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ABSTRACT

COMPARISON OF FIRST—ORDER ERROR ANALYSIS WITH THE

MONTE CARLO METHOD FOR A LAKE ONTARIO TIME-

DEPENDENT PHOSPHORUS CONCENTRATION

PREDICTION MODEL

By

Ranh Emerson AnciT

The probTem of quantifying mode] prediction error, or uncer—

tainty, is the subject of much ongoing research. This study compares

two methods of prediction error quantification for a Lake Ontario

eutrophication modeT, namely, the Monte CarTo method and first—order

anaTySis. The Monte CarTo method accounts for uncertainty by char—

acterizing each known error source by a frequency distribution. Vaiues

are obtained randomTy from the distribution for each term which simu-

Tates the inherent variability. First-order anaTysis defines uncer—

tainty by its first non-zero moment, the variance. Uncertainties are

propagated through the modeT by using the first-order terms of the

TayTor series expansion. The variances are then combined to yieid the

totaT prediction error. The comparison inciudes using the same

parameter vaiues; testing sensitivities; and running the Monte CarTo

simuTation with aTT-normaT stochastic inputs. The resuTts Show that

for simiTar input vaTueS, simiTar predictions but different errors are

obtained.
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INTRODUCTION

With the increasing burden on the earth's water resources,

the resource manager whether in the private or government sector, is

called upon to balance competing interests, evaluate different

sources of information and to anticipate the consequences or impact

of proposed uses and activities on the resource base. To do this,

the manager requires some knowledge of the natural sciences to under-

stand the biological, physical and chemical processes that Shape the

environment and to comprehend its fragile and interdependent char-

acter. Yet the water resource manager must also be familiar with the

social sciences since it is in this sphere that decisions concerning

the application of knowledge gleaned from the natural sciences are

made. Questions of water allocation, efficiency and distribution

are economic and political. Thus the planner stands at the inter-

face of the natural and social disciplines. Furthermore, these two

realms of thought may suggest conflicting answers to water develop-

ment or management problems. What may be "good" from a strictly

scientific viewpoint may not be ”good” economically or politically.

Also, uncertainty may arise regarding projects or activities, the

nature and effect of which may be subtle and long—term. It is not

surprising then that to make sound decisions, the water resource

manager requires detailed, accurate information, as well as the



ability to anticipate the possible consequences of various courses

of action, that is, to forecast or predict impacts.

There are several different ways prediction can be accom-

plished. One common way is a qualitative study of the problem

resulting in a projection of possible scenarios. Another is simply

to extrapolate from past experience if the present problem is analo-

gous to previous ones. The conceptual model offers another approach

of envisioning complex interactions among a system's components.

This latter method is often closely followed by a quantitative model

which expresses the component mathematically and yields a quantita—

tive prediction. The complexity of these models ranges from simple

input-output models (Vollenweider, I969, l975) to sophisticated

treatments of biological systems (Thomann et al., l977).

However, since the modeling process involves a Simplification

of reality, the predictions necessarily reflect a level of uncer-

tainty or error. Any reduction in this uncertainty will likely

increase the cost Of the modeling process in both money and time.

For example, increasing the complexity of the model may reduce its

prediction uncertainty but will also increase the data requirements.

The costs of data acquisition, model calibration and validation, and

computation will increase. The modeler must, therefore, determine

what level of uncertainty is acceptable under the circumstances and

consistent with the available resources of time and money. Further-

more, the modeler's personal and professional reputation may be

risked on the reliability of the results. Clearly, then, to the

water resources manager who uses quantitative models, the quality of



 

the results is of great importance. This concern has recently led

some researchers to investigate ways of quantifying model uncertainty

and thereby provide this needed information (Reckhow, l979; Chapra

and Reckhow, I979).

The purpose of this paper is to compare two such methods for

prediction error quantification and to evaluate their relative advan-

tages and disadvantages for a time-dependent phosphorus concentration

prediction model of Lake Ontario.

The thesis proceeds in the following order. The reader is

acquainted first with the model and its derivation. This is followed

by a discussion of the Monte Carlo procedure and the model predictions

of one simulation are analyzed. Then the alternative method of first-

order error analysis is considered along with a presentation of its

model predictions. Finally, the results of these two different

approaches are compared and their relative strengths and weaknesses

are discussed. The appendices are referenced in the text to supple—

ment the information of the main text or to provide mathematical

proofs, only the results of which are used in the texts.



 

CHAPTER I

THE LAKE PHOSPHORUS MODEL

The lake phosphorus model used in this paper is a “black box“

model which means it treats the physical phenomena empirically, rather

than theoretically. In other words, no attempt is made to individually

account for all the processes that may be involved in producing the

final product, instead, all the processes are aggregated into a few

parameters which may or may not have a physical basis. To the water

resources planner, the empirical approach has the advantage of rela-

tive mathematical simplicity over the more sophisticated theoretical

models and is, therefore, more compatible with available financial

resources, as well as the planner's mathematical ability. A survey

of this kind of lake phosphorus model has been made by Uttormark and

Hutchins (l980) and by Reckhow (l979).

The underlying assumption of this model is that given a lake's

size, mean depth, phosphorus loading, and flushing rate, phosphorus

concentrations can be predicted. The model was derived by first cal-

culating a phosphorus mass balance for lakes. In this calculation it

is further assumed that phosphorus losses occur through the outlet

and through internal losses such as sedimentation and that the net

internal loss is directly proportional to the amount of phosphorus in



 



 

the lake. A phosphorus mass balance for a simple lake system is

given by:

Another

dP _-
V HT — M —<5PV - QP l.l

where,

P lake phosphorus concentration (mg/l)

lake volume (106m3)

annual mass rate of phosphorus inflow to lake (lO3kg/yr)

O
2

<

H

annual volume rate of water outflow from lake (l06m3/yr)

sedimentation coefficient (per yr).Q

I
I

expression for the phosphorus mass balance is given by:

dP _
V a? — M - VSPA — QP l.2

where,

A = lake surface (bottom) area (kmz)

v5 = apparent setting velocity (m/yr)-

Equation l.2 differs from Equation l.l in that the sediment Sink term

(0 PV) is treated as an areal sink term (vSPA) and hence the rate of

phosphorus deposition to the sediments is a function of the bottom

(surface) area.

Equation l.l has the steady—state solution (g; = O):



 



hfi 1.3

T

where,

L = annual areal phosophorus loading (g/mZ-yr)

z = lake mean depth (m)

o = hydraulic retention time (yr)

T = hydraulic retention time (yrs).

The time-dependent solution is:

 

I _

P. = L (l-e-)T + GMT) + P. e (1/I + O)At l.4
'1 Z 1"]

2+—
'1'

where,

P1 = ith phosphorus concentration prediction (mg/l)

P1_] = previous phosphorus concentration prediction (mg/l)

At = time interval (yrs).

Let 2 = qS = surface overflow rate (m/yr) and Equation l.3 may be

restated as:

 

P: .
1.5

 
P = = . l.6



Note that the difference between these two expressions (Equations l.5

and 1.6) is in the term for the settling velocity. In Equation l.5

the settling velocity is assumed to be depth-dependent, whereas in

Equation l.6 it is assumed to be constant.

A third steady-state phosphorus model is based on the frac-

tion of influence phosphorus retained in the lake and is given by:

M - QP

_ o
Rp - -—-Wr———- 1.7

where,

Rp = retained influent phosphorus

M = L - A

P0 = average outflow phosphorus concentration (mg/l)

thus

R:LA-3P_O_:]_(9_)EB 18

P LA LA A L

and since Q/A = z/T

(Z/T) PO

Rp —l--——E———— . l.9

If P0 = P (lake and outflow concentration are equal), then the model

becomes:

= = __. - l.lOPO P 2 (l Rp).

And, finally, by setting Equation l.3 equal to Equation l.lO, it can

be shown that

 



_ T o _ l

Rp _ l + T - l + I/TO ° 1.1]

 

These then are the basic models for lake phosphorus loadings.

The question becomes which one to use. In considering the choice of

an appropriate model, one needs to consider the following (Reckhow,

I979):

l. Consider the data base used to fit the model. Does

it contain lakes similar to yours (Similar, in Size,

depth, climate, etc.)?

2. Has the model been used successfully on Similar lakes?

3. Are the model's limitations clearly documented?

In this paper the time dependent solution of Equation l.6 is used to

model phosphorus behavior in Lake Ontario and is given by:

P_ _ L (1 _ e-(I/T + vS/2)At) + Pi 1e (1/T + vS/2)At.

l.l2

Although specification in cross-sectional modeling is usually not an

issue (Reckhow, l979), this model is chosen in order to conform to

prevous work done by Chapra (l977).



CHAPTER II

THE MONTE CARLO METHOD AND ITS APPLICATION

TO THE LAKE ONTARIO MODEL

The Monte Carlo Method
 

Definition
 

The Monte Carlo method is a procedure for internalizing the

variability, and thus the uncertainty, of model parameters. By

characterizing the variables as distributions rather than as Single

values (constants) the errors or variability associated with the

variables is incorporated in the model. By repeatedly obtaining

random values from these distributions, the model prediction also

becomes a distribution of values reflecting the combined uncertainties

of the independent variables. Exactly how the distributions are

described varies from one case to another. In a normal distribution,

for example, the arithmetic mean and the standard deviation are ade-

quate descriptors. For the log-normal case, however, the geometric

mean may be preferred in addition to the standard deviation or

some measure of non-normality such as the coefficient of skewness.

There are, however, sufficient statistics for this instance, too

(Benjamin and Cornell, l970).
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Distribution Selection
 

Clearly the most critical aspect of the Monte Carlo method

is the selection of the distributions which characterize the variables.

There are both qualitative and quantitative ways to help the modeler

make the appropriate distribution choice.

Qualitative baSiS.—-The qualitative basis for the selection
 

of distribution depends upon the extent to which the qualitative

nature of the process is known. One such way is based on the behav-

ioral Similarity of the one process to some other known process

(McGrath and Irving, l973). Such a Similarity allows for the assump-

tion that the two processes may be characterized by the same family

of distributions.

Another qualitative approach is based on the understanding

of the underlying theory. For example, the failure of electrical

components has been widely believed to follow exponential or Weibull

distributions (Weibull, l95l). The deviations of shots from a bull's-

eye is described by a Maxwell distribution in three dimensions and a

Rayleigh distribution in two dimensions (Kendall and Stuart, 1958).

Other qualitative considerations which may help in distribution

selection include a knowledge of whether or not the variable is dis-

crete or continuous, symmetric, bounded, and so on.

Quantitative baSiS.--The amount of data is most important in
 

distribution selection for it determines the quality of the empirical

determination. Frequently, a small data base will allow the modeler

“
q
r

 

 



ll

to make an appropriate choice of distributions. But if not, addi-

tional data must be Obtained to properly select the distribution,

especially if the model is highly sensitive to distribution choice.

This, of course, must be balanced against the cost necessary to pro-

cure the additional data.

There are a number of techniques available to the modeler to

analyze the data. The frequency histogram is one such technique which

‘
_
_
.
-
.
_
_
.
_

involves plotting the frequency with which a class of values occurs in

the sample data. This provides a visual aid to determining the possi—

ble shape of the distribution. Of course, the fewer the data used,

the less likely low probable events will be represented and the more

misleading the histogram can be. In that case the histogram should

be used cautiously and supplemented with some other technique.

Probability paper can also be used to help select the appro-

priate distribution. This paper comes with scaled ordinates such

that the cumulative distribution function of the probability law plots

as a straight line. Thus comparison of the proposed distribution

with the data is reduced to a comparison between the cumulative fre-

quency polygon of the data and a straight line. The closer the data

are to the straight line, the better the fit. Probability paper

exists for a number of distributions including the triangular, exponen-

tial and the normal (Benjamin and Cornell, l970).

Parameter estimation is another common method for use with

parametric distributions. A parametric distribution is one which is

represented as a function with one or more parameters. Simple



l2

parametric distributions have only one or two parameters such as the

normal distribution. Complex parametric distributions, on the other

hand, lack well-defined physical interpretations and are less easily

expressed as a function and usually involve three to five parameters.

Examples of these include the Weibull, Johnson and Pearson families

of distributions.

After selecting a distribution there are a number of tech-

niques which can be used to test the goodness-of-fit of the choice.

This is particularly critical for those variables for which the Monte

Carlo result is highly sensitive to distribution choice. Two of the

most popular tests are the Chi-square and the Kolmogorov-Smirnov

tests. In general, the more data used with the tests, the greater

the likelihood of rejecting an inadequate distribution choice. Like-

wise, the less data used, the less likely of rejecting an inadequate

choice. However, with smaller data sets the modeler can use the

W—test for the normal distribution and the WE-test for the exponential

distribution.

Application to the Model
 

Lee (l980) performed the Monte Carlo simulation on the time-

dependent form of this model. For the sake of completeness and to

facilitate comparisons, the characterization of the distributions and

the manner in which the values are obtained from those distributions

are briefly described below for each term in the model. The data used

in the simulation are gathered from the literature, that is, from

secondary sources. (For greater detail and for the computer algorithm,

the reader is referred to Lee, l980.)

W
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Loadings

The loading term (L) is the Single most complicated expression

of the model. It is a combination of several terms, namely, diffuse

source flux (DIFFLX); atmospheric source flux (ATMFLX); point source

flux (PNTFLX); and Lake Erie source flux (EREFLX). These terms are

 
added together and divided by the lake surface area (LSA) to give

the total load to Lake Ontario:

L = (DIFFLX + ATMFLX + PNTFLX + EREFLX)/LSA.

 

The flux terms are themselves composed of several terms which are

considered below.

Diffuse flux (DIFFLX).--The diffuse source flux is the sum
 

of three land use runoff concentrations: agricultural, urban and

forested. Each concentration is represented by a log-normal dis-

tribution characterized by its mean and standard deviation derived

from data taken from the literature (Beaulac, 1980). For more

details concerning the selection of these data, see Reckhow et al.

(l98l).

The sum of these three concentrations is then multiplied by

a randomly obtained value from the normal distribution for the Lake

Ontario tributary flows (excluding the Niagara/Welland Canal flow).

The distribution is characterized by a mean and standard deviation

calculated from the flow of several tributaries (Chapra, l98l). The

cross-correlations among tributary flows are sufficiently high to

allow their treatment with a single distribution (see Appendix A.l).
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The land use fractions are changed over the 40 year interval

by increasing or decreasing the relative size of each land use frac-

tion according to projected land use information (IJC, l977). The

projected difference for each land use fraction for the first 20

year period (l98O - 2000) is divided by 20 to yield an average annual

change, which, when progressively summed over the 20 year interval I

accounts for the total change in the land use fractions. The same

method holds for the second 20 year interval.

 

Atmospheric flux (ATMFLX).--The atmospheric source flux is
 

the sum of the phosphorus contributions in the atmosphere from these

three land uses. The three values are randomly obtained from three

log-normal distributions defined by their means and standard devia-

tions. The data used reflect total bulk loads (Reckhow et al., l980).

The relative weighting for each land use is determined by using an

average land use fraction which is itself calculated according to the

average relative size of each land use fraction over the entire 40 year

period.

Point flux (PNTFLX).--Point source flux is the sum of phos-
 

phorus contributions attributable to primary, secondary and phos-

phorus removal wastewater treatments. Each treatment is represented

by a normal distribution defined by a mean determined from survey

data (DePinto et al., I980). The variability of these point flux

contributions is estimated by standard deviations about the mean

concentrations for each treatment type (Reckhow, l978).



15

Lake Erie flux (EREFLX).--The Lake Erie flux is calculated
 

by multiplying a randomly obtained value from a normal concentration

distribution by a lag-one autocorrelated flow value. This concentra-

tion distribution is defined by a mean and standard deviation from

annual data (Chapra, l98l). The flow data are represented by a lag-

one autocorrelated Markov flow model. The model uses 80% of the 3

previous year's flow, 20% of the historical mean and a random compo-

nent based on the standard deviation and correlation coefficient of

 

the historical data to calculate the lag-one flow value (see Appendix

A.2).

Settling Velocity
 

The settling velocity term is procured by randomly selecting

values from a normal distribution defined by its mean and standard

deviation calculated from Lake Ontario data (Chapra, l98l). This term

also contains the model standard error which is included in the

standard deviation; its value is about 2.7 g/m3. It is an estimate

of the lack of model fit due to the assumption of a constant settling

velocity.

Areal Water Loading
 

The areal water loading term is defined as

as = Q/A

where,

Q is the sum of the Ontario tributary flows, the Lake

Erie flow, and the atmospheric water loading.
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The calculations for the Ontario tributary flows are discussed above

 
under Diffuse Flux and the Lake Erie flow is considered under Lake

Erie Flux. The atmospheric water load from precipitation is calcu-

lated from historical rainfall data (World Weather Records), obtained

from theameteorologicalrecords for the Lake Ontario basin. Pseudo-

random values are generated from a normal distribution defined by

the mean and the standard deviation derived from the data.

Hydraulic Retention Time
 

 

The hydraulic retention time (T) is represented by a normal

distribution defined by its mean and standard deviation calculated

from lake volume and outflow data provided by Chapra (l98l). The

twenty years of outflow data were each divided by the respective

year's lake volume to arrive at a distribution of hydraulic retention

times.

Other Parameters
 

The time interval, At, is set to one year, for all iterations

Since only annual data are used. In terms of many planning considera-

tions this is a shortcoming of the model,however, in terms of uncer-

tainty analysis it is not a problem.

The previous phosphorus prediction, P1_], is randomly selected

from a normal concentration distribution and is used to calculate the

present year's, Pi’ phosphorus prediction. It is initialized at

.0200 mg/l.

The mean depth is set at 89 meters (Snodgrass, l974), and is

used for all runs.

 



CHAPTER III

RESULTS OF THE MONTE CARLO SIMULATION

Major Observations
 

The results of the Monte Carlo simulation indicate that the

parameter values that are randomly generated from distributions

characterized by literature data are, of course, accurately char-

acterized in the simulation. The model parameters, which are calcu-

lated also agree closely with the findings of other Lake Ontario

studies. The dependent variable, in-lake phosphorus concentration, is

also reasonably well represented in the Simulation. The model pre-

dictions agree with major Lake Ontario studies. Some highlights of

these results are given below. (For a complete description, see

Lee, l980).

Base Run

The fifteen parameters of the Monte Carlo Simulation include

Six log-normal distributions and nine normal distributions. The base

run for the Simulation is a 40—year, lOO iterations per year test

(see Table 3.l and Figure 3.1). The phosphorus concentration predic—

tion mean for the forty year period is .Ol82 milligrams/liter (mg/l),

with a standard deviation of .0005 mg/l and a coefficient of variation

of 2.75 percent. This coefficient measures the year-to-year variation

l7

.
"
m
y
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in the annual phosphorus concentration predictions. The l4.3 percent

mean annual coefficient of variation and the .0026 mg/l mean standard

deviation estimate within-year variability which reflect the combined

input errors and variabilities. (For additional results, see Table

A.l).

All-Normal Run
 

The lOO iterations per year run using all-normal distributions

is given in Table 3.l and Figure 3.2. The average annual standard

deviation dropped to .OOl6 mg/l and its corresponding coefficient of

variation dropped to .0840. The inter-year standard deviation Spanning

the 40—year test, increased substantially to .002l mg/l. Its corre-

sponding coefficient of variation increased to .0620. The mean

increased only Slightly from .Ol82 to .Ol94 mg/l.

Lee suggests that this lower variability and Slightly higher

prediction may be due to the manner in which the normal variates are

chosen. Unlike the log-normal case, negative values can be generated

by the normal distributions. However, Since negative concentrations

and fluxes are difficult to interpret, only positive values are used.

This results in two different sets of summary statistics. Since ade—

quate data for comparison are not available, it is unclear whether

or not this revision to all-normal distributions is more realistic.

It should be noted, though, that the Simulation may be sensi-

tive to changes in the random number seed. For example, increasing

the magnitude of the random seed from l23457.DO (double precision) to

987225.DO results in an average annual concentration prediction about
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TABLE 3.l.--Statistical summary of Major Monte Carlo Runs

  

 

Base Run E. = .Ol82 CV = .l440

(lOO iterations S; = .0005 E = .0027

per year)

__= y-intercept = .Ol86
CVx .0275

Slope = -.00002

R; = .9989

r = -.4586

All Normal Run R' = .Ol94 ‘7V = .0840

S;- = .002l S" = .OOl6

CV— = 0620 y—intercept = .0207
x .

Slope = -.00006

R; = .9940

r = -.6367
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9% higher than for the smaller seed (.02ll mg/l vs. .0194 mg/l). The

average annual standard deviations,however, are about the same (.OOl7

vs. .OOl6); the average annual coefficient of variation for the larger

seed is somewhat smaller (.0802 vs. .0840). The tendency of the pre-

diction to increase or decrease over time may also be altered. In

this case, it changes from a negative to a positive Slope.

These changes suggest, according to Lee, that normal distribu-

tions are less characteristic of the parameters previously described

l
l
l
n
fl
fl
l
l
fl
fl
l
n
w

by log-normal distributions. But the interrelationships among the

parameters are so involved that such a suggestion requires consider-

able additional research to validate including more experiments to

determine whether or not these results are consistently obtained.

Hence, the problem of apparent sensitivity is not yet firmly estab-

lished. For further details, see Lee, l980.

Minor Observations
 

Base Run Fluxes
 

The phosphorus fluxes generally exhibited low variability for

the base run. The Lake Erie flux, which comprises 42 percent of the

total phosphorus input to Lake Ontario, had the lowest variability

with a Coefficient of variation Of l.l percent. The second largest

source of flux was diffuse flux, which constitutes 32.5 percent of

the total and has a coefficient of variation of 8.8 percent which,

though low, is the most variable of all the fluxes. Point source flux

is third in influence with a coefficient of variation of only 2.5 per-

cent. Atmospheric flux, constituting 8 percent of the total, has a
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variability of 3.7 percent. (For further details, see Table

A.2.)

Base Run Water Load
 

Water loading is comprised of the atmospheric, Ontario basin,

tributary and Lake Erie sources. Atmospheric water loading, which is

the smallest component, has a coefficient of variation of 2.0 percent.

The variability of the load from the Ontario basin tributaries is

approximately the same at 2.l percent. The remaining 8l percent of

H
I
I
I
I
H
I
H
M
N
I
I
M
I

the water load comes from Lake Erie which has the greatest influence

on the overall system. It has a coefficient of variation of .3 per-

cent. (For further details, see Table A.3.)

Higher Iterations Per Year
 

The 500 iterations per year Simulation may also be sensitive

to changes in the random number seed (l23457.DO to 987543.00). How-

ever, the summary statistics of each of these runs do not significantly

differ (.Ol9l mg/l vs. .0l87 mg/l), and the mean annual variability

is only slightly lower (l4.3% vs. l4.4%). In both instances, the

concentration appears to change very little over the 40—year period

(see Figure A.l and Table A.4).

The l,OOO iterations per year run, though giving Similar

results, displayed the problem of periodicity (see Figure A.2). The

graph gives an almost sinusoidal impression. Although several aspects

of the Simulation were examined, no answer to this problem was found.
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Flux Sensitivities
 

Reducing the point source flux variability gave no great devia-

tions from the base run. Both runs gave the same average annual

concentration prediction (.Ol82 mg/l) as well as the same average

annual coefficient Of variation (l4.3%). See Table A.5 and Figure

A.3.

Reducing the variabilities of the treatment facility effluent

has very little effect on the total point source flux. The upgrading

to all phosphorus removal treatment, though, has a noticeable impact:

it reduces the mean annual point flux value by 27 percent. See

Table A.5 and Figure A.4.

The concentration values used to characterize the flux from

Lake Erie are those taken from Niagara River-Welland Canal data.

Since flux from Lake Erie is the largest Single source, it is quite

predictable that changing this term gives distinct changes in the

final concentration distribution. The mean for the eastern Lake

Erie concentration data is 23 percent lower than that used for the

Niagara-Welland data (.0170 mg/l vs. .0220 mg/l), and results in an

average annual concentration prediction l.7 mg/l less than the l8.2

mg/l mean value for the Niagara-Welland run. Also, the eastern Lake

Erie data is l5 percent more variable than the Niagara—Welland data.

The mean annual coefficient of variation for the entire period increases

by 2 percent (see Table A.5 and Figure A.5).
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Land Use Fraction Sensitivities
 

Altering the balance of the land use fractions has virtually

no effect on the concentration predictions over the 40-year test

period. The only Slight change appears in the annual coefficient of

variation which decreases slightly from l4.3 percent to l4.l percent

when the fractions are doubled, and down to l3.8 percent when they

are tripled.

Shifting land use to all urban, or all agriculture or all

forest by the end of the 40—year period did have an impact on the

prediction. The results clearly Show the difference between disturbed

and undisturbed ecosystems as far as their contributions to lake phos-

phorus concentration are concerned. The two disturbed systems, urban

and agriculture, contribute to increasing in-lake concentrations as

their respective fractions increase. Increasing the undisturbed

system fraction, forest, results in a decrease of the concentration

predictions of .7 mg/l every 5 years. The average annual variability

of these predictions is a very low lO.4 percent (see Table A.6 and

Figure A.6).

Summary

The Monte Carlo results can be briefly summarized as follows.

The base run exhibited low variability and therefore gave a small

prediction error. The method was sensitive to the choice of distribu-

tions. For example, the switch to all normal distributions increased

the prediction slightly, lowered the intra-year standard deviation

(or variability), but increased the intra-year standard deviation (or

H
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m
t
u
l
l
_
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m
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variability). The method may be sensitive to changes in the random

number seed, especially with the all-normal run. It was not highly

sensitive to increased per year iterations. The fluxes, too, were

relatively insensitive to changes in variability. However, the use

of a different data set lowered the prediction mean and increased

the error. With respect to the land use fractions, the model was

sensitive only to differences between disturbed and undisturbed

land uses.



CHAPTER IV

FIRST-ORDER ERROR ANALYSIS

An alternative method for estimating the error associated with

model predictions is known as first-order error analysis. This method

is characterized by two basic features: single moment treatment of

the uncertain, or random, component and the first-order analysis of

functional relationships among the variables.

The first characteristic implies that the random variable X

is described by its first and second moments, ml and m2, which are
x

given by:

+w

J _ xng(x)dx = E[xn] = m: 4.l

where,

g(x) is the probability density function and E[xn] iS the

expectation of xn (Benjamin and Cornell, l970).

Thus the first moment of X, ml, with respect to the origin iS the

mean. The second moment of X, mi, is the variance.

When the moments are found with respect to the mean, they are

called central moments and are defined as:

27
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+00

I (x-x)ng(x)dx = E[(x-x)n] = 11:. 4.2

In this case the first central moment, Mx’ is zero and the variance

is the first non-zero moment (Benjamin and Cornell, 1970).

The second characteristic implies that only the first-order or

linear terms in a Taylor series expansion will be retained when dealing

with system or functional relationships among random variables. In

the case of a function, y = f(x), of a random variable x, the question

arises as to how to determine the moments of the dependent variable.

In this regard, it should be observed that if the coefficient of

variation is small, x is very likely to lie close to mX and thus a

Taylor series expansion of f(x) about mX is suggested as an approxi-

mation to the moments of y (Benjamin and Cornell, l970).

For a single variable relationship the Taylor series expansion

may be written as:

 

If the error (x-xO) is small and if the higher-order derivations are

not large, i.e., if the relationship is not substantially non-linear

in the area of interest, the above equation reduces to:
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f(x) ; f(xO) + d§(x) (x-xO). 4.4

x x
O

 
Taking expectations of both Sides yields the first-order approxima-

tion to the first moment of Y, the mean:

l
l
?

E[f(x)] f(E[x]) = f(x 4.5
O)°

The second term drops out Since the E[x-xO] = 0.

Similarly, finding the variance Of both sides yields the first-

order approximation for the variance of f(x):

(x—xO) 4.6

and after carrying out the multiplication and rearranging terms gives:

x .4.7

XO

Since the first two terms are constants (hence, zero variance), they

 
dx

Var [f(x)] 2 Var [:f(x0) + df(x)

 
+ df(x)

x dxdx

 

Var [f(x)] 3 Var [:f(x0) — x0 df(x)

 

 

do not affect the variance of f(x) and thus,

Var [f(x)] 5 Var r'df(x) -x 5 df(x)

de x0] [dx

A similar result holds for the multi-variate case starting with

 

 

2 Var [x]. 4 8

x0 '

a Taylor series expansion of partial derivatives and finding the first-

order approximation of the expected value of
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Y = f(x], x , . . ., xn) which gives

2

E[Y] E[f(x], x2, . . ., x )]
n

f(E[x], x2, . . ., an)

= f(X109 X203 - - 0: xn0)° 4'9

where,

XiO is the mean of the ith random variable.

Because the second term drops out again, E(xi-x10] = 0, there is no

way of accounting for the covariance of the variables unless the

second-order approximation is determined:

+

N
I
H

I
I
M

3

M
E[Y] = f(x10, x20, . . ., an)

where,

afZ/axiaxj x0 is the second partial derivative of f(x],

x2, . . ., Xn) with respect to x1 and Xj evaluated at their

means X10, X20, . . ., XnO.

If the coefficients of variation of the random variables, x1, and

the non—linearity in the function are not large, this second term is

negligible (Benjamin and Cornell, I970).

The first-order approximation of the variance is:

n n

Var [Y] E z 2 3f__ EL

i l j=l 3x1 XiO ij

Cov[x1, xj]. 4.ll

on
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However, if the Xils are uncorrelated, then:

 

n

Var [Y] 3 2 [:3fq
. X .

I=l o

2

. Var [x.]. 4.l2

I XIO] 1

 

 
This equation shows that each of the n random variables contributes to

the dispersion of Y in a manner proportional to its own variance and

proportional to the factor, (Bf/8x1 x10)2, which relates changes in

 

x to changes in Y, a sensitivity factor (Benjamin and Cornell, l970).

 

The total prediction error includes the model error, the con-

tributions to the uncertainty from the parameter error and the inde-

pendent variable error. These are combined as follows:

= 52 + $2 + $2 4.l3
2

St N p v

where,

St = total error of the prediction

SD = standard error of the estimate for the model

SD = parameter error contribution

Sv = input variable error contribution.

The standard error of the estimate was approximated by a non-linear

regression routine and includes errors in the variables. It is referred

to hereafter as the model error and is treated as a constant in the

error equation. However, since this routine was initialized from an

estimate based on the steady-state form of the model, but is applied

to the time-dependent form, a non-quantified source of error is
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introduced. (See Appendix B-l for a discussion of the non-linear

regression routine.) The parameter error and the input variable

error are treated by first-order analysis using the equation with the

covariance term (Equation 4.ll) since some of the xi's are corre—

lated. This equation may be rewritten as:

n n n

Var[v]sz(%§—)Zs§+z 2 2.331

i=l i i=l j=l+l 3x. 3x.
I .I

. Si Si Rij' 4,14

The parameter, vs, is not correlated theoretically with any other

variable and thus its error contribution reduces to

2 _ §P__2 2
Sp - (av ) Si’ 4.l5

S

The mean and variance for vS were also estimated from the non-linear

regression routine mentioned above (see Appendix B-l) since no data

exist for Vs' Recalling the model (Equation l l2), this gives:

aP _(e‘Vs/Z"/T-I)L

BVS— ( )2

 

+ (P. _ L )(-l/ze'vs/Z - 1h)

I-l v +

5 Q5

.4.l6

VS + qs

This quantity is squared and then scaled by the variance of Vs'

The variables L, qs, and T are correlated. Their correlation

coefficients were derived from linear regression using the fourteen

years of data from l960 to l973 for these variables. These data are
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taken from the work of Steven Chapra (Chapra, l98l). The means and

variances were also calculated from these data. The input variable

P]._1 is not theoretically correlated with any other variable in the

dependent form (Equation l.l2), though linear regression with the

other variables yields a relatively high correlation coefficient.

This is believed to be due to the small amount of data and the low

variability of the data. Therefore, the correlation coefficient

was assumed to be zero. The total input variable error is

 

2_ ggz . 2 OP 2. 2 SP 2
3V — (3L) 5 (L) + (3% s (45) + (3,) s (T)

8P 2 2 8P 8P

+ (api-I) 5 (P1_]) + 2 EEE' OE- Siqs) 3(L) C(anL)

8L 5?

+ 2 §P__ §P_ S(qs) - S(T) r(qS,T) 4 l7

qu ST

(The term 2 is the mean depth and is set equal to 89 meters.) The

partial derivatives for the above equation are:

 

 

.23 = l-e-vS/Z - Ti: 4 l8
8L v + q '

S S

23 =I;. (RVs/2’2/T'I) 4.19

aqS (V + q I
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_§E = _ L . -2 . -v /Z - l/T

3T (P1_1 v + q T e S 4.20

s s

§§}——- = e'Vs/Z ' I/T. 4.2T

I-l

The full equation for the total error of the prediction is:

 

 

 

 

 

 

.2

2 = (emvs/Z - 1/T-l)L ____J;____ (-l/ze-Vs/z-1/T)

St ( + )2 + (Pi-l v + q )

qs s S

32(vs)

2 2

+ fi-vS/Z- I/T#1) 2 1- —v /z-l/T 2

° S (45) + V 4 q S (L)

S S

2

+ [:: ) T-2 -v /z-l/T 32(T)

Lq

s

+ (e'Vs/Z'WI2 . 82(PM) 4.22

+ 2L(e'VS/Z'1/T-l) (l-e'Vs/Z’1/T)

(vS qsiz (Vs + qs)

5(95) 5(L) r(qs, L)

+ ZLI-e-vS/Z-1/T) .(p_ _ L )I-Ze-VS/Z-1/T

VS + qS T-I VS + qS

  



 

° S(q ) - S(T) ° r(qs,'r) + ME.

The values used for the base run first—order analysis are summarized

 

 

below:

2
Error type Mean S S

Parameter

vS l9.l9lO l.l963 l.43ll

Input Variables

qs lO.66O l.4608 2.l339

L .6352 .08ll .0066

T 7.9402 l.O421 l.086O

P1_] .0206 .0027 .OOOOO729

Model

ME .0032 .OOOOl024

 

The correlation coefficients are:

qS with L: .6822

qs with T: -.9902

L with I: -.7078.





CHAPTER V

RESULTS FOR FIRST-ORDER ANALYSIS

The Model Prediction
 

The results of forty iterations representing forty years of

phosphorus concentration predictions are presented in Table 5.l and

Figure 5.2. The model is initialized at .0206 mg/l and the first

iteration predicts .0208 mg/l. From there the predictions grow to

.02l3 mg/l after which there is no change.

The decay factor is the key to understanding these results.

The equation is:

-v /z-l/T
1._1e s , 5.l

The term e'Vs/Z - 1/T is the decay factor. In the second term, the

decay factor reduces the previous prediction by a fraction of a

fraction. The base run values for vs, 2, and I yield a decay factor

of about .7l. The prediction, then, for each iteration is 7l percent

of the previous value, while the first term remains constant at

approximately 29 percent ofiflwasteady-state value. Thus the first

term constitutes an increasingly larger proportion of the prediction

while the second term continuously diminishes. The effect is to move

the prediction ever closer to the steady-state value at which point

the model ceases to be dynamic (see Appendix B-2).

36
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TABLE 5.1.--Base Run

 

  

 

Prediction Error Coefficient of Variation

”(.0206)* (.0027)* (.1311)*

1. .0208 .0038 .1827

2. .0209 .0042 .2010

3. .0210 .0044 .2095

4. .0211 .0045 .2133

5. .0212 -0046 .2170

6. .0212 .0046 .2170

7. .0212 .0046 .2170

8. .0212 .0046 .2170

9. .0212 .0046 .2170

10. .0213 .0046 .2160

40. .0213 .0046 .2160

'7 .0213 .0046 .2I47

3 .0001 .0001 .0058

CV .0053 .0313 .0271

 

*Initial values.

W
W
I
»
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Behavior of Predictions

and Errors

 

 

B

li=inHiaHzed aboveequHinunIvalue

B : initialized below equilibrium value

E : equilibrium value

 

 

Figure 5.l.--Theoretical Behavior of Predictions and Errors.

Base Run Predictions

 

 

2L4—

E;

1;. 20.64

§

1 l 1

o 4 a :2 ' 4o

Iterations

Figure 5.2.-—Base Run Predictions.
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The behavior of the model predictions is easier to see by

using a different form of the model, namely,

Pi = SS + (P0 - SS)ki 5.2

where,

SS =-V;—;La;— , the steady state

P0 = initial phosphorus concentration value

k = l/evs/Z T I/T

ith iteration..
4
.

ll

(See Appendix B-2 for this derivation.)

There are three points to note here. First, the predictions

asymptotically approach the steady-state, SS and

Limit Pi = SS.

(See Appendix B-3.)

Second, the predictions grow or decay depending upon the

difference between the initial and steady—state values. A negative

difference, that is, an initial value below the steady-state level,

results in growth and a positive difference, that is, an initial

value above the steady-state level, results in decay (see Figure

5.1). For example, consider the above equation (Equation 5.2) with

the following values,
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P. = .0200 + (P - .0200)(.71)i
I 0

where

SS = .0200

k = .71

If PO is initialized at a value below .0200, say at .0180, the dif—

ference between PO and SS will be negative and

.0200 + (.0180 - .0200)(.7I)I.
0 I
I

.0200 - .0020 (.7I)‘.

The amount subtracted from .0200 decreases with each iteration i,

thus causing the prediction to grow. If, however, PO is initialized

at a value above .0200, say at .0220, the difference between PO and

SS will be positive and

.
0 I
I

.0200 + (.0220 - .0200)(.7I)I

.0200 + .0020 (.7I)i.

The amount added to .0200 decreases with each iteration i, thus

causing the prediction to decay.

Third, this equation can be solved for i and thereby the

number of iterations required to attain the steady-state value,

within any desired level of precision, can be determined. This

amounts to calculating the number of iterations needed to attain a

desired phosphorus concentration. Thus,
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P1 - SS

1 = ln P0 - SS . 5.3

- (vs/z + I/T)

(See Appendix B—4).

The Error Equation

Major Observations

The forty error estimates corresponding to the forty pre-

dictions are given in the second column of Tables 5.1. Figures 5.3 and

5.4 give the graphs of the parameter and the input variable errors.

The error is initialized at .00272 and jumps to .00382 at the first

iteration. It then grows steadily to .0046 after which it remains

constant (see Figure 5.5). These results are more easily accounted

for by restating the error equation in a more manageable form in

terms of its basic components.

The first component of the error equation to note is the

summation of all those terms which are essentially the same as the

steady-state error terms. Indeed, these terms differ only by the

amount (1 — k2). These terms are referred to hereafter as the

fractional steady-state error and notated as FSSE.

The second component to note is the summation of all those

terms which are scaled by the expression,

 



42

Parameter Error
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Figure 5.3.--Parameter Error.

Input Variable Error
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Base Run

  

W/f/I Model Error

W/f/ma/ 71/0019/ Error

I L I \/\.__J

4 8 12 16 4O

Iterations

I
.

Figure 5.5.--Base Run--Tota1 Error.
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TABLE 5.2.—-Modified Base Run (without model error)

 

  

 

Prediction Error Coefficient of Variation

(.0206)* (.0027)* (.1311)*

1. .0208 .0020 .0962

2. .0209 .0016 .0766

3. .0210 .0013 .0619

4. .0211 .0011 .0521

5. .0212 .0011 .0472

6. .0212 .0010 .0472

7. .0212 .0010 .0472

8. .0212 .0010 .0472

9. .0212 .0010 .0472

10. .0213 .0010 .0469

40. .0213 .0010 .0469

1' .0213 .0011 .0495

S .0001 .0002 .0092

CV .0053 .1774 .1860

 

*Initial values.
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This is the difference between the previous prediction and the

steady-state value. This difference diminishes with each iteration

and hence is referred to as the "diminishing" factor and notated as

Di where "i'I is the ith iteration.

The third element of the error equation may be thought of as

a ”reduction" term consisting of the decay factor k2 and the previous

error,

I 2 2 _ 2 2
( 5pj~—-) S (P. 1) - k S (P. 1). 5.3

This term retains a fraction of the previous error, namely, k2,

and loses an amount equal to l-kZ. As with the model, the decay

factor plays the central role.

A fourth component to note is the model error, ME, which is a

constant in the error equation.

Using the above defined abbreviations and letting 52(P1_1) =

E1._1 and SE = E1, the error equation becomes,

2 5.4Ei = FSSE + ME + Di + k E1_].

The base run error estimates apparently approach an equilibrium

value at which point the error equation is run longer dynamic. This

means that the amount lost by the reduction term each iteration must

be exactly compensated for by the other terms. Then at infinity,

E = szw + FSSE + ME + Om 5.5
00
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If R = FSEE + ME + Dw, then

2
Em = k Em + R. 5.6

Since the sum of the remaining terms must equal the amount lost to

have equilibrium, then

R = (l-k2) E and

2 2

Em=-5—3— + R = 2 + I R =-—————. 5.7

l-k l-k

 

(For a rigorous mathematical treatment, see Appendix B-5).

Since at infinity the diminishing term, Di’ has vanished

altogether,

R = FSSE + ME and

En: FSSE + ME 5.8

I—k2

Thus the error converges to the sum of the fractional steady-state

error and the model error divided by the constant l-k2 (see Appen-

dix B-6).

The component form of the error equation, E1, requires a

knowledge of the previous error, Ei-l' This equation has a more
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general form which allows for calculation independent of the previous

error by using the generator form for an infinite series (see Appen-

 

dix B-7),

E =__F_(.l'k21)+EOk21+D.i_fli2-LL 59

‘ I-k2 I-k2

where,

E1 = ith error or variance

F = FSSE + ME

E0 = the initial error

k = decay factor

Di = ith diminishing term

and

E = (E - F ) k2] + F + D (l-k21

' ° 2 2 2
l-k l-k l-k

= F2 + (50 '-Ej§)k21 + D. (I-RZI) . 5.10
1—

]‘k I'k ]_k2

In this form it is easier to see just how the error grow or decays.

It depends upon the difference between the initial and final errors.

If the difference is positive, the error will decay toward the final

value F/(l-k2) and if it is negative, the error will grow toward the

final value. The error is based upon the final value, plus or minus

an ever Shrinking fraction of this difference.
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Minor Observations

Diminishing factor.—-It was found that the Di term contributes

a negligible amount to the base run total error. Its omission allows

for a Simpler equation which gives excellent approximations

—ii—) k + ———§ . 5.11 3

N

This also allows for a Simpler program and hence is easier to model

(see Appendix B—6).

Calculation of i.--Using the above equation, one can calcu-

late how many iterations are required to attain the equilibrium value

within any desired level of precision. This amounts to calculating

the number of iterations needed to attain a desired error level,

F

Ei - /(l-k

Eo ' F7(1-k2)
-2 (vs/z + I/T)

2) 5.12

i = ln

(see Appendix B-7).

Initial value.--In reviewing the base run errors, one notes

the jump from the initial value of .0027 to .0038. This is accounted

for by observing that the first iteration will produce an error at

least equal to the FSSE. The greater the difference between FSSE

and E0, the greater the increment at the first iteration.
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Model error.--The base run was made with an independent model
 

error term, but to facilitate comparison with the Monte Carlo simula-

tion, the program was run without it (see Figure 5.5 and Table 5.2).

Calculation of the final value without the model error is

straightforward. One need only remove the constant ME, yielding,

Ew= FSSE . 5.13

I-k2

For example, in the base run, the final value is 215.918 . 10.7 (in

variance form). The final value without the model error is,

7(]_k2) 2

I-k2

E = 215.918 - 10' - .0032
(I)
 

-7
4.48 . 10

I-k2

 

9.050 . 10‘7

The standard deviation is .0010.

Symmetry.--Figure 5.5 Shows that the base run and modified

base run standard deviations are approximately symmetrical. This

iS because the initial standard deviation is about halfway between

the two different equilibrium values. Moving this initial value

closer to one equilibrium or the other will cause the error to con-

verge to that equilibrium value more quickly.
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Coefficient of variation.--Because both the model prediction

and the error converge, the coefficient of variation, CV, also

approaches a final value, namely,

CVco = E0°

P;
i

2
= F/(l-k )
——§§———— . 5.14

where,

E» = the variance at infinity

Poo = the prediction at infinity, that is, the steady-state,

SS.

F = the sum of the fractional steady-state error and the

model error (see Appendix B—8).

However, the coefficient need not approach this final value

in the same well-behaved manner that the error and the prediction do,

that is, it can have values within the iterations which exceed the

final value. This is due to the differential rates of convergence

of the prediction and error equations and due to the manner in which

they are initialized.

Relation to steady-state error.--Some relationships of the

time-dependent error to the steady-state error are given below:

a. FSSE > FSSE

1-k2
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b. FSSE < SSE

c. FSSE < SSE

 

I-k2

d NE;_ > ME

1-k2

e. FSSE + ME 2 > SSE + ME

l-k I-k

when

fl) 2(1/k - 1)’

SSE

The derivations are presented in Appendix B-9.

Summary

The phosphorus prediction model is relatively simple and its

analysis is straightforward. The equation limits to the steady-state

and hence the predictions asymptotically approach it. The predic-

tions grow or decay depending upon whether the initial value is less

or greater than the final value. By using the generator form of the

equation, these characteristics can be determined without actually

running the model and the programming needs are Simplified. Also,

the number of iterations required to attain a particular phosphorus

concentration can be determined.

The error equation, though more complicated than the model, has

several similarities to it. The errors approach a final equilibrium
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value which is a fraction of the steady-state error and they grow or

decay depending upon whether the initial error is smaller or greater

than the final error. As with the model, these characteristics can

be determined by using the generator form of the error equation.

Also, the number of iterations needed to attain a particular error

can be calculated. Additionally, other features of possible interest

can be calculated such as the steady-state error, the effect of

removing the model error, and the coefficients of variation.



CHAPTER VI

COMPARISON OF FIRST-ORDER WITH MONTE CARLO

The Numerical Results
 

The 100 iterations per year base run phosphorus concentration

prediction for the Monte Carlo simulation averaged .0182 mg/l over

the 40 years. The error of the prediction is .0026 mg/l mean standard

deviation which measures within—year variability. The coefficient of

variation is about 14.3 percent. The inter-year standard deviation of

the mean is .0005 mg/l and the correspondent coefficient of variation

is 2.75 percent (see Table 6.1).

The base run phosphorus prediction concentration for the first-

order analysis, using only the mean, averaged .0213 mg/l over the 40

iterations. It ranged as low as .0208 mg/l to .0213 mg/l. The mean

standard deviation associated with this prediction which is an esti-

mate of the combined uncertainties of all the model parameters is

.0046. The error ranged from .0038 to .0046. The coefficient of

variation ranged from .1827 to .2170 and its 40 year average is .2147.

The inter-year standard deviation is .0001 and its correspondent

coefficient of variation is .0053.

The two means for the two different base runs are substantially

different: .0182 to .0213. Both the first-order error and the first-

Order coefficient of variation are larger than the respective Monte

53
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TABLE 6.1---Comparison of Numerical Results

 

Monte Carlo First-Order

 

 

Base Run

1' .0182

S" .0026

EV .1430

R .9989

S; .0005

CV; .0275

All Normal

i .0194

S .0016

CV .0840

R .9940

S; .0021

CV- .0620

 

X

.01872

.0027

.1440

.1966

.OOO9O

.0479

1000 Iterations

.0213

.0046

.2147

.99996

Base Run

.0001132

.0053

Monte Carlo Values Without Model Error
 

.0182

.0002

.0117

.9998

.0000

.0000

Without Model Error
 

.0213

.0011

.0495

.9996

.0001132

.0053

Monte Carlo Values with Model Error
 

 

.01899

.0027

.1430

.9963

.00095

.0499

.0182

.0047

.2582

.0000

.0000

.0000
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Carlo values (see Table 6.1). For Monte Carlo the interval, mean

plus or minus the standard deviation, is .0156 - .0218, whereas

for first-order the interval is .0167 - .0259.

These differences in variability can be accounted for by

considering the values used in calculating the predictions. The

first—order analysis uses generally higher variances for vs, qs, L,

and Pi-l' A comparison of these different means and standard devia-

tions is given in Table 6.2.

In the Monte Carlo Simulation, the model error was not

included as an independent term. Rather, it was incorporated in the

parameter error, that is in the standard deviation of vs. Hence, to

facilitate a comparison, two modifications of the first-order program

were made. First, the program was run without the independent model

error term, but with the base run values. These results are compared

in Table 6.1. Clearly, the removal of the model error significantly

drops the first-order error from .0046 to .0011. (The prediction,

of course, remains unchanged.) This error is substantially smaller

than the Monte Carlo base run error of .0026.

The second refinement for comparison was to run the first-

order program with all the values used for the Monte Carlo runs

(Table 6.2), as well as without the independent model error term.

(This includes use of the parameter error, that is, the standard

deviation of vS which incorporates the model error.) Again, a sub-

stantial drop occurs for both the prediction and the error. The pre-

diction, .0182, is exactly the same (to within four decimal places) as
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TABLE 6.2.--Comparison of Values

 

Monte Carlo Values First-Order Values

 

vs: x = 16.0367 vs: x = 19.1910

S = .4503 s = 1.1963

CV = .0281 CV = .0623

R = .9988 R = .9942

qS: i = 12.0348 qS: x = 10.6650

S = .0460 s = 1.4608

CV = .0038 CV = .1370

R = .99998 R = .9725

L: i = .5108 L: i = .6352

s = .0142 s = .0812

CV = .0279 CV = .1279

R = .9988 R = .97595

T: i = 7.5950 I: x = 7.9402

S = 1.065 s = 1.0421

CV = .1402 CV = .1312

R = .9712 R = .9747

Pi-l: i = .0182 P1_]: i = .0206

x = .0005 S = .0027

CV = .0275 CV = .1311

R = .9989 R = .9748
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the Monte Carlo base run and quite close to the Monte Carlo all-

normal prediction of .0194. The error decayed to about one eighth

the Monte Carlo value and Similarly the coefficient of variation was

lowered to approximately 14 percent of the Monte Carlo value.

Montgomery et a1. (1980), in a comparison of these same methods for

the steady-state form of this model, found that both techniques gave

similar prediction errors for similar input values.

Finally, increasing the iterations to 500 to 1,000 per year

gave no significant differences in predictions or errors from the

Monte Carlo base run. For example, the 500 iteration mean annual

prediction is .01872 and its standard deviation .0027. Compare with

base run values in Table 6.1.

The Procedures
 

Theoretical Considerations
 

The first-order analysis generates a series of predictions and

errors which converge to their final values. The Monte Carlo method,

on the other hand, generates a distribution of values from which

predictions and standard deviations are derived for the phosphorus

concentration.

One important question in comparing the two methods is whether

or nor the errors track the same central tendency and dispersion sta-

tistics. Scavia et a1. (1981) in a similar comparison found that the

two variances were indeed qualitatively different. In modeling vari-

ous aquatic plants and animal Species of Saginaw Bay, the first-order

predictions generated means which tracked the typical species, whereas
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the Monte Carlo method tracked the composite average of the total

population. Consequently, the first-order variance represented the

variability around the typical species while the Monte Carlo variance

reflected the variability of the total population. Also, the first—

order means tracked the Monte Carlo medians as the distributions

became skewed (see also Burges and Lettenmaier, 1975). The Monte

Carlo values, then, were qualitatively more realistic even though

quantitatively they were generally similar to the first-order values.

In this study, however, there is only one subject modeled

and, hence, both methods track the same variability, i.e., the vari-

ability of the phosphorus concentrations. Furthermore, the output

distributions are not highly skewed allowing for no conclusion regard-

ing whether or not the first-order mean is the Monte Carlo median.

Both the means and the errors are qualitatively the same.

Another important issue in comparing the methods is whether

their assumptions are violated. This is especially important for

first-order analysis since its assumptions are stricter. It is

assumed that the linearization adequately approximates the true mean

within the region of interest. The non-linearity within this region

must be sufficiently small to allow for such an estimation. Another

way of stating this is to say that the method assumes the distribu-

tions are not highly non-normal and, hence, that the first and second

moments adequately describe the distribution.

In a comparison of sensitivity analysis with Monte Carlo

simulation, Gardner et a1. (1981) found that for complex, non-linear

W
W
»
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models, sensitivity analysis was a poor approximation because the

region of interest displayed high variability. Sensitivity analysis

is similar to first-order analysis in that both depend upon a lineariza-

tion by use of a Taylor series expansion to approximate the true model.

Unlike sensitivity analysis which examines small perturbations in the

parameters by means of the partial derivatives, first-order analysis

incorporates variances and covariances and therefore includes the

effects of simultaneous parameter variability. Gardner et al. found

this to be the major failure of sensitivity analysis to their stream

ecosystem model. The variability of their parameter values ranged up

to 3,000 percent, while in this study variability is no more than

30 percent and in most cases much less than that.

Since the predictions and errors in the linearization method

converge to a final value, they can never generate bell-shaped curves

and hence they are not normal distributions. Indeed, the predictions

and the errors resemble a cumulative distribution function and in a

sense, they are the accumulated summations of the previous calcula—

tions (see Appendix B-6). Because they asymptotically approach a

final value, they suggest an asymptotic distribution such as the

Type I extreme value or Gumbel (Gumbel, 1958) distribution. In this

case, one wishes to know the limiting distribution of the largest of

n values of predictions as n gets large. This implies that the

largest of n observations is also the mean of the n observations.

Such a distribution has been used before in modeling hydrologic

phenomena such as peak annual flows (Benjamin and Cornell, 1970).

This, however, requires further investigation.
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Another point to be considered is whether or not the devia-

tion from normality is sufficiently small such that a normal distribu-

tion approximates the true distribution. The coefficients of

variation in the first-order results are generally lower than the

Monte Carlo values. One measure of non-normality is the mode to mean

ratio given by,

R =(1+ CV)'1°5

1
m
m
.
_
-
—
_

_

where,

CV = coefficient of variation.

Most of the R values for the first-order analysis were 99 percent or

more of normal by this measure.

Another point of comparison lies in the different sensitivi-

ties of the two methods. The Monte Carlo procedure is sensitive to

the change in distributions, and possibly to the change in the Size

of the random number seed. The method is not as sensitive to changes

in point source flux variability as present information indicates

(Lee, 1980), but it does respond to the upgrading of all treatment

levels and especially the switch in concentration values for the Lake

Erie flux which is consistent with'Huasteady-state results (Mont-

gomery et al., 1980) obtained for a Similar test. Its sensitivity

to land use changes is restricted primarily to differences between

disturbed and undisturbed uses which is all that is reflected in the

data. The method is not sensitive to increased iterations per year.
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First-order analysis, on the other hand, is highly sensitive

to the removal of the model error as well as the changes in the means

and variances as the switch from base run to Monte Carlo values indi-

cates.

Further study of this model with the Monte Carlo procedure

should include three main points. First, the reason for the increase

in average annual prediction concentration, and in the inter-year

variability when all normal distributions ameused is not clear. Are

these increases due to the inadequacy of the normal distribution to

characterize the parameterscu‘are they primarily due to the manner

in which the variates are chosen? Closely related to this and in

need of clarification is the reason for the apparent possible sensi-

tivity of the all normal run to changes in the random number seed.

Future research should focus on whether or not these results are

consistently obtained, and if so, why. Second, the relative insensi-

tivity of the model to changes in point source variability requires

explanation. Third, the model error Should be incorporated as an

independent error term.

An additional consideration for further research is the prob-

lem of periodicity of the 500 and especially lOOO iterations per year

runs. The reason for this is unknown.

For the first-order error analysis, future research should

focus on two main areas. First, the proper output distribution needs

to be determined and its impact on the assumptions of first-order

clarified. Second, higher order terms of the Taylor series expansion
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should be examined to determine whether there is a Significant change

in error estimates.

Secondarily, it would be interesting to examine more closely

the behavior Of the coefficient of variation.

Practical Considerations
 

Generally, the initial investigator time for first-order

analysis involves the derivation and verification of the partial

derivatives, a process which can be laborious and lengthy, depending

upon model complexity. In some cases there may be no analytical

solution to the partial derivatives and one can only approximate the

solution through finite differences (Garen, 1979; Coleman and

DeCoursey, 1976; and Mein and Brown, 1978).

With the Monte Carlo method, the amount of time required for

the initial investigation depends upon the difficulty of properly

characterizing the probability density functions. The more easily

these can be described, the less investigator time is required. The

computation costs, however, especially on large frame computers, can

be quite high, depending upon the complexity of the model.

Frequently, as in this particular study, the probability

density functions are easily described for the Monte Carlo method.

The major cost was computational. In the first-order analysis, the

derivation and verification of the partial derivatives was also not

difficult, but the programming was much simpler and hence the compu-

tation costs were much lower. It should be noted, though, that the

Monte Carlo method was significantly more complex in its treatment of
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the loading term L which contributed to its larger cost of computa-

tion. Nonetheless, the predictions and error estimates of the first-

order method can be run on a pocket calculator which is more available

and less expensive than is a computer.

Summary

The comparison of these two procedures on this model indicates

that the predictions are generally similar but that the errors can

differ substantially. Although the Monte Carlo all-normal mean annual

error (intra-year variability) is smaller than its base run counter-

part, it is significantly larger than the corresponding first-order

value even when the same data are used. The exact reason for this is

unclear. The first order predictions and errors have non-normal dis-

tributions whose exact characterizations require additional investi-

gation. However, it was found that both errors are qualitatively the

same.

The comparison also indicates some practical differences in

the two methods. The first-order prediction and error equations, for

example, can be easily programmed into a calculator which reduces

computation cost and may increase its utility. The Monte Carlo

procedure, however, requires less initial investigator time since

the distributions are easily characterized.

The modeler should remember, then, that the first order method

replaces a non-linear model with a linear approximation. This approxi-

mation is good only within the region of low variability where the

function is not highly non-linear. The philosophy behind this approach
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is the belief that an approximation of the whole is better than a

detailed account of only a part (Cornell, 1969). Detail on one

level is necessarily sacrificed for generality at another. A highly

refined, complicated model may not be a good candidate for this

technique. For example, Gardner et al. (1981) chose a very complex,

non-linear model which required the numerical approximation of 48

sensitivity equations. Most likely this is not susceptible of first-

order analysis. The Monte Carlo method, though, has no such restric-

tions and treats the non-linear model as it is. However, it is

critical that the distributions be correctly characterized. In the

face of inadequate data, this is not always easy.



FINAL COMMENTS

With the increasing dependency upon quantitative models, the

need for estimating the uncertainty or reliability of model predic-

tions will also grow. It is hoped therefore that research in error

estimation methods will continue and that this study will have con-

tributed in some measure to this body of knowledge.

However, it is also hoped that as resource managers make

greater use of mathematical models, that the broader, non-quantitative

aspects of the management decision-making process not be overlooked.

It is all too easy in this age of specialization and narrow quantifica-

tion to neglect issues which require for their solution philOSOphical

insight, rather than numerical approximations. In the context of

manifold, complex questions that the water resource manager faces

today, it must be remembered that modeling, though useful, is no

substitute for sound judgment, and next to a perspicacious understand-

ing of the larger social and scientific issues, must always remain

ancillary.
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APPENDIX A

MONTE CARLO APPENDICES

A.l Correlation Coefficients
 

Correlation coefficients are used to measure the strength of the

relationship between two variables. In linear regression analysis, it

indicates the goodness-Of-fit of the regression line to the data. The

correlation coefficient used in linear regression is the Pearson

Product-Moment Correlation Coefficient and is defined as:

n 1'1 n

I? <2 l 2 ni=1X12- i=lxi 2%] [121112- (151%) 2/,,]i

In correlating the annual mean flows for the Monte Carlo Simulation

data were taken from the calendar years 1935-1969 for the Genesse,

Oswego, Black, Conaseraga, Fish and Moose Rivers. The correlation

coefficients are presented below.

Pearson Product-Moment Correlation Coefficients

 

 

Moose Fish Conaseraga Black Oswege

Genesee .51 .69 .90 .71 .82

Oswego .60 .74 .84 .73

Black .79 .95 .62

Conaseraga .44 .62

Fish .72
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A.2 Markov Flow Model
 

Within the Monte Carlo simulation, a Markov flow model is used

to generate the historical flow pattern for the Niagara River/

Welland Canal flow. Such a model has both a deterministic and a

random component. It assumes that the current flow depends on the

previous year's flow plus a stochastic term. The equation is:

9. = i (l - r1l+ r1 0, _ 1 + t. ° 5 ° (1 - r12)

where: qi = ith year's flow

i = historical mean

r1 = lag-one auto correlation coefficient

S = standard deviation

t = ith standard normal random variant.

It is assumed that the flows are normally distributed. Data were

taken from surveys of 23 calendar years of flow data (Chapra, 1981).

A statistical analysis of the flows yeilds the following results:

1.961 . 10H m3/yrmean =

SS = 1.051 . 101O m3/yr

The lag-one autocorrelation coefficient is r1 = .7998. Hence,

the equation is:

9 8
q. = 1.961 . 101 (I - .7998) + .7997 q._] + t1 . 1.051 . 10 .

*

10(1 - .79982) .
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Table A.l: Statistical Summary of 100 Iteration Base Run - Model

Terms

 

Phosphorus Concentration

Prediction (mg/l)

Settling Velocity

Prediction (m/yr.)

Areal Water Load

Prediction (m/yr.)

Phosphorus Loading

Prediction (g/mZ-yr.)

s-

X

CV-
x

.0182

.0005

.0275

.9989

16.0367

.4503

.0281

.9988

12.0348

.0460

.0038

1.0000

.5108

.0142

.0279

.9988

V

5

y-intercept

Slope

r

y-intercept

slope

I"

y-intercept

slope

r

y—intercept

Slope

I"

= .1430

= .0026

.0186

.0194

=-.4586

16.1854

-.OO73

-.1884

12.0414

-.0003

-.O783

.5247

=-.OOO7

=-.5594

 

Source: Lee (1980)





Table A.2: Statistical Summary of Base Run Fluxes (g/yr)*

71

 

 

Lake Erie Flux x = 4.064 x 109 CV)I .0108

_ 9
S; - .044 x 10 R; .9998

Diffuse Source Flux x = 3.161 x 109 CV; .0882

_ 9
s; - .276 x 10 R; .9885

Point Source Flux x = 1.703 x 109 CV; .0252

_ 9
s; - .043 x 10 R;< .9990

Atmospheric Flux x = 7.762 x 109 CV; .0370

_ 8 -S; - .287 x 10 Rx .9980

Total Flux x = 9.702 x 109 CV; .0278

s3 = .268 x 109 R; .9989

Source: Lee (1980)

*Table corresponding to p. 23.

W
W
.
»





72

Table A.3: Statistical Summary of Base Run Water Load (m3/yr.)*

 

 

Atmospheric Water Loading i = 1.659 x 1010 CV; = .0199

_ 10 _
Si — .033 x 10 R; - .9994

Water Load From Lake 2 = 2.721 x 1010 CV;< = .0206

Ontario Basin Tributaries 10

S— = .056 x 10 R- = .9994
X X

Water Load From x = 1.849 x 1011 CV; = .0027

Lake Erie 1]

S- = .005 x 10 R- = 1.000
X X

Total Water Load x = 2.287 x 10H CV; = .0039

_ 11 _
s; - .009 x 10 R; — 1.0000

 

Source: Lee (1980)

*Table corresponding to p. 23.
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Table A.4: Statistical Summary of Higher Iterations

 

Number Of Iterations

 

500

1000

.01872

.00090

.0479

.9966

.01899

.OOO95

.0499

.9963

CV

§

y-intercept

slope

1

0
|

<
l

U
H

y-intercept

Slope

1"

.1440

.0027

.01878

—.000003

-.O414

.1430

.0027

.0186

.00002

.2282

 

Source: Lee (1980)
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Table A.5: Statistical Summary of Flux SensitivitieS--Phosphorus

Concentration Predictions (g/m3)

 

Cut Point Source x = .0182 CV = .0143

Flux Variability _

by Half 52 = .0005 s = .0026

CV;= .027 y-intercept = .0186

R; = .999 slope =-40002

r =-.4339

Upgrade All Point - = .01736 CV’= .1494

Source Treatment X

to Phosphorus Removal S; = .00051 S = .0026

CV;= .02911 y-intercept = .01779

R; = .9987 Slope = -.00002

r =-.4808

Use Eastern Erie ; = .0165 _V'= .1636

Concentration Value _

for Calculation of s; = .0005 s = .0027

Flux From Lake Erie

CV—= .0298 y-intercept = .0169

R; = .9987 Slope = -.00002

r = -.4383

 

Source: Lee (1980)
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Table A.6: Statistical Summary of Land Use Shifts

 

Constant Rate Shift x

to All Urban

52

CV-

x

R-

x

Constant Rate Shift i

to All Agriculture _

S

CV;

Rx

Constant Rate Shift 2

to All Forest

5..

x

CV;

Rx

.02199

.00128

.0582

.9949

.02257

.00257

.1139

.9809

.01577

.00163

.1034

.9842
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y-intercept
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A.3 Calculator Program
 

Since programmable calculators are becoming more widespread,

it was deemed appropriate to write a program using the Monte Carlo

method for calculators. The program was written for a Texas Instru-

ments model 58C using the master library module. (This does not

necessarily constitute an endorsement of this product.) Generally,

the calculator program is Similar to the computer program used by

Lee (1980). There are some relatively minor differences, though

(see Reckhow et al., 1981, Appendix K, for a discussion of these

differences). It was found that, although acceptable predictions

are obtained, the time required for the computation of one pre-

diction is too long to be practical (one to one-and-a-half minutes).

On the other hand, the monetary cost is negligible. Nevertheless,

this illustrates the capacity of calculators to handle relatively

sophisticated programs and their potential use for a wide variety of

modeling problems.

The program is presented here for the interested reader. The

subroutines are considered first; then the main program is outlined

and explained using calculator keyboard notation.

.
_
_
.
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The Subroutines

Subroutine A (written as SBR A) generates a standard normal

random variate and is the random number generator for this program.

It used the uniform random number generator from the master

library module to generate two uniform random numbers to be used

according to the following equation:

 

R= \F2.1nu1.Cos (112211)

Where: R = the standard normal random number

“1 = the first generated uniform random number on the

interval (0,1).

u2 = the second generated uniform random number on

the interval (0,1).

The subroutine is written as:

2nd LBL A - - identifies subroutine

((2nd Pgm 15 SBR 2nd D.MS — uses program 15's uniform random

number generator

1n - takes the natural log of the

uniform random number

x 2 +/-) - multiplies previous value by -2

NA?) - takes the square root of the

previous value

x (2nd Pgm. 15 SBR 2nd D.MS - multiplies second uniform random

x 2 X0 ) number 2n
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2nd Rad - places calculator in radian mode

2nd Cos - takes the cosine of the value

Inv SBR - returns program pointer to main

program

Subroutine B (SBR B) randomly selects from the Ontario flow

distribution (Ontflo) by using SBR A. The random number is multiplied

by the standard deviation and the mean is then added. This para—

meter is then tested to see if it is negative. If if is negative,

the program pointer returns to the beginning of the subroutine and

starts again; if not, it returns to the main program.

The subroutine is writen as:

2nd LBL B - identified subroutine

(SBR A x 6.24EE9 + 2.75 EElO - Random number is multiplied by

standard deviation and the mean

is added

Inv 2nd x 2 t 309) Inv SBR - tests parameter Sign; if negative

it recalculates by going to the

start, step 309; otherwise it re-

turns to main program

Subroutines C - E are treated in the same manner; and are written as:

2nd C BL C

(SBRA x 1.23 EE9 + 3.35 EE9 Inv 2nd x 2 t 335) Inv SBR

20d L BL D

(SBRA x .008 + .032 Inv 2nd x 2 t 3§Q_Inv SBR

2nd L BL E

(SBRA x 4.67 + 16.02 Inv 2nd x 2 t 3§l_SBR

.-.— ——-—~_ _
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THE MAIN PROGRAM

Program Step
 

2nd Op 20

(((SBRA x .8 - 1.02

Inv In

x (.063 + Rcl x

Rcl 00)

= SBR A x .62 — 1.91)

Inv In

x (.303 + Rcl 02 x

Rcl 00)

+ (SBR x .2 - 4.27 Inv

In

x (.634 + Rcl 03 x

Rcl 00)

x SBR B sto 04

+ ((SBR Z + .766 - 2.33)

Inv In x .1

+ (SBR A x 2.02 - 3.2)

Inv 1n x .6

Function

Increments counter (R0O by 1

Randomly selects a log normal

urban concentration value

(Urbcon)

Multiplies the Urbcon value by

the changed land use fraction

Adds a randomly selected log nor-

mal agricultural concentration

value (Agrcon)

Multiplies Agrcon value by the

changed land use fraction

Adds a randomly selected log nor-

mal forest concentration value

(Forcon)

Multiplies Forcon value by the

changed land use fraction

Randomly selects a normal flow

value for Lake Ontario and

stores it in data register 04

(Ontflo)

Randomly selects a log normal

urban atmospheric flux value

and multiplies it by its land

use weighting

Randomly selects a log normal

forest atmospheric flux value

and multiplies it by its land

weighting

.
2
“
“
,
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Program Step
 

+ (SBR A X .773 -

3.356) Inv In x .3

x 1.9 EElO

+ SBR C

+ (SBR A X 1.046

EElO + .7998 x

RC1 05 + 3.704

EElO) sto 05

x SBR D)

e (SBR E sto 06

x 1.9 EE 10

+ Rcl O4

+Rc1 05

+ 1.7 EE 10)

x (1 - Rcl O6 % 89

+/- - .132)

Inv 1n

Function

Randomly selects a log normal

agricultural atmospheric flux

value and multiplies it by its

land use weighting

Multiplies the sum of the atmos-

pheric flux values by the lake

surface area (LSA)

Adds a randomly selected normal

value for point flux

Markov flow model value is

stored in data register 05

Randomly selects a normal con-

centration value from Lake

Erie (Niagra-Welland) (Erecon)

Divides L by the settling

velocity, v , which is randomly

selected frOm a normal distri-

bution and stored in register

06

Multiplies vs by LSA to assure

proper units

Adds Ontflo from R05

Adds Ereflo from R05

Adds atmospheric load

Divides vS by mean depth, 2,

and subtracts the inverse of

the mean hydraulic retention

time, T. This value is used

as a power of "e" and sub-

tracted from I.
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Program Step

+ Rc1 08 x (Rcl 06

f 89 +/- -.132) Inv

In

sto O8 R/S RST
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Function

— The same power of "e” is used

here as above but is multiplied

by the previous prediction and

is added to the first term.

- Stores the phosphorus prediction

in R08 and Stops. (Pressing

R/S (Run/Stop) starts program

with RST (reset) and program

pointer returns to the begin-

ning.)
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APPENDIX B

FIRST-ORDER ERROR APPENDICES

B.l Calculation of the Parameter and Model Errors
 

The variances for the parameter, Vs’ and the model were estab—

lished using the computer facilities of Michigan State University.

The program is found in the SPSS 6000 Supplement Computer Laboratories

Michigan State University (1978). The routine is taken from a package
 

from Northwestern University's Vogelback Computing Center which is

itself based on a package originally programmed at the Madison Aca-

demic Computing Center of the University of Wisconsin.

The program offers two methods of non-linear regression follow-

ing the presentation of Draper and Smith (1966): The Marquardt and

Gauss techniques. The latter technique was used here. This method

requires an initial estimate of the parameters; then a Taylor's series

expansion of the function is written near the initial value, ignoring

higher order terms. This linearizes the function in the parameters.

The initial value chosen was the arithmetic mean of 14 calculations

based on 14 years of data for L, qs, and P using the equation,

__L__

vS - P qs'

The routine fits the parameters by a sum-of—squares function such

that the error is minimized. The final answer is the one with the

89

 



 



 

9O

smallest error. An exploration routine was used to examine the

neighborhood of the final answer to insure that it was not just a

local peak.

Assuming the function is linear in its parameters at their final

values, the final answer with upper and lower limits approximating

95% confidence limits is given:

where

 

 

e = 6.. -. S(b)

k \/11 where

NCASE-NB

S(b) sum-of-squares

NCASE number of cases

NB number of parameters

8..

11
matrix Coefficients

The value ek, of the kth parameter, is a function of the sum—of-

Squares scaled by the normalizing matrix elements and divided by the

degrees of freedom. This value is used as an approximation of the

standard deviation, and hence the variance, of vs. The values are:

Lower Limit Final Value Upper Limit

16.798489 19.191036 21.583584

or about

19.1910 _+_ 2(1.1963)

where the standard deviation of vS is approximately 1.1963.
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This routine also gives an error estimate for the model which

is the mean square residual. This is similar to the equation above

for ek but without the matrix elements aii’ For this model the esti-

mated value is about .0032 which is used as the standard deviation of

the model.

8.2 Alternate Form of the Prediction Equation

We need to Show that the model is equivalent to:

P. = SS + (P - SS)k1
I o

where: k = l/eVS/Z + 1/T

SS = L/(vS + qs), the steady—state

P0 = Initial value

1 = number of iterations.

The model is:

P]. = 17-1—71: (I-k) ‘1' P1

II

(
D

(
f
)

A

1
_
A

I
7
?

v

.
1
.

'
U

1
.
_
.
s

A

X
‘

v

SS - 83k + P1_1(k)

$3 + (P1._1

We observe the following sequences:

- SS)k.

P1
SS + (PO - SS)k

P SS + (P - SS)k
1

SS + (SS + (PO - SS)k - SS)k

2

SS + (PO - SS)k2
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.
0

I
I

SS + (P - SS)k

SS + (SS + (P0 - SS)k - SS)k

SS + (P - SS)k3

P. = SS + (PO - SS)ki.

B.3 The Limit of the Prediction Equation
 

We wish to Show that the time-dependent model converges to the

steady-state. We have:

P. = SS + (P0 - SS)ki.

Then:

Limit Pi Limit (SS + (PO - SS) K')

i-m 1+oo

SS + (PO — SS) Limit k].

i + w

Because both PO and SS are constants and because O<k<1 the

Limit k1 = 0 and hence

1+oo

Limit Pi = SS.

1+oo
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8.4 The Solution for the ith Iterations

We wish to know how many iterations, i, are required to reach

convergence or to be within a certain distance of convergence.

Since:

= _ 1

Pi SS + (PO SS)k

then:

_ _ i
Pi - SS — (PO SS)k and

Pi-Sszki

P - SS

0

(1/eVS/Z + l/T)1

p. — SS

1n .;L_____

P - SS

.£l______-__= j

-(vS/z + 1/T)

8.5 The Error Equation

In order to see how the error equation behaves, it is helpful

to rewrite it in a more tractable form.

Let k = 1/e"s/Z + 1/1, then
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2 2
s.c = 0-1) -, L 22+ 2(k-I) L 2 <P_1- L 1 (-1/2)

(vs+qS) (vs+qS) vs+<1S

(k) + (P1_1._ L )2 (.1/2)2 k2 82(vs)

VS+qS

+ L 0-02 szrq.) + 1 )2 0-102 520)

(vs+qS)2 (vs+qs)

+ (PI—IV—L 212 {4131820) + k2 32(Pi-1)
(vs+qS)

+ 2°L (k-1)(1-k) S(qS) - S(L) r(qs.L)

(vs+qs)2

—2
+ 2 (Pi 1 _ _ L )1 -k L 2 (k—I) S(i) S(qs) r (.,o )

vs+qS (vs+qsl

+ 2 (1-10 (P11- L_ )° kS(L) S(i) r(L,t)

VS+qS VS+qS

+ ME

where ME = model error.

After combining terms with common factors, the following

arrangement is noted,

‘
A
’
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S

+ (P1._1- L >[2L(.k-1% . (-k_>82(vs)

VS 95 (vs+qsl ,

+ 33. . L (k-1I S(I) S(qsl r(i.qS)

2 2
I (vs+qs)

+ 2 (l-k) _I<__ S(L) S(_~.) rum]

(vs+qS) I 2,

2

+ (P1_1 - L > [ k2 82(VS) + k2 82(II]

vs... :4 :T

+ k2 52 (Pi_1) + ME

The terms in the first set of brackets are the steady-state error

terms (referred to hereafter as SSE). They are scaled by the decay

factor (k-l)2 and the result is a fraction of the steady—state error

which isrufiatedhereafter as FSSE. The next two sets of brackets are

scaled by the difference between the previous model prediction and the

steady-state prediction. Since the phosphorus prediction model

_.1;_.

VS+qs

to zero. Hence these terms diminish with each iteration and are

converges to the steady-state, the difference, Pi-l - converges

therefore referred to as the ”diminishing” factors notated as Dj's.
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The term k2.S2 (p1_1) reduces the previous error by an amount equal

to l-k2 and retains only k2 of the previous error. This is referred to

as the "reduction" term.

The abbreviation ME is the model error and is a constant.

Combining the FSSE and ME to form one constant, and also combining

the constants of the Di's gives a simpler equation. It Should be observed

that the diminishing factors can be rewritten according to Appendix B.4.

Since

L I. 1 .1 _
P. - ———*——— = P — ~—————— k then

I Vs+qs ( o Vs+qs

(

L L i-1

P. — -1 = P - -—————- k
1-1 vs+qS < o Vs+qs )

 

The diminishing factors can therefore be written in terms of a

constant, the difference between the initialized value PO and the steady-

state value, which decays according to ki'l.

The error equation for the base run can be rewritten as:

= (.OOOOIO6880) + [(-.OOO6754555)ki_11

. [—.OOOOOI3731] + [(-.0006754555)2k21'21

° [ 0002292119] + k2.SZ(P1_l)

2

St

This can be further Simplified to:

SE = (.0000106880) + (.0000000009)k"
1

21-2 2 2(P.

+ (.OOOOOOOOOI)k + k .S 1_l)

More generally

SE = F + (A + 8k1‘1)k"l + k2-32(P1_1)

where

‘
w

m
u
m
m
y
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F = FSSE + ME

A = coefficient for k1."1

B = coefficient for k21'2

or

SE = F + D. + k2.32 (P._1)

where 1

D = (A + Bki'l)ki'l 9

Using this method of calcuation for the base run the first 4

iterations yield:

 

  

Di Error x 10-10 Total Error x 10'10

1. 10 143705*

2. 7 179458

3. 5 197511

4. 3 206626

A two part program can be written which first calculates the

appropriate constants and then the second part calculates the actual

iterations using the Simplified error equation above.

 

*

The slight difference of this value with the other base run value, a

difference of 1.10"10

limitation. It occurs only at the first iteration, is retained for

, is believed to be due to machine calculation

the second two iterations and is lost by the fourth iteration.
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B.6 The Limit of the Error Equation

Let:

F = the fractional steady-state error

(FSSE) and the model error (ME).

Di = the ith diminishing factor

SS = the steady-state value

k = 1/eVS/Z + 1/T

then the error equation can be rewritten as:

= 2E. F + Di + k E1_
1 1

We observe the following sequences:

E1 = F + 01 + sz0

E2 = F 02 + kZEl

= F + 02 + k2(F + 01 + RZEO)

= (F + 02) + k2(F + 01) + R450

E3 = F + 03 + sz2

= F + 03 + k2 (F + 02) + k2(F + 01) + k4EO

= (F + D3) + k2(F + 02) + k4(F + 01) + k6EO

E = 1;] (F + Di- ) k2m + k21 E0
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We wish to examine the results as i approaches infinity for the

function E1. This limit will be examined term by term.

2
Limit k 1E0 = 0, since 0 <|k| < 1.

1+oo

The summation can be rewritten:

i-I

2 (F + D1_

m=O

i-1 i

= z Fk2m + z D.
2m

)k

m=0 m=O 1'm
111

a.) The first summation on the right generates the series,

Fko + Fk2 + Fk4 + . . . + Fk"

= F(kO + k2 + k4 + . . . + ki‘l).

1

This series generates a sequence of partial sums,

S. = 1; 1 + k2; 1 + k2 + k4; .

The sequence for the base run is,

Si = 1; 1.5050; 1.7600; .

The generator form is,

l-k

_ k2 k2k21-2 + 1

' ———2' ' 2 ‘
l-k l-k

: k2 - k21 + 1-k2

1- 2 I-k2 I-k2

= _l_§.(1 - k21) and hence

1—k
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Since the sequence of partial sums limits to 1/(1-k2)

original series converges to it, that is. F151 k2m converges to

111:0

, then the

F/(l—kz).

b.) We examine the remaining summation term.

The generator form for this sequence of partial sums is,

 

' I 2i
S. = (1 - k ) D.

1 l-kz ] l

Ll-k

(see Appendix B.5) and thus

2i . .

Limit [:l:52- (Aki-1 + Bk21‘211 = 0.

The original series, therefore, converges to zero.

Thus all terms approach zero as i approaches infinity except for

the summation involving F. The total limit for the entire error

equation is

1.111111. E1 = "f—Z- .

i + w 1-k
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8.7 Generator Form of the Error Equation

The error equation is

1-1 .

E = 2 (F + D. ) k2m + RZ‘E

1 m=o 1' 0

l 1 i-l .

: f szm + 2 D k2m + kZTE

m=o m=o 1-m o

 

 

 

D. . .

F 21 1 21 21

E = 2 (l-k ) + “‘—r— (l‘k ) + k E

1 l-k 1_kZ
O

F szj 71 D1 2i

= —_—7" 2 + k“ E + ——_? (l-k )

1-k 1-k l-k

: (E0 "' ' 2) k ‘1' ——-———2 + 2 (l-k )

1‘k 1-k l-k

From Appendix 8.5

Di : (A T Bk1-1) k1-1 and hence

' 1-1 2i

Ei=<E ”5.211(2) . _F_2_ .(A+612< ) (1-x ).

1'k 1-k l-k

In this form the equation cannot be solved for 1. However, if

the Di's are relatively “small,” that is, if

D. (A + Bkl'l) k"11

= 0

then a good approximation to i is available:

 



 

ln  

 

l02

 

21'

 

M
‘
w
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8.8 Behavior of the Coefficient of Variation
 

The coefficient of variation is the ratio of the standard

deviation to the mean. Since both the standard deviation and the

mean asymptotically limit to a final value, the coefficient of

variation does also. Thus,

CVco =/E:.

Pm

However, the coefficient need not behave in the same manner as the

prediction or its error. Due to the different rates of convergence

and the different initial values, the coefficient can actually exceed

the limit before asymptotically approaching its final value.

This becomes clear when graphing the prediction and the error

together as normalized functions. That is,

_ i
Pi - $3 + (PC - SS)k

= SS(l-ki) + Pok‘

P. . P k1
'l__ 'I _Q

ss ‘ 1'k + 55

And, as the variance, is

I
8 F (E-Fk

T-T<?'+°TTRY)

_ 2 . 2i

-T§Eg (1 k ) + Eo k and

I
l
l

‘
4
’



l04

£1 21 £0 k21

m7 "" “mi-7.27

There are six cases to consider in this approach. The first case

I
I
I

occurs when two conditions are satisfied:

l. both the prediction and the error grow, that is,

Po

ss‘1

E
F/ l-k < l and

2. the initial normalized error is greater than the initial

normalized prediction,

(
D
U

(
I
)

E

F/(i-kZT >

When these conditions are met, and because of the faster rate of

convergence for the error equation, the coefficient of variation, CV,

will always have a normalized value greater than one and will

asymptotically decay toward one.

The second case is similar to the first in that both the

prediction and the error grow, that is, the first condition is met

but the second condition is not satisfied. Instead, the initial

normalized error is smaller than the initial normalized prediction,

E0 _P(_)_

Fyli-kzi < 55 °

In this case the error equation will eventually cross the prediction

equation due to the fact that it converges more quickly. Before the



105

crossing,

CV < l and after it

CV > I.

When the two functions equal each other exactly then

Ei 31- and

F/(i-kZT 55

CV = l

The point at which these functions are equal is the point at which the

CV equals the limit. This can be easily calculated:

El :31
F/TT‘E27' s

l-k21 +k21 = l- k + 3Q ki

'F/(fl"ZTU: ss

"k21+EQ_ki

ml”“'27 3

=32 -1
F/l- k7 ss

k = (PojSS-l)
 

(Eo/F/(I -kz)- 1)

. Po/SS - l
: 1 ,

1 n (EC/F/(l-k2)-l)

-vS/Z + l/T)

The third case arises when the following two conditions are met:

 

 

l. both the prediction and the error decay, that is,

M
E
D

m

> 1

E0 > l and
F/(i-kZT

2. the initial normalized error is smaller than the initial

normalized prediction,

J
I
I
I
I
W
W
E
W
“
‘
W
W
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When these conditions are satisfied the coefficient of variation,

CV, will always have a normalized value less than one and will

asymptotically grow toward one.

The fourth case is similar to the third case except that the

second condition is not met. Instead, the initial normalized error

is greater than the initial normalized prediction,

mid-1m>§%-

In this situation, as in the second instance, the error equation will

cross the prediction equation. Before the crossing

CV > 1 and after it

CV<1.

When the two functions are exactly equal,

CV = 1.

After crossing the limit, the CV reaches a minimum and asymptotically

approaches the limit from below. The calculation of i is the same as

before.

The fifth case occurs when the prediction decays but the error

grows,

Pi
-—§ > 1 and

E' < 1

F/ l-k

then

CV < 1.
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The CV will asymptotically approach the limit from below.

The sixth case is the reverse of the above, namely, when the

prediction grows but the error decays,

-E% < l and

E'

E711{121'> 1

then

CV > 1.

The CV will asymptotically approach the limit from above.

Only in the second and fourth cases do the fUnctions equal one

another and hence, only in these two instances do the coefficients of

variation equal and exceed the limit before they truly asymptotically

approach their final values.
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8.9 Relationships of the Time-Dependent Error to the Steady-

State Error
 

A comparison of the steadyestate error terms with those of the

time-dependent form shows that the time dependent error is equal to

the steady-state error scaled by the decay factor, i.e., it constitutes

a fraction of the steady state error:

FSSE = (1 — k)2 SSE

Since O<<k <1, it follows that one relation is,

FSSE< SSE.

The final time-dependent error has a similar relationship.

 

 

Em : FSSE

I—k

2

= (1 ' k) SSE

1—k2

= 1 ‘ k SSE < SSE.

1 + k

Hence,

5§§§ SSE .

l-k

The final equilibrium value is always greater than the fractional

steady-state value. This follows from a consideration of the decay

factor:



———- > 1 hence

 F350 > FSSE.

l-kL

The same argument holds

relation

ME
> ME.

l-k2

It should be noted that

the time-dependent error can

shown below:

  

FSSE + ME2 ,, SSE

l-k 1-k

—£E§- - ME SSE-

l—k
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for the model error ME, giving the

if the model error is sufficiently large,

be larger than the steady-state error as
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k

2
k ME , 2k SSE

1-k2 1+k

—BEL- > 2(1/k — 11.

SSE

Thus, when the ratio of the model error to the steady—state error

is greater than 2(1/k — 1), the equilibrium value of the time-dependent

form will be greater than the steady—state value.

ratios are

1.914 > .9802.

Relationships of the Dynamic Error

to the Steady-State Error
 

1. FSSE > FSSE

1—k

2. FSSE < SSE

3. FSSE < SSE

l—k

4 ME2 > ME

l—k

5. ESSE ME
+ ————- > SSE + ME

1-k2 1-k2

when _ME_' > 2 (l/k _ l),

SSE

In the base run, the
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B.l0 The Calculator Program

The results of this study were calculated on a Texas Instruments

programmable calculator inodel 58C. The workspace was partitioned into

320 programmable steps (0 — 319) and 20 data registers (0 - l9). Listed

below are the data register constants, including their base run values,

and the 294 step program.

  
Data Registers Base Run Values

Roo P1

R01

R02

R03

R04

R05

R06 ME .0032

R07 r(qS,L) .6822

R08 r(L,T) - 7078

R09 r(qS,I) —.9902

R10 exp (-vS/z - l/T) -19.1910/89 — 1/7.9402 = -.3416

R11 vS + qS 19.1910 + 10.6650 = 29.8560

R12 32 of vs 1.4311

R13 52 of qS 2.1339

R L .6352
14
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Data Registers Base Run Values

R 502 of L 0066
15 ‘

R16 T 7.9402

R17 S02 of 1 1.0860

R18 P161 .0206*

R19 so2 of P1.”l .00000729*

The Program
 

 

 

FRC1 00 StO 18

Rcl 14-% Rcl 11 x (1 — Rc1 10 Inv 1n) + Rcl 18 x Rcl 10 Inv ln

- = StO 00 R/S

1.. I , 2
‘3 vS ((Rcl 10 Inv ln - 1) x Rcl 14 T'RC1 11 x +

g (RC1 18 — RC1 l4 %-RC1 11) X .0112 +/- X RC1 10

‘E L Inv 1n) x2 x Rcl 12 = R/S '

1—P1._1 + Rcl 10 Inv ln x2 x Rcl 19

qS + (Rcl 14 x (Rcl 10 Inv ln - 1) +~Rcl II x2 ) x

L x RC1 13 + ((1 — Rcl 10 Inv ln) é-Rcl 11) x2 x

Rcl 15

T + ((Rcl 18 - Rcl 14 %-Rcl 11) x Rcl 10 Inv 1n

f-Rcl 16 x2 1 x2 x Rcl 17

I
n
p
u
t

V
a
r
i
a
b
l
e
s

 L. 
*

Initial Value
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— r(qS,L) + 2 x Rcl 14 x (Rcl 10 Inv ln - 1) f—Rcl 11 x2

x (1 - Rcl 10 Inv 1n) f—Rcl 11 x Rcl 15 x

m x Rcl 13 x x Rcl 07

£3 r(qsr) + 2 x Rcl 14 x (Rcl 10 Inv 1n - I) f-Rcl 11 x2

E x (Rcl 18 - Rcl 14411) x Rcl 1o Inv ln + Rcl 16

E; x2 x Rcl 13 x * Rcl 17 x * Rcl 09

'5 r(L,T) + 2x (1- Rcl 10 Inv ln)‘% Rcl * (Rcl 18 —

Rcl 14 % Rcl 11); x Rcl 10 Inv 1n + Rcl 16 x2

L x RC1 15 x x Rcl 17 x x Rcl 08

L14 + Rcl 0.6 = Sto 19 ms RST

(The program corresponds to the error equation in a straightforward

manner using calculator keyboard notation.)
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