the linear term of a set of ultraspherical

polynomials over the interval described by the amplitude of the motion.

The linearized equation was then solved for the frequency-amplitude

134
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relations. The results were found to be identical with the first

order results obtained by perturbation theory if the Tchebycheff

polynomials, a subset Of the ultraspherical, were used. Although

the numerical results were given only for the first nonlinear mode,

the analytical expressions are sufficiently general to be extended

to study higher modes of vibration.

The general expressions developed through both the perturba-

tion and ultraspherical polynomial approaches for the frequency-

amplitude relations and the mode shapes of vibrations were applied

to a number of dynamic systems. One need specify the differential

Operator, nonlinear restoring function, boundary conditions, and

linear spatial eigenfunction. A total Of twenty-eight solutions to

different nonlinear systems were programmed on the computer

and the results were catalogued in the form of graphs and tables.

As the literature contains some solutions Obtained by other authors

using different methods, comparisons and justifications of the

results presented herein are thus possible.

For the particular case of continuous systems on nonlinear

elastic foundations, our first order frequency-amplitude relations

for the uniform string and simply supported beam agree with those

Of Stoker and of Han respectively. Second order string and membrane

results agree with those Of McQueary, Mack and Clark. In addition,

first and second order approximations to the frequency-amplitude

relations and first order nonlinear mode shapes were graphed

for prismatic beams with fixed-fixed, fixed-hinged and simply-

supported boundary conditions as well as for uniform cantilever

beams. Another contribution includes beams with variable cross



136

sections. Cantilever beams with single and double wedge, circular

and parabolic type cross sections were solved. First order results

for fixed-fixed and simply-supported beams with exponentially

varying cross sections were also presented. For the class of

problems just mentioned, our results indicated that the general

trend is for the first'order nonlinear frequency to increase greatly

as compared with the linear problem for a specified amplitude and

the second order response to decrease only slightly from the first

order frequency, while still remaining greater than the linear

response. The increase in frequency for a specified amplitude due

to the nonlinear foundation was inversely pr0portional to the stiffening

imposed by the boundary conditions, i. e. the simply supported beam

showed the greatest increase. The mode shape was generally

flattened as compared to the linear problem. The location of the

maximum displacement was found to shift in the case of fixed-hinged

beams, supporting the time dependency concept of nonlinear modes.

It was also noted, that by approximating the linear mode shape for

fixed-fixed and cantilever beams with a cosine wave type solution

instead of the exact eigenfunction, the approximation to the geo-

metrical configuration is not extremely critical insofar as obtaining

the frequency-amplitude results is concerned.

In the special case of continuous systems vibrating with

immovable end supports, the first order frequency-amplitude results

were identical with those of Evensen for simply supported, fixed-

fixed and fixed-hinged beams. The second order frequency approxim-

ations presented are new but were found almost negligible. The

nonlinear mode shapes were also presented and found to flatten at
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small amplitudes and more bell shaped at larger amplitudes. Again

the maximum amplitude of the fixed-hinged beam shifted along the

beam as the motion went through a complete period.

The numerical results obtained for both simply supported

and clamped circular plates vibrating at large amplitudes were in

good agreement with results obtained by Wah who used a modified

Galerkin approach. Our first order results predict a period

slightly less for a specified amplitude as compared with those

results of Wah. Wah did not determine the second order results.

Our second order results showed an even greater trend to a lower

period for a specified amplitude. The nonlinear mode shape again

was flattened, with the simply supported plate being more so than

the clamped plate.

In the case of a membrane vibrating at large amplitudes,

our results were compared with those Obtained by Chobotov and

Binder. The latter authors applied a perturbation approach and

reduced the nonlinear coupled equations to a system of rather

complicated linear equations. They then solved the fir st few linear

equations by a Galerkin technique. The dynamic analogue of Berger's

assumption for static plates with large deflections as applied to

vibrating plates by Wah was used here to decouple the governing

equations of motion. The results obtained in a relatively simple

manner agree exceptionally with those of Chobotov.

Another interesting case investigated was that of vibrating

systems with nonlinear material equations. The complexity of

governing equations Of motion has in the past greatly limited
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research in this area. However, in the simple case of a simply

supported beam with a constitutive equation of the form N = E( (+11 53) ,

Kauderer contributed a lower order approximation to the frequency

and to the nonlinear mode shape. The general equations developed

in this study produced the same results when applied to Kauderer's

problem. Furthermore, both the first and the second order frequency-

amplitude relations as well as the first order nonlinear mode shapes

were determined for beams of a similar constitutive equation with

fixed-fixed, fixed-clamped and simply supported boundary con-

ditions. Our results are qualitatively comparable to those for beams

with immovable supports, but the differences from the linear

solution are more pronounced.

It is to be noted that the ultraspherical approach was used

only for first order results. An attempt was made to reduce the

ultraspherical polynomial approximations so that they may agree

with higher order results obtained by the perturbation theory.

The attempt was not successful.

Several avenues of research suggested by this study are as

follows. Systems involving more than one variable, such as rectang-

ular plates vibrating at large amplitudes, could be investigated.

Also, with suitable adaptations, systems with time dependent non-

linearities, such as those involving small damping and external

forcing fuctions might also be studied. Finally, systems with

complicated material equations could perhaps be studied by con-

sidering their vibratory behavior. Comparison of the analytical

findings with experiments , might yield fruitful results on the

material propertie s .
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APPENDIX A

THE ULTRASPHERICAL POLYNOMIALS

A

The ultraspherical polynomials denoted by Pn(x) represent

a subset of the more general Jacobi polynomials P:' $1) with (2:8

Another more specialized case of the Jakobi set is the Legendre

polynomials where a=8=0 . The later may be generalized to the

so-called Gegenbauer polynomials c:(x). It can be shown that

the ultraspherical and Gegenbauer polynomials are essentially

equivalent [39] and consequently, both names are commonly used

interchangeably in the literature.

The ultraspherical polynomials are orthogonal on the interval

2))1-6
[-1, 11 with respect ot the weighting function (l-x and may be

Obtained from Rodrigue's formula [40] as

_). n _

pm) (x) = AnAU-xz) 55(34):) (142)“) 7

(A.1)

where An is some normalization constant, n is any nonnegative

integer commonly referred to as the order of the polynomial and

the index A takes on the values-1‘2 < )1 < °° . Other sets of

polynomials may be determined as a subset of the ultraspherical

polynomial by assigning particular values of X . For example, if

A=0 the Tchebycheff polynomials of the first kind are defined, if

),=1 the Tchebycheff polynomials of the second kind are determine,

for i=8 the Legendre polynomials and if A-‘G the expansion

corresponds to a Taylor's series of an analytic function about the origin.
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A function f(x) expandable over the interval [-A,A] in these

polynomials may be written (33).

f(x) = 2 A: P: (x/A) (A.2)

n=O

where the coefficients are obtained in the usual way by multiplication

of the weighting function and integration over the span as

+1

I fiAx)PnA(x/A)(1 - x2)x-;5 dx

)1 -1

An = +1 A 2 A‘ii (AO3)

j [Pn (3./m] (1 - x) dx

-1

It is important to observe that 60nP3(x/A) is unchanged if

Pn(x/A) is multiplied by some constant. Consequently, the normaliz-

ation factor Aifrom equation (A. 2) is not unique and any convenient

normalization constant is permissible. In this treatise Anxis taken

 

as

n
-1 + + -Ank ___ (n ) r(k 31) 1"(n 2;) (AA)

2 n! I"(2).)1"(n+>(+;5)

for all subsets except >1=0 . Sincevr(0) is undefined, for the case

of the Tchebycheff polynomials for the first kind the constant is

taken to be
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n n I

An — (2n)! (A'S)

As already mentioned, the approximating function is not altered by

redefining An.
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