DEEPENING  CONCEPTUAL  UNDERSTANDING  IN  THE  HIGH  SCHOOL  AP  BIOLOGY   CLASSROOM  USING  ENGAGEMENT  TOOLS  AND  TECHNIQUES       By   Dusti  Jean  Vincent                 A  THESIS   Submitted  to     Michigan  State  University   in  partial  fulfillment  of  the  requirements   for  the  degree  of     Physical  Science—Interdepartmental—Master  of  Science   2015             ABSTRACT   DEEPENING  CONCEPTUAL  UNDERSTANDING  IN  THE  HIGH  SCHOOL  AP  BIOLOGY   CLASSROOM  USING  ENGAGEMENT  TOOLS  AND  TECHNIQUES       By   Dusti  Jean  Vincent   Instructing  students  within  a  curriculum  framework  based  on  conceptual   understanding  requires  a  shift  from  a  lecture-­‐style,  teacher-­‐centered  delivery  method  to   one  that  is  student-­‐centered  and  inquiry-­‐driven.  A  challenge  with  this  shift  is  holding   students  accountable  to  preparing  for  course  materials  so  that  class  time  can  be  spent   exploring  the  content  in  more  depth  through  class  discussions,  experiential  and  laboratory   exercises,  and  modeling.  Three  components  were  implemented  in  an  AP  Biology  classroom   of  39  students  to  increase  engagement  and  accountability.  These  components  were  short   readings  with  corresponding  tutorials,  formative  assessments  called  ConcepTests,  and   reflective  writing.  Student  participation  in  these  components  was  measured.     Conceptual  understanding  of  biology  was  evaluated  with  a  pre-­‐test  at  the  beginning   of  the  term  and  measured  again  with  a  post-­‐test.  A  Project-­‐Based  Learning  (PBL)   assessment  was  also  implemented  to  further  engage  students  and  provide  a  way  for   students  to  apply  their  understanding  to  solving  a  real-­‐world  problem.       Students  demonstrated  significant  gains  in  conceptual  understanding  through  the   concept  and  PBL  assessment.  Participation  in  the  components  ranged  from  73%  to  86%,   but  it  was  difficult  to  show  a  positive  correlation  between  participation  and  conceptual   understanding.     DEDICATION   Gratitude  to  my  children,  Minnie  and  Dashiell,  and  my  husband,  Brad  for  your  patience,   support,  and  understanding.  You  are  the  reason  I  do  most  things.  I  love  you.                                                                                 iii   ACKNOWLEDGEMENTS     First  and  foremost,  I  must  thank  Merle  Heidemann  for  her  guidance,  wisdom,  and   patience  with  me  over  the  years  as  I  complete  this  program.  I  have  achieved  so  much   growth  as  a  professional  thanks  to  this  rigorous  and  relevant  program  that  she  helped  to   design.  I  also  want  to  recognize  Margaret  Iding  for  always  answering  my  questions  and  the   members  of  my  cohort  for  their  support  and  feedback.   Completion  of  this  program  would  not  have  been  possible  without  the  love  and   support  of  my  husband,  Brad.  For  the  many  summers  I  spent  in  East  Lansing  and  the  many   weekends  I  spent  working  on  this  thesis,  he  was  always  accommodating,  patient,  and   understanding.  He  provided  the  encouragement  I  needed  when  I  wanted  to  quit.  I  have   never  felt  such  a  sense  of  accomplishment  as  I  do  now.                                             iv   TABLE  OF  CONTENTS     LIST  OF  TABLES  .........................................................................................................................................  vi                   LIST  OF  FIGURES  .....................................................................................................................................  vii               KEY  TO  SYMBOLS/KEY  TO  ABBREVIATIONS  ............................................................................  viii   INTRODUCTION  ..........................................................................................................................................  1   Rationale  and  Statement  of  the  Problem  ...........................................................................  1                 Class  Descriptions  and  Demographics  ............................................................................  10               IMPLEMENTATION  ................................................................................................................................  12   General  Considerations  ..........................................................................................................  12   Discussion  and  Analysis  of  Unit  Components  ..............................................................  15   Components  of  the  Unit  .........................................................................................................  17           Component  1:  Mastering  Biology  ........................................................................  17       Component  2:  ConcepTests  ...................................................................................  17                     Component  3:  Whiteboards  as  a  Formative  Assessment  .........................  18                                                                                   Component  4:  Using  Socratic  Dialogue  .............................................................  20     Component  5:  Project-­‐Based  Learning  .............................................................  20                 Component  6:  Reflective  Writing  ........................................................................  24                       RESULTS  AND  ANALYSIS  .....................................................................................................................  25   Pre-­‐Test  and  Post-­‐Test  Administration  ..........................................................................  25   Data  Analysis—Combined  Pre-­‐test  and  Post-­‐test  Item  Analysis  .........................  25   Data  Analysis—Evaluation  of  Practices  ..........................................................................  27   Data  Analysis—PBL  Assessment  .......................................................................................  28     DISCUSSION  ...............................................................................................................................................  30     FUTURE  CONSIDERATIONS  ................................................................................................................  33                     APPENDICES  ..............................................................................................................................................  35   APPENDIX  A:  Unit  Activities  and  Components  ............................................................  36   APPENDIX  B:  First  Student  PBL  Research  Report  Exemplar  .................................  61   APPENDIX  C:  Parent  Letter  and  Consent  Form  ...........................................................  67   APPENDIX  D:  Assessment  Tools  ........................................................................................  70     REFERENCES  .............................................................................................................................................  76       v   LIST  OF  TABLES   TABLE  1:  Unit  plan  implementation  and  schedule  of  activities  ..........................................  13     TABLE  2:  Need  to  Know  list  generated  as  part  of  the  introduction  to  the  PBL  unit  ..  21   The  Need  to  Know  list  includes  concepts  and  questions  that  students  determined  were   necessary  to  answer  the  driving  question  for  the  PBL  assessment.     TABLE  3:  Concept  Assessment  pre-­‐test  and  post-­‐test  scores  (n=39)  ..............................  26   Paired  t-­‐test  showing  statistical  significance  of  gain  in  post-­‐test  scores.     TABLE  4:  Engagement  tools  and  percent  participation  (n=39)  ..........................................  27   Student  participation  in  the  three  components  implemented  in  this  unit     TABLE  5:  PBL  Self-­‐Reflection  Responses  ......................................................................................  28   A  report  of  common  responses  to  the  self-­‐reflection  component  of  the  PBL  assessment     TABLE  6:  PBL  Reflection  Responses  ...............................................................................................  29   A  summary  of  which  project  claims  were  identified  as  most  effective       TABLE  7:  Reflective  Writing  Scoring  Rubric  ...............................................................................  48     TABLE  8:  PBL  Student  Project  Proposals  .....................................................................................  51     TABLE  9:  Charette  Protocol  Directions  and  Timing  Guidelines  ..........................................  54       TABLE  10:  Gallery  Walk  Protocol  Directions  and  Timing  Guidelines  ..............................  54     TABLE  11:  Critical  Friends  Protocol  Directions  and  Timing  Guidelines  .........................  55     TABLE  12:  PBL  Project  Scoring  Rubric  ..........................................................................................  73   Final  unit  project  rubric  to  score  written  and  media  components                             vi   LIST  OF  FIGURES     FIGURE  1:  Whiteboard  Assessment  samples  ..............................................................................  19   These  whiteboard  samples  were  utilized  in  the  cell  structure  and  function  unit.  Groups  of  3-­‐4   students  responded  to  the  prompt,  “Explain  how  alveoli  increase  the  surface  area  available   for  gas  exchange  in  the  lungs.”     FIGURE  2:  Whiteboard  Assessment  samples  ..............................................................................  19   These  whiteboard  samples  were  utilized  in  the  cellular  respiration  unit.  Groups  of  3-­‐4   students  responded  to  the  prompt,  “Diagram  the  process  of  cellular  respiration.”     FIGURE  3:  Sample  responses  to  PBL  Project  Interest  Form  .................................................  22   Students  were  placed  in  groups  based  on  their  responses  to  this  form.     FIGURE  4:  The  Science  Writing  Heuristic  (SWH)  Student  Template  (from  Burke  et.  al.,   2005)  ............................................................................................................................................................  23     FIGURE  5:  PBL  Student  Assessment  Scores  (n=39)  .................................................................  27   This  figure  displays  student  percentages  on  the  PBL  Assessment   Average  score  =  97%     FIGURE  6:  ConcepTest  Questions  .....................................................................................................  38   This  figure  displays  the  23  PowerPoint  slides  used  to  project  ConcepTest  questions  to  the  class.     FIGURE  7:  Concept  Post-­‐Assessment  Macromolecule  Structure  Diagrams  ...................  71     FIGURE  8:  Concept  Post-­‐Assessment  Carbon  Cycle  Diagram  ..............................................  72                                         vii   KEY  TO  ABBREVIATIONS       ACS…………………………………………………………………………………………American  Chemical  Society   AP…………………………………………………………………………………………………….Advanced  Placement   CCSS…………………………………………………………………………………..Common  Core  State  Standards   ELA…….…………………………………………………………………………………………English  Language  Arts   JiTT…………………………………………………………………………………………………Just  in  Time  Teaching   LO………………………………………………………………………………………………………..Learning  Objective   MDE…………………………………………………………………………….Michigan  Department  of  Education   MME………………………………………………………………………………………………...Michigan  Merit  Exam   NGSS……………………………………………………………………….......Next  Generation  Science  Standards   PBL……………………………………………………………………………………………….Project-­‐Based  Learning   PI…………………………………………………………………………………………………………….Peer  Instruction   SLC………………………………………………………………………………………….Small  Learning  Community   SWH…………………………………………………………………………………………Science  Writing  Heuristic viii   INTRODUCTION     Rationale  and  Statement  of  Problem     Advanced  Placement  (AP)  curricula  allow  students  to  pursue  college-­‐level  courses   while  still  attending  high  school.  AP®  courses  conclude  with  an  examination  that  provides   students  with  college  credit  or  placement  in  a  more  advanced  course  in  college.    The   College  Board  claims  that  performing  well  on  AP®  exams  is  a  “gateway  to  success  in   college”  (College  Board,  2012).  Although  taking  challenging  courses  in  high  school,  such  as   AP®  prepares  students  for  the  rigor  of  college,  it’s  only  part  of  the  picture.  The  level  of   engagement  and  participation  in  AP®  courses  and  general-­‐education  courses  alike  is   strong  predictor  of  college  success  (NSSE,  2006).   In  the  spring  of  2012,  the  College  Board  launched  a  revision  of  its  AP  Biology   curriculum  framework  from  one  of  content  coverage  to  a  conceptual  understanding  of   content.  The  revision’s  intent  was  to  move  students  away  from  memorizing  rote  facts  to   applying  understanding  of  biology  through  inquiry-­‐based  learning.  The  new  curriculum   framework  also  aligned  to  what  college  instructors  agreed  were  skills  and  habits  of  mind   that  students  should  practice  in  order  to  be  college-­‐ready.  These  practices  include:  using   models,  applying  mathematics,  questioning,  planning  out  and  implementing  data  collection   strategies,  analyzing  and  evaluating  data,  working  with  scientific  explanations  and  theories,   and  connecting  knowledge  across  many  areas  (College  Board,  2012).  These  curriculum   changes  follow  the  development  of  the  Common  Core  State  Standards  (CCSS)  in  2009  and   the  Next  Generation  Science  Standards  (NGSS)  in  2010,  both  of  which  suggest  a  framework   for  learning  that  emphasizes  skills  and  deep  understanding  (NGA  2010  &  NRC,  2011).  Both   1   the  NGSS  and  Common  Core  were  developed  with  the  goal  of  producing  students  who  are   “career  and  college-­‐ready”  with  an  emphasis  on  critical  thinking  skills.  Instructing  students   within  these  frameworks  requires  a  shift  from  a  lecture-­‐style,  teacher-­‐centered  delivery   method  to  one  that  is  student-­‐centered  and  inquiry-­‐driven.  One  challenge  with  this  shift  is   the  accelerated  nature  of  the  AP  Biology  curriculum.  Lecture-­‐style  content  delivery,  while   time-­‐efficient,  generally  does  not  contribute  to  student  understanding,  (Mazur,  1997).   Another  challenge  is  holding  students  accountable  to  preparing  for  course  materials  so  that   class  time  can  be  spent  exploring  the  content  in  more  depth  through  class  discussions,   experiential  and  laboratory  exercises,  and  modeling.     Because  of  the  student-­‐centered  nature  of  inquiry-­‐based  classrooms,  student   engagement  is  essential.  Students  must  be  active  members  of  the  classroom  community.   One  way  to  measure  engagement  is  participation  in  class  activities  (Chapman,  2003).   Additionally,  the  quality  of  student  work  samples  may  also  document  engagement.  In  order   to  target  the  specific  science  skills  that  the  College  Board  identifies  as  critical  to  college   success,  students  must  be  apprenticed  in  these  skills.  Hence,  the  role  of  the  teacher  in  an   inquiry-­‐based  classroom  is  one  of  an  expert  facilitator  to  move  students  from  being   “marginal  outsiders”  to  “competent  outsiders”  (Feinstein,  2010).  With  the  help  of  an  expert   in  the  content  area,  students  learn  and  practice  the  skills  of  a  scientist.   Students  operating  in  an  inquiry  classroom  must  also  be  able  to  achieve  depth  of   understanding.  Depth  of  understanding  comes  from  questioning  current  conceptual   understanding  (Zirbel,  2005)  and  correcting  misconceptions  as  they  arise.  Students  might   deal  with  discrepancies  between  their  own  understanding  and  accepted  understanding  by   using  metacognitive  tools.  Metacognition,  or  “thinking  about  your  thinking”,  means   2   understanding  how  we  learn  and  make  connections  between  new  knowledge  and  existing   knowledge  (Schoenbach,  et.al.,  2012).  Tina  Grotzer,  the  chief  investigator  for  the  Harvard   Project  Zero  educational  research  group,  says  that  depth  can  be  defined  as  “how  concepts   are  represented  in  a  student’s  mind  and  how  they  are  connected  to  one  another”  (Grotzer   and  Bell,  1999).  Expecting  students  to  make  these  connections  without  support  is   unreasonable.  In  an  inquiry-­‐based  classroom,  students  are  exploring  problems  and  asking   questions  about  their  learning.  The  social  interaction  among  students  and  between   students  and  teacher  around  content  can  shape  ideas  (Feinstein,  2010).  Creating  a   classroom  environment  that  values  such  interaction  supports  students  willing  to  ask   questions  and/or  identify  when  they  need  help  (Schoenbach,  et.al.,  2012).  Discussion,   paired  with  metacognitive  tools  and  reflection,  can  provide  the  means  for  students  to  make   strong  connections  and  achieve  deep  understanding.   Whereas  achieving  the  depth  of  understanding  required  under  the  new  AP  Biology   framework  is  one  challenge,  the  other  is  time.  The  AP  Biology  course  is  the  equivalent  of   two  college  semesters  of  introductory  biology  (College  Board,  2012).  However,  in  a  college   biology  course,  a  typical  schedule  is  a  one-­‐hour  lecture  2  or  3  times  per  week  and  a   laboratory  session  that  may  be  3  or  4  hours  long.  In  a  high  school  AP  Biology  course,   laboratory  work  and  content  generally  must  be  delivered  in  a  one-­‐hour  period.  The   inquiry-­‐based  approach  to  the  AP  Biology  labs  also  requires  more  time  as  students  are   designing  their  own  procedures  and  getting  approval  and  oversight  from  their  instructor.  A   popular  movement  in  AP  courses  is  the  “flipped”  approach  to  teaching.  The  flipped   classroom  takes  direct  instruction  out  of  the  classroom  and  puts  it  in  the  hands  of  the   student.  The  expectation  is  that  students  prepare  on  their  own  by  watching  an  online   3   lecture  or  video  and/or  reading  an  assignment  prior  to  coming  to  class.  Class  time  is  then   spent  on  discussion  of  the  content  students  were  asked  to  preview  and  application  of  the   material  that  was  learned  outside  of  the  classroom.  Eric  Mazur  of  Harvard  University   pioneered  this  approach  with  his  introductory  physics  classes  using  procedures  he  calls   Peer  Instruction  (PI)  and  Just  in  Time  Teaching  (JiTT).  Peer  Instruction  is  teaching  that   promotes  interaction  between  students  (Mazur,  2009).  Students  learn  from  one  another  by   discussing  difficult  concepts  and  ideas  that  challenge  their  current  understanding.  This   process  complements  the  social  environment  of  the  classroom  and  values  discussion   described  earlier.  Just  in  Time  Teaching,  as  the  name  suggests,  is  delivering  content  and   providing  explanation  as  students  need  it,  very  soon  after  students  preview  the  material  on   their  own.     In  Mazur’s  class,  students  read  an  assignment  prior  to  coming  to  class  and  provided   feedback  to  the  instructor  about  how  well  they  understood  the  information.  Then  during   class  time,  usually  the  next  day,  students  answered  questions  called  ConcepTests  that   addressed  the  content  students  were  expected  to  preview  independently.  ConcepTests  are   high  quality  and  high-­‐level  thinking  questions  that  are  designed  to  be  challenging,  yet   reasonable  (Mazur  and  Watkins,  2009).  The  format  for  ConcepTests  involved  first  posing   the  question  to  the  class.  Students  were  expected  to  think  about  the  question  individually   and  silently,  then  answer,  usually  with  clickers.  Next,  students  turned  to  their  neighbor  and   engaged  in  a  discussion  of  their  thinking  about  the  problem  (also  called  Think-­‐Pair-­‐Share).   Students  then  had  the  opportunity  to  revise  their  answers  and  the  students  were  polled   again.  If  a  large  number  of  students  provided  an  incorrect  answer,  then  the  instructor   intervened  with  some  explanation.  Otherwise,  the  instructor  proceeded  to  another   4   ConcepTest  question.  Dr.  Mazur  observed  a  strong  correlation  between  student  confidence   in  the  concepts  addressed  through  the  ConcepTests  and  correctness  (Mazur,  1997).   Through  PI  and  JITT,  Dr.  Mazur  demonstrated  that  conceptual  understanding  of  physics   was  vastly  improved  over  traditional  lecture-­‐style  teaching  and  gender  gaps  were   diminished  using  this  instructional  method  (Mazur  and  Watkins,  2009).  Michelle  Smith  and   her  colleagues  from  the  University  of  Colorado  at  Boulder  confirmed  Dr.  Mazur’s  findings  in   an  introductory  genetics  course.  They  found  that  the  combination  of  peer  discussion  and   explanation  by  the  instructor  increased  performance  in  the  course  (as  measured  by  exams,   homework,  and  participation)  than  either  method  used  alone  (Smith,  et.al.,  2011).  The   flipped  model  allows  more  classroom  time  to  be  spent  on  addressing  concepts  and   application,  therefore  targeting  what  students  need  to  learn  the  most.  The  flipped  model  as   Dr.  Mazur  applied  it  also  engaged  students  with  the  ConcepTests  and  Peer  Instruction.   Students  enjoy  the  game-­‐like  nature  of  ConcepTests,  especially  when  using  technology  such   as  clickers  or  smart  phones  to  collect  answers.  The  use  of  discussion  and  metacognitive   thinking  also  allowed  for  connections  to  be  made  and  therefore  deeper  understanding.   Catherine  Crouch  and  Eric  Mazur  reported  at  the  end  of  a  10-­‐year  study  of  PI  and  JiTT  that   “complex  reasoning  develops  better  with  cooperative  learning  and  engagement  with   material”  (Crouch  and  Mazur,  2001).  Not  only  did  students  talk  to  one  another  about  their   understanding  with  PI,  but  students  also  used  evidence  to  support  their  thinking,  a  skill   that  is  emphasized  in  CCSS,  NGSS,  and  AP  Biology.   Whiteboards  are  an  effective  and  cost-­‐efficient  tool  to  document  the  conversations   and  the  thinking  that  takes  place  during  students’  discussions.  The  use  of  whiteboards  in   the  classroom  also  provided  a  means  for  students  to  engage  in  the  content  because  it   5   involves  a  public  presentation  of  knowledge  and  further  allows  students  to  interact   socially.  In  cooperative  groups,  students  discussed  a  problem  and  developed  a  common   understanding  through  clarification  with  one  another.  When  students  presented  their   whiteboards  to  other  groups,  they  developed  deeper  understanding  as  their  peers  asked   additional  questions  and  got  clarification.  By  training  students  with  Socratic  questioning   and  dialogue  techniques,  students  probed  one  another  for  deeper  understanding  and   targeted  metacognitive  thinking  (Paul  and  Binker,  2012).  Cooperative  groups  must  be  able   to  explain  and  justify  their  explanations  with  evidence.  In  a  sense,  the  use  of  whiteboards  is   formalizing  PI.  For  the  instructor,  students  writing  explanations  and  thinking  on   whiteboards  allows  him/her  to  identify  how  new,  factual  information  is  connecting  with   students’  existing  conceptual  framework  (Wenning,  2005).  Whiteboards  may  also  be  used   as  a  formative  assessment  tool  and  to  check  students’  understanding  of  a  concept.   The  key  strategies  most  closely  related  to  college  success  are  intellectual  openness   and  inquisitiveness,  analysis,  argumentation,  problem  solving,  writing,  and  research   (Conley,  2007b).  In  order  for  students  to  develop  these  habits,  they  need  to  practice  them   repeatedly  and  in  many  contexts.  Project-­‐based  learning  (PBL)  is  one  approach  to   addressing  these  skills.  In  PBL,  a  unit  of  study  is  introduced  with  an  engaging  activity   framed  by  a  driving  question  intended  to  inspire  and  motivate  students  to  learn  due  to  its   relevancy  and  high  interest  (Larner  and  Mergendoller,  2010).  Students  work  to  solve  the   problem  through  research,  data  collection,  development  of  models,  and  writing.  In  addition   to  addressing  the  academic  skills  of  problem  solving,  research,  and  writing,  students   collaborate  with  one  another  and  present  their  work  to  their  peers  and  potentially  to  a   public  audience,  which  are  additional  21st  century  skills  that  college  professors  agree  are   6   important  for  success  in  college  and  beyond  (Conley,  2007a).  Consistent  with  an  inquiry-­‐ based  teaching  model,  PBL  is  a  very  student-­‐centered  teaching  methodology  in  which   teachers  provide  support  for  students  through  teaching  the  necessary  content  and  skills   students  need  to  successfully  address  the  problem  they  are  researching.  In  this  way,   learning  is  contextualized  and  is  part  of  a  relevant,  meaningful  task  (Hmelo-­‐Silver,  2004).   The  teacher  models  effective  thinking  and  learning  strategies  and  coaches  his/her  students   in  the  application  of  those  strategies.  Through  metacognitive  routines  and  questioning,   students  come  to  explain  the  problem  they  are  investigating  by  focusing  on  evidence.  Just   as  in  PI  and  JiTT,  student  collaboration  is  essential,  as  students  rely  on  each  other  as   contributors  to  a  body  of  knowledge  in  solving  a  problem.  As  students  work  through  a   challenging  problem,  students  pause  and  reflect  on  their  progress,  further  developing   strong  learning  connections  and  schema.  Reflection  is  an  opportunity  for  the  teacher  to   provide  feedback  to  students  on  their  progress.   In  a  medical  school  setting  that  used  PBL  to  train  future  physicians,  data  showed   that  students  were  more  likely  to  use  evidence-­‐based  reasoning  to  provide  explanations  of   medical  problems  than  students  who  were  trained  in  more  traditional  programs  that  relied   solely  on  data  (Hmelo-­‐Silver,  2004).  Another  study  conducted  at  a  technological  school  in   Israel  found  that  students  trained  in  a  PBL  showed  a  post-­‐test  increase  of  84%  on  a   standardized  assessment  as  compared  to  a  52%  increase  seen  in  the  control  group   (Mioduser  and  Betzer,  2007).  Although  published  studies  investigating  the  use  of  PBL  in   secondary  classrooms  are  lacking,  the  engagement  students  demonstrate  with  their   learning  process  and  the  high-­‐level  thinking  skills  employed  by  using  PBL  make  it  a   worthwhile  technique  to  try  in  an  inquiry-­‐based  classroom.   7   All  of  the  aforementioned  frameworks  and  techniques  were  designed  to  address  and   deepen  students’  conceptual  understanding.  The  final  piece  of  this  problem  is  assessing   conceptual  understanding.  Dennie  Wolf  and  other  collaborators  from  Project  Zero  at   Harvard  University  inform  us  to  “assess  thinking  over  the  possession  of  information”  (Wolf,   et.  al.,  1991).  This  could  be  done  through  performance  tasks,  longitudinal  studies  tracking   student  progress,  and  reading  and  writing  with  authentic  tasks.  Another  important  piece  of   assessing  conceptual  understanding  is  the  social  experience  of  explaining  understanding  to   others,  which  corroborates  the  work  of  Eric  Mazur,  Esther  Zirbel,  and  others  mentioned   throughout  this  introduction.  Wolf  makes  the  case  that  theses  defenses  and  the  scientific   review  process  is  akin  to  the  kind  of  assessment  we  might  ask  of  students  to  demonstrate   deeper  conceptual  understanding.  Although  this  is  best  practiced  in  teaching,  the  climate  of   standardized  testing  and  teacher  evaluation  from  state  lawmakers  runs  contrary  to  what   teachers  and  educational  researchers  know  is  more  authentic  learning.   The  presentation  of  a  research  project  at  the  end  of  a  unit  of  study  is  certainly  a   performance  task  that  accurately  measures  conceptual  understanding.  Assessing   conceptual  understanding  targets  development  of  the  essential  skills  students  need  to  be   college-­‐ready  and  also  provides  practice  in  reading  and  writing  (Wolf  et.  al.,  1991).  The   Common  Core  College  and  Career  Readiness  Anchor  Standards  in  Writing  state  that,   “students  need  to  learn  to  use  writing  as  a  way  of  offering  and  supporting  opinions,   demonstrating  understanding  of  the  subjects  they  are  studying,  and  conveying  real  and   imagined  experiences  and  events  (CCSSI,  2015).  Regardless  of  the  content,  students  must   become  competent  at  gathering  information,  evaluating  sources  for  accuracy  and   credibility,  and  citing  sources  appropriately.  In  the  digital  age,  students  often  don’t   8   consider  the  quality  of  what  they  read  online  and  that  published  material,  even  if  it  is  in  a   digital  format,  is  intellectual  property  and  therefore  must  be  cited.  In  other  words,  research   skills  must  be  taught  in  a  variety  of  contexts  and  often  enough  so  that  students  develop  the   adeptness  that  comes  with  being  “college  ready”.  The  challenge  that  non-­‐English  Language   Arts  (ELA)  teachers  often  cite  with  requiring  students  to  write  in  content-­‐area  classrooms   is  assessing  it.  One  might  argue,  however,  that  a  content-­‐area  teacher  knows  what  writing   should  look  like  in  his/her  content  area  and  can  provide  appropriate  feedback  to  his/her   students.  Peter  Elbow,  English  professor  at  the  University  of  Massachusetts  Amherst,   would  suggest  that  when  teachers  assess  writing,  we  should  focus  on  evaluating  rather   than  judging  or  ranking  writing.  As  teachers,  we  can  provide  feedback  to  students  on  the   strengths  and  weaknesses  of  their  writing  and  their  ability  to  follow  the  criteria  as   provided  in  a  rubric  or  assignment  (Elbow,  1993).  Effectively,  we  are  using  writing  as  a   learning  tool,  to  help  students  deepen  their  understanding  and  make  connections.  In  an   inquiry  classroom  where  student  questions  are  valued  and  explored,  the  Science  Writing   Heuristic  (SWH)  is  a  framework  that  blends  guided  inquiry  with  writing-­‐to-­‐learn  strategies   (Burke,  et.  al.,  2005).  The  SWH  replaces  the  traditional  lab  report  by  putting  the  questions   students  are  asking  about  a  phenomenon  or  event  at  the  forefront  and  guiding  students   through  a  logical  thinking  process.  In  following  the  SWH,  students  make  claims  and  support   them  with  evidence,  both  from  their  own  experimentation  and  published  sources.  In  using   the  SWH,  students  connect  valuable  research  skills  with  their  writing.  The  SWH  also   parallels  the  framework  teachers  employ  in  a  PBL  classroom  by  first  identifying  questions,   then  following  those  questions  with  tests  and  gathering  evidence.  The  part  of  the  SWH  that   a  traditional  lab  report  lacks  is  a  reflective  piece  where  students  explore  the  question,   9   “How  do  my  ideas  compare  with  other  ideas?”  In  this  section  of  the  SWH,  students  not  only   evaluate  evidence  from  published  works,  but  that  of  their  peers  as  well.  This  models  a   scientific  review  process  where  students  read  and  respond  to  each  other’s  work  in  an  effort   to  gain  deeper  understanding.  This  process  also  has  a  social  component,  which  engages  the   students  and  develops  their  presentation  skills.  K.A.  Burke  and  others  have  observed   significant  gains  on  the  American  Chemistry  Society  (ACS)  exam  among  college  freshmen  in   an  introductory  chemistry  course  at  Iowa  State  University  who  were  instructed  with  the   SWH  (Burke,  2005).           Class  Descriptions  and  Demographics   Students  in  AP  Biology  at  Skyline  High  School  in  Ann  Arbor,  Michigan  participated  in   this  study  to  observe  how  various  engagement  tools  impacted  their  understanding  of   biology  concepts.  Ann  Arbor  is  a  city  with  over  115,000  residents  that  lies  36  miles  west  of   Detroit.  Ann  Arbor  is  home  to  the  University  of  Michigan,  a  world-­‐renown  science  and   medical  research  institution.  The  university  is  the  main  basis  of  the  city’s  economy,   population,  and  cultural  awareness.  Skyline  High  School  opened  in  the  fall  of  2008  as  the   city’s  third  comprehensive  high  school  to  relieve  overcrowding  at  the  other  two  high   schools.  The  school  was  designed  with  a  focus  on  21st  century  skills,  mastery  learning,  and   small  learning  communities  (SLC’s).  SLC’s  were  implemented  as  a  way  to  make  the  school’s   population  of  approximately  1500  students  feel  smaller  and  provide  opportunities  for   students  and  teachers  to  form  strong  relationships  with  one  another.  Most  of  the  students   who  attend  Skyline  live  within  the  school  boundary,  but  every  year  approximately  300   open-­‐enrollment  spaces  are  available  for  students  who  live  outside  of  the  boundary.  The   10   population  of  1440  students  is  55%  male  and  45%  female.  The  school  is  54.4%  Caucasian,   16.9%  African  American,  10.8%  Asian,  9.8%  Multiethnic,  3.1%  Hispanic/Latino,  2.9%  Arab,   0.3%  Native  American,  and  1.7%  of  students  who  identify  as  “other”.  Prior  to  the  2014-­‐ 2015  school  year,  Skyline  was  identified  as  a  “Focus  School”  by  the  Michigan  Department  of   Education  for  having  the  “largest  achievement  gap  between  the  top  and  bottom  30%  of   students”  (MDE,  2015).  The  focus  school  designation  is  based  on  the  average  scale  score  as   measured  on  the  Michigan  Merit  Exam,  or  MME.   Skyline  High  School  operates  on  a  schedule  of  three  twelve-­‐week  trimesters  (Skyline   High  School,  2013).  There  are  five  72-­‐minutes  periods  in  a  school  day.  In  AP  Biology,  the   demographics  don’t  entirely  reflect  that  of  the  school  as  a  whole.  There  are  66  students   enrolled  this  year  in  AP  Biology,  61.9%  of  them  identifying  as  Caucasian,  19.8%  Asian,  7.1%   African  American,  4.8%  Middle  Eastern,  4.8%  Hispanic/Latino,  and  2.4%  Multiracial.   Despite  our  efforts  to  reach  out  to  our  minority  population  for  inclusion  in  AP  and  higher-­‐ level  courses,  we  still  observe  fewer  students  of  color  in  the  AP  sciences,  a  problem  that   extends  beyond  Skyline  and  Ann  Arbor.  Of  the  66  students  who  are  enrolled  in  the  course,   47  students  were  enrolled  in  my  2  sections  of  AP  Biology.  Of  those  47  students,  39  agreed   to  participate  in  the  study,  or  83%  participation.               11   IMPLEMENTATION   General  Considerations     To  implement  engagement  tools  and  techniques,  the  big  ideas  addressed  in  AP   Biology  that  would  pique  students’  interest  and  apply  basic  concepts  taught  at  the   beginning  of  the  year  were  considered.  Big  Idea  2:  Biological  systems  utilize  free  energy  and   molecular  building  blocks  to  grow,  to  reproduce  and  to  maintain  dynamic  homeostasis   (College  Board,  2012)  was  chosen  because  the  standards  addressed  include  understanding   of  macromolecules  and  cell  structure,  which  are  introductory  units  in  the  course.  The  unit   in  this  study  was  designed  using  the  theme  of  metabolism,  which  included  the   aforementioned  standards  in  addition  to  understanding  of  cellular  respiration  and   photosynthesis.     Metabolism  is  typically  a  challenging  topic  to  learn  and  teach,  partly  because  of  the   complex  biochemistry  associated  with  metabolic  pathways  and  partly  because  of  the   inability  to  observe  it  directly.  We  rely  extensively  on  the  use  of  models  and  diagrams  to   visualize  the  processes  of  cellular  respiration  and  photosynthesis  and  perform  lab  activities   that  investigate  the  processes  on  a  large  scale  by  manipulating  variables  that  will  influence   the  process  as  a  whole.     The  unit  was  subdivided  into  4  smaller  units:  Biochemistry,  Cell  Structure  and   Function,  Cellular  Respiration,  and  Photosynthesis.  Due  to  the  length  of  the  PBL   assessment,  the  entire  unit  was  implemented  over  the  course  of  15  weeks.  The  PBL   assessment  was  presented  during  the  final  exam  periods  at  the  end  of  the  first  12-­‐week   trimester.  The  remainder  of  the  unit  was  implemented  over  the  course  of  the  first  3  weeks   of  the  second  trimester.  Table  1  shows  the  full  unit  plan  implementation.   12   TABLE  1:  Unit  plan  implementation  and  schedule  of  activities.   Date   Activities   Objective(s)   9/2/14   Parent  letter  and  consent  form  sent  home   9/5/14   10/1/14   Consent  forms  due   Concept  Pre-­‐assessment   PBL  component  launch  and  submit  project   interest  form   Meet  in  assigned  PBL  groups  and  submit   project  proposal   Properties  of  water  reading  (Ch.  3)  and   Mastering  Biology  assigned   Biochemistry  reading  (Chs.  4  &  5)  and   Mastering  biology  assigned   Properties  of  water  (Ch.  3)  Mastering  Biology   due   Biochemistry  (Chs.  4  &  5)  Mastering  Biology   due   ConcepTests  #1  &  #2   ConcepTest  #3   Enzymes  and  Metabolism  reading  (Ch.  8.4  &   8.5)  and  Mastering  Biology  assigned   PBL  Check-­‐in  #1—Charette  protocol   10/3/14   PBL  Assessment  work  day   10/7/14   ConcepTest  #4   Enzymes  and  Metabolism  (Ch.  8.4  &  8.5)   Mastering  Biology  due   ConcepTest  #5   9/9/14   9/10/14   9/15/14   9/19/14   9/28/14   9/30/14   10/9/14   10/10/14   Biochemistry  unit  reflection  assigned   10/13/14   Biochemistry    unit  reflection  due   10/14/14   Biochemistry  unit  test   Cell  types  and  functions  reading  (Ch.  6)  and   Mastering  Biology  assigned   10/16/14   ConcepTest  #6   10/17/14   PBL  assessment  work  day   10/21/14   ConcepTest  #7   10/22/14   PBL  Check-­‐in  #2—Gallery  Walk   13   Alert  parents  and  students  of   research  study   Determine  student  understanding  of   biology  concepts   Engage  students  in  PBL  assessment   Provide  time  to  plan  PBL  project   Provide  necessary  background   understanding  of  content   Provide  necessary  background   understanding  of  content   Formatively  assess  understanding  of   macromolecules   Formatively  assess  understanding  of   properties  of  water   Provide  PBL  teams  with  peer   feedback  about  project  idea   Provide  time  for  teams  to  work  on   PBL  assessment   Formatively  assess  understanding  of   macromolecule  synthesis   Formatively  assess  understanding  of   enzymes     Assess  students  ability  to  connect  unit   concepts  and  practice  writing     Assess  student  understanding  of   biochemistry  concepts   Formatively  assess  understanding  of   cell  types   Provide  time  for  teams  to  work  on   PBL  assessment   Formatively  assess  understanding  of   cell  transport   Provide  PBL  teams  with  peer   feedback  about  project  progress   TABLE  1  (cont’d)   10/23/14   10/26/14   10/27/14   10/30/14   11/2/14   11/3/14   11/5/14   11/7/14   11/9/14   11/10/14   11/12/14   11/18/14   11/19/14-­‐ 11/20/14   11/24/14   Cell  types  and  functions  (Ch.  6)  Mastering   Biology  due   Cell  size  whiteboard  formative  assessment   Membrane  structure  and  function  reading   (Ch.  7)  and  Mastering  Biology  assigned   ConcepTest  #8   Formatively  assess  student   understanding  of  cell  size  surface  area:   volume  ratio   Provide  necessary  background   understanding  of  content   Formatively  assess  understanding  of   cell  structure  and  function   ConcepTest  #9   Formatively  assess  understanding  of   PBL  Assessment  work  day   cell  membrane  structure  and   application  of  biochemistry  concepts   Membrane  structure  and  function  Mastering     Biology  due   Cell  structure  and  function  unit  reflection   Assess  students  ability  to  connect  unit   assigned   concepts  and  practice  writing   ConcepTest  #10   Formatively  assess  understanding  of     cell  types   PBL  Check-­‐in  #3—Critical  Friends  protocol   Provide  PBL  teams  with  peer  feedback   about  project  progress   Cell  structure  and  function  unit  reflection     due   Cell  structure  and  function  unit  test   Summatively  assess  student   Introduction  to  metabolism  reading  (Ch.  8.1-­‐ understanding  of  cell  structure  and   8.3,  9.1,  &  40.2)  and  Mastering  Biology   function  concepts   assigned   PBL  Check-­‐in  #4—rough  draft  due   Provide  teacher  feedback  to  PBL  teams   on  assessment     Introduction  to  metabolism  (Ch.  8.1-­‐8.3,  9.1,   Formatively  assess  understanding  of   &  40.2)  Mastering  Biology  due   thermodynamics  and  metabolism   ConcepTests  #11-­‐13   PBL  Assessment  due/Media  Project   Assess  student  completion  of  project   Presentations   and  student  ability  to  cite  evidence   PBL  Reflection  assigned  during  presentation   about  most  convincing  claim   12/9/14   Cellular  Respiration  reading  (Ch.  9)  and   Mastering  Biology  assigned   Cellular  respiration  whiteboard  formative   assessment   Photosynthesis  reading  (Ch.  10)  and   Mastering  Biology  assigned   ConcepTests  #14  &  #15   12/10/14   ConcepTests  #16  &  #17   12/12/14   Cellular  respiration  unit  reflection  assigned   12/16/14   Photosynthesis  (Ch.  10)  Mastering  Biology   due   11/25/14   12/8/14   14   Provide  necessary  background   understanding  of  content   Formatively  assess  understanding  of   the  steps  of  cellular  respiration   Provide  necessary  background   understanding  of  content   Formatively  assess  understanding  of   aerobic/anaerobic  respiration   Formatively  assess  understanding  of   cellular  respiration  processes   Assess  students  ability  to  connect  unit   concepts  and  practice  writing     TABLE  1  (cont’d)   12/17/14   ConcepTests  #18  &  #19   12/18/14   1/6/15   Cellular  respiration  unit  reflection  due   Cellular  respiration  unit  test   Cellular  Respiration  (Ch.  9)  Mastering   Biology  due   ConcepTests  #20-­‐22   1/9/15   Photosynthesis  unit  reflection  assigned   1/13/15   ConcepTest  #23   1/16/15   Photosynthesis  unit  reflection  due   Photosynthesis  unit  test   Formatively  assess  understanding  of   cellular  respiration  processes   Summatively  assess  student   understanding  of  cellular  respiration   process  and  concepts     Formatively  assess  understanding  of   photosynthetic  reactions   Assess  students  ability  to  connect  unit   concepts  and  practice  writing   Formatively  assess  understanding  of   photosynthetic  process   Summatively  assess  student   understanding  of  photosynthesis   process  and  concepts     Discussion  and  Analysis  of  Unit  Components     To  make  this  unit  more  interesting  and  engaging  to  students  because  of  its  difficulty   and  abstractness,  the  unit  revolved  around  a  project  called  Burn,  Baby,  Burn  (see  Appendix   A1).  The  project  required  students  to  investigate  diet  and  exercise  claims  and  how  they   impact  obesity.  With  this  project,  students  were  required  to  perform  research,  collect  data,   and  write  a  paper,  three  very  important  science  and  college  readiness  skills.  Students  also   had  to  apply  their  understanding  of  cells,  macromolecules,  and  metabolic  pathways.   To  assess  students’  understanding  of  the  concepts  that  the  unit  addressed,  students   were  given  a  pre-­‐assessment  of  concepts  (see  Appendix  D1)  that  would  be  encountered   over  the  term.  These  were  assessed  through  8  free-­‐response  items  that  were  scored  on  a   scale  of  0-­‐2.  These  standards  were  assessed  throughout  the  unit  with  short,  formative   assessments  in  small  and  large  group  formats  and  summative  assessments.  In  addition  to   formal  assessments,  students  were  also  required  to  submit  a  reflection  for  each  unit  of   study.   15   The  formative  assessments  utilized  included  ConcepTests  (see  Appendix  A2),  an   idea  borrowed  from  Eric  Mazur.  Students  read  chapters  from  their  textbook,  Biology  (8th   ed.)  by  Campbell  and  Reece  (2008),  and  completed  corresponding  online  assignments   through  a  companion  site  called  Mastering  Biology.  The  assignments  on  Mastering  Biology   were  designed  so  that  students  had  multiple  attempts  at  the  questions  and  were  scored  on   a  100-­‐point  scale.  The  site  has  built-­‐in  settings  that  give  students  bonus  points  if  they  don’t   use  any  hints  to  help  them  answer  the  questions,  thus  some  students  earned  scores  greater   than  100  points.  The  day  after  these  assignments  were  due,  students  were  asked  multiple-­‐ choice  questions  that  applied  the  concepts  the  students  had  read  about  the  night  before.   The  format  of  the  ConcepTests  was  to  pose  the  question  and  poll  for  results,  then  have  the   students  turn  to  a  partner  and  discuss  their  answer.  After  discussion  with  a  partner,  the   question  was  asked  again.  If  all  students  got  the  correct  answer,  very  little  discussion   ensued.  If  answers  varied,  we  had  a  class  discussion  to  get  students  to  a  better   understanding  of  the  concept.  Students  wrote  their  answer  choice  on  small  (8  ½”  x  11”)   whiteboards  and  held  them  up  in  the  air  when  requested.  An  additional  formative   assessment  employed  throughout  the  unit  was  the  use  of  whiteboards  or  creating  posters   to  demonstrate  understanding  of  key  concepts.  This  was  often  done  toward  the  end  of  the   unit  as  a  review.     To  further  engage  students  with  the  content  and  assess  their  understanding  of   concepts,  students  submitted  a  written  reflection  for  each  unit.  This  reflection  was  500   words  or  less  and  had  to  connect  the  smaller  ideas,  such  as  chemical  bonding,  function  and   structure  of  macromolecules,  properties  of  water,  and  intermolecular  interactions  together   into  a  cohesive  understanding  of  each  unit,  how  macromolecules  are  synthesized  and   16   function  in  cells  (see  Appendix  A3).  The  major  premise  of  this  thesis  is  that  participation  in   the  activities  I  described  (Mastering  Biology  assignments,  ConcepTests,  reflective  writing,   unit  project)  would  correspond  to  stronger  understanding  of  the  concepts  as  measured   through  free-­‐writing  prompts.         Components  of  the  Unit   Component  1:  Mastering  Biology     This  is  a  companion  site  to  the  AP  Biology  textbook,  Biology  (8th  ed.)  by  Campbell  &   Reece  (2008).  Students  must  log  in  to  the  site  to  complete  the  assignments.  With  each   assigned  reading  from  the  textbook,  students  completed  a  Mastering  Biology  assignment,   which  consisted  of  animations,  multiple  choice  questions,  and  interactive  simulations.  The   assignments  were  resumable  and  students  had  approximately  7-­‐10  days  to  complete  each   assignment  before  we  discussed  them  in  class.       Component  2:  ConcepTests     ConcepTest  is  a  termed  coined  by  Eric  Mazur  (1997)  in  describing  his  approach  to   conceptual  teaching  and  learning.  A  ConcepTest  is  a  multiple-­‐choice  question  that  is  based   on  fundamental  concepts  in  the  course.  Following  each  Mastering  Biology  assignment,  class   began  with  2-­‐3  ConcepTest  questions  that  addressed  key  concepts  of  each  unit.  Students   read  each  question  (projected  on  the  screen),  wrote  their  answer  choice  on  a  small   whiteboard,  and  results  were  tallied.  Then,  students  turned  to  a  partner  to  discuss  their   17   answers  and  voted  again.  If  warranted,  the  topic  was  discussed.  The  list  of  ConcepTest   questions  used  in  this  unit  is  included  in  Appendix  A2.     Component  3:  Whiteboards  as  a  Formative  Assessment     In  following  an  inquiry-­‐based  and  student-­‐centered  approach  to  teaching,  it’s   important  to  check  for  students’  understanding  about  key  concepts  they  are  learning.  The   Mastering  Biology  assignments  provide  an  accountability  piece  for  making  sure  students   are  reading  the  textbook  and  understand  what  they  read.  The  ConcepTests  are  another  way   to  check  in  with  students.  They  also  get  students  involved  with  the  content  due  to  the   interactive  and  social  nature  of  Peer  Instruction  and  Turn  To  Your  Neighbor.  Large   whiteboards  allow  for  students  to  demonstrate  what  they  know  and  understand  about   concepts.  Students  modeled  their  thinking  and  metacognitive  processes.  Because  the   whiteboards  are  editable,  students  easily  made  corrections  when  their  peers  or  the   instructor  points  out  an  error  in  their  thinking.  Students  worked  in  small  groups  on  a   whiteboard  assessment  and  presented  to  other  groups  or  to  the  entire  class.  The   presentations  required  students  to  justify  their  thinking  and  explain  graphics  they  used.   Sample  whiteboard  assessments  of  cell  surface  area  to  volume  ratio  and  cellular   respiration  are  shown  in  Figures  1  and  2.                         18   FIGURE  1:  Whiteboard  Assessment  samples   These  whiteboard  samples  were  utilized  in  the  cell  structure  and  function  unit.  Groups  of  3-­‐4   students  responded  to  the  prompt,  “Explain  how  alveoli  increase  the  surface  area  available  for  gas   exchange  in  the  lungs.”     FIGURE  2:  Whiteboard  Assessment  samples   These  whiteboard  samples  were  utilized  in  the  cellular  respiration  unit.  Groups  of  3-­‐4  students   responded  to  the  prompt,  “Diagram  the  process  of  cellular  respiration.”             19   Component  4:  Using  Socratic  Dialogue     The  use  of  Socratic  dialogue  facilitates  deeper  and  more  interactive  discussion  (Paul   and  Binker,  2012).  Students  practiced  Socratic  dialogue  techniques  in  the  form  of   bookmarks  using  sentence  starters  to  push  their  peers  to  justify  explanations  with   evidence  and  think  more  deeply  about  the  topic  (see  Appendix  A4).  The  bookmarks  were   adapted  from  Lucy  Calkins’  book,  The  Art  of  Teaching  Reading  and  Ready,  Set,  Science  by   Sarah  Michaels,  Andrew  W.  Shouse,  and  Heidi  Schweingruber.  Students  practiced  using  the   sentence  starters  during  whiteboard  presentations,  feedback  protocols  for  the  PBL   component,  and  project  presentations.       Component  5:  Project  Based  Learning     The  PBL  component  was  the  highlight  of  this  unit  plan  in  that  it  connected  the   individual  subunits  together  in  one  comprehensive  activity  and  assessment.  This  project   was  the  students’  final  assessment  for  the  unit  and  was  presented  during  the  final  exam   period  at  the  end  of  the  first  trimester  in  November  2014.  Students  were  first  exposed  to   this  project  idea  in  the  first  week  of  the  term.  Following  the  “8  Essentials  for  Project-­‐Based   Learning”  (Larner  and  Mergendoller,  2010),  the  project  was  introduced  with  an  opening   activity,  the  trailer  for  HBO’s  “The  Weight  of  the  Nation”.  This  is  a  4-­‐part  documentary  film   series  that  explores  the  obesity  problem  in  the  United  States  through  case  studies,  scientific   analyses,  and  factors  that  lead  to  obesity.  The  trailer,  one  and  a  half  minutes  long,  is   emotional  and  engaging.  Students  were  shown  a  PowerPoint  presentation  that  showcased   many  of  the  supposed  claims  that  fight  obesity,  such  as  fad  diets  and  weight-­‐loss   supplements.  The  class  then  developed  the  driving  question,  “How  do  different  diet  and   20   exercise  claims  measure  up  to  addressing  the  obesity  epidemic  in  the  United  States?”  and   brainstormed  a  list  of  concepts  they  needed  to  know  to  answer  this  question.  The  Need  to   Know  list  that  the  students  generated  is  shown  in  Table  2.   TABLE  2:  Need  to  Know  list  generated  as  part  of  the  introduction  to  the  PBL  unit.   The  Need  to  Know  list  includes  concepts  and  questions  that  students  determined  were  necessary  to   answer  the  driving  question  for  the  PBL  assessment   Need  to  Know:  Concepts  and  questions  that  students  must  know  in  order  to  answer  the   driving  question,  “How  do  different  diet  and  exercise  claims  measure  up  to  addressing  the   obesity  epidemic  in  the  United  States?     • What  biological  processes  lead  to  obesity?   • How  does  the  body  process  food?   o Digestion   o Cellular  energy   o Function  of  carbohydrates,  lipids,  and  proteins   • How  does  exercise  affect  the  body?   o What  is  a  healthy  level  for  your  body?   o What  is  the  affect  on  metrics  like  heart  rate  and  blood  pressure?   • Vocabulary  terms   • What  are  consequences  of  obesity?       The  project  (see  Appendix  A1  for  description)  was  introduced  by  students   brainstorming  topics  of  interest  to  them  and  submitting  their  ideas  to  a  Google®  form.   Students  worked  in  groups  of  3-­‐5  students  based  on  similar  interests.  A  sample  of  students’   interests  is  shown  in  Figure  3.                     21   FIGURE  3:  Sample  responses  to  PBL  Project  Interest  Form.   Students  were  placed  in  groups  based  on  their  responses  to  this  form.     Students  met  with  their  team  members  the  day  after  completing  the  interest  form  and   submitted  a  project  proposal.  All  teams  were  responsible  for  writing  a  research  paper,  but   they  also  had  to  create  a  media  presentation  of  their  choice  to  share  their  findings.  The   presentation  was  designed  to  target  a  specific  audience  and  provide  a  creative  outlet  for   their  work.  Sample  project  proposals  are  displayed  in  Appendix  A5.     Students  followed  the  format  suggested  by  the  Science  Writing  Heuristic  (Burke  et.   al.,  2005)  for  organizing  their  research  (see  Figure  4).                   22   FIGURE  4:  The  Science  Writing  Heuristic  student  template  (from  Burke  et.  al.,  2005)     Once  student  teams  decided  on  a  research  question,  they  began  to  plan  out  their  procedure   and  assign  roles.  The  Team  Task  List  (BIE,  2012)  in  Appendix  A6  was  given  to  each  group   to  indicate  which  team  member  was  responsible  for  each  part  of  the  project  and  was   submitted  to  me  with  their  final  project.     One  class  period  every  week  or  two  was  devoted  to  project  development;  students   also  met  after  school  to  work  on  their  project.  Regular  check-­‐ins  (Appendix  A7)  provided   the  teams  valuable  feedback  to  further  their  work,  and  helped  teams  generate  additional   ideas  about  their  projects.  Students  also  practiced  using  Socratic  dialogue  sentence  starters   (Appendix  A4)  to  model  respectful  and  focused  discussion.  The  feedback  protocols  were   scaffolded  so  students  shared  more  of  their  projects  with  one  another  during  each  check-­‐in,   ending  ultimately  with  a  poster  presentation  as  we  moved  closer  to  the  deadline  of  the   project.  The  final  check-­‐in  was  for  students  to  share  a  rough  draft  of  their  paper  with  me  to   receive  feedback  before  submitting  the  final  version.  Most  papers  were  submitted  via   Google®  documents.   23     On  the  final  exam  day,  student  teams  presented  their  projects.  Each  group  prepared   a  media  presentation  of  their  choice  that  described  the  claim  they  were  analyzing  and  the   evidence  behind  it.  As  each  team  presented,  the  audience  was  listening  for  the  most   convincing  evidence  to  respond  to  the  reflection  prompt,  “If  you  were  in  a  position  to  lose   weight  or  get  in  shape,  which  method  that  you  heard  about  would  you  try  &  why?  Please   refer  to  specific  evidence  presented.”  (Appendix  A8)  At  the  end  of  each  presentation,   audience  members  had  an  opportunity  to  ask  probing  and  clarifying  questions.  In  addition   to  the  media  presentation  and  research  papers,  students  submitted  a  self-­‐reflection  to   provide  feedback  to  me  about  how  the  team  worked  together  and  what  students  thought   they  did  well  or  needed  to  improve.       Component  6:  Reflective  Writing     The  final  component  to  this  unit  plan  was  the  use  of  reflective  writing  (Appendix   A3).  Students  were  assigned  a  reflection  with  each  subunit  of  study  so  that  students  could   make  connections  between  concepts  learned  over  the  course  of  each  subunit  and  show   their  understanding  of  those  concepts.  Each  reflection  followed  the  same  guidelines  and   was  submitted  prior  to  a  unit  test.       In  addition  to  reflective  writing,  students  also  wrote  lab  reports  and  responded  to   short  and  long-­‐free  response  assessment  items.  These  were  evaluated  using  the  SWH   (Figure  4),  but  modified  into  a  scoring  rubric  for  the  analysis  of  lab  reports  (Appendix  A9).           24   RESULTS  AND  ANALYSIS   Pre-­‐Test  and  Post-­‐Test  Administration     The  Concept  Assessment  was  designed  to  measure  student  understanding  of   essential  biology  concepts  and  served  as  the  main  assessment  tool.  It  (Appendix  D1)  was   administered  during  the  first  week  of  school  as  an  8-­‐item,  free  response  test.  Students  were   prompted  to  answer  each  question  to  the  best  of  their  prior  knowledge  and  if  students  did   not  know  the  answer  to  a  question,  to  leave  it  blank.  The  free-­‐response  assessment  items   were  aligned  to  AP  Biology  Learning  Objectives  (LO).  For  the  post-­‐test  administration,  the   questions  corresponding  to  each  LO  were  divided  among  the  4  sub-­‐unit  tests  administered   throughout  the  term.  Responses  to  the  items  were  scored  on  a  scale  of  0-­‐2.     Participation  in  the  components  described  in  the  Implementation  section  was  tied   to  the  unit  concept  assessment.  The  PBL  component  was  assessed  separately  due  to  its   comprehensive  nature  as  a  stand-­‐alone  assessment.  The  PBL  assessment  rubric  is  in   Appendix  D2.     Data  Analysis—Combined  Pre-­‐test  and  Post-­‐test  Item  Analysis     Table  3  provides  a  breakdown  of  each  LO  assessed  and  the  average  pre-­‐test  score,   post-­‐test  score,  and  gain  among  all  research  participants.  A  one-­‐tailed,  paired  t-­‐test  was   used  to  show  statistical  significance  of  observed  gains  for  each  learning  objective.  A   statistically  significant  change  was  observed  among  all  assessment  items,  showing  an   overall  gain  of  0.56  points.           25   TABLE  3:  Concept  Assessment  pre-­‐test  and  post-­‐test  scores  (n=39)   Paired  t-­‐test  showing  statistical  significance  of  gain  in  post-­‐test  scores   Scoring  Guidelines:   0—No  response  given  or  “I  don’t  know”   1—Explanation  is  given,  but  it  is  incomplete  or  demonstrates  a  lack  of  understanding   2—Explanation  is  given  and  demonstrates  understanding  of  concept   Learning  Objective   Pre-­‐test   Post-­‐ Gain     Average   test   Average   The  student  is  able  to  use  representations  and  models   0.54   1.79   +1.25   to  describe  differences  in  prokaryotic  and  eukaryotic     cells.  (LO  2.14)   p-­‐value   3.76E-­‐11     The  student  is  able  to  justify  the  selection  of  data   0.72   regarding  the  types  of  molecules  that  an  animal,  plant   or  bacterium  will  take  up  as  necessary  building  blocks   and  excrete  as  waste  products.  (LO  2.8)   1.90   +1.18   1.17E-­‐11     The  student  is  able  to  construct  models  that  connect   the  movement  of  molecules  across  membranes  with   membrane  structure  and  function.  (LO  2.11)   0.67   1.62   +0.95   3.35E-­‐08     The  student  is  able  to  explain  the  connection  between   the  sequence  and  the  subcomponents  of  a  biological   polymer  and  its  properties.  (LO  4.1)   0.49   1.64   +1.15   1.07E-­‐12     The  student  is  able  to  explain  how  biological  systems   use  free  energy  based  on  empirical  data  that  all   organisms  require  constant  energy  input  to  maintain   organization,  to  grow  and  to  reproduce.  (LO  2.1)   0.82   1.62   +0.80   6.97E-­‐11     The  student  is  able  to  explain  how  internal   membranes  and  organelles  contribute  to  cell   functions.  (LO  2.13)   0.74   1.87   +1.13   3.52E-­‐15     The  student  is  able  to  explain  how  biological  systems   use  free  energy  based  on  empirical  data  that  all   organisms  require  constant  energy  input  to  maintain   organization,  to  grow  and  to  reproduce.  (LO  2.1)   0.54   1.74   +1.20   4.55E-­‐16     The  student  is  able  to  construct  explanations  of  the   mechanisms  and  structural  features  of  cells  that  allow   organisms  to  capture,  store  or  use  free  energy.  (LO   2.5)   0.59   1.95   +1.36   4.77E-­‐20     Total  Score     0.32   0.88   +0.56   4.53E-­‐19     • Students  are  able  to  explain  the  role  of   enzymes  in  the  use  of  free  energy.   26     Figure  5  shows  the  PBL  assessment  scores  as  grouped  by  percentages.  The  average  score   on  this  assessment  was  97%.   FIGURE  5:  PBL  Student  Assessment  Scores  (n=39)   This  figure  displays  student  percentages  on  the  PBL  Assessment   Average  score  =97%         Data  Analysis—Evaluation  of  Practices     The  main  objective  of  this  unit  implementation  was  to  determine  if  engagement   tools  and  techniques  positively  influenced  conceptual  understanding,  as  measured  by  the   Concept  Assessment  (Appendix  D1).  Table  4  shows  the  percentage  of  students   participating  in  each  of  the  three  components  implemented  in  this  unit.  Average  scores  for   Mastering  Biology  assignments  and  unit  reflections  are  included.   TABLE  4:  Engagement  Tools  and  Percent  Participation  (n=39)   Student  participation  in  the  three  components  implemented  in  this  unit   Engagement  Tool   Average  %  Participation   Average  Score   Mastering  Biology   88%   73.4%   ConcepTests   86%   N/A   Unit  Reflections   73%   65.2%   27   Data  Analysis—PBL  Assessment     The  final  project  submission  for  the  PBL  assessment  included  the  written  research   report  (see  Appendix  B  for  exemplar),  the  media  presentation,  a  team  task  list,  and  one   self-­‐reflection  (Appendix  A10)  per  student.  Common  responses  to  the  self-­‐reflection   questions  are  reported  in  Table  5.   TABLE  5:  PBL  Self-­‐Reflection  Responses   A  report  of  common  responses  to  the  self-­‐reflection  component  of  the  PBL  Assessment   Was  this   All  students  (n=39)  reported  that  the  project  was  very  interesting  to  them  for   project   various  reasons  relating  to  the  topic  they  selected.   interesting  to   you?  Why  or   why  not?   What  is  the   Most  students  stated  that  the  most  important  thing  they  learned  related  directly   most  important   to  their  topic.  But,  some  students  noted  that  they  learned  how  to  use  resources   thing  you   during  this  project,  how  to  distribute  labor/tasks,  and  that  research  studies  take   learned  in  this   time.   project?     What  do  you   Divide  work  more  evenly   wish  you  had   Outline  research   spent  more   Collect  more  data  or  from  a  larger  sample  size   time  on  or  done   Start  earlier   differently?   Create  a  better  media  presentation   Performed  lab  activities  at  the  beginning     Organized  data  differently   Performed  a  controlled  experiment   Collected  original  data  instead  of  published  data   On  what  part  of   Various  answers   the  project  did   you  do  your   best  work?   How  well  did   Worked  well  together,  but  work  not  divided  equally   your  group   Even  work  load  for  all  team  members   collaborate?   Team  got  distracted  because  they  were  all  friends   Explain.   Not  all  teammates  worked  as  hard  as  others   Lack  of  communication   The  team  excluded  some  members   The  project  allowed  team  members  to  get  to  know  each  other  better   How  well  did   Team  wasn’t  as  productive  as  they  could  have  been   your  group   Team  made  good  use  of  time   make  use  of   The  team  met  frequently  outside  of  class.   time?  Explain.   The  team  was  more  efficient  as  time  went  on.   Felt  rushed  at  the  end   Trouble  staying  on  task   Procrastination   28   Students  completed  another  reflection  following  the  PBL  project  presentations.   They  responded  to  a  prompt  and  cited  specific  evidence  to  support  their  answer  (Appendix   A8).  The  7  different  project  topics  are  displayed  in  Table  5  as  well  as  the  percentage  of   students  who  identified  each  one  as  the  most  effective.  Some  students  described  a   combination  of  methods  as  most  effective.  Sample  quotes  from  student  reflections  are   included  as  evidence.     TABLE  6:  PBL  Reflection  Responses   A  summary  of  which  project  claims  were  identified  as  most  effective   Diet/Exercise  Method   %  Respondents   Evidence   Anaerobic/Aerobic   Exercise   9.4%   Juice  Cleanse  (2  groups)   18.8%   Green  Tea  (2  groups)   9.4%   Liquid/Solid  Diet   15.6%   Meditation   6.3%   Eating  Speed   18.8%   Fast  Food  Elimination   6.3%   Combination  of  Methods   15.6%   “By  building  muscle  and  losing  fat,  you  become   healthier  and  more  physically  fit.”   “It  will  increase  your  endurance  and  strengthen   your  heart  and  cardiovascular  system.”     “…can  rid  the  body  of  toxic  build-­‐up”   “ingredients  are  high  in  antioxidants,  vitamins,   and  minerals”     “…acts  as  an  appetite  suppressant”   “It’s  easy  to  change  and  has  a  lot  of  benefits.”   “reduces  one’s  calorie  intake”   “This  is  the  only  diet  to  cause  measurable   weight  loss.”   “The  data  was  reliable.”   “One  of  the  only  diets  that  had  data  that  was   statistically  significant.”   “Decreasing  stress  would  be  very  useful  to  me.”   “The  brain  has  to  send  a  message  to  the  body  to   tell  the  body  that  it’s  full.”   “The  connection  of  leptin  to  fullness  and  that   signal  takes  time.”   “There  are  healthier  alternatives  to  fast  food.”   “Fast  food  is  full  of  empty  calories.”   “I  would  vary  the  types  of  exercise  and  eat   slower.  This  would  allow  sufficient  time  for   hunger  hormones  to  tell  me  to  stop  eating.”   “I  would  cleanse  my  body  to  get  a  fresh  start.   Anaerobic  and  aerobic  exercise  would  get  my   heart  rate  up  and  burn  fat.”   29   DISCUSSION   The  process  of  developing  deeper  conceptual  understanding  requires  students  to  be   more  engaged  in  their  learning  and  shifting  the  focus  away  from  the  teacher  and  toward   the  student.  (Zirbel,  2005).  In  this  study,  students  were  expected  to  demonstrate  deeper   understanding  of  biology  concepts  by  participating  in  the  engagement  techniques  of   Mastering  Biology,  ConcepTests,  reflective  writing,  and  Project-­‐Based  Learning.  The  data  in   Table  3  shows  that  students  experienced  statistically  significant  gains  in  all  items  of  the   concept  assessment,  with  an  average  gain  of  0.56  points  for  the  whole  assessment.   However,  demonstrating  a  causal  relationship  between  the  engagement  techniques  and   assessment  gains  proved  difficult.  While  a  majority  of  students  participated  in  the   engagement  components  described  (Table  4),  a  positive  correlation  between  percent   participation  and  concept  assessment  gains  could  not  be  observed.  For  this  study,   engagement  was  defined  as  participation  in  classroom  activities,  but  engagement  can  also   be  defined  by  cognitive,  behavioral,  and  affective  indicators  (Chapman,  2003).     To  address  the  affective  aspect  of  engagement,  students  participated  in  discussions   through  Peer  Instruction  and  ConcepTests.  Eric  Mazur  was  able  to  demonstrate  an   improvement  in  student  performance  as  measured  by  a  number  of  different  assessments   when  PI  was  implemented  in  his  introductory  physics  course  at  Harvard  University   (Crouch  &  Mazur,  2001).  Due  to  the  lack  of  a  controlled  study  in  this  unit  plan,  a  similar   conclusion  cannot  be  reached.     To  address  the  cognitive  aspect  of  engagement,  students  submitted  unit  reflections   to  demonstrate  the  ability  to  make  connections  between  concepts.  Writing  is  a  skill  that  is   generally  lacking  among  college  freshman  (Conley,  2007b),  so  providing  opportunities  to   30   write  in  varied  content  areas  is  critical  to  producing  more  college-­‐ready  students.  Among   the  three  engagement  components  implemented  in  this  unit,  students  participated  the  least   in  reflective  writing,  with  an  average  of  73%  submitting  reflections  for  the  4  units  defined   in  this  study  (Table  4).  Writing  may  be  perceived  as  more  time-­‐consuming  and  not  directly   beneficial  to  understanding  content.  Unfortunately,  a  causal  relationship  between  reflective   writing  and  assessment  gains  cannot  be  demonstrated.     Students  demonstrated  a  high  degree  of  success  on  the  PBL  assessment,  with  an   average  score  of  97%  (Figure  5).  The  success  may  be  credited  to  a  couple  of  structures   implemented  with  this  assessment:  the  long-­‐term  nature  of  the  assessment  (11  weeks  to   complete  the  project,  from  the  day  it  was  introduced  to  the  day  it  was  presented,  see  Table   1)  and  the  use  of  feedback  protocols  to  improve  student  work  (Appendix  A7).  However,  it   must  be  noted  that  the  rubric  assessed  more  than  content,  with  only  two  of  the  seven   rubric  items  assessing  content  and  evidence  (Appendix  D2).     Although  students  scored  high  on  the  PBL  assessment,  a  concern  presented  itself   with  the  PBL  reflection  responses  (Table  6).  Students  were  asked  to  evaluate  the  claims  of   their  peers.  The  exemplar  included  in  Appendix  B  on  anaerobic/aerobic  exercise  most   effectively  answered  the  driving  question,  “How  do  different  diet  and  exercise  claims   measure  up  to  addressing  the  obestiy  epidemic”  by  collecting  and  analyzing  original  data   from  a  large  sample  size  and  connecting  the  data  to  known  information.  However,  only   9.4%  of  students  reported  this  claim  as  the  most  convincing  claim.  The  highest  percentage   of  students  (18.8%)  reported  the  juice  cleanse  and  eating  speed  as  the  best  methods  for   weight  loss  or  getting  in  shape.  While  the  reasons  for  supporting  the  juice  cleanse  were   vague  and  lacking  in  evidence,  the  reasons  supporting  the  eating  speed  were  more  rooted   31   in  valid  scientific  explanations.  Perhaps  the  reflection  prompt  did  not  emphasize  the  need   to  cite  evidence  clearly  enough.  Students  may  also  have  been  swayed  by  the  technological   savvy  of  some  of  the  presentations  and  overlooked  the  lack  of  evidence.     Despite  the  ability  for  many  students  to  cite  evidence  from  the  presentations,  all   students  learned  important  information  from  performing  the  PBL  assessment.  From  the   self-­‐reflection  (Table  5),  most  students  learned  important  content  relating  to  metabolism   and  diet/exercise  claims,  but  some  reported  learning  important  research  and  collaboration   skills,  habits  that  are  indications  of  college  readiness  (Conley,  2007a).  Improvement  in  the   areas  of  collaboration  and  time  management  is  needed  for  future  implementation  of  this   assessment.                             32   FUTURE  CONSIDERATIONS     Engagement  is  challenging  to  measure.  Participation  alone  is  only  part  of  the   picture;  quality  of  student  work  and  attitude  are  additional  aspects  of  engagement  that  are   often  subjective  (Chapman,  2003).  One  consideration  for  future  implementation  of  this  unit   is  to  compile  survey  data  evaluating  students’  attitudes  about  class  activities  to  determine   which  components  were  deemed  most  effective  and  impactful  to  learning.  Another   challenging  aspect  of  this  unit  was  writing  effective  concept-­‐based  questions.  Some  science   disciplines,  notably  physics  and  chemistry,  offer  concept  inventories  to  assess  student   understanding,  however,  biology  lacks  such  an  assessment.  In  some  cases,  the  wording  of   ConcepTest  questions  caused  students  to  get  the  incorrect  answer.  Having  a  bank  of   conceptual  questions  to  draw  from  might  alleviate  this  problem.  Also,  the  way  in  which   students  responded  to  ConcepTest  questions  could  be  improved.  Using  smartphones,   clickers,  or  another  electronic  data  system  would  provide  better  tallying  of  answers  and   facilitate  better  data  analysis.       To  address  some  of  the  time  management  and  collaboration  issues  raised  by  the   PBL  self-­‐reflection  (Table  5),  assigning  roles  in  future  iterations  of  this  project  may  be   necessary.  Students  were  asked  to  submit  a  team  task  list  (Appendix  A6),  but  this  was  up  to   each  team  to  determine  and  some  students  are  uncomfortable  with  delegating   responsibility  to  their  peers.     Lastly,  despite  strong  efforts,  many  students  value  “correctness”  over  “process”.   When  presenting  ConcepTest  questions,  students  often  wanted  to  know  the  correct  answer   and  not  necessarily  the  metacognitive  processes  that  lead  to  the  correct  answer.  This  is  an   attitude  that  is  hard  to  change,  given  that  is  likely  stems  from  very  early  childhood   33   experiences.  However,  students  must  understand  their  own  metacognitive  processes  in   order  to  know  themselves  as  thinkers  and  learners  and  develop  empowerment  and  the   ability  to  help  oneself.  For  this  reason,  the  focus  in  all  science  classrooms  should  be  on   uncovering  the  processes  of  science  and  reasoning  to  produce  more  college  and  career-­‐ ready  students.                                       34                         APPENDICES                         35   APPENDIX  A:  Unit  Activities  and  Components     APPENDIX  A1:  PBL  Assessment  Description   Burn,  baby,  burn   Investigating  diet  and  exercise  claims   Objectives:   • • • • • • Construct  explanations  of  the  mechanisms  and  structural  features  of  cells  that  allow   organisms  to  capture,  store  or  use  free  energy.   Represent  graphically  or  model  quantitatively  the  exchange  of  molecules  between   an  organism  and  its  environment,  and  the  subsequent  use  of  these  molecules  to   build  new  molecules  that  facilitate  dynamic  homeostasis,  growth  and  reproduction.   Analyze  data  to  identify  how  molecular  interactions  affect  structure  and  function.   Design  a  plan  for  collecting  data  to  answer  a  particular  scientific  question.   Evaluate  evidence  provided  by  data  in  relation  to  a  scientific  question.   Convey  findings  to  an  audience.   Your  Task:   As  a  team,  consider  the  question,  “How  do  different  diet  and  exercise  claims  measure  up  to   addressing  the  obesity  epidemic  in  the  U.S.?  ”  Then,  think  about  the  overwhelming   information  available  regarding  specific  diet  and  exercise  regimens  and  supplements   aimed  at  weight  loss,  fat  loss,  increasing  muscle  mass,  etc.  Applying  your  understanding  of   how  cells  generate  energy,  what  nutrients  cells  require,  and  how  nutrients  are  transferred   between  cells,  you  will  design  a  procedure  for  investigating  a  particular  claim.  You  will   share  your  results  in  a  research  bulletin  and  present  your  findings  in  a  creative,  engaging   digital  format  of  your  choice.  Presentations  will  be  posted  to  a  website  to  be  shared  with  an   online  audience  and  an  audience  of  peers  and  professionals.   Revisions  and  Check-­‐ins:   Frequent  reviews  are  an  important  part  of  the  process  of  creating  a  high-­‐quality  final   product.  You  will  participate  in  a  minimum  of  three  reviews  during  the  course  of  the   project.  These  are  the  minimum  expectations  for  what  you  will  provide  at  each  review   (Record  the  due  dates  next  to  each  revision):     #1—Charette  Protocol  with  another  team         Date:  ________________   • The  beginnings  of  work  samples,  such  as  a  rough  draft  of  a  report,  a  storyboard,  or  a   written  record  of  brainstorming   • An  outline  of  your  project   • A  task  list  (shared  with  teacher)   • A  professional  example  from  which  you  will  model  your  project   • Data  and  some  background  research  collected   36     #2—Gallery  Walk               Date:  ________________   • A  complete  draft  of  your  work  (i.e.,  a  rough  cut  of  a  video,  draft  of  an  article,   framework  of  webpage)   • A  task  list  with  assignments  from  team  members  (shared  with  teacher)   • A  rough  draft  of  research  bulletin   • Additional  research  collected     #3—Critical  Friends  Feedback  Protocol       Date:  ________________   • A  complete,  functioning,  revised  draft  of  your  work.   • A  task  list  with  assignments  from  team  members  (shared  with  teacher)   • A  second  draft  of  research  bulletin   • Self-­‐reflection  completed  (submitted  to  teacher)     #4—Teacher  Conference  (optional)       Final  Project  Due:  _______________________       37   APPENDIX  A2:  ConcepTest  Question  Slides   FIGURE  6:  ConcepTest  Questions     This  figure  displays  the  23  PowerPoint  slides  used  to  project  ConcepTest  questions  to  the  class.                       38       FIGURE  6  (cont’d)                                       39   FIGURE  6  (cont’d)                 40   FIGURE  6  (cont’d)               41   FIGURE  6  (cont’d)                                           42   FIGURE  6  (cont’d)                                         43   FIGURE  6  (cont’d)                             44   FIGURE  6  (cont’d)             45   FIGURE  6  (cont’d)               46   FIGURE  6  (cont’d)                                                                             47   APPENDIX  A3:  Unit  Reflection  Directions  and  Rubric   Reflective  Writing  Post  Scoring  Guide     Directions:    Your  reflective  writing  post  should  be  approximately  500  words  of  text  (about   1  single-­‐spaced  page),  although  it  can  be  longer  if  necessary.    It  should  include  pictures  or   video  from  class  and  hyperlinked  URL’s  to  relevant  websites  or  online  content  that  relates   to  what  we  are  learning.    It  should  also  be  written  in  the  first  person  with  correct  grammar   and  spelling.     In  writing  your  reflection,  consider  the  following  questions  to  guide  your  thinking:   ● What  were  the  main  ideas  we  learned?   ● How  do  the  main  ideas  connect?   ● What  were  some  of  the  important  details  to  the  main  ideas?   ● What  activities  or  experiments  did  we  do  that  went  along  with  these  ideas?   ● How  did  we  come  to  know  and  understand  the  ideas  we  learned?   ● What  questions  do  I  still  have  about  what  I  learned?   ● How  was  my  participation  in  the  learning?   ● How  would  I  rate  my  understanding?   ● What  do  I  still  need  to  work  on  more?   TABLE  7:  Reflective  Writing  Scoring  Rubric   Ratings:   2   General   A  post  in  this  category   Description   presents  a  cohesive   piece  of  writing,  a  well-­‐ articulated  analysis  of   the  learning  that  took   place  during  the  unit   with  appropriate  detail,   and  conveys  the  impact   that  the  learning  had  on   the  author  with   acceptable  clarity  and   meaning.   1   0   A  post  in  this  category   presents  an  acceptable   analysis  of  the  learning   that  took  place  during   the  unit,  but  lacks   depth  in  explaining  the   impact  that  the   learning  had  on  the   author.   A  post  in  this  category   presents  little  analysis   of  the  learning  that   took  place  during  the   unit  and  may  only  list   the  learning  activities   without  addressing   the  impact  that  the   learning  had  on  the   author.               48   TABLE  7  (cont’d)     2   1   0   Specific   A  post  in  this  category   A  post  in  this  category   A  post  in  this  category   Elements  of   exhibits  the  following:   exhibits  one  or  more  of   exhibits  one  or  more   Reflection   ● develops  a   the  following:   of  the  following:   detailed   ● relies  heavily   ● provides  only  a   summary  of  the   on  a  description   list  of  activities   learning  that   of  what  took   that  happened   took  place  with   place  in  class   during  the  unit   well-­‐chosen   each  day,  with   ● lacks  reflective   examples   few  supporting   elements,   ● is  focused  on   examples   including  how   how  the  author   ● is  vague  or   the  learning   was  changed  by   limited  in   connects  to   the  learning  that   addressing  the   other  class   occurred   task  of   concepts     ● connects  ideas   reflecting  on   ● provides  little   together   the  learning   or  no  evidence   ● contains  one  or   ● is  weak  in   of   more  embedded   making   understanding   URL’s,  photos,  or   connections   ● contains  no   videos   between  ideas   embedded  URL,   supporting   ● may  contain  an   photo,  or  video   understanding   embedded  URL,   to  help  support   of  concepts   photo,  or  video   the  author’s   ● demonstrates   to  help  support   understanding   strength  with   the  author’s   ● has  several   standard   description  of   problems  in   written  English   the  learning   language  and   and  has  very  few   ● contains   sentence   mechanical  and   occasional   structure   grammatical   errors  in   ● post  was  not   errors   grammar  or   submitted   mechanics                           49   APPENDIX  A4:  Student  and  Teacher  Talk  Moves  (Socratic  dialogue  bookmarks)     Student  Talk  Moves   -­‐What  you  just  said  matches  our  thinking   because…     -­‐Why  did  you  say  that?  Can  you  explain   your  evidence?     -­‐Could  you  give  me  an  example?     -­‐I’m  not  sure  I  understand  what  you  are   saying.  Could  you  say  it  another  way?     -­‐I  hear  what  you  are  saying  but  my   evidence  said  something  different…     -­‐I’d  like  to  add  on  to  what  _______________   said.     -­‐I  have  evidence  of  what  you  just   said_______________________.     -­‐Another  thing  we  found  that  goes  with   that  is…     -­‐So,  are  you  saying…?     -­‐Going  back  to  what  _________________  said   about  _____________________...     Adapted  from:   Calkins,  Lucy.  (2001)  The  Art  of  Teaching   Reading.  New  York,  NY:  Addison  Wesley.   Teacher  Talk  Moves   -­‐Revoicing  (“So  let  me  see  if  I’ve  got  your  thinking   right.  You’re  saying…”)     -­‐Asking  students  to  restate  someone  else’s   reasoning  (“Can  you  repeat  what  she  just  said  in   your  own  words?”)     -­‐Asking  students  to  apply  their  own  reasoning  to   someone  else’s  reasoning  (“Do  you  agree  or   disagree  and  why?”)     -­‐Prompting  students  for  further  participation   (“Would  someone  like  to  add  on?”)     -­‐Asking  students  to  explicate  their  reasoning   (“Why  do  you  think  that?”  or  “What  evidence  helped   you  arrive  at  that  answer?”)     -­‐Using  wait  time  (“Take  your  time…We’ll  wait”)                     Taken  from:   Michaels,  S.,  Shouse,  A.W.,  Schweingruber,  H.A.   (2007)  Ready,  Set,  Science.  Washington,  D.C.:  The   National  Academies  Press.                               50   APPENDIX  A5:     TABLE  8:  PBL  Student  Project  Proposals   What  will  be   What  is  your   Who  is  your   your  team’s  final   method  for   audience?   product?   collecting   data?   PowerPoint  and   tea  cups  with   green  tea  and   labels  with  our   findings   Understanding   how  the  digestive   system  works  and   what  the  juice   cleanse  does  for   the  body.   We  will  present   our  research   through  a   informative  and   engaging   infomercial   Poster  and  radio   broadcast   We  will   analyze   someone   else's  data,   and  we  could   use  human   test  subjects,   such  as  having   a  group  of   people  drink   16oz  of  green   tea  a  day  (this   could  prove   problematic   Conducting   our  own   experiment     General   public   (overweight   people  and   health   department)     People   looking  to   lose  weight     We  will  collate   and  analyze   outside   research.     Our  audience   is  composed   of  people   interested  in   a  convenient   and   rewarding   method  of   weight  loss     A  combination   American   of  both     teenagers                 51   What  materials   will  you  need?  List   any  and  all   necessary   materials,   including   technology  needs.   green  tea,   computers,  paper,   people,  ourselves,   cups,  printer,   brains,  time,  wifi,   tape     What  is  your   research   question?   -­‐Juice  clense   -­‐Human  subjects     How  does  the   combination  of   food  in  the  juice   clense  affect  the   body?     How  does   meditation   affect  weight   loss.     Computers  for   research,  video   taking  devices,   actors,  props.     Poster,  Computer   for  broadcast,   camera,  lab   equipment,  food       What  is  the   effect  of  green   tea  on  weight   loss  and   maintenance?     How  does  the   distribution  of   consumption   throughout  the   day  affect   weight  loss?     TABLE  8  (cont’d)     What  will  be   What  is  your   your  team’s  final   method  for   product?   collecting  data?   10-­‐15  minute   intervals  and   measure  heart   rate.  Separating   male  and  female   PowerPoint   Using  a  timer  to   measure  exercise   time,  then   recording  heart   rate  on  a  chart   that  separates   male  and  female.     research  existing   studies     Who  is  your   audience?   What  materials   will  you  need?   List  any  and  all   necessary   materials,   including   technology   needs.   Athletes,Trainers,   Timer   and  coaches       Human     participates   Data  table   Computer   IMovie   Camera     general  public   computers                                                           52   What  is  your   research   question?   What  are  the   differences  in   one's  heart  rate   during  anaerobic   and  aerobic   exercise?         What  are  the   effects  of  a  liquid-­‐ only  diet  vs  a   liquid/solid  food   combined  diet   and  do  either  of   them  result?     APPENDIX  A6:  PBL  Team  Task  List   P R O J E C T Project Name: M A N A G E M E N T L O G : T A S K S G U I D E T E A M Team Members:   Who  Is   Responsible   Task                                                                       Due   Date   Status   Done         £         £         £         £         £         £         £         £         £         £         £         £         £         £         £         £         £     53   APPENDIX  A7:  PBL  Project  Feedback  Protocols     Feedback  Protocols  for  Reviewing  Student  Work     Charette  Protocol   TABLE  9:  Charette  Protocol  Directions  and  Timing  Guidelines   PRESENTATION   Presenter  presents  his/her  work  idea  to  a  partner.  The  partner  listens.   3  minutes   FRAMING  QUESTION   Presenter  asks  a  specific  question  to  frame  the  feedback.   e.g.  “What  can  I  make  better  about…?”  How  can  I  improve…?”   1  minute   FEEDBACK   Partner  gives  suggestions.  Presenter  listens.   Make  sure  your  feedback  is  helpful,  specific,  and  kind.   2  minutes   OPEN  DISCUSSION   Presenter  and  partner  have  a  dialogue  about  the  suggestions/feedback.   2  minutes   TOTAL   8  minutes     Gallery  Walk   TABLE  10:  Gallery  Walk  Protocol  Directions  and  Timing  Guidelines   SET-­‐UP   Hang  posters  and  distribute  sticky  notes   3  minutes   GALLERY  WALK  &  FEEDBACK   Silently  record  feedback  on  sticky  notes.  Offer  one  or  more  of  the   following:   ● Praise-­‐-­‐Tell  why  you  like  it;  why  it  is  a  strength   ● Question-­‐-­‐Ask  questions  about  pieces  of  the  work  that  are  unclear   ● Polish-­‐-­‐Provide  suggestions  for  improvement   Make  sure  your  feedback  is  helpful,  specific,  and  kind.   20  minutes   REFLECTION   Reflect  on  the  feedback  and  discuss  the  Gallery  Walk.   5  minutes   REVISION   Using  the  feedback  you  received,  make  necessary  edits  to  your  work.     TOTAL   28  minutes   54   Critical  Friends  Protocol   TABLE  11:  Critical  Friends  Protocol  Directions  and  Timing  Guidelines   PRESENTATION   Presenters  explain  their  project;  Audience  listens   5  minutes   CLARIFICATION   Audience  asks  short  clarifying  questions;  Presenters  respond   2  minutes   ASSESSMENT   Audience  quietly  uses  rubric  to  assess  the  project;  Presenters  wait   1  minute   “I  LIKE…”   Audience  shares  what  they  liked  about  the  project;  Presenters  listen   3  minutes   “I  WONDER…”   Audience  shares  concerns;  Presenters  listen   3  minutes   REFLECTION   Presenters  reflect  on  useful  feedback;  Audience  listens   3  minutes   “I  HAVE…”   Audience  shares  ideas  &  resources  for  the  project;  Presenters  may   respond   3  minutes   TOTAL                         55   20  minutes   APPENDIX  A8:  PBL  Project  Presentation  Reflection     BURN,  BABY,  BURN  PROJECT  REFLECTION     After  viewing  and  listening  to  your  peers’  projects,  respond  to  the  following   question.  Use  the  reverse  side  of  this  page  to  record  notes  on  the  presentations.     1. If  you  were  in  a  position  to  lose  weight  or  get  in  shape,  which  method  that  you  heard   about  would  you  try  &  why?  Please  refer  to  specific  evidence  presented.   _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________   _________________________________________________________________________________________________ _________________________________________________________________________________________________               56     Topic   Notes                                                                           57   APPENDIX  A9:  Science  Writing  Heuristic  (SWH)  Scoring  Rubric   Science Writing Heuristic Q Title and Authors: 1 Point Beginning Questions: What do you have to investigate or figure out about this concept? What will be the main questions that will guide your learning? 2 Points Hypothesis: Considering what you already know about this concept, write a cause and effect statement that explains what you anticipate will occur. If …………. then…………. due to…………. (Must show cause and effect and should explain why you believe this will occur.) 2 Points Tests: What tests or procedures will I follow to help answer my questions? (Must include materials, safety, and procedures.) What are the independent and dependent variables? What are the control and the constants to ensure test validity? 10 Points Observations: Observations (qualitative and quantitative) that occurred during the lab should be recorded using appropriate tables, graphs, and statistical analyses. 15 Points Claims: State your claim based on your evidence (data collected from observations). What do you claim to be true? In this investigation… Evidence: This is where you use your data to back up the claim you made. This involves analyzing your tables and graphs. How can you prove what you are stating? (Back it up) The claim that when ………, then ……….. (happens) Refer back to your hypothesis: The hypothesis was supported/unsupported because… What procedural changes could you make if you were to repeat the experiment? What follow-up studies could be done? 15  Points   58     Negotiate: What do others say about my claim? Internal Sources: External Sources: In this section you compare your data with your classmates. Make sure that you include any examples that may make your ideas clear. In this section you compare your data with other scientists. Use articles, books, or the internet. Below is an example to cite your sources (APA style): EXAMPLE: Harris, Robert. "Evaluating Internet Research Sources." VirtualSalt. 15 June 2008. Web. 20 Apr. 2009. . 5 Points 5 Points Reflection: How have my ideas changed? What did you learn about this concept? How can you connect this learning to something outside of the classroom? Are there any new questions you have about the concept? ● Your thoughts after the experiment (Understandings, Related Thinking, Connections) After conducting this experiment it is ……… ● How has your thinking changed based on internal and external sources? This concept is similar to….. because…. The evidence shows that …………. to be true…………… and not ……………..because this is what occurred. 10 Points Total: ______________/65 Points 59   APPENDIX  A10:  PBL  Self-­‐Reflection   SELF-REFLECTION ON PROJECT WORK Think about what you did in this project and how well the project went. Record your comments in the right column. Student Name: Project Name: Was this project interesting to you? Why or why not? What is the most important thing you learned in this project? What do you wish you had spent more time on or done differently? On what part of the project did you do your best work? Collaboration: How well did your group collaborate? Explain. How well did your team make use of time? Explain. 60   APPENDIX  B:  First  Student  PBL  Research  Report  Exemplar     Anaerobic vs. Aerobic Exercise   Abstract: All sorts of exercise exist in today’s society. However they all can fall under two categories: aerobic and anaerobic exercise. As obesity is becoming an evermore-present problem, many people are increasing health awareness, especially physical wellness. Moreover, our society is obsessed with efficiency and therefore it would only make sense for us to determine the least time consuming, yet most physically vigorous activity. In this experiment, the change in heart rate of participants after exercising is used as an indicator for vigor of an exercise (aerobic or anaerobic). After review of data we find out that any correlations are insignificant. Therefore, neither anaerobic nor aerobic exercise is more vigor than the other or more efficient than the other. To battle this country’s obesity, it’s important to exercise, anaerobically or aerobically. There are many benefits in performing both types of exercises because each uses different groups of muscles. Question: Does anaerobic or aerobic exercise work a heart harder? Variables: ● Independent Variables: anaerobic and aerobic exercise ● Dependent Variables: heart rate ● Controlled Variables: Duration of time they exercise, duration of time they take their heart rate, static data Null Hypothesis: Neither anaerobic nor aerobic exercise will affect the heart any differently. Alternative Hypothesis: Anaerobic exercise will result in a higher heart rate and therefore will work the heart harder resulting in a more effective form of exercise. Research Plan: There are all styles of exercise. For some toddlers, a game of tag will suffice, some elderly continue to ballroom dance, or some teenagers go for 6-mile runs. Whatever it may be, there are two main types of exercise: aerobic and anaerobic. According to the Harvard Medical School, “aerobic exercise is muscle movement that uses oxygen to burn both carbohydrates and fats to produce energy, while anaerobic exercise is muscle movement that does not require 61   oxygen and only burns carbohydrates to produce energy”. In simpler terms, anaerobic exercise, due to the fact that it is exercise done with a substantial oxygen deficit, it can only be done in short bursts. The intensity of the exercise causes the body to have to perform the exercise with low oxygen levels, as oxygen cannot be delivered fast enough to the muscles. On the other hand, aerobic exercise is able to be performed over long periods of time, as the intensity of the activity is lower, which allows oxygen time to get to your muscles to provide the energy necessary to perform the task. Aerobic exercise works to mainly improve cardiovascular health, while anaerobic exercise mainly focuses on improving strength in the large muscle groups in the body, such as the quadriceps and hamstrings. Therefore certain sports such as cross-country or swimming would be considered aerobic whereas weight lifting and sprinting would be considered anaerobic. Most people exercise to push themselves and make their bodies healthier. Would a certain type of exercise, aerobic or anaerobic work your body harder? This experiment has been designed in order to test the relationship between how hard a person is working, based off of the change from their resting heart rate to their active heart rate, and the type of exercise they are performing (aerobic vs. anaerobic). Resting heart rate is defined as the beats per minute while a person is completely at rest (no motion). Weight loss typically takes place with an increase in metabolism. Metabolism, or the number of calories the body burns, can be increased due to exercise. Increasing metabolism by exercising daily increases the number of calories that need to be taken in every day. Metabolism is like a balance: if calorie intake equals calorie expenditure, than weight remains constant. However, if calorie intake is lower than calorie expenditure, weight loss will occur. Metabolism can be increased in two different ways: increasing muscle mass, or increasing heart rate, which is the focus of this study. While dietary supplements can be used to increase heart rate, they do so in an artificial way that is often bad for the body. By increasing heart rate in a healthy way such as performing exercise, weight loss can be achieved. It is harder for the body to perform an activity without the use of oxygen and therefore anaerobic activities are typically associated with more intense activities (activities that will work the heart harder and lead to greater fitness/weight loss). The body needs oxygen for cellular respiration in order to break glucose and oxygen into ATP, the body’s usable form of energy. Thus, the body has more energy quickly available for aerobic exercises. Expected results include greater changes in heart rates for those performing anaerobic exercise versus those doing aerobic exercises. Materials: ● Human Participants ● Human Informed Consent Forms ● Stopwatch ● Computer ● Camera ● Data tables to record results 62   ● Pencil/pen Procedures: ● Inform all participants of the purpose of this experiment, our methods, the risks, the benefits, and their protection of privacy. Obtain their verbal consent. Aerobic exercise ● Request that each participant perform a type of aerobic exercise, either long distance running or playing soccer for 5 minutes at their typical work rate. Soccer ★ Have each participant take their own pulse at their carotid artery in their neck for 30 seconds. ★ Multiply this number by two, and record it in the data table to get their resting heart rate in beats per minute ★ Have the participants play soccer for 5 minutes without any breaks ★ When finished, have each participant take their own pulse at their carotid artery in their neck for 30 seconds. ★ Multiply this number by two, and record it in the data table to get their heart rate in beats per minute. Long Distance Running ★ Have each participant take their own pulse at their carotid artery in their neck for 30 seconds. ★ Multiply this number by two, and record it in the data table to get their resting heart rate in beats per minute. ★ Have each participant run around a track for 5 minutes without stopping. ★ When finished, have each participant take their own pulse at their carotid artery in their neck for 30 seconds. ★ Multiply this number by two, and record it in the data table to get their heart rate in beats per minute. Anaerobic exercise ● Request that each participant perform a type of anaerobic exercise, either swing dancing or doing jumping jacks for 5 minutes at their typical work rate. Jumping Jacks ★ Have each participant take their own pulse at their carotid artery in their neck for 30 seconds. ★ Multiply this number by two, and record it in the data table to get their resting heart rate in beats per minute. ★ Have each participant do jumping jacks for 5 minutes without stopping. ★ When finished, have each participant take their own pulse at their carotid artery in their neck for 30 seconds. 63   ★ Multiply this number by two, and record it in the data table to get their heart rate in beats per minute. Swing-dancing ★ Have each participant take their own pulse at their carotid artery in their neck for 30 seconds. ★ Multiply this number by two, and record it in the data table to get their resting heart rate in beats per minute. ★ Request participants to swing dance for about 2 songs (a total of 5 min.). ★ After 5 minutes, have each participant take their own pulse at their carotid artery in their neck for 30 seconds. ★ Multiply this number by two, and record it in the data table to get their heart rate in beats per minute. Human Participants Research: ● Participants: People of any gender, age, ethnicity, physical and health condition will participate in this experiment. ● Recruitment: Ask peers, friends, and family to participate. ● Methods: Subjects will be asked to give up, at the most, 10 minutes to participate in this experiment. They must be comfortable with exercising, being videotaped, and getting their heart rate anonymously recorded. ● Risks: Extended periods of exercise may cause fatigue. ● Benefits: Subjects will be aiding us in the testing on the effect of aerobic and anaerobic exercise on heart rates. ● Protection of Privacy: Names will not be collected, their data will be plugged into the table anonymously. If not given consent, they will not be videotaped. ● Informed Consent: We will inform participants on the purpose of the study and the procedure of the experiment. Their participation is voluntary and they have the right to stop at any time. By asking each participant to give us their verbal consent, we will obtain their permission to participate in the experiment. Data & Analysis: The following graphs display the change in heart rate (in bpm) for each different exercise for each gender. Statistical Analysis: Mean (of difference between resting and active heart rate): X=ΣX n Aerobic: 65.958 bpm Anaerobic: 71.388 bpm 64   Variance: variance=Σ(X-X)2 n-1 Aerobic: 315.913 Anaerobic: 623.497 Standard Deviation: Standard deviation (S)= Σ(X-X)2 n-1 Aerobic: 17.774 Anaerobic: 24.970 T-test: t= |X1-X2| √1/n(S1)2+(S2)2 t= 0.593 Degree of Freedom: 2(n-1) Aerobic: dF= 94 Anaerobic: dF= 96 One-Tailed Test: The alternative hypothesis was directional. We hypothesized that anaerobic exercise would yield a higher heart rate. Significance: P=probability that the difference is due to chance dF= 94 dF= 96 The t-test value was significantly smaller than any of the columns in the table of P values (1.5). Therefore, the data is not statistically significant. Conclusion: The null hypothesis (neither anaerobic or aerobic exercise will affect the heart any differently) can be accepted after running t-tests on the data. The slight changes in heart rate when comparing data for anaerobic and aerobic exercise lead to a t-value of 0.593. For the specific degrees of freedom for this experiment, 94 and 96, an acceptable t- value would have been around 1.5 or higher in order for it to be considered statistically significant. This value is very low compared to 1.5 and therefore the data can be viewed as being insignificant. Therefore, there is no correlation between the type of exercise (aerobic or anaerobic) and the change in heart rate (how hard your body worked). Sources of error could include not controlling the experiment enough. It was not possible to require specific diets for each participant. Participants could have easily consumed beverages/food that could give a false reading of their heart rate. Another source of error is the dependence on each participant to be able to correctly take their pulse, some participants may have reported wrong heart rates due if they didn’t know how to take 65   pulse. One last source of error includes not being able to regulate the temperature. The data for each activity was taken at different locations with different temperatures (such as playing soccer outside and doing jumping jacks in class). Places where the temperature was low could lead to participants having an elevated resting heart rate due to the cold versus the participants indoors. Although our results lead us to accept the null hypothesis, it wouldn’t hurt to obtain more participants (get more data), which would increase our degree of freedom and give us more certainty in our insignificant t-value. Although there isn’t a ‘better’, more ‘efficient’ way to exercise and reduce obesity, it is still vital to partake in both anaerobic and aerobic activities to better your health wellness. Acknowledgements: A huge thanks to all the participants, family, friends, coaches, and teachers for giving up their precious time for this experiment. Special thanks to _________________ for running and doing jumping jacks. Bibliography: "Anaerobic Exercise and Heart Rate." LIVESTRONG.COM. LIVESTRONG.COM, 12 Nov. 2013. Web. 18 Nov. 2014. . Bhattacharya, Christina. "Example of Anaerobic Exercise."LIVESTRONG.COM. LIVESTRONG.COM, 18 Dec. 2013. Web. 18 Nov. 2014. . "Cellular Respiration." IUPUI Department of Biology. N.p., n.d. Web. 17 Nov. 2014. . Dale, Patrick. "What Effect Does Aerobic Exercise Have on Muscles?"LIVESTRONG.COM. LIVESTRONG.COM, 10 Feb. 2011. Web. 18 Nov. 2014. . "Increasing Metabolism." Weight Watchers. N.p., n.d. Web. 18 Nov. 2014. .         66   APPENDIX  C:  Parent  Letter  and  Consent  Form     Parental  Consent  and  Student  Assent  Form     Dear  Students  and  Parents/Guardians:     I  would  like  to  take  this  opportunity  to  welcome  you  to  AP  Biology  and  invite  you  to   participate  in  a  research  project,  Tools  for  Engagement  in  Science,  which  I  will  conduct  as   part  of  the  first  trimester  of  this  course.    My  name  is  Ms.  Dusti  Vincent.    I  am  your  AP   Biology  instructor  and  I  am  also  a  master’s  degree  student  at  Michigan  State  University.     Researchers  are  required  to  provide  a  consent  form  like  this  to  inform  you  about  the  study,   to  convey  that  participation  is  voluntary,  to  explain  risks  and  benefits  of  participation,  and   to  empower  you  to  make  an  informed  decision.    You  should  feel  free  to  ask  the  researcher   any  questions  you  may  have.     What  is  the  purpose  of  this  research?    I  have  been  working  on  effective  ways  to  increase   engagement  in  the  classroom  and  I  plan  to  study  the  results  of  this  teaching  approach  on   student  comprehension  of  biological  concepts  addressed  by  the  AP  Biology  Framework.     The  results  of  this  research  will  contribute  to  my  understanding  of  the  best  approaches  to   teaching  and  assessing  science  concepts.    Completion  of  this  research  project  will  also  help   me  earn  my  master’s  degree  in  Michigan  State  University’s  College  of  Natural  Science.     What  will  students  do?    Students  will  participate  in  the  usual  instructional  curriculum  for   AP  Biology,  but  with  added  emphasis  on  increasing  engagement.    Students  will  complete   the  usual  assignments,  laboratory  experiments  and  activities,  class  demonstrations,  and   assessments  (unit  tests,  projects)  just  as  they  would  do  for  any  other  unit  of  instruction.     There  are  no  unique  research  activities  and  participation  in  this  study  will  not  increase  or   decrease  the  amount  of  work  that  students  do.    I  will  simply  make  copies  of  student’s  work   for  research  purposes.    This  project  will  take  place  in  the  first  trimester  of  2014-­‐15.    I  am   asking  for  permission  from  both  students  and  parents/guardians  (one  parent/guardian  is   sufficient)  to  use  copies  of  student  work  for  my  research  purposes.     What  are  the  potential  benefits?    My  reason  for  doing  this  research  is  to  learn  more   about  improving  the  quality  of  science  instruction.      I  will  not  know  about  the  effectiveness   of  my  teaching  methods  until  I  analyze  my  research  results.    If  the  results  are  positive,  I  can   apply  the  same  teaching  methods  to  other  science  topics  taught  in  this  course,  and  you  will   benefit  by  better  learning  and  remembering  of  course  content.    I  will  report  the  results  in   my  master’s  thesis  so  that  other  teachers  and  students  can  benefit  from  my  research.         What  are  the  potential  risks?    There  are  no  foreseeable  risks  associated  with  completing   course  assignments,  laboratory  experiments  and  activities,  class  demonstrations,  and   assessments.    In  fact,  completing  coursework  will  be  very  beneficial  to  students.    Another   person  will  store  the  consent  forms  (where  you  say  “yes”  or  “no”)  in  a  locked  file  cabinet   that  will  not  be  opened  until  after  I  have  assigned  the  grades  for  the  trimester.    That  way  I   will  not  know  who  agrees  to  participate  in  the  research  until  after  grades  are  issued.    In  the   67   meantime,  I  will  save  all  written  work.    Later  I  will  analyze  the  written  work  for  students   who  have  agreed  to  participate  in  the  study  and  whose  parents/guardians  have  consented.     How  will  privacy  and  confidentiality  be  protected?    Information  about  you  will  be   protected  to  the  maximum  extent  allowable  by  law.    Students’  names  will  not  be  reported   in  my  master’s  thesis  or  in  any  other  dissemination  of  the  results  of  this  research.    Instead,   the  data  will  consist  of  class  averages  and  samples  of  student  work  that  will  not  include   names.    After  I  analyze  the  data  to  determine  class  averages  and  choose  samples  of  student   work  for  presentation  in  the  thesis,  I  will  destroy  the  copies  of  students’  original   assignments,  tests,  etc.    The  only  people  who  will  have  access  to  the  data  are  me,  my  thesis   committee  at  MSU,  and  the  Institutional  Review  Board  and  MSU.    The  data  will  be  stored  on   password-­‐protected  computers  (during  the  study)  and  in  locked  file  cabinets  in  Dr.   Heidemann’s  locked  office  at  MSU  (after  the  study)  for  at  least  three  years  after  the  study.     What  are  your  rights  to  participate,  say  no,  or  withdraw?    Participation  in  this  research   is  completely  voluntary.    You  have  the  right  to  say  “no.”    You  may  change  your  mind  at  any   time  and  withdraw.    If  either  the  student  or  parent/guardian  request  to  withdraw,  the   student’s  information  will  not  be  used  in  this  study.    There  are  no  penalties  for  saying  “no”   or  choosing  to  withdraw.     Who  can  you  contact  with  questions  and  concerns?    If  you  have  questions  or  concerns   about  this  study,  please  do  not  hesitate  to  contact:     Ms.  Dusti  Vincent         Dr.  Merle  Heidemann   Skyline  High  School         118  North  Kedzie  Lab   2552  N.  Maple  Rd.         Michigan  State  University   Ann  Arbor,  MI  48103         East  Lansing,  MI  48824   vincentd@aaps.k12.mi.us       heidma2@msu.edu   (734)  994-­‐6515  ext.  55426       (517)  432-­‐2152  ext.  107     If  you  have  questions  or  concerns  regarding  your  role  as  a  research  participant,  would  like   to  obtain  information  or  offer  input,  or  would  like  to  register  a  complaint  about  this  study,   you  may  contact,  anonymously  if  desired,  MSU  Human  Research  Protection  Program  at:     irb@msu.edu     How  should  I  submit  this  consent  form?    Please  compete  the  attached  form.    Both  the   student  and  parent/guardian  must  sign  the  form.    Please  return  with  your  a  form  indicating   interest  either  way.    Please  return  this  form  in  a  sealed  envelope  (included)  to  Ms.   Vincent’s  room,  B401  by  Monday  8  September  2014.                 68   Parents/guardians  should  complete  this  following  consent  information:       I  voluntarily  agree  to  have  ___________________________________________________  participate  in  this   study.               (Student  Name)       Please  check  all  that  apply:     Data:     __________    I  give  Dusti  Vincent  permission  to  use  data  generated  from  my  child’s  work  in  this   class  for  her  thesis   project.    All  data  shall  remain  confidential.     __________    I  do  not  wish  to  have  my  child’s  work  used  in  this  thesis  project.    I  acknowledge   that  my  child’s  work  will  be     graded  in  the  same  manner  regardless  of  participation  in  this  research.       Photography,  audiotaping,  or  videotaping:     __________    I  give  Dusti  Vincent  permission  to  use  photos  or  videotapes  of  child  in  the  class   room  doing     work  related  to  this  thesis  project.    I  understand  that  my  child  will  not  be   identified.     __________    I  do  not  wish  to  have  my  child’s  images  used  at  any  time  during  this  thesis   project.         _______________________________________________________________     __________________________       (Parent  Signature)                 (Date)       _______________________________________________________________     __________________________       (Student  Signature)                 (Date)       Important:    Please  return  this  form  in  the  sealed  envelope  (included)  to  Ms.  Vincent   in  Room  B401  by  Monday  8  September  2014.       69   APPENDIX  D:  Assessment  Tools     APPENDIX  D1:  Concept  Pre-­‐Assessment  and  Post-­‐Assessment  Free-­‐Response  Items  with   aligned  learning  objectives     Pre-­‐test     Directions:   Respond  to  each  question  as  completely  and  honestly  as  possible.     1. What  characteristics  do  all  prokaryotic  and  eukaryotic  organisms  share?  (LO  2.14)   2. What  are  the  major  types  of  macromolecules  and  their  corresponding  functions  in   cells?  (LO  2.8)   3. Describe  the  structure  of  the  cell  membrane  and  how  it  assists  with  moving   materials  into  and  out  of  cells.  (LO  2.11)   4. How  would  a  change  in  the  sequence  of  subunits  of  a  macromolecule  affect  its   function?  (LO  4.1)   5. Describe  the  role  of  enzymes  in  cellular  reactions.  (LO  2.1)   6. List  as  many  cellular  organelles  as  you  can  remember  and  their  corresponding   functions.  (LO  2.13)   7. Describe  how  cells  obtain  energy.  (LO  2.1)   8. Compare/contrast  photosynthesis  and  cellular  respiration  in  terms  of  energy  and   matter.  (LO  2.5)     Scoring  Guidelines:   0—No  response  given  or  “I  don’t  know”   1—Explanation  is  given,  but  it  is  incomplete  or  demonstrates  a  lack  of  understanding   2—Explanation  is  given  and  demonstrates  understanding  of  concept       Post-­‐test     1. During  an  investigation  of  a  freshwater  lake,  an  AP  Biology  student  discovers  a   previously  unknown  microscopic  organism.  Further  study  shows  that  the   unicellular  organism  is  eukaryotic.   a. Prokaryotic  cells  lack  membrane-­‐bound  organelles  found  in  eukaryotes.   However,  prokaryotes  must  perform  many  of  the  same  functions  as   eukaryotes.  Choose  THREE  organelles  found  in  eukaryotes  and  explain  how   prokaryotic  cells  carry  out  the  associated  functions.  (Cells  Unit  Test  long   FRQ,  2011  FRQ)   2. The  drawings  below  illustrate  monomers  or  polymers  of  the  3  types  of   macromolecules  we  studied  in  this  unit.  (#21  Biochemistry  Unit  Test)       70   FIGURE  7:  Concept  Post-­‐Assessment  Macromolecule  Structure  Diagrams   a. Identify  the  category  of  organic  molecules  to  which  each  molecule  belongs   and  describe  how  you  identified  the  molecule.   b. Discuss  the  biological  importance  of  the  organic  compounds  in  relation  to   cellular  structure  and/or  function.   3. Membranes  are  essential  components  of  all  cells.   a. Identify  THREE  macromolecules  that  are  components  of  the  plasma   membrane  in  a  eukaryotic  cell  and  discuss  the  structure  and  function  of  each   in  moving  materials  into  and  out  of  cells.  (Cells  Unit  Test  short  FRQ,  2007   FRQ)   4. Question  #1:   What  happens  to  the  shape  and  function  of  a  protein  if  one  of  the  amino  acids  is   replaced  with  a  different  type  of  amino  acid?  (#7  Biochemistry  Unit  Test)     a. The  protein’s  quaternary  structure  will  be  damaged.   b. The  protein  will  not  change;  several  amino  acids  must  be  altered  to  have  any   effect  on  protein  function.   c. The  protein  will  always  denature  and  become  entirely  nonfunctional.   d. Depending  on  the  chemical  nature  of  the  amino  acid,  the  protein  may  lose  its   function  or  there  may  be  no  measurable  effect  on  the  protein’s  function       Question  #2:   How  might  an  amino  acid  change  at  a  site  distant  from  the  active  site  of  the  enzyme   alter  the  enzyme’s  substrate  specificity?  (#18  Biochemistry  Unit  Test)   a. by  changing  the  enzyme’s  location  in  the  cell   b. by  changing  the  enzyme’s  stability   c. by  changing  the  shape  of  the  protein   d. an  amino  acid  change  away  from  the  active  site  cannot  alter  the  enzyme’s   substrate  specificity   71   5. Question  #1:   Which  of  the  following  statements  regarding  enzymes  is  true?  (#20  Biochemistry   Unit  Test)   a. Enzymes  increase  the  rate  of  a  reaction  by  lowering  the  activation  energy   barrier.   b. Enzymes  change  the  equilibrium  point  of  the  reactions  they  catalyze.   c. Enzymes  make  the  rate  of  a  reaction  independent  of  substrate   concentrations.   d. Enzymes  increase  the  rate  of  a  reaction  by  reducing  the  rate  of  reverse   reactions.   Question  #2:   According  to  the  induced  fit  hypothesis  of  enzyme  catalysis,  which  of  the  following   is  correct?  (#16  Biochemistry  Unit  Test)   a. Some  enzymes  change  their  structure  when  activators  bind  to  the  enzyme   b. A  competitive  inhibitor  can  outcompete  the  substrate  for  the  active  site.   c. The  binding  of  the  substrate  changes  the  shape  of  the  enzyme’s  active  site.   d. The  binding  of  the  substrate  depends  on  the  shape  of  the  active  site.   6. During  an  investigation  of  a  freshwater  lake,  an  AP  Biology  student  discovers  a   previously  unknown  microscopic  organism.  Further  study  shows  that  the   unicellular  organism  is  eukaryotic.   a. Identify  FOUR  organelles  that  should  be  present  in  the  eukaryotic  organism   and  describe  the  function  of  each  organelle.  (Cells  Unit  Test  long  FRQ,  2011   FRQ)   7. Describe  how  cells  obtain  energy  in  the  form  of  ATP.  (Cellular  Respiration  Unit  Test   short  FRQ)   8. Matter  continuously  cycles  through  an  ecosystem.  A  simplified  carbon  cycle  is   depicted  below.     FIGURE  8:  Concept  Post-­‐Assessment  Carbon  Cycle  Diagram       a. Identify  the  key  metabolic  process  for  step  I,  the  key  metabolic  process  for   step  II,  and  briefly  explain  how  each  process  promotes  movement  of  carbon     through  the  cycle.  For  each  process,  your  explanation  should  focus  on  the   role  of  energy  in  the  movement  of  carbon.  (Photosynthesis  Unit  Test  short   FRQ,  2013  Practice  exam)       72   APPENDIX  D2:  PBL  Assessment  Rubric     Burn,  Baby,  Burn  Final  Project  Rubric   TABLE  12:  PBL  Project  Scoring  Rubric   Final  unit  project  rubric  to  score  written  and  media  components   Content Evidence Distinguished—2 The team: • Identifies how molecular interactions affect structure and function • Explains the features and mechanisms of cells that allow humans to capture, store, and use energy • Represents the exchange of molecules between a human and its environment • Represents the use of molecules in metabolism, homeostasis, growth, and development. • Evidence is thoughtfully chosen to answer the question. • Evidence is integrated into the writing and final product. • A variety of data are represented. • Evidence is quoted and managed thoughtfully. Mastery—1 3 out 4 of the content elements from the “Distinguished” column are met. • • • •       73   Some evidence is thoughtfully chosen. Some evidence is integrated into the writing and final product. Some evidence is quoted and managed thoughtfully. Evidence is somewhat varied. Novice—0 2 or fewer of the content elements from the “Distinguished” column are met. • • • • Little evidence is thoughtfully chosen. Little evidence is integrated into the writing and final product. Little evidence is quoted and managed thoughtfully. Evidence is not varied. TABLE  12  (cont’d)     Communication • & Clarity • Structure/ Organization • • The thesis fully addresses the research question. The final product clearly and elegantly communicates the message found in the research. • All ideas and evidence are logically and systematically organized to develop and establish the points of the thesis. The written structure clearly supports the thesis and reflects professional writing conventions (mechanics, usage, sentence structure). • • • • 74   The thesis somewhat addresses the question. The final product communicates much of the message found in the research. • Some ideas and evidence are logically and systematically organized to develop and establish the points of the thesis. The written structure somewhat supports the thesis. The written structure somewhat reflects professional writing conventions. • • • The thesis is incomplete. The final product communicates little or some of the message found in the research. Few ideas and evidence are logically and systematically organized to develop and establish the points of the thesis. The written structure does not reflect professional writing conventions. TABLE  12  (cont’d)     Quality of Craftsmanship & Use of Technology • • • Collaboration Citations • • • The final product • shows evidence of drafting & revision. The media chosen to convey message • is appropriate and well produced. The final product is a complete and high quality work sample. • The final product • shows some evidence of revision. • The media used to convey message is somewhat appropriate and well produced. The final product • is a somewhat high quality work sample. In addition to meeting the Mastery criteria, team members describe: o challenges to the group effort while completing the task o solutions that were used to address the challenges • All team members contribute to the final product. All team members provide appropriate oral responses to audience questions, concerns, and comments. All evidence is cited in the appropriate format. Citations are integrated into the writing and final product. • • •     75   • • Some evidence is • cited in the appropriate format. • Some citations are integrated into the writing and final product. The final product needs to be revised. The medium used is not appropriate or produced well enough to convey the message. The final product is incomplete or a low quality sample. Some team members contribute to the final product or work is assigned unequally. Some team members provide appropriate oral responses to audience questions, concerns, and comments. Little to no evidence is cited. Little to no citations are integrated into the writing and final product.                       REFERENCES                                             76   REFERENCES       AP  Biology  Course  and  Exam  Description  (1st  ed.,  Vol.  1,  p.  193).  (2012).  New  York,  NY:   College  Board.     Buck  Institute  for  Education  (2012).  Project  Management  Log:  Team.  Retrieved  from   http://www.bie.org     Burke,  K.A.,  Hand,  B.,  Poock,  J.,  &  Greenbowe,  T.  (2005,  September).  Using  the  Science   Writing  Heuristic:  Training  Chemistry  Teaching  Assistants.  Journal  of  College  Science   Teaching,  35(3).     Campbell,  N.  &  Reece,  J.  (2008).  Biology.  Student  ed.  (8th  ed.  AP*  ed.).  S.l.:   Pearson/Benjamin  Cummings.     Chapman,  E.  (2003).  Alternative  approaches  to  assessing  student  engagement  rates.   Practical  Assessment,  Research  &  Evaluation,  8(13).  Retrieved  July  1,  2014  from   http://PAREonline.net/getvn.asp?v+8&n=13.     Common  Core  State  Standards  Initiative  (CCSSI).  (2015).  College  and  Career  Readiness   Anchor  Standards  for  Writing.  Retrieved  from  http://corestandards.org     Conley,  D.  T.  (2007a).  Redefining  college  readiness.  Eugene,  OR:  Educational  Policy   Improvement  Center     Conley,  D.T.  (2007b).  The  Challenge  of  College  Readiness.  Educational  Leadership,  64(7),  23-­‐ 29.     Crouch,  C.H.,  &  Mazur,  E.  (2001,  September)  Peer  Instruction:  Ten  years  of  experience  and   results.  American  Journal  of  Physics,  69(9),  970-­‐977.     Elbow,  P.  (1993,  February).  Ranking,  Evaluating,  Liking:  Sorting  Out  Three  Forms  of   Judgement.  College  English,  55(2),  187-­‐206.     Feinstein,  N.  (2011,  January).  Salvaging  Science  Literacy.  Science  Education,  95(1),  168-­‐185.   Article  first  published  online  September  20,  2010.     Grotzer,  T.  &  Bell,  B.  (1999).  Negotiating  the  funnel:  Guiding  students  toward   understanding  elusive  generative  concepts.  In  L.  Hetland  &  S.  Veenema  (Eds.)  The  Project   Zero  classroom:  Views  on  understanding.  President  and  Fellows  of  Harvard  College.     Hmelo-­‐Silver,  C.  (2004).  Problem-­‐Based  Learning:  What  and  How  Do  Students  Learn?   Educational  Psychology  Review,  16(3),  235-­‐266.     77   Larner,  J.  &  Mergendoller,  J.  (2010).  7  Essentials  for  Project-­‐Based  Learning.  Educational   Leadership,  68(1).     Mazur,  E.  (1997).  Peer  Instruction  and  Motivating  Students.  Peer  Instruction:  A  User’s   Manual  (pp.  10-­‐23).  Prentice  Hall.     Mazur,  E.  &  Watkins,  J.  (2009).  Using  JiTT  with  Peer  Instruction.  In  Scott  Simkins  and  Mark   Maier  (Eds.),  Just  in  Time  Teaching  Across  the  Disciplines  (pp.  39-­‐62).  Sterling,  VA:  Stylus   Publishing.     Michaels,  S.,  &  Shouse,  A.  (2008).  Ready,  set,  science!  Putting  research  to  work  in  K-­‐8  science   classrooms.  Washington,  D.C.:  national  Academies  Press.     Michigan  Department  of  Education  (2015).  Focus  Schools.  Retrieved  from   http://www.michigan.gov/mde     Mioduser,  D.,  &  Betzer,  N.  (2007).  The  Contribution  Of  Project-­‐based-­‐learning  To  High-­‐ achievers’  Acquisition  Of  Technological  Knowledge  And  Skills.  International  Journal  of   Technology  and  Design  Education,  18,  59-­‐77.     National  Academy  of  Sciences,  National  Academy  of  Engineering,  Institute  of  Medicine,   National  Research  Council.  (2011,  July).  A  Framework  for  K-­‐12  Science  Education:  Practices,   Crosscutting  Concepts,  and  Core  Ideas  (Report  Brief,  Board  on  Science  Education).     National  Governors  Association  Center  for  Best  Practices  (NGA  Center)  and  the  Council  of   Chief  State  School  Officers  (CCSSO).  (2010,  June).  Common  Core  State  Standards  for  English   Language  Arts  and  Literacy  in  History/Social  Studies,  Science,  and  Technical  Subjects.     National  Survey  of  Student  Engagement  (NSSE)  (2006).  Engaged  Learning:  Fostering   Success  for  All  Students  Annual  Report.  Bloomington,  IN       Paul,  R.,  &  Binker,  A.  (2012).  Global  Strategies:  Socratic  Questioning  &  Role-­‐Playing.  In   Critical  Thinking  Handbook:  K-­‐3rd  Grades  A  Guide  for  Remodeling  Lesson  Plans  in  Language   Arts,  Social  Studies,  and  Science  (1st  ed.,  pp.  37-­‐55).  Tomales,  CA:  Foundation  for  Critical   Thinking  Press.     Schoenbach,  R.,  Greenleaf,  C.,  &  Murphy,  L.  (2012).  Reading  for  understanding:  How  reading   apprenticeship  improves  disciplinary  learning  in  secondary  and  college  classrooms  (Second   ed.).  San  Francisco,  CA:  Jossey-­‐Bass,  a  Wiley  imprint.       Smith,  M.K.,  Wood,  W.B.,  Krauter,  K.,  &  Knight,  J.K.  (2011).  Combining  Peer  Discussion  with   Instructor  Explanation  Increases  Student  Learning  from  In-­‐Class  Concept  Questions.  CBE— Life  Sciences  Education,  10,  55-­‐63.     78   The  weight  of  the  nation  [Motion  picture  trailer].  (2012).  HBO  Home  Box  Office.       Wenning,  C.J.  (2005,  September).  Whiteboarding  &  Socratic  dialogues:  Questions  &   answers.  Journal  of  Physics  Teacher  Education,  3(1),  3-­‐10.     Wolf,  D.,  Bixby,  J.,  Glenn  III,  J.,  &  Gardner,  H.  (1991).  Chapter  2:  To  Use  Their  Minds  Well:   Investigating  New  Forms  of  Student  Assessment.  In  REVIEW  OF  RESEARCH  IN  EDUCATION   (1st  ed.,  Vol.  17,  pp.  31-­‐74).  Sage  Publications.     Zirbel,  E.L.  (2005).  Teaching  to  Promote  Understanding  and  Instigate  Conceptual  Change.   Science  Education  Review.                                                 79