AB INITIO NANOSTRUCTURE DETERMINATION
By

Saurabh Gujarathi

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Physics - Doctor of Philosophy

2014

ABSTRACT
AB INITIO NANOSTRUCTURE DETERMINATION
By

Saurabh Gujarathi

Reconstruction of complex structures is an inverse problem arising in virtually all areas
of science and technology, from protein structure determination to bulk heterostructure solar
cells and the structure of nanoparticles. This problem is cast as a complex network problem
where the edges in a network have weights equal to the Euclidean distance between their
endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of
the network given only the edge weights of the Euclidean network is presented. The timing
results indicate that the algorithm is a low order polynomial in the number of nodes in the
network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about
one thousand nodes in approximately twenty four hours on a desktop computer using this
implementation is done. In three dimensions, the computational cost for the reconstruction
is a higher order polynomial in the number of nodes and reconstruction of small Euclidean
networks in three dimensions is shown. If a starting network of size five is assumed to be
given, then for a network of size 100, the remaining reconstruction can be done in about two
hours on a desktop computer. In situations when we have less precise data, modifications of
the method may be necessary and are discussed.

A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also
studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the
first order phase transition from a symmetric low constraint phase to a complex symmetry

broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not

disordered, the asymmetric phase is highly irregular with geometric frustration. The phase
diagram is obtained and it is seen that even at a very low temperature 1" there is a phase
transition at finite and non-zero value of the constraint parameter /u. Analytic calculations
for the scaling of the density and free energy of the ruler are done and they are compared
with those from the mean field approach. A scaling law is also derived for the length of OGR,

which is consistent with Erdos conjecture and with numerical results.

TABLE OF CONTENTS

LIST OF TABLES e e vi
LIST OF FIGURES e vii
Chapter 1 Introduction 1
Chapter 2 The Liga algorithm 12
2.1 Algorithm details 12
2.2 Limitations 17
2.3 Extension of the Liga algorithm 19
2.4 SUummary ... 21
Chapter 3 The Tribond 2D algorithm 22
3.1 Rigidity theory of unassigned PD-IP 22
3.2 Tribond 2D algorithm 25
3.3 Applications 35
3.3.1 Tribond for structures with high symmetry 36

3.3.2 Reconstruction from an imprecise distance list 37

3.4 Summary 40
Chapter 4 The Tribond 3D algorithm 42
4.1 Tribond 3D algorithm oL 42
4.2 Applications 52
4.2.1 Reconstruction from an imprecise distance list 57

4.3 SUMMATY o ot 60
Chapter 5 Statistical physics of the optimal Golomb ruler 61
5.1 Statistical mechanics formulationo 61
5.2 Mean field approach 64
5.3 Asymptotic analysis oL 70
53.1 Scaling 70

5.3.2 Phase boundaryo 71

5.3.2.1 Low temperature 71

5.3.2.2 High temperatureo oL 74

5.4 Exact calculationso 79
55 Search for OGR 79
5.6 Symmetric theoryo 79
5.7 Summary ... 82

v

Chapter 6 Conclusion

APPENDIX . . .

BIBLIOGRAPHY

Table 4.1

LIST OF TABLES

Results from the Tribond 3D algorithm

vi

Figure 1.1

Figure 1.2
Figure 1.3

Figure 2.1

Figure 2.2

LIST OF FIGURES

(color online) Simple examples of structures found from Euclidean
distance lists. The figures on the left are plots of the distance lists
for: a) (top) a Cgo fullerene that has a degenerate distance list, and
b) (bottom) a random set of 10 points in the plane that has a non-
degenerate distance list. The fullerene has a total of 1770 interatomic
distances, but only 21 unique distances. The random point set has,
with high probability, 45 unique distances. The multiplicity is on the
vertical axis while the distance is on the horizontal axis (in arbi-
trary units). The figures on the right hand side are solutions to the
inverse problem found using the Liga algorithm (fullerene) and Tri-
bond (random point set) to find the structure from the given distance
lists, without the use of any other information. For the random point
set all interatomic distances are drawn in the figure. For clarity only
the nearest neighbor bonds are drawn in the fullerene case. In this
study, the distance lists are taken from the known structure and then
we try to solve the inverse problem using only the distance list. In
the real world, the structure is unknown and the distance lists are
derived from experiments, particularly x-ray and neutron scattering
data.o

A common ruler
A Golomb ruler

An example of promotion and relegation in Liga for N=10 and four
structures at each level. The algorithm is at level 4, where a winner
structure is randomly selected with probability equal to the reciprocal
of its cost. The winner attempts to add as many candidate points
(denoted by ‘x’) with a low cost as possible. In this example, the
winner can add five points and gets promoted to the 9th level. A
loser structure is randomly selected from the 9th level, it loses five of
its atoms and is relegated to the 4th level. The choice of the losing
structure and the points that are removed in relegation are done
randomly with a probability equal to the cost.

Reconstruction of various platonic solids using Liga.

vil

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 3.1

Reconstruction of a cubic grid with side equal to 4 and N=64 using
Liga.

Reconstruction of Lennard Jones clusters using Liga. On the left is
solution for N=88 and on the right is N=150. The solutions have
a low error and are topologically identical to the LJ-88 and LJ-150
clusters. The atoms in blue have a low error, while those in red have
high error.

Reconstruction of Cgg from experimental PDF data. a) Experimen-
tal pair distribution function (G) as a function of distance (r). The
background (Gf,) arising from interparticle correlations is shown in
green. b) The radial distribution function (R) as a function of the
distance (r). It is obtained after subtracting the background from the
PDF data. The interatomic distances are obtained by using the peak
maxima and the multiplicities are set equal to the peak areas. ¢) The
solution structure obtained using the exact distance list obtained in
the previous step. d) The solution obtained after the multiplicities in
the distances are relaxed by 10%. The atoms in blue have a low error,
while those in red have high error.

Liga’s success and failures in reconstructing structures with different
amounts of symmetry. Low symmetry structures have a large num-
ber of unique interpoint distances, while those with high symmetry
have a small number of unique interpoint distances. Failure is repre-
sented by the plus symbol while success is denoted by the star sym-
bol. Success mostly occurs in the region closer to the X axis, which is
representative of the structures having high symmetry while failure
mostly occurs mostly for structures having a large number of unique
distances.

Steps involved in the crystal structure determination using experi-
mental PDF. An automated peak extraction routine is used to obtain
the distances and their multiplicities. This information along with the
lattice parameters for the crystal structure is given as input to Liga.
It gives as output a number of candidate solutions that are consis-
tent with the input data. The next step is coloring, which assigns the
atom species to each site by minimizing the atom radii overlap and
the structure with the lowest cost is declared as the solution.

(color online) An example of a core. In 2D, it consists of 4 points. The
horizontal bond is the base (in black), the bonds below it (in blue)
make up the base triangle while those above it (in red) make up the
top triangle. The vertical bond is the bridge (in green).

viii

19

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Four possible positions for the top triangle are shown. The corre-
sponding bridge bonds are shown using a dashed line.

Number of feasible triangles using the bonds from a given distance
list go up when we choose a larger bond as base for the triangle.
Statistically, using the shortest bond in the distance list as the base
leads us to the core in the shortest time. This plot shows data from
runs using 10 different structures with N =128.

Small core hypothesis: (N = 1024) We see that when we have the
smallest bond in the distance list as the base, the first core is in a
distance window an order of magnitude smaller than other choices
for the base bond. Hence, statistically, using the first bond as base is
our best bet when searching for the core.

Plot illustrating the role of the base bond. For N = 32, the Tribond
algorithm ran using base bonds that were picked from 10 different
places spread along the sorted distance list. If the smallest bond is
chosen as the base, we see that it takes 3 orders of magnitude less
time for the core finding stage and an order of magnitude less time
for the buildup stage. oL

Experimental results for a series of reconstructions from distances
lists generated from random point sets in two dimensions. The time
for finding the core, the time for doing the buildup starting with the
core and the total time are presented as a function of the number of
bridge bond checks that were performed. Bridge bond checking is a
fundamental process in Tribond and provides a system-independent
measure of computational time. Each point on the plots is an average
over 25 different instances of random point sets. We find that the
total time scales as Tyopqy ~ N°32. . . . L.

A perturbed graphene cut out made from 144 atoms. The Tribond
algorithm successfully reconstructed a similar structure in a few min-
ubes. . .. e

Self-avoiding walk is a sequence of moves that does not visit the same
point more than once and is used to model polymers. Tribond was
able to successfully reconstruct the above structure (N = 100) in a
few minutes.

Gently perturbed square grid made of 100 sites. Our algorithm was
successfully able to solve such a structure in a few minutes.

X

34

38

Figure 3.10

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Plot of minimum core size vs precision of the input distance list for
N = 26,50,76 and 100. We can see that a bigger core is needed for a
less precise distance list. L.

(color online) An example of a core. In 3D, it consists of 5 points.
The points at the top and at the bottom are the apex points. The
three points in the middle form the base triangle (in black). The
base triangle along with the apex point at the bottom forms the base
tetrahedron (in blue), while the base triangle along with the apex
point at the top forms the top tetrahedron (in red). The vertical
bond connecting the two apex points is the bridge (in green).

Number of feasible tetrahedra using the bonds from a given distance
list go up when we choose a larger bond as base for the base triangle.
Statistically, using the shortest bond in the distance list as the base
bond leads us to the core in the shortest time. This plot shows data
from runs using 10 different structures with N =20.

Empirical example of the small-core hypothesis. The hypothesis states
that there exists a core where at least 9 of the 10 total bonds are
drawn from a relatively small window of the shortest bonds in the
structure. Varying the base bond’s fractional position in the distance
list for ten different N = 50 structures, core finding shows that using
the smallest distance as the base bond reduces the typical size of the
window required to find a core by an order of magnitude.

Figure illustrating the effect of base bond size on the computational
cost (bridge bond checks) of reconstruction for N = 10. The plots for
the total and core finding steps are nearly indistinguishable because
the core finding is orders of magnitude more expensive than buildup.
If the smallest bond is chosen as the base, the total computational cost
of reconstruction is nearly 2 orders of magnitude lower than larger

bonds.

Experimental results for a series of reconstructions from distances lists
generated from random point sets in three dimensions. The compu-
tational cost (bridge bond checks) for finding the core, performing
buildup and their total is presented as a function of the number of
points. The plots for the total and core finding steps are nearly in-
distinguishable because core finding takes orders of magnitude more
time than buildup. Each point on the plots is the median value from
10 different instances of random point sets.

43

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Experimental results for a series of reconstructions from distances lists
generated from random point sets in three dimensions. The computa-
tional cost (bridge bond checks) for performing buildup is presented
as a function of the number of points. Each point on the plots is the
average over 10 different instances of random point sets. We find that
the buildup time scales as 7yyi14up ~ N 498

Buildup for LSD (top) and Caffeine (bottom) molecules was done in
48.9 seconds and 2.1 seconds respectively. oL

Buildup for Cystine (top) and Lysine (bottom) molecules was done
in 0.24 seconds and 2.8 seconds respectively.

Buildup for Quinine molecule was done in 84.4 seconds.

Plot of minimum core size vs precision of the input distance list for
N = 9,17 and 25. We can see that a bigger core is needed for a less
precise distance list. The typical run time for N = 9,17, 25 was about
1 second, 20 minutes and 15 hours respectively, on a computer with
a 2.2 GHz processor and 2 GB of memory.

Density (top figure) and free energy per site (bottom figure) as a func-
tion of ~/u for T'= 0.2 and L = 35,56, 107,200, 493. For each chain
length two calculations obtained by iterating through the Golomb lat-
tice gas mean field equations are presented. One trace represented by
the symbols is obtained by starting at 7/u = 0.01, choosing a uniform
initial condition and then gradually increasing ~y/u. The solid lines
are obtained by starting at v/u = 10, choosing an exact OGR state
as the initial condition and then gradually decreasing v/u. The mean
field solutions are clearly strongly metastable. Though the spinodal
lines are strongly size dependent the equilibrium transition is rela-
tively size independent.

The symmetric (crosses) and symmetry broken (plusses) states of the
mean field theory for L = 107, T'= 0.2, v/ = 0.01 and v/pu=1. . .

Finite size scaling behavior of the density in the symmetric phase for
T = 0.2 and for different values of v/u. The line with slope —2/3 is
the prediction from scaling theory given by Eq. 5.20.

Rescaled free energy per site vs v/ for T = 2 x 1076, At low +/p
and large L, we can see that it follows a L2/3 scaling.

el

69

70

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

The equilibrium phase diagram determined from the crossing points
of the free energy curves, such as those shown in the lower half of
Fig. 5.1 o oo

In this log-log plot for the equilibrium phase diagram we see that it
has a finite non-zero value for the intercept.

Plot showing the dependence of the critical v/u on T. At low T, the
Y-intercept is v/p = 0.005 which is the phase boundary for rulers in
the large L limit.o

Density and Free energy calculations done exactly and using mean
field theory for L=26 at T=0.2.

Comparison of numerical results (+ + ++) for the length of optimal
Golomb ruler with the best lower bound (solid line), and with the
statistical physics scaling law (dotted line) that provides a useful
upper bound on all best OGRs. The main figure is for exact OGR
states, while the inset is for approximate OGR states of large size.

xii

83

Chapter 1

Introduction

Reconstruction of heterogeneous and complex systems using pair correlation functions or
pair distance information, is a problem that arises in many branches of materials physics
[1, 2], in biology [3, 4] and also in a variety of engineering applications [5]. We distinguish
between two problems (i) where the objective is to find a statistical characterization of a
heterogeneous system that is consistent with experimental information. In these cases the
reconstruction is not unique, but instead generates an ensemble of structures that are on
average consistent with the data. Reverse Monte Carlo methods [6] for the atomic structure
of glasses and simulated annealing methods for a range of heterogeneous materials are in this
class. Large samples are often used and the system is highly underconstrained as there are
many more degrees of freedom in the model for the atom locations than there is information
in the data. (ii) A related but significantly different problem is where we seek to reconstruct
a specific, unique, network or structure. The amount of information in the data must suffice
to constrain the degrees of freedom in the structure. This problem can be hard for structures
with only ten to hundreds of atoms or components. Uniqueness is lost when the model has too
many degrees of freedom as compared to the available data. This unique structure problem
is the focus of our study. Surprisingly, we find that it is possible to efficiently reconstruct
large complex structures in two dimensions, given only Euclidean distance information.
Crystallography represents the gold standard for structure determination and provided

methods to overcome the phase problem are implemented and if there are no homometric

variants [7], provides a unique crystal structure. When crystals are not available, but a
unique structure is still the objective, new methods are required. One successful approach is
the determination of protein structure in solution that may be found by using pair distance
information extracted from NOESY NMR data [3, 4, 8, 9, 10]. Two other approaches are
emerging. The first is determination of the structure of individual nanoparticles using lensless
imaging algorithms [11, 12, 13, 14]. The second approach is to extract a list of interatomic
distances from scattering data and to solve a new inverse problem to find the atom locations.
Here we present a highly efficient method to solve the latter inverse problem for the case of
complex or random point sets in two dimensions.

As discussed recently in [15, 16, 17] by Torquato and collaborators, reconstruction of
heterogeneous systems in general requires multipoint correlation functions. However pair
correlations are by far the most readily available structural data for heterogeneous materials
as they are found by a Fourier transform of elastic electron, x-ray or neutron scattering data
collected, for example, at national facilities. There is thus a strong motivation to find meth-
ods to determine the extent to which we can reconstruct heterogeneous systems using pair
information only. The most fundamental pair information is the list of distances between
points or atoms in a structure, reducing the problem to an inverse problem, namely: Given a
set of interatomic distances find the location of the atoms, up to global rotations and trans-
lations of the structure. This pair distance inverse problem (PD-IP) may be interpreted as a
complex network reconstruction problem where the edge weights are equal to the Euclidean
distances between nodes in the network. Moreover, it has been recently shown that a list
of pair distances may be extracted from scattering data using the pair distribution function
(PDF) method [18].

The PD-IP is central to determining protein structure from NMR data, however there

are vital differences between the problem we study and the NMR PD-IP problem. The
most important difference is that the list of residues or sequence of a protein is known
enabling mutation and other experiments to be carried out to specify the points between
which each distance lies. This leads to the assigned pair distance inverse problem (APD).
In contrast, the problems concerning materials and most heterogeneous media, the pair
distances are not assigned making the inverse problem significantly harder as there less
information in the data. This is the unassigned pair distance inverse problem (UPD). In
fact, APD algorithms for reconstruction of atom locations from precise distances is known
to be easy, being of order the number of atoms in the structure (N). However the NMR
problem is plagued by uncertainties in the experimentally determined interatomic distances
with experimental imprecisions typically of order 25% or higher [19]. The problem of finding
protein structure from NMR data is then best treated using loose restraints rather than hard
distance constraints. The energy landscape of the APD with loose constraints has many of
the features of spin glass problems leading to the belief that NMR, structure determination
using loose assigned distances (loose APD) is computationally hard [20, 1, 21].

In almost all other Euclidean network reconstruction problems the distances are not
assigned, as we do not know which nodes lie at the end of each distance. For example, the pair
distribution function method is used for the analysis of the local structure of nanoparticles
and complex materials. In many complex materials, such as high performance thermoelectric
materials [22], high temperature superconductors [23] and manganites [24], crystalline order
and heterogeneous local distortions co-exist so that crystallographic and PDF methods are
complementary. Crystallography finds the average structure and the PDF the local structure
(25, 26]. The pair distribution function gives a direct measure of the list of interatomic

distances arising in the local structure, however the endpoints of the distances are not known

so we face a computationally challenging UPD problem [27].

Recently, in collaboration with Professor Billinge’s group, we developed efficient algo-
rithms for the UPD problem for cases where there is significant symmetry in the structure,
including Cgp and a range of crystal structures. In those cases we found two types of algo-
rithm worked well, genetic algorithms and a novel algorithm called Liga [28, 29, 30].

Liga works well while reconstructing structures having high symmetry. But for solving
structures with hundreds of points, Liga fails miserably for low symmetry problems such as
random point sets, due to the fact that there are a large number of unique pair distances
in random structures. They thus fail for the general problem of complex Euclidean net-
works. Here we present an algorithm that is specifically designed for reconstructing complex
Euclidean networks where there are a large number of unique distances.

A formal statement of the UPD problem is as follows. We are given a list of distances
{d;}, Il = 1...M, between points in a D-dimensional Euclidean space. Our task is to find the
co-ordinates of the points {75}, i = 1,..., N such that the distance between every pair of
points |7 — 7| = r;; is a member of the distance list {d;}. Moreover we require that every
distance in the list {d;} occurs for some pair of points (7, j) in the structure.

The only inputs to the Euclidean network reconstruction algorithm described below are
the number of points in the network N and a list of N(N — 1)/2 Euclidean distances.
Physically, it is useful to think of the Euclidean distances as natural lengths of Hookian

19 so that we may define an energy function,

springs, [; i

B0} = ki —19)? (1.1)
1j

In the ideal UPD problem the distance list is known precisely, but we don’t know the

150
120 |
=
3 w0t
=
2 60 —
p=
30 |
0 L
o 1 2 3 5 6 7 8
2
15 F
=
3
= 1F :
e —
=
05t 1
0 L I L L
0 2 4 6 8 10 12
d

Figure 1.1: (color online) Simple examples of structures found from Euclidean distance lists.
The figures on the left are plots of the distance lists for: a) (top) a Cgg fullerene that has
a degenerate distance list, and b) (bottom) a random set of 10 points in the plane that
has a non-degenerate distance list. The fullerene has a total of 1770 interatomic distances,
but only 21 unique distances. The random point set has, with high probability, 45 unique
distances. The multiplicity is on the vertical axis while the distance is on the horizontal
axis (in arbitrary units). The figures on the right hand side are solutions to the inverse
problem found using the Liga algorithm (fullerene) and Tribond (random point set) to find
the structure from the given distance lists, without the use of any other information. For
the random point set all interatomic distances are drawn in the figure. For clarity only the
nearest neighbor bonds are drawn in the fullerene case. In this study, the distance lists are
taken from the known structure and then we try to solve the inverse problem using only the
distance list. In the real world, the structure is unknown and the distance lists are derived
from experiments, particularly x-ray and neutron scattering data.

mapping or assignment d; — l?j. This is the precise UPD. In the precise UPD the key compu-
tational difficulty is to find this mapping or assignment of d; to [;;. If the correct assignment is
found the energy (1) is zero, while wrong assignments lead to stretched or compressed springs
and a finite energy. Strategies to treat the loose UPD problem are discussed in Section IV.

In the assigned pair distance inverse problem (APD), when the inter point distances are
known precisely, the problem can be solved in polynomial time. A problem can be solved
in polynomial time (P) if the computational cost for an input of size N is O(N*), where
k is a non negative integer. When there are uncertainties in the experimentally determined
inter atomic distances, the problem is computationally hard and is NP [31, 32]. NP stands for
non-deterministic polynomial. For problems in NP, the solution can be verified in polynomial
time. Please note that problems in P are also in NP.

For the APD problem, the method for solving the precise case was the foundation for
solving the problem with imprecise distances. Here, we present an algorithm that solves the
unassigned problem (UPD) in the precise case and we hope that it will offer insights that
lead to techniques for solving the imprecise case.

Two examples of this problem are presented in Fig. 1.1. Fig. 1.1a (top) presents an
example of a degenerate distance list, typical of structures which have high symmetry, while
Fig. 1.1b (bottom) is an example of a random point set where all distances are, with high
probability, unique. Since the number of Euclidean distances is M = N(N — 1)/2, a search
over all permutations of the distances to find the correct assignment of d; to [;; requires a
computational time proportional to the factorial of M, so that 7 ~ M!. This is worse than
exponential time complexity and is also a very poor way to proceed. The Tribond algorithm
is presented in this work and is shown to have a polynomial complexity.

A related problem in one dimension is the optimal Golomb ruler. Common rulers have

marks which are equally spaced so that you can measure any distance between 1 and the
length of the ruler by placing an object between any two marks with the desired distance.
With a common ruler (Fig. 1.2) one can measure the distance 4 in multiple ways, say by
placing the object between the marks 0 and 4 or between marks 1 and 5. Golomb rulers
can be thought of as a special kind of rulers in which every distance between two marks is
different from all others. For example if there is a mark at position 1 and 5, then no other
pair of marks must be separated by a distance of 4. From this definition, we can see that
a common ruler with more than 2 marks is not Golomb. Using a ruler with the following
marks 0, 1, 4, 9, 11 (Fig. 1.3) we can measure the distances {1,2,3,4,5,7,8,9,10,11} by
using only one pair of marks, therefore the Golomb property is satisfied. Rulers which have
the smallest possible length for a given number of marks are called optimal Golomb rulers

(OGR).

rFr °r 1 1 1 1T [|1
o 1. 2 3 4 5 6 7 8 9 10 11

Figure 1.2: A common ruler

Maximizing irregularity and constructing optimal Golomb rulers are closely related [33].
Because of this property, Golomb rulers have applications in a wide variety of fields. Some of
the real world applications include x-ray crystallography [34, 35, 36, 7], radio systems [37],
radio astronomy [38, 39, 40, 41, 42, 43, 44, 45] and missile guidance [46].

Stated mathematically, a Golomb ruler is a set of non-negative integers with the property

Figure 1.3: A Golomb ruler

that the differences between the integers are all distinct. To be concrete, consider a set
of n integer markers my,mg,...,mp, and their associated distances d;; = |m; — m;|. By
convention, the first mark is set at position zero (mq = 0) so the length of ruler is equal
to my. A Golomb ruler is a set {m;} satisfying the constraint that all distances d;; are
distinct. An optimal Golomb ruler is the shortest marker set (i.e. smallest m,,) satisfying the
Golomb ruler constraints.

Dimitromanolakis [47] showed that Golomb rulers are equivalent to an old problem of
Sidon sets [48, 49, 50]. A Sidon set is a subset of the set A = 1,..., N of positive integers
such that for every two elements a;,a; (a; < aj;) of the set, the sum a; + a; is different
from all other sums. Sidon sets and Golomb rulers are equivalent as a set having distinct
differences between any two elements will also have distinct sums and vice versa. Finding
an optimal Golomb ruler is equivalent to finding a Sidon set with the maximum number of
elements. This also gives us a tight upper bound on the length of a optimal Golomb ruler
my, at large n, my, < n(n+1). Golomb rulers can undergo simple similarity transformations,
translation and multiplication that lead to new rulers which also have the Golomb property.
Golomb rulers have a two fold degeneracy, with the two degenerate states transforming into

each other by spatial reflection, i.e. m; — m,, — m;. However, a Golomb ruler cannot have

reflection symmetry as it would lead to repeat distances.

There does not exist a closed form formula to generate optimal Golomb rulers. Algebraic
constructions like the Bose-Chowla construction [51] and the Ruzsa construction [52, 53]
are used to generate rulers, most of these rulers turned out to be optimal. Hence the rulers
generated by these methods are called near-optimal rulers. The optimality proofs of such
constructions can only be made with exhaustive search methods.

Finding an optimal Golomb ruler consists of two parts. First we must verify that the
proposed ruler is Golomb (polynomial complexity) and then check that it has the shortest
possible length. Although it has not been proved to be NP-hard, it is believed that no
polynomial time algorithm exists for this problem [54]. Problems are said to be NP-Hard
when the solution cannot even be verified in polynomial time, let alone coming up with
a solution in polynomial time. The largest OGR found as of July 2014, has n = 26 with
my, = 492. Small rulers with marks upto n = 18 were relatively easy to obtain [55, 56]. After
that exhaustive search is being used in addition to some heuristics and some clever ways of
eliminating bad candidates [57, 58] to solve this problem. The 19 mark ruler was obtained
using a computer search using 36,000 CPU hours [57]. The search for larger rulers is now
being carried out using a distributed computer network consisting of thousands of computers
and takes years to complete [59].

In the past decade statistical physics approaches to combinatorial optimization problems
have provided new theoretical insights and improved algorithms, particularly near the phase
transitions [60, 61, 62, 63]. Examples include random K-SAT [64], coloring and maximum
independent set on random graphs or vertex cover [65, 66]. All NP-complete problems [67]
can be mapped using lattice gas approach. Problems are said to be NP-Complete when the

solution can be verified in polynomial time, but it is not possible to come up with a solution

in polynomial time. The problem of finding the optimal Golomb ruler (OGR) is to find the
shortest ruler (with length L) which has a given number of marks (m). Also, all the interpoint
distances in the ruler should be unique. In this study a lattice gas model is introduced for
the OGR problem and its phase behaviour is studied. The OGR problem is different than
most models studied so far as it’s associated statistical physics model is not disordered,
being defined on regular lattices. Nevertheless the OGR solutions are highly irregular with
frustration of distance geometry constraints being the physical origin of complex aperiodic
ground states and glass like behavior, as is familiar in geometrically frustrated problems
(68, 69] arising in other contexts. The OGR problem is also an example of geometrical
frustration. If we are trying to solve for a density which is higher than the OGR density then
there is geometrical frustration. There is no solution for which there exists a zero energy
ground state. (L,m) pairs for the optimal Golomb ruler have the lowest energy and the
solution is degenerate due to reflection symmetry. From numerical calculations it is seen
that the Golomb lattice gas exhibits spontaneous symmetry breaking from a low constraint
reflection symmetric phase to a high constraint phase that does not have reflection symmetry.
Asymptotic calculations are also done and the results for the scaling behavior and phase
boundary are compared with those from numerical calculations.

The layout of this thesis is as follows. Chapter 2 is about the Liga algorithm and the
extension of the algorithm in order to solve crystal structures. The work on the Liga al-
gorithm is prior work by my colleague Pavol Juhas. The work on the extended algorithm
was published in the Journal of Applied Crystallography and I was a co-author. Chapter 3
describes the Tribond algorithm in two dimensions and the corresponding paper is ready for
submission to Physics Review E. Chapter 4 deals with the algorithm in three dimensions and

the corresponding paper is in preparation for Physics Review E. In chapter 5, the work on

10

the optimal Golomb ruler (OGR) is presented, which will be resubmitted to Physics Review
Letters. In chapter 6, the concluding remarks are made. I will also be writing a review paper,
which will cover Liga and Tribond algorithms, that will be submitted to Discrete Applied

Math journal. In the appendix, all the code for the Tribond 2D and 3D algorithm is given.

11

Chapter 2

The Liga algorithm

2.1 Algorithm details

Inspired by the Spanish soccer league (La Liga), Liga uses a combination of ideas from dy-
namic programming with backtracking and tournaments. Reconstruction is done by building
up small divisions of feasible substructures. Each division or level has substructures with the
same number of atoms and is labeled by the the number of atoms in the substructures. The
algorithm has tournaments where substructures in a division compete with each other to
gain atoms and move to a higher division (promotion). The structures that lose have some
their atoms removed and they fall to a lower division (relegation). Fig. 2.1 gives a depiction
of this algorithm. The cost function for the algorithm is based on the closeness of the target
and model distance lists. Each atom has an individual cost that is based on its contribution

to the total cost for the substructure.

12

§

After Pmm otmn

Relegate Loser
{remove atoms)

Q Promote Winner
{add atoms)
@ Winner

number of atoms in candidate subclusters

sample candidate subclusters

Figure 2.1: An example of promotion and relegation in Liga for N=10 and four structures
at each level. The algorithm is at level 4, where a winner structure is randomly selected
with probability equal to the reciprocal of its cost. The winner attempts to add as many
candidate points (denoted by ‘x’) with a low cost as possible. In this example, the winner
can add five points and gets promoted to the 9th level. A loser structure is randomly selected
from the 9th level, it loses five of its atoms and is relegated to the 4th level. The choice of
the losing structure and the points that are removed in relegation are done randomly with
a probability equal to the cost.

In a tournament, a “winner” is randomly chosen from the candidates with probability

13

equal to the reciprocal of its cost. A “loser” is randomly chosen with probability equal to
its cost. This operation is carried out for both points and substructures. Whenever atoms
are added or removed from a structure, the target distance list is updated so that the new
distances are no longer available.

In order to add an atom to an existing substructure, a pool of candidate points is gener-
ated. Three methods are used to find candidate points: line trials, triangle trials and pyramid
trials. In line trials, two winner atoms are chosen along with a distance from the target list.
The first atom is chosen as the anchor, while the second one is used for the direction and this
type of trial leads to two candidate points. In planar trials, three winner atoms are chosen.
The first two form the base of the triangle, while the third defines the plane of the triangle.
Two distances are selected from the target list and they are used to construct a triangle
vertex. After reflecting this vertex along the X and the Y axis, four candidate points are
generated. In pyramid trials, three winner atoms are chosen and they form the base for the
pyramid. The apex point for the pyramid is generated by using 3 randomly chosen lengths
from the target list. There are 12 candidate points generated at the end of this trial, as there
are 3! ways of assigning 3 distances to 3 atoms and also the 2 possible choices (positive and
negative) for the Z coordinate. The above trials are carried out for a specified number of
times to generate a pool of candidate points that can be added to the substructure. With
each point is associated a cost of addition to the substructure. A winner atom is chosen
from the pool and added. The cost for the remaining points in the pool is recalculated with
respect to the new structure and if there are any candidates whose cost is low, a new winner
is selected and added to the structure. This can speed up the reconstruction significantly.

Once the promotion and relegation has been carried out at a division, the algorithm

moves to the next division and repeats the process. The Liga algorithm starts at level 0 and

14

systematically goes through the N levels and populates them with candidates. A traversal
through all the levels is called a season. After the algorithm reaches the Nth division, and if
there is a candidate whose cost is below a user defined threshold, that candidate is declared
as the solution. Else, the algorithm starts a new season from the lowest division and continues
the search.

Liga succeeds in reconstructing a lot of structures like platonic solids (Fig. 2.2), lattice

structures (Fig. 2.3), Lennard Jones clusters (Fig. 2.4) and Cgg buckyball (Fig. 2.5).

Figure 2.3: Reconstruction of a cubic grid with side equal to 4 and N=64 using Liga.

15

Figure 2.4: Reconstruction of Lennard Jones clusters using Liga. On the left is solution
for N=88 and on the right is N=150. The solutions have a low error and are topologically
identical to the LJ-88 and LJ-150 clusters. The atoms in blue have a low error, while those
in red have high error.

16

&
-3
P
an

10l Intra—-molecular | Particle-particle
distances | correlations

AT PR (PR T
IRRIRIIE
TREN AN

P
a3]
o

0 5 | 10 15

"'""-._* ,,-*""'" . r;l.
‘s var{dj = 0.0038 A2
var(Cgol = 0.0043 A2

” var(d) = 0.008 A2
var(Cgq) = 0.016 A2

Figure 2.5: Reconstruction of Cgg from experimental PDF data. a) Experimental pair dis-
tribution function (G) as a function of distance (r). The background (Gy,) arising from
interparticle correlations is shown in green. b) The radial distribution function (R) as a
function of the distance (r). It is obtained after subtracting the background from the PDF
data. The interatomic distances are obtained by using the peak maxima and the multiplic-
ities are set equal to the peak areas. ¢) The solution structure obtained using the exact
distance list obtained in the previous step. d) The solution obtained after the multiplicities
in the distances are relaxed by 10%. The atoms in blue have a low error, while those in red
have high error.

2.2 Limitations

Liga fails with structures with a low symmetry and a large number of unique distances

(Fig. 2.6). It is unable to reconstruct random point sets of size ten. Random point sets have

17

N(N —1)/2 interpoint distances, which with high probability are all unique. The reason for
the difficulty in reconstruction arises from a large number of low cost candidate points and
substructures that are not part of the target structure. It is not able to make progress while

searching the phase space as it gets stuck in these rather large number of local minima.

1200 T T -I T T - T

s?:: Tr SUCCEess

4 4 failure

1000+ -

800r]

600+ 8

400+ + w -

number of unigque distances

200

o
r * % 4

60 80 100 120 140 160
number of atoms

Figure 2.6: Liga’s success and failures in reconstructing structures with different amounts
of symmetry. Low symmetry structures have a large number of unique interpoint distances,
while those with high symmetry have a small number of unique interpoint distances. Failure
is represented by the plus symbol while success is denoted by the star symbol. Success mostly
occurs in the region closer to the X axis, which is representative of the structures having
high symmetry while failure mostly occurs mostly for structures having a large number of
unique distances.

18

2.3 Extension of the Liga algorithm

The algorithm was extended to solve for the structure of periodic crystal structures from
experimental PDF data (Fig. 2.7). It is a three step process, where the first step is the
extraction of interatomic distances from experimental PDF data. In the second step, Liga is
used to find the coordinates of the atoms in the unit cell. In the third step, the assignment
of atom type to each site is carried out.

Distances found from peak positions Candidate Geometries

- 2 ~N)
Experimental Gir) Lattice
PDE 4: A Parameters y
\ | B (g~
Peak Fitting |° ™~ \ /' o Liga S
\]
=4
e E
Chemical
“Coloring”

LS

Candidate Solutions

Best Candidate

Figure 2.7: Steps involved in the crystal structure determination using experimental PDF.
An automated peak extraction routine is used to obtain the distances and their multiplicities.
This information along with the lattice parameters for the crystal structure is given as input
to Liga. It gives as output a number of candidate solutions that are consistent with the input
data. The next step is coloring, which assigns the atom species to each site by minimizing
the atom radii overlap and the structure with the lowest cost is declared as the solution.

The process of extracting interatomic distances from experimental PDF was done using

19

an automated peak extraction algorithm developed by my colleague, Luke Granlund. The
cost function is such that it guides the algorithm to generate peaks that fit well to the given
data and also makes sure that it uses as few peaks as possible in order to avoid over-fitting.
In the next step, Liga is used for reconstructing the position of atoms in the unit cell so that
they are in good agreement with the distance list obtained in the previous step. This step
is repeated with multiple starting random seeds to confirm the correctness and uniqueness
of the solution. In most cases there was a unique solution but for some, there were multiple
geometries that were a good match to the input distances. In such cases the correct structure
was identified after the coloring step.

The next step is the assignment of atom type to the sites in the unit cell and this step
is also known as “coloring”. For a structure with size N, which is made up of k different
atom species, then the number of ways of assigning the atom types to sites is given by
N'/(nq1!ng!ng!..ni!). For a binary system with equal number of atoms of each type, having
a chemical formula Ay B}, the number of possible assignments grows exponentially as 2N for
large N. This growth makes exhaustive search impossible and a bad approach. The coloring
cost can potentially be measured in two different ways. The first one is based on how well the
model PDF matches with the experimental PDF. The second one is the average error in all
the differences in the interatomic distances and the corresponding sum of radii of every atom
pair in the structure. The cost defined in the second way is computationally less expensive
and was chosen for this step. A simple downhill search was employed, where it starts with a
random assignment. The coloring cost of the initial random assignment is calculated along
with those from all possible 2 atom swaps. The swap that leads to largest decrease in the
cost is accepted and the process is repeated until a minimum is found. This simple downhill

search was able to find the correct assignment in all the samples that were tested.

20

The solutions obtained were compared with the structure known from literature to check
if they had the same nearest neighbor coordination and also by calculating an overlay error.
The extended algorithm successfully able to reconstruct 14 out of 16 crystal structures that
were attempted. Ag, BaTiO3, C graphite, CdSe, NaCl, Ni, PbS, PbTe, Si, Sr'TiO3, Zn, ZnS
sphalerite and ZnS wurtzite were solved successfully, while it failed for CaTiO3 and TiO9

rutile.

2.4 Summary

In this chapter, the concepts and steps behind the Liga algorithm are presented. Liga is suc-
cessful in reconstructing structures which have a high symmetry like the Cgg buckyball using
only their unassigned interpoint distances. The Liga algorithm was extended in order to solve
periodic crystal structures from experimental PDF data. It is successful in reconstructing

structures of 14 well known inorganic crystalline materials that were studied.

21

Chapter 3

The Tribond 2D algorithm

In this chapter the problem of complex structure reconstruction in two dimensions is studied.
The chapter is organized as follows. Section 3.1 summarizes the theoretical concepts upon
which the UPD reconstruction algorithm is based. The key concepts are based on constraint
counting and generic graph rigidity that have a long history in the physics and mathematics
literature. Section 3.2 discusses implementation of the procedure, which broadly consists of
two phases: identification of a rigid core and buildup from a rigid core. A naive implementa-
tion is quite inefficient, however a simple optimization where cores are found using a selected
subset of the distance list provides a much more efficient implementation. A loose polynomial
upper bound on the computational efficiency of the algorithm is also developed and com-
pared with the actual data. Large random point sets may yield distance lists that are close
to degenerate, leading to problems with reconstruction. Section 3.3 discusses the algorithm
in the context of the broader problem of reconstructing non-crystalline and heterogeneous

materials. Finally in Section 3.4 is the summary.

3.1 Rigidity theory of unassigned PD-IP

Graph rigidity theory addresses the issue of how many independent constraints are required
to ensure that a graph is rigid [70, 71, 72, 73]. This subject was initiated by James Clerk

Maxwell leading to the development of mathematical theories of graph rigidity and physical

22

approximations to the rigidity of glasses [74]. In D dimensions a point has D translational
degrees of freedom, so a structure with N nodes has DN degrees of freedom. The number of
internal degrees of freedom is DN — D(D +1)/2 as there are D(D+1)/2 =D+ D(D—1)/2
degrees of freedom due to global translations (D) and rotations (D(D — 1)/2). An object is
rigid when its internal degrees of freedom are constrained leaving only its global rotations
and translations.

A constraint such as an interpoint distance contributes to the rigidity of a structure
only if it is linearly independent with respect to the other constraints in the structure, so
that identification of degenerate constraints is key to accurate constraint counting. Several
mechanisms for the degeneracy or linear dependence of constraints in small structures are
illustrated in [20]. In a classic paper, Laman [75] presented a combinatorial characterization
of the rigidity of graphs in the plane and Hendrickson [20] provided the basis for efficient
algorithms that have been widely applied in physics, applied mathematics and in biology.
Note that if a graph is rigid it can support an applied stress. Addition of further bonds
or edges to a rigid graph does not increase its rigidity, though of course the elastic moduli
continue to increase as further bonds are added. These additional bonds are called redundant
bonds as they do not contribute to the graph rigidity. An important feature of redundant
bonds in graphs is that, except in special cases, each redundant bond leads to overconstraint
that in most physical situations leads to an internal stress.

Now the question as to whether there is enough information or constraint to solve the
UPD problem is addressed. If there are B independent distances between the nodes of a
Euclidean network, the critical number of independent constraints, B, required to make the
network rigid is,

B, = DN — D(D +1)/2. (3.1)

23

In an ideal NMR or PDF experiment all interparticle distances would be extracted so that
the number of interparticle contraints would be N(N — 1)/2 which appears to be more than
enough to constrain the structure. However, it is not clear that this is the case as is evident
by considering the Cgg molecule as illustrated in Fig. 1.1, where there are only 21 different
interatomic distances. Since for a buckyball, B, = 3 x 60 — 6 = 174 >> 21, it appears
that there are far fewer distance constraints than is required to find the correct structure
using the distance list alone. However, the distances with the same length are not necessarily
degenerate as they may have different directions in the structure. Mathematical analysis of
this issue is currently absent and is an important challenge. In contrast for generic random
point sets that are of interest here, all of the distances are unique so that for a random
Euclidean network with N = 60 nodes, there are 1770 different distance constraints, which
is far more than is required to specify the Euclidean network in three dimensions.

The above discussion indicates that there are more than enough pair constraints in com-
plex Euclidean networks to specify the network structure. As described in the next section,
these rigidity concepts may be used to develop an efficient reconstruction algorithm. How-
ever it is important to keep in mind the limitations of this approach, including the issues of
degeneracy and the fact that Laman’s theorem [75] only strictly applies to planar graphs.

The theoretical foundation of efficient algorithms for the UPD problem rests on rigidity
theory discussed above that states that an isostatic structure in two dimensions (from Eq.
3.1) has B, = 2N — 3 independent distance constraints. However, the key test of whether
the assignment of distances to natural lengths is correct is to place at least one additional,
overconstrained Euclidean distance into the structure. A distance incompatible with the iso-
static structure leads to a finite strain energy cost in Eq. 1.1, due to stretched or compressed

springs, while a distance compatible with the isostatic structure has zero energy cost. Note

24

that many isostatic structures that are inconsistent with the final structure can be made,
but with high probability, no overconstrained zero cost structures can be made that are

inconsistent with the final reconstruction.

3.2 Tribond 2D algorithm

In two dimensions the smallest structure with at least one overconstrained bond is N = 4
where the total number of bonds is (3) = 4 x 3/2 = 6, while the number required for
isostaticity is (from Eq. 3.1) 2N — 3 = 5. The key observation is that if six Euclidean
distances are found that form a point set structure, and the cost function for this structure
and these distances is zero, then a unique substructure has been found. A zero cost, correct,
substructure with six distances and four sites is called a core. Once a core is found, and if
there is no degeneracy, then this core is a correct substructure of the complete reconstruction.
One may then build up from the core iteratively to find the complete structure. At each step
there is an existing, correct substructure. Then add one site and search for three edges that
are compatible with the new node and with three nodes that are in the existing structure.
The addition of one site and two edges is an isostatic addition, while the addition of one site
and three edges is overconstrained. If three edges that are compatible with one additional
site and three sites in the existing structure are found, with high probability, this site is part
of the correct reconstruction.

In practice, to construct a core we choose the smallest bond as the base for all our triangles
and loop over all triangle pairs which are feasible according to the triangle inequality. For
every triangle pair we calculate the length of the bond that connects the two apex points

which we call the bridge bond. The length of the bridge in the candidate core is tested

25

against the lengths in the distance list. If the candidate bridge length is equal to an unused

distance in the distance list, we have found a core (Fig. 3.1 and Fig. 3.2).

Figure 3.1: (color online) An example of a core. In 2D, it consists of 4 points. The horizontal
bond is the base (in black), the bonds below it (in blue) make up the base triangle while
those above it (in red) make up the top triangle. The vertical bond is the bridge (in green).

-
I

\ ¥
o ¢
Figure 3.2: Four possible positions for the top triangle are shown. The corresponding bridge

bonds are shown using a dashed line.

The build up procedure consists of choosing a triangle as the base triangle in the existing

structure, followed by an attempt to add a site to it. The addition of a site consists of

26

choosing an edge in the base triangle as the base bond and generating test triangles with
that base bond and using two distances from the distance list. After we place this site, we
carry out bridge testing to determine whether the structure has zero strain energy.

Our Tribond implementation of the above procedure for the unassigned PD-IP algorithm

may be summarized as follows:

We are given the sorted distance list {d;} with the number of nodes in the network N.

We start with an empty set, then

A. Core finding procedure

1. Choose the shortest bond as the base bond and a window (subset) of W = 6 entries in

the distance list for the core finding search.

2. Iterate over all triangles constructed with the triangle inequality that have the same

base bond using distances in the window W.

3. Recursively search over all the pairs of the feasible triangles generated above and over
all lengths in the Euclidean distance list to find a bridge. If a compatible core is found,

remove the edges used from the distance list and exit.

4. Increment W and return to (1), making sure not to retest bond combinations.

B. Buildup procedure.

1. Choose a base triangle to be the reference for our buildup.

27

2. Search over all sets of two edges from the distance list to find a set compatible with
the base triangle in the existing structure. Search over the distance list to find a bridge

bond.

3. If successful, remove from the distance list the edges that are used in connecting the
newly added node. If size of reconstructed structure is < N return to step 1 of the

Buildup procedure.

A coarse upper bound on the computational time for this procedure consists of two
parts: (i) the time to find the core; (ii) the time to carry out the buildup procedure. The
number of unique cores in the point set is (JX), the number of ways of choosing 4 sites
from N total sites. The number of ways of choosing six distances from the set of M =
N(N —1)/2 distances is (Ag). A brute force search then finds a core in computational time
Teore ™~ (Ag) / (]X) ~ N8 /1920. Using similar reasoning, a brute force buildup algorithm takes
a computational time that scales as Ty;1qup ~ (]\?f[) ~ N0/48. This clearly shows that the
method is polynomial though the power of the polynomial is too high for this to be practical.

The simple methods we have developed reduce the computational time very significantly
from the coarse upper bounds of the last paragraph. The key observation is that many of
the distances in the distance list violate the triangle inequality di 4+ do > ds, so they clearly
cannot form a triangle together. A large fraction of the computational time in a brute force
search is spent exploring these trivially inconsistent distance combinations. If we fix the base
bond and the bridge bond is found using binary search, using simple combinatorial arguments
we get Teore ~ (%) ln(N)/(];]) ~ NO6In(N). For a triangle with base bond a and second side

b, the range of values for third side ¢ is (b — a,b+ a). So for a larger base bond a, there is a

much bigger range of feasible values for the the third side and hence the number of feasible

28

triangles goes up. But the actual number of triangles in the target structure is the same for
any choice of base bond. This is seen in Fig. 3.3, where the number of feasible triangles goes
up with the fractional position of the base bond in the distance list. Hence statistically, we
can find a core in the least time if we choose the shortest bond in the distance list as our
base.

Distances are also more likely to satisfy the triangle inequality if they are drawn from
a list of comparable, rather than disparate, lengths. Since the base bond is short, a core is
more likely to be found quickly by searching over other short distances first (the small-core
hypothesis, Fig. 3.4), and including longer distances only as necessary. This is implemented
as a window of the W shortest distances in the distance list, which increases periodically as
core finding proceeds. Of the six bonds in the core, the base is fixed, four are drawn from
the window, and the bridge bond may appear anywhere in the distance list. We observe that
a window of size W ~ N is usually sufficient to find a core. Therefore, typical computation
time is Teore ~ () In(N) ~ N4n(N).

From Fig. 3.3 and Fig. 3.4, we can guess that when we use the smallest bond as the
base it will lead to the core finding and reconstruction in the shortest possible time. This is
confirmed from our runs and can be seen in Fig. 3.5 where we used base bonds that were
picked from 10 different places uniformly spread along the sorted distance list. If the smallest
bond is chosen as the base, it took significantly less time for the entire construction.

Attempting to find the core for large point sets (N > 200) frequently leads to bad cores.
Bad cores are over constrained clusters whose distances are part of the given distance list,
within our tolerance, but the substructure is not present in the target structure. This occurs
due to the fact that we are using finite tolerance when checking for the bridge bond and

we also have finite precision when we are doing the triangulation while placing the points.

29

[a—

)
(@)}
T

Number of feasible triangles

0 0.2 0.4 0.6 0.8 1

Fractional position of base bond in the distance list

p—
)
9}

Figure 3.3: Number of feasible triangles using the bonds from a given distance list go up
when we choose a larger bond as base for the triangle. Statistically, using the shortest bond
in the distance list as the base leads us to the core in the shortest time. This plot shows data
from runs using 10 different structures with N = 128.

Bond window for core
[
o
T

0 0.2 0.4 0.6 0.8 1

Fractional position of base bond in the distance list

Figure 3.4: Small core hypothesis: (N = 1024) We see that when we have the smallest bond
in the distance list as the base, the first core is in a distance window an order of magnitude
smaller than other choices for the base bond. Hence, statistically, using the first bond as base
is our best bet when searching for the core.

30

<

S .8

< 10

<

S 10/

Ha)

%’o 10°

3 5 d

«— 10

o

E 0 a X S Core Fir}ding-

= N Buildup

2 10° . e _ Toul;
0 0.2 0.4 0.6 0.8 1

Fractional position of base bond in the distance list

Figure 3.5: Plot illustrating the role of the base bond. For N = 32, the Tribond algorithm ran
using base bonds that were picked from 10 different places spread along the sorted distance
list. If the smallest bond is chosen as the base, we see that it takes 3 orders of magnitude less
time for the core finding stage and an order of magnitude less time for the buildup stage.

We also see a loss in precision when placing points by doing triangulation while using the
smallest length in the distance list as the base bond. So, we try to use all 6 bonds (in the
core) as the base bond and check if the corresponding bridge bond is valid or not. We only
take cores for which the bridge bond is valid in all of the 6 cases. This stringent check is very
good at identifying bad cores. A confirmatory test is to use a structure comparison routine
that flags the core as bad.

We have developed a structure comparison routine that overlays the points in the recon-
structed structure (7) with the points in the target structure (R) and calculate an overlay
error (Eq. 3.2) which can tell us how good the fit is. This routine can also tell us if a given
substructure is part of the target structure or not. This is useful for testing purposes and

not for the practical application, where we do not know the answer (target structure) ahead

31

of time.

Coverlay = Z ‘Fz - §Z|2 (3'2>

1

When we find a core, we attempt buildup and add more points to the substructure. If
after looping over a certain number of bonds from the distance list, it is unable to add any
points, then we call it a bad core and get back to the core finding stage and find the next
one. This is a heuristic method that helps us identify bad cores in a short amount of time.
We have observed that the core is bad because even when given a large amount of time, it
fails to add a significant number of points while doing the buildup.

It is important to choose the appropriate amount of tolerance when checking if the bridge
bond is part of the given distance list. Using a very loose tolerance leads to a large number
of bad cores. On the other hand, if we use a very tight tolerance we miss out on good cores,
because we have finite precision when carrying out the triangulation to place the points
in our substructure. We use floating point numbers for the input distances which has an
accuracy of 18 digits. We found that using a relative tolerance of 10712 is optimal to make
sure that we get the good cores and filter out the bad ones. We observe a loss of precision
when trying to place points that are collinear to the points that form the base bond. In such
situations we relax the tolerance when checking for the correctness of the bridge bond.

To check the validity of a new point while doing buildup, in addition to the bridge
bond check, we check 10 additional distances that it creates with the points already in the
substructure. Only if these are part of the distance list do we add this new point to the
structure. Whenever a new point is added to the substructure, we note the 3 bond lengths

(two from the new triangle created and the third is the bridge) that were used and make

32

them unavailable during further reconstruction. This reduces the list of available distances by
3. When placing the nth point if we update all n—1 distances created between the new point
and the points already in the substructure this reduces the number of available distances
substantially but we found that it does not lead to any significant speedup in the buildup
routine.

If after doing the buildup we still don’t have the desired number of points (N), we relax the
tolerance for the bridge bond checks and rerun the buildup procedure. If we are still short, we
choose a different bond as the base and attempt to do the buildup using that bond. Once we
have a full reconstruction, we calculate the distance error, which is based on the agreement
between the given distance list and the distances derived from the reconstructed structure.
We also calculate the overlay error (Eq. 4.1) using the structure comparison routine which
is useful for testing purposes.

The Tribond algorithm was run for N = 8,16, ...,512 and the computational cost for the
core finding and buildup stages was recorded. The cost is the number of bridge bonds that
were checked when placing a point in the structure. It is useful as it is a system independent
measure of the cost. The timing runs are given in Fig. 3.6. We can see that the time required
for doing the buildup is about an order of magnitude less than that for the core finding stage.
The scaling is Typpq; ~ N>32, which shows that our algorithm has a polynomial run time
albeit a higher order one. This scaling proves to be better than our estimate obtained earlier
using simple combinatorial arguments as we had not accounted for the speedup obtained by

using the triangle inequality.

33

Ne)

% 100 F TR Core IFinding,; _
E ey S Buildup |
S A Total

2 07|) _
£ 10

- 6

o, 107 T _
2 5

= 107 1 _
B 10t} _
2 3

= 107 t B _
E 102 = >,< A L ' I I | :

8 16 32 64 128 256 512
Number of sites

Figure 3.6: Experimental results for a series of reconstructions from distances lists generated
from random point sets in two dimensions. The time for finding the core, the time for doing
the buildup starting with the core and the total time are presented as a function of the
number of bridge bond checks that were performed. Bridge bond checking is a fundamental
process in Tribond and provides a system-independent measure of computational time. Each
point on the plots is an average over 25 different instances of random point sets. We find
that the total time scales as Tyyzq ~ N°>32.

34

i
sgasssensse
0299¢ %% %
Seezeese

Figure 3.7: A perturbed graphene cut out made from 144 atoms. The Tribond algorithm
successfully reconstructed a similar structure in a few minutes.

3.3 Applications

In the previous section we showed that Tribond is successfully able to reconstruct random
point sets. We now try to solve some structures which occur in the real world. Structures
occuring in nature are usually symmetric but because of finite size effects they have defects
which cause small deviations in their “ideal” locations. Fig 3.7 shows a graphene nanoparticle
with 144 atoms. The location of each point differs from their “ideal” ones via a small noise
added to simulate natural imperfections. Tribond reconstructed this graphene sheet in a few
minutes.

Tribond can also solve 2D polymers modeled by self avoiding random walk (Fig. 3.8). If
the polymer is modeled as a random walk in the continuum, then it is just like a random point

set. Since we have all the pairwise distances for the structure, it forms a complete graph.

35

Figure 3.8: Self-avoiding walk is a sequence of moves that does not visit the same point more
than once and is used to model polymers. Tribond was able to successfully reconstruct the
above structure (N = 100) in a few minutes.

From graph theory we know that every complete graph is Hamiltonian, i.e. there is a path
that visits every point exactly once. Hence polymers modeled as a self avoiding walk equate
to a random point set for reconstruction purposes. We are able to reconstruct polymers (like
in Fig. 3.8) knowing only their unassigned distances using the Tribond algorithm.

We also reconstructed a 100 site point set on a square grid as shown in Fig. 3.9, that was

gently perturbed, in a few minutes by our algorithm.

3.3.1 Tribond for structures with high symmetry

We refined the idea behind Tribond to make a modified algorithm that can deal with struc-

tures having symmetry which have a highly degenerate distance list. We use only one instance

36

of each distance from the given distance list and find a core. During the buildup, at each
step of the reconstruction we use only one instance of each distance and keep track of its
multiplicities. So, at any given time, the distances that are available to the algorithm are all
unique. This cuts down on the number of bad cores and points and helps guide our search.
Using this modified approach we have been able to solve square grids with up to N=1024
(32 x 32) points in under 10 minutes on a desktop computer (but there is some trouble for
N=400, 676, 900 as the algorithm tries to grow into a bigger lattice instead of completing

the grid).

3.3.2 Reconstruction from an imprecise distance list

So far, we always started with a distance list which had entries that were known to a very
high precision of 18 digits. Imprecise distance lists have less information in them and that
makes it more difficult to solve our inverse problem. So we modified our original algorithm

to deal with this situation as follows.

1. Start with a core (or substructure) and an empty pool which can save the coordinates

and their associated cost for up to a maximum of 20 candidate points.

2. We randomly choose a bond in the substructure as the base for our buildup. Then we
search over all sets of two edges from the distance list to make a test triangle and the
new vertex is our test point. Evaluate the complete cost of the new substructure if
this test point were to be added. If this cost is low and is less than that of the worst
point in the pool, then add this point to the pool in the correct place based on its cost.

Remove the worst point from the pool so that its size never exceeds the maximum.

3. Now choose another base bond randomly in the current substructure and repeat the

37

Figure 3.9: Gently perturbed square grid made of 100 sites. Our algorithm was successfully
able to solve such a structure in a few minutes.

38

previous step. Combine the two pools obtained so far based on the cost such that we

have up to 20 candidate points.

4. Tterate over all possible 2 point combinations (in 20 choose 2 ways) from the pool and

find the pair which will have the minimum cost if added to the substructure.

5. Add the 2 points found in the above step to get a bigger substructure. If its size is

< N, then go to step 1.

As compared to our buildup procedure (when we have precise data), we now do the
buildup in multiple stages, first generating a pool of candidate points which have a low error
with respect to the current substructure (based on single point addition). Then 2 points are
added to the substructure from the pool which have the lowest error. We do this iteratively
until we have the complete structure. As we gradually grow the structure and generate the
pool of candidate points multiple times, we avoid all the bad points (low cost but wrong)
and correctly guide the search.

Our results can be seen in Fig. 3.10, which shows the minimum core size needed to
reconstruct a structure of size N = 26,50, 76, 100 for different values of the precision (P) of
the input distance list. The units for the precision of the distances is the number of digits. Our
criteria for success was that the algorithm should be able to successfully reconstruct at least
5 out 10 different random point set structures. We can see that as the distances become less
precise, a core of a larger size is needed for successful reconstruction. The typical run time for
N = 26,50, 76,100 was about 1 minute, 10 minutes, 4 hours and 20 hours respectively, on a
node in our high performance computing center. When the input data has a higher precision
(P > 8) than what is shown in the plot, we found that a core size of 4 was sufficient to

reconstruct the structure.

39

24

20

16 |

Minimum initial substructure size

4 5 6 7 8

Precision of distance list (number of digits)

Figure 3.10: Plot of minimum core size vs precision of the input distance list for N = 26, 50, 76
and 100. We can see that a bigger core is needed for a less precise distance list.

3.4 Summary

In this chapter, the details of the Tribond 2D algorithm for the reconstruction of low symme-
try structures represented by random point sets were presented. The Tribond 2D algorithm
consists of two steps: core finding and buildup. The core is the smallest substructure with
at least one over-constrained bond and is of size 4 in two dimensions. Choosing the small-
est bond as the base bond for reconstruction had a dramatic improvement in performance.
Computational cost of core finding was orders of magnitude more than buildup. Tribond 2D
was able to reconstruct random point sets in 2 dimensions of size ~ 1000 in about 24 hours
on a desktop computer when given precise distances.

A modified approach was presented for the buildup step with less precise data and given a
known substructure. As precision decreases, it is clear that we need a substructure of larger

size, underscoring the importance of the core finding step. We successfully reconstructed

40

random point sets of size 100, with the distances having 4 digits of precision, given a known

substructure of size 24.

41

Chapter 4

The Tribond 3D algorithm

The extension of Tribond algorithm to three dimensions is discussed in this chapter.

4.1 Tribond 3D algorithm

In three dimensions the smallest structure with at least one overconstrained bond is N = 5,
where the total number of bonds is (g) = 5 x 4/2 = 10, while the number required for
isostaticity is (from Eq. 3.1) 3N —6 = 9. The key observation is that if we find ten Euclidean
distances that form a point set structure, and the cost function for this structure and these
distances is zero, then we have found a unique substructure. We call a zero cost correct
substructure with ten distances and five sites a core. If the distance list was non-degenerate,
then with high probability, this core is a correct substructure of the target structure. We
may then build up from the core iteratively to find the complete structure. At each step we
have an existing, correct substructure. We then add one site and search for four edges that
are compatible with the new node and with four nodes that are in the existing structure.
The addition of one site and three edges is an isostatic addition, while the addition of one
site and four edges is overconstrained. If we find four edges compatible with one additional
site then, with high probability, this site is part of the target structure.

In practice, to construct a core (Fig. 4.1) we choose the smallest bond as the “base

bond”. We then test all the bond combinations using the triangle inequality to generate

42

Figure 4.1: (color online) An example of a core. In 3D, it consists of 5 points. The points
at the top and at the bottom are the apex points. The three points in the middle form the
base triangle (in black). The base triangle along with the apex point at the bottom forms
the base tetrahedron (in blue), while the base triangle along with the apex point at the top
forms the top tetrahedron (in red). The vertical bond connecting the two apex points is the
bridge (in green).

feasible tetrahedron pairs. This is performed in two steps, first we fix a tetrahedron as the
“base tetrahedron” and then search through all other candidate (“top”) tetrahedra that share
the same base triangle. After all the top tetrahedra have been exhausted then a new base
tetrahedron is selected and the process continues. For every tetrahedron pair we calculate
the length of the bond that connects the two apex points, which we call the bridge bond.
The length of the bridge in the candidate core is tested against the lengths in the distance
list. If the candidate bridge length matches an unused distance in the distance list, we have
found a core.

In the buildup procedure, we try to add more sites to the core. The addition of a site
consists of generating candidate top tetrahedra using the base triangle and three distances

from the distance list. After we place this site, we carry out bridge testing to determine

43

whether the structure has zero strain energy. While core finding requires a search over all
possible base and top tetrahedra, buildup requires only a search through top tetrahedra
as the base tetrahedron is a known part of the structure. Consequently, buildup requires
significantly fewer computations than core finding.

Our Tribond implementation of the above procedure for the unassigned PD-IP algorithm

may be summarized as follows:

We are given the sorted distance list {d;} with the number of nodes in the network N.
(The target network is generated by randomly placing N points in a cubic box with side of

length N.) We start with an empty set, then

A. Core finding procedure

1. Choose the shortest bond as the base bond and a window (subset) of W = 10 smallest

entries in the distance list for the core finding search.

2. Iterate over all triangles constructed with the triangle inequality that have the same

base bond using distances in the window W and generate tetrahedra.

3. Search over all pairs of the feasible tetrahedra generated above and calculate the bridge
bond. Using a binary search, test if there is an unused distance that matches the bridge
bond. If such a value is found, we have a core. Remove the edges used from the distance

list and exit.

4. Increment W by 10 and return to (1), making sure not to retest bond combinations.

44

B. Buildup procedure

1. Search over all sets of three edges from the distance list to find a set compatible with

the base tetrahedron in the existing structure. Search over the distance list to test the

bridge bond.

2. If successful, remove from the distance list the edges that are used in connecting the
newly added node. If size of reconstructed structure is < N, return to previous step

and resume the search.

A coarse upper bound on the computational time for this procedure consists of two parts:
(i) the time to find the core; (ii) the time to carry out the buildup procedure. The number of
unique cores in the point set is (Jgf), the number of ways of choosing 5 sites from N total sites.
The number of ways of choosing ten distances from the set of M = N(N — 1)/2 distances
is (%) If we had done a brute force search then we would find a core in computational
time Teore ~ (%)/ (]g[) ~ N15. Similarly, using brute force for the buildup would take a
computational time that scales as Ty1dup ~ (%) ~ N8 This clearly shows that the brute
force approach is polynomial, although a high order one.

The simple methods we have developed reduce the computational time significantly from
the coarse upper bounds of the last paragraph. The key observation is that many of the
distances in the distance list violate the triangle inequality di + dg > d3. A large fraction of
the computational time in a brute force search is spent exploring these trivially inconsistent
distance combinations. If we fix the base bond and the bridge bond is found using binary
search, using simple combinatorial arguments 7¢ope ~ (]\é[)in(N)/ (]?\f) ~ N B3In(N). For a

triangle with base bond a and second side b, the range of values for third side cis (b—a, b+a).

So a larger base bond requires a much larger range of feasible values for the third side and,

45

Number of feasible tetrahedra

0 0.2 0.4 0.6 0.8 1

Fractional position of base bond in the distance list

Figure 4.2: Number of feasible tetrahedra using the bonds from a given distance list go up
when we choose a larger bond as base for the base triangle. Statistically, using the shortest
bond in the distance list as the base bond leads us to the core in the shortest time. This plot
shows data from runs using 10 different structures with N = 20.

hence, the number of feasible triangles and tetrahedra increases. But the actual number of
triangles and tetrahedra in the target structure is the same for any choice of base bond. This
is seen in Fig. 4.2, where the number of feasible tetrahedra increases with fractional position
of the base bond in the distance list. Hence, statistically, we find a core in the least time if
we choose the shortest bond as our base.

Distances are also more likely to satisfy the triangle inequality if they are drawn from
a list of comparable, rather than disparate, lengths. Since the base bond is short, a core is
more likely to be found quickly by searching over other short distances first (the small-core
hypothesis, Fig. 4.3), and including longer distances only as necessary. This is implemented
as a window of the W shortest distances in the distance list, and increased periodically as

core finding proceeds. Of the ten bonds in the core, the base is fixed, eight are drawn from

46

p—
)

Bond window for core
[E—
S

0 0.2 0.4 0.6 0.8 1

Fractional position of base bond in the distance list

Figure 4.3: Empirical example of the small-core hypothesis. The hypothesis states that there
exists a core where at least 9 of the 10 total bonds are drawn from a relatively small window
of the shortest bonds in the structure. Varying the base bond’s fractional position in the
distance list for ten different N = 50 structures, core finding shows that using the smallest
distance as the base bond reduces the typical size of the window required to find a core by
an order of magnitude.

the window and the bridge bond need not be in the window. It is observed that for small
structures, a window of size W ~ N is usually sufficient to find a core. Therefore, typical
computation time is T¢ope ~ (g)ln(]\f) ~ N8In(N).

From these arguments, supported by Fig. 4.2 and Fig. 4.3, we expect that using the
smallest bond as the base will lead to the core finding and buildup in a much shorter time.
Fig. 4.4 shows the improvement is about 2 orders of magnitude.

Attempting to find the core for large point sets (N > 10) frequently leads to bad cores.
Bad cores are overconstrained substructures whose distances are part of the given distance list
within a given numerical tolerance, but the substructure is not present in the target structure.

This occurs due to finite tolerance when checking for the bridge bond and also finite precision

47

¢
3
<
Q
o
g
2 1084
0 — Core Finding
< 10" | —x— Buildup -
& 6 | —O— Total |
= 10
5 1077 :

4 Wél%ﬂ%%w
§ 10

103 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Fractional position of base bond in the distance list

Figure 4.4: Figure illustrating the effect of base bond size on the computational cost (bridge
bond checks) of reconstruction for N = 10. The plots for the total and core finding steps
are nearly indistinguishable because the core finding is orders of magnitude more expensive
than buildup. If the smallest bond is chosen as the base, the total computational cost of
reconstruction is nearly 2 orders of magnitude lower than larger bonds.

48

while placing the points using triangulation. Triangles with both small and large distances
are likely to have small angles, resulting in a greater loss of numerical precision. A base bond
of intermediate length would limit this loss, but is not sufficient to forsake the performance
benefits of a small base bond previously outlined. Instead, we try to use all 10 bonds (in the
core) as the base bond and check if the corresponding bridge bond is valid or not. We only
take cores for which the bridge bond is valid in all of the 10 cases. This check is very good
at identifying bad cores.

A structure comparison routine provides another test for bad cores by overlaying the
points in the reconstructed structure (7) with the points in the target structure (K) and

calculates an overlay error,

Coverlay = Z ‘FZ - §z|2 (4'1>

1
This error tells us if a given (sub)structure is part of the target structure. This proves useful
for testing purposes only, as in principle the latter remains unknown. It is also used to verify
the correctness of the final structure.

If the buildup step fails to add any points after looping over a certain number of bonds
from the distance list, likely due to a bad core, then we discard the substructure. We resume
the core finding step and attempt another buildup from a new core. This heuristic helps
identify probable bad cores efficiently.

It is important to choose an appropriate tolerance when checking if the bridge bond is
part of the distance list. Using a very loose tolerance leads to a large number of bad cores. On
the other hand, using a very tight tolerance excludes good cores, due to finite precision when
carrying out the triangulation to place the points in our substructure. We use floating point

numbers for the input distances which have an accuracy of 18 digits. We found that a relative

49

0712 is optimal to retain good cores and filter out bad ones. When trying to

tolerance of 1
place points which are nearly collinear to the base bond a loss of precision is observed due
to small angles, as discussed earlier. In such situations we relax the tolerance when checking
for the bridge bond.

To check the validity of a new point while doing buildup, in addition to the bridge
bond check, we check 10 additional distances that it creates with the points already in the
substructure. Only if these are part of the distance list does the new point get added to the
structure. The 4 bond lengths (three from the new tetrahedron created and the fourth is
the bridge) that were used are removed from further reconstruction. This reduces the list of
available distances by 4. After placing the nth point, updating all (n — 1) distances created
between the new point and the points already in the substructure reduces the number of
available distances substantially. However, due to the computational cost of this update
procedure, we see only a small speedup in the buildup routine.

If after buildup, the structure has fewer than the desired number of points (N), we relax
the tolerance for the bridge bond checks and rerun the procedure. If the structure remains
incomplete, we choose a different bond as the base bond and attempt another buildup. After
reconstruction, we calculate the distance error, which is based on the agreement between the
given distance list and the distances derived from the final structure.

The Tribond algorithm ran for N = 6,7,8,...,12 and the computational cost was mea-
sured in a system-independent manner by counting the number of bridge bond checks while
placing a point in both the core finding and buildup steps (Fig. 4.5). The time required
for buildup is several orders of magnitude less than that for core finding. As core finding
is computationally very expensive, complete reconstruction was attempted only for small

structures. Assuming that the core is given, buildup was attempted for larger structures

50

10°

Core Finding -
Buildup
Total 7

2
S a8 L
= 10
Q
ERU:
8
%)0106
S 5¢
2 10° |
(-
° 10t
2 3
g 10
=
2102

@)

Number of sites

11 12

Figure 4.5: Experimental results for a series of reconstructions from distances lists generated
from random point sets in three dimensions. The computational cost (bridge bond checks)
for finding the core, performing buildup and their total is presented as a function of the
number of points. The plots for the total and core finding steps are nearly indistinguishable
because core finding takes orders of magnitude more time than buildup. Each point on the
plots is the median value from 10 different instances of random point sets.

having size N = 25,50, 75,100. The timing results are shown in Fig. 4.6.

51

[,

)
—
=)

=

2

s 100 F 1

ho]

5

S 108t -

oY)

=

g 10"t]

G

®)

2 100t -

&

=

Z 105 1 1 1 1
25 50 75 100

N

Figure 4.6: Experimental results for a series of reconstructions from distances lists generated
from random point sets in three dimensions. The computational cost (bridge bond checks)
for performing buildup is presented as a function of the number of points. Each point on
the plots is the average over 10 different instances of random point sets. We find that the
buildup time scales as 7jy1qyp ~ N 498

4.2 Applications

Tribond 3D was used to solve the structure of some well known organic molecules and the
results were compared with those from the Liga algorithm. While Liga was able to do the
complete reconstruction for 19 structures, Tribond was able to do so for 14 of them. If a
starting 5 atom structure is given, then Tribond is successful in reconstructing 56 structures,
while Liga can only reconstruct only 21. These organic molecules have a large number of
unique distances and are of intermediate symmetry. Hence, Tribond is more successful in
doing the buildup as compared to Liga.

Tribond first attempted core finding and buildup for 48 hours. If the core finding step

52

did not succeed, then only the buildup was attempted for 2 hours.

Table 4.1: The following table lists the results, where success is denoted by 1 and failure by
0. CF stands for core finding and BU for buildup.

structure N | Liga-BU Tribond-CF | Tribond-BU | Tribond

&
0o
&

2me-3ane 14
adrenln 24
alanine 13
arginine 27
asa 21

asparagine | 17
aspartate 15

aspirin 21
b-10ane 47
b-1lane 71

borane01 44
butane-a 14
butane-e 14
butane-g 14
caffeine 24
carboplatin | 23
cdecalin 28
cholicac 69
cisplatin 11

cubane 16
cy-dane 15
cystine 14
d-7ane 32
ethane 8
ethanol 9

glutamate | 19
glutamine | 20

[Y e e e e T e e T e e e T e e T e T S S e e e e S N S S B S G

_— OO OO0 0O OO R P OO HHFFRPFOHFHFOFHFMFEFOODOOHEHERFEMFEFOOODODODODOO O
_— O OO OO0 OO0 0O P OO MFEFOOOFFRMFEF OOOOHEEFEMFEFOOODODODODOO O
_ O O OO OO O OO PP OO O OOOOHHMFEMFEFOOODODODODOOO O
_ O O OO OO O OO PP OO O OOOOHHEMFEMFEFOOODODODODOOO O

glycine 10 1
heptane 23 1
histidine 20 1
i-cybane 21 1
isoleucine 22 0
leucine 22 1
lsd 49 1
lysine 25 1
menthol 31 1
methane 5 1

ot
w

Table 4.1 (cont’d).

structure N | Liga-BU | Liga | Tribond-CF | Tribond-BU | Tribond
methanol 6 |1 1 1 1 1
methionine 2010 0 0 0 0
mustardgas 1511 1 0 1 0
nicotine 26 | 0 0 0 1 0
octane 26 |1 1 0 1 0
pbpc 4110 0 0 1 0
pentane 17| 1 1 1 1 1
phenylalanine 2310 0 0 0 0
piperine 4310 0 0 1 0
proline 1710 0 0 1 0
propane 1111 1 1 1 1
qcyclene 1510 0 0 1 0
quinine 48 1 0 0 0 1 0
r2bu-ts 3110 0 0 1 0
rr-tacid 16 |0 0 0 1 0
rs-tacid 16 |0 0 0 1 0
s34ane 2210 0 0 1 0
serine 1411 0 0 1 0
srdimecp 1510 0 0 1 0
ssdimecp 1510 0 1 1 1
threonine 1710 0 0 1 0
tnt 2110 0 0 1 0
transplatin-hack | 11 | 1 1 0 1 0
tryptophan 2710 0 0 1 0
tyrosine 2410 0 0 1 0
valine 1910 0 0 0 0
valium 3310 0 0 1 0
vanillin 1911 1 0 0 0
total 21 19 14 56 14

o4

Figure 4.7: Buildup for LSD (top) and Caffeine (bottom) molecules was done in 48.9 seconds
and 2.1 seconds respectively.

55

Figure 4.8: Buildup for Cystine (top) and Lysine (bottom) molecules was done in 0.24 seconds
and 2.8 seconds respectively.

56

Figure 4.9: Buildup for Quinine molecule was done in 84.4 seconds.

4.2.1 Reconstruction from an imprecise distance list

Thus far distances have been known to a precision of about 18 digits, such that in our trials
substructures are indistinguishable (to within a very small tolerance) to those consistent
with a theoretical distance list of infinite precision. When we have an imprecise distance list,
many small sub structures may be consistent with the distance list, though they may not
be part of the target structure. The inverse problem under these conditions is significantly
more challenging, both theoretically and practically. We have attempted to address structure
buildup from a known core with an imprecise distance list in the case of random point sets.
The modification of the original buildup algorithm described in Section 4.1 is as follows.
Assume a known substructure that serves as the core (seed) for reconstruction. The mod-
ified buildup step (adding a point) now has multiple stages; it uses a pool of candidate points

which have low error with respect to the current substructure, and adds the two candidates

57

which jointly lead to the lowest cost substructure. Because the pool examines many possible
ways to grow the substructure, the likelihood of adding bad points is reduced. Adding two
points at once is justified empirically, as this appeared to make the most acceptable trade

off between success and run-time. The detailed steps follow.

1. Define an empty pool that saves the coordinates of k1 < 20 candidate points to add
to the current substructure. Associated with each candidate is the cost of the new
substructure if that point were added. Populate the pool with candidate points. First,
randomly choose a triangle in the current substructure. Generate all tetrahedra using
distances from the distance list which share the chosen triangle. Calculate the cost for
each candidate point (the new vertices). If this cost is below a user-defined threshold
add it to the pool, and if the pool exceeds its maximum size remove the worst candidate.

The threshold significantly improves runtime without affecting the final structure.

2. Randomly choose another triangle in the current substructure and generate a new pool

of size kg < 20 as described above.

3. Select the best candidates from either pool to make a combined pool with £ < 20

points.

4. Calculate the pair cost for adding 2 candidates to the current substructure for each of

the (g) possible pairs.

5. Add the 2 candidates with least pair cost to the substructure. If its size is less than

target size then go to step 1.

The results can be seen in Fig. 4.10, which shows the minimum core size needed to

reconstruct structures of size N =9, 17 and 25 for different values of the precision (P) of the

58

10 T T T T T
——+-— N=9
9 X X N=17 A
N K- N=25
g7 8 |
2
S 7t X ¥ .
g
=) 6 .
E |
A= 5t o R ¥ X X 1
>
4 F o,
3 | | | | |
4 5 6 7 8

Precision of distance list

Figure 4.10: Plot of minimum core size vs precision of the input distance list for N = 9,17
and 25. We can see that a bigger core is needed for a less precise distance list. The typical
run time for N = 9,17,25 was about 1 second, 20 minutes and 15 hours respectively, on a
computer with a 2.2 GHz processor and 2 GB of memory.

input distance list. The criterion for success was that the algorithm successfully reconstructs
at least 5 of 10 different random point sets. It can be seen that as the distances become less
precise, a core of a larger size is needed for successful reconstruction.

A notable case with imprecise distances is the PDF of nanostructured materials, which
can give distance lists with uncertainties of order 0.01A. For a typical nanoparticle of size
~ 15A, this means the input distances from experimental data will have 3-4 digits of precision
and the algorithm is a promising approach. Future work will involve working on an algorithm
that can better deal with missing, incorrect or less precise distances. Chemical information
like the presence of functional groups (aromatic rings, etc) can serve as a core and also help
construct the larger core necessary for buildup in the case of less precise distances. Some

approaches to these issues are discussed in the context of reconstructing high symmetry

59

nanostructures from experimental PDF data using the Liga algorithm [28, 29, 30]. A hybrid
approach using Tribond (low symmetry) and Liga (high symmetry) could potentially solve

structures of intermediate symmetry.

4.3 Summary

In this chapter, the details of the Tribond 3D algorithm for the reconstruction of low symme-
try structures represented by random point sets were presented. The Tribond 3D algorithm
consists of two steps: core finding and buildup. The core is the smallest substructure with at
least one over-constrained bond and is of size 5 in three dimensions. Choosing the smallest
bond as the base bond for reconstruction had a dramatic improvement in performance. Com-
putational cost of core finding was orders of magnitude more than buildup. Tribond 3D was
able to reconstruct random point sets in 3 dimensions of size about ten in a short amount
of time and if the core is assumed to be given it is able to complete the reconstruction for
structures with size N = 100 in about 2 hours on a desktop computer. A modified approach
was presented for the buildup step with less precise data and given a known substructure.
As precision decreases, it is clear that we need a substructure of larger size, underscoring the

importance of the core finding step.

60

Chapter 5

Statistical physics of the optimal

Golomb ruler

In this chapter, a statistical physics approach to the combinatorial optimization problem of

the optimal Golomb ruler (OGR) is taken and the resulting phase transition is studied.

5.1 Statistical mechanics formulation

We define the Golomb lattice gas on a chain of length L, where each site ¢« = 1, 2, ..., L of the
chain has a lattice gas variable y; that may take the values zero or one. If y; = 1 the site ¢
is occupied while if y; = 0 it is unoccupied. For example one of the two degenerate n = 4
OGR states has marker set {m} = {0,1,4,6}. The lattice gas representation of this OGR
is a chain of length L = 7, with site occupancies {y;} = {1,1,0,0,1,0,1}. We introduce the
Golomb lattice gas Hamiltonian which consists of a chemical potential term and an energy

term associated with the Golomb ruler constraints.

L !
Hy=—pY yi+v Y vyjyewd(li — il — |1 — k). (5.1)
i itk

The chemical potential (1) is the amount by which the energy of the system would change if

an additional site were occupied. The first term tries to maximize the density of our lattice

61

gas. The prime on the second sum indicates that degenerate cases where both 7 = [and
1 = k are omitted. The second term imposes the Golomb ruler constraints that the distances
between occupied sites should be non-degenerate. The parameter v tunes the constraint
energy and in the limit v/pu — oo, and at low temperature, OGR states are the ground
states of this Hamiltonian. This is due to the fact that OGR states make no contribution
to the constraint energy, while the lowest energy state has the highest density, ensuring the
optimal energy from the chemical potential term.

An alternative formulation is to define a distance degeneracy function, D(d), in terms of

the occupancy variables y; through,
D(d) =Y yi¥ita
)

that gives the number of times a distance, d, appears in a marker set {m}. It is clear that

we have the property >, D(d) = n(n + 1)/2. Moreover we also have,

Y D@ = n(n+1)/2

d

where equality holds iff the distances satisfy the uniqueness condition. The uniqueness con-

dition is then imposed by the equation,

Y D@ =n(n+1)/2=" D(d)

d d

This motivates introduction of an alternative energy function,

By =" [(D(@)? - D(a)]

d

62

This energy or cost function is always a positive integer or zero, with zero being correct for

OGR marker sets. This leads to the lattice gas Hamiltonian,

L L-1
Hy=—pY i+ Y [(D(d)? = D(d)
i=1 d=1

which in lattice gas variables is,

L L-1
Hy=—pY yi+7)y, (Z y¢y¢+d> (Z YilYitd — 1) (5.2)
1=1 d=1))

It is easy to show that the Hamiltonians obtained in two different ways are indeed equivalent.
In Eq. 5.1 the second summand can be broken into 2 parts: one exhaustive counting over all

possible index combinations and the other part which subtracts off the binary terms.

The term with the binaries leads to the factor of —1 in Eq. 5.2. In Eq. 5.2 let j =i+ d, and
k=1i,1=Fk+d, thus we have [= k + j — 7. The -1 term is for the the binaries which has
to be subtracted off because they are the cases where (i,j) = (k,[). The difference of the
summands will give us the second summand in Eq. 5.1.

In the low temperature limit and with v — 0 the chemical potential is the only term
and the sites are all occupied so the density p = > ; < y; > /L = 1. At high temperatures,
entropy is maximized as empty and occupied sites occur with equal probability so that
p = 1/2. Three limiting states of the Golomb lattice gas are then: (i) The dense phase
p = 1, (i) the high temperature phase p = 1/2 and (ii7) the OGR state occuring at low

temperatures and as v/u — oo. The mean field analysis also confirms these three limiting

63

states. In the OGR phase, the density approaches zero in the large lattice limit. The way in
which it approaches zero can be estimated based on probabilistic reasoning as follows. Define
the probability that both sites ¢ and j are occupied to be D;;. This probability can be related

to the probability that any other pair of sites (k,) share the same distance through,

D;; = H (1 = Dy jsi—i)
2

Within a uniform approximation, this reduces to D = (1 — D)L, or DV/L = nD/L — 1 _ p,
Solving to leading order gives, D ~ 1/L. Since average density is p = n/L and D ~ 02, we
have (n/L)2 ~ 1/L, so that n ~ L1/2, which is consistent with rigorous bounds derived from
analysis of Sidon sets [47]. A rigorous upper bound on the length of optimal Golomb rulers,
mp < n(n+1), indicates that the density of the high constraint ground state goes to zero at
large L as poqr x a/ LY/2. Now we explore the statistical physics of the Hamiltonian using

an effective medium approach that contains the exact OGR state as a limiting solution.

5.2 Mean field approach

The Golomb lattice gas mean field theory is developed in the usual way, by writing y; =
pi + 0y;, where dy; = y; — p; is the fluctuation and p; =< y; > is the average density at site
1. Substitute this into Eq. 5.1.

/

Hyp =~y (pitoy)+y Y (pit6yi)(pj+6y;) (pk+06yr) (o1 +0y)d(|j il —[1— k)
i itk

64

Now, keep terms having dy; and ignore higher order terms.

Hyp = —p Y _(pi + 0yi)+

7
/

v Y (pipjerer T PipkPIOY + PipkPISY; + Pip 10U + pipjpRoy)O (15 — il — |l — K|)
JFGIFk

Then substitute dy; = y; — p; to get an equation which only has terms in y; and p;.

Hyrp = —p Z Yit

7

/
Y Y (=3pipjprp+ vipipreL + YipiokpL + Yppipjer + wipipjer)S(lF — il — |1 — k)
JFUIFk

Using the symmetry of the variables, we get the following equation.

Hyp=—p Y i +7 Y (4yi — 3p))e; (5.3)
i i
where
/
6= > PiPkPirh—i- (5.4)
JFLIFk
Alternatively
Hyp =Y H, (5.5)
i
where
H; = —py; +v(4y; — 3pi) . (5.6)

65

The density at a site may then be found using

pi =<y >=» ye PHMF Y~ emPHMF)
Yi Yi

0 + e~ Blmptr(4=3p;)aj]

P Bl (=30p)ay] 1 e Blurr(4=3p))ay]

yielding the Golomb lattice gas mean field equations,

Pi= 1 + eBr—4bva;

The partition function for a lattice site is given by

Z; = Z e~ PH; — o=BIV(=3pj)ay] | —Bl-ptr(4=3p;)ay]

y;=0,1

Please note that this is also the denominator in Eq. 5.8.

Z; = e3P1Pi%i (1 4 ePH—ABe)

The Golomb lattice gas mean field free energy is given by

F = —kTIn(Z) = —kTIn(]] Z;) = kT > _ In(Z;)

F=—kTY In[e?Pi%i(1 4 ePr=40700))

7

Hence, we get

F=-3y Z pic; — kTZ In[1 + e H=487%]
) 7

66

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

The mean field equations Eq. 5.4 and Eq. 5.9 are a coupled set of non-linear equations
that have many metastable solutions at large «v/p and at low temperatures. In this regime,
the optimal or equilibrium state of the system is the lowest free energy solution to these
equations. The fact that the exact ground state in the OGR regime is known, for n < 26, it
enables a systematic study of the phase diagram and behavior of the MF'T equations over
the whole phase space.

Mean field theory may also be developed from Eq. 5.2, where a similar analysis leads to,

/
PH—4B720

Pi =
} 14 6[3#_4[%2&2
or equivalently,
1
- 5.15
pi 1 4 ¢~ (Bu—4Byal) (519
where
oz; = Z 2 ijpj+d — 1| (Pitd + Pi—d) (5.16)
d J

with the constraints ¢ +d < L, i —d > 1 on the quantities p; 4 and p;_; respectively.
We use Eq. 5.15 for p; as it needs evaluating only one exponent. It is also more robust as
the exponent will not overflow at low temperatures (when 5 becomes very large). If we look
closely at Eq. 5.16, one can see that there are two nested summations to be carried out
and o (and hence p;) computation has a O(L?) complexity. The innermost summation over
7 for a given value of d, (Zj Pj Pj+d>> only 3 terms change when doing the site updates.
Hence we store the values for (Z jPjiPj +d) and use an intelligent update procedure instead
of evaluating the entire sum every time. Trading memory for computational time we have

an implementation that has a O(L) complexity for o calculation and O(L?) complexity for

67

one sweep of p;.

We now try to solve Eq. 5.16 and Eq. 5.15 iteratively. If we do a sequential site update
we find that it leads to a trivial oscillation between a fully occupied state with n; = 1 and an
unoccupied state with n; = 0. Random site updates prevent this state from occuring. The

Golomb lattice gas mean field free energy is given by

/
F = —k:bTZln [1 + 66#—467%] - 372@@2. (5.17)
7)

Using the random site update procedure we obtain the results presented in Fig. 5.1.
It exhibits a transition from a smooth dependence on ~/u at low values of v/pu < (v/p),.
to an irregular behavior at higher values of v/ > (v/p),. Nevertheless, in both cases the
steady solution we find p; at long times is highly dependent on ¢ so in all cases translational
symmetry is broken. Moreover for v/ > (v/p),., the spatial variation in p; is more extreme
and consists of a large number of sites with p; = 0, while for v/u < (v/p),. sites with p; =0
rarely occur. The trajectories of all sites for v/ > (v/p), are asymmetrical as illustrated
by a typical trace as shown in Fig. 5.2. We use the crossing points of the free energy curves
and get the phase diagram as shown in Fig. 5.5. Fig. 5.3 gives the scaling behavior of the
density in the symmetric phase. In the next section we do an scaling calculations and see

that it is close to what is observed in our simulations.

68

0.3 —y —y
] L=35

+
X L=56
* L=107
0.25 o L=200-
u L=493
++++ +
+ by
0.2 | ++++ B N T
> 2
G XXXX
c 0.15 X -
[} X><><><
S o
]
%
0.05 W _
1
O L P S S S SR | L P S S S SR | L P R R SR SR
0.01 0.1 1 10
yiu
0 T T
9
‘»
]
o
>
o
)
C
)
©
o
I
025 | * .
+ L=35
| X L=56 |
-0.3 | * L=107
O L=200
u L=493
-0.35 e e I
0.01 0.1 1 10

yiu

Figure 5.1: Density (top figure) and free energy per site (bottom figure) as a function of v/u
for T'= 0.2 and L = 35,56,107,200,493. For each chain length two calculations obtained
by iterating through the Golomb lattice gas mean field equations are presented. One trace
represented by the symbols is obtained by starting at 7/ = 0.01, choosing a uniform initial
condition and then gradually increasing ~v/u. The solid lines are obtained by starting at
v/p = 10, choosing an exact OGR state as the initial condition and then gradually decreasing
v/ p. The mean field solutions are clearly strongly metastable. Though the spinodal lines are
strongly size dependent the equilibrium transition is relatively size independent.

69

T T T T T y:l

—x— y=0.01

1 % ")r

0.8 |- B
2

@ 0.6 |r _
(]
©
Q

044 .

0.2 H |

0O+ L—O—O—O—O—H—Hle—H—j» www -

| | | | |
0 20 40 60 80 100
site index

Figure 5.2: The symmetric (crosses) and symmetry broken (plusses) states of the mean field
theory for L =107, T = 0.2, v/pu = 0.01 and v/u = 1.

5.3 Asymptotic analysis

5.3.1 Scaling

In the symmetric phase we can use a uniform approximation p; = ps that is justified by

Fig. 5.2 to give us an estimate for the free energy per site,

fs = —pps + ayL2ps" + Tlpsin(ps) + (1 — ps)in(1 — ps)]. (5.18)

The optimal density is found from §f/dps, which gives,

— 114 4ayL?ps3 + Tlin(ps) — In(1 — ps)] = 0. (5.19)

70

so that, when pg is small we can ignore the Tin(1 — ps) term to obtain,

(1= Tin(ps)*/?
Ps ™ 4ayL?

As p is small but finite, when we are at sufficiently low temperatures we can also ignore
the Tin(ps) term. The value of a can be found by considering the sums in Eq. 5.1 and our

estimate is a = 1/3. This gives us,

RN
%_(Eﬁ) (5.20)

2/3 and is verified by

The density in the symmetric phase is then predicted to scale as L™
numerical solutions of the mean field equations Eq. 5.15 and Eq. 5.16 at small values of v/u
(please refer Fig. 5.3). If we use the above equation and substitute pg ~ L=2/3 into Eq. 5.18,
we see that at low temperature free energy also has the same scaling behavior (fs ~ L2/ 3).
We rescale the free energy and it is plotted in bottom part of Fig. 5.4 where we can see
that the curves overlap and they follow the same scaling behavior. At low ~/u there is some

deviation for the small rulers which is due to finite size effect and we can see that it matters

less and less for large L.

5.3.2 Phase boundary

5.3.2.1 Low temperature

To find the phase boundary, we equate the free energy in the symmetric phase to the free
energy of the asymmetric phase (fs = f4). To get fs we substitute ps from Eq. 5.20 into

the low temperature free energy expression given in Eq. 5.18. In the asymmetric phase the

71

—»—' 'y=0.(')01]

—x— y=0.002 1
—— y=0.003 1
—8— y=0.004 1
—a— y=0.005 |

slope=-2/3

density

10 100
length of ruler (L)

123 x density
(&)}
T

0.001 0.01
v

+ I From theory
L=493 +

L28 x density

3¢ 1 1 1 1 1 1 7
5 6 7 8 9 10

™3

Figure 5.3: Finite size scaling behavior of the density in the symmetric phase for T'= 0.2 and
for different values of v/u. The line with slope —2/3 is the prediction from scaling theory
given by Eq. 5.20. 72

log (|Free energy per site|)

10_6 10'4 10-2 100 102 104 106
yip

log (L3 x |Free energy per site|)

0.5 . L . L . L . 1 . 1 .
107 104 102 10° 102 10* 105

Figure 5.4: Rescaled free energy per site vs v/u for T'= 2 x 1076, At low ~v/p and large L,
we can see that it follows a L2/3 scaling.

73

ground state is the OGR state. From Eq. 5.1 we can see that the constraint energy is zero
and we have f, = foar = —punogr/L. At low temperatures we can ignore the contribution
due to entropy and using npgpr ~ LY/ 2 we can get an estimate of the zero temperature

phase boundary,

vy 81 1
L) = == 5.21
().~ e 621
For L = 493 we get (v/u)e = 0.014 which is close to the intercept plotted in our phase
diagram on a log log scale. If we make a plot of (v/u)e vs 1/L (Fig. 5.7) and calculate the

y- intercept for T = 2 x 1076 we get (v/p)e = 0.005 which is close order of magnitude to

what we have seen earlier.

5.3.2.2 High temperature

We start with Eq. 5.18 for the free energy per site in the symmetric phase. Eq. 5.19 gives us

the optimal density,

—,LL—|—4a’yL2p53 +Tln (Ps) = 0.
1 —ps

At large T as ps is small, we can use ﬁ ~ ps and in the symmetric phase pg ~ %, we

get

—p+ dayL?pg® — Tin(2L%3) = 0
As p =1, the first term is small compared to the other terms and we can ignore it to get

5 T In(2L%3)

_ 5.22
v/ Aal? (5.22)

Ps

74

Now expanding the expression for the free energy per site Eq. 5.18 we get

fs & —pps + ayL2ps* + Tlpsin(ps) + In(1 — ps) — psin(1 — ps)]

fs = —pps + a7L2p34 +T {psln <1 isp) +In(1 — ps)]
S

Using 165ps ~ ps and pg ~ % as we did earlier,

1
fom —pps +arLpscrs + T [—psln(2L2/3) +in(l— ps)} (5.23)

When we start at high /u and initialize the ruler with the OGR state then the number
of possible states W for the ruler is given by 2"OGR, where npgg is the number of marks
in the optimal Golomb ruler for length L. At high temperature the individual density for

occupied sites will be 0.5 and the entropy per site will be given by

1 1 n NOGR
E— e OGR) = ==+ =
s Nln(W) Nln(Q) N In(2) = 2pgln(2) (5.24)

Now the free energy per site in the asymmetric phase at large T when starting with the

OGR state is given by

fa = —ppa — 2T paln(2) (5.25)

Now equating fs and f, from Eq.5.23 and Eq.5.25 we get the phase boundary

= () [)+ T QI 1 =)~ 20u00()] (520

75

T

L=35

L=56
L=107
L=200
L=493

Temperature

0 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Yl

Figure 5.5: The equilibrium phase diagram determined from the crossing points of the free
energy curves, such as those shown in the lower half of Fig. 5.1.

As p and ppogpr are small and p = 1, we can ignore the first term in the above equation.
Using a = %, we get

(%)c = 24T (zn(2L2/3) — M(Ip%ps) - 22—:ln(2)) (5.27)

This result is qualitatively correct as we see from the mean field runs in Fig. 5.6 that (v/u),.
increases with L and (y/u). also increases linearly with 7. From the figure we see that

(v/1), = 5T at large temperatures. For L = 493 and 7' = 200 our analytic expression gives

(v/ 1) = 44T

76

2x10°

2x10% F

2x10°

2x10° +

Temperature

2x107 +

2x10™ F

[it TR SR |

2x10°®

1073

ylu

Figure 5.6: In this log-log plot for the equilibrium phase diagram we see that it has a finite
non-zero value for the intercept.

o5 b Moo Moo X - |
e «
104 | Koo Koo Koo |
Ko %
103 - [B B |
,,,,,,, B g
102 i B - - 1
. -
5 N —m —+— T=2x10°
1 e T=2x105
O O mmm [o sk
“Q e -0 B T= leol
ol - T= 2><100‘
--G--- T=2x10
’ e - T=2x10
107 - —ae— T=2x10727]
.1 —v— T=2x10"_ |
0 v T= 2X10_2
_3 ---o--- T=2x10°
0.001 -

Figure 5.7: Plot showing the dependence of the critical v/ on T. At low T, the Y-intercept
is 7/p = 0.005 which is the phase boundary for rulers in the large L limit.

7

1+
0.8 -
0.6 -
a 04 I~
‘0
C
(]
O o2} -
0
Exact-F
Exact-B
- x MF-F |
02 MF-B
X D_iff-F
04 DB
107 1073 107 10t 10°
02+ -
>
=)
2
o -04
[0}
o
L
06 F
Exact-F
Exact-B
0.8 | x MF-F
MF-B
X Diff-F
. . . Diff-B
107 1073 107 10t 10°

Figure 5.8: Density and Free energy calculations done exactly and using
for L=26 at T=0.2.

78

mean field theory

5.4 Exact calculations

We did exact and mean field calculation for L = 26 at T=0.2, to get the density and free
energy. Fig. 5.8 shows the density and free energy as well as the difference in the mean field
and the exact calculations. The end points of the ruler are always set to 1. So for L = 26

924 possible states. For the exact calculation we iterate over all these possible states

there are
and evaluate the density and free energy. We see that there is a lag in the lines obtained by

exact and mean calculations and it is because of the hysteresis.

5.5 Search for OGR

Homotopy methods [76] have been used in statistical physics to obtain the global minimum.
We tried to use a similar approach to find the optimal Golomb ruler. We start with a value
of 77/ very close to the phase boundary such that the ruler in the symmetric phase and then
we gradually increase y/u so that there is a phase transition and it goes into the asymmetric
phase. As the optimal Golomb ruler state is the global minimum, we were expecting that the
asymmetric phase would be this global minima, but because of metastability this approach

was only successful only for small rulers.

5.6 Symmetric theory

The lattice gas formulation of OGR starts with defining variables n; = 0,1 on a one dimen-
sional chain where ¢ = 0,1, 2...L. Setting n; = 1 for values of ¢ are in an OGR marker set,
with the other values of ¢ having n; = 0 maps an OGR solution to a lattice gas configu-

raiton. To construct the OGR lattice gas Hamiltonian, we need to ensure that the repeated

79

distances between the lattice gas particles are unfavorable. We define [to label a distance,
so that 1 <[< L and we define the degeneracy of the distance [, to be D;. A valid Golomb
ruler must have degeneracy D; = 0, 1. If a higher degeneracy were to occur, the distances
would not be unique and the marker set would not be a maximally irregular set. A little
thought reveals that the degeneracies D; are related to the lattice gas variables n; through

the relation,

L-1
Dy=Y nni. (5.28)
=0

When the degeneracies D; are summed over all [, we must have the total number of distances,

so that for any configuration {n;}, we have the constraint,

Y D= %m(m —1). (5.29)

Now we define the lattice gas Hamiltonian in terms of the variables n; and D;, by noting that
for an OGR system of length L, we want to maximize the lattice gas density which is given
by >, nj, minimizing »; D;(D; — 1), where the latter sum is zero when the degeneracies D,
are zero or one as required for a Golomb ruler state. The OGR lattice-gas Hamiltonian is

then,
L L

Hogr=—pY_ni+vY DDy —1) (5.30)

1=0 =1
This Hamiltonian may be written in terms of the variables n; by using Eq. 5.28, which
leads to a frustrated lattice Hamiltonian with long-range four-particle interactions. Provided
the parameters p and are positive, the first term in Hpgp maximizes the density of the

lattice gas, while the second term minimizes the number of times an interparticle distance

is repeated.

80

To find the scaling behavior of the optimal solutions to Hoqp, L(m), we consider the

partition function of OGR,

ol 4
Z=Y P (5.31)
k=0
ol 4 I I
7=% B TEgnit TE Dy(0-1) (5.32)
k=0
ol 1 L 2 L
7 Z 6—5(—/””"'72[:11)1 —2 Dl) (5.33)
k=0
L_
271 L L 2
7 Z 65#Zi:0”i—5’7(zz:1Dl —m(m=1)/2) (5.34)
k=0

where we used the identity Eq. 5.29. To reduce the Dl2 term to linear form we introduce

Gaussian integrals,

6D2 = A/e(_X2+2XD)d:E (5.35)

so that,

oLl 1
7 = Ag Z eﬂum%vm(m—l)/?)/”_/ (Hd$z> 6_215‘124-21'\/3_7215‘[])1 (5.36)
k=0 !

where A normalizes the Gaussian integrals. This remains intractable, but becomes tractable

when we make the symmetric assumption z; = z,
. L
// <H dxl) Y w2 42V/By S oDy _ (/ dre—T H2VBY(@/L) Y Dz) (5.37)
l

81

Then we use the identity Eq. 5.29 again to get,

L
/ /(del) Sy @2 +2iV/By Y 4Dy _ (/dme—x2+2i\/B_v(x/L)(m/2)(m—1)) (5.38)

We convert the integral to an exponent using the Gaussian integral used earlier to get,

// (H dIz) o~ S1a 2By S Dy _ o~ (By/L)[(m/2) (m—1)]2L (5.39)
l
Thus,
L
7= B Z eﬂum+m (m—1)~ 3 m(m—1))2 (5.40)
k=0
7 = Bg x Z() Bum+ B m(m—1)~ B m(m—1)]2 (5.41)

where B¢ is a constant. To find the scaling behavior of Optimal Golomb rulers we consider
the strong interaction limit v — oo where the OGR constraints dominate, and solving yields
the scaling law,

L(m)=m?—m (5.42)

This is consistent with the known lower bound L(m) > m2 —2m?3/2 —m and with the Erdés

conjecture L(m) < m? [47], as well as with large scale simulations (see Fig. 5.9).

5.7 Summary

In this work, a new connection between statistical physics and the combinatorial optimization
problem of the optimal Golomb ruler is made. The statistical physics of the Golomb ruler

problem is studied using the mean field approach and the phase diagram is obtained. It is

82

Density

Lendhof 0GR™ | |
10 100
Length of ruler (L)

Figure 5.9: Comparison of numerical results (4 +-++) for the length of optimal Golomb ruler
with the best lower bound (solid line), and with the statistical physics scaling law (dotted
line) that provides a useful upper bound on all best OGRs. The main figure is for exact OGR
states, while the inset is for approximate OGR states of large size.

83

seen that even at a very low temperature it shows a first order phase transition at a finite
non-zero value of the constraint parameter ~/u. Analytic and exact calculations were done
for the scaling of the density and free energy of the ruler and they were compared with
those from the mean field. A new scaling law for the length of the OGR is derived, which is

consistent with Erdos conjecture.

84

Chapter 6

Conclusion

In this work, efficient methods of reconstructing complex Euclidean networks in two and
three dimensions, given only their unassigned Euclidean distance lists were presented. The
unassigned problem is complicated due to the combinatorial explosion of ways that atoms
may be assigned to the endpoints of each distance in the distance list, leading to interesting
theoretical and algorithmic problems as elucidated.

It was found that there is enough information to uniquely reconstruct co-ordinates from
distance lists that have no vector information in them and also found that this reconstruction
is unique. Using the Tribond algorithm random point sets in 2 dimensions of size about one
thousand were successfully reconstructed.

In 3 dimensions, the core finding step has a high computational cost and the algorithm
was successfully able to do core finding for random point sets of size about ten in a small
amount of time. If the core is assumed to be given, it was able to successfully do the buildup
for random point sets for size about 100. The algorithm was also used to solve for the
structures of various organic molecules and the results were compared with those from using
the Liga algorithm.

While the Liga algorithm is successful in reconstructing structures which have a high
symmetry (and a highly degenerate distance list), the Tribond algorithm is successful with
random point sets which have a non-degenerate distance list. A hybrid algorithm should

solve structures which fall between those having a high symmetry and a low symmetry.

85

Practical applications of the distance list method must overcome errors in the data includ-
ing missing distances, shifted distances and errors in the multiplicity of peaks in degenerate
cases. These issues are discussed in recent studies that attempt to reconstruct nanostructure
from experimental PDF data [28, 29, 30]. The focus of this work was the broader theoretical
and algorithmic issues related to the underlying inverse problem of finding structure from
precise Euclidean distances.

A statistical physics approach to the combinatorial optimization problem of optimal
Golomb ruler is also presented. The phase diagram is studied and scaling calculations for
the density, free energy and phase boundary were done. An analytic calculation using a
continuum field theory gives the scaling for the length of the OGR that is consistent with

Erdos conjecture and also with the proposed optimal rulers of large lengths.

86

APPENDIX

87

© 00 N O Ot W N

B R R R W W W W W W W W W W N NN NN NN NN NN B R R R e e e e
W DR O O 00Ut WNND RO O 00Ut R WNND RO O 0O Ut e W NN RO

// Tribond.h: The header file for all the Tribond 2D & 3D —

+ functions.
//
#ifndef Tribond_h
#define Tribond_h

#include <iostream >
#include <cmath>
#include <cstdlib>
#include <cassert >
#include <vector>
#include <string >
#include <algorithm >
#include <iomanip>
using std::vector;
using std::string;
using std ::cout;
using std ::endl;
using std::setprecision ;
using std::ios;
using std ::setw;

//// Point Class ////

class Point
{
public:
long double x, y, z; // Coordinates
long double cost;
Point ()

friend bool compareCost(const Point& ptl, const Point& pt2);

b

// QOuwerloading 7less than” operator so that points can be sorted.
bool operator <(const Point& ptl, const Point& pt2);

// Quwerloading output operator for Point class.
std :: ostream& operator<<(std::ostream& os, const Point& pt);

88

45
46

47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

int print2structures(vector<Point>& strul , vector<Point>& —

+— stru2);

long double getAngle(Point ptl, Point pt2);
Point getAxis(Point ptl, Point pt2);

// Calculate the Fuclidian distance between 2 points.

inline long double getDistance(const Point& ptl, const Point& —

— pt2)
{
// return sqrt((ptl.
// (ptl.
// (ptl.
return sqrt(pow(ptl.
(ptl.
(ptl.

N < XK e 8

//// Structure Class ////

class Structure

{

public:

// Relative tolerance to check if 2 distances are

< enough.
static long double to

— pt2.
— pt2.
— pt2.
— pt2.
— pt2.
— pt2.

ler ;

static const int maxPoolSize;

vector <Point> atoms;
vector<Point> pool;

vector<long double> targetDL , currDL, freeDL;

vector <bool> usedDist
long double cost;
int dim, targetSize,

I

currSize ;

Structure(int DIM, int N,

{

targetSize = N;
dim = DIM;
atoms.resize(N);

string dlistFile)

int sizeDL = Nx (N—1)/ 2;
usedDist . resize (sizeDL, false);

cost = 0;

89

(ptl.z — pt2.x) +

(ptl.z — pt2.z));

T)%

y)x (ptl.y — pt2.y) +
z)

x, 2.0L) +

y, 2.0L) +

z, 2.0L));

the close —

87 getDLfromFile(dlistFile);
88 }

89

90 Structure(int& N, string xyzFile)

91 {

92 getStruFromFile(xyzFile);

93

94 if(atoms.size() != N)

95 {

96 N = atoms. size () ;

97 cout << ”Updating.structure.size_to.” << atoms.size () —

+— << endl;

98 }

99 targetSize = N;

100 dim = 3;

101 // atoms.resize(N);

102

103 int sizeDL = Nx (N—1)/ 2;

104 usedDist . resize (sizeDL, false);

105 cost = 0;

106

107 }

108

109 Structure(int DIM, int N, vector<long double> inputDL)

110 {

111 currSize = 0;

112 targetSize = N;

113 dim = DIM;

114 int sizeDL = Nx (N—1)/ 2;

115 usedDist . resize (sizeDL, false);

116

117 targetDL = inputDL;

118 }

119

120 int updateCurrDL ()

121 {

122 currDL . clear () ;

123 for(int i = 0; i < atoms.size(); ++i)

124 {

125 for(int j =1 4+ 1; j < atoms.size(); ++j)

126 {

127 currDL . push_back (getDistance(atoms[i |, atoms| j | <=
<));

128 }

129 }

90

130 sort (currDL.begin (), currDL.end());

131 // cout << "Size of current DL: 7 << currDL. size () << endl;

132 return 0;

133 }

134

135 int print ()

136 {

137 int Precision = §;

138 int Width = 12;

139 int Width2 = 6;

140

141 cout.precision (Precision);

142 cout.setf(ios::fixed ,ios:: floatfield);

143

144 for (int i = 0; i < atoms.size(); ++i)

145 {

146 cout << setw(Width) << atoms| i].x << "\t~

147 << setw(Width) << atoms|[1 |.y << "\t~

148 << setw(Width2) << atoms|[i |.z << "\t~

149 << atoms|[1 |.cost << endl;

150 }

151 // for (int i = 0; i < atoms.size(); ++i)

/7

153 // cout << i << \t’ << setprecision(10) << atoms[i —
— << N\t

154 // << setprecision (10) << atoms[i [.y << '\t~ —

— << setprecision (10) << atoms[i [.z << endl;

155 // }
156 //

157 cout << 7s*xxx” << endl;

158 return 0;

159 }

160

161 bool findCore () ;

162 bool findCore3D () ;

163 bool findCore3D(int baseldx);

164 bool doBuildup () ;

165 bool doBuildup3D (vector<int> idxArr);
166 // bool doBuildup3D(int newBase);

167 bool doBuildup3Dv2(int basePtl, int basePt2, int basePt3);
168 bool doBuildup2(int newBase);

169 bool doBuildup3(int newBase);

170 bool reconstruct () ;

171 bool reconstruct2();

172 bool reconstruct3(int baseldx);

91

173 long double feasibleTetra(int baseldx);

174

175 long double distListError ();

176 long double distListError(vector<long double> dlist);

177 long double distListError(vector<long double> dlistl ,

178 vector<long double> dlist2);

179 long double checkMoreBridges(int numChecks, Point testPt);

180

181 bool home () ;

182 bool home3D(int distldx);

183 bool reflect(string axis);

184 bool rotate(long double angle);

185 bool rotate(long double angle, long double axisX,

186 long double axisY, long double axisZ);

187

188 bool translate(long double distX, long double distY , long <
< double distZ);

189

190 bool testCore(vector<int> idxArr, int idxM, int idxN);

191 int getDLfromFile(string fileName);

192 int getStruFromFile(string fileName);

193 int printDLtoFile(string fileName="");

194

195 int reduceDLprecision(int precision);

196 vector<Point> getCore(int coreSize);

197 int updateUsedDists () ;

198 int updateFreeDL () ;

199 long double getPtCost(Point pt);

200 long double getPtsCost(Point ptl, Point pt2);

201

202 bool updatePool(Point pt);

203 int insertPoint (Point pt);

204 bool growStru () ;

205 int printPool ();

206 int getPools();

207 int getPools2();

208 bool findCoreMPI(int windowStart);

209 };

210

211

212 inline long double compareStru(Structure testStru, Structure <
<~ targetStru)

213 {
214 testStru.updateCurrDL () ;
215 long double overlapError = 0;

92

216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231

© 00 N O Otk W N

—_
o]

11

19

20
21
22
23
24

sort (testStru.atoms.begin(), testStru.atoms.end());

for(int i = 0; i < testStru.targetSize; ++i)

{

overlapError += pow(getDistance(testStru.atoms[i |,

}

targetStru.atoms| i |
«— 2.0);

cout << ”Overlap_.Error:.” << overlapError << endl;
cout << "Distance_Error:.” << testStru.distListError () << endl;
return 0;

H#endif

)

Y

;)

// Tribond.cpp: The implementation file for of all the 2D & 3D —
+ functions.

//
#include

#include
#include
#include
#include
#include
#include

"Tribond . h”
<algorithm >
<iostream >
<fstream>
<iomanip>
<sstream>
<cassert >

using namespace std;

long double Structure::toler = le—12L;
const int Structure:: maxPoolSize = 20;

bool operator<(const Point& ptl, const Point& pt2)

{

// Overloading the ”"less than” operator for the Point class. —
— Useful when
// sorting points in the structure so that their ordering is <
< unique .

Point zero;
return getDistance(ptl, zero) < getDistance(pt2, zero);

93

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

std :: ostream& operator<<(std::ostream& os, const Point& pt)

{

// Overloading output operator for Point class.

int outputPrecision = §;
int colWidth = 12;

os.precision (outputPrecision);
os.setf(ios::fixed ,ios:: floatfield);

0os << setw(colWidth) << pt.x
<< setw(colWidth) << pt.y
<< setw(colWidth) << pt.z;
return os;

void placeApex(Point& apexPt, int idxA, int idxB, int idxC,
vector<long double> dlist)
{

// Place the top point of the triangle by solving the loci —
— equations.

// For skinny triangles , the y—coordinate may turn out to be —
— mnegative.

// In those cases, I am setting it to zero.

apexPt.x = dlist| idxA]/ 2 — ((dlist[idxC | — dlist[idxB —

])x
- (dlist [idxC | + dlist[idxB |)/
(2% dlist[idxA |));

apexPt.y = sqrt((dlist[idxC | + apexPt.x — dlist[idxA |)x
(dlist | idxC | — apexPt.x + dlist[idxA |));

apexPt.z = 0;

if(apexPt.y != apexPt.y)

{
}

return;

apexPt.y = 0;

94

67
68 void placeTop(Point basePtl, Point basePt2, Point basePt3, —
+ Point& apexPt,

69 vector<int> idxArr, vector<long double> dlist)

70 {

71 /* Place Apex in space.

72 *

73 x Relating bonds to points:

74 x a4 <=> pl-p2 f <= p3—p4

75 x b <= pl—-ps e <=> pl—p4

76 x* ¢ <=> pl—ps d <=> pl—p4

77 *

78 x pl is placed at the origin.

79 x p2 is placed at (dlist[a], 0, 0).

80 x p8 is defined to have positive y—value.

81 x p4 is defined to have positive z—value.

82 % /

83

84 long double d12, d13, d14, d23, d24, d34;

85 d12 = dlist | idxArr[0 |]; d34 = dlist[idxArr|[5 | |;

86 d13 = dlist | idxArr[1 |]; d24 = dlist[idxArr][4 | |;

87 d23 = dlist | idxArr[2 | |; dl4 = dlist [idxArr|[3 | |

88

89 // placement of apex by solving simple loci equations

90 // faster than evaluating trig expressions

91 apexPt.x = (dl4x d14 — d24x d24 + d12x d12)/ (2.0Lx d12);

92 apexPt.y = ((dl4x d14 — d34% d34 + basePt3.xx basePt3.x +

93 basePt3.yx basePt3.y)/ (2.0Lx basePt3.y) —

—) -

94 (basePt3.x/ basePt3.y)* apexPt.x;

95

96 if((dl4x d14 — apexPt.xx apexPt.x — apexPt.yx apexPt.y) <

+— < 0.0L)

97 {

98 // cout << Vimg dist!” << endl;

99 // apexPt.z = 0;

100 // cout << Tpars: 7 << idzArr[0] << 7,7 << idzArr[1] —
S

101 // << ddzArr[2] << 7,7 << didzArr[3] —
— << 77

102 // << idzArr[4] << 7,7 << idzArr[5] —
— << endl;

103 J/ cout << Tpts: 7 << endl;

104 // cout << basePtl << endl;

105 // cout << basePt2 << endl;

95

106
107
108
109

110
111
112
113

114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138

139
140

141
142
143
144

// cout << basePt3 << endl;
// cout << aperPt << endl;

// getchar();
apexPt.z = 0; //sqrt(d14x d1/ — apexPt.xx apexPlt.z — —
< apexPt.yx apexPt.y);

}

else

{

apexPt.z = sqrt(dl4x d14 — apexPt.x*x apexPt.x — <
< apexPt.y*x apexPt.y);

int closestDist(const long double& value, const vector<long —
< double>& dlist)

{

// Function to find the index of the distance in the given list
// which is closest to the given wvalue.

vector<long double>::const_iterator const it
= lower_bound(dlist.begin(), dlist.end(), value);

int bestldx = distance(dlist.begin(), it);

if (bestldx = dlist.size())

{
bestldx —= 1;

}

else if (bestldx > 0 and

(fabs(dlist| bestldx — 1] — value) < fabs(dlist| bestldx —
«— | — value)))

{

bestldx —= 1;
}

// cout << "walue, bestldr, bestDist: 7 << setprecision(11) —
— << value << 7, 7 << bestldx << 7, 7

// << setprecision (11) << dlist[bestldzs | << '\t

// cout << 7(7 << dlist] bestldr — 1 | << 7, 7 << dlist[—
— bestlde + 1 | << 7)’<< endl;

return bestldx;

}

bool Structure:: findCore ()

96

145 {

146 // Find a core made of 4 points by iterating over all triangle

147 // combinations. Also, the function to do the buildup is —
< called after

148 // we find a core because it is more convenient this way.

149

150 int idxA = 0, idxB, idxC, idxD, idxE, idxF; // indices for —
< the bonds

151 int idxM, idxN; // indices for the orientation of the triangle

152 vector<int> idxArr(6, —1);

153 int inc = 6; // width of the bond window

154 int winStart = 0, winStop = inc; // indices for the window
155 vector<long double> dlist = targetDL;
156

157 long double bridgeDist = 0.0;
158 int bridgeldx = 0;
159 int bridgeCount = 0; // count the number of bridge bond checks

160 long double fracError = 1le6;
161

162 Point basePtl, basePt2,

163 apexPtl, apexPt2;

164 basePtl.x = 0; basePtl.y = 0;

165 basePt2.x = dlist [idxA]; basePt2.y = 0;

166 cout << "basePtl:.” << basePtl.x << 7.7 << basePtl.y << endl;

167 cout << "basePt2:.”7 << basePt2.x << 7.7 << basePt2.y << endl;

168 cout << ”"Bond.window:.”;

169

170 while(true)

171 {

172 cerr << 7_—>."7 << winStop;

173

174 for (idxB = idxA + 1; idxB < winStop; ++dxB)

175 {

176 for (idxC = idxB + 1; idxC < winStop; ++dxC)

177 {

178 if (dlist[idxA | + dlist[idxB | + toler < dlist| idxC <
< 1)

179 {

180 break;

181 }

182 placeApex(apexPtl, idxA, idxB, idxC, dlist);

183

184 for (idxD = idxA + 1; idxD < winStop; ++HdxD)

185 {

186 if (idxD = idxB or idxD = idxC)

97

187 {

188 continue;

189 }

190 for (idxE = idxD + 1; idxE < winStop; +HdxE)

191 {

192 if(idxB < winStart and idxC < winStart and

193 idxD < winStart and idxE < winStart)

194 {

195 continue;

196 }

197

198 if((idxD < idxB and idxE < idxC) or

199 (idxE > idxC and idxD < idxB))

200 {

201 continue;

202 }

203

204 if(idxE = idxB or idxE = idxC)

205

206 continue;

207 }

208

209 if(dlist| idxA | + dlist[idxD | + toler < dlist| —
— idxE])

210

211 break ;

212 }

213

214 placeApex(apexPt2, idxA, idxD, idxE, dlist);

215

216 for (idxM = 0; idxM < 2; +HdxM)

217 {

218 /) cout << TidzM: 7 << idzM << endl;

219 if(idsM =1)

220 {

221 apexPt2.x = dlist| idxA] — apexPt2.x;

222 }

223

224 for (idxN = 0; idxN < 2; 4+HdxN)

225 {

226 // cout << VidzN: 7 << idzN << endl;

227 if(idxN =1)

228 {

229 apexPt2 .y = — apexPt2.y;

230 }

98

231

232 bridgeDist = getDistance(apexPtl, apexPt2);

233 bridgeCount += 1; // count number of bridge checks

234

235 bridgeldx = closestDist(bridgeDist, dlist);

236 if(bridgeldx = idxA or bridgeldx idxB or

237 bridgeldx = idxC or bridgeldx = idxD or

238 bridgeldx = idxE)

239 {

240 // Make sure that the bridge bond is not the —
<~ same as any of

241 // the distances in use.

242 continue;

243 }

244

245 fracError = fabs(dlist| bridgeldx | — <

< bridgeDist)/ bridgeDist;

246 // cout << "fracError: 7 << fracError << endl;

247

248 if (fabs(apexPt2.y) < 0.5)

249 {

250 // Skinny triangles have been found to have a <
<+ large error,

251 // hence reducing their error "by hand” so —
— that we don’t

252 // miss out on them.

253 fracError /= 1000;

254 }

255

256 if (fracError < toler)

257

258 idxArr[0 | = idxA; idxArr|[1 | = idxB;

259 idxArr|[2 | = idxC; idxArr|[3 | = idxD;

260 idxArr[4 | = idxE; idxArr[5 | = bridgeldx;

261

262 cout << endl;

263 if (testCore(idxArr, idxM, idxN))

264 {

265 atoms . push_back (basePtl);

266 atoms . push_back (basePt2);

267 atoms . push_back (apexPtl);

268 atoms . push_back (apexPt2);

269

270 for(int i = 0; i < atoms.size(); ++i)

271 {

99

272

273
274
275
276
277

278
279
280
281
282

283
284
285
286
287

288

289
290
291
292
293

294

295
296
297

298
299
300
301
302
303
304
305
306
307
308

cout << 7"Point:.” << i + 1 << "\t’ << <=

<~ atoms|[i | << endl;

}

usedDist [idxA | = usedDist[idxB | = true;

usedDist [idxC | = usedDist[idxD | = true;

usedDist [idxE | = usedDist|[bridgeldx | = —
< true;

updateCurrDL () ;

// return true;

// Attempt buildup to get the remaining —

— points.
doBuildup () ;

if (atoms.size () >= min(8, targetSize))

// If buildup was able to add 4 more —

< points then with

// high probability , we have the right —

— structure.
return true;

}

else

{

// If buildup could not even 4 points —

+— then with a very

// high probability , we have the wrong —

< structure. Start
// over and find the next core.
cout << ”"No.buildup ,_bad_.core._”
"Finding._.the_next._core_..._

+ endl;
atoms. clear () ;
updateCurrDL () ;

cout << ”"Bond_window:.";

}
}
}

Y // n loop
y // m loop
Y // idxE loop
Y // idzD loop

100

7

<< —=

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

340
341
342

343
344
345
346
347
348
349
350
351

}

Y // idzC loop
} // idzB loop

// When idzB hits the window edge increment it.
if (idxB = winStop)

{

winStart = winStop;
winStop += inc;

if(winStart = dlist.size())

{

cout << endl;
break ;

}

if (winStop > dlist.size())

winStop = dlist .size ();

}
}

Y // while(true) loop

return false;

bool Structure:: doBuildup ()

{

// Starting with a core of size 4, find the remaining points.
// Partial update of the new distances created used while —
< adding a point.

bool successFlag = false;

int idxA = 0, idxB, idxC, idxD, idxE, idxF; // indices for —
< the bonds

int idxM, idxN;

long double bridgeDist = 0.0;

int bridgeldx = 0;

int bridgeCount = 0; // count the number of triangles
vector<long double> dlist = targetDL;

long double fracError = 1le6, fracError2 = 1le6;

assert ((”In_buildup ,.core_present?”, atoms.size() > 0));

101

352 Point basePtl = atoms| 0 |, basePt2 = atoms|[1],

353 apexPt = atoms| 2 |, testPt;

354

355 for(idxD = 1; idxD < dlist.size (); 4++dxD)

356 {

357 if (usedDist[idxD |)

358

359 continue;

360 }

361

362 for (idxE = idxD + 1; idxE < dlist.size(); ++HdxE)

363 {

364 if (usedDist[idxE |)

365

366 continue;

367 }

368

369 if (dlist| idxA] + dlist| idxD | + toler < dlist| idxE |)

370

371 break ;

372 }

373

374 placeApex(testPt, idxA, idxD, idxE, dlist);

375

376 for (idxM = 0; idxM < 2; +HdxM)

377 {

378 if(idsM =1)

379

380 testPt.x = dlist [idxA | — testPt.x;

381 }

382

383 for (idxN = 0; idxN < 2; 4++idxN)

384 {

385 if(idsN =1)

386

387 testPt.y = — testPt.y;

388 }

389

390 bridgeCount += 1; // count number of bridge checks

391 bridgeDist = getDistance(apexPt, testPt);

392 if (bridgeDist < dlist| 0 |)

393 {

394 // Make sure the test point is not too close to any <
— point.

395 continue;

102

396
397
398
399
400
401
402

403
404
405
406

407
408
409
410

411

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

}

bridgeldx = closestDist(bridgeDist, dlist);

if (bridgeldx = idxD or bridgeldx

{

}

idxE or
usedDist [bridgeldx |)

// Make sure the bridge bond is not the same as a —

C

— ysed distance.
ontinue;

fracError = fabs(dlist| bridgeldx | — bridgeDist)/ —

< bridgeDist;

if (fabs(testPt.y) < 0.5)

}

// Found skinny triangles to have a high error. —

< Hence, reducing

// the error by hand” so that we don’t miss oult on <

f

< them.
racError /= 1000;

if (fracError > toler)

{
}

continue;

else

{

f
i

{
}

racError2 = checkMoreBridges(10, testPt);
f(fracError2 > sqrt(toler))

continue;

else

{

usedDist [idxD | = true;
usedDist [idxE | = true;
usedDist [bridgeldx | = true;

atoms . push_back (testPt);

cout << "Point:.” << atoms.size () << \t’
<< testPt << endl;

103

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

474
475

476
477
478

y // n loop
t // m loop
} // idzE loop
Y // idxzD loop

currSize = atoms.size ();
updateCurrDL () ;
if (atoms.size () = targetSize)

{
}

successFlag = true;

return successFlag;

long double Structure:: distListError ()

{

// Calculate the error based on the closeness of the current —
< and the target
// distance lists.

assert (currDL.size () = targetDL.size ());

)
long double error = 0;

for(int i = 0; i < currDL.size(); ++i)

{
}

return sqrt(error/ currDL.size ());

error += pow(currDL|[i] — targetDL[i | , 2.0);

long double Structure::distListError(vector<long double> dlistl ,

{

vector<long double> —
«— dlist2)

// Calculate the error based on the closeness of 2 distance —
— lists.

if(dlistl.size() != dlist2.size())

104

479 return 1le6;
480 }

481 sort (dlistl.begin(), dlistl.end());
482 sort (dlist2.begin(), dlist2.end());

483 long double error

484

485 for(int i = 0; i < dlistl.size(); ++i)

486 {

487 error += pow(dlistl[i | — dlist2[i | , 2.0);

488 }

489

490 return sqrt(error/ dlistl.size());

491}

492

493

494 long double Structure::distListError(vector<long double> dlist)
1495 {

496 // Function to calculate the error based on how close the 2 —

— dlists are.
497
498 long double dError = 0;
499 long double totalError = 0;
500 size_t bldx = 0;

501
502 vector<int> countB(targetDL.size (), 0);
503 int repeat = 0;

504 updateUsedDists () ;

505 vector<long double> freeDL;

506

507 for(int i = 0; i < targetDL.size(); ++i)
508 {

509 if (usedDist| i | = false)

510

511 freeDL.push_back(targetDL|[i |);

512 }

513 }

514

515 for(int i = 0; i < dlist.size(); i++)

516 {

517 // bldx = closestDist(dlist[i], targetDL);
518 // dError = dlist[i] — targetDL[bldz |;
519 bldx = closestDist(dlist[i], freeDL);
520 dError = dlist[i] — freeDL[bldx |;

521 totalError += dErrorx dError;

522

105

523 countB | bldx | 4+= 1;

524 if (countB[bldx | >= 2)
525 {

526 ++repeat ;

527 }

528 // FIXME: Commenting out case when there is a large error.
529 if (dError > 0.5)

530 {

531 // return 1.0;

532 }

533 }

534

535 dError 4= 0.01% repeat;
536 // cout << "pt cost: 7 << setprecision(8) << sqrt(—
< totalError/ dlist.size()) << endl;

537 // getchar();

538 return sqrt(totalError/ dlist.size());

53}

540

541

542 long double Structure::checkMoreBridges(int numChecks, Point <
+— testPt)

543 {

544 // Check more bridge bonds for the testPt to make sure that —

— it s

545 // indeed part of the actual structure.

546

547 long double fracError = 0;

548 long double bridgeDist = 0;
549 int bridgeldx = 0;
550 vector<long double> dlist = targetDL;

551
552 for(int i = 0; i < numChecks; ++i)

553 {

554 if(i >= atoms.size ()) break;

555 bridgeDist = getDistance(testPt, atoms| i |);

556 if (bridgeDist < dlist][0 |)

557 {

558 fracError 4+= 0.1;

559 continue;

560 }

561

562 bridgeldx = closestDist (bridgeDist, dlist);

563 fracError += fabs(dlist| bridgeldx | — bridgeDist)/ —

<+ bridgeDist;

106

564 }

565

566 return fracError/numChecks;

567}

568

569

570 bool Structure::reconstruct ()

s {

572 // Reconstruct the structure by first finding the core and —
< then doing

573 // buildup (if needed).

574

575 // Need to find the core first.

576 if (atoms.size() = 0)

577 {

578 if(dim = 2)

579

580 bool findCoreFlag = findCore () ;

581 cout << ”Core_found?.” << boolalpha << findCoreFlag << endl;

582 }

583 else if(dim = 3)

584 {

585 // cout << 7findCore3D (2)”7 << endl;

586 findCore3D () ;

587 }

588 }

589

590 // Core is already there, just do the buildup .

591 if(dim = 3 and atoms.size () >= 4)

592 {

593 vector<int> idxArr(6, 0);

594 idxArr[0] = closestDist(getDistance(atoms|[0], atoms| —
P 1]) Y

595 targetDL) ;

596 idxArr[1] = closestDist(getDistance(atoms|[0], atoms| —
« 21,

597 targetDL) ;

598 idxArr[2] = closestDist(getDistance(atoms[1 |, atoms| —
P 2]) Y

599 targetDL) ;

600 idxArr[3] = closestDist(getDistance(atoms|[0], atoms| —
<31,

601 targetDL) ;

602 idxArr[4] = closestDist(getDistance(atoms[1 |, atoms| —
« 3])7

107

603 targetDL) ;

604 idxArr[5] = closestDist(getDistance(atoms|[2 |, atoms]
« 3])7

605 targetDL) ;

606 cout << "idxArr:.” << idxArr|[0] << 7,7 << idxArr[1 | <<

607 << idxArr|[2 | << 7,7 << idxArr| 3 | <<

608 << idxArr[4 | << 7,7 << idxArr| 5 | <<

<+ endl;

609 print () ;

610

611 int idxG, idxH, idxI, idxJ;

612

613 idxG = closestDist (getDistance(atoms| 0 |, atoms[4]),
+ targetDL);

614 idxH = closestDist(getDistance(atoms|[1 |, atoms[4]),
+ targetDL);

615 idxI = closestDist(getDistance(atoms| 2 |, atoms|[4 |),
< targetDL);

616 idxJ = closestDist(getDistance(atoms[3 |, atoms|[4]),
+ targetDL);

617 cout << 7idx:. " << dxG << 7,7 << idxH << 7’

618 << idxI << 7,7 << idxJ << endl;

619 usedDist [idxG | = usedDist | idxH] = usedDist [idxI]

620 = usedDist [idxJ | = true;

621

622 doBuildup3D (idxArr);

623

624 // attempt buildup again if short of a few points

625 int attempts = 0;

626 long double oldToler = toler;

627 while(attempts < 5 and atoms.size () < targetSize)

628 {

629 toler x= 10;

630 doBuildup3D (idxArr);

631 ++attempts;

632 cout << 7attempt:.” << attempts << endl;

633 }

634 toler = oldToler;

635 }

636

637 if (atoms.size () = targetSize)

638 {

639 return true;

640 }

641

108

642
643
644
645
646
647
648
649
650
651
652
653

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

bool successFlag = doBuildup () ;
if(successFlag)

{

cout << ”Finished_reconstruction” << endl;

}

return successFlag;

bool Structure::reflect(string axis)

{

// Reflect the structure about the X or the Y axis, used by —
< the overlap

// function .
if(axis — X7)

for(int i = 0; i < atoms.size(); ++i)

{

}
}

else if(axis = "Y")

{

for(int i = 0; i < atoms.size(); ++i)

{

}
}

else if(axis = 772”7)

{

for(int i = 0; i < atoms.size(); ++i)

{

}
}

return true;

atoms|[i |.y = — atoms|[i].y;

atoms| 1].x = — atoms[1 |.x;

atoms| 1].z = — atoms[1 |.z;

bool Structure::home/()

{

// Orient the structure in a unique manner so that it becomes —»
< easy to check

109

685 // if two or more structure are identical to one another or mnot.
686

687 long double minDist = 1e6;

688 int idxl = —1, idx2 = —1;

689 long double dist = 1le6;

690

691 // Find the smallest bond in the structure
692 for(int i = 0; i < atoms.size(); ++i)

693 {

694 for(int j =1 + 1; j < atoms.size(); ++j)
695 {

696 dist = getDistance(atoms| i |, atoms|[j |);
697 if(dist < minDist)

698 {

699 minDist = dist;

700 idxl = 1i;

701 idx2 = j;

702 }

703 }

704 }

705 // cout << Vidxl, idz2: 7 << ddrl << '\t << idz2 << endl;
706

707 // Locate the apex point of the base triangle

708 long double minDistl = 1le6, minDist2 = 1e6;

709 long double distl , dist2;

710 int minldxl, minldx2;

711

712 for(int i = 0; i < atoms.size(); ++i)

713 {

714 if(i = idx1 or i = idx2) continue;

715

716 distl = getDistance(atoms| i |, atoms|[idxl |);
17 if(distl < minDistl)

718 {

719 minDistl = distl;

720 minldxl = i;

721 }

722

723 dist2 = getDistance(atoms[1 |, atoms| idx2]);
724 if(dist2 < minDist2)

725 {

726 minDist2 = dist2;

727 minldx2 = i;

728 }

729 }

110

730
731
732
733
734
735
736
737
738
739

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

757
758

759

760
761
762
763
764
765
766
767
768
769
770

int idx3 = minldx1;
if(minDistl > minDist2)

{

idx3 = minldx2;
swap (idx1, idx2);

}

// Correctly place the base triangle
translate (—atoms| idx1l].x, —atoms| idxl].y, —atoms|[idxl <

« |l.z);

// find angle and rotate
long double angle = atan2(atoms| idx2 |.y, atoms| idx2 |.x);
rotate(angle);

if(atoms| idx3].y < 0)

{

reflect ("X”);

}

// Sort the points so that there is some unique order
sort (atoms.begin (), atoms.end());

return true;

bool Structure::testCore(vector<int> idxArr, int idxM, int —

{

<~ idxN)

// Check to make sure that the core is correct by wusing all —
< possible bonds

// as the base and checking if the resulting bridge bonds are —
<~ part of the

// target distance list.

Point basePtl ,
apexPtl

basePt2 ,
apexPt2;

basePtl.x = 0; basePtl.y = 0;

vector<long double> dlist = targetDL;
long double bridgeDist, fracError;
int idxA, idxB, idxC, idxD, idxE, givenBridgeldx;

int bondA = idxArr|[0 |, bondB = idxArr|[1 |, bondC = idxArr| —

111

771

772
773
774
775
776
s
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812

— 2],
bondBP = idxArr[3], bondCP = idxArr[4], bondBridge = —
— idxArr|[5 |;

Pf(idxM = 1)

{
swap (bondB, bondC);

}

vector<vector<int> > idxCombin(6, idxArr);

idxCombin|[0][0] = bondA; idxCombin[0 |[1] = bondB;
idxCombin|[0][2] = bondC; idxCombin|[0][3] = bondBP;
idxCombin| 0][4 | = bondCP; idxCombin|[0][5] = bondBridge;
idxCombin|[1][0] = bondB; idxCombin[1 |[1] = bondC;
idxCombin| 1][2] = bondA; idxCombin|[1][3] = bondBridge;
idxCombin| 1][4] = bondBP; idxCombin[1 |[5] = bondCP;
idxCombin| 2][0] = bondC; idxCombin|[2 |[1] = bondB;
idxCombin| 2][2] = bondA; idxCombin[2 |[3] = bondBridge;
idxCombin| 2][4] = bondCP; idxCombin|[2 |[5] = bondBP;
idxCombin| 3][0 | = bondBP; idxCombin|[3][1] = bondB;
idxCombin| 3][2] = bondBridge; idxCombin|[3 |[3 | = bondA;
idxCombin| 3][4 | = bondCP; idxCombin|[3][5] = bondC;
idxCombin| 4][0] = bondCP; idxCombin[4 |[1] = bondBP;
idxCombin| 4][2]| = bondA; idxCombin|[4 |[3] = bondBridge;
idxCombin| 4 |[4] = bondC; idxCombin|[4][5] = bondB;
idxCombin| 5][0 | = bondBridge; idxCombin|[5 |[1] = bondBP;
idxCombin| 5][2 | = bondB; idxCombin|[5][3] = bondCP;
idxCombin| 5 |[4] = bondC; idxCombin|[5][5] = bondA;

bool success = true, localSuccess = false;

for(int i = 0; i < idxCombin. size (); ++i)
{
idxA = idxCombin|[i |[0]; idxB = idxCombin[i |[1];
idxC = idxCombin|[i |[2]; idxD = idxCombin[i |[3];
idxE = idxCombin|[i |[4]; givenBridgeldx = idxCombin|[i —
< 1[5 I
basePt2.x = dlist | idxA]; basePt2.y = 0;

placeApex(apexPtl, idxA, idxB, idxC, dlist);

112

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

853
854
855
856

}

placeApex(apexPt2, idxA, idxD, idxE, dlist);

for (int idxY = 0; idxY < 2; +HdxY)

{
if(idxY = 1)

{
}

apexPt2 .y = — apexPt2.y;

bridgeDist = getDistance(apexPtl, apexPt2);

fracError = fabs(dlist| givenBridgeldx | — bridgeDist)/
dlist [givenBridgeldx |;

if(fabs(apexPt2.y) < 0.5)

fracError /= 1000;
}

if(fracError < toler)

// cout << 7fracError: 7 << fracError << endl;

localSuccess = true;
break ;
}
}
if(localSuccess = false)
success = false;

}
}

cout << "Test.core._Good?.” << boolalpha << success << endl;
return success;

int Structure::getDLfromFile(string dlistFile)

{

// Read file to get the list of distances for the —
— reconstruction.
// If filename is "rand2”, then generate a random point set.

long double inputDist;
assert ((”Target_distance._list _must_be_empty”, <

113

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

< targetDL.size() = 0));
ifstream inputFile;

if(dlistFile = "rand2” or dlistFile = "rand3”)
{

int N = targetSize;

for (int i = 0; i < N; ++i)

{
x float (rand())/ RANDMAX;
x float (rand())/ RANDMAX;

atoms|[i].x
atoms|[i |.y =

if(dlistFile = "rand3”)

{
atoms|[i].z = Nx float(rand())/ RANDMAX;

}
atoms| 1].cost = 0;

}

currSize = N;
updateCurrDL () ;
targetDL = currDL;

}

else

{

inputFile.open(dlistFile.data());

assert ((" Trouble_opening.distance._list._file” | inputFile));

while(inputFile >> inputDist)

{
}

inputFile. close () ;

targetDL . push_back (inputDist);

sort (targetDL.begin (), targetDL.end());
}

return 0;

}

int Structure::printDLtoFile(string fileName)

{

// Save the list of distances to the given file.

ofstream outFile(fileName.data());
outFile.precision(20);

114

901

902 cout << "currDL._size:.” << currDL.size () << endl;
903 if(outFile.is_open())

904 {

905 for(int i = 0; i < currDL.size(); ++i)

906 {

907 outFile << currDL[i] << endl;

908 }

909 outFile . close ();

910 }

911 else

912 {

913 cout << "unable_to_open.file” << endl;

914 }

915

916 return 0;

917}

918

919

920 int Structure::getStruFromFile(string fileName)
921 {

922 // Read the structure from the given file so that it can used —
<~ as a core.

923 assert ((7 List_of_atoms.should_be_empty” , atoms.size() — 0 <
<));

924

925 ifstream inputFile;

926 Point inputPt;
927 inputPt.cost = 0;

928
929 inputFile.open(fileName .data());
930

931 while(inputFile >> inputPt.x

932 >> inputPt.y

933 >> inputPt.z)

934 {

935 atoms . push_back (inputPt);

936 cout << "Pt:.” << inputPt << endl;
937 }

938

939 inputFile. close ();

940

941 currSize = atoms.size ();

942 updateCurrDL () ;
943 targetDL = currDL;

115

944 sort (atoms.begin (), atoms.end());

945

946 return 0;

947}

948

949

950 bool Structure::translate(long double distX, long double distY ,

951 long double distZ)

952 {

953 // Shift all the points in the structure by the given amounts —
<~ wn X, Y and Z

954 // directions .

955

956 for(int i = 0; i < atoms.size(); ++i)
957 {

958 atoms| 1].x += distX;

959 atoms| 1].y 4+= distY;

960 atoms| 1].z 4= distZ;

961 }

962

963 return true;

964 }

965

966

967 long double getAngle(Point ptl, Point pt2)
968 {

969 // Assume that pt2 is along the z—axis

970 long double norm = sqrt(ptl.x*xptl.x 4+ ptl.yxptl.y + —
< ptl.zxptl.z);

971 return acos(ptl.x/ norm);

972 // return atan2(sqrt(ptl.yx ptl.y + ptl.zx ptl.z), ptl.z);

973}

974

975

976 Point getAxis(Point ptl, Point pt2)

o7 {

978 // Assume pt2 is along the z—axis

979 // long double norm = sqrt(ptl.zxptl.z + ptl.yxptl.y + —
— ptl.zxptl.z);

980 long double norm = sqrt(ptl.ysptl.y + ptl.zxptl.z);

981 // cout << "ptl in getAzis: 7 << ptl << endl;

982 // cout << "norm in getAxzis: 7 << norm << endl;

983 Point axis;
984
985 axis.x = 0;

116

986 axis.y = ptl.z/ norm;

987 axis.z = —ptl.y/ norm;

988

989 return axis;

990 }

991

992

993 bool Structure::rotate(long double angle)

994 {

995 // Turn the structure about the Z azis by the given angle (in —
<~ radians).

996

997 long double cosT = cos(angle);

998 long double sinT = sin(angle);

999 long double oldX, oldY;

1000

1001 for(int i = 0; i < atoms.size(); ++i)

1002 {

1003 oldX = atoms[i].x;

1004 oldY = atoms[i].y;

1005 atoms[i].x = oldX*cosT + oldY#*sinT;

1006 atoms [1].y = —oldXx*sinT + oldY=xcosT;

1007 }

1008

1009 return true;

1010}

1011

1012

1013 bool Structure::rotate(long double angle, long double axisX,
1014 long double axisY, long double axisZ)
1015 {

1016 // Make sure the azis components are normalized
1017

1018 // If angle is really small, don’t bother with anything
1019 if (fabs(angle) < le—6)

1020 {

1021 // cout << 7small angle: 7 << angle << endl;

1022 return true;

1023 }

1024

1025 // http://inside.mines.edu/ gmurray/ArbitraryAzisRotation /
1026 long double cosT = cos(angle);

1027 long double sinT = sin(angle);

1028 long double o0ldX, oldY, oldZ;

1029

117

1030 for(int i = 0; i < atoms.size(); ++i)

1031 {

1032 0oldX = atoms|[i].x;

1033 oldY = atoms[i].y;

1034 oldZ = atoms|[i].z;

1035 atoms |[i].x = axisX* (axisXxoldX + axisY=xoldY + axisZx*oldZ —
<)% (1 — cosT) + oldXxcosT

1036 + (—axisZx*oldY + axisY*o0ldZ)* sinT;

1037 atoms[i].y = axisYx (axisXxoldX + axisYxoldY + axisZx*oldZ —
<)x (1 — cosT) + oldY*cosT

1038 + (axisZxoldX — axisX=xoldZ)* sinT;

1039 atoms[i].z = axisZx (axisXxoldX + axisY=xoldY + axisZx*oldZ —
—)% (1 — cosT) + oldZxcosT

1040 + (—axisYx*oldX + axisXxoldY)* sinT;

1041 }

1042

1043 return true;

1044}

1045

1046

1047 int Structure::reduceDLprecision(int newPrecision)

1048 {

1049

1050 vector <Point> oldAtoms = atoms;

1051

1052 for(int i = 0; i < atoms.size(); ++i)

1053 {

1054 // FIXME declaring variable inside loop as a quick fiz to —
< make it work

1055 stringstream lessPreciseX ;

1056 lessPreciseX . precision (newPrecision);

1057 lessPreciseX << atoms[i].x;

1058 lessPreciseX >> atoms|[i].x;

1059

1060 stringstream lessPreciseY ;

1061 lessPreciseY . precision (newPrecision);

1062 lessPreciseY << atoms[i].y;

1063 lessPreciseY >> atoms[i].y;

1064

1065 stringstream lessPreciseZ;

1066 lessPreciseZ . precision (newPrecision);

1067 lessPreciseZ << atoms[i].z;

1068 lessPreciseZ >> atoms|[i].z;

1069 }

1070

118

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

1091

1092
1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

updateCurrDL () ;
targetDL = currDL;
atoms = oldAtoms;

for(int i = 0; i < targetDL.size(); ++i)

{

stringstream lessPrecise ;
lessPrecise . precision (newPrecision);

lessPrecise << targetDL[1i];
lessPrecise >> targetDL[1i];

}

return 0;

vector<Point> Structure:: getCore(int coreSize)

{

cout << "coreSize ,.atoms.size ():.”7 << coreSize << 7, <<
< atoms.size () << endl;
assert ((”"Core.size <=_Size_of_structure”, coreSize <= <

<+ atoms.size ()));
vector <Point> corePoints;

corePoints.insert (corePoints.end (), atoms.begin(), —

< atoms.begin() + coreSize);

return corePoints;

int Structure::updateUsedDists ()

{

int numUsed = 0;

int usedNum = 0;

// return 0; // FIX ME debug mode
int idx;

long double errl, err2;
updateCurrDL () ;

for(int i = 0; i < currDL.size(); ++i)
{
idx = closestDist(currDL[i], targetDL);
// cout << 7idx, currD, tarD, flag: 7 << idr <<
— currDL[i] << 7,7

119

)
)

)

<<

s

;}

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154

// << targetDL [idx | << 7,7 << wusedDist[idz] << endl;

// If idx is already excluded; then exclude the neighbour
// FIX ME

if (usedDist[idx])

{

// ++numUsed;

}

// if (usedDist[idz] and idx —1 >= 0 and idz + 1 < —
<~ usedDist. size() —1)

if (false)

{
errl = fabs(targetDL[idx + 1] — currtDL[i]);
err2 = fabs(targetDL[idx — 1] — currtDL[i]);

if (errl < err2)
if (errl < 0.1)

usedDist [idx + 1] = true;
++numUsed ;
}
}

else

{
if (err2 < 0.1)

usedDist [idx — 1] = true;
+4numUsed ;
}
}
}
else
{
usedDist [idx | = true;
++numUsed ;
}
// cout << 7excluding 7 << dlist[idz] << 7 for 7 << —
< coreDlist[1] << endl;
}

// cout << "Number of used distances: 7 << numUsed << endl;
return 0;

120

1155}

1156
1157

158 int Structure::updateFreeDL ()

159 {

1160 int idx;

1161 long double errl, err2;

1162 vector <bool> exclude(targetDL.size (), false);
1163

1164 // updateCurrDL () ;
1165 for(int i = 0; i < currDL.size(); ++i)

1166 {

1167 idx = closestDist(currDL[i], targetDL);

1168

1169 // If idx is already excluded; then exclude the mneighbour
1170 // FIX ME

1171 if (exclude[idx] and idx —1 >= 0 and idx + 1 < —

< exclude.size () —1)

1172 // if (false)

1173 {

1174 errl = fabs(targetDL[idx + 1] — currDL[i]);

1175 err2 = fabs(targetDL[idx — 1] — currDL[i]|);

1176

1177 if(errl < err2)

1178 {

1179 if(errl < 0.1)

1180

1181 exclude [idx + 1] = true;

1182 }

1183 }

1184 else

1185 {

1186 if(err2 < 0.1)

1187

1188 exclude [idx — 1] = true;

1189 }

1190 }

1191 }

1192 else

1193 {

1194 exclude[idx | = true;

1195 }

1196 // cout << Texcluding 7 << targetDL [idz] << 7 for 7 << —
— currDL[i] << endl;

1197 }

121

1198

1199 freeDL. clear () ;

1200 vector<long double> usedDlist ;

1201 for(int i = 0; i < exclude.size(); ++i)

1202 {

1203 if (exclude| i | == false)

1204 {

1205 freeDL . push_back (targetDL[i]);

1206 }

1207 else

1208 {

1209 usedDlist . push_back (targetDL[i]);

1210 }

1211 }

1212

1213 cout << "targetDLErr.(.usedDl,_coreDl.):.”

1214 << distListError (usedDlist, currDL) << endl;

1215 // assert(freeDlist.size () + currDL. size () >= dlist.size());

1216 cout << "Number.of.free_distances:.” << freeDL.size () << endl;

1217 cout << "Number.of_used._distances:.” << usedDlist.size () << —
+ endl;

1218 return 0;

1219 }

1220

1221

1222 long double Structure::getPtCost(Point pt)

1223 {

1224 // Function to calculate the cost of an individual point wrt —

< to the structure
1225 // and wrt to the target dlist
1226
1227 vector<long double> ptDlist (atoms.size(), 0);
1228 // cout << "currSize: 7 << currSize << endl;
1229
1230 for(int i = 0; i < ptDlist.size(); ++i)
1231 {
1232 ptDlist [i] = getDistance(pt, atoms[i]|);
1233 // cout << i << \t’ << ptDlist[i] << endl;
1234 }
1235
1236 // cout << endl;
1237 // getchar();
1238 // cout << "pt cost for 7 << pt << endl;
1239 return distListError(ptDlist);
1240 }

122

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

bool compareCost(const Point& ptl, const Point& pt2)

return (ptl.cost < pt2.cost);

bool Structure::updatePool(Point pt)

if (pool.size () = maxPoolSize and pt.cost > pool| —

< pool.size()—1].cost)

{

return false

}

// Make sure that the same point is not in the pool

bool repeat = false;
int orgldx = —1;

for(int i = 0; i < pool.size(); ++i)

{

if (getDistance(pt, pool[i]) < 0.2)

if (pt.cost < pool[i1].cost)

{

pool.erase(pool.begin() + i);

}

else

{
repeat = true;
orgldx = i;

}
}
}

if(repeat — false)

{

vector <Point >::const_iterator const it

= lower_bound(pool.begin(), pool.end(), pt, compareCost);

int idx = it — pool.begin();
pool.insert (pool.begin() + idx, pt);
cout << 7adding.pt:.”

123

<< pt << 7,7 << pt.cost << endl;

1285 while(pool.size () > maxPoolSize)

1286 {

1287 pool.pop_back () ;
1288 }

1289

1290 return true;

1201}

1292

1203

1204 bool Structure::doBuildup2(int newBase)
1205 {

1296 Point smPt;

1297 smPt.x = 2.42671232;
1298 smPt.y = 0.24021148;
1299 long double triToler = 0.1;

1300 Point zero;

1301 zero.x = zero.y = zero.z = 0;

1302 if(newBase = 0)

1303 {

1304 newBase = 1;

1305 }

1306

1307 // FIXME quick hack as ptl of base is already at origin
1308 long double distA = getDistance(zero, atoms| newBase |);
1309 long double distB = 0, distC = 0;

1310 long double error = 0.0L;

1311 Point testPt;

1312 int numTestPts = 0;

1313 cout << 7distA:.” << distA << endl;

1314

1315 for (int bldx = 0; bldx < targetDL.size(); bldx++)
1316 {

1317 if (usedDist|[bldx |)

1318

1319 continue;

1320 }

1321

1322 distB = targetDL[bldx |;
1323 for (int cldx = bldx + 1; cldx < targetDL.size (); cldx++)
1324 {

1325 if (usedDist| cldx |)
1326 {

1327 continue;

1328 }

1329 distC = targetDL[cldx |;

124

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348

1349
1350
1351
1352
1353
1354
1355
1356
1357

1358

1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

if(distA > distC)

}

if((distB + distC + triToler) < distA)

continue;

}

else

{

}

if ((distA + distB + triToler) < distC)

break;
}

// Place testPt

// cout << "placing testPt” << endl;

testPt.x = distA/2 — (distC — distB)* (distC + distB —
«)/ (2% distA);
testPt.y = sqrt((distC + testPt.x — distA)x

(distC — testPt.x 4+ distA));

if (getDistance(testPt, smPt) < 0.2)

{

}

// In the case of nearly collinear points,

cout << ”Missing._point!” << endl;

// getchar();

— vy, we maybe
// taking the square root of a mnegative number. In such —

< cases

)

damp

// it to zero.
if(testPt.y != testPt.y)

{
}

testPt .y

for(int m

{

if(m=—

testPt .

X

0;

0; m< 2; m+)

)

= distA — testPt.x;

125

to caclulate —

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

1383

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

}

}

for(int n = 0; n < 2; n++)

{
if(n=1)

testPt.y = — testPt.y;

}

testPt.cost = error = getPtCost(testPt);
if ((testPt.cost — 0.00478091) < 0.001)

{

cout << "testPt ,_error:.” << testPt << 7 .7 << —
+ error << endl;
cout << 7bldx,_cldx,.m,.n:.” << bldx << 7, << cldx <=
o<)
<< m<< ', << n << endl;

\ // getchar();

if(error < 0.2)

{
updatePool (testPt);
++numTestPts;

}
Y // n loop
} // m loop
} // ¢ loop
// b loop

cout << "Number_of_points_tested:_.” << numTestPts << endl;
return 0;

bool Structure::doBuildup3(int newBase)

{

Point smPt;

smPt.x = 2.42671232;
smPt.y = 0.24021148;

long double triToler = 0.1;
Point zero;

zero.x = zero.y = zero.z = 0;
if (newBase = 0)

{
}

newBase = 1;

126

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

// FIXME quick hack as ptl of base is already at origin

long double distA = getDistance(zero, atoms| newBase |);
long double distB = 0, distC = 0;

long double error = 0.0L;

Point testPt;

int numTestPts = 0;

cout << 7distA .7 << distA << endl;

// updateFreeDL () ;
// for(int bldx = 0; blds < targetDL.size(); bldz++)

for (int bldx = 0; bldx < freeDL.size (); bldx++)
{

// if(usedDist[bldzr |)

// A

// continue;

//}

distB = freeDL[bldx];
for (int cldx = bldx + 1; cldx < freeDL.size(); cldx++)
{

// if(usedDist[cldz |)

// A

// continue;

/))
distC = freeDL[cldx]|;

if(distA > distC)
if((distB + distC + triToler) < distA)

continue;

}
}

else

{
if ((distA + distB + triToler) < distC)

break;

}
}

// cout << "bldx, cldz: 7 << bldz << '\t’ << cldz << endl;
// Place testPt

// cout << "placing testPt” << endl;

testPt.x = distA /2 — (distC — distB)* (distC + distB —

127

1460
1461
1462
1463
1464
1465
1466
1467
1468

1469

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

1494

1495
1496
1497
1498

«—)/ (2% distA);
testPt.y = sqrt((distC + testPt.x — distA)x
(distC — testPt.x 4+ distA));

if (getDistance(testPt, smPt) < 0.2)

{

cout << ”Missing._point!” << endl;

// getchar();

// In the case of nearly collinear points, to caclulate —
— vy, we maybe

// taking the square root of a negative number. In such —
— cases, damp

// it to zero.

if(testPt.y != testPt.y)

{
}

for(int m= 0; m < 2; m+)

{

testPt.y = 0;

if(m=—1)

testPt.x = distA — testPt.x;

}

for(int n = 0; n < 2; n++)

{
if(n=1)

testPt.y = — testPt.y;

}

testPt.cost = error = getPtCost(testPt);

J/ if((testPt.cost — 0.00478091) < 0.001)

// A

// coul << 7testPt, error: 7 << testPt << 7, 7 << <
— error << endl;

// cout << 7bldx, cldx, m, n: 7 << bldzx << 7,7 << <
— clde << 7,7

// << m<< 7,7 << n << endl;

/) /) getchar();
//}

// cout << "testPt, cost: 7 << testPt << 7,7 << error —
— << endl;

128

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543

}

if(error < 0.2)

updatePool (testPt);
++numTestPts;

}
} // n loop
Y // m loop
} // ¢ loop
}// b loop

cout << "Number_of_points_tested:_.” << numTestPts << endl;
return 0;

long double Structure::getPtsCost(Point ptl, Point pt2)

{

// Replacing brute force implementation with the one based on
// reusing the cost of pl, p2 calculated earlier.

vector<long double> ptsDlist ;

for(int i = 0; i < atoms.size(); ++i)

{
ptsDlist.push_back(getDistance(ptl, atoms[i]));
ptsDlist.push_back(getDistance(pt2, atoms[i]));

}

ptsDlist.push_back(getDistance(ptl, pt2));
sort (ptsDlist.begin(), ptsDlist.end());

// cout << "ptl, pt2”7 << endl;

// cout << ptl << endl;

// cout << pt2 << endl;

// for(int i = 0; i < ptsDlist.size(); ++i)
// A

// cout << "Dlist: 7 << i << \t’ << ptsDlist][i | << endl;

//)

if (ptsDlist [0] < 0.33x% targetDL[0])
{

// cout << 7overlap 7 << endl;

// getchar();

return 1.0;

}

129

1544

1545 return distListError(ptsDlist);

1546}

1547

1548

1549 int Structure::insertPoint (Point pt)

1550 {

1551 // FIXME faster to use binary search

1552 Point zero;

1553

1554 for (int idx = 0; idx < atoms.size (); ++idx)

1555 {

1556 if(getDistance(pt, zero) < getDistance(atoms| idx |, —
<~ zero))

1557 {

1558 atoms.insert (atoms.begin() + idx, pt);

1559 return 0;

1560 }

1561 }

1562

1563 atoms . push_back (pt);

1564 return 0;

1565}

1566

1567

1568 bool Structure::growStru()

1569 {

1570 printPool () ;

1571

1572 bool growthFlag = false;

1573 if (pool.size() < 2)

1574 {

1575 cout << ”Small_pool” << endl;

1576 return false;

1577 }

1578

1579 long double cost2pts = 0;

1580 long double minCost = 1e6;

1581 size_t idxlbest = 0, idx2best = 0;

1582

1583 for (int idxl = 0; idxl < pool.size(); ++idx1l)

1584 {

1585 for (int idx2 = idx1l + 1; idx2 < pool.size (); ++idx2)
1586 {

1587 cost2pts = getPtsCost(pool[idxl |, pool| idx2]);

130

1588

1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602

1603
1604
1605
1606
1607
1608

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620

1621
1622
1623
1624

1625
1626
1627

}

}

// cout << 7idxl, idz2, cost: 7 << idrl << 7, 7 << idz2 —
P << 77; »
// << setprecision(8) << cost2pts << endl;
if (cost2pts < minCost)
{
idxlbest = idx1;
idx2best = idx2;
minCost = cost2pts;
h
Y // idz2 loop
// idxl loop

if(minCost < 1)

}

// cout << 7best idr: 7 << idrlbest << 7, << idzxlbest << ;'
// << 7 potential cost: 7 << setprecision(8§) << —
+— minCost << endl;

insertPoint (pool[idxlbest |);

insertPoint (pool[idx2best |);

growthFlag = true;

updateCurrDL () ;

cout << 7adding._pts_with_idx:.” << idxlbest << 7 .7 << —
+ idx2best << endl;

cout << "xxx.” << pool| idxlbest | << endl;

cout << "xxx.” << pool| idx2best | << endl;

// getchar();

return growthFlag;

int Structure::printPool ()

{

cout << "x¥xxx."” << "Points_.in_the_pool_and_their._.cost” <<

7 2

g
— xxkx” << endl;

for(int i = 0; i < pool.size(); ++i)

{

// cout << i << '\t << poolli] << '\t << setprecision(8 —
—) << pool[i].cost

// << endl;

long double ptCost = getPtCost(pool[i |);

cout << i << '\t’ << pool[i] << "\t~ << setprecision(8) —

131

+— << ptCost

1628 << endl;
1629 }

1630 cout << endl;
1631 // getchar();
1632

1633 return 0;

1634}

1635

1636

1637 int Structure:: getPools ()
1638 {

1639 // func that gets and combines the pools from the 3 bonds in
< the base triangle

1640 // and then is ready for doing buildup

1641

1642 // FIXME quick hack to fiz some failed reconstructions

1643 // srand(time(NULL));

1644

1645 int numPools = 1;

1646 int basePtl = 0, basePt2 = 1;

1647 int oldBasePtl = basePtl, oldBasePt2 = basePt2;

1648 vector<Point> oldAtoms = atoms, newPool;
1649 long double newOx, newOy, newOz, angle;
1650

1651 for(int i = 1; i <= numPools; ++i)

1652 {

1653 do

1654 {

1655 basePtl = rand() % atoms.size ();

1656 basePt2 = rand () % atoms.size ();

1657 if (basePtl > basePt2)

1658 {

1659 swap (basePtl, basePt2);

1660 }

1661 } while(basePt2 =— basePtl

1662 or basePtl = oldBasePtl

1663 or basePt2 = oldBasePt2

1664 or basePtl = oldBasePt2

1665 or basePt2 — oldBasePtl);
1666

1667 oldBasePtl = basePtl;

1668 oldBasePt2 = basePt2;

1669 cout << "newBase:.” << basePtl << '\t’ << basePt2 << endl;
1670

132

1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

1706
1707
1708
1709
1710
1711
1712
1713
1714

newOx = atoms[basePtl].x;

L X
newQOy = atoms| basePtl |.y;
newOz = atoms|[basePtl |.z

Y

// angle = atan2(atoms[basePt2]|.y — atoms[basePtl
// atoms[basePt2 |.x — atoms[basePtl
// translate(—newOzx, —newQy, —newOz);

// rotate(angle);

// cout << "before buildup” << endl;

// print();
// doBuildup2(basePt2);

// doBuildup3(basePt2);
// translate (—newOz, —newQy, —newOz);

// Point pt2;
J/ pt2.x = 1; pt2.y = 0; pt2.z = 0;

// long double angle = getAngle(atoms[basePt2 |, pt2);

// Point axis = getAxzis(atoms[basePt2]|, pt2);
// rotate(angle, azis.x, axis.y, azis.z);

doBuildup3Dv2(0, 1, 2);
atoms.insert (atoms.end(), pool.begin(), pool.end());

// rotate(—angle, azis.x, axis.y, azris.z);
// translate(newOz, newOy, newOz);

// rotate (—angle);
// translate(newOzx, newOy, newOz);

// cout << 7after buildup” << endl;

// print();

newPool . insert (newPool.end (), atoms.begin() + <
< oldAtoms. size (),
atoms.end ());
pool.clear () ;
atoms = oldAtoms;

}

for(int j = 0; j < newPool.size(); ++j)

{
}

updatePool (newPool[j |);

133

1715
1716
1717
1718
1719
1720
1721
1722

1723
1724
1725
1726
1727
1728
1729
1730

1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757

}

return 0;

int Structure:: getPools2()

{

// func that gets and combines the pools from the 3 bonds in —
< the base triangle
// and then is ready for doing buildup

// FIXME quick hack to fiz some failed reconstructions

// srand(time(NULL));

int numPools = 2;
int basePtl = 0, basePt2

int oldBasePtl = basePtl,

<+ basePt3;

= 1, basePt3 = 2;
oldBasePt2 = basePt2, oldBasePt3

vector <Point> oldAtoms = atoms, newPool;
long double newOx, newOy, newOz, angle;

for(int i =

{

do

{
basePtl =
basePt2 =
basePt3 =

// } while(
//
//

or
or
or
or
or
or
or
or
or
or

1; i <= numPools; ++i)

rand () %
rand () %
rand () %
basePt3

basePt3
basePt3
basePtl
basePt2
basePtl
basePt1

basePt3
basePt3
basePt3

cout << "newBase:.”

atoms . size () ;
atoms . size () ;
atoms . size () ;

== oldBasePt3
or basePt3 == basePtl

or basePt3 == basePt2);
} while(basePt2 =— basePtl

basePt2
basePt1
oldBasePt1
oldBasePt2
oldBasePt3

= oldBasePt2
basePt2 =

<<
<<

oldBasePt1
oldBasePt3
oldBasePt1
oldBasePt2);

basePtl << ’\t’ << basePt2 << ’\t’
basePt3 << endl;

134

<_>

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

1801

oldBasePt1
oldBasePt2
oldBasePt3

basePt1 ;
basePt2;
basePt3;

int sum = basePtl + basePt2 + basePt3;

basePtl = min(min(oldBasePtl, oldBasePt2), oldBasePt3);
basePt3 = max(max(oldBasePtl, oldBasePt2), oldBasePt3);
basePt2 = sum — basePtl — basePt3;

oldBasePtl = basePtl;

oldBasePt2 = basePt2;

oldBasePt3 = basePt3;

cout << "newBase:.” << basePtl << '\t’ << basePt2 << ’\t’
<< basePt3 << endl;

// basePtl = 0; basePt2 = 1; basePt3 = atoms.size() — 1;

// basePtl = 1; basePt2 = 2; basePt3 = 3;

newOx = atoms[basePtl |.x;

newQOy = atoms[basePtl |.y;

newOz = atoms[basePtl |.z;

translate (—mewOx, —newOy, —newOz) ;

// cout << "Translate to new origin” << endl;

// print();

// getchar();

Point pt2;
pt2.x = 1;

pt2.y = 0; pt2.z = 0;
long double angle = getAngle(atoms]
Point axis = getAxis(atoms|[basePt2 |, pt2);

// cout << atoms[basePt2 | << endl;

// cout << "angle, axis:

//

”

<< angle << 7,7 << axis.x << 7,

<< azris.y

basePt2 |, pt2);

))))

<< 7,0 << azis.z << endl;

rotate(angle, axis.x, axis.y, axis.z);

// long double angle2 = getAngle(atoms[basePt2 |, pt2);

// Point axis?2

//

getAxis(atoms/| basePt2 |, pt2);

// cout << atoms[basePt2 | << endl;
// cout << 7angle, azis: 7 << angle2 << 7,7 << awis2.z << '’

//

— endl;

// rotate(angle2, azis2.rt,

))

<< azxisl.y << 7,7 << axis?.z << —

axisl .y,

135

arisl.z);

1802
1803 // cout << "Rotate to make new base bond along the X axis” —
— << endl;

1804 // print();

1805 // getchar();
1806 long double angle3 = atan2(atoms| basePt3].z, atoms|[—

< basePt3 |.y);

1807 cout << "—angled ,_axis:.” << —angled << 7,7 << 717 << 77
1808 << 707 << 7,7 << 707 << endl;
1809 rotate(—angle3, 1, 0, 0);
1810 // print();
1811 // cout << "angle8, axis: 7 << angled << 7,7 << 717 << 77
1812 // << 07 << 7, << 707 << endly
1813 // rotate(angle3, 1, 0, 0);
1814 // print();
1815 // getchar();
1816 // return 1;
1817
1818 doBuildup3Dv2(basePtl, basePt2, basePt3);
1819 atoms. insert (atoms.end(), pool.begin(), pool.end());
1820 rotate(angle3, 1, 0, 0);
1821 // print();
1822 rotate (—angle, axis.x, axis.y, axis.z);
1823 // print();
1824 translate (newOx, newQOy, newOz);
1825 // print();
1826 // getchar();
1827
1828 cout << ”Size._of_.newPool:.” << newPool.size () << endl;
1829 newPool . insert (newPool.end (), atoms.begin() + <
< oldAtoms. size (),
1830 atoms.end ());
1831 cout << ”Size._of_.newPool:.” << newPool.size () << endl;
1832 pool.clear () ;
1833
1834 atoms. clear () ;
1835 atoms = oldAtoms;
1836 }
1837
1838 for(int j = 0; j < newPool.size(); ++j)
1839 {
1840 cout << "update,.”;
1841 updatePool (newPool[j]);
1842 // getchar();
1843 }

136

1844

1845 return 0;

1846}

1847

1848

189 int print2structures(vector<Point>& strul , vector<Point>& —
<+ stru2)

1850 {

1851 // For convenience print strul , stru2 format

1852 assert (strul.size () >= stru2.size());

1853 cout << "xx¥x.” << "Printing.2.structures” << 7 _x*x*xx” << endl;
1854 Point zero;

1855 long double r1, r2, diff;

1856 int i =0, j = 0;

1857 long double distToler = 0.5;

1858

1859 while(i < strul.size() and j < stru2.size())
1860 {

1861 rl = getDistance(strul[i], zero);

1862 r2 = getDistance(stru2[j], zero);

1863 diff = getDistance(strul[i], stru2[j]);

1864

1865 if(fabs(r1 —r2) < distToler and diff < distToler)
1866

1867 cout << i << '\t << 7 (. << strul[i] << 7.)”
1868 << U\t << (L7 << ostru2[j] << 7L)”

1869 << '\t’ << getDistance(strul[i], stru2[j]);
1870 ++1 ;

1871 ++j ;

1872 }

1873 else if(rl < r2)

1874 {

1875 cout << i << "\t’ << 7 (.7 << strul[i] << 7.)7
1876 << U\t << (L7 << zero << 7 L)7

1877 << '\t << getDistance(strul[i], zero);
1878 ++1 ;

1879 }

1880 else

1881 {

1882 cout << "—17 << T\t << 7 (.7 << zero << ".)7
1883 << U\t << (L7 << ostru2[j] << 70)”

1884 << '\t << getDistance(zero, stru2[j]);
1885 ++J

1886 }

1887

137

1888 cout << endl;

1889 }

1890

1891 while(i != strul.size())

1892 {

1893 cout << i << "\t’ << 7 (.7 << strul [i] << 7.)” << endl
1894 41 ;

1895 }

1896

1897 while(j != stru2.size())

1898 {

1899 cout << 71" << T\t << 7 (.7 << zero << ".)7

1900 << U\t << (L7 << ostru2[j] << 7L)”

1901 << '\t’ << getDistance(zero, stru2[j]) << endl;
1902 ++j ;

1903 }

1904 cout << endl;

1905

1906 /) cout << Vi, j:r V<< i<< 7,7 << j << endl;
1907 return 0;

1908}

1909

1910

1911 bool Structure::reconstruct2()

12 {

1913 bool growth = false;

1914 int resetNum = 0;

1915 vector<Point> givenCore = atoms;

1916 updateCurrDL () ;

1917 cout << "size.of_given.core:.” << givenCore.size () << endl;
1918

1919 while(atoms.size () < targetSize)

1920 {

1921 // updateUsedDists () ;

1922 // updateCurrDL () ;

1923 updateFreeDL() ;

1924 cout << "size.of.freeDL:." << freeDL.size () << endl;
1925

1926 if(false and growth and atoms.size () >= 20 and

1927 targetSize > 20 and (atoms.size()/ 2) % 2 =0)
1928 {

1929 }

1930 else

1931 {

1932 pool.clear ();

138

1933 // getPools();

1934 getPools2 () ;

1935 }

1936 cout << "pool.size:.” << pool.size () << endl;

1937 cout << ”"Pool.pt0,.cost:.” << pool[0] << 7,7 << getPtCost(—
< pool[0]) << endl;

1938

1939 growth = growStru() ;

1940 sort (atoms.begin (), atoms.end());

1941 // cout << 7solution size: 7 << atoms.size () << endl;

1942 if(resetNum >= 2)

1943 {

1944 break ;

1945 }

1946 if (growth =— false)

1947 {

1948 print () ;

1949 atoms = givenCore;

1950 updateCurrDL () ;

1951 ++resetNum;

1952 }

1953 // getchar();

1954 }

1955

1956 return (atoms.size () = targetSize);

1957 // return growth;

1958}

1959

1960

1961 bool Structure::findCore3D ()

1962 {

1963 bool successFlag = false;

1964

1965 // 10 bonds in the tetrahedron

1966 int idxA = 0, idxB, idxC, idxD, idxE, idxF, idxG, idxH, idxl, —
— idxJ, idxM;

1967 int bridgeldx;

1968 long double counter = 0; // number of tetrahedra
1969 long double bridgeDist = 0;

1970 long double fmin, fmax, imin, imax, fracError;
1971

1972 int invC = 0; // # invalid cores

1973 // bond window

1974 int winStart = 0, inc = 10, winStop = winStart + inc; // —
— windowing on

139

1975
1976
1977
1978
1979
1980
1981
1982

1983
1984

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

2003

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

vector<long double> dlist = targetDL;
cout << "targetDL_size:.” << targetDL.size () << endl;

Point basePtl, basePt2, basePt3,
apexPtl, apexPt2;
basePtl.x = 0; basePtl.y = 0; basePtl.z = 0;
basePt2.x = dlist [idxA]; basePt2.y = 0; basePt2.z = 0;

cout << "basePtl:.” << basePtl.x << 7.7 << basePtl.y << 7.7 —
— << basePtl.z
<< endl;

cout << "basePt2:.”7 << basePt2.x << 7.7 << basePt2.y << 7.7 —
— << basePt2.z
<< endl;
cout << ”"Bond.window:.”;

int countC = 0; // count number of cores
vector<int> idxArr(6, 0);
while (true) // window loop

{

cerr << "—=7 << winStop;

// base triangle
for(idxB = 1; idxB < winStop; ++idxB)
{
// cout << endl << 7idzB:”7 << idzB << 7, 7; // endl;
// cout << 7idzC: 7
for (idxC = idxB + 1; idxC < winStop; ++idxC)
{
J/ cout << V.7 << idaC << L7 /) << endl;
// NOTE: ¢>b so we have to check only 1 triangle —
— inequality
if (dlist[idxA] + dlist| idxB | + toler < dlist[idxC —
<~ |) break;

placeApex(basePt3, idxA, idxB, idxC, dlist);

for (idxD = 1; idxD < winStop; ++idxD)
{
if(idxD = idxB or idxD = idxC) continue;
if (idxD < idxB) continue;
for (idxE = 1; idxE < winStop; ++idxE)
{
if(idxE < idxB) continue;
if(idxE = idxB or idxE
<+ continue;

idxC or idxE == idxD) —

140

2015
2016

2017

2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

2030
2031
2032
2033
2034

2035
2036
2037
2038
2039

2040
2041
2042
2043
2044
2045

2046

2047

2048

// triangle inequalities
if(dlist| idxA | + dlist[idxE | + toler < dlist| —

< idxD |) continue;

if (dlist[idxA] + dlist[idxD] + toler < dlist[<

< idxE]) break;

placeApex(apexPtl, idxA, idxD, idxE, dlist);

fmin = getDistance(basePt3, apexPtl);
apexPtl.y = — apexPtl.y;
fmax = getDistance(basePt3, apexPtl);

for (idxF = 1; idxF < dlist.size(); ++HdxF)

{

if (dlist [idxF] < (fmin — toler)) continue;
if (dlist [idxF] > (fmax + toler)) break;

if(idxF = idxB or idxF = idxC or idxF idxD —
< or idxF = idxE) continue;

idxArr[0 | = idxA; idxArr|[5 | = idxF;

idxArr[1 | = idxB; idxArr[4 | = idxE;

idxArr|[2 | = idxC; idxArr|[3 | = idxD;

placeTop(basePtl, basePt2, basePt3, apexPtl, —

< idxArr, dlist);

for (idxG = 1; idxG < winStop; ++idxG)
{
if (idxG < idxB) continue;
if (idxG = idxB or idxG
< idxD or
idxG = idxE or idxG = idxF) continue;
if (idxG < idxD) continue;
for (idxH = 1; idxH < winStop; ++dxH)
{

1dxC or 1dxG = <«

if (idxH < idxB) continue;

if (idxH =idxB or idxH = idxC or idxH = —
< idxD or
idxH = idxE or idxH = idxF or idxH = —

< idxG) continue;

if (dlist[idxA] + dlist [idxH] 4+ toler < —
< dlist [idxG]) continue; // triangle —
— inequality

if (dlist [idxA | + dlist[idxG] + toler < —
< dlist[idxH |) break; // triangle —
— inequality

141

2049
2050
2051
2052
2053
2054
2055

2056
2057
2058
2059

2060

2061
2062
2063
2064
2065

2066
2067

2068

2069

2070

2071

2072

2073

2074

2075

2076
2077
2078
2079
2080

2081

placeApex(apexPt2, idxA, idxG, idxH, dlist);

imin = getDistance (basePt3, apexPt2);

apexPt2 .y = — apexPt2.y;
imax = getDistance(basePt3, apexPt2);
// cout << "bp3, ap2: 7 << basePtd << 7,7 << —

+— apexPt2 << endl;

for(idxI = 1; idxI < dlist.size (); 4+idxI)

{

if(idxI = idxB or idxl = idxC or idx]l = —
< idxD or
idx] = idxE or idxl = idxF or idx] = —

<~ idxG or
idxI = idxH) continue;
// correct windowing
if(idxH < winStart and idxG < winStart and
idxE < winStart and idxD < winStart and
idxC < winStart and idxB < winStart) —
<+ continue;

if(dlist[idxI] < (imin — toler)) <=
< continue;
if (dlist[idxI] > (imax + toler)) break;

// cout << "abcdefghi: 7 << idrA << 7,7 << —
«— idzB << 7,7

// << ddzC << 7,7 << =
— idxD << 7,7

// << ddzE << 7,7 << =
— drF << 77

// << daG << 7,7 << =
«— ddxH << 7,7

// << tdxl << endl;

// cout << "dlist—I, imin, imax: 7 << —
— dlist][ide]l] << 7,7 << imin << 7,7 << =

— imar << endl << endl;

idxArr[0] = idxA; idxArr[5] = idxI;
idxArr[1 | = idxB; idxArr[4 | = idxH;
idxArr[2] = idxC; idxArr|[3] = idxG;
placeTop(basePtl, basePt2, basePt3, —

< apexPt2, idxArr, dlist);

142

2082 for (idxM = 0; idxM < 2; +HdxM)

2083 {
2084 apexPt2.z = pow(—1.0L, idxM)x <
< apexPt2.z; // reflect about XY plane
2085
2086 bridgeDist = getDistance(apexPtl, —
<~ apexPt2);
2087 counter += 1;
2088
2089 if (bridgeDist != bridgeDist) getchar(); —
— /) cout << p4 << N\t << ph << endl;
2090 if((bridgeDist < (dlist[0 | — <=
< bridgeDist*x toler)) or
2091 (bridgeDist > (dlist[dlist.size() —
< — 1] + bridgeDist* toler))) —
<+ continue;
2092 idxJ = closestDist(bridgeDist, dlist);
2093
2094 if (idxJ = idxA and idxJ = idxB and —
— idxJ == idxC and
2095 idxJ = idxD and idxJ = idxE and —
+ idxJ == idxF and
2096 idxJ = idxG and idxJ == idxH and —
— idxJ = idxI)
2097 {
2098 continue;
2099 }
2100
2101 fracError = fabs(dlist| idxJ | — —
< bridgeDist)/ bridgeDist;
2102 if (fracError < toler)
2103
2104 atoms. push_back (basePtl);
2105 atoms. push_back (basePt2);
2106 atoms . push_back (basePt3);
2107
2108 atoms . push_back (apexPtl);
2109 atoms . push_back (apexPt2);
2110
2111 cout << endl << 7"3D.core.found!!!” << —
+ endl
2112 cout << bridgeDist << '\t << dlist[—
— idxJ | << '\t~
2113 << fabs(bridgeDist — dlist[idxJ <

—]) << endl;

143

2114 cout << "bridgeDist:.” << bridgeDist << —
<+ endl;

2115 cout << 7core.finder_counter:.” << <
<+ counter << endl;

2116
2117 for(int i = 0; i < atoms.size(); ++i)
2118 {
2119 cout << 7"Point: .7 << 1 + 1 << "\t’ << =
< atoms|[i] << endl;
2120 }
2121
2122 // Adding the buildup inside core <
— finder to deal
2123 // with bad cores
2124 doBuildup3D (idxArr);
2125 if (atoms.size () >= min(8, targetSize —
<))
2126 {
2127 // If buildup was able to add 4 more —
< points then with
2128 // high probability , we have the —
< right structure.
2129 cout << 7_atoms.size:.” << —
< atoms.size () << endl;
2130 return true;
2131 }
2132 else
2133 {
2134 // If buildup could not even 4 points —
< then with a very
2135 // high probability , we have the —
— wrong structure. Start
2136 // over and find the next core.
2137 cout << "No._buildup ,._bad_core._
2138 "Finding._.the_.next_.core.....” —
+— << endl;
2139 atoms. clear () ;
2140 updateCurrDL () ;
2141 // cout << "Bond window: 7;
2142 }
2143 // return true;
2144 }
2145 } // m loop

2146 Y // i loop
2147 }// h loop

144

2148 Y // g loop

2149 Yy // f loop

2150 Y // e loop

2151 Y // d loop

2152 Y // ¢ loop

2153 Y // b loop

2154

2155 cout << ”counter:._.”’<< counter << endl;

2156 winStart = winStop; winStop += inc;

2157 if (winStart = dlist.size()) break;

2158

2159 if(winStop > dlist.size ())

2160

2161 winStop = dlist.size ();

2162 }

2163

2164 cout << ”searching._in.a.”’<< winStop << ”_bond_window” << endl;
2165 }+ // window while loop

2166

2167 return successFlag;

2168 |

2169

2170

2171 bool Structure::doBuildup3D (vector<int> idxArr)
2172 {

2173 bool successFlag = false;

2174

2175 // 10 bonds in the tetrahedron

2176 int idxA = idxArr|[0 |, idxB = idxArr|[1 |, idxC = idxArr| 2 |,
2177 idxD = idxArr|[3 |, idxE = idxArr|[4 |, idxF = idxArr|[5 |,
2178 idxG, idxH, idxI, idxJ, idxM;

2179

2180 int bridgeldx;

2181 long double counter = 0; // number of tetrahedra
2182 long double bridgeDist = 0;

2183 long double fmin, fmax, imin, imax, fracError;
2184

2185 int invC = 0; // # invalid cores

2186 // bond window

2187 vector<long double> dlist = targetDL;

2188 int winStart = 0, winStop = dlist.size(); // windowing off

2189

2190 Point basePtl = atoms| 0 |, basePt2 = atoms|[1], basePt3 = —
<~ atoms| 2],

2191 apexPtl = atoms|[3], apexPt2;

145

2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207

2208

2209

2210
2211
2212
2213
2214
2215
2216

2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

int countC = 0; // count number of cores

for (idxG = 0; idxG < winStop; ++idxG)
{
if(idxG = idxB or idxG = idxC or idxG = idxD or
idxG = idxE or idxG == idxF) continue;
if (usedDist|[idxG |) continue;

for (idxH = 0; idxH < winStop; ++idxH)

{
if(idxH =idxB or idxH = idxC or idxH = idxD or

idxH = idxE or idxH = idxF or idxH = idxG) continue;

if (usedDist| idxH |) continue;

if(dlist| idxA] 4 dlist] idxH | + toler < dlist| idxG | —

<) continue; // triangle inequality

if (dlist | idxA | + dlist[idxG] + toler < dlist[idxH | <

<) break; // triangle inequality

if(dlist| idxH] 4+ dlist] idxG | + toler < dlist| idxA | <

<) continue; // triangle inequality
placeApex(apexPt2, idxA, idxG, idxH, dlist);
imin = getDistance (basePt3, apexPt2);

apexPt2 .y = — apexPt2.y;
imax = getDistance(basePt3, apexPt2);

J/ cout << "bp3, ap2: 7 << basePtd << 7,7 << apexPt2 << —

— endl;

for (idxI = 0; idxI < dlist.size (); ++idxI)

{

if(idxI = idxB or idxl = idxC or idxl = idxD or
idx] = idxE or idxlI = idxF or idxl = idxG or
idxI = idxH) continue;

if (usedDist| idxI |) continue;

if(dlist[idxI] < (imin — toler)) continue;

if(dlist| idxI | > (imax + toler)) break;

idxArr|[0] = idxA; idxArr|[5] = idxI;

idxArr[1] = idxB; idxArr[4 | = idxH;

idxArr|[2 | = idxC; idxArr|[3]| = idxG;

placeTop(basePtl, basePt2, basePt3, apexPt2, idxArr, —

+— dlist);

146

2232

2233 for (idxM = 0; idxM < 2; +HdxM)

2234 {

2235 apexPt2.z = pow(—1.0L, idxM)x apexPt2.z; // reflect —
+— about XY plane

2236 counter += 1;

2237

2238 bridgeDist = getDistance(apexPtl, apexPt2);

2239 if (bridgeDist != bridgeDist) getchar(); // cout << —
— ph << N\t << ph << endl;

2240 if ((bridgeDist < (dlist|[0 | — bridgeDist* toler) —
<) or

2241 (bridgeDist > (dlist[dlist.size() — 1 | + —

< bridgeDistx toler))) continue;

2242 idxJ = closestDist(bridgeDist, dlist);

2243

2244 if(idxJ = idxA and idxJ = idxB and idxJ = idxC and

2245 idxJ == idxD and idxJ == idxE and idxJ == idxF and

2246 idxJ = idxG and idxJ = idxH and idxJ = idxI)

2247 {

2248 continue;

2249

2250 if (usedDist[idxJ]) continue;

2251

2252 fracError = fabs(dlist[idxJ] — bridgeDist)/ —
< bridgeDist;

2253 if(fracError < toler)

2254

2255 atoms. push_back (apexPt2);

2256

2257 cout << endl << ”Point.found!!!” << endl;

2258 cout << bridgeDist << "\t << dlist[idxJ | << "\t’

2259 << fabs(bridgeDist — dlist[idxJ |) << endl;

2260 cout << ”bridgeDist:.” << bridgeDist << endl;

2261 cout << "counter:.” << counter << endl;

2262

2263 cout << "Point:.” << atoms.size () << '\t’

2264 << atoms[atoms.size() — 1] << endl;

2265

2266 usedDist [idxG | = usedDist[idxH] = usedDist| —

+— idxI]

2267 = usedDist [idxJ | = true;

2268 if (atoms.size () = targetSize)

2269

2270 cout << ”buildup.counter:_”<< counter << endl;

147

2271 return true;

2272 }

2273

2274 }

2275 Y // m loop

2276 Y // i loop

2277 Y // h loop

2278 Y // g loop

2279

2280 cout << "counter:.”<< counter << endl;

2281 return false;

2282}

2283

2284

2285 bool Structure::home3D(int distldx)

2286 {

2287 // Orient the structure in a unique manner so that it becomes —»
<~ easy to check

2288 // if two or more structure are identical to one another or not.

2289

2290 long double minDist = 1e6;

2291 int idxl = 0, idx2 = 1;

2292 long double dist = 1e6, err, minErr;

2293 minErr = fabs(targetDL| distldx | — getDistance(atoms|[idxl —
<«], atoms| idx2 |));

2294
2295 // Find the correct bond in the structure

2296 for(int i = 0; i < atoms.size(); ++i)

2297 {

2298 for(int j =1 + 1; j < atoms.size(); ++j)

2299 {

2300 dist = getDistance(atoms| i |, atoms[j |);
2301 err = fabs(targetDL| distldx | — dist);

2302 if(err < minErr)

2303 {

2304 minErr = err;

2305 idxl = i;

2306 idx2 = j;

2307 }

2308 }

2309 }

2310 // cout << Vidxl, idz2: 7 << ddxl << '\t << idz2 << endl;
2311

2312 // Locate the apex point of the base triangle

2313 long double minDistl = 1e6, minDist2 = 1e6;

148

2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344

2345
2346
2347
2348
2349
2350

2351
2352
2353
2354
2355
2356

long double distl , dist2;
int minldxl, minldx2;

for(int i = 0; i < atoms.size(); ++i)

{

}

if(i = idxl or i = idx2) continue;

distl = getDistance(atoms| i |, atoms| idxl |);
if (distl < minDistl)
{

minDistl = distl;

minldxl = i;

}

dist2 = getDistance(atoms| i |, atoms|[idx2 |);
if(dist2 < minDist2)
{

minDist2 = dist2;

minldx2 = i;

int idx3 = minldx1;
if(minDistl > minDist2)

{

}

idx3 = minldx2;
swap (idx1, idx2);

// Correctly place the base triangle
translate (—atoms| idx1l |.x, —atoms|[idxl].y, —atoms[idxl1

« |l.z);

// find angle and rotate

Point pt2;

pt2.x = 1; pt2.y = 0; pt2.z = 0;

long double angle = getAngle(atoms| idx2], pt2);
Point axis = getAxis(atoms[idx2 |, pt2);

// cout << "angle, axis:

//

»))))

<< angle << 7,7 << axis.x << 7,
) 7

<< oaxts Ly <<,
<< axis.z << endl;

rotate(angle, axis.x, axis.y, axis.z);

if(atoms| idx3 |].y < 0)

reflect ("X”);

149

<_>

2357
2358
2359
2360
2361
2362
2363

2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393

2394
2395

2396
2397

}

// Sort the points so that there is some unique order
sort (atoms.begin (), atoms.end());

int idxApex =

2;

long double angle3 = atan2(atoms| idxApex |.z, atoms|[—

+ idxApex

Iy)

// cout << "—angle3, azis: 7 << —angled << 7,7 << 71T << 77

//

<< 707 << 7,7 << 707 << endl;

rotate(—angle3, 1, 0, 0);

if(atoms| 3].z < 0)

reflect (727);

}

return true;

bool Structure::doBuildup3Dv2(int ptl, int pt2, int pt3)

{

bool successFlag = false;
freeDL = targetDL;

// updateUsedDists () ;

// wvector<long double> freeDL;

// for(int i
// A

= 0; i < targetDL.size(); ++i)

// if(usedDist[i | == false)

/A

// freeDL.

/))
//}

push_back(targetDL[i |);

vector<int> idxArr(6, 0);

idxArr[0 | =
« pt2]),

idxArr[1]| =
“ pt3 |),

idxArr[2]| =
< pt3]),

closestDist (getDistance(atoms| ptl |, atoms| —

targetDL) ;
closestDist (getDistance(atoms| ptl |, atoms|[—

targetDL) ;
closestDist (getDistance(atoms| pt2 |, atoms| —

150

2398
2399

2400
2401

2402
2403

2404
2405

2406
2407

2408
2409

2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421

2422
2423

2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434

//

//
//

//
//

//
//

//
//

//
//

e 1]),

«2]),

= 2]),

=37),

= 3]),

targetDL) ;
ideArr[0 | = closestDist(getDistance(atoms[0 |, atoms[—

freeDL);
ideArr[1] = closestDist(getDistance(atoms[0 |, atoms[—

freeDL);
ideArr[2 | = closestDist(getDistance(atoms[1 |, atoms[—

freeDL);
ideArr[3 | = closestDist(getDistance(atoms[0 |, atoms[—

freeDL);
ideArr[4 | = closestDist(getDistance(atoms[1 |, atoms[—

freeDL);
ideArr[5 | = closestDist(getDistance(atoms[2 |, atoms[—

=37),
// freeDL);
cout << "idxArr:.” << idxArr|[0 | << 7,7 << idxArr[1] << 7,7
<< idxArr[2 | << 7,7 << idxArr[3] << 77
<< idxArr[4 | << 7,7 << idxArr[5] << endl;

// 10 bonds in the tetrahedron

int

int

// Point basePtl = atoms[0],

//

<~ = atoms| 2],

apexPtl = atoms[8],

idxA = idxArr|[0 |, idxB = idxArr[1
idxD = idxArr|[3 |, idxE = idxArr| 4
idxG, idxH, idxI, idxJ, idxM;

numTestPts = 0; // number of tetrahedra

basePt2 =

apexPt2;

Point basePtl = atoms| ptl], basePt2 =

< = atoms| pt3 |,
apexPtl, apexPt2;

long double imin, imax;
long double triToler = 0.1;

long double

for (idxG =

{

distG , distH ,

distG = freeDL[idxG |;

distl ,

151

error ;

|, idxC = idxArr| 2 |,
|, idxF = idxArr|[5 |,

atoms[1 |, basePt3 —

atoms| pt2 |, basePt3 —

distA = getDistance(basePtl, basePt2),

0; idxG < freeDL.size (); 4+HdxG)

2435 for (idxH = 0; idxH < freeDL.size (); ++HdxH)
2436 {

2437 distH = freeDL[idxH |;

2438 if (distA + distH + triToler < distG) continue; // —
«— triangle inequality

2439 if (distA + distG + triToler < distH) break; // triangle —
— inequality

2440

2441 placeApex(apexPt2, idxA, idxG, idxH, freeDL);

2442

2443 imin = getDistance (basePt3, apexPt2);

2444 apexPt2 .y = — apexPt2.y;

2445 imax = getDistance(basePt3, apexPt2);

2446 // cout << Tbp8, ap2: 7 << basePt3 << 7,7 << aperPt2 << —
+— endl;

2447

2448 for (idxI = 0; idxI < freeDL.size (); ++idxI)

2449 {

2450 distl = freeDL| idxI |;

2451 if(distl < (imin — triToler)) continue;

2452 if (distl > (imax 4+ triToler)) break;

2453

2454 idxArr|[0 | = idxA; idxArr|[5 | = idxI;

2455 idxArr|[1 | = idxB; idxArr|[4 | = idxH;

2456 idxArr|[2] = idxC; idxArr[3] = idxG;

2457 placeTop(basePtl, basePt2, basePt3, apexPt2, idxArr, <

< freeDL);

2458

2459 for (idxM = 0; idxM < 2; +HdxM)

2460 {

2461 apexPt2.z = pow(—1.0L, idxM)x apexPt2.z; // reflect —

+— about XY plane

2462

2463 apexPt2.cost = error = getPtCost(apexPt2);

2464

2465 if (error < 0.2)

2466

2467 // cout << 7adding pt,cost: 7 << apexPt2 << T, << <=

— error << endl;

2468 updatePool (apexPt2);

2469 ++numTestPts;

2470 // FIX ME

2471 // return false;

2472 }

2473 Y // m loop

152

2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488

2489
2490
2491

2492
2493
2494
2495

2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515

Y // i loop
} // h loop
/) g loop

cout << "pool.size:.” << pool.size () << endl;

cout << "Number_of_points_tested:_.” << numTestPts << endl;
cout << "End_of_doBuildup3Dv2” << endl;

return false;

bool Structure::findCoreMPI(int windowStart)

{

// Find a core made of J points by iterating over all triangle

// combinations. Also, the function to do the buildup is —
< called after

// we find a core because it is more convenient this way.

int idxA = 0, idxB, idxC, idxD, idxE, idxF; // indices for —
< the bonds

int idxM, idxN; // indices for the orientation of the triangle

vector<int> idxArr(6, —1);

int inc = 6; // width of the bond window

int winStart = windowStart, winStop = windowStart + inc; // <
< indices for the window

vector<long double> dlist = targetDL;

long double bridgeDist = 0.0;

int bridgeldx = 0;

int bridgeCount = 0; // count the number of bridge bond checks
long double fracError = 1e6;

Point basePtl, basePt2,

apexPtl, apexPt2;
basePtl.x = 0; basePtl.y = 0;
basePt2.x = dlist [idxA]; basePt2.y = 0;
cout << "basePtl:.” << basePtl.x << 7.7 << basePtl.y << endl;
cout << "basePt2:.7 << basePt2.x << 7.7 << basePt2.y << endl;
cout << ”"Bond_window:.”;

while (true)

{

7

cerr << >

2

<< winStop;
for (idxB = idxA + 1; idxB < winStop; ++idxB)

153

2516 {

2517 for (idxC = idxB + 1; idxC < winStop; ++idxC)

2518 {

2519 if(dlist[idxA | + dlist[idxB | + toler < dlist| idxC <
<])

2520 {

2521 break;

2522 }

2523 placeApex(apexPtl, idxA, idxB, idxC, dlist);

2524

2525 for (idxD = idxA + 1; idxD < winStop; ++dxD)

2526 {

2527 if (idxD = idxB or idxD = idxC)

2528

2529 continue;

2530 }

2531 for (idxE = idxD + 1; idxE < winStop; ++idxE)

2532 {

2533 if (idxB < winStart and idxC < winStart and

2534 idxD < winStart and idxE < winStart)

2535 {

2536 continue;

2537 }

2538

2539 if((idxD < idxB and idxE < idxC) or

2540 (idxE > idxC and idxD < idxB))

2541 {

2542 continue;

2543 }

2544

2545 if (idxE = idxB or idxE = idxC)

2546

2547 continue;

2548 }

2549

2550 if(dlist[idxA] + dlist[idxD] + toler < dlist[<

« idxE])

2551

2552 break;

2553 }

2554

2555 placeApex(apexPt2, idxA, idxD, idxE, dlist);

2556

2557 for (idxM = 0; idxM < 2; +HdxM)

2558 {

154

2559 /) cout << TidzM: 7 << idzM << endl;

2560 if(idsM =1)

2561 {

2562 apexPt2.x = dlist| idxA] — apexPt2.x;

2563 }

2564

2565 for (idxN = 0; idxN < 2; 4++HdxN)

2566 {

2567 // cout << 7idzN: 7 << idzN << endl;

2568 if(idxN =1)

2569 {

2570 apexPt2 .y = — apexPt2.y;

2571 }

2572

2573 bridgeDist = getDistance(apexPtl, apexPt2);

2574 bridgeCount += 1; // count number of bridge checks

2575

2576 bridgeldx = closestDist(bridgeDist, dlist);

2577 if (bridgeldx = idxA or bridgeldx = idxB or

2578 bridgeldx = idxC or bridgeldx = idxD or

2579 bridgeldx =— idxE)

2580 {

2581 // Make sure that the bridge bond is not the —
+— same as any of

2582 // the distances in use.

2583 continue;

2584 }

2585

2586 fracError = fabs(dlist| bridgeldx | — —

< bridgeDist)/ bridgeDist;

2587 // cout << 7fracError: 7 << fracError << endl;

2588

2589 if(fabs(apexPt2.y) < 0.5)

2590

2591 // Skinny triangles have been found to have a —
< large error,

2592 // hence reducing their error "by hand” so —
< that we don’t

2593 // miss out on them.

2594 fracError /= 1000;

2595 }

2596

2597 if(fracError < toler)

2508

2599 idsArr|[0 | = idxA; idxArr|[1 | = idxB;

155

2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618

2619
2620
2621
2622
2623

2624
2625
2626
2627
2628

2629
2630
2631
2632
2633

2634

2635
2636
2637
2638
2639

idxArr |

cout << endl;

if (testCore(idxArr,

{
// atoms.push_back(
// atoms.push_back(
// atoms.push_back(
// atoms.push_back(

2 | = 1idxC; idxArr[3 | = idxD;
idxArr|[4 | = idxE; idxArr| 5

| = bridgeldx;

idxM, idxN))

basePtl);
basePt2);
apexPt1);
apexPt2);

cout << basePtl << endl;
cout << basePt2 << endl;
cout << apexPtl << endl;
cout << apexPt2 << endl;

// for(int i = 0; i < atoms.size(); ++i)

// A

// cout << 7Point: 7 << i + 1 << \t << <
— atoms| i] << endl;

//}

// usedDist| idtA | = usedDist[idxB | = true;

// usedDist| ideC | = usedDist[idzD | = true;

// usedDist| idzE | = usedDist| bridgeldz | —
— = true;

// updateCurrDL () ;
// return true;

// Attempt buildup to get the remaining —
— points.
// doBuildup () ;

// if(atoms.size() >= min(8, targetSize))

// A

// // If buildup was able to add 4 more —
< points then with

// // high probability , we have the rTight —
<~ structure.

// return true;

//}
// else

// A
// // If buildup could not even 4 points —

156

2640

2641
2642
2643

2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681

< then with a very

// // high probability ,
— structure. Start

// // over and find the

// cout << "No buildup ,

// "Finding the
— << endl;

// atoms.clear();

// updateCurrDL () ;

// cout << "Bond window:

//

}
}

Y // n loop
y // m loop
Y // idxE loop

Y // idzD loop
Y // idxC loop

} // idxB loop

we have the wrong —

next core.
bad core.
next core

”»

” .,
’

// When idzB hits the window edge increment it .
// if (idzB == winStop)

// A

//
//
//
//
//
//
//
//
//
//
//
//
//

//)

winStart = winStop ;
winStop += inc;

if (winStart == dlist.size())
{

cout << endl;
break ;

}

if (winStop > dlist.size())

{
}

winStop = dlist.size();

Y // while(true) loop

return false;

}

157

2682
2683
2684

2685
2686
2687
2688
2689

2690
2691
2692
2693
2694
2695
2696
2697

2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708

2709
2710

2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721

bool Structure::findCore3D(int baseldx)

{

// Function to get timings runs for different choices of base —
<~ bond

bool successFlag = false;

// 10 bonds in the tetrahedron
int idxA = baseldx, idxB, idxC, idxD, idxE, idxF, idxG, idxH, —
— idxIl, idxJ, idxM;

int invC = 0; // # invalid cores
vector<long double> dlist = targetDL;
cout << "targetDL_size:.” << targetDL.size () << endl;

int inc = 10,
winStart = max(baseldx — inc/2, 0),
winStop = min(winStart + inc/2, int(dlist.size()) — 1 <
<~); // windowing on

int bridgeldx;

long double counter = 0; // number of tetrahedra
long double bridgeDist = 0;

long double fmin, fmax, imin, imax, fracError;

Point basePtl, basePt2, basePt3,
apexPtl, apexPt2;
basePtl.x = 0; basePtl.y = 0; basePtl.z = 0;
basePt2.x = dlist [idxA]; basePt2.y = 0; basePt2.z = 0;
cout << "basePtl:.” << basePtl.x << 7.7 << basePtl.y << 7.7 —
+— << basePtl.z
<< endl;
cout << "basePt2:.7 << basePt2.x << 7.7 << basePt2.y << 7.7 —
— << basePt2.z
<< endl;
cout << ”"Bond.window:.”;

int countC = 0; // count number of cores
vector<int> idxArr(6, 0);
while (true) // window loop

{

// Break after the entire distance list is exhausted
if(winStart <= 0 and winStop >= dlist.size () — 1)

{
break ;

158

2722 }

2723

2724 // Make sure to check if window edges are legit

2725 if (winStart < 0)

2726 {

2727 winStop += —winStart ;

2728 winStart = 0;

2729 }

2730

2731 if (winStop >= dlist.size())

2732

2733 winStart — winStop — dlist.size () + 1;

2734 winStop = dlist.size () —1;

2735

2736 if(winStart < 0)

2737

2738 winStop += —winStart ;

2739 winStart = 0;

2740 }

2741 }

2742

2743 cerr << "—" << winStop;

2744

2745 // base triangle

2746 for (idxB = 0; idxB < winStop; ++idxB)

2747 {

2748 // cout << endl << 7idzB:7 << idzB << 7, 7; // endl;

2749 // cout << 7idzC: 7;

2750 for (idxC = idxB + 1; idxC < winStop; ++dxC)

2751 {

2752 // cout << 7.7 << idaC << 77 /) << endl;

2753 // NOTE: c¢>b so we have to check only 1 triangle —
— inequality

2754 if(dlist[idxA] + dlist|[idxB | + toler < dlist| idxC —
< |) break;

2755 if (dlist[idxC] + dlist[idxB] + toler < dlist[idxA —
<]) continue;

2756

2757 placeApex(basePt3, idxA, idxB, idxC, dlist);

2758

2759 for (idxD = 0; idxD < winStop; ++idxD)

2760 {

2761 if(idxD = idxB or idxD = idxC) continue;

2762 if (idxD < idxB) continue;

2763 for (idxE = 0; idxE < winStop; ++HdxE)

159

2764
2765
2766

2767
2768

2769

2770

2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782

2783
2784
2785
2786
2787

2788
2789
2790
2791
2792

2793
2794
2795
2796
2797
2798

2799

if(idxE < idxB) continue;

if(idxE = idxB or idxE idxC or idxE = idxD)
<+ continue;

// triangle inequalities

if(dlist| idxA | + dlist[idxE | + toler < dlist]|
< idxD |) continue;

if(dlist| idxA | + dlist[idxD | + toler < dlist]|
< idxE]) break;

if (dlist[idxE] 4+ dlist[idxD | + toler < dlist]|
< idxA]) continue;

placeApex(apexPtl, idxA, idxD, idxE, dlist);

fmin = getDistance(basePt3, apexPtl);

apexPtl.y = — apexPtl.y;

fmax = getDistance(basePt3, apexPtl);

for(idxF = 0; idxF < dlist.size (); +HdxF)

{
if (dlist[idxF] < (fmin — toler)) continue;
if(dlist[idxF] > (fmax + toler)) break;
if (idxF = idxB or idxF = idxC or idxF idxD

< or idxF = idxE) continue;

idxArr[0] = idxA; idxArr|[5 | = idxF;
idsArr|[1 | = idxB; idxArr|[4 | = idxE;
idxArr|[2 | = idxC; idxArr|[3 | = idxD;
placeTop(basePtl, basePt2, basePt3, apexPtl, —

<~ idxArr, dlist);

for (idxG = 0; idxG < winStop; ++idxG)
{
if (idxG < idxB) continue;
if (idxG = idxB or idxG
< idxD or
idxG = idxE or idxG = idxF) continue;
if (idxG < idxD) continue;
for (idxH = 0; idxH < winStop; ++dxH)
{
if (idxH < idxB) continue;
if (idxH =idxB or idxH = idxC or idxH = —
< idxD or

idxC or idxG = <

<_>

<_>

>

<_>

idxH = idxE or idxH = idxF or idxH = —

< idxG) continue;

160

2800

2801

2802

2803
2804
2805
2806
2807
2808
2809

2810
2811
2812
2813

2814

2815

2816

2817

2818

2819

2820
2821

2822

2823

2824

2825

2826

2827

2828
2829

if (dlist [idxA |
<~ dlist [idxG |

— inequality

if(dlist[idxA |
« dlist[idxH |

— inequality

if (dlist [idxH |
— dlist [idxA |

— inequality

+ dlist [idxH] + toler < —
) continue; // triangle —

+ dlist [idxG] + toler < —
) break; // triangle —

+ dlist [idxG | + toler < —
) continue; // triangle —

placeApex(apexPt2, idxA, idxG, idxH,

dlist);

imin = getDistance(basePt3, apexPt2);
apexPt2 .y = — apexPt2.y;
imax = getDistance(basePt3, apexPt2);
// cout << "bp8, ap2: 7 << basePt3 <<
+— apexPt2 << endl;

)
)

)

<<

for (idxI = 0; idxI < dlist.size(); ++idxI)

{

if (idxI = idxB or idxI = idxC or idxlI

<~ idxD or

1ldx] = idxE or idxl == idxF or idxI
<~ 1idxG or

idxI = idxH) continue;
// correct windowing

if(idxH < winStart and idxG < winStart and
idxE < winStart and idxD < winStart and
idxC < winStart and idxB < winStart) —

<+ continue;

if(dlist| idxI] < (imin — toler)) <=

<+ continue;

s

if(dlist| idxI] > (imax + toler)) break;

// cout << 7ab
— drB <<

//

— idzD <<

//

— dzF <<

//

— gdzH <<

//

// cout << "dlist—I, imin, imax:

161

cd

efghi: 7 << idzA <<

<< idxC <<

<< idzl <<

<< 1dzG <<

)

<<

<<

<<

<<

<< ddzxl << endl;

”

<< —=

s

(_>

s

>

2830
2831
2832
2833
2834

2835
2836
2837
2838

2839
2840

2841
2842
2843

2844

2845

2846
2847
2848

2849

2850

2851
2852
2853
2854
2855

2856
2857
2858
2859
2860
2861

— dlist[idzxl | << 7,7 << imin << 7,7 << =
— imar << endl << endl;

idxArr[0] = idxA; idxArr[5] = idxI;
idxArr[1 | = idxB; idxArr[4 | = idxH;
idxArr|[2] = idxC; idxArr|[3]| = idxG;
placeTop(basePtl, basePt2, basePt3, —

< apexPt2, idxArr, dlist);

for (idxM = 0; idxM < 2; +HdxM)

apexPt2.z = pow(—1.0L, idxM)x <
+— apexPt2.z; // reflect about XY plane

bridgeDist = getDistance (apexPtl, —
+— apexPt2);
counter += 1;

if (bridgeDist != bridgeDist) getchar(); —
— /) cout << p4 << N\t << ph << endl;
if ((bridgeDist < (dlist[0 | — <
< bridgeDist*x toler)) or
(bridgeDist > (dlist[dlist.size ()
< — 1] + bridgeDistx toler)))
<+ continue;
idxJ = closestDist (bridgeDist, dlist);

;}
;}

if(idxJ = idxA and idxJ = idxB and —
+ idxJ = idxC and
idxJ — idxD and idxJ — idxE and <
< idxJ =— idxF and
idxJ =— idxG and idxJ — idxH and —
— idxJ = idxI)
{

continue;

}

fracError = fabs(dlist[idxJ | — <=
< bridgeDist)/ bridgeDist;
if (fracError < toler)

atoms . push_back (basePtl);

atoms . push_back (basePt2);
atoms . push_back (basePt3);

162

2862 atoms. push_back (apexPtl);

2863 atoms. push_back (apexPt2);
2864
2865 cout << endl << 73D.core.found!!!” << —
<+ endl;
2866 cout << bridgeDist << "\t’ << dlist| —
— idxJ | << "\t~
2867 << fabs(bridgeDist — dlist[idxJ <
<~ |) << endl;
2868 cout << "bridgeDist:.” << bridgeDist << —
<+ endl;
2869 cout << 7core.finder._counter:.” << —
< counter << endl;
2870
2871 for(int i = 0; i < atoms.size(); ++i)
2872 {
2873 cout << 7"Point: 7 << 1 + 1 << "\t’ << =
<~ atoms| i | << endl;
2874 }
2875
2876 doBuildup3D (idxArr);
2877
2878 if(atoms.size () >= min(8, targetSize —
<))
2879 {
2880 // If buildup was able to add 4 more —
< points then with
2881 // high probability , we have the —
+— right structure.
2882 cout << ”7.atoms.size:.” << —
< atoms.size () << endl;
2883 return true;
2884 }
2885 else
2886 {
2887 // If buildup could not even 4 points —
< then with a very
2888 // high probability , we have the —
+— wrong structure. Start
2889 // over and find the next core.
2890 cout << ”"No.buildup ,._.bad_.core.._”
2891 "Finding._.the_.next_.core.....” —
+— << endl;
2892 atoms. clear () ;
2893 updateCurrDL () ;

163

2894 // cout << "Bond window: 7;

2895 }

2896

2897 // return true;
2898 }

2899 // m loop

}
2900 Y // i loop

2901 Y // h loop

2902 } // g loop

2903 Y // f loop

2904 } // e loop

2905 Y // d loop

2906 Y // ¢ loop

2007 Y // b loop

2908

2909 cout << ”counter:.”<< counter << endl;

2910 winStart = winStop; winStop += inc;

2011 if(winStart = dlist.size ()) break;

2912

2913 if (winStop > dlist.size())

2914

2915 winStop = dlist.size ();

2916 }

2017

2918 cout << ”searching.in_.a.”’<< winStop << ”_bond._window” << endl;

2919 } // window while loop

2920

2921 return successFlag;

2022}

2923

2924

2025 long double Structure:: feasibleTetra(int baseldx)

2026 {

2927 // Function to get number of feasible tetrahedra’s for a —
<~ given base bond

2928 long double numTet = 0;

2929 long double numTri = 0;

2930 bool successFlag = false;

2931

2932 // 10 bonds in the tetrahedron

2933 int idxA = baseldx , idxB, idxC, idxD, idxE, idxF, idxG, idxH, —
— idxIl, idxJ, idxM;

2934

2935 int invC = 0; // # invalid cores

2936 vector<long double> dlist = targetDL;

164

2937
2938
2939
2940
2941

2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954

2955
2956

2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970

2971

2972
2973
2974
2975
2976

cout << "targetDL_size:.” << targetDL.size () << endl;

int

i

nc = 10,

// winStart = max(baseldz — inc/2, 0),
// winStop = min(winStart + inc, int(dlist.size()) — 1 —

«); // windowing on

winStart = 0,
winStop = dlist.size() — 1 ; // windowing on

int bridgeldx;

int counter = 0; // number of tetrahedra

long double bridgeDist = 0;

long double fmin, fmax, imin, imax, fracError;

Point basePtl, basePt2, basePt3,

apexPtl, apexPt2;

basePtl.x = 0; basePtl.y = 0; basePtl.z = 0;
basePt2.x = dlist [idxA]; basePt2.y = 0; basePt2.z = 0;
cout << "basePtl:.” << basePtl.x << 7.7 << basePtl.y << 7.7 —

H

<< basePtl .z
<< endl;

cout << "basePt2:.7 << basePt2.x << 7.7 << basePt2.y << 7.7 —

<_>

<< basePt2 .z
<< endl;

int countC = 0; // count number of cores
vector<int> idxArr(6, 0);
while (true) // window loop

{

for (idxB = 0; idxB < winStop; ++idxB)

{

// cout << endl << 7idzB:”7 << idzB << 7, 7; // endl;
// cout << 7idzC: 7;
for (idxC = idxB + 1; idxC < winStop; ++idxC)

{

// cout << 7.7 << idaC << 77 /) << endl;

// NOTE: ¢>b so we have to check only 1 triangle —
— inequality

if (dlist| idxA] + dlist| idxB | + toler < dlist| idxC —
<]) break;

placeApex(basePt3, idxA, idxB, idxC, dlist);
numTri += 1;

for (idxD = 1; idxD < winStop; ++idxD)

165

2977
2978
2979
2980
2981
2982
2983

2984
2985

2986

2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999

3000
3001

3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016

}

if(idxD = idxB or idxD = idxC) continue
if(idxD < idxB) continue;
for (idxE = 1; idxE < winStop; ++idxE)
{
if(idxE < idxB) continue;
if(idxE = idxB or idxE
<+ continue;
// triangle inequalities

Y

idxC or idxE == idxD) —

if (dlist[idxA] 4+ dlist|[idxE] + toler < dlist[<

< idxD]) continue;

if(dlist| idxA | + dlist[idxD | + toler < dlist| —

<~ idxE]) break;

placeApex(apexPtl, idxA, idxD, idxE, dlist);

numTri += 1;

fmin = getDistance(basePt3, apexPtl);
apexPtl.y = — apexPtl.y;
fmax = getDistance(basePt3, apexPtl);

for (idxF = 1; idxF < dlist.size(); ++HdxF
{

)

if(dlist[idxF] < (fmin — toler)) continue;
if (dlist [idxF] > (fmax + toler)) break;

if (idxF = idxB or idxF = idxC or idxF
< or idxF = idxE) continue;

// placeTop(basePtl, basePt2, basePt3,
<« ddxArr, dlist);

numTet 4= 1;
continue;
Y/ loop
Y // e loop
}// d loop
Y // ¢ loop
Y // b loop

cout << "numTri:.” << numTri << endl;
return numTet ;

} // window while loop

166

idxD —

apexPtl, —

3017 bool Structure::reconstruct3(int baseldx)

3018 {

3019 // Reconstruct the structure by first finding the core and —
< then doing

3020 // buildup (if needed).

3021

3022 if(atoms.size() = 0)

3023 {

3024 if(dim = 2)

3025

3026 bool findCoreFlag = findCore () ;

3027 cout << 7 Core_found?.” << boolalpha << findCoreFlag << endl;

3028 }

3029 else if(dim = 3)

3030 {

3031 cout << 7findCore3D ,.” << baseldx << endl;

3032 findCore3D (baseldx);

3033 }

3034 }

3035 else if(dim = 3)

3036 {

3037

3038 }

3039

3040 if (atoms.size () = targetSize)

3041 {

3042 return true;

3043 }

3044 else

3045 {

3046 return false;

3047 }

3048}

1 // Test2D.cpp: File with all the test functions for Tribond 2D.
> //

3 #include <ctime>

4 #include <string>

#include " Tribond.h”

using namespace std;

int processArgs(int argc, charxx argv, int& N, string& file , —
< int& rngSeed)
10 {

167

11
12
13
14
15
16
17
18
19
20
21

22

23

24
25
26
27
28

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// Process input from wuser to get problem parameters.
if(arge = 4)
{
N = atoi(argv|[l]);
file = argv[2];
rngSeed = atoi(argv[3]);
¥

else

{

cout << "Usage:.” << 7 ./Test2d .N(>4).rand2.rngSeed” << endl;

cout << 7 __.N:_number_of_sites_.in_the_random_point_.set” << —
<+ endl;

cout << 7_.rand2:_command_to_use_a.random.2D_point.set” << <
+— endl;

cout << 7..rngSeed:._seed._for._the_.random_number.generator” —
+— << endl;

exit (0);

int testl(int DIM, int N, string file , int rngSeed)

{

// Initialize the random number generator.
if (rngSeed <= —1)
{
rngSeed = time(NULL);
}

srand (rngSeed);

// Setup target structure and attempt reconstruction.
Structure targetStru(DIM, N, file);
Structure testStru(DIM, N, targetStru.currDL);

testStru.reconstruct ();

// Compare reconstructed structure with the target.
targetStru .home/() ;

testStru.home() ;

compareStru (testStru, targetStru);

// testStru.printDLtoFile(”distanceList.tzt”);

return 0;

168

53
54
55
56
57
58
59
60
61
62

© 00 N O Ut ks W N =

10
11
12
13
14
15
16
17
18
19
20
21

22

23

24

25

26

27

28

30

int main(int argc, charxx argv)

{ .

nt DIM = 2, N, rngSeed;
tring file;

processArgs(argc, argv, N, file, rngSeed);

t
r

}

estl(DIM, N, file , rngSeed);

eturn 0;

// Test3D.cpp: File with all the test functions for Tribond 3D.

//

Fin
#in
Fin

clude <ctime>
clude <string>
clude ”Tribond.h”

using namespace std;

int

{

processArgs(int argc, charxx argv, int& N, string& file , —

< int& rngSeed)

// Process input from user to get problem parameters.

i

{

}

f(arge = 4)

N = atoi(argv|[l]);
file = argv[2];
rngSeed = atoi(argv|[3]

else

{

int

) ;

cout << "Usage:.” << 7./Test2d .N(>4).rand2.rngSeed” << endl;
cout << 7 __N:_number_of_sites._.in_the_random_point_.set” << —

+ endl;
cout << 7
<+ endl;

~.rand2:_command._to._use_a_random.2D_point_set” << —

cout << 7..rngSeed:._seed._for_the_.random_number.generator” —

+— << endl;
exit (0);

testl(int DIM, int N,

string file , int rngSeed)

169

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

}

// Initialize the random number generator.

// FIXME hard coding the rnd seed
int idx = rngSeed;
// rngSeed = 1;

if (rngSeed <= —1)
{

}

srand (rngSeed);

rngSeed = time(NULL);

for(int i = 0; i <= 0; ++i)
{

// Setup target structure and attempt reconstruction.
// Structure targetStru(DIM, N, file);

Structure targetStru(N, file);

targetStru.home3D(0);

targetStru. print () ;

Structure testStru(DIM, N, targetStru.currDL);
testStru.atoms = targetStru.getCore(5);

int baseldx = idxx (testStru.targetDL.size() — 1)/ 10;
cout << "baseldx:.” << baseldx << endl;

// testStru.reconstruct3(baseldx);
testStru.reconstruct () ;

// Compare reconstructed structure with the target.
testStru.home3D(0);

compareStru (testStru, targetStru);
print2structures(testStru.atoms, targetStru.atoms);
compareStru (testStru, targetStru);

}

// testStru.printDLtoFile(”distanceList.tzt”);
return 0;

int test2(int DIM, int N, string file , int rngSeed)

{

// Initialize the random number generator.
if (rngSeed <= —1)
{

170

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

1
2
3
4
5
6

7
8
9
10

rngSeed = time(NULL);
}

srand (rngSeed);

// Setup target structure and attempt reconstruction.
Structure targetStru(DIM, N, file);
// Structure targetStru(N, file);

// targetStru.home3D();

Structure testStru(DIM, N, targetStru.currDL);

// testStru.atoms = targetStru.getCore(5);

long double numTetra = 0;

for(int i = 0; i <= 10; ++i)

{

numTetra = testStru.feasibleTetra(i%x —

< (testStru.targetDL.size() — 1) /10);

” 3 7 7

cout << "Ti:l7 << i1 << 7L
<+ endl;

}

return 0;

2

<< "numTetra:.”

int main(int argc, charxx argv)

{
int DIM = 3, N, rngSeed;
string file;
processArgs(argc, argv, N,

file , rngSeed);

testl (DIM, N, file , rngSeed);

return 0;

}

<< numTetra << —

// Test2D—v2.cpp: File with all the functions to test the
// imprecise version of the Tribond 2D algorithm .

//

#include <ctime>
#include <string>
#include " Tribond.h”
using namespace std;

171

12
13
14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35

36

37
38
39
40

int iniRandGen(int rngSeed)

{

int processArgs(int argc, charxx argv, int& N, string& file , —

// Initialize the random number generator.

if (rngSeed <= —1)
{

}

srand (rngSeed);

rngSeed = time(NULL);

return 0;

+ int& rngSeed ,

int& precision, int& coreSize)

// Process input from wuser to get problem parameters.

if(arge = 6)

{
N = atoi(argv|[l]);
file = argv|[2];
rngSeed = atoi(argv|3]

) ;

precision = atoi(argv|[4]);
coreSize = atoi(argv[b]);
cout << "N, _file ,_.rngSeed ,._precision ,_.coreSize:.”
— 707 << file
<< 7,07 << rngSeed << 7.7 << precision << 7

— coreSize << endl;

}

else

{

Y

<< N << —

2

<< —=

cout << ”Usage:.” << 7./test2d .N(>4)_.\"rand2\” .rngSeed .—
< precision._.coreSize” << endl;

exit (0);
}

return 0;

int testl(int DIM, int N,

{

string file , int rngSeed)

// // Initialize the random number generator.

// if (rngSeed <= —1)

172

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76

7

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

// A

// rngSeed = time(NULL);
// }

// srand(rngSeed);
iniRandGen(rngSeed);

// Setup target structure and attempt reconstruction.
Structure targetStru(DIM, N, file);

Structure testStru(DIM, N, targetStru.currDL);
testStru.reconstruct ();

// Compare reconstructed structure with the target.
targetStru .home/() ;

testStru.home() ;

compareStru (testStru, targetStru);

// testStru.printDLtoFile(”distanceList.tzt”);

return 0;

int test2(int DIM, int N, string file, int rngSeed, int —

< precision ,
int coreSize)

// cout << "check pars: 7 << DIM << 7, 7 << N<< 7, 7 << file —

» »

<< 7,

» ”

// << rngSeed << 7, 7 << precision << 7, 7 << coreSize —

— << endl;
iniRandGen(rngSeed);

// Setup target structure and attempt reconstruction.
Structure targetStru(DIM, N, file);
targetStru .home() ;

vector<Point> core = targetStru.getCore(coreSize);
targetStru.reduceDLprecision(precision);
Structure testStru(DIM, N, targetStru.targetDL);
testStru.atoms = core;

// testStru.atoms = targetStru.getCore(coreSize);
testStru.currSize = testStru.atoms.size ();

cout << "core.size:.” << testStru.atoms.size () << endl;
testStru.print();

173

94 // Point smPt;
95 /) smPt.xz = —2.04305609; smPt.y = 1.836504993; smPt.z = 0;
96 // cout << "Point, cost: 7 << smPt << \t << —
— testStru.getPtCost(smPt) << endl;
97 // return 1;
98 /) smPt.x = 1.174/47201; smPt.y = —2.80072967;, smPt.z = 0;
99 // cout << "Point, cost: 7 << smPt << \t << —
— testStru.getPtCost(smPt) << endl;
100 // return 1;

101

102 bool successFlag = testStru.reconstruct2();

103 cout << "testStru.size:.” << testStru.atoms.size () << endl;

104 testStru.print();

105

106 print2structures(testStru.atoms, targetStru.atoms);

107 // Compare reconstructed structure with the target.

108 if(successFlag)

109 {

110 targetStru .home() ;

111 testStru.home () ;

112 compareStru (testStru, targetStru);

113 }

114 else

115 {

116 cout << ”Reconstruction._failed!” << endl;

17 }

118

119 return 0;

120 }

121

122

123 int main(int argc, charxx argv)

124 {

125 int DIM = 2, N, rngSeed, precision, coreSize;

126 string file;

127 processArgs(argce, argv, N, file, rngSeed, precision, <
< coreSize);

128

129 // testl(DIM, N, file, rngSeed);

130 test2 (DIM, N, file , rngSeed, precision, coreSize);
131 return 0;

132}

1 /) Test38D—v2.cpp: File with all the functions to test the
2 // imprecise version of the Tribond 3D algorithm .

174

//

#include <ctime>

#include <string>

7 #include " Tribond.h”

8 using namespace std;

9

10

11 int iniRandGen(int rngSeed)
12 {

13 // Initialize the random number generator.
14 if (rngSeed <= —1)

15 {

16 rngSeed = time(NULL);
17 }

18 srand (rngSeed);

19

20 return 0;

21 }

22

23

24 int processArgs(int argc, charxx argv, int& N, string& file , —
+ int& rngSeed ,

3
4
5
6

25 int& precision, int& coreSize)
26 {
27 // Process input from user to get problem parameters.

28 if(argce = 6)
29 {

30 N = atoi(argv|[l]);

31 file = argv[2];

32 rngSeed = atoi(argv[3]);

33 precision = atoi(argv|[4]);

34 coreSize = atoi(argv[5]);

35 cout << "N, _file ,_rngSeed ,_precision ,_.coreSize:.” << N << —
— 7L << file

36 << 7L L7 << rngSeed << 7 L7 << precision << 7 L7 << —

<+ coreSize << endl;

37 }

38 else

39 {

40 cout << "Usage:.” << 7. /test2d .N(>4).\"rand2\” .rngSeed .—
< precision.coreSize” << endl;

a1 exit (0);

42 }

43

175

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76

7

78
79
80
81
82
83
84
85

return 0;

}

int testl(int DIM, int N, string file , int rngSeed)

{

// // Initialize the random number generator.
// if (rngSeed <= —1)

// A

// rngSeed = time(NULL);

//

// srand(rngSeed);

iniRandGen(rngSeed);

// Setup target structure and attempt reconstruction.
Structure targetStru(DIM, N, file);

Structure testStru(DIM, N, targetStru.currDL);
testStru.reconstruct () ;

// Compare reconstructed structure with the target.
targetStru .home() ;

testStru.home() ;

compareStru (testStru, targetStru);

// testStru.printDLtoFile(7distanceList.txt”);

return 0;

int test2(int DIM, int N, string file , int rngSeed, int —
< precision ,
int coreSize)

cout << "check_pars:.” << DIM << 7 ,.7 << N << 7 |7 << file << —
H 7 2
.
<< rngSeed << 7 ,.7 << precision << 7.7 << coreSize << —
+— endl;

iniRandGen(rngSeed);

// Setup target structure and attempt reconstruction.
Structure targetStru(N, file);

// targetStru .home();

vector<Point> core = targetStru.getCore(coreSize);
targetStru.reduceDLprecision(precision);

176

86
87
88
89
90
91
92
93
94
95
96

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Structure testStru(DIM, N, targetStru.targetDL);
testStru.atoms = core;

// testStru.atoms = targetStru.getCore(coreSize);
testStru.currSize = testStru.atoms.size ();

cout << "core.size:.” << testStru.atoms.size () << endl;
testStru.print();

// Point smPt;
/) smPt.x = —2.04305609; smPt.y = 1.36504993; smPt.z = 0;
// cout << 7Point, cost: 7 << smPt << '\t << =
— testStru.getPtCost(smPt) << endl;
// return 1;
J/ smPt.x = 1.17447201; smPt.y = —2.80072967; smPt.z = 0;
// cout << 7Point, cost: 7 << smPt << '\t << —
«— testStru.getPtCost(smPt) << endl;
// return 1;

bool successFlag = testStru.reconstruct2();
cout << "testStrucsize:.” << testStru.atoms.size () << endl;
testStru.print () ;

print2structures(testStru.atoms, targetStru.atoms);
// Compare reconstructed structure with the target.
if(successFlag)
{

targetStru . home () ;

testStru.home() ;

compareStru (testStru, targetStru);

}

else

{

cout << ”Reconstruction.failed!” << endl;

}

return 0;

int main(int argc, charxx argv)

int DIM = 3, N, rngSeed, precision, coreSize;

string file;

processArgs(argc, argv, N, file, rngSeed, precision, —
<+ coreSize);

177

128
129
130
131
132

}

// testl(DIM, N, file,

test2 (DIM, N,
return 0;

file ,

rngSeed ,

rngSeed);

precision ,

178

coreSize);

BIBLIOGRAPHY

179

1]

[10]

[11]

BIBLIOGRAPHY

G. M. Crippen and T. F. Havel, Distance Geometry and Molecular Conformation. Wiley
and Sons, New York, 1988.

G. Crippen, “Chemical distance geometry: current realization and future projection,”
Journal of mathematical chemistry, vol. 6, no. 1, pp. 307-324, 1991.

K. Wuthrich, “The development of nuclear magnetic resonance spectroscopy as a tech-
nique for protein structure determination,” Accounts of Chemical Research, vol. 22,
pp. 36-44, Jan. 1989.

K. Wuthrich, “Protein structure determination in solution by nuclear magnetic reso-
nance spectroscopy,” Science, 1989.

M. Li, Y. Otachi, and T. Tokuyama, “Efficient algorithms for network localization using
cores of underlying graphs,” Algorithms for Sensor Systems, pp. 101-114, 2012.

R. L. McGreevy and L. Pusztai, “Reverse Monte Carlo Simulation: A New Technique for
the Determination of Disordered Structures,” Molecular Simulation, vol. 1, pp. 359-367,
Dec. 1988.

A. L. Patterson, “Ambiguities in the X-Ray Analysis of Crystal Structures,” Phys. Rev.,
vol. 65, pp. 195-201, Mar. 1944.

J. Yoon, Y. Gad, and Z. Wu, “Mathematical modeling of protein structure using distance
geometry,” tech. rep., 2000.

J. C. Kendrew, Dickerson R. E., B. E. Strandberg, R. G. Hart, D. R. Davies, D. C.
Phillips, and V. C. Shore, “Structure of Myoglobin,” Nature, vol. 185, pp. 422-427,
1960.

M. F. Perutz, M. Rossmann, A. Cullis, H. Muirhead, G. Will, and A. C. T. North,
“Structure of Haemoglobin,” Nature, vol. 185, pp. 416-422, 1960.

J. Miao, H. N. Chapman, J. Kirz, D. Sayre, and K. O. Hodgson, “Taking X-ray diffrac-
tion to the limit: macromolecular structures from femtosecond X-ray pulses and diffrac-

180

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

tion microscopy of cells with synchrotron radiation.,” Annual review of biophysics and
biomolecular structure, vol. 33, pp. 157-76, Jan. 2004.

J. Miao, J. Kirz, and D. Sayre, “The oversampling phasing method research papers,”
Acta Crystallographica Section D, pp. 1312-1315, 2000.

J. Wu, K. Leinenweber, J. C. H. Spence, and M. O’Keeffe, “Ab initio phasing of X-ray
powder diffraction patterns by charge flipping.,” Nature materials, vol. 5, pp. 647-52,
Aug. 2006.

V. L. Shneerson, A. Ourmazd, and D. K. Saldin, “Crystallography without crystals. I.
The common-line method for assembling a three-dimensional diffraction volume from
single-particle scattering.,” Acta Crystallographica Section A, vol. 64, pp. 303—15, Mar.
2008.

Y. Jiao and S. Torquato, “Geometrical ambiguity of pair statistics: Point configura-
tions,” Physical Review F, vol. 81, pp. 1-11, Jan. 2010.

Y. Jiao, F. Stillinger, and S. Torquato, “Geometrical ambiguity of pair statistics. II.
Heterogeneous media,” Physical Review FE, vol. 82, pp. 1-11, July 2010.

D. Cule and S. Torquato, “Generating random media from limited microstructural infor-
mation via stochastic optimization,” Journal of applied physics, vol. 86, no. 6, p. 3428,
1999.

T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of
Complex Materials. Oxford: Pergamon Press, Elsevier, 2003.

M. Nilges and S. I. O’Donoghue, “Ambiguous NOEs and automated NOE assignment,”
Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 32, pp. 107-139, Apr. 1998.

B. Hendrickson, “The molecule problem: Exploiting structure in global optimization,”
SIAM Journal on Optimization, vol. 5, no. 4, pp. 835-857, 1995.

B. Berger, J. Kleinberg, and T. Leighton, “Reconstructing a three-dimensional model
with arbitrary errors,” Journal of the ACM (JACM), pp. 1-16, 1999.

H. Lin, E. Bozin, S. Billinge, E. Quarez, and M. Kanatzidis, “Nanoscale clusters in
the high performance thermoelectric AgPbmSbTem+2.” Physical Review B, vol. 72,
pp- 1-7, Nov. 2005.

181

23]

28]

[29]

[30]

[31]

[32]

[33]

[34]

L. Malavasi, G. a. Artioli, H. Kim, B. Maroni, B. Joseph, Y. Ren, T. Proffen, and
S. J. L. Billinge, “Local structural investigation of SmFeAsOxF(x) high temperature
superconductors.,” Journal of physics. Condensed matter, vol. 23, p. 272201, July 2011.

T. Proffen and S. Billinge, “Probing the local structure of doped manganites using the
atomic pair distribution function,” Applied Physics A, vol. 74, pp. 1770-1772, 2002.

S. J. Billinge, “Nanoscale structural order from the atomic pair distribution function
(PDF): There’s plenty of room in the middle,” Journal of Solid State Chemistry, vol. 181,
pp. 1695-1700, July 2008.

S. J. L. Billinge and M. G. Kanatzidis, “Beyond crystallography: the study of disorder,
nanocrystallinity and crystallographically challenged materials with pair distribution
functions.,” Chemical communications (Cambridge, England), pp. 749-60, Apr. 2004.

S. J. L. Billinge and I. Levin, “The problem with determining atomic structure at the
nanoscale.,” Science (New York, N.Y.), vol. 316, pp. 561-5, Apr. 2007.

P. Juhéas, D. M. Cherba, P. M. Duxbury, W. F. Punch, and S. J. L. Billinge, “Ab initio
determination of solid-state nanostructure.,” Nature, vol. 440, pp. 655—8, Mar. 2006.

P. Juhés, L. Granlund, P. M. Duxbury, W. F. Punch, and S. J. L. Billinge, “The Liga
algorithm for ab initio determination of nanostructure.,” Acta crystallographica. Section
A, Foundations of crystallography, vol. 64, pp. 631-40, Nov. 2008.

P. Juhas, L. Granlund, S. R. Gujarathi, P. M. Duxbury, and S. J. L. Billinge, “Crystal
structure solution from experimentally determined atomic pair distribution functions,”
Journal of Applied Crystallography, vol. 43, pp. 623—629, 2010.

J. Moré and Z. Wu, “ε-Optimal Solutions To Distance Geometry Problems Via
Global Continuation,” Tech. Rep. May, 1995.

J. Saxe, “Embeddability of weighted graphs in k-space is strongly NP-hard,” Proc. 17th
Allerton Conference in Communications, Control and Computing, vol. 480-489, 1979.

D. Freeman, “Maximizing irregularity and the Golomb ruler problem,” Awvailable through
internet at http://citeseer. nj. nec. com/6709. html, 1997.

G. Bloom and S. Golomb, “Applications of numbered undirected graphs,” Proceedings
of the IEEE, vol. 65, no. 4, pp. 562-570, 1977.

182

[35]

[36]

[39]

J. N. Franklin, “Ambiguities in the X-ray analysis of crystal structures,” Acta Crystal-
lographica Section A, vol. 30, pp. 698-702, Nov. 1974.

G. Bloom, “A counterexample to a theorem of S. Piccard,” Journal of Combinatorial
Theory, Series A, vol. 22, no. 3, pp. 378-379, 1977.

W. Babcock, “Intermodulation interference in radio systems,” Bell Systems Technical
Journal, 1953.

E. Blum, J. Ribes, and F. Biraud, “Some new possibilities of optimum synthetic linear
arrays for radioastronomy,” Astronomy and Astrophysics, vol. 41, no. 3-4, pp. 409411,
1975.

F. Biraud, E. Blum, and J. Ribes, “On optimum synthetic linear arrays with application
to radioastronomy,” IEEE Transactions on Antennas and Propagation, pp. 108-109,
1974.

A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on Antennas and
Propagation, vol. 16, pp. 172-175, Mar. 1968.

D. Robertson, “Geophysical applications of very-long-baseline interferometry,” Reviews
of modern physics, vol. 63, no. 4, pp. 899-918, 1991.

A. K. Dewdney, “Computer recreations,” Scientific American, pp. 16-26, Dec. 1985.
A. K. Dewdney, “Computer recreations,” Scientific American, pp. 14-21, Mar. 1986.
M. Gardner, “Mathematical games,” Scientific American, vol. 226, pp. 108-112, 1972.

M. Gardner, “Mathematical games,” Scientific American, vol. 226, pp. 114-118, June
1972.

A. Eckler, “The construction of missile guidance codes resistant to random interference,”
Bell Syst Technical J, vol. 39, no. 3, pp. 973-994, 1960.

A. Dimitromanolakis, Analysis of the Golomb Ruler and the Sidon Set Problems, and
Determination of Large, Near-Optimal Golomb Rulers. PhD thesis, 2002.

P. Erd6s and P. Turan, “On a problem of Sidon in additive number theory, and on some
related problems,” Journal of the London Mathematical Society, vol. 16, pp. 212-215,
1941.

183

[49]

[50]

[51]

[52]

[59]

[60]

[61]

S. Sidon, “”Ein Satz iiber trigonometrische Polynome und seine Anwendungen in der
Theorie der Fourier-Reihen”,” Mathematische Annalen, vol. 106, pp. 536-539, 1932.

M. Ajtai, J. Kolmos, and E. Szemeredi, “A dense infinite Sidon sequence,” European
Journal of Combinatorics, vol. 2, pp. 1-11, 1981.

R. Bose, “An affine analogue of Singers theorem,” J. Indian Math. Soc, vol. 6, pp. 1-15,
1942.

I. Z. Ruzsa, “Solving a linear equation in a set of integers 1,” Acta Arithmetica, vol. 3,
no. LXV, pp. 259-282, 1993.

B. Lindstrom, “Finding finite B2-sequences faster,” Mathematics of Computation,
vol. 67, no. 223, pp. 11731178, 1998.

C. Meyer and P. a. Papakonstantinou, “On the complexity of constructing Golomb
Rulers,” Discrete Applied Mathematics, vol. 157, pp. 738748, Feb. 2009.

J. Robinson and A. Bernstein, “A class of binary recurrent codes with limited error
propagation,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 106-113,
1967.

J. Shearer, “Some new optimum Golomb rulers,” IEEE Transactions on Information
Theory, vol. 36, no. 1, pp. 183-184, 1990.

W. Rankin, Optimal golomb rulers: An exhaustive parallel search implementation. PhD
thesis, 1993.

A. Dollas, W. Rankin, and D. McCracken, “A new algorithm for Golomb ruler derivation
and proof of the 19 mark ruler,” IEEE Transactions on Information Theory, vol. 44,
no. 1, pp. 379-382, 1998.

“http://distributed.net/ogr.”

A. K. Hartmann and M. Weigt, Phase Transitions in Combinatorial Optimization Prob-
lems: Basics, Algorithms and Statistical Mechanics. Wiley-VCH, Berlin, 2005.

D. Achlioptas, A. Naor, and Y. Peres, “Rigorous location of phase transitions in hard
optimization problems.,” Nature, vol. 435, pp. 759-64, June 2005.

184

[62]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky, “Determin-
ing computational complexity from characteristic’phase transitions’,” Nature, vol. 400,
no. 6740, pp. 133-137, 1999.

D. Mitchell, B. Selman, and H. Levesque, “Hard and easy distributions of SAT prob-
lems,” Proceedings of the 10th National Conference on Artificial Intelligence (AAAI-92),
vol. AAAI Press, p. 440, 1992.

R. Monasson and R. Zecchina, “Statistical mechanics of the random K-satisfiability
model,” Physical Review FE, vol. 56, no. 2, p. 1357, 1997.

M. Weigt and A. K. Hartmann, “Number of guards needed by a museum: a phase transi-
tion in vertex covering of random graphs.,” Physical review letters, vol. 84, pp. 6118-21,
June 2000.

C. Fay, J. Liu, and P. Duxbury, “Maximum independent set on diluted triangular lat-
tices,” Physical Review FE, vol. 73, pp. 1-14, May 2006.

D. Johnson and M. Garey, “Computers and Intractability: A Guide to the Theory of
NP-completeness,” Freeman € Co, San Francisco, 1979.

R. Moessner and A. P. Ramirez, “Geometrical Frustration,” Physics Today, vol. 59,
no. 2, p. 24, 2006.

A. P. Ramirez, “Strongly Geometrically Frustrated Magnets,” Annual Review of Mate-
rials Science, vol. 24, pp. 453480, Aug. 1994.

B. Roth, “Rigid and flexible frameworks,” The American Mathematical Monthly, vol. 88,
no. 1, pp. 6-21, 1981.

H. Crapo, “Structural rigidity,” Structural Topology, vol. 1, pp. 26-45, 1979.

L. Asimow and B. Roth, “The rigidity of graphs, I1,” Journal of Mathematical Analysis
and Applications, vol. 68, pp. 171-190, 1979.

L. Asimow and B. Roth, “The rigidity of graphs,” Transactions of the American Math-
ematical Society, vol. 245, no. November 1978, pp. 279-289, 1978.

M. Thorpe and P. Duxbury, Rigidity Theory and Applications. Springer, 1999.

185

[75] G. Laman, “On graphs and rigidity of plane skeletal structures,” Journal of Engineering
Mathematics, vol. 4, pp. 331-340, Oct. 1970.

[76] R. Kenna, “Homotopy in statistical physics,” Condensed Matter Physics, vol. 9, pp. 283—
304, 2006.

186

