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ABSTRACT

IMPROVING THE PERFORMANCE OF AN UNDER-DAMPED MASS
SPRING DAMPER SYSTEM THROUGH SWITCHED PARAMETERS

By

Amer Lafi Allafi

In this thesis we propose to improve the performance of the standard single degree-of-
freedom under-damped mass-spring-damper (MSD) system using variable structure control. Two
controllers are proposed: both of them switch the parameters of the system between their nominal
values and their negative values. This approach results in a hybrid system comprised of the nominal
system, which is asymptotically stable, and an unstable system. The first controller is based on
switched stiffness whereas the second controllers is based on switched stiffness and damping. For
both controllers, the parameters are switched based on the location of the system in its
configuration space. A phase portrait analysis indicates that the resulting hybrid systems are
asymptotically stable although they switch between an asymptotically stable and an unstable
system. A comparison of the step response of the hybrid systems with that of the original under-
damped system indicates that the switched systems have better performance in terms of rise time,
settling time, and reduced or no overshoot. Different designs of the switching logic have been
investigated and they provide clues on how the switching logic can be designed to achieve the

maximum improvement in performance.
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Chapter 1

Introduction

The single degree-of-freedom mass-spring-damper (MSD) system describes the dynamics of many
real physical systems. The behavior of the MSD is well understood and therefore controllers are
also designed to make the closed-loop dynamics of many physical systems emulate the dynamics
of the MSD. The behavior of the MSD is largely dependent on the damping ratio ¢: a small
damping ratio results in fast response (small rise time) but a large overshoot and a large settling
time; on the other hand, a large damping ratio results in sluggish response (large rise and settling
times) but no overshoot. While emulating the dynamics of the MSD system, it is common to choose
the damping ratio to lie in the range 0.5 < ¢ < 0.8 since smaller values of ¢ result in large
overshoots and larger values of T result in sluggish response [1]. To improve the performance of
the MSD and have fast response with no overshoot, we investigate the stability and the
performance of two hybrid MSD systems. The first system uses switched stiffness; the stiffness of
this system is switched between its nominal value and its negative value. The second system uses
switched stiffness and damping coefficients; the stiffness and damping coefficients are switched
between their nominal values and their negative values. In both hybrid systems, switching is based

on the location of the system in its configuration space.



Each hybrid system, namely, the MSD with switched stiffness and the MSD with switched
stiffness and damping, can be described by a differential equation with a discontinues forcing
function, where the forcing function can be viewed as a sliding mode controller [2-5]. Sliding
mode control (SMC) is typically used for robust stabilization of dynamical systems in the presence
of uncertainties but here it is used for a completely different purpose, namely, to improve the
performance of the system. The improvement in performance is achieved by switching between
the original system, which is asymptotically stable, and the system with negative stiffness, which
IS unstable.

The idea of using switched stiffness for performance improvement has been investigated
by several researchers [6-9]. In all of these studies, the stiffness of a mass-spring system is switched
between two positive values; this approach results in a hybrid system comprised of two stable sub-
systems. In this work, the stiffness of the MSD system is switched between a positive value and a
negative value; the resulting hybrid system is comprised of two sub-systems that are
asymptotically stable and unstable, respectively. The improvement in performance using negative
stiffness has also been investigated [10-12]; in most of these studies, negative stiffness has been
incorporated in the design for improved vibration isolation. These studies are different from our

study since the stiffness is not switched.

The idea of varying the damping coefficient for performance improvement has also been
investigated [14-15]. In these studies, the stiffness and the damping coefficients are varied with
respect to time. The results have been applied to different application problems such as improved
vibration isolation in high-speed rotors. In our work, switching of the stiffness and the damping
parameters is based on the location of the system in its configuration space. Also, the stiffness and

damping coefficients are switched between a constant negative value and a positive value.



This thesis is organized as follows. The dynamics of the hybrid MSD system and the
stability characteristics of the individual subsystems are presented in Chapter 2. The stability
characteristics and performance of the MSD with switched stiffness is analyzed in Chapter 3. The
time response of the hybrid system is then compared to that of the original system. Chapter 4
repeats the analysis for the MSD with switched stiffness and damping. Chapter 5 contains

concluding remarks.



Chapter 2
Mass-Spring-Damper System with Switched

Stiffness and Damping

2.1. Mass-Spring-Damper System with Switched Stiffness

We consider the following mass-spring-damper system with switched stiffness:

mX +cx +akx =0 (2.1)

where m, ¢, and k are the mass damping coefficient, and stiffness, respectively, a switches
between +1 according to the logic:

_{+1 if (§S>0andx>0)or (§S<0andx<0) (2.2)
~ -1 if Sx<0

and S is defined by the relation:

S=x,— x4, A< O (2.3)
The unforced system in (2.1) can be viewed as the following forced system:

mi¥+cx+kx=F (2.4)

where, the forcing function F is defined as:

F—{O if (§>0andx>0)or (S<0andx<0) (2.5)
~ 2kx if Sx<0



Equation (2.1) can be rewritten as:

y c . k
i= ——x—a—x (2.6)
m m

The variable structure system (VSS) in Eq.(2.6) is comprised of two linear systems: one where
a = 1, and the other where a« = —1. We will study the behavior of these two individual systems
with the objective of investigating the stability and performance of the variable structure system

for different values of m, c, and, k.
2.1.1. Stability Characteristics of the Individual Systems

To investigate the stability characteristics of the VSS in Eq.(2.6) we need to first investigate the
stability properties of the individual systems. To this end we define the states x; = x, and x, =
x. Then, the state space equations are:

X1 = X3 (2.7)

c k

Xy = TR T AN (2.8)

If we define w,,? = k/m and ¢ = C/me the state space equation can be rewritten as
n

Xy = X
(2.9)
X, = —awp’x; — 2{wny X,
2.1.2. Behavior of the First System (a = +1)
For the first system, where « = +1, we have
x1] _ X1 A 0 1
[xz] = 4] [xz]' AL = |, 2 —Zan] (2.10)

The eigenvalues of A are:



0,0, = a)n[—(i w/(2—1] <0

The original system is under-damped, i.e. { < 1. Therefore, the eigenvalues are complex and are

given by:

0y = wy|-(+ iJT-(Z | (2.11)
0y = wn|-{— iJT-¢2| (2.12)

and the origin is a stable focus. [13]. The eigenvectors corresponding to the eigenvalues in

Egs.(2.11) and (2.12) are described by the equations:

X2 = 01X (2.13)

%, = 0%, (2.14)

x

\

.

Figure 2.1. Phase portrait fora = +1and { < 1
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and the phase portrait of the system is shown in Fig.2.1.
2.1.3. Behavior of the Second System (a = —1)

For the second system, when « = —1, we have

e sl k)
The eigenvalues of A; are:
p = o[- —JTF 1] <0 (2.0
ty =y |-+ 1|>0 (2.17)

Therefore, the origin is a saddle [13]. The stable and unstable eigenvectors corresponding to the
eigenvalues in Eqs.(2.16) and (2.17) are described by the equations:

X2 = H1Xq (2.18)

X2 = UaXq (2.19)

and the phase portrait of the system is shown in Fig.2.2.

2.1.4. Different Cases of the VSS with Switched Stiffness

The VSS with switched stiffness has the same behavior as that of the first system when (S >
0and x > 0) or (S < 0 and x < 0), and that of the second system when Sx; < 0 —see EQs.(2.2)
and (2.6). Since the first system (where @ = +1) can be only under-damped ({ < 1), we study of
the VSS Switched Stiffness and we carry out our investigating separately for A > u; and 1 < pyy

in Chapter 3.



\,

Figure 2.2. Phase portrait for « = —

2.2. Mass-Spring-Damper System with Switched Stiffness and Damping

Consider the following mass-spring-damper system with switched stiffness:

mX + acx + akx =0 (2.20)

where m, ¢, and k are the mass damping coefficient, and stiffness, respectively, a switches
between +1 according to the logic:

_{+1 if (S>0andx>0)or (S<0andx<0) (2.21)
~ -1 if Sx<0

and S is defined by the relation:

S = Xy _Axl, A< O (222)

The unforced system in (2.20) can be viewed as the following forced system:



mi+cx+kx=F (2.23)

where, the forcing function F is defined as:

F—{O if (§>0andx>0)or (§S<0andx<0) (2.24)
| 2kx + 2cx if Sx<0

Equation (2.20) can be rewritten as:

” C . k
X= —a—x—a—x (2.25)
m m

The variable structure system (VSS) in Eq.(2.25) is comprised of two linear systems: one where
a = 1, and the other where a« = —1. We will study the behavior of these two individual systems
with the objective of investigating the stability and performance of the variable structure system

for different values of m, c, and, k.
2.2.1. Stability Characteristics of the Individual Systems

To investigate the stability characteristics of the VSS in Eq.(2.25) we need to first investigate the
stability properties of the individual systems. To this end we define the states x; = x, and x, =
x. Then, the state space equations are:

561 = X7 (226)

xZ = _aaxZ - aExl (227)

If we define w,? = k/ and{ =¢ the state space equation can be rewritten as
n m 2mw,
561 = x2
Xy = —awy’x; — 2alw,x; (2.28)

2.2.2. Behavior of the First System (o = +1)
9



For the first system, where & = +1, we have

x| _ X1 u 0 1
[562] = 144 [xz] A2 |_y2 —ZZa)n] (2.29)
The eigenvalues of A; are:

0,0, = wn[—{i \/(2—1] <0

The original system is under-damped, i.e. { < 1. Therefore, The eigenvalues are complex and

are given by:
0y = wy|-{+ iJT-(Z| (2.30)
0y = wy|-{— WI=(7] 231

and the origin is a stable focus [13]. The eigenvectors corresponding to the eigenvalues in
Egs.(2.30) and (2.31) are described by the equations

Xz = 01X (2.32)
Xz = 02X (2.33)
and the phase portrait of the system is shown in Fig.2.3.

2.2.3. Behavior of the Second System (a = —1)

For the second system, when a = —1, we have

L}:ﬂz[AZ] [l 422 w?lz Zlen] (2.34)

10
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.
Figure 2.3. Phase portrait fora = +1and { < 1
The eigenvalues of A; are:
o= w, [~ + 1| <0 (2.35)
e = 0 [{+TZ+ 1| >0 (2.36)

Therefore, the origin is a saddle [13]. The stable and unstable eigenvectors, corresponding to the
eigenvalues in Egs.(2.35) and (2.36), are described by the equations

X2 = H2Xq (2.38)

and the phase portrait of the system is shown in Fig.2.4.

2.2.4. Different Cases of the VSS with Switched Stiffness and Damping

11



Figure 2.4. Phase portrait for « = —1

The VSS with switched stiffness and damping has the same behavior as that of the first
system when (§ > 0andx > 0) or (S <0andx < 0), and that of the second system when
Sx; < 0 —see EQ.(2.21). Since the first system (where « = +1) can be only under-damped (¢ <
1), we study of the VSS Switched Stiffness and Damping and we carry out our investigating

separately for A > u, and 4 < 4 in Chapter 4.

12



Chapter 3
Variable Structure System with Switched

Stiffness

3.1. Phase Portrait

In this chapter, we investigate the behavior of the VSS with switched stiffness. The phase
portrait of the VSS is the union of the phase portrait of the first system (a« = +1) in the region
(§>0andx > 0) or (S < 0and x < 0), and the phase portrait of the second system (a« = —1)
in the region Sx; < 0. The phase portrait of the first system (a = +1) in the region (S >
Oand x > 0) or (S <0andx < 0) is shown in Fig.3.1 and the phase portrait of the second
system (e = —1) in the region Sx; < 0 is shown in Fig.3.2. The union of these phase portraits is

shown in Fig.3.3.

For the phase portrait in Fig.3.3, the slope of the line S = 0 or x, = 4 x; is shown to be
greater than the slope of the line x, = u;x4, 1.e., A > uy. This is not necessarily true always, and
therefore we need to additionally investigate the case where A < u;. These two cases,

namely, (u; <A < 0),and (A < u, < 0), are investigated in sections 3.2 and 3.3.

32.Case A:uy <A<0

13
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Figure 3.2. Phase portrait of the Variable Structure System (VSS) for a = —1
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Figure 3.3. Phase portrait of the Variable Structure System (VSS) for A > p ; is the union of the
phase portrait in Figs.3.1 and 3.2

3.2.1. Stability

The VSS is a hybrid system that switches between an asymptotically stable system, the phase
portrait of which is shown in Fig.3.1, and an unstable system whose phase portrait is shown in
Fig.3.2. The union of these phase portraits is shown in Fig.3.3. To investigate the stability of the
equilibrium of the VSS, the phase plane is divided into three zones, namely:

Z; = {x € R?|Sx; > 0}

Zy = {x € R?|(x; — 1) (x, — A %) < 0}

Z3 = {x € R?|x,(x; — u;x,) < 0}

The three zones are separated by the following three lines:

L]_: x1 == O

15



Lot %3 = pyxy
L3: xz = A x1

We investigate the system trajectories in these zones and on these lines next.

To study the behavior of the trajectories on L1, we investigate the direction of the vector

field on L1 For x, > 0 (and x; = 0),we have the following equations and vector field:

ﬁ

Therefore, the trajectories enter Z,. For x, < 0 (and x; = 0), we have the following equations

561=x2 >0

c
Xo= ——x, <0
2 m2

and vector field:

561=x2 <0

A c 2 ’
xZ = __xz

m

Therefore, all trajectories on L1 will enter Z;.

The line Lz is the stable eigenvector of the second system where a« = —1 — see Egs.(2.16)
and (2.18). On L, we have x, = x; = uyx; = x,(t) = x,(0) e#1t, pu; < 0. Therefore, all

trajectories on L converge to the origin.

The boundaries of Z; are L1 and Ls. We have already shown that trajectories on L;
enter Z;. We now show all trajectories in Z; reach Ls in finite time. To show this we consider the
equation of motion of the system for « = 1, given by Eq.(2.9):

Xy = %1 = —2{wnpX, — wy2xy
The general form of the solution of this differential equation is

x,(t) = e $“nt[ A coswyt + B sin wyt] (3.1)

16



and  x,(t) = —Jw,e [ A coswyt + B sinwyt]
+e~$9nt[ —A wy sinwat + B wg cos wyt] (3.2)
where ), = w, /1 -2
Substitution of the initial conditions x;(0) = x;0, and x,(0) = x,, into Egs.(3.1) and (3.2),

where (x19, x50) lies in Z;, we get:

_ %20 + {wpX10
Wn aY; 1- (2

To find the time when trajectory in Z; reaches Lz, we substitute Egs.(3.1) and (3.2) into the

A= X10» B (3.3)

equation of Lz, namely:
xz(8) = Ax,(0)
This gives:
—Jwne @A coswyt + B sinwyt] + wze 59— A sinwyt + B cos wgt]
= A e $@nt1[A coswyt + B sinw,t]

A — wyzB + {w,A (3.4)
—{wy,B —wyA— AB

= tan wyt =

Substitution of the values of A and B from Eq.(3.3) into Eq.(3.4) gives

Ax19 = X0 — {WpX1p + {WpX1g

tanw,t =
¢ _{xp0 + Pwpxyg W (1=0*)x19 1 <x20 + anx10>
w/l—zz \/1_52 wn\ll_(z
>t= itan_1 (Ax1p = X30)y1 = ¢ (3.5)

Wy X0 + (wnxw)

—{X30 — Wy X190 — /1( W,
This expression implies that all trajectories in Z; reaches L3 at finite time.
The boundaries of Z, are L, and Ls. Furthermore, the trajectories in Z, cannot cross L.

since L represents a trajectory itself, and trajectories cannot cross each other. We now show all

17



trajectories in Z, reach Ls in finite time. To show this we consider the equation of motion of the
system for « = —1, given by Eq.(2.9) :
J.CZ = jél = —Zfa)nfcl + a)nle

The general form of the solution of this differential equation is

X, (t) = D e@nt(-—VI+¢%) 4 | g@nt(=C+/1+%) (3.6)
N ©) = wn(~¢ —T+2) D ent(¢-/15E)
o (=0 + T+ 2) E eont-6+/1%6D 37

Substitution of the initial conditions x;(0) = x;0, and x,(0) = x,, into Egs.(3.6) and (3.7) ,

where (x¢, x50) lies in Z, we get:

Xo0 wnxlo({ +41+ 52) E= Xz0 t (‘)nxlo(z +y1+ (2) (3.8)
2w,/ + (2 ' 20n/1 + 2

To find the time when trajectory in Z, reaches Ls, we substitute Egs.(3.6), and (3.7) into the

D=x10—

equation of Lz, namely:

X, (1) = Axq(8)
This gives:
wn (=0 =J1+3%) D pont(-5-VTF?) | wn (¢ +TH32)E et (~¢+/T737)
=1 (D ewnt(—i—\/1+§2) L E ewnt(—{+\/T§2))

pontceyire _ D= on(=C V14 ¢7)] (39)
Elw (—¢+J1+¢2) —1]

Substitution of the values of D and E from Eq.(48)into Eq.(3.9) gives:

nt(yT3C?) _ _ (x20 + @nx10(¢ = VT F72)) [2 = wa(=¢ — 1+ ¢?)]
(k20 + wariol¢ + T+ 00)) [wn(~¢ + I+ C2) — 1]

18



=t (3.10)

S S (1
anm Q2

where Q; and Q,, which necessarily have the same sign, are

Q1:—<x20+ wnxlo(i—m»[ﬂ—wn(—(—m)]
Q2 =(x20+ wnxlo(€+\/r52))[wn(—é+\/m) —/1]

This expression implies that all trajectories in Z, reaches L3 at finite time.

The line Lz is a sliding surface since all trajectories in Z; and Z, approach L3 — see

Fig.3.3. On Lz we have x, = %; = Ax ; = x;(t) = x,(0) e*t. Therefore, all trajectories on Ls

converge to the origin.

The boundaries of Z5 are L1 and L.. Furthermore, the trajectories in Z5 cannot cross Lo
since L. represent a trajectory itself and trajectories cannot cross each other. Moreover, the
trajectories on L1 enter Z;. We now show all trajectories in Z; reach Li in finite time. The
general form of the solution of the differential equation is described by Egs.(3.6), and (3.7). To
find the time when trajectory in Z; reaches L1, we substitute Eq. (3.6) into the equation of L,
namely:

x; =0
This gives:

D e@nt(-{—V1470) | | pwnt(-{+/1470) _

ot NTFTE) _ _% (3.11)

Substitution of the values of D and E from Eq.(3.8) into Eq.(3.11) gives

eWnt(2y 1+42) — &

Q4
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Figure 3.4. Convergence of VSS trajectories to the originfor( < 1and yu; <A <0

>t = o 1T {2 ] (3.12)

where Q5 and Q,, which necessarily have the same sign, are

Q3 = [xzo + wnX1o (( —J1+ 52)]
Qs = [xzo + wnXio (( +V1+ 52)]

This expression implies that the trajectories in Z5 reaches L; at finite time.

The VSS is a hybrid system that switches between an asymptotically stable system and
unstable system. However, from the above discussion it is clear that the origin of the VSS is
asymptotically stable. The trajectories of the VSS converge to the origin through L, or L3 — see

Fig.3.4.
3.2.2. Performance — Response to Step Input

To investigate the performance of the VSS, we will study the response of the VSS to a step input

and compare its performance with that of the original system for the same step input.
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For the original system, the response to a step input would be described by the following
equation and initial conditions:
mi+cx+kx=u=%k  x(0)=0,%x(0)=0 (3.13)
We choose a step input of variable k such that the steady state value of x is unity. On change of
variable y = (x — 1) and y = x, we get the unforced system:

. ¢k 3 s
y=-——y-— y(0)=-1, y(0)=0 (3.14)

To obtain the same VSS as in Egs.(2.2) and (2.6), we redefine F in Eq.(2.5) as follows:

0 if (§>0andx=>1)or (§<0andx <1)

2k(x — 1) if S(x—1)<0 (3.19)

Fek+|

Substitution of the values of Eq.(55) into Eq.(1) and change of variables y = (x —1) and y =

X, we get:
j= ——y ‘ (0)=-1 y(0) =0 3.16
y=-—y-a—y y0)=-1 y0)= (3.16)
where _{+1 if (§S>0andy=>0)or (§<0andy<0)
e if Sy<o0

Note that Egs.(3.14) and (3.16) are very similar and have the same initial conditions. Also, note
that Eq.(3.16) is identical to Eq.(2.6); therefore, the analysis presented in the section 3.2.1 is

applicable.

The phase portrait of the VSS in Eq.(3.16) has been studied in section 3.2.1. From this
study we know that no trajectories of the VVSS will undergo a phase change of more than 2z, and
therefore, the VSS will not exhibit oscillations for a step input. Consequently, the rise time and
percentage overshoot of the system are not relevant. In the absence of oscillations, we investigate
the performance of the VVSS using the metric of settling time (the time required for the response

curve to reach and stay within 2% of the final value) [1]. To this end, we first consider the time
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needed by the VSS to reach the sliding surface Ls, given by Eq.(3.5), which is now rewritten
using variables y and y. If y, and y, donate the values of y(0) and y(0) respectively, the time
needed to reach L3 is given by :

L (Ayo = yo)y/1 -2

t = —tan Jo ¥ Loy
—{Yo — — (Yot SWnYo
(Yo — Wn Yo ( W, )

Substitution of the values of y, = —1 and y, = 0, gives:

u‘ (3.47)

we substitute the values of y, = —1, y, = 0, and t; described by Eq.(3.16) into Egs.(3.1) and
(3.2), with variables x; and x, replaced by y and y respectively. This gives the values of y and

vy when the VSS reaches the sliding surface La:

_ ¢ .
Yo = € {wnty l— coswgty — ﬁ sin wgt (3.18)
ye = —(w,e $@nt1 I— cos wyt; — sin a)dtll
1-¢2
+eS@nts l wq Sinwgt; — & wq COS wdtll (3.19)
Nrere

where 4= Wy \/1_7{2
To find the time needed for the trajectories on Ls to enter the region |y| < 0.02, we consider the
dynamics on Lz, namely:

y@®) = yse’,  1<0 (3.20)

Substitution of y(t) = —0.02 yields

—0.02 1 —0.02
ot — Z90 :t2=_1n( °°) (3.21)
Vs A Vs
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The settling time of the VSS is given by:

ts =t +t —1t -1
= = —tan
S 1 2 a

AL ] N % In (‘0'02> (3.22)

wn+ A Vs

where y, is defined by Eq.(3.18). For proper comparison of the performance, we
nondimensionalize time using the variable T = w,t. Concurrently, we define A = k u; where «,

0 <k <1, is a constant. The nondimensional settling time is now given by the following

equation:
T, =T+ T (3.23)
where 1 . _1K[{+\/{2+ 1]y1=¢2
T = an
=g 1- (k[¢+J+ 1] (3.24)
= -1 In (—0.02) (3.25)
? k[ {+/2+ 1] Vs '
and where

y, = e~ $% l— cosTy/1— (% — sin /1 — {? (3.26)

_S
Vio

Figure 3.5 shows a comparison of the settling time of the VSS for different value of
k (k =0.1,k = 0.3,k = 0.5,k = 0.9) and the original system. The settling time for the original
system shows several discontinuities in the settling time; this is due to the sensitivity of the
settling time to changes in ¢ [Ogata, 2009]. For k = 0.1, the VSS has better performance than
that of the original system only when ¢ < 0.11. For k = 0.3, the performance is better for a
larger range of {, namely { < 0.39. As we increase k, the performance is better for a larger
range of {: for k = 0.9 the performance is better for { < 0.79. The settling time of the
original system can be reduced by increasing the value of { but for most ¢ values, a VSS can

be found (k can be chosen) that has better performance in terms of the settling time. For
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40 T T T T T T T T

the original system
35 ‘\vSS with x = 0.1 |
VSS withx = 0.3

VSS with x = 0.5
VSS withx = 0.9

011 ’ ;
0.39 :0.79

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.5. Comparison of the settling times of the VSS and the original system.
example, for { = 0.2, the settling time for the original system is 7, = 19.55, whereas it is
equal to 32.13,10.87,6.72, and 4.0 for VSS with k = 0.1,0.3,0.5, and 0.9 respectively. It is
clear that the VSS improves the settling time for { = 0.2 by 44.4% when k = 0.3, by 65,6%
when k¥ = 0.5, and by 79.1% when k = 0.9. The best performance is achieved by the VSS
when k¥ = 1 or 1 — u,. However, the maximum value of k can be chosen is less than unity
(0.95, for example) because of the finite time needed to switching of o from +1to —1. If k = 1
the area of Z> in Fig.3.3 is almost zero and there will be no switching in this zone and the
switching will be in Zs. Figure 3.5 also indicates that there is no difference in the settling time of
the original system and the VSS with k¥ = 0.9 for { > 0.9. This is because the trajectories of the

VSS enters the region |y| < 0.02 before it reaches the sliding surface Ls. This implies that the
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VSS has no advantage over the original system when the system is under-damped and has values

of ¢ close to unity.

It is important to note that y; = p;(¢) and p, decreases as ( increases. If A = x
but A is constant, we have a situation where k decreases as ( increases. Since the
performance is better (settling time is smaller) for larger values of k, a constant value of A
results in poorer performance for large values of ¢. This is shown with the help of Fig.3.6.
Note ¢ and p1 are plotted along x-axis in the figure and it can be seen that the settling time

7, for VSS increases as ¢ increases.

25
-1.1 -1.21 -1.34 -1.47 -1.61 -1.76 -1.92 -2.08 -2.24
T I T T T

Vss withh =-0.7

55 Vss with ) =-0.8

Vss withA =-0.9

45
Vss withh =-1.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.6. Comparison of the settling times of the VVSS and the original system.
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In this section, we investigated the performance of the VSS with switched stiffness
for a step input for different values of sliding surface slope A. The VSS has smaller settling
time than that of the original mass-spring-damper system for a range of { values. For
higher values of 4 the settling time of the VSS decreases and the best performance is achieved

when 1 — ;.

3.2.3. Performance — Speed of Convergence

In last section, we investigated the performance of the VSS for a step input. This problem
was recast as an initial value problem with the initial conditions at (—1,0) in the phase
plane. Since (—1,0) lies in Z;, we now compare the performance of the VSS with switched
stiffness and the original system for arbitrary initial conditions in Z» and Zs. For an initial
conditions in Z> (see Fig.3.3), the time needed by the VSS to reaches the sliding surface Lz (x, =
A x;) has been studied in section 3.2.1, and was described by Eq.(3.10). The values of x; and
x, when the VSS reaches the sliding surface Lz has been studied in section 3.2.1, and was
described by EQ.(3.6), and (3.7). The time needed for the trajectories on Lz to enter the
region |x;| < 0.02 has been studied in section 3.2.1, and was described by Eq.(3.21). Using
these relations, the settling time of the VVSS can be shown to be:

Ts =171+ 1T, (3.27)

where 1

T4 = Wuty = 2—,1_—52
[—x20 = x10(¢ =1+ [T+ 1+ 32) = w({ + Y1+ 2)]

] 3.28

! [20 + X10(C + 1+ )[(-¢+ 1+ 32) +x({+ Y1+ 32)] (3.28)

Ty = Wty = 1 In (_0'02) (3.29)
S F NI X1 '
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where xpg = D eT (14D 4 | oTi(=5+/1407) (3.30)

and X0+ x({+V1+ ) gt x10(¢ +/1+2)

D= x
10 21+ 2 21+ 2

where x;, and x,, are the initials conditions in Z. Figure 3.7 shows a comparison of the settling
time of the VSS for different value of x (x = 0.1,k = 0.3,k = 0.5,k = 0.9) and the original
system for initial conditions in Z». The initial conditions were arbitrarily chosen as x;, = —1,
and x,, = —0.95 ;. For k = 0.1, the VSS has better performance than that of the original
system only when ¢ < 0.18. For k = 0.3, the performance is better for a larger range of ¢,
namely { < 0.68. As we increase k, the performance is better for a larger range of {: for k =

0.5 and 0.9, the performance is better for all value of {. The settling time of the original

45 T T T T T T T T

40 .

35 &

30 ¢ original system

VSS with ¥ =0.1
55k ///VSS with  =0.3 il
VSS with x = 0.5
= VSS with k =0.9
20

15

10

0.18
8.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.7. Comparison of the settling times of the VSS and the original system

27



system can be reduced by increasing the value of { but for most ¢ values, a VSS can be found
(x can be chosen) that has better performance in terms of the settling time. For example,
for { = 0.2, the settling time for the original system is 74, = 19.29, whereas it is equal to
22.13, 8.48, 5.59, and 3.55 for VSS with k = 0.1, 0.3, 0.5, and 0.9 respectively. It is clear that
the VSS improves the settling time for { = 0.2 by 56% when « = 0.3, by 70.66% when k =
0.5, and by 81.58% when k = 0.9. The best performance is achieved by the VSS when k — 1

ord - u.

For an initial conditions in Z3 (see Fig.3.3), the time needed by the VSS to reaches L1 has
been studied in section 3.2.1, and was described by Eq.(3.12). The values of x; and x, when the
VSS reach the sliding surface L1 (x; = 0) has been studied in section 3.2.1, and was described
by Eq.(3.6), and (3.7). The time needed by the VSS to reaches the sliding surface Lz (x, = 4 x4)
has been studied in section 3.2.1, and was described by Eq.(3.5). The values of x; and x, when
the VSS reach the sliding surface L3 has been studied in section 3.2.1, and was described by
Egs.(3.1) and (3.2). The time needed for the trajectories on Ls to enter the region |x;| < 0.02 has
been studied in section 3.2.1, and was described by Eq.(3.21). Using these relations, the settling

time of the VSS can be shown to be:

Ty =T+ Ty + T3 (3:31)
where o 1B x10(¢ = 1+ 32)] (3.32)
241+ 2 [x20 + x10(5+\/1+€2)]
_ _ 1 ) V1-02 (3.33)
T, = wpty — 2 tan L ~ K(f e (2)

- —1 " (0.02> 334

T3 = Wptz = .
R TRV Y R o
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and X
X1 = e S@nt2 lﬁ siny/1 — erzl (3.35)

where Xy = (—( _ \/TCZ) D erl(—q—JTzZ) (3.36)
+ (=0 + T+ ) E enneH/1+eD

where b Xp0 + wpx10(¢ ++/1+(2) Y + wpx10(0 ++/1+ 3?)
= Xip — , =
0 20py/1 + 2 2opy1+¢2

where x;, and x,, are the initials conditions in Zs. Figure 3.8 shows a comparison of the settling

time of the VSS for different value of x (k = 0.1,k = 0.3,k = 0.5,k = 0.9) and the original
system for initial conditions in Zs. The initial conditions were arbitrarily chosen as x;, = —1,

and x,, = —1.1 y;. For k = 0.1, the VSS has better performance than that of the original

45 T T T T T T T T

40 -

35 =

30

\ original system

25 VSS with ¥ =0.1 i
VSS with x =0.3
VSS with x =0.5
0
= 20 VSS with ¥k =0.9
15+
\‘1
10F |
e S
I h-?:b_
5| 4
0.16 0.48 0.71
\, I | N L A | !
8.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.8. Comparison between the settling time of the VSS and the original system
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system only when ¢ < 0.16. For k¥ = 0.3, the performance is better for a larger range of ¢,
namely { < 0.48. For k = 0.5, the performance is better for a larger range of ¢, namely { <
0.71. As we increase k, the performance is better for a larger range of {: for k = 0.9, the
performance is better for all value of {. The settling time of the original system can be
reduced by increasing the value of ¢ but for most ¢ values, a VSS can be found (k can be
chosen) that has better performance in terms of the settling time. For example, for { = 0.2,
the settling time for the original system is t, =21.67, whereas it is equal to
24.87,10.32,7.51, and 5.78 for VSS with k¥ = 0.1,0.3,0.5, and 0.9 respectively. It is clear
that the VSS improves the settling time for { = 0.2 by 52.34% when k = 0.3, by 65.31%
when k = 0.5, and by 73.33% when k = 0.9. The best performance is achieved by the VSS

when k - 1or A - y;.

In this section, we investigated the performance of the VSS with switched stiffness
for arbitrary initial conditions in Z> and Z3, and for different values of sliding surface slope
A. The VSS has a smaller settling time than that of the original mass-spring-damper system
for a range of { values. For higher value of 1 the settling time of the VSS decreases and with

the best performance is achieved by the VSS when A4 — y;.

33.CaseB:A<u; <0

3.3.1. Stability

The VSS is a hybrid system that switches between an asymptotically stable system, the
phase portrait of which is shown in Fig.3.9, and an unstable system whose phase portrait is
shown in Fig.3.10. The union of these phase portraits is shown in Fig.3.11. To investigate the
stability of the equilibrium of the VSS, the phase plane is divided into two zones, namely:
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Figure 3.10. Phase portrait of the Variable Structure System (VSS) for a = —1
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Figure 3.11. Phase portrait of the Variable Structure System (VSS) for A > pu,
Z; = {x € R?|Sx; > 0}
Z, = {x € R?|xy(x, — 1 x;) < 0}
The two zones are separated by the following two lines:
Liix; =0
Lo: x, =Ax;

We investigate the system trajectories in these zones and on these lines next.

To study the behavior of the trajectories on L1, we investigate the direction of the vector field on
L1, For x, > 0 (and x; = 0), we have the following equations and vector field:
J'Cl == xz > 0

: I~

X, = ——x, <0
2 m X2
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Therefore, the trajectories enter Z,. For x, < 0 (and x; = 0), we have the following equations
and vector field:

561=x2 <0

|

: <%, >0
X, = ——X
2 m 2
Therefore, all trajectories on L1 will enter Z;.

The boundaries of Z; are Li; and L. We have already shown that trajectories on L;
enter Z,. We now show all trajectories in Z; reaches L. in finite time. The time when the
trajectory in Z; reaches L has been studied in section 3.2.1, and was described by Eq.(3.5). For

convenience, it is provided below:

1 1 (Ax19 — X20)y/1— {2

t =—+tan"
Wq X20 + {wnX1o
—{X20 — Wp X109 — /1( W, )

This expression implies that all trajectories in Z; reaches L at finite time.

The boundaries of Z, are L, and L1. We have already shown that the trajectories on L:
enter Z,. We now show that all trajectories in Z, reaches L in finite time. The time when a
trajectory in Z, reaches L has been studied in section 3.2.1, and was described by Eq.(3.12). For

convenience, it is provided below:

;= 1 ln [XZO + (A)nxlo(z — 1 + (2)]
20py/1+ 32 |[x20 + wpx10(¢ +/1+32)]

This expression implies that all trajectories in Z, reaches L, at finite time.

From the above discussion it is clear that the trajectories of the VSS move alternately

between zones Z; and Z, by crossing lines L, and Li. We now show that all these trajectories
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converge to the origin. We consider the Lyapunov Function candidate given below, which is
equal to the total energy of the mass-spring-damper:

1 1
szkxlz+ me% (3.37)

The derivative of V with respect to time gives:

V= kx % + mx,x (3.38)

In Z;, where ¢ = 1, we have
V=kx x,+mx, %,
= kx;x;—cx?—kx x,
=—cx5 <0 (3.39)
In Z,, where « = —1, we have
V=1Ikx x,+mx,x,

= kx;x,—cx3+kx;x,

2 kx; x, —cx?
In Z,, x, < Ax; when x; > 0, and x, > A x; when x; < 0. Therefore
where V< 2kAx?—cx? whered<0
V <0 forall (%1, x2) # (0,0) (3.40)
From the above discussion, we have V < 0 in the entire domain. It is negative definite in Z, but
negative semidefinite in Z;. Using LaSalle’s theorem [Khalil, 2009], we can show that in Z;
V=0=2x=0=2%=0=x,=0
Furthermore, V — oo as x — oo. Therefore, the origin of the VSS is globally asymptotically

stable.

3.3.2. Performance — Response to Step Input
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To investigate the performance of the VSS, we will study the response of the VSS to a step input

and compare its performance with that of the original system for the same step input.

For the original system, the response to a step input has been studied in section 3.2.1, and

was described in Eq.(3.14). For convenience, it is provided below:

c k
= ——j——y 0) = —1, 2(0) = 0 (3_41)
y —y——y ¥ y(0)
The response of the VSS to the same step input was described in Eq.(3.16). For convenience, it is

provided below:

c k
L_ ¢ K _ O — (3.42)
y —y—a—y y0=-1 y0)=0
where a—{+1 if (§S>0andy=>0)or (§<0andy<0)
-1 if Sy<o0

Note that Egs.(3.41) and (3.42) are very similar and have the same initial conditions. Also, note
that Eq.(3.42) is identical to Eq.(2.6); therefore, all the analysis presented in section 3.3.1 will be

applicable.

The phase portrait of the VSS in Eq.(3.42) has been studied in section 3.3.1. From this
study we know that the trajectories of the system will spiral to the origin. Unlike the previous
case, it is not possible to claim that the phase change of the trajectories will be less than 2m. In
other words, a step input will result in oscillation, similar to the original system. Therefore, the
performance of the original system and the VSS can be compared by on the basis of:

(@) the rise time t,. (the time required for the response to reach the final value for the first time)
[Ogata, 2009],
(b) the maximum percentage of overshoot M,, (the maximum peak value of the response of the

VSS measured from the final value) [Ogata, 2009], and
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(c) the settling time.

The rise time and the maximum percentage of overshoot can be calculated analytically
but the same is not true for the settling time. To calculate the rise time and the maximum
percentage of overshoot, we define three points A, B, and C on the phase portrait of the VSS,
shown in Fig 3.12. These points are also shown in Fig.3.13, which is a plot of the time response
of the VSS to the step input. Consider the time needed by the VSS to reach point A; this has been
studied in section 3.2.1, and was described by Eq.(3.5). Using variables y and y we can write it

as follows:

£, = — tan1 (Ayo = Jo)y1 = & UNY ek Sl B P
A= on . o + (W = o, o+ 27 |
@a —()’O—wn}’o—l(y—o (jn ”yo) Wa Wy + A4

where y, = —1 and y, = 0 are the initial conditions. The values of y and y at A has been

'_(,'
L

B
\ y
C

L,

Figure 3.12. Step response in the phase plane of the Variable Structure System (VSS) for A < p4
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studied in section 3.2.1, and was described by Eq.(3.1), and (3.2). For convenience, it is provided

below:
ya= e $“ntaA[ A coswyty + B sin wyt,] (3.44)
ya4 = —(wpe SPntA[ A coswyt, + B sinwgt,]
+ e S9nta[ —A wy sinwgty + B wg cos wyty] (3.45)

¢

where ), = w,J1-¢?, A= -1, B=— —

The time needed for the VVSS to move from point A to point B has been studied in section 3.2.1,

and was described by Eq.(3.12), For convenience, it is provided below:
A 1 In [5’A+ wn)’A((—\/l'*‘(z)]
B 20T+ |[a+ wpya(Q+V1+32)] (3.46)

where y,, and y, are the initial conditions and given by Eqgs.(3.44) and (3.45). The values of y

0.4 .

-0.2 f

06}

0
Time

Figure 3.13. Step response of the Variable Structure System (VSS) for A < p,
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and y at B has been studied in section 3.2.1, and was described by Eq.(3.4) and (3.7). For

convenience, it is provided below:

E

an\/ 1+ {2 zwn\/ 1+ {2

To find the time needed for the VSS to move from point B to point C, we substitute Eq.(3.2) into

=t (3.47)
I = an (=¢ =T 37) D e@ntas(-6-/137)
+ wn (—Z + \/T(Z) E e®@ntap(=¢+/1+¢%) (3.48)
wee v ewaG e [TED) it eoui+JTTD)

D=y,

the equation of y-axis where point C lie on this axis, namely:
y=0
This gives:
—{wpe $“nt[ A coswyt + B sinw,t]
+ e $9nt[ —A wysinwgt + B wg cos wgt] = 0

—{wpA + Bwy
{w,B + wzA

= tanwgyt = (3.49)

Substitution of the values of A and B from Eq.(3.3) into Eq.(3.49) gives:

J1-32
¢
L [v 1-¢ 2] (3.50)

== tBC = w_tan_ {
d

= tan (Udt =

Substitution of the value of tz. from Eq.(3.50) into Egs.(3.1) and (3.2) gives the values of y and

y at C, namely:

_ Ve .

— {wntpe |—— 22 — 72

YVe= e [ sinwy/1—7¢ tBCl (3.51)
wn+/ 1 — 2
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Ye=0 (3.52)

The rise time of the VSS can now be calculated as follows:

tT = tA + tAB
= ! In [yA * wn}’A(f —Vit 62)] + itan_1 —_A 1-¢ (3.53)
20,31+ 32 |74+ 0uya((+1+32)]] @a wp+ A¢

where y,, and y, are defined by EQs.(3.44) and (3.45) respectively. The maximum percent

overshoot of the VSS depend on tz and is given by:

sin wp+/1 — {2ty

M

, = e Swnlsc l x 100

VB
wny/1— (2

= e(Jl_—L(Ztan_l[ 15(2]) y_B] x 100 (3.54)

Wn
where yp is defined by EQ.(3.48). For proper comparison of the performance, we
nondimensionalize the time using the variable T = w,t. Concurrently, we define A = p u; where
p = 1is a constant. The nondimensional rise time and the maximum percentage overshoot are

given by the following equations respectively:

T, = wpt, = ! tan‘lp[(-l_\/zz-l_l]\/l_(2
T 1= 1-(pl¢+J2+ 1]
1 1 [5’A+ YA((—\/1+(2)]
n|& (3.55)
0 pan-1/1=82
My= e/ % %100 (3:56)

where yu= e $%a [A cosy/1—7{%t, + B siny/1 — CZTA] (3.57)
yu = —(e 5% [A cosy/1— 7?1, + B siny/1— CZdTA]
+4/1 —2e=C7a [ —A siny/1 —{?t4+ B cos/1— CZTA]
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(3.58)
yg = (_{ —J1+ (2) D eTAB(—f—\/T@) (3.59)

+ (_( +J1+ (2) E eTaB(=3+J1+{?)

T —;tan_ p[(+\/(2+ 1]\/1_52 (3.60)
A — .
N P Y IR
I N | 7S 7 (SRR D) 361
2 1+(2 [yA+ ya(C+1+2)] '
ic

Doy, YatyaCHVIHE) o Tat a4 V1)

A 21+ 2 ’ 21+ 2

The settling time for the VSS is the time needed for the VSS trajectory to enter the region
|y| < 0.02. This cannot be calculate analytically because the VSS may enter the region |y| <

0.02 in Z; orin Z,. Therefore, we calculate the settling time numerically.

Figure 3.14 shows a comparison of the rise times of the VSS for different values of p
(p=1.1,p =15, p =2, p=0>5) and the original system. It is clear that the original system has
smaller rise time than the VSS. For example, for { = 0.2, the rise time for the original system is
7, = 1.2, whereas it is equal to 2.5,1.97,1.87,and 1.81 for the VSS with p = 1.1,1.5,2, and 5
respectively. It is clear that the rise time for the VSS increases for { = 0.2 by 106.9% when p =
1.1, by 63.9% when p = 1.5, by 55% when p = 2, and by 50.2% when p = 5. As p - o or

A — oo the rise time of the VSS tend to be equal to that of the original system.
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Figure 3.14. Comparison of the rise times of the VSS and original system

Figure 3.15 shows a comparison of the maximum percentage of overshoots of the VSS
for different values of (p = 1.1, p = 1.5, p = 2, p = 5) and the original system. It is clear that
the VSS has lower percentage of overshoot than the original system. For example, for { = 0.2,
the percentage of overshoot for the original system is M, = 52.6%, whereas it is equal to
15.67%, 34.04%, 42.43%, and 51.13% for VSS with p = 1.1,1.5,2, and 5 respectively. It is
clear that the VSS reduces the percentage of overshoot for { = 0.2 by 70.23% when p = 1.1, by
35.34% when p = 1.5, by 19.4% when p = 2, and by 2.88% when p = 5. The best percentage

of overshoot is achieved by the VSS when p = 1 or 1 — ;.

Figure 3.16 shows a comparison of the settling time of the VSS for different value of p (p

=11, p =15, p =2, p =5) and the original system. It is clear that the VSS has better settling
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Figure 3.15. Comparison of the percentage of overshoots of the VSS and original system

time than the original system. For example, for { = 0.2, the settling time for the original
system is 7, = 19.55, whereas it is equal to 8.43,11.24,14.03, and 17.08 for VSS with
p=1.1, 1.5, 2, and 5 respectively. It is clear that the VSS reduces the settling time for { = 0.2
by 56.97% when p = 1.1, by 42.61% when p = 1.5, by 28.36% when p = 2, and by 12.83%

when p = 5. The best performance is achieved by the VSS when p —» 1 or 4 - p;.

In this section, we investigated the performance of the VSS with switched stiffness
for a step input for different values of sliding surface slope A. The original system has a
smaller rise time than the VSS. on the other hand, the VSS has a smaller maximum percentage
of overshoot and a smaller settling time than that of the original system. Therefore, the VSS
improves the performance of the mass-spring-damper system, the best performance achieved
when A — y;.
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Figure 3.16. Comparison of the settling time of the VSS and original system

3.3.3. Performance — Speed of Convergence

In last section, we investigated the performance of the VSS for a step input. This
problem was recast as an initial value problem with the initial conditions at (=1, 0) in the
phase plane. Since (—1,0) lies in Z1, we now compare the performance of the VSS with
switched stiffness and the original system for arbitrary initial conditions in Z>. For initial
conditions in Z» (see Fig.3.17), the performance of the original system and the VSS can be
compared by computing:

(@) the rise time t,. ,
(b) the maximum percentage of overshoot M,,,

(c) the settling time.
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The rise time and the maximum percentage of overshoot can be calculated analytically
but the same is not true for the settling time. To calculate the rise time and maximum percentage
of overshoot, we define two points A and B on the phase portrait of the VSS, shown in Fig.3.17.
These points are also shown in Fig.3.18, which is a plot of the time response of the VSS to the
step input. Consider the time needed by the VSS to reach point B; this B has been studied in
section 3.2.1, and was described by Eq.(3.12). The values of x; and x, at A has been studied in
section 3.2.1, and was described by Eq.(3.6) and (3.7). To find the time needed for the VSS to
move from point A to point B, we substitute Eq.(3.2) into the equation of y-axis where point B
lies on this axis, namely:

x, =0
This gives

—{wpe $“nt[ A coswyt + B sinw,t]

+ e~ $“nt[ —A wysinwyt + B wy cos wyt] = 0

ot t_—(wnA+de
an wyt = 0B+ A (3.62)
Substitution of the values of A and B from Eq.(3.3) into Eq.(3.62) gives:
J1-22
= tan (Udt = (
1 1—¢2
__ tan-1 (3.63)
b= o [T

Substitution of the value of t,5 into Egs.(3.1), and (3.2) gives the values of x; and x, at B,
namely:

y 3.64
X1p = e @nlap I$ sinwy/1 — {?typ ( )
wpy 1 — C2
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Figure 3.17. Step response in the Phase plane for the Variable Structure System (VSS) for A < u 4
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Figure 3.18. Step response for the Variable Structure System (VSS) for A < p 4
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Xop = 0 (365)

The rise time of the VSS can now be calculated as follows:

tr =ty = L | L wnX10(¢ =1+ ¢2)]
T A anm [X20 + a)nxlo(( +\/T52)]

where x5, and x,, are the initial conditions. The maximum percent overshoot of the VSS

(3.66)

depend on tg and is given by:

Mp — e_zwntAB

sin w1 — (Ptyp

x 100

X24
wp/1 —C?

= e< ;fiztan_l[ 15_62) xﬁ] x 100 (3.67)
Wn

where x,, is defined by Eq.(3.7). For proper comparison of the performance, we
nondimensionalize the time using the variable T = w,t. Concurrently, we define A = p u; where
p = 1is aconstant. The nondimensional rise time and the maximum percent overshoot are given

by the following equations respectively:

1 N [x20 + x10(¢ — /1 + 7?)]

Ty = Wpty = 1 3.68
" 2 1+CZ [X20+ X10(6+\/1+€2)] ( )

=< tan‘l\/l_—(2
M, = eV1-¢2 ¢ X4 X 100 (3.69)

where
Xpq = (_5_ \/TCZ) D %a(=4-V1+7%) +(_(+ W)Eem—em) (3.70)

o 1 n [xzo + xlo(f—wll +ZZ)]
=
241+ 32 |[xz0 + x10(¢ + /1 +72)]

x20+ x10(€+\/1+€2) szZ0+ xlo(€+w/1+(2)

2,1+ 2 2,1+ 2

(3.71)

szlo_
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where x;, and x,, are the initials conditions in Z,. The settling time of the VSS is the time
needed for the VSS to enter the region |x;| < 0.02. There is no way to calculate the settling time
analytically, because the VSS may enter the region |x;| < 0.02 in Z; or Z,. Therefore we

calculate the settling time numerically.

Figure 3.19 shows a comparison between the rise time of the VSS with p = 1.1 and the
original system for initial conditions in Z,. The initial conditions were arbitrarily chosen as
X10 = —1, and x,, = 2.88. It is clear that the original system has better rise time than the VSS.
For example, for ¢ = 0.2, the rise time for the original system is 7, = 0.35, whereas it is equal to
0.39 for the VSS with p = 1.1. It is clear that the VSS increases the rise time for { = 0.2 by
9.8%. As p » © or A — oo, the rise time of the VSS tend to be equal to that of the original

system.

-
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Figure 3.19. The rise time for VSS and original system
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Figure 3.20 shows a comparison between the percentage of overshoot of the VSS with
p = 1.1 and the original system for initial conditions in Z,. The initial conditions were arbitrarily
chosen as x;, = —1, and x,, = 2.88. It is clear that the VSS has lower percentage of overshoot
than the original system. For example, for { = 0.2, the percentage of overshoot for the original
system is M,, = 200.8%, whereas it is equal to 173.2% for VSS with p = 1.1. It is clear that the
VSS reduces the percentage of overshoot for ¢ = 0.2 by 13.75% when p = 1.1. The best

percentage of overshoot is achieved by the VSS when p - 1 or A — y;.

Figure 3.21 shows a comparison between the settling time of the VSS with p = 1.1 and
the original system for initial conditions in Z. The initial conditions were arbitrarily chosen as
X10 = —1, and x,, = 2.88. It is clear that the VSS has lower settling time than the original

system. For example, for { = 0.2, the settling time for the original system is t; = 24.69,

250 T T T T T T T T
200 —
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150 ) !
'g VSS with p= 1.1
G
o
o
= 100- =
S0F .
| 1 | 1 | 1 |
8.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

¢

Figure 3.20. The percentage of overshoot for VSS and original system
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whereas it is equal to 10.75, for the VSS. It is clear that the VSS reduces the settling time for

¢ = 0.2 by 56.45%. The best performance is achieved by the VSS when p = 1 or 1 — y;.

In this section, we investigated the performance of the VSS with switched stiffness
for arbitrary initial conditions in Z>. The original system has a smaller rise time than the VSS.
on the other hand, the VSS has a smaller maximum percentage of overshoot and a smaller
settling time than that of the original system. Therefore, the VSS improves the performance

of the mass-spring-damper system, with the best performance achieved when 4 — ;.

3.4. Conclusion

In this Chapter, we investigated the behavior of the VSS with switched stiffness. For

Case A (u; < A < 0), the VSS is asymptotically stable and no trajectories of the VSS undergo a
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Figure 3.21. The settling times of VSS and original system
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phase change of more than 2x; therefore, the VSS does not exhibit oscillations. Also, the VSS
has a smaller settling time than that of the original system for a range of ¢ values. As we increase
A, the settling time of the VSS decreases for a larger range of { values. Therefore, the VSS
improve the performance for the mass-spring-damper system. For Case B (A < u; < 0), the VSS
is asymptotically stable and the VSS exhibits oscillations. The original system has a smaller rise
time than the VVSS. on the other hand, the VSS has a smaller maximum percentage of overshoot
and a smaller settling time than that of the original system. Therefore, the VSS will improve
the performance of the mass-spring-damper system. For both cases, the best performance is

achieved by the VSS when 4 - ;.
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Chapter 4

Variable Structure System with Switched

Stiffness and Damping

4.1. Phase Portrait

In this chapter, we investigate the behavior of the VSS with switched stiffness and damping. The
phase portrait of the VSS is the union of the phase portrait of the first system (a@ = +1) in the
region (S > 0andx = 0) or (S < 0and x < 0), and the phase portrait of the second system
(¢ = —1) in the region Sx; < 0. The phase portrait of the first system (a = +1) in the region
(§>0andx >0) or (§<0andx <0) is shown in Fig.4.1 and the phase portrait of the
second system (a = —1) in the region Sx; < 0 is shown in Fig.4.2. The union of these phase

portraits is shown in Fig.4.3.

For the phase portrait in Fig.4.3, the slope of the line S =0 or x, = 4 x; is shown to be
greater than the slope of the line x, = u;x4, 1.e., A > uy. This is not necessarily true always, and
therefore we need to additionally investigate the case where A < u;. These two cases,

namely, (pu; < A <0),and (A < uy < 0), are investigated in sections 4.2 and 4.3.
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Figure 4.1. Phase portrait of the Variable Structure System (VSS) for a« = +1

Xz
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%

Figure 4.2. Phase portrait of the Variable Structure System (VSS) for a = —1
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Figure 4.3. Phase portrait of the Variable Structure System (VSS) for A > u  is the union of the
phase portrait in Figs.4.1 and 4.2

42.Case A: 4y <A <0

4.2.1. Stability

The VSS is a hybrid system that switches between an asymptotically stable system, the phase
portrait of which is shown in Fig.4.1, and an unstable system whose phase portrait is shown in
Fig.4.2. The union of these phase portraits is shown in Fig.4.3. To investigate the stability of the
equilibrium of the VSS, the phase plane is divided into three zones, namely:

Z, = {x € R%|Sx; > 0}

Z, = {x € R?*|(xz — p1x1) (% — 1 ;) < 0}

Z3 = {x € R?|xy(x; — uyx1) < 0}

The three zones are separated by the following three lines:
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Ll: x1 = 0
Lot %3 = pyx4
L3: x2 = A X1

We investigate the system trajectories in these zones and on these lines next.

To study the behavior of the trajectories on L1, we investigate the direction of the vector

field on L1 For x, > 0 (and x; = 0),we have the following equations and vector field:

F

Therefore, the trajectories enter Z;. For x, < 0 (and x; = 0), we have the following equations

X1=x2 >0

c
Xo= ——x, <0
2 m2

and vector field:

561=x2 <0

. C = ’
x2 - __xz

m

Therefore, all trajectories on L1 will enter Z;.

The line L is the stable eigenvector of the second system where a = —1 — see
Egs.(2.35) and (2.37). On L, we havex, = x; = pyx; = x(t) = x,(0) ef1t, pu; < 0.

Therefore, all trajectories on L, converge to the origin.

The boundaries of Z; are L1 and Ls. We have already shown that trajectories on L;
enter Z,. We now show all trajectories in Z; reach Ls in finite time. To show this we consider the

equation of motion of the system for « = 1, given by Eq.(2.28):

J'CZ = 5&1 = _Z{wnxl - wnle

The general form of the solution of this differential equation is:
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x;(t) = e $“nt[ A cosw,t + B sin wgt] (4.1)
and  x,(t) = —(w,e $®n[ A coswyt + B sin wyt]
+e~$9nt[ —A wy sinwat + B wg cos wyt] 4.2)
where ), = w,J1-22
Substitution of the initial conditions x;(0) = x;0, and x,(0) = x,, into Egs.(4.1) and (4.2),
where (x19, x50) lies in Z;, we get:

_ %20 + {WnX1o (4.3)

wn\jl_qz

To find the time when trajectory in Z; reaches Lz, we substitute Eqgs.(4.1) and (4.2) into the

A=x10, B

equation of Lz, namely:
x2(8) = Ax,(0)
This gives:
—{w,e $®nt[A coswyt + B sinwyt] + wze 9t [— A sinwyt + B cos w,t]
= Ae $¥nt1[A cos wyt + B sinw,t]

A — wy4B + {w,A (4.4)
—{w,B — wzA— AB

= tanwgt =

Substitution of the values of A and B from Eq.(4.3) into Eq.(4.4) gives:

Ax19 — X209 — {WpXx19 + {WpXqg
QX0 + Pwpxyg Wy (1=0%)x19 1 <x20 + (a)nxm)

iy oo

tan wyt =

1 1 (Ax19 — Xz0)y/ 1 — (2 (4.5)

=>t=—tan"
‘ Wgq ta X0 + {WnX19
—{Xp0 — Wy X19 — A - o,

This expression implies that all trajectories in Z; reach Ls at finite time.
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The boundaries of Z, are L, and Ls. Furthermore, the trajectories in Z, cannot cross L.
since L represents a trajectory itself, and trajectories cannot cross each other. We now show all
trajectories in Z, reach Ls in finite time. To show this we consider the equation of motion of the

system for « = —1, given by Eq.(2.28)

XZ = jél = Zfa)nfcl + a)nle

The general form of the solution of this differential equation is

%1 () = D e@nt@13D) | p gunt /1409 (4.6)
M 0 = o (C - W) D e@nt(¢—V1+?)
oy ({+ T+ 2) E e@nt@H/1+ .

Substitution of the initial conditions x;(0) = x4, and x,(0) = x,, into Eqgs.(4.6) and (4.7) ,

where (x4, x50) lies in Z, we get:

X20 — wnxm(( —y1+ 52) E = X20 — wnxlo(( —J1+t (2) (4.8)
2wp/1+ ¢ , 2wpy1+¢?

To find the time when trajectory in Z, reaches Ls, we substitute Eqgs.(4.6), and (4.7) into the

D= xlo_

equation of Lz, namely:
x2(t) = Ax1(¢)

This gives:

0 (¢~ VTH32) D e 1) oy, (¢4 T4 02) E et/

=1 (D ewnt(i—\/ré'z) + E ewnt(€'+\/r<'2))

St/ _ DA on(( —V1+¢2) ] (4.9)
Elw,(+1+¢%) — 2]

Substitution of the values of D and E from Eq.(4.8) into Eq.(4.9) gives:
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e@nt(2V1+{?) — &
Q2

=t

20,1/1+72 102 (4.10)

where Q; and Q,, which necessarily have the same sign, are:

Q1:—<x20— wn%O(("‘W))[A—wn((—m)]
sz(xzo_ wnxlo(é—\/riz))[wn(é+m) —/1]

This expression implies that all trajectories in Z, reach Ls at finite time.

The line Lz is a sliding surface since all trajectories in Z; and Z, approach L3 — see
Fig.4.3. On Lz we have x, = %; = Ax ; = x;(t) = x,(0) e*t. Therefore, all trajectories on Ls

converge to the origin.

The boundaries of Z5 are L1 and L.. Furthermore, the trajectories in Z5 cannot cross Lo
since L» represent a trajectory itself and trajectories cannot cross each other. Moreover, the
trajectories on L1 enter Z;. We now show all trajectories in Z5 reach Li in finite time. The
general form of the solution of the differential equation is described by Eqgs.(4.6), and (4.7). To
find the time when trajectory in Z; reaches L1, we substitute Eq. (4.6) into the equation of L,
namely:

x; =0
This gives:

D e@nt@—V1+{?3) 4 | pont(+/1+{3) —
pont@1778 — _ 2 (4.11)
A :
Substitution of the values of D and E from Eq.(4.8) into Eq.(4.11) gives:
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ewnt(21/1+{2) — &
Q4

=t

L [&] 4.12)
20,1/1+ 72 Q4

where Q5 and Q,, which necessarily have the same sign, are:

Qs = [x20 — WpX1o (( +V1+ (2)]
Q4 = [X20 — WnX1o (( —J1+ (2)]

This expression implies that the trajectories in Z5 reach L; at finite time.

The VSS is a hybrid system that switches between an asymptotically stable system and
unstable system. However, from the above discussion it is clear that the origin of the VSS is
asymptotically stable. The trajectories of the VSS converge to the origin through L or L3 — see

Fig.4.4.
4.2.2. Performance — Response to Step Input

To investigate the performance of the VSS, we will study the response of the VSS to a step input

and compare its performance with that of the original system for the same step input.

. G -

Figure 4.4. Convergence of VSS trajectories to the originfor{ < 1and y; <A <0
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For the original system, the response to a step input has been studied in section 3.2.1, and
was described in Eq.(3.14). For convenience, it is provided below:

c k
L_ .k _ 4 Sy —
y —y——y 0 ,  y(0)=0 (4.13)

To obtain the same VSS as in Egs.(2.21) and (2.25), we redefine F in Eq.(2.24) as follows:

0 if (§S>0andx=>1)or (§S<0Oandx <1)

2k(x —1) +2cx if S(x—1)<0 (4.14)

F=k+

Substitution of the values of Eq.(4.14) into Eq.(2.23) and change of variables y = (x — 1) and

y = x, We get:
= —alj—ar 0 =-1 y(0)=0 4.15
y=-a—y—a—y y0=-1 y0)= (4.15)
where {+1 if (S>0andy>=0)or (§<0andy<0)
a = .
-1 if Sy<o

Note that Egs.(4.13) and (4.15) are very similar and have the same initial conditions. Also, note
that Eq.(4.15) is identical to Eq.(2.25); therefore, the analysis presented in the section 4.2.1 is

applicable.

The phase portrait of the VSS in Eq.(4.15) has already been studied in section 4.2.1.
From this study we know that no trajectories of the system will undergo a phase change of more
than 2x, and therefore, the VSS will not exhibit oscillations for a step input. Consequently, the
rise time and percentage overshoot of the system are not relevant. In the absence of oscillations,
we investigate the performance of the VSS using the metric of settling time. To this end, we first
consider the time needed by the VSS to reach the sliding surface L3, given by Eq.(4.5), which is
now rewritten using variables y and y. If y, and y, donate the values of y(0) and y(0)

respectively, the time needed to reach Ls is given by:
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_ 1 _1 (Ayo — Yo)y1— (2

. Vo + (W
—{Yo — Wp Yo — A(%nn%)

Substitution of the values of y, = —1 and y, = 0, gives

t, = itan‘l e i (4.16)
Wy w,+ A

we substitute the values of y, = —1, y, = 0, and t; described by Eq.(4.16) into Eqgs.(4.1) and
(4.2), with variables x; and x, replaced by y and y respectively. This gives the values of y and

vy when the VSS reaches the sliding surface La:

_ ¢ .
Yo = € {wnty l— coswgty — ﬁ sin wgt (4.17)
ys = —(wpe $¢ntt | — coswyt —Lsinw t
S n a1 m dt1
+e~Swnti| @, sinwgt I S W4 COS Wyt (4.18)
d dt1 \/1_—52 d dt1

where Wy = Wy \/1_—(2
To find the time needed for the trajectories on Ls to enter the region |y| < 0.02, we consider the
dynamics on L3, namely:
y®) = yse*,  1<0 (4.19)

Substitution of y(t) = —0.02 yields:

~0.02 1 (—0.02
it - —00 =>t2=—1n( 00) (4.20)
Vs A Vs

The settling time of the VSS is given by:

1 —AJ1 -2 1 —0.02
_ I S ¥ 1 (4.21)
tS tl + tz Y tan —wn n 1 ( ] + 1 1’1( Ve )
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where y, is defined by Eq.(4.17). For proper comparison of the performance, we
nondimensionalize time using the variable T = w,t. Concurrently, we define A = k u; where «,

0 <k <1, is a constant. The nondimensional settling time is now given by the following

equation:
Ts =171+ 1 (4.22)
where 1 . _1K[—(+\/(2+ 1]\/1_(2
T = an
e 1+ Ck[{—TZ+ 1] (4.23)
S 1 In (—0.02) (4.24)
Ckli-yE+ 1]\ % '
and where

ys = e $% l— costy4/1— (% — sinty4/1 — (2 (4.25)

_¢
J1-¢2

Figure 4.5 shows a comparison of the settling time of the VSS for different value of
Kk (k =03,k = 0.5k = 0.7,k = 0.9) and the original system. The settling time for the original
system shows several discontinuities in the settling time. For k = 0.3, the VSS has better
performance than that of the original system only when { < 0.24. For k = 0.5, the
performance is better for a larger range of {, namely ¢ < 0.34. As we increase k, the
performance is better for a larger range of {: for k = 0.7 and 0.9 the performance is better
for { < 0.39 and ¢ < 0.52 respectively. The settling time of the original system can be
reduced by increasing the value of { but for most { values, a VSS can be found (x can be
chosen) that has better performance in terms of the settling time. For example, for { = 0.2,
the settling time for the original system is t; = 19.55, whereas it is equal to
16.03,9.75,7.11, and 5.67 for VSS with ¥ = 0.3,0.5,0.7, and 0.9 respectively. It is clear that

the VSS improves the settling time for { = 0.2 by 18.18% when k = 0.3, by 50,2% when
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Figure 4.5. Comparison of the settling times of the VSS and the original system.
k = 0.5, by 63.71% when k = 0.7, and by 71.04% when x = 0.9. The best performance is
achieved by the VSS when k - 1 or 4 = u;. However, the maximum value of k can be
chosen is less than unity (0.95, for example) because of the finite time needed to switching of o
from +1 to —1. If k = 1 the area of Z; in Fig.4.3 is almost zero and there will be no switching in

this zone and the switching will be in Z3.

In this section, we investigated the performance of the VSS with switched stiffness
and damping for a step input for different values of A. The VSS has a smaller settling time

than that of the original mass-spring-damper system for a range of { values. As we increase
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A, the settling time of the VSS is smaller for a larger range of { values, and the best

performance achieved when A — ;.

4.2.3. Performance — Speed of Convergence

In last section, we investigated the performance of the VSS for a step input. This
problem was recast as an initial value problem with the initial conditions at (—1,0) in the
phase plane. Since (—1,0) lies in Z1;, we now compare the performance of the VSS with
switched stiffness and the original system for arbitrary initial conditions in Z» and Zs. For
an initial conditions in Z (see Fig.4.3), the time needed by the VSS to reaches the sliding surface
Ls (x, = A x;) has been studied in section 4.2.1, and was described by Eq.(4.10). The values of
x; and x, when the VSS reaches the sliding surface Lz has been studied in section 4.2.1, and was
described by EQ.(4.6), and (4.7). The time needed for the trajectories on Lz to enter the
region |x;| < 0.02 has been studied in section 4.2.1, and was described by Eq.(4.20). Using
these relations, the settling time of the VVSS can be shown to be:

T =1+ T, (4.26)

where 1

Ty = Wuty = 2—,1_—(2
[0 + 10(¢ + TE PN~ JTHE) = (= JTH00)|

In (4.27)
[X20 — x10((—\/1+52)][((+\/1+(2) _K((_ \/1+(2)]
ot = -1 In (—0.02) 498
2 nt2 [{ +\/{2T] xls ( . )
where o — pen@—THD) 4 | pu@H/14) (4.29)

one D= x— 207 wnx10(¢ =1 +¢2) g o Yoo~ wpX10(¢ —/1+72)
h 20,41 + 2 ' 20, 1+ 2
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where x;, and x,, are the initials conditions in Z. Figure 4.6 shows a comparison of the settling
time of the VSS for different value of k (k = 0.3,k = 0.5,k = 0.9) and the original system for
initial conditions in Z». The initial conditions were arbitrarily chosen as x;, = —1, and x,, =
—0.95 p,. For k = 0.3, the VSS has better performance than that of the original system only
when ¢ < 0.25. For k = 0.5, the performance is better for a larger range of ¢, namely ¢ <
0.36. As we increase k, the performance is better for a larger range of {: for k = 0.9, the
performance is better for { < 0.54. The settling time of the original system can be reduced
by increasing the value of { but for most ¢ values, a VSS can be found (x can be chosen) that
has better performance in terms of the settling time. For example, for { = 0.2, the settling

time for the original system is 7, = 19.31, whereas it is equal to 13.8, 8.81, and 5.29 for VSS

45 T T T T T T T T

the original system
VSS withx = 0.3 .
VSS with x = 0.5
VSS withx = 0.9

Ts

025 | 036 P 054

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.6. Comparison of the settling times of the VSS and the original system
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with k = 0.3, 0.5, and 0.9 respectively. It is clear that the VSS improves the settling time for
¢ = 0.2 by 28.58% when k = 0.3, by 54.37% when k = 0.5, and by 72.6% when k = 0.9.

The best performance is achieved by the VSS when k —» 1 or A - ;.

For an initial conditions in Z3 (see Fig.4.3), the time needed by the VSS to reaches L1 has
been studied in section 4.2.1, and was described by Eq.(4.12). The values of x; and x, when the
VSS reach the sliding surface L1 (x; = 0) has been studied in section 4.2.1, and was described
by Eq.(4.6), and (4.7). The time needed by the VSS to reaches the sliding surface Lz (x, = 4 x4)
has been studied in section 4.2.1, and was described by Eq.(4.5). The values of x; and x, when
the VSS reach the sliding surface Ls has been studied in section 4.2.1, and was described by
Egs.(4.1) and (4.2). The time needed for the trajectories on Ls to enter the region |x;| < 0.02 has
been studied in section 4.2.1, and was described by Eq.(4.20). Using these relations, the settling

time of the VSS can be shown to be:

ottt 41, (4.30)
where =t = 1 In [[Xzo - (l)nXIO({ +.1+ (2)] (4.31)
24/1+ 2 [x20 — wnx10((—\/1+(2)]
_ _ 1 ) V1-1¢2 (4.32)
N A T (N e
g = 1 In (0.0Z) 433
R P ey R (439)

and X
X;g = e S@nT2 Iz—u siny/1 — {?t l (4.34)
1s \/1_7{2 2

Whete = (¢ I+ 32) D) 4 (04 T4 2 peman/iey  (439)

where X0 — WpX10(¢ —y/1+(2) X0 ” Wyx10(¢ — 1+ ¢2)

D=x10—

20,41 + (2 2wn4/1 + 2
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Figure 4.7. Comparison between the settling time of the VSS and the original system

where x;, and x,, are the initials conditions in Zz. Fig.4.7 shows a comparison of the settling
time of the VSS for different value of k (k = 0.3,k = 0.5,k = 0.9) and the original system for
initial conditions in Zs. The initial conditions were arbitrarily chosen as x;, = —1, and x,, =
—1.1 p4. For k = 0.3, the VSS has better performance than that of the original system only
when ¢ < 0.24. For k = 0.5, the performance is better for a larger range of {, namely { <
0.32. As we increase k, the performance is better for a larger range of {: for k = 0.9, the
performance is better for { < 0.41. The settling time of the original system can be reduced
by increasing the value of { but for most ¢ values, a VSS can be found (x can be chosen) that
has better performance in terms of the settling time. For example, for { = 0.2, the settling
time for the original system is 7, = 19.3, whereas it is equal to 15.62,10.71, and 7.53 for
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VSS with ¥k = 0.3, 0.5, and 0.9 respectively. It is clear that the VSS improves the settling time
for { = 0.2 by 19.04% when k = 0.3, by 44.5% when k = 0.5, and by 60.9% when k = 0.9.

The best performance is achieved by the VSS when k —» 1 or A - ;.

In this section, we investigated the performance of the VSS with switched stiffness
and damping for arbitrary initial conditions in Z» and Z3, and for different values of A. The
VSS has a smaller settling time than that of the original mass-spring-damper system. As we
increase A the settling time of the VSS is smaller for a larger range of { values, and the best

performance achieved when A — ;.

43.CaseB: A< u; <0

4.3.1. Stability

The VSS is a hybrid system that switches between an asymptotically stable system, the
phase portrait of which is shown in Fig.4.8, and an unstable system whose phase portrait is
shown in Fig.4.9. The union of these phase portraits is shown in Fig.4.10. To investigate the
stability of the equilibrium of the VSS, the phase plane is divided into two zones, namely:

Zy = {x € R%|Sx; > 0}

Z, = {x € R?|xy(x, — 1 x;) < 0}

The two zones are separated by the following two lines:
Li:x; =0

Lo: x, =Ax;

We investigate the system trajectories in these zones and on these lines next.
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Figure 4.9. Phase portrait of the Variable Structure System (VSS) for a = —1
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Figure 4.10. Phase portrait of the Variable Structure System (VSS) for A > u 4
To study the behavior of the trajectories on L1, we investigate the direction of the vector
field on L1 For x, > 0 (and x; = 0), we have the following equations and vector field:

)'C1=x2 >0
. c l

Xy = —Exz <0
Therefore, the trajectories enter Z;. For x, < 0 (and x; = 0), we have the following equations
and vector field:

X =x, <0

|

X ¢ >0
X, = ——X
2 2
Therefore, all trajectories on Ly will enter Z;.

The boundaries of Z; are L and L. We have already shown that trajectories on Li
enter Z;. We now show all trajectories in Z; reaches L. in finite time. The time when the
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trajectory in Z; reaches L has been studied in section 4.2.1, and was described by Eq.(4.5). For
convenience, it is provided below:

1 1 (Ax10 — X20)y/1— (2

t =—rtan~
[OF] X0 T Cwnxlo)
a)n

—(X0 — Wy X190 — /1(

This expression implies that all trajectories in Z; reaches L; at finite time.

The boundaries of Z, are L, and L:. We have already shown that the trajectories on L
enter Z,. We now show that all trajectories in Z, reaches L in finite time. The time when a
trajectory in Z, reaches L1 has been studied in section 4.2.1, and was described by Eq.(4.12). For

convenience, it is provided below:

1 [x20 — (Unxw(f +J1+ {2)]

t= In

B 2wpA/ 1+ (2 [x20 — wnxlo(q — 1+ (2)]

This expression implies that all trajectories in Z, reaches L; at finite time.

Xp

L,

Figure 4.11. Phase portrait of the Variable Structure System
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From the above discussion it is clear that the trajectories of the VSS move alternately
between zones Z; and Z, by crossing lines Lo and Li. Since the phase plane is symmetric about
the x, axis (see Fig. 4.10), we now investigate if there will be a contraction or an expansion in
the total energy of the system when the VSS undergoes a phase change equal to m. Fig.4.11
shows the phase portrait of the VSS undergoing a phase change of = between points A and C.
The values of x; and x, when the VSS is at point A are:

X14= 0 (4.36)
X24 = X20 (4.37)
where x,, is some positive number. The time needed by the VSS to move from point A to point
C been studied in section 4.2.1, and was described by Eq.(4.5). For convenience, it is provided

below:

1 ) el S (4.38)

tyg = —————tan

wn,/l—(z €+ A(L)
wn
The values of x; and x, when the VSS reach point B has been studied in section 4.2.1, and was

described by Eq.(4.1), and (4.2). For convenience, it is provided below:

_ X24\ .
X;p = e S@nt <a)i> sinwy/1 — {2 typ (4.39)
n
X
Xyp = Ax;p = de $@nt (%) sinwp1—{?typ (4.40)
n

The time needed for the VSS to move from point B to point C was studied in section 4.2.1, and
was described by Eq.(4.12). For convenience, it is provided below:

S S (21— wn(¢ +J1+77))
© 20,142 (A —w, (¢ - m))

tp

(4.41)
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The values of x; and x, when the VSS reaches point C has been studied in section 4.2.1, and was

described by Eq.(4.6), and (4.7). For convenience, it is provided below:

e’ (4.42)
Xoc = Wy (( — m) D e“’ntBC(C—\/m)
tan (( + \/T(Z) E e®@ntBc@+/1+32) (4.43)
where
—A+ w,({+1+ %) A= w,(¢—1+2)
- - E= 4.44
X1B anm X1B[ anm ( )

The total energy of the mass-spring-damper at point A is:

1

TA = E meAZ (445)

The total energy of the mass-spring-damper at point C is:

1

TA = E mxzcz (446)

The contraction in the total energy of the VSS between points A and C is:

1 1

Tp—=Tc = 5 mxzs® — 5 m X5c? (4.47)

The percentage of the contraction in the total energy of the VSS between points A and C can be

shown to be:

- T 1 meAZ - l meC XZAZ - xZCZ

Ty 2 X24

For proper comparison of the contraction in the total energy, we nondimensionalize the time

using the variable T = w,t. Concurrently, we define A = p u; where p > 1is a constant. The
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percentage of the contraction in the total energy of the VVSS between points A and C given by the

following equation:

E,=(1- x:2)x100 (4.49)
where
X, = iﬁ = (¢ =T+ 32) D et I) 4 (¢ 4 JTH(7) B emacG+V1+D) (4.50)
2A
where
Tge = tgcwy = ! In ('D[{_ 62+1]_[{+ 1+<2]) (4.51)
C 1w (els -V H 1] -6 - VT ) |
Do —p[¢( =&+ 1]+ (¢ +/1+¢?)
= Xp Nive (4.52)
gy (PE=VE+1]- (=140 (459)
? 21+ 2 |
Xp = iﬂ = e~$@nt 5in /1 — {2 145 (4.54)
2A
_ _ 1 -1 v1-2¢2
Tap = typWn = mtan n ,D[C ~ \/m] (4.55)

The VSS will be an asymptotically stable if there is a contraction in total energy between
point A and point C (E, > 0), stable if the total energy remains constant between point A and
point C (E, = 0), and an unstable if there is an increasing in total energy between point A and
point C (E, < 0). Fig.4.12 shows the percentage of the contraction in total energy of the VSS
between point A and point C for different value of p(p =1.1,p=12,p=13,p=14,p =
1.5). For p = 1.1, the VSS is asymptotically stable only when ¢ < 0.7, stable for ¢ = 0.7, and
unstable for { > 0.7. For p = 1.2, the VSS is asymptotically stable only when { < 0.74, a

stable for ¢ = 0.74, and unstable for { > 0.74. For p = 1.3, the VSS is asymptotically stable
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Figure 4.12. The percentage of the contraction in energy of the VSS between points A and C
when ¢ < 0.79 or { > 0.98 , stable for ¢ = 0.79 or ¢ = 0.98, and unstable for 0.78 < { <
0.98. As we increase p, the VSS is unstable for a smaller range of ¢ values: for p = 1.4, the
VSS is an asymptotically stable when ¢ < 0.85 or { > 0.96 , stable when ¢ = 0.85 or { < 0.96,
and unstable when 0.85 < { < 0.96. For p = 1.5, the VSS is an asymptotically stable for all
values of ¢. By trial and error, it was determined that the VSS is an asymptotically stable for all

values of ¢ for p > 1.44.
4.3.2. Performance — Response to Step Input

To investigate the performance of the VSS, we will study the response of the VSS to a step input

and compare its performance with that of the original system for the same step input.
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For the original system, the response to a step input has been studied in section 4.2.1, and

was described in Eq.(3.14). For convenience, it is provided below:

c k
y —y——y (0 ,  y(0)=0
The response of the VSS to the same step input was described in Eq.(130). For convenience, it is

provided below:

. ¢k o
y=-a—y-a_y, y0O=-1 y0)=0 (4.57)
where {+1 if (S>0andy>=0)or (§<0andy<0)
a= :
-1 if Sy<o

Note that Eqgs.(4.56) and (4.57) are very similar and have the same initial conditions. Also, note
that Eq.(4.57) is identical to Eq.(2.25); therefore, all the analysis presented in section 4.3.1 will

be applicable.

The phase portrait of the VSS in Eq.(4.57) has already been studied in section 4.3.1.
From this study we know that the trajectories of the system will spiral to the origin and the
system will be asymptotically stable for p > 1.44. Unlike the previous case, it is not possible to
claim that the phase change of the trajectories will be less than 2z. In other words, a step input
will result in oscillations, similar to the original system. Therefore, the performance of the
original system and the VVSS can be compared by on the basis of
(@) the rise time t,.,
(b) the maximum percentage of overshoot M,,, and
(c) the settling time.
The rise time and the maximum percentage of overshoot can be calculated analytically but the
same is not true for the settling time. To calculate the rise time and the maximum percentage of

overshoot, we define three points A, B, and C on the phase portrait of the VSS, shown in Fig
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Figure 4.13. Step response in the phase plane of the Variable Structure System (VSS) for A < p 4

4.13. These points are also shown in Fig.4.14, which is a plot of the time response of the VSS to
the step input. Consider the time needed by the VSS to reach point A; this has been studied in

section 4.2.1, and was described by Eq.(120). Using variables y and y we can write it as follows:

. Vo + (w - 71 .
(OF] _cyo — Wy Vo — yl (J’o (,fn nyo) (OF] Wy + (

where y, = —1 and y, = 0 are the initial conditions. The values of y and y at A has been
studied in section 4.2.1, and was described by Eq.(116), and (117). For convenience, it is

provided below:

VY4 = e_za)ntA[A CcoS (,l)th + B sin wth] (459)
Va = —(wpe $ntA[ A cos wqty + B sinwgt,]
+e‘5‘“ntA[ —A wgsinwgty, + B wgy cos wth] (4.60)
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Figure 4.14. Step response of the Variable Structure System (VSS) for A < p,
¢

where g, = w,J1—-(2, A= -1, B=— —

The time needed for the VSS to move from point A to point B has been studied in section 4.2.1,

and was described by Eq.(4.12), For convenience, it is provided below:

o 1 |ba— 0@ +y1+87)]
AB —
2001+ |[ya — wnya( =T +32)] (4.61)

where y,, and y, are the initial conditions and given by Eqgs.(4.58) and (4.60). The values of y

and y at B has been studied in section 4.2.1, and was described by Eq.(121) and (122). For

convenience, it is provided below:
(4.62)

yg =0

wn (¢ —TH2) D entan(¢=1+¢%)
o (¢ 4T+ 32) E ewntas@r/1id) (4.63)

Vs
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D =
g 201+ 2 21 £ 2

To find the time needed for the VSS to move from point B to point C, we substitute Eq.(4.2) into

where oG N1H ) dam o1+ 07)

the equation of y-axis where point C lie on this axis, namely:
y=0
This gives
—{wpe$“nt[ A coswyt + B sinwyt]
+ e $9nt[ —A wy sinwyt + B wg cos wyt] =0

—{wpA + Bwy
{wnB + waA (4.64)

= tanwyt =

Substitution of the values of A and B from Eq.(4.3) into Eq.(4.64) gives

N

= tan wyt = :
1 1-22
_ -1 (4.65)
= tBC wd tan [ { ]

Substitution of the value of tz. from Eq.(4.64) into Eqgs.(4.1) and (4.2) gives the values of y and

y at C, namely:
_ VB :
= g~Swntpc |— 75 — (2
Ye= e [ sinwy/1—=7¢ tBCl (4.66)
wpy/1 — 2
ye=0 (4.67)

The rise time of the VSS can now be calculated as follows:

tT= tA+tAB
1 —1-¢2
= —tan™! ¢
(OF] Tl+ A{
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(4.68)

N 1 In [[yA - wn)’A(( +J1+ (2)]
2001+ 32 |[7a — wnya(( =1+ 77)]

where y,, and y, are defined by Eqs.(4.59) and (4.60) respectively. The maximum percent

overshoot of the VSS depend on tz. and is given by:

sin wy/1 — (ZtBCl x 100

_ VB
M = e (wntBC P
P w1 = {2

= e(ﬁ% an ) [Z)—i] x 100 (4.69)

where yp is defined by EQ.(178). For proper comparison of the performance, we
nondimensionalize the time using the variable T = w,t. Concurrently, we define A = p u; where
p = 1is a constant. The nondimensional rise time and the maximum percentage overshoot are

given by the following equations respectively:

DR S el-t+V+ 1]\/1—{2]
T 1-2 1+ ¢p[¢—J2+ 1]
PR [ya — ya(C+y1+¢?)]
2J1+¢2  |[ya— ya(¢ =1+ 3?)] (4.70)
=< tan‘l“l_<2
M, = eVi-¢? ¢ 5 %100 (4.71)

where Y= e 5% [A cos+/1— 7%, + B sin4/1— (ZTA] (4.72)
y, = —(e~5ta [A cos/1—¢2t, + B sin/1— (ZdrA]
+J1={Ze~%% [ —A sin\[T= (%1, + B cos/T— (21 (4.73)

o= ((—VT+¢2) D eTas(§—V1F %) | (¢+VT+32)EerasCrind  (474)
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1 e[ +VE+ 11 -
Ty = —Wtan 20 [C—m] (4.75)
- 1 In [a — ya(C+1+2)] (4.76)
P21+ s - v -1+ )] '

¢
¢

_}"A—J’A(f—\/l'*‘fz) EZS’A—YA({—V1+52)

2.1+ (2 21 + (2

A= -1, B=-

D=y,

The settling time for the VSS is the time needed for the VSS trajectory to enter the region
|y| < 0.02. This cannot be calculate analytically because the VSS may enter the region |y| <

0.02 in Z, orin Z,. Therefore, we calculate the settling time numerically.

Figure 4.15 shows a comparison of the rise times of the VSS for different values of p

VSSwith P= L5
VSS with p= 2
VSSwith p=5§
original system

0.6 0.7 0.8 0.9

Figure 4.15. Comparison of the rise times of the VVSS and original system
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(p = 1.5, p =2, p=>5) and the original system. p has been chosen to be greater than 1.44 to
make sure that the VSS will be asymptotically stable. For p = 1.5, the VSS has better
performance than that the original system only when ¢ > 0.72. It is clear that the original

system has better rise time than the VSS for p = 2 and 5.

Figure 4.16 shows a comparison of the maximum percentage of overshoots of the VSS
for different values of (p = 1.5, p = 2, p = 5) and the original system. Once again, p has been
chosen to be greater than 1.44 to make sure that the VSS will be asymptotically stable. For p =
5, the VSS has lower maximum percentage of overshoot than that of the original system only
when ¢ < 0.06. For p = 2, the maximum percentage of overshoot is lower for a larger range of
¢, namely ¢ < 0.15. As we decreases p, the maximum percentage of overshoot is lower for a

larger range of : for p = 1.5, the maximum percentage of overshoot is lower for { < 0.21.
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Figure 4.16. Comparison of the percentage of overshoots of the VSS and original system
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Figure 4.17 shows a comparison of the settling time of the VSS for different value of p (p
= 1.5, p = 2, p =5) and the original system. p has been chosen to be greater than 1.44 to make
sure that the VSS will be asymptotically stable. For p = 5, the VSS has larger settling time that
that of the original system for all values of {. For p = 2, the VSS has lower settling time than
that of the original system only when { < 0.15 As we decrease p, the settling time is lower

for a larger range of {: for p = 1.5, the settling time is lower for { < 0.18.

In this section, we investigated the performance of the VSS with switched stiffness
and damping for a step input for different values of p. The value of p was chosen to be
greater than 1.44 to make sure that the VSS will be asymptotically stable. The VSS has a smaller
settling time than that of the original mass-spring-damper system for a small range of ¢

values. As we decrease A, the settling time of the VSS is smaller for a larger range of ¢ values,

50 : , , '
45
a0k
3sh }
0l "ﬂ.& |
A\ VSS with p= L5
RIE T A R VSS with p= 2
VSSwith p=5
0 - original system
15 |
10
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Figure 4.17. Comparison of the settling time of the VVSS and original system
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and the best performance is achieved by the VSS when p — 1.44.

4.3.3. Performance — Speed of Convergence

In last section, we investigated the performance of the VSS for a step input. This problem
was recast as an initial value problem with the initial conditions at (—1,0) in the phase
plane. Since (—1, 0) lies in Z;, we now compare the performance of the VSS with switched
stiffness and the original system for arbitrary initial conditions in Z,. For initial conditions in
Z; (see Fig.4.10), the performance of the original system and the VSS can be compared by
computing:

(@) the rise time t,.,

(b) the maximum percentage of overshoot M,,, and

(c) the settling time.

The rise time and the maximum percentage of overshoot can be calculated analytically
but the same is not true for the settling time. To calculate the rise time and maximum percentage
of overshoot, we define two points A and B on the phase portrait of the VSS, shown in Fig.4.18.
These points are also shown in Fig.4.19, which is a plot of the time response of the VSS to the
step input. Consider the time needed by the VSS to reach point B; this has been studied in
section 4.2.1, and was described by Eq.(4.12). The values of x; and x, at A has been studied in
section 4.2.1, and was described by Eq.(4.6) and (4.7). To find the time needed for the VSS to
move from point A to point B, we substitute Eq.(4.2) into the equation of y-axis where point B
lies on this axis, namely:

X, =0

This gives:
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Figure 4.18. Step response in the Phase plane for the Variable Structure System (VSS) for A < u
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Figure 4.19. Step response for the Variable Structure System (VSS) for A < p 4
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—{wpe $“nt[ A coswyt + B sinw,t]
+ e~ @nt[ —4 wy sinwyt + B wy cos wgt] = 0

—{wn,A + Bwg
(wyB + wzA

= tanwgt = (4.77)

Substitution of the values of A and B from Eq.(4.3) into Eq.(4.77) gives:

[P
¢

LI [v 1- 52] (4.78)

= tan wgyt =

=ty = w—tan‘ 7
d

Substitution of the value of t,5 into Egs.(4.2), and (4.3) gives the values of x; and x, at B,

namely:

x
— p—Swnt ;A i — 72
X1p e AB[ nﬁ sinwy/1—¢ tABl (4.79)

The rise time of the VVSS can now be calculated as follows:

t t4 = ! In [[ 20 n 10( 1+ ( 2)]
r = X W, X 4 +
2 n 1 4-2 [xzo - a)nxlo(é —J1+ (2)]

where x5, and x,, are the initial conditions. The maximum percent overshoot of the VSS

(4.81)

depend on tg. and is given by:

M, = e ~Swntap

X
— 20 Sinwy/1-— CZtABl x 100
WpA/1 — 2

_ e(ﬁ_—%ztan_l[ =) "ﬂ] % 100 (4.82)

a)n
where x,4 is defined by Eq.(4.7). For proper comparison of the performance, we

nondimensionalize the time using the variable T = w,t. Concurrently, we define A = p u, where
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p = 1is aconstant. The nondimensional rise time and the maximum percent overshoot are given

by the following equations respectively:

1 [[xzo - x10(( +1+ (2)] (4.83)
T, = Wut, = In
21+ ¢? [x20 — x10((_\/1+52)]
—¢ an~ 1Y 1-¢2
M, = e = ¢ x,, X 100 (4.84)

where Xon = (C—\/TCZ) DerA(C—\/TCZ)_l_((_l_\/TZZ)EerA(G\/TZZ) (4.85)

1 n [[xzo — x10(¢ +1+¢2)]

" 4.86
SN Ewe [x20 — x10(¢ =1+ ¢2)] (4.86)
D=x —xzo_xlo({_\/l-"{z) E_xzo—x1o({—\/1+(2)

= X10 , —

24/1+ 2 2./1+ 2
where x;, and x,, are the initials conditions in Z,. The settling time of the VSS is the time
needed for the VSS to enter the region |x;| < 0.02. There is no way to calculate the settling time
analytically, because the VSS may enter the region |x;| < 0.02 in Z; or Z,. Therefore we

calculate the settling time numerically.

Figure 4.20 shows a comparison between the rise time of the VSS with p = 1.5 and the
original system for initial conditions in Z>. p has been chosen to be greater than 1.44 to make
sure that the VSS will be asymptotically stable. The initial conditions were arbitrarily chosen as
X10 = —1, and x,o = 2.88. The VSS has lower rise time than that of the original system only
when ¢ < 0.12. Therefore, the VSS may have a lower rise time than that of the original

system if the initial conditions are in Za.
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Figure 4.21. The percentage of overshoot for VSS and original system
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Figure 4.21 shows a comparison between the percentage of overshoot of the VSS with
p = 1.5 and the original system for initial conditions in Z,. The initial conditions were arbitrarily
chosen as x;o = —1, and x,, = 2.88. The VSS has lower maximum percentage of overshoot
than that of the original system only when ¢ < 0.09. Therefore, the VSS may have a lower
maximum percentage of overshoot than that of the original system if the initial conditions are

in Z2.

Figure 4.22 shows a comparison between the settling time of the VSS with p = 1.5 and
the original system for initial conditions in Z. p has been chosen to be greater than 1.44 to make
sure that the VSS will be asymptotically stable. The initial conditions were arbitrarily chosen as
X10 = —1, and x,, = 2.88. The VSS has lower settling time than that of the original system

only when ¢ < 0.19. Therefore, the VSS may have a lower rise time than that of the original
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Figure 4.22. The settling times of VSS and original system
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system if the initial conditions are in Za.

In this section, we investigated the performance of the VSS with switched stiffness
and damping for a step input. The value of p was chosen to be greater than 1.44 to make sure
that the VSS will be asymptotically stable. The VSS has a smaller settling time than that of the
original mass-spring-damper system for a small range of {. As we decrease 4, the settling
time of the VSS is smaller for a larger range of ¢ values, and the best performance is achieved

by the VSS when p — 1.44.

4.4. Conclusion

In this Chapter, we investigated the behavior of the VSS with switched stiffness and
damping. For Case A (u; < A < 0), the VSS is asymptotically stable and no trajectories of the
VSS undergo a phase change of more than 2x; therefore, the VSS does not exhibit oscillations.
Also, the VSS has a smaller settling time than that of the original system for a range of ¢ values.
As we increase A, the settling time of the VSS is smaller for a larger range of { values. The best
performance is achieved by the VSS when A — pu;. Therefore, the VSS improves the
performance for the mass-spring-damper system. For Case B (A < u; < 0), the VSS may be
asymptotically stable, stable, or unstable. However, if we chose p > 1.44, the VSS will be
asymptotically stable. For p > 1.44 the trajectories of the VSS will undergo a phase change of
more than 27; therefore, the VSS will exhibit oscillations. The VSS improves the performance
of the mass-spring-damper system for a small range of ¢ values. As we decrease A the
settling time of the VSS is smaller for a larger range of { values, and the best performance is

achieved by the VSS when p — 1.44.
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Chapter 5

Conclusion

We investigated the behavior of two hybrid mass-spring-damper (MSD) systems. The first system
uses switched stiffness, where the stiffness in the model switches between its nominal value and
its negative value. The second system uses switched stiffness and damping, where both the
stiffness and damping coefficients in the model are switched between their nominal values and
their negative values. Both hybrid MSD systems are switched based on the location of the system
in its configuration space. Each hybrid system is asymptotically stable even though they are
individually comprised of an asymptotically stable and an unstable sub-system. Through proper
design of the switching logic, the hybrid systems can have significantly better performance than

the nominal system in terms of rise time, settling time, and overshoot.

Based on the design of the switching logic, the MSD system with switched stiffness has
two behaviors. In the first case, all trajectories in the phase plane asymptotically converge to the
origin, but more importantly, no trajectory is capable of undergoing a phase change of more than
2w rad. This establishes the fact that the hybrid system will not exhibit oscillations, even if the
original system is underdamped. Additionally, the hybrid system has a rise time comparable to that
of the original system but a significantly lower settling time. In the second case, all trajectories in

the phase plane asymptotically converge to the origin, but the hybrid system exhibits oscillations.
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The original system has a smaller rise time than the hybrid system but the hybrid system has a
smaller maximum percentage of overshoot and a smaller settling time. The hybrid system therefore
improves the performance of the nominal system if the nominal system is underdamped. The
analysis presented in this work provides clues on how the switching logic can be designed to

achieve the best performance improvement for a given value of damping ratio.

Similar to the hybrid system with switched stiffness, the hybrid system with switched
stiffness and damping has two behaviors depending on the design of the switching logic. In the
first case, the origin is asymptotically stable since and all trajectories in the phase plane converge
to origin. Also, the hybrid system does not exhibit oscillations due to the fact that no trajectory is
capable of undergoing a phase change of more than 2z rad. Additionally, the hybrid system has a
rise time comparable to that of the original system but a lower settling time for a small range of
damping ratios (¢ < 0.5, for example). For the second case, the hybrid system can be
asymptotically stable, stable, or unstable based on the design of the switching logic. For the
asymptotically stable case, the hybrid system does exhibit oscillations but it has better performance
than the nominal system (in terms of what) for a small range of damping ratios ({ < 0.2, for
example). The analysis presented in this work provides clues on how the switching logic can be
designed to guarantee asymptotic stability for the hybrid system and achieve the best performance

improvement for a given value of damping ratio.
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