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ABSTRACT

SYMBOLIC ANALOG CIRCUIT ANALYSIS

By

Sin-Min Chang

Studies have shown that the efficiency of symbolic circuit analysis can be im-

proved by a composition and decomposition strategy. However, most of the existing

strategies are not suitbale for analyzing commercial ICs. This limits the application

of symbolic approach for circuit analysis. In this dissertation, a new circuit level

decomposition strategy is presented. Taking advantage of the characteristics of the

nullors, computing efforts can be further reduced by exploring valid and invalid de-

composed sub-circuits. Together with a new numerical approximation, the symbolic

sensitivity analysis, and the symbolic Hurwitz test capabilities, Sspice, a symbolic

circuit analyzer, is capable of analyzing circuits like commercial op-amps and active

filters. Examples are given.
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CHAPTER 1

MOTIVATION

Due to the advances of integrated circuit technologies, computer-aided design has

become essential for system development. For years, CAD has played an important

roll in designing digital systems. However, the CAD technology for analog circuits is

still in its infancy. The major difficulty is the lack of understanding of the diversities

of circuits. Therefore, it is very difficult to predict the behavior of a system without

in-depth analysis. Directly imposing the design process of digital circuits on analog

circuits is impractical. Table 1.1 [1] shows the differences between analogand digital

circuit designs.

Currently, the design and synthesis of analog circuits depends heavily on circuit

level simulation. The ability of each circuit designer to analyze the results from

simulation determines the performance and characteristics of his/her design. CAD

tools for circuit analysis become necessary for assisting analog circuit design.

1.1 Analog Circuit Design Process

A circuit design process for analog circuits is illustrated in Figure 1.1.
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Table 1.1. Characteristics of Analog and Digital Circuit Designs.
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1. Define Analog Functions : The designer has to define the functions needed for

the specific application.

2. Synthesis of Defined Hinctions : Circuit designer has to choose a realization

which fits the requirement under a reasonable approximation.

3. Circuit Level Simulation : Circuit simulators are used to verify that the real-

ized circuit does reach the defined function. This simulation should accurately

. compare with the characteristics of a real product.

3. Circuit Analysis : If the realized circuit does not meet the specification, analyze

this circuit to find the main contributor to the deviation from the designed

function.

4. Circuit Modification and Resynthesis : Modify and resynthesize the circuit

according to the information obtained from circuit analysis. Then repeat the

procedure in item 3.

' At present, much effort is being placed in developing circuit simulators. Circuit

simulators are now accessible to most designers so that their designs can be verified

at a reasonable cost. However, it is difficult to synthesize a circuit correctly the first

time, even for an experienced circuit designer. Further modifications are inevitably

needed in most cases. How to acquire the information needed for the modifications

is still a problem. Many times, it is done by multiple runs of the simulator for a

different set of element values. Therefore, experience, intuition, and good luck are

still the major factors in this process. They are all ad hoc approaches.

1.2 Analog Circuit Analysis

The most common circuit analysis methods incorporated into numerical circuit sim-

ulators are DC, AC, and Transient analysis.



 

 

Bash:

doctors s

aumnm

shah-mg

devices.

’Ihe'

AC an al

small-Si

cucuh

ofthe

transfe

Ca

Iii



Basically, DC analysis determines the dc operating point of the circuit with in-

ductors shorted and capacitors opened. Usually, DC analysis is performed prior to

a transient analysis to determine the transient initial conditions, and prior to an ac

small-signal analysis to determine the linearized small-signal models for nonlinear

devices.

The results of AC analysis report the ac output variables as a function of frequency.

AC analysis computes the dc operating point of the circuit and determines linearized

small-signal models for all of the nonlinear devices in the circuit. The resultant linear

circuit is then analyzed over the specified range of frequencies. Usually, the input

of the linearized circuit is set to one, so that the output of the circuit becomes its

transfer function.

The Transient analysis computes the output variables as a function of time. In

other words, it performs the simulation of the specified circuit with respect to the

inputs in time domain.

Upon understanding these circuit analysis techniques, the next question would be

whether these numeric approaches are sufficient to provide all the informations needed

for modifying a circuit. This can be illustrated through the following examples.

Example 1 Figure 1.2 shows the schematic diagram of a series RLC circuit, where

the transfer function at node 2 is a notch filter. The stopband frequency is about 50K

Hz; and the Q0 is about 0.673. Is there any way that a circuit designer can modify

this circuit so that the stopband frequency is moved to 100K Hz without aflecting the

Q0?

Answer: Usually, a circuit designer understands that the inductor and the

capacitor control the stopband frequency. The designer may change the values of

the capacitor or the inductor to move the W2 at node 2. Then, he/she may use a
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Figure 1.2. Series RLC circuit.
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numerical circuit simulator to verify the modification. The modification may affect

the Q0 unintentionally. The values are repeatedly adjusted by trial and error and

the modifications repeatedly verified using the simulator until the specifications are

satisfied.

Alternatively, an experienced circuit designer may derive the transfer function at

node 2, which is

V2 _ (LS x cs x cs).s2 + GS

V1 7 (LS x cs x as)s2 + (CS)s + GS.

 

The formulas of Q0 and W, are, thus, found to be

I

o m x 9 z 9
.
.

Q0

Wz =

\/LS x cs'

Therefore, this problem can be solved by increasing the value of LS x CS while keeping

the ratio between LS and CS. [:1

Example 2 Figure 1.4 shows a CMOS op-amp and the schematic diagram to obtain

the transfer function. Figure 1.5 shows the transfer function of this op-amp. The CL

in Figure 1.4(b) is the parasitic capacitor from the circuitry connected to this op-amp.

Is there any way that the stability of op-amp can be improved without affecting the

GBW?

Answer: Figure 1.5 shows the transfer function of the CMOS op-amp with a

capacitive load. It is known that a capacitive load can affect the stability of an op-

amp circuit dramatically. A circuit designer who designs the op-amp which fits the

specific application may not be able to change the circuits that this op-amp connects
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Figure 1.4. (a) CMOS op-amp. (b) Open Loop gain circuit.
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Figure 1.5. Transfer function of the CMOS op-arnp.

connects to. What he/she can do is to understand the effect of the capacitive load

and modify the internal components of the op—amp so that it can be stabilized for

this specific configuration. However, the numerical analysis like Figure 1.5 gives very

little about how to improve this op-amp.

If a formula like

v6 3C1 x GM] — GM6 x GMl

i7; ‘ "320,, x 01 + .90. x GM6 + (003-, + GDSG)(GD53 + G195.)

K(s + 21) '

(s + M3 + m)

 

is available, assuming GMI = 0M2 and GM3 = GM4 for symmetry, then the zero

and poles can be obtained.

 

 

21 = _GM6

Cl ’

_ GM6
1%? (3L: a

_ (01957 + 0056x0033 + cos.)

1’1 - (:1 )( (:1hfg ,
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GMS X GM]

(0057 + Gossxaosa + GDSI )'

 dc gain =

The location of pg represents the stability of the op-amp, which is determined by

transistor 6 and the load capacitor. The circuit designers can change the W/L ratio

of the MOS transistor to modify the value of 0M6. Also,

GM1

01 ’

 GBW = dc gain x p1 =

which is independent of GMe. C]

The above example shows that a numerical circuit simulator may not fulfill the

needs for circuit analysis. In order to improve the quality of analog circuit design, a

symbolic circuit analysis methodology providing the analytic solution to the circuits

is developed. Without a symbolic circuit analyzer, it is very difficult for circuit

designers to have an in-depth understanding of a complicated circuit. However, there

are difficulties involved in symbolic circuit analysis. These problems are addressed in

Chapter 2.

The most common approaches to improve efficiency are by way of circuit decom-

position. Many approaches have been proposed. However, the existing methods are

not suitable for practical electronic subsystems like the op-amp and the power supply

regulator. A new circuit level decomposition method and its variations are, therefore,

developed and described in Chapter 3. Chapter 4 introduces a new numerical ap-

proximation strategy. This strategy improves the memory consumption of a symbolic

circuit analyzer.

Besides having an efficient mathematical method for symbolic computation, it is

also essential to have built-in functions to help the circuit designers perform analysis.

Therefore, symbolic sensitivity analysis and symbolic stability analysis are introduced
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in Chapter 5 and Chapter 6. The implementation of Sspice version 2.0 is introduced

in Chapter 7. In addition, second order filters are the most popular circuits in signal

processing. The implementation and application of second order function identifica-

tion are discussed in Chapter 7. Also, the error analysis due to a. non-ideal op-amp

in second order filter implementation is discussed in the same chapter.

Finally, the conclusions are given in Chapter 8.
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CHAPTER 2

SYMBOLIC CIRCUIT

ANALYSIS

2.1 Introduction

The importance of a symbolic circuit analyzer has been recognized by circuit design-

ers, since the numerical circuit simulator, alone, cannot give insight into the behavior

of an analog circuit [2] [3]. This has lead to the development [4] [5] of various symbolic

analog circuit analyzers. Usually, symbolic circuit analysis involves finding network

equations in the form of

N(s, X)

D(s, X) ’

 H(s,X)=

where N(s,X) and D(s,X) are polynomials in s and the symbolic network variables

X. The method used [4] [5] could be the tree enumeration method, numerical inter-

polation method, parameter extraction method, signal flow graph method, algebra

method or iterative method. The common difficulties inherent in symbolic circuit an- ,

alyzers are their level of inefficiency for obtaining the circuit functions as compared to

its numerical counterpart, their memory space consumption, and the interpretability

of their results. These problems are addressed in this chapter.

11
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Nullators and norators are interesting circuit primitives introduced in the 60‘s

[6]. Figure 2.1 shows their symbols. A nullator is an element which does not allow

current flow through it and the voltage across its terminals is zero under all the

possible situations. The element is thus described by two equations :

V=O;I=0. (2.1)

On the other hand, the norator has an arbitrary voltage across it and , simultaneously,

allows an arbitrary current to flow through it. This element has no constitutive

equation. Together, the nullator and norator are referred to as a Nullor [3].

(a) (b)

Figure 2.1. (a)Nullator; (b)Norator.

 

Figure 2.2. Nullator-norator equivalent circuit of a VCVS

All controlled sources, transistors, op-amps, and even inductors can be modeled
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using only resistors, capacitors and nullors [7]. Figure 2.2 shows the nullator-norator

equivalent circuit of a voltage controlled voltage source (VCVS). This approach has

been successfully implemented in Sspice [4].

The mathematical background for symbolic analog circuit analysis with nullors is

introduced in section 2.2. Besides the matrix approach, the graph approach [8] [9] is

briefly introduced in section 2.3. Finally, the existing computer programs [5] [4] [10]

[11] for symbolic circuit analysis are mentioned in section 2.4 and the advantages and

disadvantages of these approaches are discussed, so that the performance of Sspice

version 2.0 can be improved.

2.2 Circuits with Nullors

2.2.1 Nullator-Norator Nodal Analysis

Writing nodal network equations by inspection is illustrated in the following example.

The details can be found in [3]. The purpose of this example is to take a closer look at.

and provide a better understanding of circuits with nullors, so that the decomposition

strategy of Sspice can be implemented.

 oo—~

 

 

 

Figure 2.3. A circuit with nullator and norator.
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Example 3 Figure 2.3 shows a circuit with a nullator and norator. Find the transfer

function of node 4 with respect to node 1.

Answer: First, we find the nodal equations of the network with the nullator

and norator removed and connect a current source with a value of one at the input.

       

That is,

’11- ’1. DGl —G1 ‘ “Pl/'1‘

12 0 —01 G1 + Gz + Ca —Gz —G3 V2

13 = 0 = -G2 02 + 0.; ‘ —G4 V3

I4 0 —G4 G4 + Gs —Gs V;

.15. [0_ _-G3 —G'5 G3+G5+Gsd _V5‘

(2.2)

Then, each nullator and norator is returned, one by one. Because there is a nullator

between node 3 and node 5, V3 equals V5. V3 and V5 can be combined into V3,}; and

column 5 of Equation (2.2) is added into column 3, thus, eliminating column 5. This

      

produces

[ q I

l G1 “—61

V1

0 "GI G1+ 02 '1' Ga —Gz - Ca V

, 2

0 = —Gz Gz + G: —G4 ' (2'3)

V3.5

0 —G4 — Gs 04 + Gs

. V4

_0‘ “G3 Ga+Gs+Gs "Gs J-

Because of the norator across node 1 and node 3, there would be an arbitrary amount

of current flow from node 1 into node 3 or from node 3 into 1. There should be the

same amount of current with opposite signs shown at row 3 and row 5 on the left

hand side of the above equation. Therefore, row 3 of Equation (2.3) is added into row

1 so that this arbitrary current can be cancelled. Then, row 3 is eliminated, thus,
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resulting in the following equation.

        

’1,+13' ’1' ”G, —Gl—a2 62+G, —G, q _ v1.

12 __ o _ —Gl G1+G2+G3 £2-03 v2

1, — o — —G,-05 G,+G. V3,5

15 J _o] _ —Gs 03+Gs+06 —05 NV”

(2.4)

which is in the form of I=Y><V. Similarly, if there is another nullator (norator) be-

tween node i and ground, the V,- (1;) and its corresponding column (row) is eliminated.

Therefore, the node voltages can be obtained by Cramer’s rule. '

  
 

  
 

 

G1 —Gl — 62 G2 + G4 1

-G1 G1 + G2 + Ca —G2 - G3 0

det

0 0 -G4 — Gs 0

0 —G3 G3 + Gs + Ca 0

l/output = V4 = det(Y)

(_1)l+4 X det 0 0 -G4 - Gs

0 —G3 Gs + G5 + G6 ..

_ det(Y)

-d t Y

— ———e( 1") (2.5)
det(Y)

However, det(YM) is the determinant of the admittance matrix of Figure 2.4.

Consequently, the transfer function of Figure 2.3 at node 4 becomes

_ 1+4
V4 _ ( 1) d<3t(Y1.4)

(2.6)

Ti — (‘1)1+1det(Y1.1),



 

 
 

 

Figure 2.4. Numerator of V4 in Example 1.

which is the ratio of the network determinants of Figure 2.4 and 2.5 with an appro-

priate sign. According to the above example, the sign can be obtained by counting

the node naming sequence assigned by the user.

g8

  
  

 

Figure 2.5. The equivalent network determinant of Y”.

Lemma 1 (Network Determinant, Ndet(N))i Assume nodes are numbered se-

quentially with zero for ground. According to the above example, if the column (row)

with a higher column (row) number is always merged into the column (row) with a

lower number of an admittance matrix when we put nullators (norators) into a circuit,

then the determinant of the admittance matrix will be unique for the corresponding
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network with nullors. This network, N, should have a node number assigned to every

node. We call this determinant the network determinant of N or Ndet (N).

Proof: The admittance matrix of an passive network with all the node numbers

assigned is unique. Following the merging rules for nullators and norators stated in

Lemma 1 results in a unique admittance matrix if the location of the nullators and

norators are decided. [:1

Definition 1 (Nullator index, 11 index, u(p,N)) The u index of node p is the

number of nullator trees which connect to nodes whose node number is less than the

lowest node number of the nullator tree connecting to node p in network N. A node

without any nullator connecting to it is an empty nullator tree.

Definition 2 (Norator index, 0 index, o(p,N)) The 0 index of node p is the

number of norator trees which connect to nodes whose node number is less than the

lowest node number of the norator tree connecting to node p in network N. A node

without any norator connecting to it is an empty norator tree.

Definition 1 and Definition 2 describe the u index and 0 index which predict the

location of the corresponding node in an admittance matrix from the naming of the

nodes in a circuit. If the (u index, 0 index) of a node to which an element G is

connected is (j,i), where j 74 0, i at 0, then a +G would be found at the entry of the

ith row and the jth column of the admittance matrix.

Theorem 1 If the input of a network, N, is node i and ground and the output of the

network is node j and ground, then the transfer impedance of the network will be

(-1)"‘+"Ndet (N1)

Ndet (N)
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Here, m (n) is the o (u) index of node i (j), and N1 is a network with an additional

norator between i and ground of N and an additional nullator between j and ground.

Proof: The transfer impedance of the network N can be found by applying a

current source of value of one to node i, then the voltage at node j will become the

transfer impedance. The network nodal equations are in the following :

     

I =

P T l- . F '

0 al,l . . . al’n . . . 01’”

1 = a171,] e e e am,” e e e am,” W

0 a“ ... am . . . aw 
= YxV.

The only 1 in the I vector will be at the m’th row; and V,- will be at the n’th row of

V. By using Cramer’s rule, the Transfer impedance of network N should be

  
 

 

F

01,1 ° " al,n-l 0 01,n+1 "' al,y

det arm] . . . 1 . . . army

V bax,1 ... O ... ax’y‘

J _ det(Y)

_ (—1)"""" x det(Ymm)

_ det(Y) °

Ymm is a matrix of Y with column n and row m eliminated. Therefore, Ymm is the

admittance matrix of N with an additional norator grounding a node with an 0 index
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of m, which is node i; and an additional nullator grounding a node with an u index

of n, which is node j. C]

With the assistance of Theorem 1, the driving point impedance and transfer func-

tions of a network can be obtained by manipulating related network determinants

like Equation (2.6).

2.2.2 Equivalence relations

The parallel combination of a nullator with a passive element represents zero volt-

age across the passive element. Therefore, the current flowing through this passive

element would be zero, too, which is equivalent to a nullator only. Using similar

analogies, we may conclude the equivalent relations shown in Figure 2.6. According

to Figure 2.6, elements may be removed without affecting the network determinant

.of the circuit. This brings the following definition.

Definition 3 (Prime Network) If the elimination of any element in a network

would change the network determinant of this network, then this network is prime.

Nullators and norators can be relocated among the nullator and norator trees.

Figure 2.7 shows some of the transformations. Furthermore, a circuit with loops of

nullators or norators is not prime.

2.2.3 Special Case for Network Determinants

Definition 4 (Invalid Circuit) A circuit, N, is transformed to be prime. If the

number of norators and the number of nullators in this prime circuit are difi'erent,

then this circuit, N, is called an invalid circuit. Otherwise, it is valid.



20

i
m l l

a

toolA
V

 

Figure 2.6. Parallel and Open/Short equivalence.

(a)

(b)

Figure 2.7. (a)Nullator trees; (b)Norator trees.
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Lemma 2 A network can be partitioned into two subnetworks which are connected

to each other at only one node. If both of the subnetworks are valid, then the network

determinant of this network is the product of the network determinants of the sub-

circuits.

Proof: Without the loss of generality, we assume that a network consists of two

parts, say N1 and N2, which are connected to each other only at the ground. The

admittance matrix, Y, of N can be described as

Y1 0

0 Y2

det(Y) = det(Y1)X det(Yz).

Y

Because the first co—factors of the indefinite admittance of the network N are all the

same, the ground can be selected to be any node of N without changing the network

determinant. This concludes the proof. [I]

According to the above Lemma, if a valid circuit, N, consists of two parts, N1

and N; which are connecting only at a single node as shown in Figure 2.8, then the

network determinant of N will be the network determinant of N1 multiplied by the

network determinant of N2 if both N1 and N2 are valid.

However, if the number of nullators and norators in N1 are not the same, one can

easily verify that the network determinant of N will be zero. Therefore, we conclude

the following theorem.

Theorem 2 A valid network can be partitioned into two subnetworks which are con-

nected to each other at only one node. If one of the subnetworks is invalid, then the

network determinant of this network is zero.
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Figure 2.8. A network has two parts connecting at a single node.

Proof: Without the loss of generality, we assume that a network N consists of two

parts, say N1 and N2, which are connected to each other only at ground. If both N1

and N2 are valid circuits individually, then the the admittance matrix, Y, of N can

be described as

 

Y1 0

Y = ,where

0 Y;

“1.1 a1.m

Y1 = E E ;and.

.. am] am.m J

b1,1 ' bln

Y2 =

bnl bn,nJ  

Now, add a norator into N1 and a nullator into N; so that the first row of Y1 and

the n’th column of Y; are eliminated. The new admittance matrix Y+ becomes

Yi Y3
YT: ;

0 Y5"
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F 02,1 . . . . . . G2,"!

Yf' = ,

am,l . . . . . . am,m

" 'l

b2,1 ' ' ' b2,n-l

v; = ,

bn,1 ° bum—1

; t
0 O

Y; =

. 51,1 . . . . . . bl,n—l l  

Since Y+ is an upper triangular matrix, det(Y+) = det(Yf) x det(YJ). Here,

det(Yi") = 0. C]

In this way, the basic guidelines for decomposing a circuit have been stated. If a

circuit can be decomposed into situations in which sub-circuits are connected to each

other at only one node, the computation of the network determinant would be less

costly. Also, exploring the existence of the invalid sub-circuits can further reduce the

computing efforts.

2.3 Graph Theory Approach

The use of graph theory to solve electronic circuit problems is within the realm of

nonnumerical algebra for which a considerable amount of literature exists [9] [12]

[3] [13]. Unfortunately, most of the methods, although general and powerful, are

unduly complicated and are not efficient enough for the needs of analyzing electronic
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circuits symbolically. The following subsections briefly introduce two graph methods,

signal-flow-graph method and tree-enumeration method.

2.3.1 Coates Graph and Tree-Enumeration Method

In Example 3, the procedure of constructing circuit equations by inspection of ac-

tive circuits was established. Circuit configurations are designed around a common

connection or ground. The selection for ground determines, in many instances, the

function or properties of the circuit. An example is the transistor. The common

emitter amplifier has the emitter as ground. Likewise, the the common collector am-

plifier has a grounded collector and common base amplifier has a grounded base. All

these circuits are really the same circuit just differing in their common terminal or

ground. Suppose that the circuit equations are constructed before a common node is

selected, this set of equations must be the samefor every circuit of different ground

node. This can be illustrated by changing the ground in Figure 2.3 to node number

6. The circuit equations become

     

[1‘ PG] —G1—G2 G2+G4 —G, ”V,”

0 -G1 G1 + G2 + G3 -G2 -— G3 v2

0 = -G.. — as G, + Gs V3.5 - (2.7)

o —(}3 G3 + G. + G6 —G5 —G6 v,

. 0 . . —Ge G6 . . V6 . 
The admittance matrix above is called the indefinite admittance matrix. There are

properties which can be observed with the indefinite admittance matrix.

Definition 5 (Indefinite Admittance Matrix) An indefinite admittance matrix

is an admittance matrix in which the sum of the entries in any row or column is zero

{9}.
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Property 1 An indefinite admittance matrix is singular [9].

Property 2 The determinants of all the first cofactors of an indefinite admittance

are the same except the sign [9].

Mathematically, there are direct relations between a matrix representation and a

graph representation. The following is the definition of the Coates graph with respect

to the corresponding matrix. Figure 2.9 shows the Coates graph of Equation (2.7).

Definition 6 (Coates Graph) For a square matrix A = [a,-,] of order n, the (is-

sociated Coates graph is an n-node, weighted, labeled, directed graph, denoted by the

symbol Gc(A) or simply GO if A is clearly understood or is not explicitly given. The

nodes are labeled by the integers from 1 to n such that if a,-,- 76 0, there is an edge

directed from node i to node j with associated weight a,, for i, j = 1,2, . . . ,n. Some-

times, it is convenient to consider edges that are not in GC(A) as edges with zero

weight in GC(A) [9].

Definition 7 (Associate Coates Graph) The associate Coates graph of a circuit

is the Coates graph of the corresponding indefinite admittance matrix of the circuit

[9]-

Theorem 3 If Y is an indefinite admittance matrix of a circuit, then the network

determinant, ng, of the circuit is

Y..- = Zfltkla (2.8)

for i,j, k = 1,2, . . . ,n, where t), is a directed tree in GC(Y).

Proof: [9] V U
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Figure 2.9. A corresponding Coates graph.

According to the above theorem, the network determinant can be obtained by the

enumeration of all the directed trees in the associate Coates graph of the circuit. This

transforms a circuit problem into a graph algorithm problem, which has been studied

and developed extensively. However, advances in graph algorithms cannot keep up

the pace of the growth in the size of electronic circuits. The computation efficiency

is not acceptable for most practical circuits.

2.3.2 Signal-Flow Graph and Mason’s Rule

There is another way to associate a directed graph with a given matrix, known as a

signal-flow graph or a Mason graph. The techniques of signal-flow graph have been

applied to statistical, mechanical, heat transfer, pneumatic, microwave, and multiple '

loop feedback systems. In this subsection, a signal-flow graph is called a Mason graph,

as distinguished from a Coates graph.

Definition 8 (Mason Graph) For a given square matrix A of order n, the associ-

ated Mason graph of A, denoted by the symbol Gm(A) or simply Gm, if A is clearly
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understood or is not explicitly given; is the associated Coates graph of A + In, where

I,I is the identity matrix of ordern [.9].

The reason for this type of seemingly artificial association is that the Mason graph

is a more natural representation of a physical system than the Coates graph [9]. It

presents a continual picture of the flow of signals through the physical system, and

permits a physical evaluation and a. heuristic proof of some basic theorems. Like the

Coates graph, the associated Mason graph of a physical system, in many cases, can

be drawn directly from the system diagram without the necessity of first setting up

the equations in matrix form.

A Mason graph is a weighted, directed graph representing a system of simultaneous

linear equations according to the following three rules :

1. Node weights (node variables) represent variables (known or unknown).

2. Branch weights (branch transmittances) represent coefficients in the relationships

among node variables.

3. For every-node with one or more incoming branches, there corresponds the equa-

tion

node variable = 2(incoming branch transmittance x

node variable from which the incoming branch originates)

where the summation is over all incoming branches (of the node under consid-

eration).

As an example, consider the Mason graph of Figure 2.10. The node variables are

xo,x1,x2,x3, and the branch transmittances are a,b,c,d,e,f,g. According to rule 3,
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this Mason graph represents the following set of equations :

2:1 = we + d932,

x2 = bxo + cxl + exz, (2.9)

$3 = I231 + gxg.

 
Figure 2.10. A typical Mason graph

In a Mason graph, a node with only outgoing branches is called a source node. A

node with one or more incoming branches is called a dependent node. In particular,

a dependent node with only incoming branches is called a sink node. For example,

in Figure 2.10, x0 is a source node, x1,x2,x3 are dependent nodes, and x3 is a sink

node. Dependent node variables are treated as unknown quantities and source node

variables as known quantities in the simultaneous equations. Therefore, a Mason

graph represents a set of simultaneous equations of

anl = Aanxnxl ‘l" anmxsmxl- (210)

These equations can be solved by using Cramer’s rule.
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A few definitions associated with the Mason graph method are necessary before

presenting the topological rule.

Definition 9 (Path.) Imagine each directed branch in the Mason graph as a one-

way street. A path from node X; to node X,- is any route leaving node X,- and termi-

nating at node X,- along which no node is encountered more than once [9].

Definition 10 (Loop.) A loop is a path whose initial node and terminal node coin-

cide [9].

Definition 11 (nth-order Loop.) An nth-order loop is a set ofn nontouching loops

[91.

Definition 12 (Path Weight.) The path weight is the product of all branch trans-

mittances in a path [9].

Definition 13 (Loop Weight.) The loop weight is the product of all branch trans-

mittances in a loop [9].

From Equation (2.10),

x = [I — Ar‘BXs, (2.11)

when the inverse of [LA] exists. Thus, any dependent node variable X,- may be

expressed in terms of the source node variables in the form

Xj = Tj1XS1 + TnXSg + ' - ° + ijXsm. (2.12)

Each TJ’.‘ in Equation (2.12) is called the transmission from the source node Xs, to

the dependent [node Xj. The following is a topological rule for evaluating Tji :

1 .

T,.- = EZRA," (2.13)

I:
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where

A = 1 - (sum of all loop weights) (2.14)

+(sum of all second order loop weights)

—(sum of all third order 100p weights) + . . .

P), = weight of the kth path from the source node XS,-

to dependent node X,-

A), = sum of those terms in A without any constituent loops

touching P),

and the summation is taken over all paths from X8.- to X,.

According to the above equations, the solutions of the Mason graph can be ob-

tained by finding the nth order loops and paths.

2.4 The Existing Symbolic Circuit Analyzers

The development of algorithms for symbolic analog circuit analysis has proceeded

for decades, but, only in recent years has symbolic circuit analysis programs been

implemented. Though the internal mechanisms of these programs may differ, using

either a matrix based algorithm or a graph based algorithm, their objectives are

basically the same. They provide the circuit functions symbolically and further assist

analysis with the built-in functions, for example, sensitivity analysis and distortion

analysis.

Because of well developed graph algorithms, the first few experimental programs

mainly involved symbolic circuit analyzers using graph approaches. SNAP [14] is the

most famous one implemented in the early 703. SC [15] (Symbolic Circuit) is another

program of this type.
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Because of the inefficiency of graph algorithms for medium sized circuits, recent

developments of symbolic circuit analyzers are focused on matrix approaches. Many

of the programs are a part of the analog circuit automatic synthesis systems [16] [17]

[18]. The emphasis is on the synthesis procedure rather than the symbolic analysis

techniques.

Due to the development of symbolic mathematic programs, many symbolic analog

circuit analyzers are built on symbolic mathematic packages which are commercially

available. For example, SYNAP [19] is built on MACSYMA, and NODAL is built on

MATHEMATICA. Both take advantage of the rich graphic and mathematic manipula-

tion capabilities of these packages, so that the systems are better interfaced with the

circuit designers. However, the drawback is that the mathematic packages upon which

these circuit analyzers are built are general math tools which are not efficient enough

for the specific circuit applications. Therefore, they suffer from the low computation

speed and high memory consumption which are crucial for real circuit designs.

ISAAC [5] and Sspice [4] are symbolic analog circuit analyzers specialized for

the practical circuit designs. Since this dissertation focuses mainly on the details of

Sspice, the capabilities of ISAAC are discussed in this section so that the differences

between ISAAC and Sspice can be understood.

The success of ISAAC is mainly due to the implementation of a heuristic numerical

approximation. Many previously developed programs generate exact expressions only

and are difficult for analog designers to analyze, while the simplified circuit expressions

are easier for circuit designers to analyze. Besides this capability, ISAAC also provides

built-in functions like signal transfer function, internal transfer function, transfer

function ratio, rejection ratio, differential mode gain, common mode gain, CMRR,

PSRR and many others. These built-in functions are executed by selecting the menu

number on the terminal. The only criticism ISAAC may receive is that the functions

are fixed and cannot be further manipulated by the circuit designers. In other words,
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it is not flexible enough. Also, its efficiency for analyzing large circuits like commercial

op-amps and power supply regulators would be questioned since there exists no report

on this issue. Therefore, the development of Sspice would focus on flexibility and

computation efficiency.



CHAPTER 3

DECOMPOSITION

STRATEGIES FOR SYMBOLIC

CIRCUIT ANALYSIS

The most common strategies for improving efficiency are circuit decomposition ap—

proaches. Of the many methods proposed, the majority are performed at the corre-

sponding mathematical model level, i.e., the graph level, making the procedure diffi-

cult to understand and hindering circuit designers from fully utilizing their knowledge

and experience. In this chapter, a new circuit level decomposition and composition

methodology is described.

3.1 A Review of Decomposition Methods

In order to improve computation efficiency for circuit analysis, decomposition meth-

ods have been studied extensively either for numerical or symbolic approaches. For

numerical circuit simulations, using relaxation or iterative methods on parallel com-

puters have been a common practice in many computer programs like MSPLICE [20].

It has been found that the effectiveness of the decomposition approach depends on

33
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the connectivity of the circuit to be simulated. The speed-up is usually limited to at

most 8 or 9 in some literature reports.

Since the computation efficiency for symbolic circuit analyzers is even worse, de-

composition approaches have been studied since the 705. However, none of the exist-

ing decomposition approaches have been suitable for solving real problems for circuit

designers. Two criteria need to be satisfied in a successful decomposition method for

symbolic circuit analysis. One criterion is an acceptable efficiency. The other is that

the output of the circuit analyzer be in an expanded format rather than a sequence

of expression format.

According to section 2.3.1, network functions can be obtained by enumerating

all the directed trees of an associate Coates graph of a circuit. If the corresponding

Coates graph is partitioned into two parts, the directed trees of the Coates graph of the

full circuit would be decomposed into multiple trees (k—trees). Therefore, the circuit

functions can be calculated by enumerating the needed k-trees, then, combining the

appropriate k-trees from different parts to produce the directed trees of the entire

circuit [9]. This method has been mathematically well proven. It attracted much

attention during the 705 when graph theory and graph algorithms were developed.

However, no such circuit analyzer has been really implemented using this method,

because enumerating k-trees is not an easy task. The procedure to combine undirected

k-trees from different parts into an undirected tree was developed. But, it is still

unclear as to how to combine the directed k-trees into directed trees, a procedure

essential for analyzing general electronic circuits.

The bottom up and top down decomposition of a Mason graph presented in [11]

and [21] provide systematic procedures to construct circuit equations. The weaknesses

of these approaches are that the circuit should “be finely partitioned into small parts

and the graph should be 1003er connected. Otherwise, the number of different cases

to be considered would still be unacceptably large. The method presented in [10]
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needs symbolic division, which is not suitable for expanded format representation.

The method based on matrix algorithms like [22] is only suitable for sequence of

expression format because of the symbolic divisions it needs.

3.2 Obtaining Network Determinants by Decom-

position

In this section, the relations among admittance matrices of a circuit and its sub—

circuits is discussed. The objective is to find the determinant of the admittance

matrix of a circuit from those of its sub-circuits. The following example shows the

composition of two sub-circuits and the corresponding admittance matrices.

Example 4 Figure 3.1 shows that a circuit N consists of two parts,Na and Nb. The

admittance matrices of Na and Nb are Y; and Y5, respectively, where

an 012 013

Y0 = 021 022 023 ,and

031 032 033  

bu bu bis

621 1222 (>23

b3! (’32 I733

Yb

  

Find the admittance matrix for N.

 



  
1t

f0
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Figure 3.1. Example 2

First, the admittance matrix of Na and Nb, connected to each other only at ground,

is written as

011 012 013

021 022 023

031 032 033

  

y-H- =

bll b12 b13

1m 522 1m

_ bar 532 baa]

Then, short node 2 of N, with node 1 of Nb, as described in Figure 3.1, which is

the same as putting anullator-norator pair between these two nodes. Therefore, the

fourth column and the fourth row of 1"” are added into the second column and row;
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then, the fourth column and row of Y++ are removed. This results in

011 012 013

021 0224-511 023 512 513

  

Y4. = 031 032 033

521 522 (>23

531 532 533 J

Again, node 3 of Na and node 2 of Nb are shorted by adding the fourth column and row

of Y‘l' into the third column and row; then, the fourth column and row are removed.

As a result, the admittance matrix of N becomes

an 012 013

021 022 + bu 023 + bl2 b13

G31 032 + 521 033 + 522 523

bal 532 baa  
Cl

Based on this example, the relations among Ya, Y5, and det(Y) are explored by

reversing the matrix construction process. Expanding Equation (3.1) at the second

column yields

det(Y) = -012 X Yl.2 + (022 + 511) X Y2,2 - (032 + bar) X 13.2 + 1’31 X 32.2

= -612 X Yl,2 + €122 X Y2,2 - 032 X 33.2 + 531 X Yes

—0 X Yuri-bu X Y2,2 - 521 X 3,3,24‘531 X Ym



p

011

021

det

 
031

012

022

032 033 + 522

013

023 + bl2

632

38

(’13

bzs

baa

+ det

  

021

031

all

bll

bar

531

023 + 512 (’13

033 + 522

013

(>23

b33532  

Using the same method, the decomposed matrices are further decomposed at the

third column and the second and third rows, iteratively, as follows :

det(Y) =

det

 

+det

011 012 013

021 022 023

031 032 033

an 013

021 023

(>21

bar 

 

bza

baa

+ det

 

+ det

 .l

011 012

021 022

b2:

baz

all 013

bu

031 033

 531

lbs

 baa

b13

baa

+ det

 

+ det

 

Then, as the a entries and b entries are collected together,

det(Y) =

p

det

 

an 012 013

021 022 023

031 032 033

 

+ det

 

011 012

021 022

b2:

532

523

 

— det

 

 

  

(3.3)

an an -

512 (’13

031 032

532 533‘

[an '

bu bu b13

521 522 as. '

_ 531 b3: baa J

(3.4)

an 012

031 032

512 513

b3: 533‘ 
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. . . . ,

an 013 011 013 011

-—det 021 023 + det 031 033 + det bu 512 b13

521 523 bn 513 521 (’22 I223

_ bar 533 . _ 531 533 . [ 531 532 533 4

According to Equation (3.5), all the decomposed matrices are block diagonal ma-

trices. Each block consists of all a’s or all b’s and belongs to a specific sub-circuit.

These blocks are variations of Y, or Yb obtained by eliminating columns or rows and

are modeled by putting nullators and norators at the corresponding nodes. Decom-

position information, therefore, can be provided at circuit level. Figure 3.2 shows

the computation in a more illustrative way and corresponds to the six cases in Equa-

tion (3.5).

3.3 The Algorithm

The following is the algorithm which obtains the network determinant of a circuit by

decomposition as shown in Example 4.

ALGORITHM :

Ndet_by_Decomposition(N)

/* N is the network */

/* N is decomposable into Na and Nb */

/* The node numbers in Na are all less than the node numbers in Nb */

{

ResultSNULL;

P<-Identify,cut_nodes(N); /* Get the cut nodes except the GND */

Na,Nb<-Decompose(N,P);

#_of-case-2**(#_of_P);

For(i=0;i<#_of-case;i++) {

For(j-O;j<#_of,case;j++) {

 

 



4O

 

      
 

        
 

(c) T

        

        
  (s)

Figure 3.2. The decomposition and composition of two sub-circuits connected at three

nodes; (a) The whole circuit; (b)-(g) six cases.
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Pu-encode-decimal-to_binary(i,#-of-P);

/* when i==2 and #_of_P==4, Pu8’0010’ */

Posencode-decimal,to-binary(j,#-of_P);

For(m-O;m<¢_of,P;m++) {

If(Pu[m]=*1} {

Put-nullator_between_P[m]_and_GND_in_Na;

}

else {

Put_nullator_betveen_P[m]_and-GND_in_Nb;

}

Ir(Po[mJ==1} {

Put-norator-between_P[m]-and-GND;in_Na;

}

else {

Put-norator_betueen_P[m]_and-GND-in_Nb;

}

}

If( Valid(Na) as ValidCNb) ) {

A-Ndet(Na);

s-Ndet(Nb);

ResultSResu1t+A*B*Sign(N,Na,Nb);

}

Bemove_the_added_nullator_and_norator-at_P;

}

}

Return(Result);

}

Suppose the sub-circuits, Na and Nb, are connected at n nodes, except the ground,

the above algorithm would connect n nullators and n norators between each con-

nection node and the GND, either in Na or in Nb, for all the possible combinations.

Each combination is a decomposition case. Then, the algorithm needs to examine

whether the newly formed sub-circuits are valid for each decomposition case. If both

of them are valid, their network determinants can be obtained independently by any

of the existing network determinant algorithms without decomposition. The network

3
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determinants obtained are, then, multiplied together with an appropriate sign. In

Example 4, there are only six valid decomposition cases. The validity of a circuit and

the procedure to obtain the signs are defined next.

Example 5 Figure 2.4 shows a circuit. What are the u and o indexes of node (4)?

Answer: There are four nodes whose node numbers are less than 4. They are (0),

( 1), (2), and (3). Both node 0 and node 2 have no norators connected to them and

are counted into two norator trees which are empty. Also, node 1 and 3 belong to the

same norator tree. Therefore, the 0 index of node 4 is three. The u index of node 4

can be found in the same way and it is four. El

Definition 14 (Inverse u nodes, iu nodes, iu(k,N)) iu(k,N) represents all the

nodes whose u index is k in the network of N.

Definition 15 (Inverse 0 nodes, io nodes, io(k,N)) io(k,N) represents all the

nodes whose 0 index is k in the network of N.

Actually, the u index and the 0 index represent the location of a node in an

admittance matrix. If there is an element G connected to a node whose (u index, 0

index) is (j,i) and i 95 0, j 94 0, then there will be a term of +G at the entry of i’th

row and j’th column in the corresponding admittance matrix.

Because the order of columns and rows in an admittance matrix can affect the

sign of its determinant, as shown in equation (3.5), this can be modeled by the

permutations of the u and o indexes.

Definition 16 (Decomposed 11 index, du index, du(p,N,case)) The du index

of node p is the u index of node p in N with nullators and norators added under a

specific decomposition case. N can be decomposed into Na and Nb. The node numbers

of the nodes in Na are smaller than those in Nb.
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Definition 17 (Inverse du nodes, idu(k,N,case)) idu(k,N,case) represents the

set of nodes whose du indexes are k for the specific decomposition case of network

N.

Definition 18 (Decomposed 0 index, do index, do(p,N,case)) The do index

of node p is the 0 index of node p in N with nullators and norators added under

a specific decomposition case. N can be decomposed into Na and Nb. The node num-

bers of the nodes in Na are smaller than those in Nb.

Definition 19 (Inverse do nodes, ido(k,N,case)) ido(k,N,case) represents the

set of nodes whose do indexes are k for the specific decomposition case of network

N.

Definition 20 (Connected du index, cdu index, cdu(k,N,case))

The connected du index is the u index of the nodes whose du index is k for a spe-

cific decomposition case in network N before the decomposition scheme is applied.

cdu(k,N,case)=u(idu(k,N,case),N).

Definition 21 (Connected do index, cdo index, cdo (k,N,case))

The connected do index is the 0 index of the nodes whose do index is k for a spe-

cific decomposition case in network N before the decomposition scheme is applied.

cdo(k,N,case)=o(ido(k,N,case),N).

Example 6 Figure 3.3(a) shows a circuit that consists of two parts, Na and Nb.

By applying the above decomposition algorithm, a case, as shown in Figure 3.3(b),

simular to Figure 3.2(d) results. Find the du and do indexes of nodes (1’) and (2’)

for this case. Assume all the node numbers in Nb to be larger than those in Na. Also,

find the cdu(du(2’ ,N,case) ,N,case) and cdo(do(1’ ,N,case) ,N,case).
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Figure 3.3. Example with Na and Nb
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The (du index, do index) for (1’) in Figure 3.3(b) is (0,5) and for (2’) is (6,0).

cdo(do(1’ ,N,case) ,N,case) is 3 and cdu(du(2’ ,N,case) ,N,case) is also 3. D

According to the above definitions, each du or do index of a specific decomposition

case has a cdu or cdo index which describes the relocation of the column or the row

in the admittance matrix before the decomposition is conducted. This is referred

to in section 3.2. When only one of the du to cdu permutation and the do to cdo

permutation is odd, a -1 should be multiplied to this decomposition case. We may

conclude the following algorithms.

ALGORITHM :

Valid(N)

{

usmax(all-the-possible-u_index(N));

osmax(all-the_possible_o_index(N));

if(u-=o) {

return(1);

}

else {

return(0);

}

}

Sign(N,Na,Nb)

{

/* U is an array with the length of the maximum number of u index in N */

/* 0 is an array with the length of the maximum number of 0 index in N */

/* The length of U and the length of 0 should be the same */

k-max(all-the_possible_u-index(N));

For(i=0;i<k;i++) {

U[i]=cdu(i,N,case(Na,Nb));

0[1]-cdo(i,N,case(Na,Nb));

}

If( (odd_permutation(U) xx odd_permutation(0)) II

(even_permutation(U) && even-permutation(0)) ) {
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return(1);

}

else {

return(-1);

}

3.3.1 Analysis

The next question is whether decomposition is universally beneficial for symbolic

circuit analysis under all situations. In this subsection, a simple analysis is presented.

Suppose there is a network of dimension N and average connectivity q. If the

DD algorithm [23] for obtaining matrix determinant is used, the complexity of this

computation is

FDD(Ni‘I) S q”"’ x q!- (3-5)

Now, let this network be partitioned into two parts whose dimensions are assumed to

be N/2. The number of cut nodes except for the ground is m. If both parts are valid

circuits, then using the decomposition algorithm in section 3.3 yields

m m m! 2

ram) = z (0.2)” = )3(W)
{:0 i=0

valid cases. Example 4 is an example of m = 2. The computational complexity with

one level of decomposition becomes

FDecompose,DD(Ns q: m) = FDD(N/2a Q) X 2 X FCase(m)- (3-6)

Here, some assumptions are made. First, the average connectivity remains the same

before and after the network is decomposed. Second, the dimension of each decom-

posed case is the same. This is not true, according to Equation (3.5), where the
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dimensions of the decomposed sub-matrices range from 1 to 4. Since the purpose of

this equation is to give a rough estimate, for simplicity’s sake, we can accept these”

assumptions.

The ratio between Equation (3.5) and Equation (3.6) shows whether it is beneficial

to do circuit decomposition.

~ FDD(Ni q)

FDecompoee,DD(Na q, m)

qN/2

= log( m m! )2 ). (3.7)

22(———
i=0

 

)FEualuate.DD(quim) S log(

 

(m—i))li!)

If the circuit dimension N and the average connectivity of this circuit q are con-

stant,’the maximum number ofim which makes the ngaluatcpp positive repre-

sents the maximum number of cut nodes beneficial to decomposition. For exam-

ple, FEuazua¢¢,Dp(N,q,2) > 0 while FEuazuate,DD(N,q,3) < 0 means that if the cir-

cuit can be partitioned at two nodes, the application of decomposition improves the

computation efficiency. If this circuit can only be partitioned at three nodes, then

decomposition is not beneficial to this circuit.

If the determinant obtaining algorithm is improved, then the computational com-

plexity becomes

 

N“ x !

Flmprovc(Na (I, f) S W- (38)

Similar to Equation (3.7), this results in

Fm rave N: if

FEvaluate,Improve(quamif) S 109(2 X F] I ’EN/g q)qX 370 (771))

mprove , use

qN/2 x N 2

= log( ...“ / ) ,). (3.9) 

2xf<N>xZ((m——',——,_),,.)
i=0

When f(N) = 1, Equation (3.9) is equal to Equation (3.7). Figure 3.4 shows the
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trend of maximumnumber of cut nodes, m, that keep Fgwruateympww > 0 for different

circuit dimensions, N, while the average connectivity, q, is 3.5.

Average'connectivity 3.5
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g N/2
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.
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z
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Figure 3.4. Maximum beneficial cut nodes analysis.

According to Figure 3.4, as the dimension of the circuit increases, the acceptable

number of cut nodes increases. Also, as the computation complexity of the network

determinant obtaining algorithm improves, the acceptable number of cut nodes de-

creases. In [23], it shows that the complexity of the resistor chain with length n is

0(2“) when the DD algorithm is used. On the other hand, the complexity for the

SLE/M algorithm [23] is 0(n2). Similarly, according to Equation 3.9), one can eas-

ily find that decomposition becomes not so attractive for loosely connected circuits.

Therefore, the application of decomposition to an ordinary circuit with a dimension

less than 8 is not encouraged while using Sspice version 2. 0.
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3.4 Exploiting Special Decomposition Opportu-

nities

According to the procedure described in Equation (3.2), it should show 16 decom-

posed cases in, Figure 3.2; however, 10 of them consist of invalid sub-circuits. Their

network determinants are identified to be zero, according to Theorem 2. Each case in

Figure 3.2 is a circuit consisting of two valid sub-circuits connected to each other only

at the ground. According to Lemma 1, the network determinants can be obtained

from those of the sub-circuits.

The above is a generalized procedure. For some situations, special rules may be

very usefully to simplify the procedure.

Theorem 4 A network N consists of two parts, N1 and N2, where N1 and N2 are

valid circuit. If they are connected at two points, at the ground and at node x, then

the network determinant of N is

(-1)P+* x Ndet (1v1 ) x Ndet(Ng) + (—1)q+'c x Ndet (M) x Ndet(Ng).

Here, N1 (N2) is N1 (N2) with node a: shorted to ground. p, q and k are the summa-

tions of the o and u indexes of node a: in N1, N2 and N, respectively.

Proof: The input admittance of N at a: is equal to

Ndet(N)

(—1)k x Ndet(N)

Ndet(Nl) . + Ndet(Ng) ‘

(4)» x Ndet(Nl) (—1)o x Ndet(Ng)

H)» x Ndet(Nl) (—1)9 x Ndet(Ng)

Ndet(Nl) Ndet(Ng)

H)» x Ndet(Nl) x Ndet(Ng) + my x Ndet(Nl) x Ndet(Nz)

Ndet(Nl) x Ndet(Ng)

 (Theorem 1)

  (Theorem 1)
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A

where N is N with node x shorted to ground. Because Ndet(N) is equal to

Ndet(Nl) x Ndet(Ng), this theorem is concluded. C]

Similar to the theorem of Parameter Extraction [13], the network determinant can

be decomposed into two parts, one consisting of terms with a specific element, say G,

and the other consisting of terms without this element. It becomes a special case of

Theorem 4 when N2 is a single element, and may result in the following corollary.

Corollary 1 If there exists an element G connecting nodes p and q in network N.

then the network determinant ofN is equal to Ndet(N1)+(-—1)"""+"‘ x G x Ndet(Ng).

Here, I: (l) is the largest o (u) index of p and q. When both 0 and u indexes of p are

larger or smaller than those of q, m=0. Otherwise, m=1. N1 is a network of N

without G; N; is a network of N with an additional pair of nullator and norator

parallel with G. If either 0 or u indexes of p and q are equal, then Ndet(N2)=0.

Example 7 According to Corollary 1, the network determinant of Figure 3.5(a) is

equal to Ndet(N1)+ (—1) X 64 x Ndet(Ng). N1 is shown in Figure 3.5(b), and N2 is

shown in Figure 3.5(c). Ndet (N1)=0 by Theorem 2.

Theorem 5 If there exists a nullator (norator) connecting nodes p and q in network

N, the network determinant, Ndet (N), is equal to Ndet(N1)+(—1)'j‘”'1 x Ndet(Nz).

Here, j is the u (0) index of node p and l is the u (0) index ofq in the circuit ofN+.

N1 is a circuit which relocates the nullator (norator) connecting p and q in N to p

or q with a larger u (0) index in N+ and ground. N2 is a circuit which relocates the

nullator (norator) connecting p and q in N to p or q with a smaller u (0) index in

N+ and ground. N+ is N without the nullator (norator) connecting p and q. When

j=l, this nullator (norator) is redundant.
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Figure 3.5. Example 3.
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Proof: For the nullator, since the admittance matrix of N+ can be laid out as

01,1 I o o al,j o o 0 al,’ 0 o o al,n+l

  an'l o o o an'j o o a an,’ o o o an’n+1

which is an n x (n + 1) matrix, the admittance matrix of N1 becomes

01.1 01,1“ alJ—l 01,l+1 arm-1

Y1

  an,1 ° ' ° and ' ' ° an,l—l an,l+l ° ' ' an,n+1

if I > j; and

lam 01.j—1 al,j+l 01,: 01,n+1

Y2

 an,1 . . . an,j-l and-+1 . . . an", . . . aunt-+1 J 
Both Y1 and Y; are n X n matrixes. Also, the admittance matrix of N should be

lam a1,,-+a1,, a1.1—1 a1.1+1 al,n+l

  an,l ' ' ' an,j + 0:1,! ‘ ° ' amt-1 an,l+1 ' ' ’ an,n+l J
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+ _ ++ _ +++
Because Yin —- Ya —— Yin ,

det(Y)) = (—l)"-1 X inlaid) X YES;

i=1

det(Yz) = (—l)l-2 X £01.31) X Ytl.

i=1

det(Y) = (—1)J"1 East-T, + (-1)"'1 ZauYi-S
{:1 i=1

det(Yl) + (_1)J'-1 X (_1)U-2)-(j-1) X (_1)(l—2)—(j—1) X :0”sz

i=1 l 
= det(Y1)+ (—1)"""1 x (—1)""’ x Z «.th

i=1

= det(Y1)+ (—1)’-J'-1 x det(Yg).

When j > I, det(Y) = det(Yl) + (—1)""'1 x det(Yg). This concludes the nullator

part of the theorem.

Similarly, the norator part of the proof can be done in the same way. C]

Example 8 According to Theorem 5, the network determinant of Figure 3.6(a) is

equal to the summation of the network determinant of Figure 3.6(b) and Figure 3.6(c).

Table 3.1 shows the verification.

 

Figure Network Determinant

Figure 8(a) -GS*Gl

Figure 8(b) -G3*GI-G2*Gl

Figure 8(a) +G2*GI

 

 

 

    

Table 3.1. Symbolic Network Determinants of Example 4.
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(1) °‘ (2) “2 (3)
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(1) °' (2) m (3) (1) G‘ (2) “2 (3)

03 0 O 03

Figure 3.6. Example 4.

3.5 A Circuit Level Decomposition Application

Figure 3.7 shows a circuit which consists of two parts, connected at 4 nodes, including

the ground. Adm is a voltage controlled voltage source with an undefined transfer

function. Supposing both Am and B are complicated circuits, the process for com-

puting the symbolic network determinant of this circuit, ND, would need decomposi-

tion so that the transfer function can be obtained efficiently. However, according to

the methodology described in Equation (3.2)-(3.5) and Figure 3.2, it may produce 20

different cases. In this section, we will show how Theorem 4 and Theorem 5 further

simplify the proposed circuit level decomposition strategy.

Without affecting the circuit characteristics, two voltage controlled voltage sources

with values of one are inserted between nodes A, B, D, E, and nodes C, F, ground. The

voltage controlled voltage sources are substituted by the norator-nullator equivalent

circuit as shown in Figure 2.2. This may produce Figure 3.8. In this way, we can
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Figure 3.7. An Example Circuit with two parts.

 

 

il

Figure 3.8. The Equivalent Circuit
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Table 3.2. o and u indexes.

perform the decomposition at the inserted circuits so that the original circuits, Adm

and B, are kept unchanged. -

B is an m by m circuit and Adm is n by n. The inserted circuits produce extra

nodes to Figure 3.8. All these nodes have their unique node numbers and L > K >

J > I > H > G > AllOtherNodes. The 0 index and u index of each node can be listed

as shown in Table 3.2.

We assume that ho > a0, bu > an, do > ea, and du > eu. According to Corollary 1,

the network determinant of Figure 3.8 is equal to

NDla + (—1)9°+"“+1 x N02, (3.10)

where NDia and ND2 are the network determinants of Figure 3.9(a) and Figure 3.9(c),

respectively. This equation can be further simplified to

(—1)9°+°‘u+1 x ND1 + (—1)9°+"«+l x ND2, (3.11)
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where N01 is the network determinant of Figure 3.9(b).

Again, by applying Corollary 1, ND1 is found to be

ND11a+ (_1),-,+;, .x N012

= (_1)jo+cu+l X ND11 + (_1)jo+fu x N012, (3.12)

where ND11a, N011, and ND12 are network determinants of those circuits shown in

Figure 3.10. Because the circuit in Figure 3.10(c) has invalid sub-circuits,

N01 = (-1)J'°+‘=«+1 x N011. (3.13)

The same procedure can be applied to N02. Therefore,

N02 = N021 + (-1)J'°+f~ x N022

= (—1)J'°+f~ x N022. (3.14)

ND21 and ND22 are the circuits shown in Figure 3.11. Figure 3.11(a) has invalid

sub-circuits. It can be concluded that

ND = (_1)90+jo+cu+du X ND11 + (_1)go+jo+bu+fu+l X N022

= (.1)‘-‘«+0‘u+1 x N011 + (—1)”"+’" x ND22, (3.15)

for go + jo is an odd number. In this example, a 20-case decomposition approach is

reduced to only 2 cases. Each case has well decomposed sub-circuits.

According to the above discussion and Theorem 1, if the sign adjustment of all
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Figure 3.9. Cases expanded with respect to GI. (a) NDla, Network Determinant

without 61. (b) N01, Further Simplification of (a). (c) N02, Network Determinant

with Cl.
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Figure 3.10. Cases expanded with respect to G2 of Figure 16(b). (a) NDlla, Network

Determinant without G2. (b) ND11, Further Simplification of (a). (c) N012, Network

Determinant with G2.
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Figure 3.11. Cases expanded with respect to G2 of Figure 16(c). (a) ND21, Network

Determinant without G2. (b) ND22, Network Determinant with 62.
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the network determinants of the decomposed cases is one, the transfer function of the

circuit in Figure 3.7 is illustrated in Figure 3.12.

 

Ndet

 

5

 

_,
<

 

Ndet

  
  

  

Ndet

 

 

 
 

hall
lineal

Figure 3.12. Network Determinant Equation of obtaining transfer function

 

Figure 3.13 shows a variation of the transfer function of Figure 3.12. It is done

by applying a few simple algebraic operations so that its physical meanings can be

understood from the transfer function. According to section 2.2, the transfer function

of a circuit is the ratio of two network determinants which connect an extra nullator-

norator pair to the input-output nodes and the ground of the circuit. The K, a, and

,6 in Figure 3.13 are ratios of network determinants. Therefore, they are the transfer

functions of the specific circuits.

According to Figure 3.13, K is the transfer function of the circuit in Figure 3.7

with its Adm replaced by an ideal op-amp because an ideal op-amp can be modeled by
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Figure 3.13. a, 5 network representation of the transfer function.
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a nullator-norator pair. This is shown in Figure 3.14. a of Figure 3.13 is the transfer

function of B in Figure 3.7, accomplished by changing node C to be the new input,"

node A and B to be the new output, and by connecting an ideal op-amp with its input

at the old Output of B and with its output at the old Input of B. This is shown in

Figure 3.15. Similarly, fl is the transfer function of B accomplished by changing node

C to be the input, node A and B to be the output, and short the original Input node

to the ground. This is shown in Figure 3.16. Each of these figures represents a unique

circuit. Also, according to Theorem 5, the Adm represents the transfer function of

the voltage controlled voltage source in Figure 3.7.

 

 

VIN

 

 

a I

_r_—— —;

Transfer Function19$-

VIN

     

Figure 3.14. Schematic diagram of the transfer function K.

Through the above interpretation of Figure 3.13, one can find the sources of non-

ideal effects of a circuit. Then, a circuit designer can concentrate on the decomposed

a and 6 networks.
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Figure 3.15. Schematic diagram of the transfer function a.
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Figure 3.16. Schematic diagram of the transfer function 6.

 



CHAPTER 4

NUMERICAL

APPROXIMATION

STRATEGIES FOR SYMBOLIC

CIRCUIT ANALYSIS

The use of symbolic expressions to characterize input-output relations is an impor-

tant analytic tool with a wide range of applications in the analysis and synthesis of

networks and systems. However, the use of computer programs to accomplish sym-

bolic analysis has some inherent problems related to memory consumption as well

as, to the computation inefficiency of obtaining network determinants addressed in

chapter 2 and 3. The need for huge memory space for a moderate size commercial

chip would eventually further worsen the computation efficiency. An greater problem

is the large amount of output generated for the results of the circuits with more than

20 components. The volume of output generated in the symbolic analysis process

currently represents one of the most restrictive limitations on the symbolic analysis

technique. In this chapter, the proposed solutions are presented for different stages of

the symbolic analysis process, which include numerical analysis before, during, and

66
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after computation.

4.1 Numerical Approximation After Computa-

tion

The need for numerical approximation after computation is illustrated in the following

example. Mathematically, it is trading off accuracy for simplicity.

Example 9 Use symbolic approach to find the transfer function of the CMOS op-amp

in Example 2.

Answer: For simplicity, the low frequency small signal CMOS model is used

in this example. The component values of the small signal model of each transistor

is obtained from Pspice by using .0? card. A symbolic program [4] would generate

the following results, where V6 represents the open loop gain.

Numerator of : V6

TERMS SORTED ACCORDING TO POWERS OF 3

s**1 terms:

+ sCl*GM8*GM4*GM2*GM1 + sCi*GM8*GM4*GM2*GDSl

° + 8C1*GM8*GM3*GM2*GM1 + 8C1*GM8*GM3*GM2*GDSS

16 lines not shown

It!***********************************************

NUMERICAL VALUE OF ABOVE SYMBOLIC RESULT
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+ 2.543439-30 * s**1 - 1.942269-22 * s**o

************************************************

Denominator of: V6

TERMS SORTED ACCORDING TO POHERS OF 8

s**2 terms:

sCL*sC1*GM8*GM3*GM2 - sCL*sCl*GM8*GM3*GM1

- sCL*sCl*GM8*GM3*GDSS - sCL*sC1*GM8*GM3*GD82

- sCL*sC1*GM8*GM3*GDSl - sCL*sCl*GM8*GM2*GDSS

- sCL*sCl*GM8*GM2*GDSl - sCL*sC1*GM8*GM1*GD83

- sCL*sC1*GM8*GDSS*GD83 - sCL*sC1*GM8*GDSS*GDSl

- sCL*sCl*GM8¥GDS3*GDS2 - sCL*sC1*GM8*GDSS*GDSl

- sCL*sCl*GM8*GD82*GDSI - sCL*sC1*GM3*GM2*GD88

133 lines not shown

************************************************

NUMERICAL VALUE OF ABOVE SYMBOLIC RESULT

- 1.790789-36 * s**2 - 3.05371e-29 * s**1 - 1.14017e-26 * s**0

************************************************

Clearly, the full symbolic result is too complicated to be used. Since the values of

the components in this op-amp are known, and the coefficient of each order of s is

dominated by only a few terms, the above symbolic result can be approximated and

simplified. The following is the result of using 5% approximation.

Numerator of : v6
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TERMS SORTED ACCORDING TO POWERS OF 8

s**1 terms:

+ sC1*GM4*GM2*GM1 + sC1*GM3*GM2*GM1

s**0 terms:

- GM6*GM4*GM2*GM1 - GM6*GM3*GM2*GM1

*ttt*##*********##***********ttttttttttttttttttt

NUMERICAL VALUE OF ABOVE SYMBOLIC RESULT

+ 6.78776e-26 * s**1 - 5.18338e-18 * s**0

*************sttstttststtsssstt*****************

Denominator of: v6

TERMS SORTED ACCORDING TO POWERS OF 3

s**2 terms:

- sCL*sCI*GM3*GM2 - sCL*sC1*GM3*GM1

s**1 terms:

- sC1*GM6*GM3*GM2 - sCl*GM6*GM3*GM1

s**0 terms:

- GM4*GM1*GDS7*GDS2 - GM4*GM1*GD36*GDS2 - GM3*GM2*GDS7*GDS4

- GM3*GM2*GD56*GDS4 - GM3*GM1*GDS7*GDS4 - GM3*GM1*GDS7*GDS2

- GM3*GM1*GDSS*GDS4 - GM3*GM1*GDSG*GDS2

*******$***************************************III
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NUMERICAL VALUE OF ABOVE SYMBOLIC RESULT

- 4.74668e-32 * s**2 - 7.974439-25 * s**1 - 3.029e-22 * s**0

' ***********************************************It!

Now, the simplified result is ready for analyzing this op-amp. D

The procedure for performing numerical approximation involves tedious floating

point operations and sorting. When the size of the symbolic result increases, the

computation time needed increases. Therefore, many approximation strategies have

been proposed.

4.1.1 Numerical Approximation in ISAAC

The numerical approximation algorithm implemented in ISAAC [5] [23] is briefly

introduced in this section. ISAAC’s approach inspired the development of the ap-

proximation method of Sspice version 2.0.

The error definition being used in ISAAC is the accumulated absolute error (A :

CA: ZIMQI

Iglxll £=£,

(4.1)

where g(g) is the original expression, t,~(_x) are the pruned. terms, and go is the point

of evaluation. Notice that in the numerator, the absolute values are summed. The

error CA used in ISAAC is an estimation of the effective error, because the numerical

values of the terms may cancel each other at the numerator of equation (4.1).

The approximation algorithm of ISAAC consists of two steps [23]. First, all terms

smaller than the fraction cm“. of the original expre’ssion’s mean value are discarded;
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i.e., all t.-(x) terms are discarded for which

2: |t£(£o)l S m (4.2)

lg(x)l n

with n being the number of terms in the original expression g(x) and cm, the maxi-

mum error as supplied by the user. Then, the remaining terms are sorted according

to their magnitude and the smallest terms are removed as long as e < cm“. This

approximation can be done for a specific frequency or over the whole frequency range.

The numerical approximation approach implemented in ISAAC spends expensive

resources on sorting and indicating errors specified by the circuit designer. But, the

error estimation definition, which is based on the accumulation of the absolute values

of the terms that are given away, falls short of accomplishing its goal.

4.1.2 Numerical Approximation in SCOPE

SCOPE [24] is a Symbolic Circuit Output Processor and Evaluator. It allows the

user to input numerical values for all the symbolic variables in order to generate a

system function consisting of numerator and denominator polynomials in powers of

s with numerical coefficients. This capability is also available in Sspice [4].

SCOPE also permits the user to retain any one of the symbolic variables as a sym-

bolic quantity while numerical values are assigned to the other symbolic variables.

This generates a symbolic input-output function consisting of numerator and denom-

inator polynomials in powers of s with coefficients which are functions of a single

symbolic variable. This is a mixed numerical and symbolic representation. How- '

ever, SCOPE is limited to either using only one symbolic variable format or using all

symbolic variable format expressions.
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4.1.3 Numerical Approximation in Sspice

The numerical approximation technique of Sspice [4] is based on the fact that

1

f(8) = +1, 

fi
l
t
-
‘
fi

2
2

when a >> b. Sspice finds the largest term of each coefficient of orders of s. Then.

throws away all the t,- terms in which

Itil

ltlargestl

 

< ézhmhazd-

etlu-eahold should be given by the user. This method avoids the complicated sorting

mechanism which is necessary in ISAAC. Sspice version 2.0 provides the actual nu-

merical error generated by the above procedure. This gives the circuit designer a

concrete basis with which to evaluate the quality of their approximations.

Also, Sspice version 2.0 allows any number of symbols be substituted by their

numerical values. This makes Sspice version 2.0 a complete mixed symbolic and

numeric circuit analyzer and, thus, a more flexible one than SCOPE.

4.2 Numerical Approximation During Computa-

tion

In order to make symbolic circuit analysis practical for large circuits, effective numeri-

cal approximation is essential. In the past, the objectives of numerical approximation

were focused on providing more informative answers to the circuit designer. Huge

symbolic solutions were reduced to a few dominant terms so that critical circuit

characteristics could be identified [25] [4] [5]. This approach has been successfully
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implemented in many symbolic analog circuit analyzers. It is called numerical ap-

proximation after computation.

Through the usage and implementation of Sspice, it has been found that full

symbolic computation is highly memory consuming. Without a good approxima-

tion strategy during computation, most of the existing computing systems cannot

handle a circuit like an op-amp or a power supply regulator, because of the limited

physical memory available. If we could approximate the intermediate results during

computation, then the symbolic approach of circuit analysis would become practical.

Two factors affect the applicability of a numerical approximation strategy : effi-

ciency and reliability. Traditional numerical approximation techniques involve search-

ing, sorting, and high precision floating point computation. All these are highly time

consuming. Executing the numerical approximation only once after obtaining a spe-

cific matrix determinant is acceptable. However, performing it many times during the

determinant computation would not be desired. Since the matrix determinant can

be obtained by decomposition, as described in section 3.2, numerical approximation

can be applied only to the result of each sub-circuit, so that cpu time can be saved. I

Furthermore, the existing approximation techniques, which throw away those

unimportant terms, produce errors. If we apply the same technique during com-

putation, the accumulation of errors may result in an unacceptable answer. The new

technique , now, replaces the unimportant terms by their numerical values so that the

accuracy of the results can be preserved. Therefore, the new approximation technique

in Sspice makes this tool a mixed symbolic and numerical circuit analyzer.

The application of the new technique still needs more attention. The mixed nu-

merical and symbolical solution may have terms which should be cancelled with full

symbolic computation, now, left as a part of the solution. This is due to the trunca-

tion error of the floating point operation. Therefore, the user or the analyzer should

check whether there exists duplicated component names [2] and circuit loops [9] . All
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P11 P21

-.1_-

P12 P22

03)

Figure 4.1. A Example for Approximation

these terms should be replaced by their numerical values as described for the new

approximation strategy.

Example 10 Figure 4.1 shows a circuit. Use the approximation during computation

technique described above to find its network determinant.

As shown in Figure 4.1(a), this circuit can be decomposed into P1 and P2. Accord-

ing to section 3.2, the network determinant is equal to P11 x P21 + P12 x P22, where

P11, P12, P21, P22 are the network determinants of the decomposed sub-circuits

shown in Figure 4.1(b). Table 4.1 shows the network determinants with and without

approximation. The threshold value is 0.05. This example shows that the application

of the new approximation method to the decomposed sub-circuits can maintain the
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without approx. with approx.

+8C2*SC1*°1 +sC2*sC1*Gl

P11 +801*G3*Gl +sC1*G3*Gl

*301*G2*Gl +16'10*8

+sC4*sC3*GG

+sC4*sC3*G5 *804*SC3*GG

P21 +8C3*GG*G5 +8C4*8C3*G5

+scstcstc4 A +3C3*65*95

+303¢GS¢G4 *29'14*3

 

+scz*301*63*61 +sc2tsC1*GS*Gl

P12 +sCl*GS*G2*Gl +sc1*63*G2*61

 

+sC4*GG

+SC4*95 +sC4tG6

*8C3*65 +8C4*GS

P22 +BC3*GS +29-8ts

+GG*95 +G6*G5

*GG*G4 +2e-8

+GS*G4     
 

Table 4.1. With and Without Approximation for P1 and P2

correct numerical values while reducing the number of terms for each case. E]

4.3 Numerical Substitution Before Computation

For the approximation during computation strategy, the circuit designer can plug in

the numerical values. They are identified or aesumed not to be the critical compo-

nent of a circuit before computing the matrix determinant. This is called numerical

approximation before computation. This technique has been extremely successful

for analyzing large circuits. Circuit designers can. identify the critical components

via their experiences and then verify their theory by running the circuit analyzer.
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Example 15 in section 7.3 shows the application of this technique.



CHAPTER 5

SYMBOLIC SENSITIVITY

ANALYSIS

In order to design a high—performance analog circuit, the designer should marshal

every detail which may affect its functionality and performance. One of the most

important measures which states the characteristics of a design is how sensitive the

circuit is with respect to a specific element. Therefore, designers can design a more

suitable circuit by trading off different factors. Sometimes, the changing of an ele-

ment value may affect the sensitivity of other elements to a specific factor of merit.

Therefore, a designer would appreciate not only to have the numerical value of the

sensitivity measure but also its constitutions so that some trade offs can be considered

.more in-depth.

5.1 The Implementation of Symbolic Sensitivity

Analysis

The calculation of sensitivity can be substantially simplified by applying the following

rules which are called Sensitivity Algebra [3]. The symbolic sensitivity analysis, SEN()

is done by applying the following rules recursively.

77
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1. If H = c, where c is a constant, then SE = 0.

2. IfH = cx, then S}: =1.

3. If H = [cf(x)]", then 55’ = n51").

fISZ‘ + 12512 + + 35;».
4. IfH: f1($)+f2(1')+...+fn($), then 55’ = fl +f2 + -.-+fn

5. If H = f1(x)f2(x)...f,,(x), then 51’ = S," + 5,? + + Si".

The following is an example to show how these rules work.

Example 11 IfQ = 3_1—K, then

53 = 5k - 27K

_3S§"< + (-K)S;;-"'

3 — K

 

___£"__
3 — K

The symbolic network functions of a circuit are generally of the form

. N(3,P1,P2,u-,Pm)
H =

(8) 0(33P1,P2,u-,Pm),

(5.1)

where N and D are both polynomials. Therefore, the sensitivity analysis formula

becomes

 

N D
H N D

S, = .S‘,,,-.S‘,,,=—1V‘p—7)a

__ N,xD—D,xN

— NxD ’

where N, is a polynomial that includes the element p in every terms. The polynomial

of D, also has the same pr0perty. Usually, the numbers of the terms in N and D

are much greater than those in N, and D,, respectively. Therefore, the computation

of N x D is very costly. If the user is choosing the'numerical approximation Option,

then we can take advantage of approximating N and D before multiplying them to
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get the denominator of Equation (5.2). Therefore, QSNO is implemented according

to the following Quick Sensitivity Algorithm.

Quick Sensitivity Algorithm : QSN(N/D,p)

Np - NUM(SEN(N,p))

Dp - NUM(SEN(D,p))

If approximation is selected

Then { Na 8 Significant terms in N;

Da I Significant terms in D; }

Else { Na I N;

Da 8 D; }

Return( (Np*D-Dp*N)/(Na*Da) );

One may also notice that OSN(H,p) improve the speed of the computation without

sacrificing the accuracy of other than the threshold value used for numerical approx-

imation, set by the user. However, SEN(SMY(H) ,p) may suffer unexpected errors.

Finally, DIF (11.2) is implemented as SEN(H,x)*H/x.

5.2 Applications of Sensitivity Analysis

Figure 5.1 is a Tow-Thomas active filter.

We would like to evaluate the quality of this design.

By using Sspice, the voltage of node 2, say V2, can be obtained as shown in

Equation 5.3 with V, = 1.

302* G6 at G4

V2: —sC2*sCl*G4-sC2*G4*G1—GS*G3*G2°

 

Figure 5.2 shows its frequency response.

Sspice can identify that V2 is a bandpass filter function and provides its Ho and
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Figure 5.1. Tow-Thomas Active Filter

 

V2 of Tow-Thomas active filter

10 u 1 r

Without ESR--—

W1 ' SR of 119 ohm 4*-

   
 

_2 I j 1

900 950 1000 1050 1100

Frequency

Figure 5.2. Bandpass filter function of V2.

I
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Do. They are
 

G5*G3*G2

CZ*CI*G4

Q _\/Cl*G5*G3*G2

°" Gl*\/02*G4 '

Also, by the use of 83:25 , one can find how resistor R3 affects the function of V2.

 W, = , and (5.4)

 

 (5.5)

Sspice can give the following equation,

G5*G3*GZ

—sC2*sCl*G4—sC2*G4*
G1—G5*G3*Gg (5'6)
 

V2 _

Sea —

which shows that R3 will affect V2 more at low frequencies than at very high fre-

quencies. Figure 5.3 shows the plot.

 v v v

SHIVZJZJI *-

V

 

 

d
b

   -IO ‘ 4* ‘ ‘ ‘ ‘ t—‘J- . A 4~ ‘ - - - A

100 1000 10000

Frequency

Figure 5.3. Sensitivity of V2 with respect to R3.

According to Equation 5.6, a designer can suppress SE3 by increasing the value

of G4. On the other hand, Equations 5.4 and 5.5 show that Cl and C2 can affect the

W, and Q, of the filter function V2.

f
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An interesting problem is how the imperfections of the capacitors affect the filter

function. Ideally, the admittance of a capacitor has a phase angle of 90 degree.

However, in reality, a capacitor may have a dissipation factor other than 0, which is

usually modeled as a series resistor. We can utilize the sensitivity analysis capability

of Sspice to study how dissipation factors affect the circuit. Suppose the capacitors

of Figure 5.1 are mylar capacitors, the ESR would be around 119 52, which represents

a dissipation factor of 0.0075. The following table shows the dissipation factors of

different capacitors.

 

DISSIPA’I‘ION FACTOR

MYLAR 0.0075

CERAMIC(NPO) 0.0002

TANTALUM 0.04    
Figure 5.2 shows the nonideal effect to the bandpass filter function of V2.

The following is an Sspice input file for the Tow-Thomas active filter. Rs] and

R52 are the series resistors of the nonideal capacitor C1 and C2, respectively.

Tow-Thomas Active Filter

vs 7 0 AC '1

R1 1 2 806K

R2 2 3 4K

R3 4 5 7.96K

R4 5 6 1K

R5 1 6 7.96K

R6 1 7 100K

C1 19 2 0.010

C2 20 4 0.010 .

XOA1 0 1 2 IDEAL OP-AMP

XOA2 0 3 4 IDEAL OP-AMP

XOA3 0 5 6 IDEAL OP-AMP

R82 3 20 1

R81 1 19 1

.END
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Then, Sspice can give the expressions for W,, Q, and their sensitivities with

respect to 681 and G82. The following are the Sspice printouts and their plots. With

this printout, symbolic solutions can be obtained.

Numerator of: No**2=TRM(DEN(V2),0)/TRM(DEN(V2),2)

+ GSZ*GSI*GS*GB*GZ

Denominator of: Ho**2-TRM(DEN(V2),0)/TRM(DEN(V2),2)

+ GS2*GSI*G4*C2*C1 + GS2*G4*61*C2*C1 + GS*G3*G2*C2*C1

*tt***#***************t****##***********

Numerator of: SEN(No**2,GSl)

+ GS2*G4*GI + G5*G3*G2

Denominator of: SEN(No**2,GSl)

+ GS2*GSl*G4 + GSZ*G4*GI + GS*GS*G2

*##1##*********************************1H!

Numerator of: Qo**2

+ GS2*GS2*GSl*GS1*GS*G4*G3*G2*C2*C1

+ GSZ*GS2*GS1*GS*G4*GB*G2*G1*C2*C1

+ GS2*GS1*GS*GS*GS*GS*G2*G2*C2*C1

Denominator of: Oo**2

GS2*GS2*681*GS1*G4*G4*Gl*G1*C2*C2

2*GS2*GS2*GS1*G5*G4*63*G2*G1*C2*Cl

GS2*GS2*GS*GS*G3*GB*G2*G2*C1*Cl

2*GS2*GS1*GS1*GS*G4*63*G2*GI*C2*C2

2*GS2*GS1*GS*GS*GS*G3*G2*GZ*C2*C1+
+

-
+

4
-

+
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+ GS1*GS1*GS*GS*GB*G3*G2*G2*C2*C2

****************************************

Numerator of: SEN(Qo**2,GSl)

+ 2*GSZ*GSZ*GSZ*GSI*GS1*GS*G4*G4*G3*GZ*G1*C2*C1

- GSZ*GS2*GS2*GS1*GSl*G4*G4*G4*G1*Gl*G1*C2*C2

+ 2*GS2*GS2*GSZ*GS1*GS*GS*G4*G3*G3*G2*G2*C1*C1

(Total 9 terms )

Denominator of: SEN(Qo**2,GSl)

+ GS2*GS2*GS2*GS1*GSl*GSl*G4*G4*G4*Gl*Gl*C2*C2

+ 2*GSZ*GS2*GS2*GSI*GS1*GS*G4*G4*G3*G2*G1*C2*C1

+ GS2*GS2*GS2*GS1*GSI*G4*G4*G4*G1*G1*G1*C2*C2

(Total 15 terms )

The characteristics of Tow-Thomas filter with respect to the ESR, therefore, can

be illustrated in Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7. These circuit

analysis capabilities are not available with any other numerical SPICE like programs.

Another active filter of the same class is the State Variable Active Filter, which is

shown in Figure 5.8[4]. With V,,,=1, Sspice can identify that V6 is a bandpass filter

which is very similar to V2 of the Tow-Thomas active filter in Figure 5.1.

In the same way, we can study the Q0 and W0 of the filter and their sensitivities
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Tow-Thomas Active Filter
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Figure 5.4. Wo of Tow-Thomas Filter.
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Figure 5.5. Sensitivity of Wo of Tow-Thomas Filter.  
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Tow-Thomas Active Filter
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Figure 5.6. Q0 of Tow-Thomas Filter.
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Figure 5.7. Sensitivity of Q0 of Tow-Thomas Filter.
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Figure 5.8. State Variable Active Filter

when there exist nonideal capacitors. Figure 5.10 demonstrates the value of Q0.

Computing the Q0 sensitivity with respect to GSl, which is the series resistor

modeling the dissipation factor of C1, is a tedious job. This will result in a complicated

equation, as shown in the following.

Numerator of: SEN(Qo**2,GS1)

- 432*GSC2*GSC2*GSC2*GSC1*GSC1*G4*G4*G4*G4*G1*C2*C2

+ 96*GSC2*GSC2*GSC2*GSC1*GSC1*G4*G4*G4*G4*G1*C2*C1

- 432*GSC2*GSC2*GSC2*GSC1*GSC1*G4*G4*G4*03*Gl*C2*02

(Total 37 terms )

Denominator of: SEN(Oo**2,GSl)

+ 144*GSC2*GSC2*GSC2*GSC1*GSC1*GSCl*G4*G4*G4*G4*CZ*C2

+ 288*GSC2*GSC2*GSC2*GSC1*GSCI*GSC1*G4*G4*G4*G3*C2*C2  
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State Variable Active Filter
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Figure 5.10. Q0 of the State Variable Active Filter.
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+ 144*GSC2*GSC2*GSC2*GSC1*GSC1*GSC1*G4*G4*G3*GS*C2*C2

(Total 61 terms )

It is very hard to understand a complicated equation like the one above. With 1%

approximation, Sspice can simplify the equation into a much simpler one, which is

shown below.

Numerator of: OSN(Oo**2,GSl)

+ 288*G4*G3*01*C1 + 96*03*03*01*C1

Denominator of: OSN(Qo**2,GSl)

+ 288*GSC1*G4*G4*C2 + 144*GSCI*G4*G3*C2

Figure 5.11 shows that with 1% approximation, the sensitivity equation can be

simplified with little sacrifice to the accuracy. We may find that the ESR of C2 is very

insensitive to the sensitivity equation of Q0. Also, we can improve the Q0 sensitivity

with respect to the ESR of C1 _by increasing C2 and decreasing C 1.

With all the information provided above, we can conclude that, basically, the Tow-

Thomas filter in Figure 5.1 is as good as the state variable active filter in Figure 5.8

in terms of its Qo sensitivity with respect to the nonideal capacitor.

Example 12 Figure 5.8 shows the schematic of the State Variable active filter, where

the transfer function at node 6 is a bandpass filter function. When R1 = R2, and

R5 = R4; = R7 always hold, this can be realized by a Programmable State Variable

active filter chip set. The bandpass frequency is about 1000 Hz; and the Q0 is about

50. Suppose CIis a mylar capacitor which has the dissipation factor of 0.0075, this
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would produce deviations in Q0 which are shown in Figure 5.13. This dissipation

factor can be modeled by putting a series resistor of 11.9 (I with C]. Is there any way

that we can improve this Qo error by changing the values of other components without

aflecting the original design specifications while still using a mylar capacitor for C1 1’

V6 of State Variable active filter

18 . .
 

Without ESR--—

Wit- :SR of 119 ohm 4*-

   
 

900 950 1000 1050 1100

Frequency

Figure 5.13. Bandpass filter function of V6 in Svaf

Answer: Usually, what a circuit designer can do is to use the design formulas

for the ideal case to find an alternative design for the same specifications, then plug

in the nonideal capacitor model to do the simulation. Every time the designer fails

to pass the function verification, he really doesn’t know how to make the next move,

because it is too complicated.

By solving Qo sensitivity symbolically with 1% approximation, we find that

8% _ (288*G4+96*G3)*G3*G1*Cl

GS“ (288.G4+144.03).04.051.02.;2'

 

(5.7)
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Because

G3 >> G4,for

R3 = 4.49K, and

R4 = 750K,

and

Q _ G3 x «:1

° 3 x 6'4 x «02’

W G1

° J01 x 02’

G51

1““ - m

then,

83;, = 9 x D.F. x 0,, (5.8)

where D.F. is the dissipation factor of C1. Therefore, there is no way that a circuit

designer can accomplish the task stated in Example 12. C]

 



CHAPTER 6

SYMBOLIC STABILITY

ANALYSIS

The stability of an analog circuit is one of the most important considerations for

the circuit designers. Usually, the verification by using a numerical circuit simulator

doesn’t provide enough information about the sources of instability. This leaves a

great opportunity for the symbolic approach. A

Since the symbolic circuit analyzer provides the transfer functions of a linear

circuit in 8 domain, the stability of this circuit can be examined by doing the Hurwitz

Test to the denominator of its transfer functions.

6.1 Hurwitz Test Fundamentals

It is well known that the denominator of the transfer functions of a stable system

shouldn’t have any zeros in the left half-plane and the zeros at the j-axis should be

simple. The test for this property is known as a Hurwitz test, and the denominator is

referred to as a Hurwitz polynomial. Before going into the details of this procedure,

some of the important properties of Hurwitz polynomials are discussed.
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Let the polynomial be written

Q(s) = ao + als + 0232 + - - ' + ans” ‘ (6.1)

with the even and odd parts

m(s) = 00+ (1282 + ~- - + ans"

n(s) = als + a;.,s3 + - - - + a,,.ls"‘l (6.2)

for n even, and with the last terms interchanged if the degree n is odd. Q(s) is not

a Hurwitz polynomial unless all coefficients are positive and no intermediate terms

are missing. The only exception is the degenerate case in which the polynomial is an

even or an odd function of s. Hurwitz polynomial can result only from the product

of the following three kinds of factors

(3 + a) for a real and positive,

(32 + b2) for b real, (6.3)

(s2 + 2as + a2 + b2) for a and b as above.

Let

m(s)

n(5)°

The zeros of the polynomials, m(s) and n(s), are all simple and are restricted to line

 

91(3) = (5-4)

on the j-axis where they occur in conjugate pairs and alternate with each other. Thus

n(s), being odd, contains 3 as a factor and hence is zero at s = 0. The next largest

pair of zeros in absolute value belong to the polynomial m(s), the next largest are a

pair of j-axis zeros contained in n(s), and so forth. This situation is the alternation

property of the zeros of m and n along the j—axis. Such a function, 111(3), is the
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driving-point impedance or admittance of a lossless network - one containing only

inductors and capacitors [26]. Suppose w(s) is an impedance function and the order

of the numerator is one degree higher than the denominator, then,

11/(3) = 7M3) - 018 (6-5)

would still be a realizable LC driving-point impedance function. Similarly,

I

m— 023 (6.6)

¢Il(s) =

would become a realizable LC driving-point admittance function.

The pattern of the test is thus established. If continued in the same manner. it

leads to a continued-fraction expansion of the rational function 211(3) of the form

 

$09) = 018 + I (67)

(123 + 1

033 +

 

 

 .+ 1

.+ 

(1,3

in which n is the degree of the original polynomial, and all coefficients a] - - - an must

be positive if this polynomial is to have Hurwitz character.

The discussion so far as this testing procedure is concerned has assumed that the

given polynomial, Q(s), has no zeros on the j-axis. If it does, then the process of

continued-fraction development will not continue for n terms but will terminate pre-

maturely, and the j-axis factors will be placed in evidence at the point of termination.

The reason for this behavior of the process is due to the fact that j-axis factors, as

shown in set (6.4), have the form (32 + b”), which is an even function of s and hence

if Q(s) = m(s) + n(s) contains such a factor then" it must separately be contained

in both m(s) and n(s). In the rational function w(s) = gig-9)) such a common fac-
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tor or factors cancels, and hence the continued division and inversion process would

terminate sooner than it normally would. This process is similar to the procedure of

obtaining the highest common factor of two given polynomials.

Because the derivative of a Hurwitz polynomial is again a Hurwitz polynomial, it

is shown [26] that (m+ H311) and (n+ dag) are Hurwitz polynomials when (m(s) +n(s))

is a Hurwitz polynomial. This yield a simple procedure for determining whether a

given even polynomial has only simple j-axis zeros, for if it has only such zeros then

its derivative likewise has only such simple zeros which alternate with those of the

given polynomial. An even Hurwitz polynomial divided by its derivative must then be

a ((2 function like Equation (6.7) and must yield a continued fraction with all positive

coefficients. If this test fails, it may be concluded that the even polynomial does not

have all simple j-axis zeros.

The above discussions complete the mathematical development of Hurwitz test.

6.2 . Implementation of Hurwitz Test

The implementation of Hurwitz test in Sspice follows the procedure described in

section 6.1. The polynomial under test is verified to know whether the ratio of its

even part and its odd part is a realizable RC admittance or impedance function. If

the continued-fraction procedure is terminated prematurely, the common factor of

the even and odd polynomials should be an even polynomial to continue the test.

Otherwise, the polynomial under test is not a Hurwitz polynomial. Then, the ratio of

the above common factor and its first derivative should be a realizable RC function,

which is tested by the same continued-fraction procedure only once. The following is

the algorithm.

ALGORITHM : (Hurwitz Test)

Hurwitz_test (polynomial )
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{

‘ if( continued-fraction(polynomial,0)==Pass ) {

return(Pass Hurwitz Test);

}

else {

return(Fail Hurwitz Test);

}

continued-fraction(p,level) .

/* p is the polynomial and level is an integer */

/* levels-1 represents there exist j-axis zeros */

/* level==0 when this algorithm was called by *l

/* user’s command */

{

p1=odd_polynomial(p);

p2-even-polynomia1(p);

if(p1->degree<p2->degree) {

P3'P1;

Pi'pZ;

P2'P3;

}

p38NULL;

while( p2 is not a zero polynomial ) {

A result-p1/p2;

p3=result->remainder;

p4-resu1t->quotient;

if( p4 is a polynomial other than 8‘1 only and

the coefficient 0f s‘l is positive and

the coefficient of s‘O is 0 ) {

return(Fail);

}

01-92:

P2'P3;

}

if( p1 is not an even polynomial) {

return(Fail);



else

}

{
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if( p1 is larger than degree of 0 ) {

else

if(level=-1) {

/* Polynomial has multiple zeros */

/'II at the j-axis */

return(Fail);

}

p2-d(p1)/ds;

P4'P1*P23

if(continued-fraction(p4,1)==Pass) {

return(Pass);

}

else {

return(Fail);

}

}

{

return(Pass);

}

Example 13 Figure 5.8 is a State Variable Active Filter. If the op-amps are all

- ideal, would this circuit always be stable when diflerent component values are assigned

when R1 = R2, and R5 = R6 = R7?

linsvnuu Applying the above algorithm, Sspice would give a report below.

Hurwitz Test of DEN(V8) :

The Following Rational Function Should Be >= 0

+2tc4tc1+2tcstc1

a----------------a

+6*G4*G1
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The Following Rational Function Should Be >8 0

+6*G4*C2

a--------3

+2+04+01+2+03+01

sssssssssst*ssssssssssssstsssssssssssssssssssss

The Following Polynominal PASS the Hurwitz Test

*******************************.****************

TERMS SORTED ACCORDING TO POWERS OF 8

s**2 terms: [0.000% error]

+2 + sC2*sC1*G$ (99.34%)

+2 + sC2*sC1*G4 (100.00%)

s**1 terms: [0.000% error]

+6 * sC2*G4*Gl (100.00%)

s**0 terms: [0.000% error]

+2 + 03+c1+01 (99.34%)

+2 + G4*G1*G1 (100.00%)

operation of HTZ(DEN(V8)) :

********>> Hurwitz Test Completed <<********

Therefore, the necessary conditions for a stable State Variable Active Filter are

 

+2*G4*C1+2*63*C1 >’0

+6*G4*G1 “ ’
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+6*G4*C2

+2*G4*61+2*G3*Gi -

 

This is alway true in Figure 5.8 when R; = R2, and R5 = R6 = R7. Therefore, this

is a stable arrangement for a programmable State Variable Active Filter when ideal

'op-amps are used. [I]

A circuit designer, thus, understands the stability of a circuit more in-depth so

that he/she can make the best decision.

 



CHAPTER 7

IMPLEMENTATION OF SSPICE

VERSION 2.0

7.1 Matrix Reduction Method

Nodal analysis is one of the most popular method for obtaining network functions.

A circuit analyzer can layout the nodal equations in the form of

I = Y x V.

Therefore, the node voltages can be found by using Cramer’s rule which requires the

values of two matrix determinants. One matrix is the admittance matrix Y; the other

is Y with a column replaced by I for the corresponding node.

Because, symbolic division is not preferred for expanded format, the matrix deter-

minant is obtained by applying the following formula recursively :

n-l

det(Y) = X:(—1)"+1 x Gm x det(Ym), (7.1)

i=1

where det(Ym) is the minor obtained by removing the first column and the i’th row
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GZ G3

G4

Figure 7.1. Series resistor circuit.

of Y; and Gm are the entries of the first column of Y.

According to Equation (7.1), the computation complexity of obtaining matrix

determinant depends not only on the dimension of the matrix but also the sparsity

of the matrix. A matrix with less non-zero entries and less terms represents less

computation and less cancellation while obtaining its determinant. This is because

the additions and subtractions of a column or a row into another column or row within

a matrix does not affect the determinant of the new matrix. If the application of these

basic operations can make a matrix more sparse, then the computation complexity

of find its determinant can be improved. The following is an example.

Example 14 The admittance matrix of Figure 7.1 is

[ G1

-01

o

0 
Find the determinant of Y.

—G1

G1 + G2

—G2

0

0

-02

G2 + G3

-03

0

0

—G3

G3 + G4  

(7.2)
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Adding the first column of Equation (7.2) into the second column results in

I- '1

  

G1 0 0 0

—G1 G2 —G2 0

det(Y) = . (7.3)

0 —Gz 02 ‘1' G3 —G3

0 0 —G3 Ga + G, J

Similarly, adding the first row of Equation (7.3) into its second row would produce

G1 0 0 0

  

0 02 —Gz 0

det(Y) = . (7.4)

O —G;» G: + G3 -Ga

0 0 -Gs Gs + G4

If we repetitively apply these rules to rest of the columns and rows, we may produce

that _ .

G1 0 0 0

0 G2 0 0

det(Y) = ' . (7.5)

0 0 G3 0 -

0 0 0 G4 ]  
The computing effort needed for Equation (7.5) is, thus, far easier than that of Equa-

tion (7.2) when we apply Equation (7.1) for obtaining the determinant of Y. El

Moreover, sparsity and the dimension of a matrix are not the only factors which

affect the symbolic computation efficiency. In many cases, even though the application

of the basic row or column operations cannot increase the number of zero entries in a

matrix, the number of total terms may be decreased. This represents less cancellation

during the computation.

Also, if a column has only one non-zero entry, g;,,-, which is located at the i’th
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row, then all the other entries in the i’th row can be set to zero. Similarly, if a row

has only one non-zero entry, g,- ‘1', then all the other entries in the j’th column can be

set to zero. This may further ease the searching process in Equation (7.1).

This method has been found very effective for circuits with a dimension around

13 to 16. For example, the equivalent circuit of a chip bonding pad which has 14

components and whose dimension is 16, needs 77 seconds to produce its network

determinant without the above matrix reduction algorithm using Sspice on a SPARC

, 1 workstation. However, with the application of the reduction technique, Sspice takes

only 7.7 seconds to Obtain the result.

7.2 Obtaining Matrix Determinant

Besides a good decomposition strategy and a matrix reduction method, an efficient

algorithm for obtaining the determinant of an admittance matrix is equally important.

This is especially true when there exists a tightly connected sub-circuit which is hard

to be further decomposed. The determinant algorithm implemented in Sspice trades

off between run time efficiency and memory consumption, which is very similar to

the SLE/M algorithm in [23].

The determinant of a matrix Y, idet(Y), can be calculated by the following formula

n-l

det(Y) = X:(-—l)i+l x Gm x det(Ym), (7.6)

i=1

where det(Ym) is the minor Obtained by removing the first column and the i’th row

of Y; and Gm are the entries of the first column of Y. The minors can be calculated

recursively according to Equation (7.6). There are relationships between different

minors; they may share the same sub-minors. Figure 7.2 shows the relations among

the minors of the admittance matrix when calculating its determinant.
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Figure 7.2. Relations between minors.

 



106

There are different levels of minors. We define det(Y) itself to be the 0-level

minor. Y(.-'1') shown in Figure 7.2 represents a matrix with the i’th row and j’th

column of Y eliminated and is called a 1-level minor. Using a similar definition,

Y(,-,,-),(,,,) represents a matrix with i and p’th row and j and q’th column eliminated

and is referred to as a 2—level minor. For a matrix of dimension n, Sspice finds all the

minors needed from 0-level to (n-1)-level, and establishes the relations among different

minors. It also identifies the many minors that are actually the same. For example,

Y(,-,_,-),(,,,) and Y(,01.0.9) are the same 2-level minors. Finally, Sspice calculates the

minors from the (n-I)-level down to 0-level. The value of the (n-1)-level minors can

be obtained from the entries of the n’th column of Y directly. Whenever Sspice

completes the calculation of all the i-level minors, it releases the memory spaces

occupied by the value of (i+I)-level. Because the symbolic values of the minors

always consume a large amount of memory space, this strategy makes it possible to

handle more symbols.

It is also found that both the numerator and the denominator of a transfer func-

tion may share the same sub-minors. Saving the values calculated for those minors

may preserve computation efficiency. However, we find that, usually, the computation

of the numerator needs much less time than that of the denominator. For example,

the bandpass filter of the benchmark circuits in [27] takes 33 seconds with Sspice

version 2.0 on a SPARC-l station for the denominator and only 1.5 seconds for the

numerator. Unlike the symbolic program described in [5], Sspice does not save the cal-

culated minors with the exception of the 0-level ones, in order to save memory space.

Internally, Sspice calculates the denominator first, because the transfer functions at

different nodes have the same denominator. It only needs to obtain the numerator

when a specific transfer function is needed.
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7.3 Implementation of Sspice

Sspice version 2.0 accepts the user’s command interactively. Figure 7.3 shows the flow

chart of Sspice. In this section, the advantage of using the decomposition approach

is illustrated through the example of uA741 op-amp.

The default mode for Sspice version 2.0 is computation without decomposition.

It checks the validity of the input files, aborting when the input circuit consists of

loops of voltage sources, of nodes connected to branches which are all current sources.

and so on. Then, it generates the nullator-norator equivalent circuit and the nodal

equations for the full circuit. For transistors, a corresponding model as defined in the

input SPICE file is substituted in automatically. When the decomposition procedure

is issued by the user, the admittance matrices for the sub-circuits will be constructed.

One important mission for the circuit analyzer is to prepare critical information

a circuit designer needs. Sspice has a well designed equation manipulator. It receives

an equation from the user as a command, checks the syntax of this equation, puts

the valid equation into a buffer and asks for the next equation. After the user gives

all the functions, the equation manipulator begins to calculate the symbolic answers

- for all the equations together. Because the symbolic answers always take longer to

obtain than the numerical ones, users may want to key in all the commands one at a

time and let the computer run. If the user wants to get the current flow through the

resistor R1, and R1 is between node 3 and node 4, he/she can key in "(V3-V4) #01",

where G181/R1, to get the answer. Also, he/she can type in "SEN(V3-V4,G1) " to do

the sensitivity analysis of the voltage across R1 with respect to itself. Users can also

ask Sspice to plug in the numeric values of a set of components before the determinant

computation is executed so that memory consumption and computation efficiency can

be improved further. This produces partial symbolic solutions.
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Input Card
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Equivalent Circuit

User's Command

1 Construct Nodal

- Equations

User’s Command

Manipulator

Build in Applications Network Determinant

+’.,‘./ Solver

Filter Identification ,

Non-ideal Op-am

Error Analysns p ‘
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Approxxmator    
l

Outputs

Figure 7.3. Flow Chart of Sspice.
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For most situations of a medium size circuit, the symbolic solution can be overly

long and circuit designers can find this hard to work with. Sspice can evaluate the

numeric values for each term and throw away the insignificant terms. Usually, poly-

nomials with hundreds of terms are dominated by only a few. Therefore, Sspice can

do approximations for each coefficient of 3 according to a threshold value given by

the user. The program can identify the most significant terms of an order of s, then

eliminate those terms whose numerical values are smaller than the threshold value.

By this method, the output of Sspice becomes more interpretable. Also, the errors

due to this approximation are reported in the output.

Example 15 Figure 7.4 shows the SPICE file of a 741 chip without compensation.

The open loop gain is shown in Figure 7.5. This op-amp is unstable for closed loop

gains less than 40db. How could we compensate this op-amp so that it becomes stable

for all resistive feedback?

Answer: By using Sspice, users can substitute in the high frequency transistor

model [25] with a substrate capacitor. All the components are replaced by their

numeric values except 016, 017, 023B, and R8. The Laplace variable 3 is left as a _

symbol. Also, this circuit are decomposed at three nodes so that the computation

efficiency is improved. The cut set are node number 9, 16, and ground. Sspice, thus,

produces a circuit function of 8, G8, and the high frequency model parameters Of 0238,

017, and 016 as shown in Figure 7.6. According to the Sspice output in Figure 7.6,

the location of the first pole can be formulated to be

  

1 1.5798 x 10‘5 x 09117 x GPI16 + 1.1469 x 10"12

Zr x CPI238( 01117 x GM16 ~ 08

2.1732 x 10-10 x GP116 1.6858 x 10-12 3.1943 x 10'10 x GPI16

GM16 x G8 + 01117 - ' 01117 x GM16

  
 ).
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7415 OPERATIOIRL AMPLIIIR 80.61.6012

'.SUICRI 017411 4 5 1 13 25

0 Vi+ Vi- Vp+ Vp- Vout

Vin 100 0 AC 1

Vet: 100 4 3270

vmsoo

131100015

'In 13 0 DC -15

031 2 4 6 13 M1

0.2 2 5 7 13 M1

083 8 3 6 13 M2

084 9 3 7 13 M2

OHS 8 10 11 13 M1

086 9 10 12 13 M1

037 1 8 10 13 M1

088 2 2 1 13 M2

039 3 2 1 13 M2

OHIO 3 15 14 13 M1

0811 15 15 13 13 M1

0312 16 16 1 13 M2

0313A 21 16 1 13 M2 .25

03133 17 16 1 13 M2 .75

Ofl14 1 21 24 13 M1 3

0315 21 24 25 13 M1

QH16 1 9 18 13 M1

OB17 17 18 19 13 M1

0.18 21 22 23 13 M1

Il19 21 21 22 13 M1

0&20 13 23 26 13 M2 3

0821 20 26 25 13 M2

Ofl22 9 20 13 13 M1

08233 13 17 23 13 M2

0fl233 13 17 9 13 M2

0824 20 20 13 13 M2

R1 11 13 1X

R2 12 13 1X

R3 10 13 SOK

R4 14 13 SK

R5 16 15 39K

R6 24 25 27

R7 25 26 22

R8 19 13 100

R9 18 13 50K

R10'22 23 40K

R11 20 13 50K

.MODEL M1 NPN (BF-200 18-13-14 VIP-125 VJ$-.75

+ RB-185 30-15 CJE-.65P CJc-.36P TF-1.15N TRP4OSN CJSI3.2P MJ5-.Sl

.MODBL M2 LPN? (BF-50 '15-18-14 VAP-SO VJSO.75

+ RB-SOO 30-150 CJB-.1P CJC-1.0SP TP-27.4N TR-254ON CJ5-5.1P

* MJs-.5)

.0?

.AC DEC 100 1 IOOMEG

.PROBI

.END

Figure 7.4. The SPICE file of 741 chip without compensation.
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Figure 7.5. Frequency response of uA741 op-amp for gain and phase.
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This op-amp can be made stable by decreasing the value of the first pole so that a

reasonable phase margin is obtained at the frequency where the gain of the amplifier

is unity. According to the above equation, the value of the first pole can be decreased

by increasing the value of CPI233. This is done by adding a capacitor between the

emitter and base of 023B. A 30pF. capacitor, CC, between node 17 and 9, therefore,

compensates this op-amp with a phase margin about 80 degree. The function of a

compensated 741 chip is also shown in Figure 7.5. D

 

lulnrator 01: V25

+5.581520-246 1 .1122 +0.920526-235 1 .1121 +2.61725..2§4 1 .1126 +1.657050-214 1 .1119
+5.886450-205 1 31116 +9.60216o-196 1 .1117 +3.2ssvoo-2oz 1 .1116 +4.1a7zae-176 1 .1115
+1.1osose-169 1 .1114 +9.746660-162 1 .1113 -3.77414.-153 1 .1112 -1.67351.-1¢4 1 11111
-3.247636-136 1 s1110 -3.37697o—120 1 .119 -9.16272¢-121 1 .116 +2.625650-112 1 .117 +4
286020-104 1 .116 -7.021280-101 1 .115 +1.508330-88 1 3114 +4.370126-61 1 :11: +7 91454.
-74 1 3112 +8.40643o-67 1 .111 +3.821700-60 1 .110 ° .

......ttttfittttitttfifitittttt..tQOOOOQOOO

Dona-inator of: V25

TIRMS SORTED ACCORDING TO POIERS OF I

I1'22 terns: [0.0001 error)

+0.4749150—233 1 ICC1I1I1I1I1I1n1311131I1I1I1I1I1I1I1I1I1I1I10 (97.33t)
00.3904200-245 1 I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I (100.00.)

I111 tor-I: [0.0001 error)

+2.644150°56 ‘ ICC

+1.105080-69 ' I
£138,381)  I110 torus: [0.0001 error]

01.636400-65 1 1
(100 00$)

IUHERICAL VALUE OF ABOVE SYMBOLIC RESULT

+1.463790-244 1 I1122 42.153240-233 1 I1121 +5.354560-223 1 11 + 1 11
+2.113310-203 1 01118 +4.140790-194 1 I111? +4.519690-105 1 :111: +::211;:::122 1 :11i:
91.476090-167 1 01114 15.106900-159 1 I1113 +1.33037o-150 1 01112 42.660990-142 1 31111
+4.11177o-134 1 I1110 +4.09797o-126 1 I119 14.455610-110 1 I110 13.020220-110 1 I117 +1
405230-102 1 I116 15.227350-05 1 I115 +1.261010-I7 1 I114 +2.00050o-00 1 3113 +1 000720;
73 1 I112 07.043500-‘7 1 I111 91.636400-05 1 I110

.

Figure 7.6. Sspice output of open loop transfer function of 741 without compensation.
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Without decomposition, a SPARC-2 workstation need 1 hour to finish the job.

However, with the application of decomposition at node 9, 16, and the ground for the

above example, Sspice version 2.0 accomplished the task within 4 minutes. Usually,

circuit designers use trial-and-error to find the answer they need. This may require

several runs of a symbolic simulator. This example demonstrates the importance of

the composition and decomposition strategy.

7.4 Second Order Filter Function Identification

One of the most important circuit applications is signal processing. Analog filters play

an important role for both analog and digital signal processings. In many cases, the

characteristics of the analog filters determine the performance of the whole system.

Therefore, analog filter function analysis is the first step toward a successful design.

The primary function of a filter is to pass or to stop a band of frequencies between

the input and output. Figure 7.7 shows the behavior of the magnitude of the ideal

filter functions versus frequency. In each of these responses, there are pass bands and

stop bands as the name of the filter indicated. The filters of Figure 7.7 represent the

most desired response. Because circuits respond to a frequency with finite slopes, it is

impossible to synthesize a circuit which has the ideal behavior. Circuit designer have

to tradeofi among cost, performance, and other factors with an appropriate approx-

imation. Second order approximation is one of the most commonly used techniques.

Also, second order filter functions are the basic building blocks of many higher order

filters. It would be valuable to circuit designers to have a tool to do in-depth analysis

of second filter functions.
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Figure 7.7. (a) Low Pass. (b) High Pass. (0) Band Pass. (d) Band Stop. (e) All Pass

filter functions.

The second order transfer function of a low pass filter is

2

Hleo
 

 

 

TLp(3) = . (7.7)

.2 + (398 + w?

The second order transfer function of a high pass filter is

H 52

THp(3) = 1.5:,” . (7.8)

s“ + (—)s + «23

The second order transfer function of a band pass filter is

H5451 s

TBP(3) = ° (7.9)

32+ 3’- 3+0)?

(62.) .
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The second order transfer function of a band stop filter is

Hb,(82 +1.03)
 TBs(8) = . (7.10)

.2 + (311s + on:
Q0

The second order transfer function of a all pass filter is

H.132 — (9113 + «231

TAP(3) = o ' (7-11)
 

.2 + (21:). +14?

Sspice has the capability of generating detailed symbolic equations for second

filter functions like Ha, and too. Also, these equations can be obtained with the

special function command as described in section 7.6.

7.5 In-Band Error Approximation

Designing a filter circuit is usually done by specifying the filter parameters and then

selecting a specific topological realization with resistor and capacitor values to meet

these specifications. Circuit designers always consider the components are ideal so

that the frame work of the design can be analyzed with much simplification. However,

in building an active filter circuit with real components, there are deviations from the

design parameters. One of the major contributors to errors is the nonideal effects of

an op-amp. At very low frequencies, the open loop gain of an op-amp is approximated

to be infinitely large. This is no longer true for frequencies larger than 50 kHz. Thus,

the op-amp can be approximated by a single pole expression as follows :

Aowo
A: ,

s+wo

 (7.12)
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where A, is the dc gain and Aofo, or 1.420%4, is the gain-bandwidth-product(GBP).

For a TL084 quad op-amp, A0 = 200k and f0 = 22.2Hz. By plugging in the one pole

model, Sspice can calculate the Q0 and W0 errors due to this dominant pole. The

following is an example.

Example 16 The following is a State Variable Active Filter using TL084 op-amps.

State Variable Active Filter

VIN 1 0 AC 1

R5 1 2 10K

R5 2 4 10K

R3 3 0 4.99K

R4 3 6 750K

R5 2 8 10K

XNDA 3 2 4 TL084

R1 4 5 159K

Cl 5 6 0.001U

XNOA 0 5 6 TL084

R1 6 7 159K

C2 7 8 0.0010

XNOA O 7 8 TL084

RL 8 9 10K

RL 9 4 10K

.END

What is the Q0 and fo errors of this filter in comparison with the same design using

ideal op-amps.

Answer: Sspice would generate a report in the following.

State Variable Active Filter

*************

*00andfo11

*************
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0o is:

80RT{( + C1)*( + 4*G4*G4 + 8*G4*G3 + 4*G3*G3)}

Z’I'Qllill'lEQJIQQQE’IZ;"""""""""

= 50.4337

(2*PI*fo)**2 is:

( + 61*61)

7125.57

fo = 1000.97 Hz

a##0##*********************¢******

* D00/00 = (D2-D0)foQo - Dfo/fo *

t**********#**********************

D2-DO: where kfi} . 1/GBP{i}

The numerator is:

+k TIMES

+ 8*G4*G4 + 28*G4*G3 + 20*03*G3

The denominator is:

+ 4*G4*G4 + 8*G4*G3 + 4*63*03

*****************************

* Dfo/fo 8 (D2-Dl)fo/(200) *

*****************************

D2-D1 : where k{i} = 1/GBP{i}
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The numerator is:

+k TIMES

+ 44*C2*G4*G4 + 40*C2*G4*63 - 4*C2*G3*GS - 4*C1*G4*G4 - 8*C1*G4*03

- 4*CI*G3*63

The denominator is:

( + G41C2)*( + 12104 + 12103)

*****************************

* NUMERICAL EVALUATION *

*****************************

Dfo/fo 8 -0.000218473

D00/Qo 8 0.0573579

Therefore, both symbolic and numeric expressions of the Q0 and to errors are ob-

tained. This is verified by using Pspice as shown in Figure 7.8. Both Sspice and

Pspice outputs show that the errors due to the dominant pole are small.

7.6 Special Functions

Sspice has a built in equation editor to manipulate the answers for the users. For

example, V(1,2) is interpreted as V1-V2. Right now, more functions have been

implemented in Sspice, and many of them can be ~used as a part of the sensitivity

analysis features. The followings are their brief descriptions.
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State Variable Active Filter de(6)

 

Date/Time run: 06/21/92 14:38:15 Temperature: 27.0

r' """""""""""""""""""""""""""""""""""" 1

34 - i

; Non-ideal Op-amp

33 a:

32 -:

1 Ideal Op-amp :

31 -:

30 , E

1.00000000Kh

o 1 vdb(6)

Frequency

Figure 7.8. Pspice simulation of State Variable Active Filter using ideal and nonideal

op-amps.
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SEN(arg1,arg2) Perform sensitivity analysis of arg1 with respect to arg2 by using

Sensitivity Algebra. Usually, arg1 is an expression, and arg2 is an element.

05N(arg1,arg2) Perform quick sensitivity analysis of arg1 with respect to arg2 by

using Quick sensitivity algorithm which will be described in Section III.

DIF(arg1,arg2) Perform the first derivative of arg1 with respect to arg2.

TRMCarg1,arg2) Extract the coefficient of 3’s arg2’th order terms of argl’s numer-

ator.

NUM(arg) Extract the numerator of arg.

DEN(arg) Extract the denominator of arg

SMY(arg) Perform numerical approximation and numerator-denominator common

factor elimination.

HTZ(arg) Perform Hurwitz Test to the polynomial arg.

002(arg) Extract the square of the quality factor of a second order filter function,

arg.

1402 (arg) Extract the square of the center frequency of a second order filter function,

arg.

202(arg) Extract the square of the bandstop frequency of a second order filter func-

tion, arg.

Example 17 The sensitivity of V6 with respect to C] can be obtained by command-

ing SEN(V6,C1). If numerical approximation is specified, the 05N(V6,C1) command

can further improve the computation efficiency. SEN(002(V6) ,C1)/2 would give Q

sensitivity with respect to C1 .
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Example 18 The stability analysis of V6 can be done by doing Hurwitz Test to the

denominator of V6. This is achieved by using HTZ(DEN(V6)).



CHAPTER 8

CONCLUSIONS

In this dissertation, the development and the applications of a symbolic analog circuit

analyzer are presented. It has been understood that the use of symbolic circuit

analyzer is not a one time solution. A circuit designer has to do trial and error many

times in order to obtain the solutions he/she needs. This requires extensive experience

of using symbolic tools and in-depth understandings of the circuits. Adapting a

symbolic circuit analyzer into the design platform with an appropriate education

certainly would improve both of the above factors. On the other hand, a symbolic

circuit analyzer should be made as flexible as possible so that circuit designers can

fully utilize their imagination and knowledge without restriction. Sometimes, this

may produce confusion among different interpretations of the results. Users have to

understand the meanings of the results precisely so that the possibility of getting

a faulty conclusion can be minimized. Besides efficiency, therefore, flexibility and

interpretability are also the major concerns while developing Sspice version 2.0.

In Chapter 3, a new strategy for circuit composition and decomposition approach

was presented. Before, decomposition strategies based on graph algorithms didn’t

provide a unified method to obtain the network determinant of a whole circuit from

the decomposed subcircuits for both passive and active circuits. The presented new

strategy alleviats this difficulty. Also, this strategy improves both the computation

122 '
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efficiency and memory consumption. It is hard to develop an unified method to find

an optimum out set for all the possible circuits. However, the analysis provided in'

Section 3.3.1 gives the hints of the possible solutions. The follow-up theorems in

Section 3.4 shows that there are special cases that can be taken advantage of to

further improve the efficiency. Section 3.5 shows an example which reduces a 20 case

decomposition approach into only 2 cases.

In Chapter 4, the approximation techniques implemented in Sspice are presented.

For small circuits of less than 20 components, numerical approximation after com-

putation technique usually is good enough. However, for larger circuits, numerical

approximation during computation and before computation techniques are needed.

Example 15 shows the combination of decomposition and approximation before com-

putation to solve a well known problem.

The symbolic sensitivity analysis and symbolic stability analysis in Chapter 5

and Chapter 6 explore new applications by providing suitable software tools. The

examples in these chapters show that symbolic approach provides a better solution

' in comparison with the numerical approach.

Chapter 7 explains implementation of Sspice version 2.0 including the matrix re-

duction strategy. Sspice version 2.0 is a symbolic circuit analyzer, which is compatible

with version 1.0, with extensive capabilities. It is no longer a pure symbolic circuit

analyzer. Its internal data structures are now capable of handling both numeric and

symbolic information. This provides more flexibility and efficiency for solving cir-

cuit problems. Sspice version 2.0 has been tested and applied to the development of

macromodels of power supply regulators [28].

The future of the symbolic approach depends on the integration of the symbolic

analyzer into the existing numerical based design process and system. Then, circuit

designers would have more opportunities for accessing symbolic analysis tools and get

better educated in using them appropriately. By applying symbolic approach into a
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design project, a circuit designer would find more needs and new applications of

symbolic analysis. The needs for symbolic sensitivity analysis and symbolic Hurwitz

test, for example, were discovered by circuit designers on their jobs.

Symbolic analog circuit analysis is now basically applied to the nodal analysis

platform. It is for linear circuits. There are other research opportunities which may

be suitable for symbolic approaches for nonlinear circuits. Translinear analysis could

be the next frontier for symbolic analog circuit analysis.
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