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ABSTRACT

SUFFICIENCY IN THE PRESENCE OF NUISANCE PARAMETERS

by

Nupun Andhivarothai

This dissertation is devoted to the study of the concept of Sufficiency in the presence of
nuisance parameters. We mainly investigate the notion of Partial Sufficiency proposed
by Hajek in 1965. Decision theoretic aspects of Hajek’s definition is investigated
and we prove a converse to a Rao-Blackwell type theorem in the context of partial
sufficiency. We next extend the concept to one experiment being partially sufficient
to another experiment. Finally, we give some examples and applications to illustrate

the concepts studied.
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Chapter 1

Introduction and Summary

Let X be a random variable distributed as Py, where § and o are unknown
parameters. Classically, a reduction of X is achieved via a sufficient statistic for
0,0. That this reduction does not entail any loss of information is established by
the Rao-Blackwell theorem which shows that for any decision problem, the decision
rules based on the sufficient statistic form an essential complete class. A variety of
converses to the Rao-Blackwell theorem also show that the Fisher-Neyman definition
of sufficiency is appropriate if we are looking for a reduction of X that would be as
effective as X for all decision problems. However, it very often happens that we are
interested in only a subset of the set of all decision problems. A typical case would be
when we are interested in making inferences on the parameter 6 and are indifferent to
the value of 0. In such a situation 8 would be referred to as the parameter of interest
and o as the nuisance parameter. There have been many attempts at defining a
sufficient statistic of part of the parameters, in the case just mentioned, a sufficient

statistic for the parameter 8 in the presence of a nuisance parameter o [Neyman and



Pearson (1936), Fraser (1965), Kolmogorov (1942), Hajek (1965)).

In this study, we extend the concept of “partial sufficiency” introduced by Hajek
(1965) and give a result which is a converse to a Rao— Blackwell type theorem.

We next turn our attention to the problem of comparison of two experiments.
Let £ and F be two experiments parameterized by (6,0). Bohnenblust, Shapley
and Sherman defined the notion of £ being more informative that F in terms of
risk functions obtainable in the experiments. Blackwell extended the concept of a
sufficient statistic and defined £ being sufficient for F in terms of the existence of
Markov kernels. Blackwell then showed that “more informative” and “sufficient” are
equivalent.

Blackwell’s theory involves sufficiency for both parameters (6, o), more specifically,
it needs the consideration of a loss function that would depend on both 8 and o.
However, when o is a nuisance parameter, it seems appropriate to consider a loss
function that depends only on 8. These considerations motivate our study of “partial
sufficiency” of experiment in Chapter 2.

We extend the concept of partial sufficiency to two experiments in Chapter 3. The
notions of £ being more informative than F, say, for § and £ being partially sufficient
for F are introduced. The equivalence of these two concepts is proved. A criterion
in determining £ being partially sufficient for F in terms of sufficiency of reduced
experiments is also established.

To conclude this study, in Chapter 4 we give some examples to illustrate the
concépt of partially sufficient statistic and some application of results in the earlier

chapters.



Chapter 2

Partial Sufficiency

This chapter is devoted to the study of a notion of partial sufficiency introduced
by Hajek in 1965. We first establish the notation and preliminaries, and then prove

the main result which is a converse to a Rao-Blackwell type theorem.

2.1 Notation and Preliminaries

A statistical experiment is the triplet (X,.A,P) where X is a set, A is a o-
algebra of subsets of X and P is a family of probability measures on (X,A). P
will be endowed with the o-algebra C, which is the smallest o-algebra generated by
P — P(A), A € A. Subsets of P will be equipped with the relative o-algebra. We
will assume that the family P is parameterized by © x I, that is, there is a 1-1
function (0,0) — Py, from © x I onto P.

Thus for us an experiment is given by (X, A, Py, : (8,0) € © x L) where (X, A) is
the sample space and © x ¥ would be referred to as the parameter space. A decision

problem consists of a measurable space — “Action Space” (A,.A4) and a “loss function”

3



L(6,0,a) from © x ¥ x A — R, which is a measurable in (6, 7,a). By a decision rule

§, we mean a function 6 : X x 4 — [0,1] such that

i) For all A € 4, é(z, A) is, as a function of z, A measurable.

ii) For each z € X, §(z,-) is a probability measure on A.

If a decision rule é in i) above is measurable with respect to a sub o-algebra B of
A, then we shall refer to 6 as a B measurable decision rule.

Denote by L4 the set of all bounded loss functions defined on © x ¥ x A. If
L € L4 and 6 is a decision rule, the “risk function” of § (with respect to L) is the

function on © x ¥ defined by

Ry(8,0,6) = /X /A L(8,0,a)5(z,da)dPy ().

We shall throughout treat 8 as the “parameter of interest” and o as the nuisance
parameter. This treatment may be formalized in one way by considering only the
following subset of L4, £4 = {L € L4 : L depends on (8, o) through 8 only}.

Let B be a sub o-algebra of A. If P is a probability measure on (X,.A), then
for any bounded A measurable function f, Ep(f|B) will denote any version of the
conditional expectation of f given B, under the measure P. If P, is a family of
probability measures on (X', .A) then B is called sufficient for P, if for any bounded A
measurable function f there exists a B measurable function g such that ¢ = Ep(f|B)
[P] for all P € P,.

We will assume throughout that

i) X is a Borel subset of a complete seperable metric space and A is the

relativized Borel o-algebra.



ii) {Ps,:0 € ©,0 € X} are all mutually absolutely continuous.

As mentioned earlier 6 is the parameter of interest and o is the nuisance

parameter.

2.2 Partial Sufficiency

Definition 2.1 (H4jek (1965)) B is said to be H-sufficient for 6 in {Ps, : 0 €
6,0 € L} if

i) B is 0-oriented, that is, for each 0, B is ancillary for the family
Ps={Ps, :0 €L}, i.e. Pyy,(B)= Pyo,(B) foray,0, in I, and B € B.

ii) For each 0, there ezists a probability measure £y on Py such that B is
sufficient for { Py, : 0 € ©}, where P, is the marginal probability measure on
(X,A) defined by

Po(4) = [ Poo(A)dto(o).

Definition 2.2 B is said to be partially sufficient for 0, if B contains a H-sufficient

o-algebra.

Theorem 2.1 Let B be partially sufficient for 6 in {X,A, P, : (0,0) € © x I}.
Then given any decision problem (A, A) and an A-measurable decision rule §, there

ezist;s a B-measurable decision rule 6* such that for all@ € O, and 0 € L,

/ §(z, E)dPs o(z) = / 8(z, E)dPy, (z)dés(0).



Proof. Since B is partially sufficient for 0, there is a o algebra By C B which is

H-sufficient for 8. B, is sufficient for { P, : § € ©} and since (X, .A) is standard Borel
there exists an omnibus version of the conditional probability given Bo. That is there

is a function @ from X x A — [0,1] such that

(a) @Q(z,A) is Bo-measurable for all A € A
(b) Q(z,-) is a probability measure on (X, A) for all =
and

() JIQ(z,A)dPy,(z)dés(c) = Pi,(A) for all A € A.

Given any decision problem (A, 4), and a decision rule 6, define 6* by

5(z, B) = [ 8y, E)Q(z,dy), E € A

By (a) 6*(z, E) is a By—measurable decision rule. Further, since By is 8—oriented

J 6*(z, E)dPs ,(z) is constant in o and hence for each 6 € ©

/ §*(z, E)dPs,(z) = / / §*(z, E)dPs o (z)dés(0) = / 8(z, E)dPs,»(z)d€s(c).

The next theorem is an analogue of the Rao—Blackwell theorem in the context

of partial sufficiency and appears as Theorem 2.2 in Hajek (1965).

Theorem 2.2 (Héjek (1965)) Let £ = {X,A, Py, : (0,0) € © x L} be an ezper-
iment and B be partially sufficient for 0 in €. Let (A, A) be a decision space. Then
given any decision rule §, there exists a B-measurable decision rule §* such that for

all loss functions L € L%, we have for each 0

sup R (0,0,6°) < sup R.(0,0,6). (2.1)
o€L 0€X



Proof. Let 6 be any decision rule and §* be any B-measurable decision rule satisfying

the conclusion of Theorem 2.1. We then have

[, [ 1@ @ da)iPou(e) = [ [ [ $(a)6(z, da)dPes(2)dtelo)

whenever f is of the form Ig(a), £ € A. A standard induction argument via simple

function yields

Ri(,0,6%) = /2 Ry(8, 0, 8)d¢s(c).

so that

sup R1(8,0,6) = [ Ri(6,0,8)dés(0) < sup Ry (8, ,6).
o€ z 0€EX

2.3 Main Theorem

We now move to a converse of Theorem 2.1 which is the main theorem in this

chapter.

Theorem 2.3 Let £ = {X, A, P, : (0,0) € © x L} be an experiment and let B be
a sub o-algebra of A. If B satisifies Condition A,

Conditon A: For each 0, there erxists a probability measure £y on ¥ such that,
for any decision space (A, A) given any decision rule §, there ezists a B-measurable

deciston rule §* satisfying for all loss functions L € £

Ry(8,0,8%) = [ Ru(8,0,8)de(0).

Then B is partially sufficient for 0 in £.



Proof. Choose (4,A) to be (X,.A) and for each A € A, let Ls(0,0,a) = I4(a),
where I4(-) denotes the indicator function, and set §(z, E) = Ig(z). We then have

from Condition A that there exists a B-measurable decision rule §* such that
[ (2, A)dPoo (@) = [ Pan(A)de(o)

for all A € A.
Since the left hand side in the above equation does not depend on o, we in fact

have
P,(A) = j 8 (z, A)dP,, (z).
Now define
& = 6

6i(z,4) = [ 6i(s, A)6(z,dy)

6(z,4) = [ 8.y, 4)8(z,dy).
An easy argument shows that
Po(A) = [ 8(z,A)dPy(2) (2:2)

for all n and A € A.

Let us define

&(z,A) = JL’&%z:&;(z’A) when it exists
k=1

= P(A) otherwise,

where P is an arbitrary probability measure on (X, A).



By Hopf’s ergodic theorem in Neveu (1965), for each 6 € ©
55(:!:, A) = EP“(IAlBo) a.e. [P(.]

where

Bo = {B : 65(3:, B) = IB [P(,]}.

If we set By = {B : §}(z,B) = Ig [P,] for all 8 € ©} then §; is By measurable,

we have
56(3,/1) = EP“(IAIBO)~

This shows that By is sufficient for {P, : § € O}.

We next note that for B € By,
b(z,B) =1Ip [Py
and from the assumption on i) page 4, we have §(z, B) = Ig [Py,] for all o so that
[ &, B)dPo, () = Po(B).
On the other hand By measurability of 5 yields
[ (2, B)dPo, () = P, (B).

So that P, ,(B) is constant in o, thereby establishing that B, is 6—oreinted.
This shows that By is H-sufficient and since By C B we have that B is partially

sufficient for 0. 0

Remark: We feel that Theorem 2.3 while interesting is still rather weak. This is

because given a decision rule §, we require a decision rule §* which would be as good
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as § for all loss function in £4. A more reasonable condition would be to allow 6* to
depend on the loss function L and prove Condition A. However, we are unable to

establish such a result.

2.4 Invariance

In the last section we studied the notion of partial sufficiency that was proposed
by Hajek in 1965. In the same paper, he demonstrated that in situations where the
nuisance parameter is generated by a group of transfomations on the sample space.
The maximal invariant is partially sufficient. In this section we present Hajek result,
since it provides a wide class of examples of paritally sufficient statistics. More specific
examples will be given in a later chapter.

Let X be a random variable with a probability distribution Py, 6 is the parameter
of interest, (X,.A) is a sample space of X. Suppose Py € P = {P,: 0 € 6}, P is the
family of probability distribution which is dominated by a o-finite measure u. Let

G = {g} be a group of 1-1 transformation from X onto X. Let A € A, put
Pyg(A) = Py(g7" A) (2.3)

We will assume the following conditions: Condition B: Let G be a o-algebra of

subsets of G, and assume the followings:

i) Let ug be a measure such that pg(A) = u(gA) and pg < u for all g € G
i) Let ps(z,g) be a density of Py, with respect to 4 and that py(z,g) is Ax G
-measurable

ili) Functions ¢,(g) = hg and ,(h) = gh are G-measurable.
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iv) There exists an invariant probability measure v on G, that is, v(Bg) = v(gB)

=vy(B) forallge Gand BeGg.

We shall say that an event A € A is G-invariant, if gA = A for all ¢ € G. We can

see that the set G-invariant events is a sub o-algebra B C A, and we say that if f is

B measurable iff f(g(z)) = f(z) for g € G.

Theorem 2.4 (Hijek (1965)) Let Py € P and define Py, by Equation 2.3 for each

6. Under Condition B, the sub o-algebra B of G-invariant events is partially suf-

ficient for 6.

Proof. It is enough to show that B satisfies Definition 2.1

i) Since B is a sub o-algebra of G-invariant events, for B € B

Py ,(B) = Py(B).
ii) for A€ A, let
P(4) = [ Paoy(4)dr(g)

we have

Pa(d) = [|[ po(z,g)du] an(o)

= [ [ pelz,9)dv(g)dn
with By(z) = [ pa(z, 9)dv(9)

Pu(A) = [ Fo(e)dn

(2.4)
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Let Py be some probability measure such that Py < Py < p and define p,(z) by

Po(z) = [ po(z, g)dv(g).

Pua) = [ 2 pa)an 25)

It follows from Theorem 3.3 of Hajek (1965) that p,(z)/P,(z) is B-measurable and
it is also a density of P,, with respect to P,,. By Lemma 1 page 401 of Billingsley
(1979), it follows that B is sufficient for {P,,}. o



Chapter 3

Comparison of Experiments in the

Presence of Nuisance Parameters

3.1 Preliminaries

In this chapter we study the extension of the concept of partial sufficiency to
two experiments. Let £ = {X,A,P,:t € T} and F = {),B,Q: : t € T} be two

experiments. Following Blackwell (1951), we define:

Definition 3.1 £ is more informative than F if for any decision problem (A, A) and
loss function L(t,a), if given any decision rule § in F, there ezists a decision rule §*

in € such that the risk functions satisfy, for allt € T

R(t,6*) < R(t,9).

13
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Definition 3.2 £ is sufficient for F, if there ezists a Markov kernel M from € to F

such that, for allt € T and B€ B

[ M=, BYiP() = QuB)

Blackwell(1951) showed that Definition 3.1 and Definition 3.2 are equivalent when
T is finite. When the experiments are dominated the equivalence continues to hold,

see Feldman and Ramamoorthi (1984) for a proof.

3.2 Main Results

A direct analogue of definition 3.1 in the context of “partial sufficiency”, in view
of the remark in Section 2.3 of Chapter 2, is not available. However, motivated by
Theorem 2.1 of Chapter 2, we define the following:

Let £ = {X,A,P,;(0,0) € © x £} and F = {),B,Qs,;(8,0) € © x I} be
two experiments. As before we treate § as the parameter of interest and o as the
nuisance parameter. For an action space (4,.4), let £ be the class of all bounded

loss functions which do not depend on o.

Definition 3.3 £ is more informative than F for 8, if for any decision problem,
there ezists a probability measure ug on L such that, given any decision rule § in F,

there exists 6* in £ such that for all L € L9
Ry(6,0,6") < [ Ru(0,0,8)dus(o).
Remark: For any L € L, defining

L'(0,0,a) = supL(0,0,a)— L(0,0,a).
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It is easy to see that the “<” in Definition 3.3 can be replaced by “="

Definition 3.4 £ is partially sufficient for F if there exists a Markov kernel M(-,-)

from € to F and probability measures pg on ¥ such that
[ M(z,B)dPos(z) = [ Qoa(B)dps(o),
for all (8,0) € © x ¥ and B € B.

Theorem 3.1 £ is more informative than F for 0 iff £ is partially sufficient for F.

Proof.
(i) Suppose € is more informative than F for . Choose (A, A) to be (), B) and
let 6(y, E) = Ig(y), where Ig(-) is an indicator function. Then, from the assumption

that £ is more informative than F for 8, we have a decision rule 6* in £ such that,

for all L € £
Ry(8,0,6%) = / Ry(8,0,8)dus(0) (3.1)

For each B € B, the loss function L(8,0,a) = Ig(a) is in L%, where Ig(:) is an

indicator function. Using Equation (3.1), it is evident that 6* satisfies

[#@ B)iP(@) = [ Qoo(B)dus(o).

(ii)  Suppose £ is partially sufficient for F.
Let M be the Markov kernel provided by the partial sufficiency of £ to F. Given

any decision rule § in F, define 6* by

§(z,E) = / 8(y, E)M(z, dy).
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It is easily verified that 6* satisfies
Ri(8,0,8") = [ Ri(6,0,6)dps(0)

for all L € LC4. ]

Let £ = {X, A, Py,;(0,0) € © x L} be an experiment. If A, is a sub o-algebra
of A, we will denote by & the experiment {X, Ay, Py0;(0,0) € © x £}. Our next

theorem relates partial sufficiency and sufficiency.

Theorem 3.2 Let £ = {X, A, Py,;(0,0) € O x £} be an experiment and let the sub
o-algebra Ay be H-sufficient for 0.

Similarly let F = {),B,Q4.;(0,0) € © x £} be an ezperiment and let By be
H-sufficient for 0.

Then £ is partially sufficient for F iff & is sufficient for Fo.
Proof. Suppose € is partially sufficient for F.

Let 6 be any decision rule in Fo, then since § is also a decision rule in F, there

exists a decision rule 6* in £ such that

Ry(8,0,6%) = / Ry(8,0,6)dus(o)

for L € £4.
However, since By is H-sufficient for {Y,B,Qy, : (§,0) € © x £} and L € L5,

R (0,0,6) is constant in o, so that for all (§,0) € © x

R(8,0,6) = [ Ru(6,0,6)dpo(0)

and hence we have

Ry(6,0,6°) = Ry(6,0,6) (3.2)

f0l i
.~
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By H-sufficiency of Ay, we have a decision rule §; in & such that
Ru(8,0,5) = [Ru(6,0,8)ds(o).
However by equation (3.2), we have that R.(0,0,6*) is a constant in o so that
R.(0,0,85) = R.(9,0,6") = RL(9,0,0).

Conversely, suppose & is sufficient for Fp, then

a) the Markov kernel M;(z,A) = I4 from £ to &, satisfies, for all A € A,
[ Mi(a, )dPoo(z) = Poo(4)

b) there exists a Markov kernel M, from & to Fy such that, for all B € B,
[ Mz, B)dPus(2) = Qua(B)

c) there exists a Markov kernel M3 from F, to F such that, for all B € B,

[ Ma(0, BYiQoo(¥) = [ Qoa(B)dus(o)
It is easily verified that the Markov kernel
M(z,B) = /Ma(y, B)M;(z3, dy) My (21, dz)
satisfies

/ M(z, B)dPy,(z) = / Qo.0(B)dps(o). (3.3)

In the presence of partially sufficient o-algebras, the following theorem is of in-

terest.
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Theorem 3.3 Let £ = {X, A, Py,,(0,0) € © x L} be an ezperiment and let Ay be
H-sufficient for A. Similarly let F = {),B,Qs,,(0,0) € © x £} be an experiment
and let By be H-sufficient for B.

Then the followings are equivalent:

i) Given any decision rule § in F, there ezists §* in £ such that for all L € L5
sup RL(O’ o, 6‘) < sup RL(o’ o, 6)
g€L o€L

it) & is sufficient for Fy.

Proof. i) implies ii).

Let é be any decision rule in Fo. For L € £ we have for all (§,0) € O x &
R;(0,0,8) = gtexg R;(0,0,6). (3.4)
Since 6 is also a decision rule in F, we have by i) a decision rule §* in i) such that
Ri(0,0,6%) < 21;12) R.(0,0,6%) < Ri(0,0,0).
Since Ay is paritally sufficient for A, there exists g in & such that

RL(aa g, 6(;)

[ Re(,0,6)dte(o)
< sup RL(ov o, 6‘)
o€EL

< RL(O, o, 5)

So that & is sufficient for F,.
i1) implies i).

Let é be any decision rule in F. Then there exists §; in Fo and 8* in & such that

R.(8,0,6,) = / R1(0,0,6,)dus(0) < sup Ry(6,0,5)
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and

RL(av g, 5‘) < RL(oa g, 61)

so that

sup R (0,0,6") < sup R.(0,0,6).
g€EX gEX

Since 6* is in & and hence in £ this establishes i).



Chapter 4

Examples and Applications

We give a few examples to illustrate the notion of partial sufficiency and then we
show the application of the theorems in Chapter 3. Some of these examples already

appear in Héjek (1965). Others are new.

4.1 Examples

In this section, examples of partial sufficiency will be given in terms of a statistic
T instead of the sub o-algebra B, induced by T . However, before giving examples
one may recognize that for T to be H-sufficient or partially sufficient statistic for 8, it

is necessary that T is #—oriented or equivalently, we have a factorization of the form
p(z|0,0) = g(T| 0)f(=|T,6,0) (4.1)

where p(z|0,0) is a density function of Py,.

It is also necessary that there exists £y,a probability measure on X such that the

20
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“mixed” density function,

pes(z) = [ p(al6,0)dts(o)

can be factored as

pes(2) = G(T, 0)F () (4.2)

We now look at examples for partial sufficiency.

Example 4.1 (H4djek(1965)) Consider a sample X = (X, X>,...,X,) of size n,
each ii.d from N'(4,02). The statistic T(X) = s2 = ¥, (Xi — X)*/(n — 1) is
partially sufficient for o? if 0% € (0, K) for K finite. To see this, we first factor the

density function of X as follow:
ns? n(X - p)’
p(zln,0%) = A(o)exp [ 257 | SXP [ —('E;ﬂ]

where A(c) = ( 21ra) -
Choose £, to be a normal distribution with mean 0 and variance (K —o?)/n. The

“mixed” density function is:

plo) = [ plaluo)dta(w)
Ao |35 | ep[ X )]de.,(u)

= A(o)exp [-— B(X)C(0) (4.3)

where

B(.)-(-) = exp [—ﬁ]

Clo) = o



Remark: If we choose £, to be uniform distribution (the Lebesgue measure) over
the whole real line, the proof Theorem 2.2 will break down since the left hand side
of the Equation 2.1 is equal to infinity but not the right hand side. It seems unlikely

that s? will be P-sufficient for o2, if o € (0,00), however we do not have proof.

Example 4.2 (Neyman & Scott) Consider the data consisting of 2n observations
X1, X1, X2, X35+, Xn, X,.. Let X; and X; be independent normal random variables
with mean y; (i = 1,2,...,n) and variance o?. The parameter of interest is o2, the
nuisance parameter is the vector g = (u1,fa,...,H,). Take 82 = ¥ (X; — X;)?,
X; = (Xi + X;)/2 and with A(c) = (\/2—10)-n, we have
plalina?) = Aolexs |~5] e [—"(YT‘Q]

The statistic s is clearly o-oriented and is partially sufficient if we take

Eo(B1y B2y« s n) = [I7e, o (pi), where ¢,(4;) is a normal density with mean 0, vari-

ance (K — 02)/2 and also assume that 0€(0, K), K is finite.

Example 4.3 Let X = (X,;,X3,...,X,) has a multimomial distribution with pa-

rameters n, p;, ps,...P,. The distribution of X is given by

n!

— —_ — — ny,.Nn2 ng
P(Xl = nl,Xg = ng,...X, = n,) = nl!n2!“.n.!pl P2 -.-D,

where 3°/_;pi = land I°}_, n; = n.

The statistic T(X) = (T1(X1), T2(X2),. .., T.(X,)) is sufficient for (p1,p2,...ps)-
Also the statistic T;(X;) = n; is partially sufficient for p; since the marginal distri-
bution of T1(X;) is binomial(n, p,) which is independent of p,, ps,...,p,. Hence, it

is p;—oriented.



The factorization equation (4.2) holds if take £,, a point mass at

_(l1=-pp 1-p l_Pl)
(anp3a'°'7pa)— (8—1’ 8_17"'7 8—1

So we have

n! 1—p\™™
P(T(X0) =11, Xa = may. o X = n)en (a5, 0 = ot (=0)

ny!...n,! s—1
_ nls=1)( p "1(1 —Px)"
T ongl.on\1-p s—1

The argument above works for any p; for i = 1,2,...,s; therefore, we have T;(X;)) is

partially sufficient for p;; 1 =1,2,...,s.

Example 4.4 A linear model is represented by ¥ = Xi7 + X358 + ¢, E(¢) = 0,
Var(e) = 0%1,, where Y is an n x 1 random vector, X; is n X k matrix with rank
k, X3 is n x p matrix with rank p and I, is an n x n identity matrix. 7 is a k x 1
vector of parameters of interest, 8 is a p X 1 vector of nuisance parameters, and ¢ is an
n X 1 random vector of errors from a normal distribution with mean 0 and covariance

matrix o2I,. The density function of Y, with respect to Lebesgue measure, is
—n 1
pyInB) = (Vera)exp [~5lly = Xur = Xaf|]

Let M(X;) denote the space spanned by the columns of X; and M(X;)* =
{x txy=0fory e M(X.-)}, for i = 1,2. Let P denote the orthogonal projec-
tion onto M(X;)*, so Q@ = I — P is the orthogonal projection onto M(X;), with

y = Py + Qy;

ly = Xar = X8I = I(Py - Xa7) + (Qu — XaB)|*

= [|Py - Xu7|* + |Qy - X2



24

Hence,
pulnB) = (VEro)exp -5z {IIPy - Xurll* + 1Qy - Xaf)]

Py is T-oriented since E(Py) = PX,T and Var(Py) = o?*P. Choose £,(8) =

1(0)(8), therefore, the statistic Py is partially sufficient for 7.

Example 4.5 (Maximal Invariance) Consider a sample X = (X, X,,...,X,) of
size n, each i.i.d from M (u,0?). The transformation g,(X;, Xs,...,X5) = (X1 +
a,X2+a,...,Xn+a) of the group G = {g, : a € R} transforms the sample space "
onto itself. It is associated with the group G = {g; : a € R} of Ga(u,0) = (4 + a,0)
of parameter space onto itself. The group G leaves ¢ invariant.

The maximal invariant for the problem of estimating o with respect to the group

G 1s the different statistic
D = (Xg —Xl,X3 —Xg,...,X" —Xl).

The statistic s, as a function of D, is invariant and partially sufficient for the

problem of estimating o in the sense that

i) s is o-oriented, and

ii) the statistic s is sufficient for o.

Example 4.6 (Invariance) Let X be a random vector taking value in R2. Let
X ~ N, I), p € R2.

For the parameter u € R?, to know u € R?, we need to know the norm of u
and the angle from a fixed array, say, i = (||u|l/v/2, |#|l/V/2), represented by T, an
orthogonal matrix, such that I'i = u. If we are only interested in estimating ||u||, we

may treat I' as a nuisance parameter.
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In terms of invariance, let the group G = O, = all orthogonal transformation on
R? and P;r = N(Ti,I). The statistic || X|| is sufficient for ||y, it is also G-invariant
since ||[TX|| = || X||. Clearly, there exists an invariant probability measure on O, since

O, is compact. By Theorem 2.4 || X|| is partially sufficient for ||x]|.

4.2 Application of Comparison of Experiments in

the Presence of Nuisance Parameter

4.2.1 Comparison of Normal Experiments with Unknown

Mean and Unknown Variance

Let &; be a normal experiment with unknown mean y and unknown variance o2

where k;(> 0) is a known constant; i = 1,2. Suppose that we are only interested in
making inferences on the parameter o with regardless to the value of u-that is, u is
the nuisance parameter and o is the parameter of our interest. We want to determine
for what value of k; and k, that &, is more informative than &, for o.

The next theorem will answer this question.

Theorem 4.1 Let & be a normal ezperiments with unknown mean u and unknown
variance o* where k; >0 andi = 1,2. Ifky > k; and 0 € (0,K), K < oo, then £, is

more informative than &, for o.

Proof. Let s? be a sample variance obtained from n; observation from &; for : = 1,2.
By Example 4.1 s? is a partially sufficient statistic for 02%; i = 1,2. Let £} and £2 be

two experiments derived from the partially sufficient statistics s? and s3, respectively.
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Then by Theorem 3 of Goel and DeGroot (1979), £} is sufficient for £2 if k; > k; > 0.
So by Theorem 3.1 and Theorem 3.2, we have if k; > k; > 0 then &, is more

informative than &; for o iff £} is sufficient for £3. And this concludes the proof. O

Remark: Goel and DeGroot (1979) proved the above theorem for the case of u
assumed to be known but no restriction on . The condition that o is bounded which
we required in proving the above theorem, is a legitimate assumption that can be

impose here.

4.2.2 Comparison of Linear Normal Experiments With A
Known Nonsingular Covariance Matrix

Let & = L(X;T + Z;8,0%1,,) be a linear normal experiment which is represented
by Y = Xi7 + Z;$ + ¢, where Y is an n; x 1 random vector, X; is n; X k matrix with
rank k, Z; is n; X p matrix with rank p and I, is an n; X n; identity matrix. 7 is a
k x 1 vector of parameters of interest, 8 is a p X 1 vector of nuisance parameters, and
¢; 1s an n; X 1 random vector of errors from a normal distribution with mean 0 and
covariance matrix o21,;; 1 = 1,2.

By Example 4.4 Py; is a paritally sufficient statistic for 7; ¢ = 1,2. Let & =
L(P;X;T,0%P;) be a linear experiment base on the partially sufficient statistic P;y;
where P; is an orthogonal projection matrix onto M(Z;)t. Note that P, may be

represented in the form P; = I,,, — Z(Z!Z)Z5i=1,2.

Theorem 4.2 Assume the above setup, £, is more informative than & for 7 iff

X{ P X, — X;P, X, is non negative definite.
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Proof. i) Suppose &, is more informative than & for 7. By Theorem 3.1
and Theorem 3.2, we have &) is sufficient for £3. It follows that from Rao-
Blackwell Theorem that Var(d#) < Var(d#;); ¢ € M(X3P;) C M(X;P{) and
d7%; is the UMVUE of 7. Since the UMVUE and BLUE coincide, Var(c7;) =
Jd(X!P!P,P,X;)"c = d(X!P,X;)"c. By Lemma 2 of Steniak, Wang and Wu (1984),
we have X]P, X, — X} P;X; is non negative definite.

il) Suppose X]P,X; — X;P,X; is non-negative definite. Let C = X{P X, —
X}P;X;. Denote y; as a random vector representing £; i = 1,2. Let £ be a
“fictitious experiment” such that X X, = C, X, is a design martix of £;. Let yg be |
a random vector representing £ and suppose yg and y2 are independent. Then it
follows that (P, X;)"y) is sufficient for 7 and (P X3)'y2 + X'yg is sufficient for 7 under
the combination of experiment £2 and &;. But (P, X,)'y} has the same distribution
as (P2 X;)'y2 + X'ys. Hence £} is sufficient for £2. By Theorem 3.1 and Theorem 3.2,

&, is more informative than &, for 7. o
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