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y ABSTRACT

INDEPENDENT SETS IN (r,s)-TREES

o
/

'
5
;

BY

Junghee Cho

An (r,s)-tree is a connected, acyclic, bipartite graph with r light and 3 dark

vertices. In this thesis, three variable, exponential generating functions are used to

find exact values of the expected value p(r,r) of the vertex independence number

flo(T) of (r,r)-trees T for 1' up to 19. Also the probabilistic method is applied to

find bounds for 30(T) and for the edge independence number fl1(T) for almost all

(n, n)-trees. These results compare favorably with corresponding bounds for random

bipartite graphs.
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INTRODUCTION

Graphical enumeration, especially the enumeration of trees is an important topic

in graph theory with a long history as well as many applications to various fields,

especially chemistry and computer science. Caley first derived a formula for the

number of labeled trees [C89]. Since that time the literature has grown substantially.

There were 162 references in Moon’s definitive monograph Counting Labelled Trees

[M70] and we suspect that the current number of articles published on this subject

is at least 1,000. Included here are papers by Moon and Meir which focus on the

independence numbers of trees of various types. In [MeM73] they derived a formula

for the expected vertex independence number of a random labeled tree. They were

also able to determine the asymptotic value of the expectation. They continued to

explore this problem for recursive trees, planted plane trees and tri-valent trees in

[MeM75] and found exact and asymptotic formulas for the expectation in each of

these cases. This thesis is also concerned with the exact and asymptotic behavior of

the independence number of trees.

Here are the few graph theory definitions that we require. A graph G consists of

a finite nonempty set V of vertices and a set E of edges which are unordered pairs of

distinct vertices. The cardinality of V is called the order of C while the cardinality

of E is called the size of 6'. An edge e joining the vertices of u and v is denoted

by no and the vertex u and v are said to be adjacent. The degree of a vertex v is

the number of vertices adjacent to v. A walk in a graph G is a sequence of vertices

101,102, ...,wm such that w,- is adjacent to w,-+1 for i = 1 to m — 1. A path is a walk

in which no vertices are repeated. A cycle is a walk with at least 3 different vertices

that has no repeated vertices except the first and last. A graph is connected if every

pair of vertices is joined by a path. A bipartite graph is a graph with two kinds of



vertices, namely light or dark, and every edge in the graph has one light and one dark

vertex. A tree is a connected acyclic graph. A rooted tree has one vertex, called the

root, which is distinguished from the others.

A subset S of vertices of a graph is called independent if no two vertices of S are

adjacent. The vertex independence number of a graph G is the number ,Bo(G) of

vertices in any largest independent subset of vertices of G. A subset E of edges of a

graph is called independent if no two edges of E are adjacent. The edge independence

number of a graph G is the number [31(G) of edges in any largest independent subset

of edges of G.

An (r,s)-tree is a connected, acyclic, bipartite graph with r light and 3 dark

vertices. Let F(r,s) denote the set of all (r,s)—trees with r light vertices labeled

1, ..., r and 3 dark vertices labeled 1, ..., s. We give I‘(r,s) the uniform probability

distribution. Let u(r, 3) denote the expected value of 50(T) for (r, s)-trees T in I‘(r, 5).

Our first objective in this thesis is to determine p(r,s) for small values of r and

s. The main tool here is an exponential generating function in three variables. Fol-

lowing Moon and Meir [MeM73], we make use of two special types of rooted trees,

but our sample space is more complicated because of the two sets of vertices under

consideration. Certain operations on these generating functions lead to functional

equations from which recurrence relations can be derived. From these, in turn, exact

values can be computed.

Secondly, we wish to estimate the asymptotic behavior of u(r,s). For this task

we use the probabilistic method, which originated in the work of Erdbs [Er47], and

has been well documented in several books, such as [3085], [Pa85] and [AlSE92].

To implement the method, we follow the technique of [Pa92], which employed the

matrix-tree theorem to estimate £1 for random superpositions of (n, n)-trees. We are



able to establish bounds on both ,80 and [31 for almost all (n,n)-trees. Finally these

results are compared with a similar treatment of random bipartite graphs.



Chapter 1

ENUMERATION OF

INDEPENDENT SETS IN

(r,s)-TREES

1.1 Generating Functions

Our aim is to determine the expected value of the independence number of (r, 3)-

trees. As is customary we begin with rooted trees. Let I"(r,s) be the set of all

(r, s)-trees obtained by rooting each tree in I‘(r, s) at a vertex. Thus

11"(73 3)| = INT, 8)|(" + 8)-

Let ht,” denote the number of rooted trees T in I"(r,s) such that 30(T) = k. The

associated exponential generating function (egf) is

co r+s xr ya

H = H(x,y,z) = Z (Z hk,,.,,z")-—'-T.

r+s_>_1 k=1 1‘. S.

Austin[A60] and Scoins [862] found that the cardinality of the sample space F(r, s)

which is given by

|F(r, s)| = r"ls"‘l.

From this it follows that

r+s

Z hkm, = r“‘s"1(r + s),

k=1

4



which is the number of rooted (r,s)-trees. Hence on setting 2 = 1 in the egf for H

we have

°° ._ .. x'y’
h(:r,y)=H(-r,y,1)=r+X;1r ‘8 l("Hm-g-

Ordinarily it is easy to obtain functional relations for generating functions that

enumerate rooted trees with special properties. But this case is complicated by the

fact that we are dealing not only with several variables but also there are two types

of rooted trees with a given independence number. These two types are described in

a lemma of Meir and Moon [MeM73] that holds for any rooted tree. Let T denote

a tree that is rooted at some vertex v. If every set of ,Bo(T) independent vertices of

T contains v we say T is of type I . On the other hand, if at least one set of flo(T)

independent vertices of T does not contain 12, we say T is of type II . If we remove the

root 1: of T we obtain a (possibly empty) collection of rooted trees U1, ..., U,- whose

roots were originally joined to v. These are called the branches of T at v and the

following lemma relates the independence number of T to the independence number

of its branches.

Lemma 1.1.1 Let T be a type I tree rooted at v. Then each of the rooted trees

U1,...,Uj is a type II tree, and

no") = 1+ from». (1.1)
i=1

Proof. Suppose T is a type I tree rooted at 1). Let W be a maximum independent

set of vertices of T. Since T is a type I tree, u must belong to W. Therefore the roots,

u1,...,u,- of the trees U1,...,U,-, respectively, are not in W. We assert that for each

i = l to j, W H V(U,) is a maximum independent set in the branch Ug. It follows that

each U,- is a type II tree. Suppose our assertion is false for some i. Then there is a



set S of independent vertices in U,- such that

|S| > IW n V(U.-)I.

There are two cases to consider.

(a) u, ¢ 5'. Then we form the set

W' = (W \ (W n V(U,-)) U S,

of independent vertices in T. Clearly IW’I > IW], a contradiction.

(b) u,- E 5'. Here we form the set

W' = (W \ ((W 0 V(U,~)) U {0}» U 5,

which is independent in T. But |lV’| Z |VV| and W’ does not include 1). So this

contradicts the assumption that T is a type I tree and also establishes the formula

(1.1) for the vertex independence number of a type I tree. D

The case for type II trees is covered by next lemma whose proof is similar to the

one above.

Lemma 1.1.2 Suppose T is a type II tree rooted at v. Then at least one of the rooted

trees U1, ..., U,- is a type I tree and hence

30(T) = ifl0(Ui)- (1.2)

i=1

Proof. Assume that we have a tree T rooted at v, in which each branch U,- rooted

at u,- for i = 1 to j is a type II tree. Let W be a maximum independent set of vertices

of T and suppose the root 2) is not in W. But since U1 is a type II tree, it has an

independent set .S' of vertices, at least as large as W (1 V(U1) which does not include

ul. Hence we can form the set

W’ = (W\ (W 0 WW» U 5,

6



which is an independence set of vertices of T, at least as large as W and does not

include u]. We can treat the other neighbors of v in a similar fashion and arrive at

a maximum independent set W”, which does not contain any neighbor of 2). Hence

W” U {u} is a larger independent set than W, a contradiction. Cl

Now the lemma can be applied to express the exponential generating function

H(x, y, z) in terms of generating functions for the two types of trees. Let 9k,” and

fkm, denote the numbers of rooted (r,s)-trees with independence number k of type

I and type II, respectively. Define the generating functions for the two types by

00 r+s

CC

G: G(x, y,z = Z: (ngnknz )—!--y—!,

r+s_>_1 k=1

and

00 r+s (tr 3/8

F: FCC y,z = Z (ka,r,ksz))r—!—!-

r+s_>_1 k=1

Obviously

hk,r,s = gk,r,s + flea-,3,

and H = G + F.

We require notation for all of the different kinds of rooted trees. Let HL and HD

denote the generating functions for (r,s)—trees rooted at a light and a dark vertex

respectively. Similarly for G and F, we can define GL, GD and FL, FD. Then

H=HL+HD, G=GL+GD, F=FL+FD

and

HL = 0;, + FL, (1.3)

HD=GD+FD. (1.4)



1.2 Functional Relations

Now we establish the functional equations that relate these generating functions.

Lemma 1.2.1 The generating functions GL, GD, FL, FD, HL, and HD for the vari-

ous types of rooted (r,s)-trees, satisfy the following relations

CL = zxeFD (15)

Go = 2316”" (16)

FL=x(eGD —1)eFD (17)

F0 = 31(66" -1)6FL (1 8)

and

HL = zxeFD + x(eGD -—1)eFD (1.9)

HD = zyeFL + y(eGL —1)eFL (1.10)

Proof. Suppose T is a type I tree rooted at a light vertex, then by Lemma 1.1.1, each

of the rooted branches U1, ..., U,- obtained by removing the root of T is a type II tree

which is rooted at a dark vertex. The generating function for the families of those

type II trees, is Fig/j! forj = 0, l, Therefore the generating function, GL for T is;

00

CL = 2.1: E: Fig/j! = zxeFD.

“=0

The factor x is present to account for the root of T and the factor z is present

because of equation (1.1) of Lemma 1.1.1.

Suppose T is a type II tree rooted at a light vertex, then by Lemma 1.1.2, at

least one of the rooted branches U1, ..., U,- must be a type I tree which is rooted at a

dark vertex. Therefore the generating function FL for T has a factor of

8



gab/.71: CGD — 1,

i=1

the generating function for non-empty families of type I trees . There may or may

not be some type II trees among the branches U1, ..., U,- and the generating function

for (possibly empty) families of type II trees rooted at dark vertices is eFD, as before.

The observations imply that

FL = x(eGD —1)eFD.

The factor x is present to account for the root of T, but because of equation (1.2) of

Lemma 1.1.2, the factor 2 is not included here. Equations (1.6) and (1.8) follow from

(1.5) and (1.7) respectively by symmetry and equations (1.9) and (1.10) follow from

(1.5) through (1.8) combined with (1.3) and (1.4). D

The formulas in this lemma can be used to calculate both the number of rooted

trees of the various kinds with r + 3 vertices as well as the sum of the independence

numbers of these trees. To handle the former task, we set 2 = 1 in the various egf’s

introduced earlier and we also simplify the notation as follows. Let

g=g(r.y)=G(ar,y.1), f=f(r,y)=F(-r,y,1), h=h(x.y)=H(x,y,1)

and similarly

9L = 91.0133!) = GLOW/,1), 90 = 90(1331) = 0003,31, 1),

with the same notation for fL, f1) and hL, hp.

Furthermore, it follows from (1.9), (1.10) and the equation H = HL + Hp that

h = xehD + yeh".

This completes the treatment of the relevant functional equations for the several

types of rooted trees.



1.3 Recurrence Relations and Numerical Values

First we introduce notation for the coefficients of the simplified egf’s of the previ-

ous section:

00 xr ya

fL = Z fL(r,s)F?9

r+szi ' '

oo xr ya

90 = 2 gD(r,s)-7j;fa

r+s>1 ' '

00 (I), ya

f0 = Z fD(r,s)Fya

r+821 ' '

— 00 xr y: — 00 xr ye

hL —- 4:; hL("’)r—!§I’ hD — 2 1100.033,

1‘ s_1 r+s_>_1

so that

r+s

Z ht,” = hum) + hD(r,s)-

k=l

The following lemma provides recurrence relations for the coefficients of the gen-

erating functions above .

Lemma 1.3.1 Let r and s be non negative integers. Then

9L(1,0)=1, (1.11)

914,“) = 0, for r = 0,1 and 3 > 0 (1.12)

and forr >1,

 

r—i r 3

guns) = z ( i ) ( - )gL(i,j)fD(r-i.s—j)a (1-13)
r —l J

where the sum runs over all i, j such that 0 < i < r and 0 S j S 3.

Also

fL(1.0) = 0 and fur”) = r for r = 0,1 and s > 0, (1.14)

10



and forr >1,

 

r — i r s

fL(T.-9) = Z r _ 1 ( i ) ( j ) [fL(l,j)(gD(T-f,8-j) + fD(r—i,s-j)) + gL(i’j)gD(r-iv’"j)]’

(1.15)

where the sum runs over all i, j such that 0 < i < r and 0 S j S s.

Proof. The initial values in (1.11) and (1.12) are easily found by considering the tree

diagrams. On setting 2 = 1 in equation (1.5), we find

g, = are”, (1.16)

and on differentiating this equation with respect to x we have

8.9L _ In fDafD

Ec— — 6 +1“: 03' (1'17)

On solving (1.16) for em and substituting the result in (1.17), the latter becomes

69L _ 0ft)

Finally, using the definitions of g1, and f1), we can compare coefficients on both

sides of (1.18) to obtain (1.13).

Again, the initial values in (1.14) can be found easily from the tree diagrams.

Next we verify (1.15). On setting 2 = 1 in equation (1.7), we find

f1. = 2(e” —1)e’D, (1.19)

and on differentiating this equation with respect to x we obtain

afL_ 9 f In 90690
—a-$——.(eD—1)eD+xe e 0x a; (1.20)+ x(e9” —1)efD 8

11



which leads to

aft, _ 690 6ID 690
3-67-11— fL$('5;+-5';)+9L$-5?- (1-21)

By comparing coeffients of both sides of (1.21) we obtain (1.15). D

There is also a combinatorial proof of this theorem that was observed by B.Sagan,

involving an extra root. For example to prove (1.13), consider a type I , (r,s)-tree

T with a root and an extra root w both in light vertices. Let U be the branch of T

which contains w. Next we deform T into two parts, T \ U and U, then identify them

as follows:

:r .__. (T\U,U). (1.22)

For each fixed extra root of T, gum) is the number of trees in the left side of (1.22)

and there are (r — 1) ways to label the extra root. Therefore for r > 1, (r — 1)gL(,,,) is

the number of trees T in the left side of (1.22). On the other hand, T \ U is a type I

tree by Lemma 1.1.1 and counted by 9L(i.j) for some i, j up to labels and U is a type

II tree counted by (r — i)fD(,_,-',_,-) up to labels. Of course ( : ) ( j ) accounts for

labeling. Hence the right side of ( 1.22) is counted by

E ( : ) ( 8' )gL(i.j)(r _ z.)fD(r-i,s—j)- (1.23)

O<i<r, J

05159

And (1.13) follows.

The same correspondence as (1.22) can be used to show (1.15). Let T be a type

II, (r, s)-tree with a root and an extra root w both in light vertices. Then for r > 1,

(r - 1)fL(,.,,) is the number of trees T in the left side of (1.22). But this time T \ U

can be either type I or type II. If T \ U is a type I tree, then U must be a type I

to make T a type II. And (r — i)gL(,-,,-)gp(,_,-,,-j) will count those trees up to labels.

On the other hand if T\ U is a type II tree, then U can be either a type I or a type

12



II. And (r — i){fL(;,j)(gD(r—.',.—j) + fD(r_.',,_j))} will be the number of these trees up

to labels. Hence (1.15) follows.

Observe that Lemma 1.3.1 serves to calculate values of 9D(r.a) and fD(,,,) because

of the symmetric relation between light and dark. Specifically

gD(r,s) = gL(s,r) and fD(r,s) = fL(s,r)'

Now we can find the number of trees of different types for small values of r and s.

The computations begin with the boundary values in (1.11), (1.12) and (1.14). We

have used the lemma to count trees for all r and s S 19. We include in Table 1.1 the

dataforr+s=9andr+s=10.

The last column, 22:: him,” is obtained by summing all prior columns, i.e.

r+s

Z him-,3 = 91.0,.) + goo-,3) + fL(r,s) + fD(r,.)-

k=1

Notice the symmetry of the data in this table. For example, 9L(7.2)a which is the

number of (r,s)-trees of type I with 7 light and 2 dark vertices rooted at a light

vertex, is 3122, which is the same as 90(2.7)- We can also illustrate the numbers

for (7,2)-trees with tree diagrams. Consider a (7,2)-tree T. We can see easily each

maximum independent vertex set contains either none or exactly one dark vertex and

its cardinality (the vertex independence number) is 7 for all (7,2)-trees. Also there

exists exactly one light vertex adjacent to both dark ones for all those trees. Next,

besides the unique light vertex which we just mentioned, we have

i ( ‘3 l = 26i=0

many ways to partition the remaining 6 light vertices into two sets where the vertices

of each set are joined to one of the dark vertices as in Figure 1.1. The letters inside

the circles indicate the number of light vertices in each set.

13



Table 1.1: Number of trees of different types

 

 

       

gum) 9mm) fL0,.) . fon...) Iii hi,”

8 0 0 1 9

3122 0 14 896 4032

48690 36 3798 26208 78732

97640 6180 62360 121820 288000

6180 97640 121820 62360 288000

36 48690 26208 3798 78732

0 3122 896 14 4032

0 8 1 0 9

9 0 0 1 10

8176 0 16 2048 10240

240156 42 9891 107121 357210

1044120 15912 282984 868824 2211840

382600 382600 1570525 1570525 3906250

15912 1044120 868824 282984 2211840

42 240156 107121 9891 357210

0 8176 2048 16 10240

0 9 1 0 10

  



(D

Figure 1.1: A diagram for (7,2)-trees

Since there are 7 ways to label the unique light vertex and 26 ways to partition the

remaining 6 vertices, there are 7 x 26 labeled (7, 2)-trees. Hence there are 7 x 7 x 26

(7,2)-trees rooted at a light vertex, i.e.

9L(7,2) + fL(7,2) = 7 X 7 X 26 = 3136.

Next we consider how many of them will be of type II which are counted by fL(7.2)-

Since they are the ones containing one dark vertex in their maximum independent

vertex set, we can easily see them as the case of i = 0 or 6 in the above diagram.

Hence we have

fL(r,2) = 7 X 2

many of them, where 7 is the number of ways to label the unique light vertex and 2

is the number of ways to label the dark vertices. Therefore

9L(7,2) = 3136 - fL(7.2) = 3122.

Next

900,2) = 0

is immediate and similarly we can figure

fD(7,2) = 7 x 26 x 2 = 896,

where the last factor 2 is the number of ways to root the tree at a dark vertex. And

by adding those numbers we obtain the last column 4032.

15



1.4 Expectation of the Vertex Independence Number

As defined in the introduction, u(r,s) is the expected value of the vertex in-

dependence number with uniform probability distribution assigned to I‘(r,s). The

computation of u(3,3) is illustrated in Table 1.2. The four isomorphism types of

(3,3)-trees T are shown together with the number of ways, l(T), to label each one.

The vertex independence number flo(T) is also provided. Hence we have

u(3,3) =(9 x4+36x3+18 x3+18 x3)/81.

The table also displays the ratio of the expected value to the order, e.g. ,u(r, r) /2r.

Of course, this ratio must be at least .5, and our computational results will indicate

that it is not ever much bigger than .56- - -

Our aim is to develop recurrence relations for u(r,s). Since the independence

number of a tree T is constant for all rooted versions of T, we can express u(r, s) in

terms of rooted trees as follows:

#(7‘, S) = 250(T)/(T"‘8"1(T + 3)),

where the sum is over all rooted (r, s)—trees T. Hence

' p(r,8)r"1s'1(r(+)s =Zflo(T) (1.24)

This motivates the choice of the generating function M(x, y) which delivers the sum

of the independence numbers for rooted (r, s)-trees. We define

OO xrys

.M(:r,y) = Z p(r, s)r’13rl(r+ s)—3—!. (1.25)

r+le

Now our task is to express AI(x, y) in terms of the generating functions of the previous

sections. The result is given in the following theorem.

16



Table 1.2: Expectation of vertex independence number

 

 

 

 

  

T 1(T) #(r, 1‘) #(r,r)/21‘

o___. 1 1 .5

E
36

252/8l=3.111111 252/486=.518518

%
18

E
18

 

l7

 



Theorem 1.4.1 The generating function Ill{x,y) for the independence numbers of

rooted (r,s)-trees is

(1+ ho)gz. + (l + hz.)go
M(x.y)=1_ thD (1.26) 

Proof. It follows from our definitions that

2 160(T) = Z khk,r,sa

I:

where the sum on the left is over all rooted (r, s)-trees. Hence

p(r,s)r’13'1(()1‘+S =Zkhknrs

Therefore

111(x, y) = (0H/82)z._.1.

If we differentiate both sides of equation (1.9) with respect to z and simplify using

(1.4), then we have

aHL/Bz = xeFD + erDBHD/az + (z —1)xeFDBFD/3z. (1.27)

The companion equation for trees rooted at a dark vertex is obtained from (1.24) by

substituting D for L and y for x;

aHp/az = yeF‘ + yeH‘BHL/Bz + (z —1)yeFL0FL/Bz. (1.28)

Next we set 2 = 1 in both equations (1.24) and (1.25) . Recall that we obtained f1,

from FL(x, y, 2) by setting z = 1, i.e.:

fL = fL(1‘,y) = FL($,3/,1),

and

f0 = fD($,y) = FD(x,y,1), etc.

18



Then we arrive at the following system of equations for the two partials (BHL/az),=1

and (BHD/Bz),=1 :

{ (6HL/6z),=1 = xefD + xehD(8HD/62)z=1

(BHD/Bz)z=1 = yefL + yehL(8HL/32)z=1

After solving the system, we use the equation

H = HL + HD

to find

TCfD + yefz. + $y(ehp+fz. + ehL-rfn)

(on/oz).=1 = 1 _ W, (1.29) 

The following equations are obtained from (1.5) through (1.8) by setting 2 = l :

{M = ref”

91) = ye"

fL = xegb+fn _ 336]”

ID = y69L+IL _ yeIL,

Then the result of substitution in the right side of (1.26) is

__ (1+ thgL + (1 + htlgn
(an/3.2).:1 _ 1_ thD . 

which is the required formula. El

Equation (1.23) in Theorem 1.4.1. can be written as

MUM!) — M($a ythhD = 9L + 90 + (1091. + thD, (130)

which leads to

MOB?!) = 9L + 91) + hDgL + thD + M($,y)thD- (1.31)

By comparing the coefficients of both sides in ( 1.28) we have the recursive relation of

the following corollary.
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Corollary 1.4.1 The expected value of the vertex independence number for the la-

beled (r, s)-trees, u(r, s), has the following recurrence relation:

1 r s

#(r, S) = rs—ISf-l(r + S)[gL(r’9)+gD(ri‘)+z ( i ) ( j ) (hD(i,j)gL(r—i,s—j)+hL(i,j)gD(f-i,s—j))

iSr
'5‘

 

7'
S

I . . .'_ .,'_ , .

:+J’+J"=a

where in the second sum, we have i < r andj < 3.

Corollary 1.4.1 was used to compute the expected value u(r,r) for r = 1 to 19.

The ratio [1(r, r) /2r of the expected value to the order of these trees is displayed in

Table 1.3. Note that the values for r = 1, 2 and 3 agree with the entries in Table

1.2 which were found by inspecting the tree diagrams. We also verified the value of

u(4, 4)/8 in Table 1.3 by inspecting all the relevant tree diagrams. Notice also that

the sequence of the ratios increases slowly and u(19, 19) /38 is approximately .5615.
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Table 1.3: Expected independence number by proportion when r = s

 

 

r u(r, r) /2r

1 0.50000000000000000000

2 0.50000000000000000000

3 0.51851851851851851852

4 0.53173828125000000000

5 0.54026240000000000000

6 0.54582540493382614439

7 0.54959402326760519619

8 0.55225856471315637464

9 0.55422138607749021473

10 0.55572092017749310500

11 0.55690257221809530113

12 0.55785805356475197043

13 0.55864727324199846080

14 0.55931072818637855904

15 0.55987668338524781944

16 0.56036544760401056140

17 0.56079199438507640447

18 0.56116761656041338555

19 0.56150100107406312305    
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Table 1.4: Total of the vertex independence numbers

 

 

r + s r 3 Bren”) 50(T)

4 1 3 3

2 2 8

8 1 7 7

2 6 1152

3 5 10140

4 4 17424

12 1 11 11

2 10 51200

3 9 4782996

4 8 67159318

5 7 265688360

6 6 396047700

16 1 15 15

2 14 1605632

3 13 1167575916

4 12 86974860336

5 11 1573585770680

6 10 10124304409740

7 9 28269280359936

8 8 38861741660224      
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Chapter 2

ASYMPTOTIC BEHAVIOR

2.1 The probabilistic method

Our aim in this chapter is to study the asymptotic behavior of the expected vertex

independence number of (n, n)-trees. The difficulty of this type of problem has been

noted before. For example, Bender ([Be74], p.512) has observed:

“Practically nothing is known about asymptotics for recursions in two variables

even when a generating function is available. Techniques for obtaining asymptotics

from bivariate generating functions would be quite useful. Some results have been

obtained for a small class of generating functions (Bender [2]), but these are often

hard to apply.”

Nevertheless, we are able to establish bounds on the independence number for most

(n, n)-trees. The tools we use include the matrix-tree theorem and the probabilistic

method. The matrix-tree theorem originated in the work of Kirkhoff (see Moon [M70]

p.42) and relates the number of spanning trees of a labeled graph to the adjacency

matrix. In particular, if G is a labeled graph of order n with vertex set

V = {'01, ...,vn},

then the adjacency matrix A(G) is the n by 17. matrix whose i,j entry is 1 or 0
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according as vertices v,- and v,- are adjacent or not. The matrix D(G) has diagonal

deg v1, ..., deg on, while the off-diagonal entries are all zero.

Theorem 2.1.1 (Matrix-Tree Theorem) The number of spanning trees in any

labeled graph G is the value of any cofactor of D(G)—A{G).

This theorem has been applied to many important classes of graphs for which

convenient formulas have been found. For example, when applied to the complete

graph Kn, it yields Cayley’s formula, nn'z, for the number of labeled trees [C89].

We will make use of the theorem for a particularly simple but important family.

Consider a graph, denoted G(l/'1,V2,V3,V4), whose vertex set V is partitioned into

four non empty sets:

The edge set of G(V1, V2, V3, V4) consists of all edges joining vertices of V1 to vertices

of V2, vertices of V2 to vertices of V3, and vertices of V3 to vertices of V4.

Corollary 2.1.1 The number of spanning trees of G(V1, V2, V3, V4) is

(721 + "QM-1012 + "4)"3-1nilni‘a

where n,- = |V,-| for i =1 to 4.

This formula can be established in several ways. We obtained it by applying row

and column operations to calculate a cofactor of the required matrix. Our colleague,

Greg Buzzard, verified these calculations using Mathematica. It can also be realized

as a corollary of a very broad result of Knuth [Kn68] on generalized Priifer codes (see

also Moon [M70] p.10).

The probabilistic method was first applied to graphs by Erdbs [Er47], who pio-

neered its use with so many innovations that it may be more proper to call it the
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Erdb's method. Here we sketch only the portion of the method that we require. For

background on probability theory for a discrete sample space, one can consult the

appendix of [Pa85].

Theorem 2.1.2 (Markov’s Inequality) Let X Z 0 be a random variable and let

t > 0. Then

P(X 2 t) g E(tX). (2.1) 

On setting t = 1 on inequality (2.1), we have

P(X 2 1) g E(X). (2.2)

If X is non negative and integer valued, we also have

P(X = 0) + P(X Z 1) = 1. (2.3)

In our applications, the sample space always consists of graphs with at least n

vertices and the random variable X counts certain types of subgraphs. It follows

from (2.2) and (2.3) that if

E(X) —-> 0 as n —) 00,

then

P(X21)—+0

and

P(X=0)—)1

and we say “ almost all graphs have no such subgraph” . Suppose the sample space

consists of (n,n)-trees and X counts sets of vertices which are undesirable, i.e. “ bad

sets” . If we show E(X) —-) 0, then we say “almost all trees have no bad sets” .
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2.2 Vertex independence number for almost all (n,n)-

trees

Our aim is to determine bounds for 30 for almost all (n,n)-trees in I‘(n,n). Of

course, we always have the lower bound

nSflO,

for all trees in I‘(n, n). To find an upper bound we require some notation and a few

more definitions.

Fix k > n and let Xk be the random variable on I‘(n, n) which counts the number

of independent vertex sets of order k. Each such k-set consists of i light and j dark

vertices with

0<i,j<nandi+j=k. (2.4)

Now let A), be the set of all trees in F(n,n) for which a specified set of i light

and j dark vertices are independent. Then [A1,] is the number of spanning trees of

G(V1,V2,V3,l/;) in Corollary 2.1.], with [vi] = i, |V2[ = n — j, [V3I = n — i and

|V4[ = j. By the Corollary ,

[A1,] = nn‘j‘lnn‘i'Wn — j)’(n — i)". (2.5)

Since F(n,n) is a sample space with the uniform probability distribution, P(Ak)

is the ratio of [Akl to [I‘(n,n)|. Hence

P(Ak) = nn'j'lnn’i-l(n — j)’(n — i)j/n2"’2 (2.6)

and

 



where ( i: ) is the number of ways of choosing i light vertices and ( 7; ) is the

number of ways of choosing j dark ones.

Next we want to determine k as a function of n, so that,

E(Xk) —+ 0 as n —+ 00. (2.8)

Then we can say “almost all (n, n)-trees have no independent sets of order k” . This

idea is also expressed by saying almost all (n,n)-trees T have

MT) < k. (2.9)

Naturally the function just mentioned should be as small as possible. We set

k = (1+ a)n, (2.10)

where a is a positive constant, and we will try to determine a as small as possible so

that (2.8) holds. Note that the right side of (2.10) is not necessarily an integer. We

often use non-integral quantities where we ought to round up or down. It should be

clear that such deviations do not affect the validity of the results.

Since F(n, n) is a sample space with the uniform probability distribution, P(Ak)

is the ratio of [Akl to [I‘(n,n)[. Hence

P(Ak) = nn’j-lnn'i’lw — j)‘(n — i)j/n2"'2 (2.11)

and

E(X,.) = Z ( 1" ) ( ’1 ) P(A,.), (2.12)

£+j=k 3

where ( :l' ) is the number of ways of choosing i light vertices and ( j ) is the

number of ways of choosing j dark ones.

The conditions above on i and j imply that

on < i,j < n. (2.13)
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Also because of symmetry in i and j in the formula (2.11) for P(Ak) and in (2.12)

for E(Xk), we have the following upper bound for E(Xk).

E(x,.) g 2: ( ’2‘ ) ( ’3? )P(A,.), (2.14)

where sum is for all i, j with

an<i<(n+an+1)/2 andi+j=(1+a)n. (2.15)

Next we simplify (2.14) using Stirling’s formula for n!. We make a slight change

 

in notation by setting

i=tandj=(1+a)n—t (2.16)

and the result is

E(X,.) = 0(1)n"-°"+1 Z a., (2.17)

an<t<(n+an+l)/2

where

at = (n _ t)an-1/2(t _ an)an—l/2/(n + an _ i)n+an—t+1/2tt+1/2. (218)

To see the behavior of the series, we investigate the ratio, atH/at:

am/a. = f'"'”2f2f§“fi"’"“. (2.19)

where

__ (n—t-1)(t—an+l)(n+an—t)t

f1 — (n — t — 1)(t — an +1)(n + an — t)t+an2(2t — n — an +1)’ (220)

 

f2 = (n+an — t)/(t+ 1), (2.21)

f3: (n+an—t)/(n+an—t—1) (2.22)

and

f4 = t/(t+1). (2.23)
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Notice all the exponents of the f,- are non negative for sufficiently large n and it is

obvious that

f1 and f2>1ift<(n+an—l)/2. (2.24)

Next we consider f3 "ff-”+1 of (2.19):

n + an — )n—t( t )t—an+l
(2.25)

t
—t —am+1_

f3 f4 (n+an—t—1 t+1

 

  

 

__ 1 n+an—t-1 1 —t n + an — l — 2t an-l
_(1+n+an—t—l) (1+?) (1+ (n+an-t)t) . (2.26)

Observe that

(1 + 1 )"+a"-‘-1(1+1)-*> 1 if n + an - t — 1 > t. (2.27)
n + an — t — 1 t

This follows from the fact that

1

f(x)=(1+ 5):” 1228)

increases to e as x —> 00. It is also clear that for the last factor of (2.26), we have

 °’" ft — 2. 2.(1+ (n+an—t)t) >11 <(n+cm 1)/ (29)

Hence we find that

a¢+1/Clt > 1 III < (Tl + an —1)/2, (2.30)

i.e. the series increases all the way to the very last term, which is ato, where

to: [(n+an+1)/2]. (2.31)

Now the sum in (2.14) is bounded by the product of the last term and the length of

the sum. Hence we have

E(Xk) = 0(l)n"'°’"+l(n — om — 1)(110, (2.32)
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where the factor (n — an — 1) is contributed by the length of the sum. On the other

hand,

“to = 0(1)a(n+an)/2 (2'33)

and a bit of algebra shows that

“(n+anl/2 = 0(1)n’("’°"+2)(2"°(1 - a)2“'/(l + a)”°)”- (2-34)

Substituting (2.33) and (2.34) in the equation (2.32), we find that the upper bound

for the expectation takes the following simple form:

E(Xk) = O(1)(21"°'(1— a)2°‘/(1 + a)1+°')". (2.35)

Since we want the right side of (2.35) to approach zero as n —2 00, we just need to

solve the inequality

21"°’(1 — 01)“ < (1 + a)1+°'. (2.36)

A simple numerical calculation shows that it is sufficient to choose

a = .27974. (2.37)

These observations are summerized in the following theorem.

Theorem 2.2.1 For almost all (n,n)-trees T, the vertex independence number 50(T)

satisfies the inequality:

n S flo(T) S (1.27974)n. (2.38)

We now show that the upper bound in (2.38) cannot be significantly improved

using the probabilistic method. To do this we will show that

E(Xk)—+ ooasn—ioo,
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for a slightly smaller value of k = (1 + a)n. An argument similar to the one which

produced (2.17) also shows that for some constant co > 0,

E(Xk) 2 con""""+1 2 at, (2.39)

an<t<(n+an+1)/2

where at is already defined in (2.18). We have shown that the terms in the sum on

the right side of (2.39) are increasing. Therefore the sum is bounded below by

(to — t1)a¢1 , (2.40)

for any t1 in the interval of summation. It is convenient to describe t1 as follows:

t1 = [(1 - €)to + can], where 0 < 5 < 1. (2.41)

Then the lower bound in (2.39) becomes

€(1—a)
E(.Xk) 2 Conn—om+l 2

nah. (2.42)

Now the right side of (2.42) can be evaluated using the formula for at. After a bit of

work we find that

E(Xk) Z clB", (2.43)

where c; is a positive constant and

2(1"°)(1 — a)2°’(1 + e)°’(1 — e)“
B =

.

\/(1+ 0 + 5(1— a))1+a+€(1-a)\/(1 + a _ 5(1_ a))1+a-e(l-a)

 (2.44)

A numerical calculation shows that if we drop the value of a down a bit from

.27974 then B will be bigger than 1 for certain values of e. For example if we take

a = .2797 and e = .001,

we find

B = 1.000134 . - .. (2.4.5)
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Therefore

E(Xk) —> 00 as n —> 00 for k = (1.2797)n. (2.46)

This shows that the upper bound in the theorem cannot be reduced substantially.

Our exact calculations in Chapter 1 indicate that the expected value of do is about

(.5615---)2n = (1.1230---)n.

The latter number is in the middle of the interval described in Theorem 2.2.1. We

suspect that the value of 30 for almost all (n, n)-trees is even more closely concentrated

about the asymptotic value of the mean than the interval of Theorem 2.2.1.

2.3 Edge independence number for almost all (n, n)-trees

Recall that the edge independence number of a tree T is denoted by 61(T). Our

aim in this section is to find bounds for ,61(T) for almost all (n, n)-trees T in I‘(n, n).

This was a problem left unsolved in [Pa92] and [Sch92]. The following theorem shows

the close relationship of fig and £1 for trees.

Theorem 2.3.1 For any tree T of order n,

flo(T) + 51(T)= n. (2.47)

This result follows quickly from theorems of Gallai[Ga59] and K6nig[K631] (see also

[H69] pp.95-96). It can also be derived directly by an algorithmic approach that

produces the required independent sets.

Now this theorem and Theorem 2.2.1 can be combined to provide bounds for 61

which we state in the next theorem.
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Theorem 2.3.2 For almost all {n,n)-trees T, the edge independence number 31(T)

satisfies the inequality:

(.72026)n 5 MT) 3 n. (2.48)

There is another approach which could lead to an improvement in the lower bound

in (2.48). It stems from an idea in [Pa92] for finding matchings in superpositions

of trees. This alternative makes use of the following slight generalization of Hall’s

theorem [Ha35].

Let G be a graph with vertex set V. For any subset S of V we define NC;(S) to be

the set of vertices v in V \ S such that v is adjacent to some vertex of 5.

Theorem 2.3.3 Let G be a bipartite graph with partite sets V1 and V2 and let d be a

positive integer. Then

[31(6) 2 [VI]- d (2.49)

if and only iffor all subsets S ofVl,

lNc(5)| 2 ISI - d- (13-50)

Proof. Construct a bipartite graph G; from G by adding d new vertices to V; and all

possible edges between V1 and the d new vertices. Then Hall’s theorem is applied to

Gd. D

As usual, our sample space in this section is I‘(n, n) with the uniform probability

distribution. Each tree T in I‘(n,n) is a bipartite graph in which V1 is the set of n

light vertices and V2 is the set of n dark vertices. A subset S of V1 is bad if

[NT(S)[ < [S] — d. (2.51)

By Theorem 2.3.3, if there are no bad sets in T, then

MT) 2 n — d. (2.52)
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Let X4 be the random variable which counts the number of bad sets. We want to

determine d as a function of n so that

E(Xd) —> 0 as n —+ 00. (2.53)

Then we can say “ almost surely, there are no bad sets” . Hence for almost all (n, n)-

trees T in F(n.,n)

310‘) _>_ n — d- (2.54)

Naturally we will try to make (I as small as possible. We set

d = on, (2.55)

where o is a constant between 0 and 1 .

Suppose S is a bad set of order k in a tree T. Since T is connected, we must have

d+1<k<n. (2.56)

Let A), be the set of all trees in F(n,1z) for which a specified k-subset of V1 has

all of its neighbors in a specified (k — d — 1)-subset of 16. Thus each tree in Ak has

at least one bad set of order h. Then [A1,] can be found by applying Corollary 2.1.1

with n1= n - (k — d —1),n2 = n -- 1:, n3 = k — d — 1 and n., = k. We find that

[.41.] = rzn'k‘lnk'd‘2(n — k)”'(”‘d'1)(k — d — 1),“. (2.57)

Then we have the following expression for the expected number of bad sets:

E1 ’4)= Z (Z)(,,_Z_,)P(Ak). (2.58)
d+l<k<n

where P(Ak) is the ratio of (2.57) and n2n’2.

We can now estimate E(Xd) just as we handled the expectation in the previous

section. First we apply Stirling’s formula to the binomial coefficients. Then we

simplify the summands and apply the ratio test. We find that the terms increase for

it < (n + d)/2,
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and they decrease for

k _>. (n + d)/2.

Hence E(Xd) is bounded by the product of the largest term, which occurs at k =

(n + d)/2, and the length of the sum. Futher computation yields

E( ’d) = O(1)(21‘°‘(1 — a)2°/(1+ a)1+°’)". (2.59)

This bound is seen, at once, to be identical to that of formula (2.35) in the previous

section. On further examination of the formula (2.12) for E(Xk) and (2.58) for E(Xd),

we see that these are virtually identical. One can be obtained from the other by an

appropriate change in the names of the variables. Hence no improvement in Theorem

2.3.2 is possible from this approach.

2.4 Comparison with random bipartite graphs

In the previous two sections, we discussed bounds of flu and Bl for almost all (n, n)-

trees in I‘(n, n). Following Bollobas (see [B085] p.52) we let Q{K(n, n); p} denote the

probability space of all bipartite labeled graphs with partite sets V1 and V2,

|V1|= |V2|= 71.

in which each V1 — V2 edge is selected with probability p. More specifically for each

graph G with AI edges, the probability assigned to G is

P(G) = pM(1- p)"2‘M- (2.60)

Now we seek bounds of fig and )81 for almost all bipartite graphs in g{K(n,n); p}.

We preserve most of the approach and notation from the previous sections.

Fix It > n and let X;c be the random variable that counts independent sets of
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order k. Then the expectation of X), is

E(Xk) = Z ( 7: ) ( n- ) (1 -p)‘j, (2-61)
.7

where the sum is over all i, j with

0<i,j<nandi+j=lc. (2.62)

Since the expected number of edges in a random graph in Q{K(n,n); p} is pn2,

we choose

I) = 2/n. (2.63)

so that the number of edges will be approximately 2n — l, as in an (n, n)-tree.

We set

k = (1+ a)n, (2.64)

as before where a is a positive constant, and we will try to determine a as small as

possible so that

E(Xk) -> 0 as n —+ 00.

Then we can say

fl0(T)Sk=(1+a)n, (~'[
\
9

O
)

o
r

V

for almost all bipartite graphs G in Q{K(n,n); p}.

As before in section 2.2, symmetry allows us to eliminate the variable j in formula

(2.61) for E(Xk). We find

r n n 1(1—4') -

E(A.)522(,)(,,_,)(1—p) . (2.66)

where the sum is over all i with

on <i< (n+an+1)/2 andp=2/n. (2.67)
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We estimate E(X;.) in (2.66) as usual. First we apply Stirling’s formula to the

binomial coefficients. Then simplify the summands to find

 

E(Xk) = O(l)n2”+l Z a,, (2.68)

an<i((n+an+1)/2

where

a; = (fir-(14.34-42 . . .1 . .
Tl i1+1/2(n _ i)n-t+1/2(i _ an)1—an+1/2(n + an _ z')n+an—:+1/2

(2.69)

We make a slight change in notation by setting

i = «in for (2.70)

a <6S (1+o)/2.

Then

n — 2 . ~2 Tl — 2 2 2
:(l+a)n—1 = (6(1+o)-6 )n . 2.—

(—n) (—n> ( 11)

Next we use the fact that

(n — 2)(6(1-+-o)—51’)n2 < e-2(6(1+a)—62)n. (272)

n

Then the equation (2.68) will become

E(Xk) = 0(1)n’1 Z D(a,6)", (2.73)

an<6n<(n+an+l)/2

where

D(o', 6) = 1/e2(5(1+°)‘62)66(1 — 6)1'6(6 — a)6'°(l + a — 6)1+°"6. (2.74)

To make the right side of (2.73) approach zero, we need to find an a such that

D(a,6) < 1, (2.75)

for all

a<6S(1+a)/2.
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A straightforward calculation shows that

D(.5,6) < 1 for all .5 < 6 S .75.

Hence

if

On the other hand,

E(Xk) Z clnzn‘Hat,

where Cl is a positive constant and

t: (1+ a)n/2.

a(1+a)n/2 Z C2n_2n-2Ana

where C; is a positive constant and

A __ 4

— e(1+")2/2(1+ a)1+°(1— a)1""

 

And we find

D(.49,6) > 1 for some 6 near.7.

For example,

D(.49, .7) = 1.0258.

Which implies that the estimate

a=.5

cannot be improved significantly by this method.

These observations are summerized in the following theorem.
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Theorem 2.4.1 For almost all bipartite graphs G, the vertex independence number

30(G) satisfies the inequality:

n S 60(G) _<_ (1.5)n. (2.85)

As expected, Theorems 2.2.1 and 2.4.1 give similar bounds on the independence

number. But the upper bound in 2.4.1 is slightly higher than that of 2.2.1. This

might be accounted for by the fact that the random graph model is less restricted.

Hence there are more opportunities for large independent sets.
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