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ABSTRACT

THE APPLICATION OF NELICAL AXIS THEORY TO

THE STUDY OF HDIAN KINEMATICS:

A KINEMATICALEY DEFINED CENTER FOR BIONECNANICAL JOINTS

By

Raymond Robert Brodeur

The forces acting within a biomechanical joint can be succinctly

described by a joint reaction force and a muscle moment. The least

invasive means of calculating these quantities is to use inverse

dynamics. The muscle moment is used in clinical evaluations, therefore

it is imperative that it be determined as accurately as possible;

however, the muscle moment is dependent on the point used for the

summation of the moments. Anatomically based definitions for a joint

center have been suggested, but these are-not applicable for subjects

with anatomical abnormalities. An alternative is to define the joint

center kinematically. This can be done for two dimensional motion using

the instantaneous center of rotation. The purpose of this dissertation

is to determine a kinematically defined center for biomechanical joints

for three-dimensional motion.

A solution can be found using helical axis theory. The

instantaneous helical axis (IHA) translates and rotates about a second

order helical axis. The first and second order helical axes intersect

at the center point of the IHA, the point of minimum acceleration on the

IRA. The path of center points is the path of minimum velocity for the

entire motion. An algorithm was developed for calculating the IRA

center point for continuous three-dimensional motion, including



 

solutions for two singularities. The equation for the velocity of a

point relative to the IRA can be written as an overdetermined equation;

this provides a means of locating the point of minimum velocity for the

entire motion. This equation can be expanded to determine the least

squares best-fit polynomial estimate for the center point path. Three

methods were investigated for defining the kinematic joint center: the

IRA center point algorithm; the point of minimum velocity; and a linear

best-fit path of minimum velocity.

Kinematic and kinetic data were collected for the right ankle joint

of two male runners. An anatomically defined ankle joint center was

compared to the three kinematic joint center definitions. The kinematic

Center of motion was most often medial to the ankle anatomical center,

near the medial maleoli. The linear best-fit path of minimum velocity

provides a better means of calculating the center point path since it

serves to smooth the IRA center points. The moments about the ankle

were determined for each of the four joint center definitions. It was

found that moments about the three kinematic joint centers were very

consistent, and the inversion/eversion moments were significantly larger

than the inversion/eversion moments about the anatomical center.
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In the study of biokinematics and biokinetics, the primary

objectives are to describe the motions of each body segment and to

determine the forces involved in generating these motions. These

objectives can be achieved by modeling the human body as a series of

rigid segments, so that segments such as the foot, shank and thigh are

each considered a separate rigid body. The kinematics and kinetics of

each body segment are then determined separately.

In order to describe the kinematics of one body segment relative to

another, or relative to a fixed reference frame, it is necessary that

the positions of at least three non-colinear points are known on all of

the body segments being studied. The velocity and acceleration of each

point can be determined by numerical differentiation. The angular

velocity and angular acceleration can then be calculated for each body

segment (Verstraete and Soutas-Little, 1990).

The forces between two adjacent body segments are transmitted via

the articular joint surfaces, and the muscles and ligaments connecting

the two segments. These forces can be succinctly described by a joint

reaction force and a joint muscle moment. The joint reaction force is

the sum of the forces acting at a joint, including external forces,

inertial forces and the muscle contraction forces between the two

segments. The effective muscle moment acting at a joint is the net

moment generated by the muscles and ligaments connecting the two body

segments. The joint muscle moment is an extremely important factor in

biomechanical analysis since it is often used as a comparison between

"normal" and "abnormal" biomechanics and in pre- and post-operative

comparisons (Prodromos, et a1, 1985, Wang, et a1, 1990).





 

The least invasive means of calculating the joint reaction force

and the joint muscle moment is to use inverse dynamics. External forces

and moments acting on each body segment can be measured via a force

platform, load cell, or pressure plate. The inertial properties of the

body segments can be measured using methods such as those outlined by

Clauser, et al (1969); or the body segments can be modeled

mathematically and the inertial properties can be calculated directly

from the idealized geometry of a mathematical model (Verstraete, 1988).

The joint reaction force is found by summing the external forces and

inertial forces acting on each body segment. The net muscle moment

acting at a joint can then be calculated by summing the moments about a

point that defines the joint center.

Unfortunately, it is not clear as to what defines a joint center.

In three dimensional kinetic analysis, the point in space used for the

summation of the moments has a direct effect on the magnitude and

direction of the calculated moments. This is due to the r X F term in

the moment equation. Thus the joint muscle moment is highly dependent

on the definition of the joint center.

Many researchers have used anatomical definitions for the joint

center (Procter and Paul, 1982, Prodromos, et a1, 1986, Verstraete,

1988, Wang, et al, 1990). The center of a joint is defined relative to

anatomical landmarks and is based on assumptions of the motions which

take place at the joint. One major disadvantage with an anatomically

defined joint center is the question of how to modify the definition

when dealing with subjects that have anatomical abnormalities.

If the motion under consideration is planar, then the instantaneous

center of rotation (ICR) is the natural definition for the joint center

between two body segments. Unfortunately most biological joints cannot

 



 



 

be modeled as having planar motion due to significant nonplanar axes of

rotation.

The purpose of this research is to define a biomechanical joint

center for three dimensional motion. By considering the acceleration of

a rigid body it will be shown that a unique point exists on the

instantaneous helical axis, and that this point is the center of motion

for a rigid body moving in three dimensions. The motion of a rigid body

can be uniquely defined by the instantaneous helical axis (IHA). In

general, the helical axis itself translates and rotates about a second

order helical axis. The second order helical axis intersects the first

order helical axis at a unique point, called the center point of the

helical axis.

It will be shown that the center point of an instantaneous helical

axis is the point on the IHA where the acceleration is minimal. It will

also be shown that the path of center points is the path of minimum

velocity for the entire motion. Thus the center point path is the path

of points where motion is minimal; hence the center point of each IHA is

a naturally defined center of motion for three dimensional kinematics.

In order to apply the helical axis center point to define the joint

center for biomechanical joints, some adaptation is required for two

singularities where the center point cannot be defined. The first

singularity occurs when the angular acceleration vector is parallel to

the angular velocity vector: the center point is not unique for this

condition. The second singularity occurs when the angular velocity

vector is zero: if the angular velocity vector is zero, then the

instantaneous helical axis may not exist. The above two problems are

addressed in Chapter 5.

Helical axis theory is essential to this research, therefore, in

Chapter 2, a portion of the literature review is dedicated to a brief





history of helical axis theory, including recent developments. The

biomechanical application of helical axis theory is also reviewed.

Finally, the literature regarding the definition of the center of a

biomechanical joint is reviewed.

In the third chapter, the fundamental definitions of helical axis

theory are presented. The equations of a line, the extension of those

equations to a helical axis, and basic mathematical definitions are

made. In the last part of Chapter 3, there is a discussion on the

relative motion of two rigid bodies in space. The helical axis of one

body moving relative to another body is defined and the three axis

theorem is reviewed. I

In Chapter-4, the center point of the instantaneous helical axis is

defined. It is shown that the center point of an instantaneous helical

axis is at the point of minimal acceleration on the helical axis. The

center point is the center of motion for three dimensional kinematics

and therefore is the obvious choice for defining the center of a three-

dimensional joint. A natural result of the definition of the center

point is a kinematically defined coordinate system. Some discussion is

given to the physical interpretation of this naturally defined

coordinate system.

In Chapter 5, two singular cases are investigated wherein the

center point is not defined. The solutions to these problems are found

in higher order derivatives of the helical axis. The application of

these theoretical solutions to develop a practical algorithm for

defining the center point is then given. A least squares approach to

the joint center problem is also given in this chapter. The least

squares approach defines a point of minimum velocity for the entire

motion. It is shown that the minimal velocity point is a weighted

average of the helical axis center points. This point of minimum





 

velocity can be used to define the joint center, if the motion at a

joint is known to be about a fixed point such as the motion at the hip

joint. It is also shown that the path of center points is the path of

minimum velocity for the entire motion. The center point path can be

modeled using a least squares, best-fit path of minimal velocity. The

best-fit path of minimum velocity acts as a filter of the center points.

Thus, in this chapter, three center point definitions were developed:

the algorithm for calculating the center point for each IHA; the least

squares point of minimum velocity; and the least squares best-fit linear

path of minimum velocity.

In Chapter 6, the above three center point definitions are applied

to the ankle joint. The angular velocity vector results and the

positions of the instantaneous helical axis are given. The center point

of each helical axis is found using the algorithm developed in Chapter

5. The helical axis center points are compared to the point of miminum

velocity and to the least squares best-fit linear path of minimum

velocity. The moments about an anatomically defined ankle joint center

are compared to the moments about the three kinematically defined center

points. The total work done at the ankle is compared to the work done

by the sagittal plane moment (the dorsi- plantar-flexion moment). The

work done by the colinear force was also determined and compared to the

total work done at the ankle.

In Chapter 7, the theoretical and experimental results are

summarized and the conclusions of this dissertation are given.

In Appendix I an error analysis is done for the angular velocity

vector equation; the location of the instantaneous helical axis

equation; and for the equation used to determine the location of the

center point of each helical axis.



 

 

 



 

Appendix II shows the application of the theory developed in this

dissertation to numerically simulated data. Random noise is introduced

to simulated target points. The velocity, angular velocity, angular

acceleration and helical axis positions are determined given only the

noise induced data. The results from the noise induced simulated target

data are then compared to the known results.



 

 

 

 



 

CHAPTER II

LITERATURE REVIEH

2.1W

Chalses (1830) is generally regarded as being the first to show

that a finite or infinitesimal motion of a rigid body can be described

by a translation and a rotation about a line in space. However, it has

been reported by Rittershaus (1878) and Schoenflies (1893) that the

screw axis was first described by Giulio Mozzi in 1763 or 1765 (see

Hunt, 1967).

Poinsot (1806) was the first to show that the forces acting on a

rigid body can be reduced to a single force and a couple in a plane

perpendicular to the force. The mid and late nineteenth century saw a

rapid growth in the area of rigid body kinematics with the works of

Poinsot (1851), Hamilton (1830,1845,1848), Mobius (1837,1838), and

Plucker (1865,1866).

In order to apply the helical axis theory to the study of

mechanisms several means of expressing screw coordinates were developed.

In 1865, Plucker defined his six coordinates of a line. In this

publication (titled "On a New Geometry of Space"), he defined a line

based geometry and applied it to optics, kinematics and kinetics.

Hamilton developed quaternions, a vector and scalar based system

that used traditional algebraic multiplication and complex number

definitions to define what we today call the vector dot product and

cross product. Hamilton's quaternions looked much like our modern

vectors; the multiplication of two quaternions results in the equivalent

of a dot product and a cross product in terms of modern vector

terminology.





 

In 1873, Clifford developed a mathematics based on a new type of

complex number, where the multiplier w was used, and defined by w-w - 0.

He termed this complex number system dual numbers, consisting of a real

number and the dual quantity, w. He combined dual numbers with

Hamilton's quaternion notation to develop biquaternions.

In 1900, Ball published his monumental work on the theory of

screws. Ball used a screw coordinate system based on six parameters,

five of which must remain independant. Ball studied the infinitesimal

displacements of a rigid body having between zero and six degrees of

freedom. His major emphasis was on the restraining forces necessary to

maintain the given degree of freedom and the motion that would be

imparted to a body given the restraints, the initial position of the

body and the direction of an impulse acting on the body. He is known

for his geometrical intuition in his approach to kinematics.

Study (1903) used Clifford's dual numbers to represent a screw as a

dual vector. A dual vector was defined as two vectors; the first being

a real vector that defined the direction of a line in space, the other

being the moment of the line about the origin multiplied by the dual

multiplier, w. Dual vectors are similar to Plucker coordinates, in that

they both use the directional cosines of a line and the moment of a line

about the origin as a means of describing a line in space.

2.2 Wilma

Little work was done in the area of screw theory between the early

twentieth century and the post World War Two era. Dimentberg

(1948) adopted Study's notation and used it in the analysis of kinematic

chains and in the finite displacement of general three dimensional

mechanisms. In 1965, Dimentberg published "The Screw Calculus and Its



 

 

 

 



 

Application in Mechanics", a work that summarized his substantial

contribution to mechanism design. The publication also helped raise

Study’s notation from obscurity.

A good portion of the helical axis theory literature over the past

thirty years has been the rediscovery and further advancement of work

that was done in the late ninteenth century, but re-written in terms of

modern vector and matrix notation.

A. T. Yang (1963) used dual vectors and re-introduced the concept

of dual quaternions to the analysis of spatial mechanisms. He combined

the work of Clifford, Hamilton and Study to define vectors and line

geometery in terms of dual quaternions. The result of this is a very

concise and elegant notation for expressing the motions of a mechanism.

Yang (1971) expanded dual notation to express the dynamics of a rigid

body. He expressed the acceleration of a rigid body and the rate of

change of momentum of the body as one dual vector equation. This lead

Beggs (see the discussion of Yang, 1971) to comment that Yang's dual

dynamic equation "... compares with a DNA molecule in information

density!".

Woo and Freudenstein (1970) and Yuan and Freudenstein (1971)

precede their work by extensively reviewing the notation and findings of

Plucker. Clifford, Study and Ball. The above two papers extended the

application of screw coordinates to the kinematics and statics of

mechanisms. The application of screw coordinates to rigid body motion

and mechanisms provided the development of more efficient methods for

studying the displacement, velocity, acceleration, and forces acting on

spatial mechanisms.

Veldkamp (1963, 1967a, 1967b) defined and described the concepts of

instantaneous invariants and a canonical system of reference for rigid

body motion. The instantaneous invariants are scalar parameters that
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describe the motion of a rigid body and are independent of the

coordinate system used to define the motion of the body. For first

order motion (velocity), there are two instantaneous invariants, the

first being the magnitude of the angular velocity, the second being the

translational velocity parallel to the angular velocity vector. The

canonical system of reference is a kinematically defined coordinate

system that has the instantaneous helical axis as one line of the .

coordinate system and the second order helical axis as a second line in

the coordinate system. The third coordinate axis is the cross product

of the first two. The canonical reference system can be an extremely

useful tool in the analysis of spatial mechanisms.

 

There have been a number of papers concerned with the finite

helical axis (FHA) and the finite center of rotation for biomechanical

joints (Hicks, 1953, Close, 1956, Van Langelaan, 1983, Lundberg, et a1,

1989, Blankevoort, et a1, 1990). Most of the finite helical axis

research has been collected using stereoradiogrammetry and human

cadavers and/or excised joints. The biomechanical researcher faces a

number of dilemmas when investigating joint motion. Extremely precise

data can be collected on cadavers (or excised joints), using radiopaque

targets implanted into the bones that define the joint under

investigation. However, by gaining a higher degree of accuracy the

researcher sacrifices functional normality. 0n the other hand, when

using living subjects and skin mounted targets, the function of the

joint may be "normal" but there is usually a loss in accuracy due to

tissue motion.
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The application of helical axis theory for describing biomechanical

motion date as far back as Weber and Weber (1836) who made the first

recorded attempt to measure the center of rotation of the knee joint

(using a planar model for describing knee motion).

In this century several researchers have applied the finite helical

axis or its planar equivalent, the finite center of rotation, to

biological joints (Manter, 1941; Hicks, 1953; Isman and Inman, 1969;

Walker, et a1, 1972; Smidt, 1973; Blacharski, et a1, 1975; Procter and

Paul, 1982; Lundberg, et al, 1989; and Blankevoort, et a1, 1990). The

methods for determining the FHA vary widely between the papers listed

above. Hicks (1953) and Isman and Inman (1969) used simple visual

techniques for defining the axis of rotation. They defined the axis of

rotation to be through points of minimal motion. For example, for talo-

tibial motion, a point of minimum movement was visually determined on

the medial and lateral sides; then the axis of rotation was simply the

line between the points of minimal motion.

More recently, stereoradiographic and biplanar radiographic methods

have been developed for finite helical axis measurements (Selvik, 1974).

Van Langelaan (1983) did an extensive radiographic study of the tarsal

joints using ten shank-foot preparations. He described the FHA for the

talotibial, talocalcaneal, cuboid calcaneal, naviculocalcaneal, and the

talonavicular joints. Lundberg, et a1 (1989) studied the talotibial

joint in vivo using eight volunteers. Tantalum balls (0.8mm diameter)

were implanted into the tibia and talus of each subject. Weight bearing

flexion-extension; pronation-supination; and medial-lateral rotation

were performed at 10° increments. They found that all of the axes

tended to cross near a point in the center of the talus.

Although many studies have been done on the finite helical axes,

few of the studies agree on the location and variation of the axes
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'locations. Blankevoort, et al (1990) attribute this to several factors:

1) individual subject variation; ii) measurement errors; iii) variation

due to different loading and variations in the kinematic paths forced on

the body segments by the researchers. Blankevoort, et a1 expressed the

opinion that the third factor is probably the factor of greatest

importance. They, therefore, described in great detail the loading and

kinematic paths of the femur and tibia in their work. However, the

problem in general with biomechanical research is control over the

repeatability of the experiment.

Very little work has been done in the area of instantaneous helical

axes for biomechanical joints. Fioretti, et a1 (1990) used simulated

data to determine the accuracy of calculating the IHA. They simulated a

cylinder rolling on a plane, introducing noise of 0.5mm and 4.0mm

standard deviation to the known target locations. For the 0.5mm error,

the location of the IHA could be determined to within 1.27mm using a

readily available spline smoothing technique (Woltring, 1986). For the

4.0mm standard deviation noise, the IHA could be determined to within

5.09mm using the same smoothing technique. Fioretti et al also

collected in 1129 data on the metacarpophalangeal joint and described

the IHA path as it intersected the sagital plane of the metacarpal.

Verstraete and Soutas-Little (1990) described a method for finding

the angular velocity and angular acceleration from discrete position

data. They used numerical differentiation to determine the velocity and

acceleration of the position data, then used a least squares method to

find the angular velocity and angular acceleration.

Sommer and Buczek (1990a, 1990b) also described a least squares

method for determining the angular velocity and angular acceleration

vector from discrete target position data. They determined the accuracy

of the angular velocity and acceleration on a fixed axis mechanism.
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They found the average measured angular velocity and angular

acceleration to be very close to the true angular velocity and

acceleration.

Karlsson et a1 (1990) compared bone mounted targets to skin mounted

targets on the location of tibial-femoral instantaneous helical axodes.

As would be expected, they found that the IHA's found from bone mounted

target data had less variation than skin mounted targets.

2.4 Biome a1 Jo Cent

In the study of biomechanics, the inverse dynamics method is used

to determine the forces and moments acting at a joint. Body segments

such as the foot, shank and thigh are modeled as rigid bodies. External

forces acting on these bodies can be measured via a force platform, load

cell, or pressure plate. The inertial properties of the body segments

can be measured (Clauser, et al, 1969) or the body segments can be

modeled mathematically and the inertial properties can be calculated

directly from the idealized geometry of a mathematical model

(Verstraete, 1988). Since the external forces and moments are known,

the forces and moments acting at a joint can be calculated using the

inverse dynamics method.

The moment acting at a biomechanical joint is called the joint

muscle moment. It is the effective moment acting at the joint due to

the forces generated by the muscles and ligaments connecting the two

body segments. The magnitude of the joint muscle moment is an extremely

important factor in the analysis of a biomechanical joint. The muscle

moment is often used as a comparison between "normal" and "abnormal"

biomechanics and in pre- and post-operative comparisons (Prodromos, et

a1, 1985, Wang, et a1, 1990).
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Unfortunately, it is not clear as to what defines a joint center.

In three dimensional kinetic analysis, the point in space used for the

summation of the moments acting on a rigid body has a direct effect on

the magnitude of the calculated moments. This is due to the r X F term

in the moment equation. Thus the joint muscle moment is highly

dependent on the definition of the joint center.

If the motion under consideration is planar, then the instantaneous

center of rotation (ICR) is the natural definition for the joint center

between two body segments. Yamaguchi and Zajac (1989) used the

instantaneous center of rotation to more accurately determine the

effective moment arm of the quadriceps. Unfortunately most biological

joints, including the knee joint (Karlsson, et a1, 1990, and

Blankevoort, et a1, 1990), cannot be modeled as planar due to

significant nonplanar axes of rotation.

Many researchers have used anatomical definitions for the joint

center (Procter and Paul, 1982, Verstraete, 1988, Prodromos, et alh

1986, Wang, et a1, 1990). The center of a joint is defined relative to

anatomical landmarks and is based on assumptions of the motions which

take place at the joint. One major disadvantage with an anatomically

defined joint center is the question of how to modify the definition

when dealing with subjects with anatomical abnormalities.

The need for a three dimensional biomechanical joint center has

been recognized by several researchers. Chao and An (1982) proposed

that a joint center be defined by the midpoint of the common

perpendicular between two consecutive helical axes. They proposed that

the path of this midpoint could be used as a description of the motion

taking place at a joint. Woltring (1990a) has proposed that the

intersection of the first and second order helical axis be used to
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define a joint center. It will be shown in this thesis that, in the

limit, the above two definitions converge.

Much of the debate regarding the definition of a joint center has

taken place on Biomch-L, a biomechanics electronic bulletin board.

Woltring (1990b) suggested a point at which the absolute velocity and

acceleration are minimal. For any given instant in time, this point

occurs at the center point of the IHA. Chao (1990) stated that the

three dimensional joint center as defined by Woltring (1990b) should be

utilized for the calculation of joint muscle moments. Chao indicated

that the joint articulating surface contact point does not necessarily

coincide with the center of motion of the joint.

Joint muscle models require the moment arm between the line of

action of a muscle and the center point of the joint in order to

accurately model the joint kinematics and kinetics. Spoor, et a1 (1990)

suggested that the moment arm be determined using the relationship

between the work done by a muscle and the work done by the moment of the

muscle. For planar motion, the work done by a muscle generating a force

F is simply F ds where ds is the infinitesimal change in the tendon

length. The work done by the muscle moment on the joint is M do where M

is the moment generated by the muscle and d0 is the change in angle of

the joint. Then:

F ds - M d0

the effective moment arm "a" is:

M ds
a-_-_

F d9

This relationship allows the researcher to calculate the moment arm by

relating the change in tendon position (ds) to the change in the joint

angle (d0); the actual moment arm does not need to be measured. This

method assumes that the motion is planar; an assumption that is not true
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for most biological joints. The other obvious disadvantage to this

method is that tendon length changes are difficult, if not impossible to

measure in vivo.

The purpose of this research is to define a biomechanical joint

center based on the kinematics of the body segments that define a joint.

Helical axis theory is essential to this research, therefore, a review

is provided for basic definitions and mathematical tools that are used

in this thesis.



 

 

 



 

CHAPTER III

MATHEMATICAL TOOLS

3-1 Wm

Six independent parameters are needed to describe the motion of a

rigid body in space. A line in space can be defined by four independent

parameters. Equation 3.1 defines the projection of a line onto the x-z

and y-z planes, respectively:

3.1a x - az + b

3.1b y - C: + d

The parameters a,b,c,d are four independent parameters that can be used

to define a line in three dimensional space. The rotation and

translation along a line account for two more degrees of freedom;

therefore the motion of a rigid body can always be expressed as a

translation and a rotation about a line. The line about which a rigid

body is translating and rotating is call the helical axis. The ratio of

the translation to the rotation is called the piggh of the helical axis.

Thus the motion of a rigid body can be described by the four parameters

that define a line in space and two other parameters, the pitch and the

rotation. Alternatively, the rotation and translation can be used

instead of the rotation and the pitch, due to the relationship between

the rotation, translation and pitch.

The motion of a body can be described in terms of finite relative

positional changes or instantaneous motion. The finite hellcal axis

(FHA) describes the line in space about which a body translates and

rotates in order to move from one position to some other position in

space. However, it must be emphasised that the FHA describes the most

17
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Snocinct means by which a body may move from one position to another

position; it does not necessarily describe the aaag; means by which a

body has moved.

The motion along a helical axis is described in terms of the £315;

and the pitch, where the twist is the magnitude of the rotation of the

body. As the motion of the body becomes infinitesimally small, the

helical axis is referred to as the laa;an§aaagaa_hallgal_a§la (IHA).

The IHA is not only the most succinct means of describing the motion of

the body, it is also the exact means by which the body moves from one

position to another new position. Since the infinitesimal translations

and rotations occur over an infinitesimal time, the ratio of the

differential quantities to the infinitesimal time do not go to zero,

but, in the limit, become the translational velocity and the angular

velocity, respectively. The pitch of the instantaneous helical axis is

the ratio of the translational velocity to the angular velocity. The

'gglaglng_mg§lgn of the body is the magnitude of the angular velocity.

In a similar fashion, the forces acting on a body can be reduced to

a force and a colinear moment. That is, any number of forces and

moments acting on a rigid body can be reduced to a single force and

moment acting along a line in space. This combination of a force and a

colinear moment is called a grangh. The magnitude of the wrench is

equal to the magnitude of the resultant force. The pitch of the wrench

is equal to the ratio of the colinear moment to the force.

The free translation of a body or a pure moment acting on a body

cannot be reduced to acting on a single line in space. However, in

terms of helical axis theory, a pure translation is an infinitesimally

small rotation about a line at infinity; and a pure moment is an

infintesimally small force acting on the body on a line at infinity.

Thus. a helical axis is the sum of two rotations. One is the rotation
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0f the body about the line of the helical axis; the other is a rotation

about a line at infinity. Similarly for the wrench: it is the sum of

two forces acting on the body. One is the force acting along the line

of the wrench; the other is a force acting on the body at a line at

infinity.

Helical axis theory provides a succinct and concise means of

describing the kinematics and kinetics of a rigid body and for

describing the relative motions across an anatomical joint. In

addition, the axis of rotation is essential for any type of muscle

modeling (Spoor, et a1, 1990), since the moment created by the muscle

force is dependent on the moment arm from the axis of rotation to the

muscle tendon. For the inverse dynamics problem, the axis of rotation

defines a line, but a unique point on that line is needed for the

summation of moments, in order to accurately ascertain the net muscle

moment acting across a joint.

3.2 Iggnartles of 129 Liaas lg §2ace

This section reviews the basic geometry of two lines in space;

defines a simple means by which it can be determined if the lines

intersect, and defines a means for finding the point on one line that is

closest to the second line.

Figure 3.1 shows two non-parallel, non~intersecting lines in space;

lines "a" and "b". A unit vector is known for each line, defining the

direction of each of the lines (ea, 2b). A point is known on each line,

where R3 and Rh are vectors from the origin to the known point on lines

a and b, respectively.

In order to define the point of intersection or the point on one

line closest to the other line, it is convenient to use the two lines to





 
  

9
|

”
I

Figure 3.1

Two non-parallel and non-intersecting lines in space.

define a coordinate system as follows:

3.2 ed- egxfl;

leaXebl

3.3 cc - ed X ca

3.4 ab/a-ab-na
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The unit vectors (Qa,;c,;d) define an orthogonal coordinate system.

Place the coordinate system at point q, the point on line "a" closest to

line "b". The vector q is the vector from the origin to point q, as

shown in Figure 3.1.

Lines "a" and "b" intersect if:

A

3.5 nb/a - ed - 0

If the two lines do not intersect then:

3.6 Rb/a - ed - d

where d is the shortest distance between the two lines. The vector q

can be found from the simple geometry defined by the two lines and the

coordinate system defined above and shown in Figure 3.2:

A 5:.ea

3'7 q - 3a + [Rb/a. ea - tan(0) lea

If the two lines are parallel, then q cannot be defined.

The dot product of the two lines can be defined using the above

coordinate system. Let the wrench acting on a body lie on line "b";

then the force and moment acting on the body are:

3.8 F - F ;b M - M ;b

Let the velocity of the body be expressed by an instantaneous helical

axis on line "a". The veloctiy of the body is then:

3.9 V - V ea a - w ea

The distance the body travels along the helical axis line "a" during the

application of the force and moment is:

3.10 ds - V dt dd - u dt

The work done by the wrench on the body is the dot product of the force

and moment with the distance the body travels. In order to calculate

the dot product, the force and moment must be transfered to a point on

the line "a". The equivalent force and moment acting on point q is:

3.11a Fa - F cos(0) Ma - M cos(0) - F d sin(0)
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3.11b FC - F sin(0) Mc - M sin(0) + F d cos(9)

where Fa and Ma are the force and moment acting in the eadirection and

Fc and Mc are the force and moment acting in the ;c direction. Note

that there is no force or moment acting along the ed direction at point

q. The work on the body is then:

3.12 {F V cos(0) - F d w sin(0) + M w cos(0)}dt

If the work done on the body is zero and F,M,V,w are non-zero, then

the wrench is said to be reciprocal to the twist. This occurs if the

two lines of action are orthogonal and intersecting, but can also occur

for an infinite number of combinations of F,M,V,w, and 0. The

interesting note about this result is that screws do not necessarily

have to be perpendicular to be orthogonal. The implications of this

finding have been applied to the study of constraint problems in

mechanism design and robotics (Ball, 1900, Ohwovoriole, 1981; Lipkin and

Duffy, 1982).

3.5 Beta ' e vs id

The purpose of this section is to review one method of calculating

the angular velocity vector from discrete position data. Given a solid

body in general three-dimensional motion and at least three non-colinear

points rigidly attached to the body, the problem is to find the angular

velocity for any instant in time. The discrete position data can be

numerically differentiated to determine the velocity of each point.

At time t, the position and velocity of the three points B,C,D are:

3.12a rB, rc, rD

3.12b vb, vc, VD
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The position and velocity of any two of the points can be expressed

relative to any other point. Thus, relative to point D, the position

and velocity of points B and C are:

3.13a r

B/D ' ‘B '_rD

3.13b rC/D - rc - rD

3.13c vD/D - VB - vb

3.13d vC/D - vb - vb

The angular velocity of the body can be found for time t:

v X v

3.14 w - B/D C/D

v'B/D ' rC/D

Unfortunately equation 3.14 does not provide a reliable means of

determining the angular velocity, especially if the vector rC/Dis

perpendicular with the velocity vector vB/D vB/D - rC/D

This occurs if the angular velocity vector is parallel to the plane

(making - 0).

formed by the points B,C,D.

Verstraete and Soutas-Little (1990) developed a means for

determining the angular velocity using a least-squares approach. Sommer

and Buczek (1990a, 1990b) independently developed the sameethod for

defining the angular velocity and acceleration. The velocity of one

point relative to another must always be perpendicular to the vector

between the two points (for a rigid body). Thus:

/D ' 'b/D

The cross product can be written in terms of a skew symmetric matrix:

3.15 a X to

0 -r r w
z x

3.16 uXr- - r 0 -t:x w --[£]u

-r r 0
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Where the "~" below the r indicates that [5] is a skew symmetric matrix.

Thus equation 3.15 can be written as:

3.17
' [EC/D] " ' 'b/D

Equation 3.17 can be written in an overdetermined fashion by

repeating the same process for all of the points on the body:

V

53/0 B/D

3.18 - EC/D a - vC/D

50/3 vC/B

The "~" indicates that each of the vectors r in equation 3.18 are

written as (3x3) skew symmetric matrices as in equation 3.16. By

solving 3.18 using the least square method, the angular velocity u can

be obtained. The accuracy of the angular velocity increases with the

number of targets attached to the rigid body.

 

Once a is known, the IHA can be located relative to any of the

known points. To find the vector from a point D to a point P on the IHA

(where UP is the shortest perpendicular vector from D to the IHA):

3.19 B? - ” x 'b

2

|"l

Thus the instantaneous screw axis has angular velocity u, translational

 

velocity VD - u/|u|, and is located at:

3.20 6? - 66 + B?

where "0" is the origin of the coordinate system, and P is a point on

the IHA as defined by equation 3.19.



 



 
Sections 3.5 and 3.6 were concerned with calculating the

instantaneous helical axis for a rigid body relative to a fixed

coordinate system. This section is concerned with calculating the IHA

between two bodies. Figure 3.2 shows the foot with a foot coordinate

 
Figure 3.2

Foot, shank, and ankle IHA.

system attached at point B and the shank with a shank coordinate system

attached at point A. The position and velocity of point A on the shank

and point B on the foot are known; and the angular velocity of both the

foot and shank (of and us), relative to the global XYZ coordinate

system, are also known.
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The position of point B can be defined as:

3.21 RB - RA + nB/A

The velocity of B is:

3.22 VB_VA+vB/s+"san/A

where Vh/s is the velocity of point B relative to the shank coordinate

system. Therefore:

3.23 Vh/S - VB - (VA + as X nB/A)

The angular velocity of the ankle joint, 63, is simply the difference

between the foot and shank angular velocities:

3.24 U3 - uf - as

The instantaneous helical axis of the foot relative to the shank

(IHAf/S) can be found relative to point B on the foot using equation

3.19:

3.25 DB - “ x V55,

0 . w

J .1

where D is the shortest vector from point B to the IHA of the foot
B

relative to the shank. The translational velocity of the foot along the

IHAf/s is:

3.26

A A

vparallel - (VB/A ' e'j)ej

The triple axis theorem (Phillips and Hunt, 1964, Ball, 1900)

states that given three bodies, U,V,W moving in space with relative

instantaneous helical axes IHAU/v, IHAV/W' IHAw/U, the three relative

IHA's share a common perpendicular line. The theorem can be easily

proven given the above equations. Let the three bodies be the shank,

the foot, and the fixed coordinate frame. IHAs is the IHA of the shank

relative to the fixed coordinate frame. IHA is the IHA of the foot
f

relative to the fixed coordinate frame. IHAf/S

relative to the shank. If IHAf and IHAs are known, then find the

is the IHA of the foot

location of IHAf/s.



 

       

    



 

27

In equation 3.23, the points A and B are any points on the shank

and foot respectively. Therefore, without any loss in generality, the

point A can be located on IHAS at the point on IHAs that is closest to

IHAf. Similarly point B can be located on IHAf at the point on IHAf

that is closest to IHAS. Then AB is the common perpendicular between

IHAS and IHA Substituting equation 3.23 into equation 3.25, thef'

shortest vector from point B to the IHAf/s can be found (DB):

3.27 D _ (uf- as) X [VB - (YA,+ 05X AB)

 

(”f- as) . (”f- Us)

_ -0fX VA - qu (05X AB) - uSX VB + 08X (05X AB)

uf- "f - Zuf- as + 05- ”5

Point A lies on IHAs therefore VA is parallel to as, and point 8 lies on

IHAf therefore VB is parallel to of. An examination of equation 3.27

reveals that the numerator is a vector parallel with vector AB. Thus

vector DB lies on the line that passes through line segment AB.

Therefore IHAf/s shares the same common perpendicular line as the common

perpendicular between IHAf and IHAS.

An alternative means of calculating the instantaneous helical axis

of the foot relative to the shank is to define the foot targets relative

to the shank coordinate system and calculate the velocity of the foot

targets relative to the shank coordinate system using standard numerical

differentiation techniques. The angular velocity of the foot can be

determined from equation 3.18 and the location of the IHAf/s can be

found from equation 3.19.



 



 
Figure 3.3 shows a rigid body moving relative to a fixed coordinate

system. At any given instant in time the rigid body is translating and

rotating about the instantaneous helical axis. Relative to the fixed

frame of reference the IHA is called the fixed axode (Skreiner, 1966).

Relative to the moving coordinate system the IHA is called the moving

axode. The IHA lies on the line in space that is shared by both the

fixed and moving coordinate systems. The motion of a line in space

generates a ruled surface. Thus as the motion of the rigid body

generates a new IHA position, two ruled surfaces are formed by the

changing IHA position. The motion of the fixed axode generates one

   

 

Fixed Axode

T Ruled Surface

  

Figure 3.3

The ruled surfaces generated by the fixed and moving axodes.
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ruled surface; the motion of the moving axode generates a second ruled

surface. During the motion of the rigid body the two ruled surfaces

roll relative to each other, always maintaining one line in contact;

that line is coincident with the IHA.

The shape of the two ruled surfaces are dependent on the motion of

the body that generated the IHA. Kirson and Yang (1978) and Yang, et a1

(1975) have proposed that instantaneous invariants for describing ruled

surface geometry be used to describe the motions of spatial mechanisms

and to aid in the design and synthesis of mechanisms.



 



 

CHAPTER IV

CENTER POINT OF THE INSTANTANEOUS HELICAL AXIS

AND

A KINEMATTCALLY DEFINED COORDINATE SYSTEM

 

Figure 4.1 shows two instantaneous helical axes, one at time t

(IHA) and one at time t + dt (IHA'). In general these two lines are

non-intersecting; however, they share a common perpendicular, which is

also the shortest distance between IHA and IHA'. Call the unit vector

along the common perpendicular 2k. The common perpendicular intersects

the IHA at point C.

The body is translating and rotating about the IHA, but the IHA is

translating a distance ds and rotating by an angle d0 about an axis

parallel to 2k located at the point C. This line is a helical axis for

the instantaneous helical axis; it is called the second order helical

axis.

If there is no rotation involved in the change in the IHA (for

example, in planar motion all IHA’s are parallel to one another) then

there is no unique second order helical axis; it compares to a pure

translation of a rigid body, but in this case it is the pure translation

of the IHA. More will be discussed on the second order helical axis in

section 4.2.

Equation 4.1 gives the angular velocity of the body at time t + dt:

4.1 w'-u+cdt

The sin and cos of angle d0 can be expressed using a, a, and dt:

30
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IHA'

ds

 

 

Figure 4.1

Two consecutive instantaneous helical axes.

4.2a sin do - '“’ x ”'l - "” x “d”

'0' l"'| MI I“ + adtl

4.2b cos d0 - u . ”I w + u-adt

IWI IU'I IUI I" + Gdtl

A coordinate system can be defined, as shown in Figure 4.1, by

defining the following:

A

4.3 e - u
w ___

. Ivl
4.4 ek _ a X 0

In X u'I

4.5 eT - ek X ew

The coordinate system is located at point C, which is the point of

intersection of IHA and the common perpendicular between IHA and IHA'.

The point C is called the center point of the IHA.

It can be shown that 0 lies in the ow - eT plane. Examine:
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A

“36 aoeK-s

Thus:

4.7 °';K"" UXB' _ ¢l°[UX(u+odt)]

  

|o X 0" ID X u'|

But a X a is zero, and a X adt is perpendicular to a, so then:

4.8 a - (a X adt) - 0 - 6

Thus 6 - O and the vector u lies entirely in the ew - eT plane.

Define:

4.9 ab - (a - ew)ew

4.10 “'1' - (a . eT)e.r

Let point D be any point on the body and let the shortest vector

from D to the IHA be vector DP. Let D’P' be the shortest

(perpendicular) vector from D’ to IHA'. Then:

_ u’Xv, (u+adt)X(v+ dt)

4.11 D'P' - D - D 8”

|u'|2 |u + adtl2

 

The vector 55' is the change in the position of D between time t and

time t+dt, thus:

4.12 35' - dec

From Figure 4.3, the vector PP' is:

4.13 fi'- fiI+fi'-‘D‘P

—I -l —I —I A A A

The vectors PP“, PPT' PPK are the components of PP in the ew, eT, eK

directions, respectively. From Figure 4.2, the magnitude of CE is:

_ IPP'TI
4.14 |CE|

tan d0

Using equations 4.2, it can be shown that:

1 “2 + w awdt

4.15 -

tan d9 w a dt

 

T



 



 

 

 

 

Figure 4.2

Vectors relating two consecutive IHA's to points on a rigid body.

So:

__ ”2 + w awdt A

4.16 |CE| - |PP'TI cw

w aTdt

A

It can be shown that the acceleration of the point C in the eK

direction is zero. The acceleration of the point P is:

 

 

 

4.17 8P - aD + a X DP + 9 X (a X DP)

expressing 4.17 in component form gives:

a V

T DT
4.18 an - an“ +

w

a v
w DT

4.19 aPT - aDT - w + w vDK

a v
w DK

4.20 aPK - aDK - - w vDT

(a)
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The acceleration of any other point, F, on the IHA is:

4.21 8F - aP + a X PF + 0 X (a X PF)

but FF is parallel to both a and am, thus 11F and aP differ only in the

acceleration in the eK direction. Thus:

4.22 aF - a? + «T x F?

 

 

So:

a v

T DT

4'23 Fm - Pw - aDu) + w cw

a v

w DT

4.24 an- 8PT- EDT- to eT+vaKeT

4.25 aFK - a.PK + “T X PF

Thus all points on the IHA have the same acceleration in the em and

eT directions; they differ only in their relative eK accelerations.

From Figure 4.3 the acceleration of the point E can be found:

4.26 aE-aP+aTXfi

But PE - PPL, thus the acceleration of the point C is:

4.27 a.c - a.P + “T X (PP; - CE)

or:

|P_P-i-| _
4.28 aC - aP + [ - |PPw|] GT eK

tan d0

From equations 4.11 - 4.16, the following relationships are found:

  

o X v + a X dt + a X v dt a X v

4.29 PP' - vbdt + D ‘D D - D

|u + adtl2 |w|2

The quantities PP; and PPi and PPk can be found:

a v dt

4.30 PP' - v dt + T DR
w Dw ------§

|u + adtl

w v + w a dt + a v dt v

4.31 PPi - vDTdt + ”K ”R “ DK + DK
  

In + adtl2 |u|
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w v + w a dt + a v dt - a v dt w v

4.32 PP' - v dt+ ”T ”T w DT TDw _ DT

K DK
2 2

I0 X adtl '0'

From equation 4.28, the acceleration of the point C in the eK direction

is:

aw VDX w + awdt

4.33 aAK - aDK - ( + w VDT) - aTIPPw] + aT[PPT]

w a
T

Thus, using equation 4.30, 4.31 and using the common denominator:

|o| |u + adt|2 - w3 + Zuzawdt (droping higher order differentials), the

acceleration of C in the eK direction is:

 

3 2
w aDK + 2w awaDKdt

4.34 a -

GK 2

[0| I0 + adt|

2 4 3
w avaK + 2w avaKdt + w vDT - 2w avaTdt

 

|0| lu + adtl2

3 2

w aTvadt + w aTvDKdt

 

|u| |u + «1:12

4 3 3 2

+ w vDT - w aDK + w avaK + w avaTdt - w aDKdt + w avaKdt

|u| |u + adt|2

This reduces to:

4.35 aCK

The acceleration of the point C in the eK direction is zero. Hence to

- order(dt) z 0

find the center point C simply requires finding the point on the IHA at

which the acceleration in the 2k direction is zero. It should be noted

that if there is no component of a perpendicular to m then the center

point is not unique for the IHA. This singular condition will be

discussed in section 5.2.



 



 
The infinitesimal translation and rotation of the IHA are ds and

d0. Figure 4.2 shows that ds - |CC'I - IPPkI. From equation 4.32:

uvDT + waDTdt + avaTdt - aTvadt w vDT

ds - vDKdt + , -  

In + adt|2 |u|2

The point D is any point on the rigid body. For convenience sake, let

the point D be the center point of the ISA, then point D - point C,

then, recalling that VCK - vCT - 0, the above equation reduces to:

 

w a dt - a V dt

ds _ CT T Cw J/

In + adtl2

The term lu + adtl - “2 + 2wawdt + aidt2 + aidt2 = ”2 + Zwawdt, and:

w a - a V a a v

4.36 d: _ CT T Cw a fig: _ T Cw

dt w2 + 2waudt w w2

From equation 4.15:

w aTdt

tand9 - d0 - 7—,

u + w 0 dt
(d

Dividing through by dc gives:

w a a

4.37 f:— T .. T

dt “2 + w a dc w
w

 

Thus the IHA is translating and rotating about the second order

helical axis with the translational velocity and rotational velocity of

the IHA about the second order helical axis given by equations 4.36 and

4.37 respectively. These values are independent of the coordinate
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System used to define the helical axes; thus, the quantities given by

equations 4.36 and 4.37 are invariant and can be used to describe the

motion of the rigid body. Recall in the introduction, it was stated

that the angular velocity magnitude and the translational velocity along

the IHA are invariant to the coordinate system. Thus, the first order

invariants of motion are u and vs. The second order invariants of

motion are do/dt and ds/dt.

The motion of a line in space describes a ruled surface. For any

given instant, the ratio of the translation of the line to the rotation

of the line is called the distribution parameter. Thus, the

distribution parameter of the IHA is equal to the pitch of the second

order helical axis. The distribution parameter is:

The distribution parameter for the ruled surface generated by the

IHA is the pitch of the second order helical axis.

4.3 LWWM

In section 4.1, a coordinate system, based on two consecutive

instantaneous helical axes, was used in order to find the center point

of a helical axis. That coordinate system is completely defined by the

kinematics of a rigid body. Using the angular velocity and angular

acceleration of a body, and knowing the velocity and acceleration of at

least one point on the rigid body, a coordinate system can be defined:
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4.39s cw - w/Iul

x 0 X a

4.391) 8k -m

4.39c eT - ek X em

The coordinate system is located at the center point of the IHA, a point

where the magnitude of the acceleration of points on the IHA is at a

minimum (the acceleration at the center point is zero in the QR

direction).

This coordinate system is called the IHA trihedron by Kirson

(1975). The significance of the IHA trihedron is that if E - (2”,;T,;k)

defines the coordinates system in the fixed frame of reference and E' -

(35,;i,;£) defines the coordinate system relative to the moving

coordinate system, it can be shown (Veldkamp, 1967) that E - E'. That

is, the lines defining the coordinate system are coincident for both the

fixed and moving body. Thus, for each instant in time, there exists a

coordinate system whereby points in both bodies can be defined. This

naturally defined coordinate system is called the canonical coordinate

system (Veldkamp, 1967). This coordinate system can be a useful tool in

the analysis of spatial mechanisms.

There is a physical significance to each of the axes of the IHA

trihedron. The em axis lies on the IHA; the rigid body translates and

rotates about this line. The 2k axis lies on the second order helical

axis. The first order helical axis (the IHA) is translating and

rotating about this axis. The ;T axis is pointing in the direction

toward which the angular velocity vector is changing. In terms of the

linear velocity, em is the line all points in the body are translating

parallel to.
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If the motion of the body is planar it is still possible to define

the IHA trihedron, but the origin of the trihedron has no unique point

on the IHA; any point on the IHA can be used to define the origin of the

trihedron. The directions of the trihedron are defined using the

acceleration and the angular velocity (Kirson, 1975):

4.40a cw - UVw

mob e, -fl /
lu X a|

4.40c eT - ek X 2“

The vectors em and eT define a plane, with ek being the vector

normal to that plane. The direction of ek can be used for defining the

ew- eT plane. If the motion is planar, then ek will lie in a plane

parallel to the motion of the body. For general three dimensional

motion, the derivative of ek will indicate the direction the ew- eT

plane is turning toward.



 

 



 

CHAPTER V

A EINEMATICALLY DEFINED JOINT CENTER

5-1 WWW

MAW—MAM

In Chapter 4, a center point for the instantaneous helical axis was

defined. The IHA center point can be defined as long as the angular

acceleration has a component perpendicular to the angular velocity. 'The

purpose of this chapter is to modify the instantaneous definition for a

discrete series of helical axes. The center point for each helical axis

can be defined in an instantaneous sense, if the angular velocity and

angular acceleration of a rigid body are known, and if the velocity and

acceleration of at least one point is known. However, two singularities

exist. The first singularity occurs when the angular acceleration

vector is parallel with the angular velocity vector: there is no unique

center point on the IHA. .The second singularity occurs if the angular

velocity vector is zero. Both of these singularities have theoretical

solutions that can be defined in the instantaneous sense, but due to the

need for higher order derivatives, and the errors associated with

numerical differentiation of discrete data, the solutions to these

singularities will be expressed in a discrete sense.

The center point of an instantaneous helical axis can be

approximated using two consecutive instantaneous helical axes. Figure

5.1 shows two consecutive helical axes, one at time t-i, the other at

time t-i+l, where i and i+l are a separated by a finite amount of time.

The center point of the helical axes at time t-i is simply the point on

h
the it helical axis that is closest to the helical axis i+1. As long

as the two helical axes are not parallel, a unique point exists on the

ith axis that is closest to the i+l axis.
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Figure 5.1

Two consecutive instantaneous helical axes

separated by a finite amount of time.

If the position of each helical axis is known, the center point of

helical axis 1 can be found. The next two sections consider the two

singularities for which the center point cannot be defined.

513W

If the angular acceleration of a rigid body is parallel to the

angular velocity, or if the angular acceleration is zero, then no unique

center point can be defined for the instantaneous helical axis.

Consider the infinitesimally separated helical axes shown in Figure 5.2.

The first axis is at time t-i, the last axis is at t-i+2. The time

between each of the successive IHA's is infinitesimally small. The
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“’ 1+2

is ”1‘1

.,

ci+1

C t: ”1 

Figure 5.2

Two consecutive parallel instantaneous helical axes

followed by a third, non-parallel instantaneous helical axis.

first two axes are parallel, the third axis is not parallel to the other

two.

The angular acceleration is parallel to the angular velocity for

helical axis 1 (or the angular acceleration may be zero). The second

derivative of the angular velocity must have a component that is

perpendicular to the angular velocity, otherwise the third IHA would be

parallel to the first two IHA's. Although a center point as defined in

chapter four cannot be defined here, a higher order center point can be

defined using the second derivative of u since it has a component

perpendicular to 0. Since a and u are parallel, the velocity and the

acceleration of all points on the ith IHA are the same, but the

derivative of the acceleration (sometimes called the super acceleration,
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or jerk) is not the same for all points on the IHA; thus a unique point

can be found where the super acceleration is a minimum. This point can

be used to define a higher order center point on the IHA.

This argument can be extended to any number of derivatives of the

angular velocity vector, until one is found that has a component

perpendicular to o. This definition allows a center point to be defined

for any series of parallel helical axes, followed by at least one

helical axis that is not parallel to the others. This definition is

also "forward looking", that is, only subsequent events affect the

current definition of the center point; past events have no effect.

A discrete version of this argument can be defined given any number

of discretely defined helical axes. If the helical axes in Figure 5.2

.were discretely separated rather than infinitesimally separated then the

center point of the ith axis can be defined as the point on axis i that

is closest to axis 1+2. This is the discrete version of using higher

order derivatives to define the center point.

anW

When the angular velocity is zero the IHA cannot be defined.

However, if the angular acceleration is non-zero when the angular

velocity is zero, L’Hopital's rule can be used to define the position of

the IHA. Consider the equation for defining the shortest vector from a

point to the helical axis:

a X v

5.1 DP - —P
0'”

where v? is the velocity of point P and DP is the shortest

(perpendicular) vector from point P to the IHA. Let the angular

velocity be zero at the time t-t then in the limit, equation 5.1 is1;

zero over zero. Applying L’Hopital's rule to the numerator and

denominator:
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a X v: + a X :2

5-2 lim 1) - lim 2m”

tmti t-tti

If v? is zero, or if a and v? are parallel, the above equation is still

zero over zero, thus L'Hopital's rule can be applied again:

& X v + a X + a X + a X .

5.3 lim 1) - lim 1 P 2;“. 3’2“." a? 8”]

t-ot:1 t:-~t:1 |_

If v? is zero, or if m and VP are parallel, then equation 5.3 reduces

_/

to:

a X 8?

 
5.4 lim D -

tvti

Thus, in the limit, if the angular velocity is zero only

instantaneously, the IHA can still 62 defined in terms of the

acceleration and angular acceleration. The direction of the IHA axis is

simply the direction of the angular acceleration vector. The above

definition can be called the instantaneous axis of acceleration (IAA),

that is, it is the axis of minimum acceleration. Such an axis can only

be defined if the angular velocity is zero, and therefore this axis can

only exist for the brief instant when a is zero.

By defining the helical axis in terms of the angular acceleration,

the definition of the center point must be shifted up one derivative

higher, as discussed in the previous section. That is, a point of

minimal super acceleration must be found on the IAA/ As with the center

point, this point can only be defined if the super angular acceleration

has a component perpendicular to the angular acceleration. However, by

analyzing the center point of each IHA using the discrete definition

given in section 5.1, it is only necessary to define the line of the

IHA; the center point of that line can then be found using the discrete

definitions given in section 5.1 and 5.1a.

A second approach to this problem is to simply interpolate the

center point across a region where u is small. That is, given that the
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angular velocity is small (approximately equal to the error in locating

the angular velocity vector), and therefore the error in determining the

helical axis is large, a more straightforward solution would be to

simply assume that the center point of motion is a smooth and continuous

function. Thus, given the path of the center point before and after an

interval of small angular velocity, the path of the center point can be

estimated using standard interpolation techniques.

 

t ven a es 0 D e He

Given a series of discrete instantaneous helical axes that

represent the continuous motion of a rigid body, this section will

define an algorithm for defining the center point for each IHA. In the

preceding sections, suggestions were made for defining the helical axis

center point given discrete helical axes. Any algorithm for defining

the center point must consider the special case of lines that are nearly

parallel, and the case when the angular velocity vector is approximately

equal to the error in determining the angular velocity. Define the

following:

“min is the smallest allowable angular velocityJ

0min is the smallest allowable angle between adjacent IHA’s.

Angular velocities below wmin are considered to be highly influenced by

the error in determining the angular velocity; thus the center point for

these IHA's will not be determined directly, but will be determined by

interpolation. The angle 0min assumes that two lines that have an angle

between them that is less than or equal to 0min can be considered to be

parallel lines. The following algorithm provides the simplest means of

defining the center point of each instantaneous helical axis:

Define a subroutine CP(e.,R ,e ,R.,R. ) where:

1 i j j 1c



 

 



 

e is

1

R1 is

e is

J

R3 is

Ric
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a unit vector on line i

a point on line i

a unit vector on line j

a point on line j

Define:

is the point on line i that is closest to line j

if - the last time frame in the data set.

The input to the subroutine CP is (e1,Ri,ej,Rj); the output is the

vector Ric’ the point on line i that is closest to line j. The

algorithm is as follows:

1)

2)

3)

4)

5)

i-O

i-i+1

j-i

J-j+1

If (mi < wmin) Ric - undefined, goto 2 J

If ((01 < omin) goto 3

Steps 1 through 4

If eio eJ < cos(0min) goto 3 find a center point

for axis 1, if axis 1

call CP(ui,Ri,u3,R3,Ri;) ‘ can be accurately

defined.

If (i< if) goto 2

If (R1c - undefined) Then

find the first time frame, k,

If (i - l) --> where ch is defined. Set all

prior values of Ric - ch

If (1 > 1 AND R1c is defined) Then

Find the time frame before and after frame i

where the center points are defined, that is, find
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Ric and ch (2 < i < k)

Then linearly interpolate between the two known

center points to define the center points for the

time frames 2 < i < k

If (i > 1 AND Rfc is not defined) Then

If the center points could not be defined for lines

i through f then define the center point so that

R Ric where Ric is the last defined center point.
ic -

End of Algorithm

The above algorithm allows a center point to be defined for each

instant in time as long as at least one line in the data set is not

parallel to the other lines. The advantage of this algorithm is that it

smooths the center point for lines that are approximately parallel and

for lines where the angular velocity is small. This algorithm assumes

that the center point moves in a linear fashion. If lines are

approximately parallel, then the center point can be defined by the

first line with a sufficiently large difference in its orientation and

an angular velocity larger than a specified minimum. This algorithm

will be tested on numerically simulated data and on human ankle joint

data.

The above algorithm is "forward looking", that is, except when

forced to interpolate, and except when the lines are parallel at the end

of a data set, the past history of the motion of a body is not used to

influence the calculation of the center point position. In the next

section a "best fit" solution for the center point will be described.
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It has been shown that the center point of the instantaneous screw

axis is the point of minimum acceleration of all the points on the line

of the screw axis. In order to determine the center point, the

acceleration and angular acceleration of the body must be known.

However, since the data collected is discrete, it is possible to use two

consecutive screw axes and find the point on the screw axis at time 1

that is closest to the screw axis at time 2. The velocity equations can

be written in an overdetermined manner, providing a new approach to

solving for the center point between two helical axes, or for an entire

motion.

The velocity of a point in space can be expressed relative to a

point on the screw axis, as shown below:

5'5 "‘k"'k"ik"sk

where V1 is the velocity of the point i, vs is the velocity of the point

i that is parallel to the screw axis, R is the vector from the point i

to any point on the screw axis (hence the negative sign at the begining

of equation 5.5), and k is the time t-k. Let the point i be a point

that is instantaneously at the origin of the coordinate system, then R

is a vector from the origin of the coordinate system to the screw axis.

Then, at time t-k+l, equation 22 becomes:

5 '6 '”k+1x I"k+1 ' vol<+l ' vsk+l

Equations 5.5 and 5.6 can be used to find the point in space that has

the minimal velocity for both time k and time k+1 by writing the

equations in an overdetermined sense and solving for R as shown below.
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5 . - .. -

7 9k R vok vsk

Ek+1 vok+1 ' vsk+1

where vb is the velocity of a point at the origin for time k and time

k+1.

The solution to this overdetermined set of equations yields R that

has the minimum velocity in a least squares sense for the two time

frames. This point will lie on the shortest perpendicular line segment

between the two screw axes. If the screw axes intersect at a point,

then R will be the point of intersection. If the two lines are

parallel, then R will be the shortest vector from the origin that

satisfies the above equation.

The significance of the above equation is that it can be used to

find the point of minimum velocity for the entire event of interest, as

shown below.

5.8 -[9] R - [Vo - VS]

‘31

where [ 9 ] - 92

u
-n

and

vo1 - vsl

- v
[V _ V ] _ 02 52

o s

v - v
on sn

Equation 5.8 finds the point of minimum velocity (in the least

squares sense), for the entire event. In the case of a body fixed at
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°r“! point, this method would provide a good numerical approach for

firuiing the point the body is rotating about. The hip is often modeled

as being fixed at one point, and (Lundberg et al, 1989) suggested that

the ankle joint may also be accurately modeled as rotating about a fixed

point. A variation of equation 5.8 is to weight the equation with the

magnitude of the angular velocity. This would minimize the effect of

"outlying" screw axes due to a small angular velocity magnifying the

error.

Equation 5.8 can be modified further to determine the path of

minimum velocity for the event. Let the center point be modeled as a

linear function of time:

n

5.9 C(t) - k§1 Ak Fk(t)

where A.k is a (3x1) vector and Fk(t) is any function of time, t. Thus

equation 5.9 becomes:

5.10 - 91F1(0) 91F2(0) --- 91Fm(0) A1

92F1(h) 92F2(h) "' 92Fm(h) A2

A393F1(2h) 93F (2h) --- Q3Fm(2h)

QnFl(nh) ghF2(nh) ... gth(nh) A'm

where h is the time increment of data collection (assumed to start at

time t-O). Equation 5.10 reduces to equation 5.8 if F1(t) - l and all

other Fk(t)-0, in which case A1 - R. The above equation acts as a

filter for the path of the center point. This equation can be modified

by weighting both sides with the magnitude of the angular velocity, thus

reducing the effect of "outlying" screw axes caused by error

magnification for small angular velocities. If a polynomial is used for

Fk(t) then:
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91 0 0 ... 91Fm(0) A1

‘32 92“ 92h2 ' ' ' 92%“) A2

5.11 - 93 9321: «33(211)2 93(2h)“'1 A3 - [vo- vs]

2 m-l

_ _n gnnh 9n(nh) 9n(nh) ‘ _Am _    
where the polynomial is of degree m. Equation 5.11 fits a polynomial to

the path where the velocity of the points on the path is minimal for the

entire event. This path is equivalent to a least squares fit path of

the center points for each IHA. Thus equations 5.10 and 5.11 act as

filters to the center point path. It must be noted that the solutions

to the above two equations are "best fit" for the entire event, that is,

past time frames affect the solution for future time frames and vice-

versa. The advantage of this result is that measurement error can be

smoothed. The disadvantage is that the results may be over-smoothed.



 

 
 



 

CHAPTER VI

APPLICATION TO THE ANKLE JOINT

6-1W

The purpose of this section is to apply the theory developed in this

thesis to kinematically define the ankle joint center. Ankle joint

kinematic data was collected at the Biomechanics Evaluation Laboratory

(BEL) at St. Lawrence Hospital, Lansing, MI. Using state of the art

video technology, it is possible to track the position of a target in

three dimensional space. Thus, with the use of a force platform, both

kinetic and kinematic data can be recorded for the lower limb,/

Four NEC cameras were used to track the position of targets placed

on the foot and shank of two male subjects. The four cameras operate at

60 Hz with a shutter speed of 1/1000 seconds. The camera shutters are

synchronized so that an image of the object is simultaneously recorded

by each camera pixel screen, assuring that there is no time lapse

between the images on each camera. Given the target position from two

camera pixel screens, the three dimensional position of the target can

be reconstructed if the camera positions are known in space. The camera

positions are determined using a calibration structure targeted so that

the target positions on the structure are known to a high degree of

accuracy. Using a direct linear transformation (DLT) the camera

positions can be defined relative to the known target positions of the

calibration structure.

The procedure to calibrate a space is as follows: the cameras are

positioned according to the protocol of the study; once the cameras are

positioned, the calibration structure is placed in the center of the

space of interest. The video image of each camera must "see" each

target on the structure. Thus, by knowing the position of the targets

52
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°r| the calibration structure relative to a coordinate system on the

calibration structure, it is possible to reconstruct the three

dimensional position of each camera relative to the calibration

coordinate system. A minimum of six calibration targets are needed in

order to reconstruct the position of each camera. The calibration

structure used for this experiment had sixteen targets, allowing the

equations to be written in an overdetermined sense, thus increasing the

accuracy of the calibration.

The video system is able to "see" a target, as long as the target

has a retroreflective surface,’ A light source is placed near the camera

lens so that the retroreflective surface of targets in front of the lens

reflect a bright image onto the pixel screen within each video camera.

Since the target image is very bright, the threshold of the video system

can be adjusted so that background images are removed and only the

target images remain. The video image of on-off pixels can then be

imported to a computer (SUN 4/26OC work station). The center of each

target is approximated by finding the centroid of the pixel image. Once

the centroid of the pixel image is found for each target, the three

dimensional position of every target can be determined using a direct

linear transformation (as long as each target has been viewed by at

least two video cameras).

The kinetic data for this experiment was measured by an AMTI force

platform. The voltage output of the force platform was imported to the

SUN computer via an analog to digital device. The force plate input and

the video input were monitored so that forces measured by the force

plate, that were above a given threshold, triggered an event marker on

the video files, thus allowing the video and force platform data to be

synchronized.
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camera 1 camera 2 z
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amera 3 camera 4

C Tap View side View

Figure 6.1

Camera set up, calibration space and force plate location

The camera set-up, the calibration space volume and the force plate

location for this experiment are shown in Figure 6.1. The calibration

structure was positioned so that the force platform origin was at the

center of the calibration space. The calibration coordinate system

origin was aligned with the force platform coordinate system origin so

that the position of the force plate relative to the calibration

coordinate system was known. The cameras were set-up to allow tracking

of targets placed on the foot and the shank.

The targets were attached to the right lower limb of the subjects

using hypoallergenic tape. The foot targets were placed on the

posterior inferior aspect of the shoe over the calcaneous; the posterior

medial aspect of the shoe below the medial condyle; and the posterior





 

latBl‘tal aspect of the shoe below the lateral condyle. The shank targets

were placed on the proximal shank, below the quadriceps tendon

insertion; the distal shank; and the posterior shank on the tendon of

the gastrochnemius, below the belly of the muscle. The target

attachments are shown in Figure 6.2.

From the three targets on the foot the position of the anatomical

center of the ankle joint can be estimated. The anatomical center of

the ankle was estimated to lie anterior and superior to the midpoint of

N

01

?
\

0

“
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.
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-natom cal center

of the ankle join

Figure 6.2

Target placement on the shank and foot for each subject
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the vector 5 (from targets E and F of the foot, as shown in Figure

6.2). A foot coordinate system (xf,yf,zf) was defined using the

direction of vector EF as the yf direction; the cross product of

A

DE and DF as the zf direction and the cross of yf and 2f for the xf

direction. The ankle anatomical center was then defined as:

6.1 Ac — fi+§F/2+hxf+ vzf

Where h and v are the horizontal and vertical distances from the center

point of vector EF to the anatomical center of the ankle joint (see

Figure 6.2). This definition is similar to that used by Verstraete

(1988).J The location of this anatomical joint center was compared to

the locations of the kinematically defined ankle joint centers.

The results from three trials from two male runners were

investigated. The results in the following section are defined relative

to the right shank coordinate system, which is defined as shown in

Figure 6.2. The 2 axis is parallel to the long axis of the shank, the y

axis points medially and the x axis points in the posterior to anterior

direction. The shank coordinate system is located on the distal shank

target, as shown in Figure 6.2.

The next section provides a brief review of ankle joint

biomechanics. The following sections investigate the angular velocity,

the direction of the angular velocity vector, the location of the

helical axis, the location of the center point of the helical axis, the

location of the point of minimum velocity and the path of minimum

velocity for the ankle joint of each subject.
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6.2W

In much of the biomechanical literature, the ankle joint is modeled

as a simple hinge joint between the shank and foot. Unfortunately, the

ankle is far more complex than this simple model.

The ankle joint consists of five bones: the tibia, fibula, talus,

calcaneous, and the navicular. There are two major joints: the

talocrural joint, also called the upper ankle joint (the joint between

the talus and the tibia and fibula) and the talocalcaneonavicular joint,

also called the lower ankle joint (the joint between the talus, the

calcaneous and the navicular bones). Figure 6.3 shows the bones and

joints that define the ankle joint.

There has been extensive research into the biomechanics of the ankle

joint. Barnett and Napier (1952) and Hicks (1953) found that the talo-

crural joint has a different axis of rotation for dorsiflexion and

plantarflexion. They found that for dorsiflexion the axis lies on a

line that begins on the medial side of the ankle and proximal to the

ankle down to a more distal point on the lateral side of the joint. On

plantarflexion the axis was on a line that begins on the medial side but

distal to the malleoli, and moves toward a point on the lateral side

that is more proximal. Other researchers have investigated the axes of

rotation of the ankle joint for motions other than dorsi-plantar

flexion. Close (1956) described rotation about the vertical axis during

walking. McCullough and Burge (1980) and Van Langelaan (1983) described

the axes of rotation of the ankle joint for several different ankle

motions. In general, the talc-crural joint allows rotation in all

directions (Van Langelaan, 1983, Lundberg, et a1 , 1989) and behaves

more like a ball and socket joint than the hinge joint many try to model

it after.



 



 
Right Foot Right Foot

  

Medial View D Lateral View

Joints Makin u the Ankle Joint Bones of the Ankle Joint

A Talocrural (talus, tibia, fibula) 1. Tibia

B. Subtalar (talus and calcaneus) 2. Fibula

C Talocalcaneonavicular (talus. 3. Talus

calcaneous and navicular) 4. Calcaneus

D Calcaneocuboid (calcaneus and 5. Navicular

cuboid) 6. Cuboid

Figure 6.3

Bones and joints that define the ankle.

6.3W

All data presented in this section and the following sections are

presented relative to the shank coordinate system. Table 6.1 shows the

lengths and standard deviations of the lengths of the vectors between

each of the foot targets (vectors DE, BF, and EF, using the target names

shown in Figure 6.2) for both subjects and each trial. The data listed

in the table are after smoothing and after being transformed into the

shank coordinate system. This table provides an approximate estimate
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for the variation in the length between relative targets due to skin

motion and errors in the measurement of the target positions. The data

listed in Table 6.1 are for stance phase only. The largest standard

deviation for the foot data is 0.249 cm; the smallest standard deviation

is 0.046 cm. Most of the vector lengths vary between 0.1 cm and 0.2 cm.

Nine of the twenty-seven vector lengths have standard deviations less.

than 0.110 cm.

Figures 6.4 and 6.5 show the angular velocity vector of the foot

relative to the shank, for both subjects. The angular velocity vectors

show consistent inter- and intra-subject patterns. Rotation about the

shank coordinate system y axis is the dorsi/plantar flexion axis, as

shown in Figure 6.2, with plantar flexion being positive (using the

right hand rule). Rotation about the x axis is inversion-eversion of

the foot with inversion being positive; and rotation about the z axis is

medial and lateral rotation of the foot with medial rotation being

positive.

Soutas-Little, et al (1987) applied an Euler angle approach to

describe ankle joint position, angular velocity and acceleration.

Although the Euler angle axes are not orthogonal, it is still possible

to compare the results shown in Figures 6.4 and 6.5 to the angular

velocity results found using Euler angles. The angular velocities

reported here agree with the findings of Soutas-Little and co-workers.

At heel strike the foot is dorsiflexing, everting and laterally

rotating. By midstance the angular velocity vector is near zero;

between midstance and toe off the foot is plantar flexing, inverting and

medially rotating.
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Table 6.1

 

Length and standard deviation of vectors between targets of

the foot in the shank coordinate system, during agance phase.

Subject

&

 

5E

(cm) (cm) (cm) (cm)

t dev th td ev

8.068 0.162 8.394 0.058

8.132 0.178 8.672 0.092

8.196 0.193 8.788 0.190

8.235 0.177 8.726 0.138

8.251 0.122 8.746 0.119

8.229 0.149 8.677 0.140

Foot: 'l'arvetg

TIME IN SECONDS

Figure 6.4a

(cm)

en b

9.961

9.957

10.027

10.288

10.131

10.190

X axis (inversion(+)/eversion(-)).

(cm)

std dev

0.102

0.105

0.109

0.249

0.206

0.068
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Figure 6.4c

Z axis (medial(+)/lateral(-) rot ).

Angular velocity of the ankle joint for Subject A
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Figure 6.5c

Z axis (medial(+)/lateral(-) rot.).

Angular velocity of the ankle joint for subject B

6.4 e a s at on

The helical axis location can be expressed in a number of ways. One

means is to show the points of intersection of the axes with a given

plane. However, the axes of the ankle joint vary to such a degree that

there is difficulty defining a meaningful anatomical plane such that

none of the axes lie parallel to the plane. If any of the axes of

interest lie parallel or nearly parallel to the plane, the points of

intersection with that plane can be largely dispersed.

An alternative means of expressing the position of the helical axes

closest to all the helical axes

 

is to find the point in space that is
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and plot the shortest (perpendicular) vector from this point to each

helical axis. The point in space closest to all the helical axes was

called the helical axes centroid (HAC). If all the axes cross near a

point, the (shortest) vector from this point (the HAC) to each axis will

provide a concise description of the dispersion of the helical axes.

In this investigation the helical axes centroid (HAC) was found for

the stance phase for each trial of both subjects. The shortest vector

from the HAC to each IHA was then determined. These vectors provide a

means by which the variation in the helical axis positions can be

measured. If the vector from the HAC to each helical axes has a very

 

small magnitude, then the motion in question is most likely motion about

a fixed point. Figure 6.6 shows the shortest vector from the HAC to

each IHA for subject A, trial 3.

In Chapter 5 it was found that the IHA can be determined using the

acceleration of a point and the angular acceleration of the body, if the

angular velocity vector has zero magnitude. When this occurs, the axis

is called the instantaneous axis of acceleration (IAA). The IAA can

only be defined if w is zero; however, in this chapter, that definition

is modified and is used to locate the IHA when w is small. Since the

IAA definition assumes that the angular acceleration is large when the

angular velocity is small, a definition of "small" angular velocity is

necessary. From equation 5.4, if luj is zero, then the shortest vector

from a point D to point P on the IAA is:

6.2 HIS-2:0

If the angular velocity is non-zero, then the acceleration of point D

with respect to point P is:

6.3 aD-aP-aXD—P- uX(uXDP)
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where a? must be parallel to a by the definition of equation 6.1. Thus

the error in UP due to a non-zero angular velocity, is:

'2 2
__ IUI _ Ifll

6.5 |DP| - |DP| + m |DP| - |DP|(1 + )

Therefore, if wz/a is small, equation 6.2 can be used to define the IHA.

Figure 6.6 shows the shortest vector from the HAC to each helical

axis for subject A, trial 3, comparing the results obtained from the

standard definition for calculating the IHA position (equation 3.19) to

the results obtained if the IAA (equation 6.2) is substituted for the

IHA for wz/ a s 0.06. A clear improvement is obtained in the

continuity of the position of the helical axes if the IAA is used to

determine the IHA for small angular velocities.
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The shortest vector from the HAC to each helical axis (X direction)

comparing the IHA to the IHA/IAA for subect A, trial 3.
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Figure 6.6b

The shortest vector from the HAC to each helical axis (Y direction)

comparing the IHA to the IHA/IAA for subject A, trial 3.

 

Figure 6.6c

The shortest vector from the HAC to each helical axis (Z direction)

comparing the IHA to the IHA/IAA for subject A, trial 3.
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Figures 6.7 through 6.12 show the helical axes of the foot relative

to the shank coordinate system origin. The IAA is substituted for the

IHA for small wz/ a. The helical axes are projected onto the X-Z

(sagittal) plane and the Y-Z (frontal) plane. The projection of the

helical axes begins at the point on each IHA that is closest to the

helical axes centroid (HAC). The direction of the angular velocity

vector is indicated by the arrow on each projection. The IHA labeled

"1" in each of the Figures 6.7 - 6.12 describes the motion of the foot

relative to the shank at heel contact. Midstance occurs at IHA 6 for

subject A and at IHA 7 for subject B. Toe off occurs at IHA 12 for

subject A and IHA 13 for subject B.

A foot and shank have been drawn in to aid in visualizing the

positions of the helical axes. The black rectangle in each of Figures

6.7 - 6.12 shows the location of the anatomically defined center of the

ankle (from equation 6.1).

In the X-Z (sagittal) plane, the axes are all nearly parallel to one

another. The slope of the axes indicates that the rate of

medial/lateral rotation and the rate of inversion/aversion are

approximately equal for most of the stance phase of running.

In the Y-Z (frontal) plane, the axes describe almost a complete

circle. The pattern of the helical axes appears to have three stages,

corresponding to heel contact, midstance, and toe off. At heel contact

the dominant axial direction is that of lateral rotation and eversion.

From heel contact to midstance (IHA 1-6 or 1-7 for subject A and IHA 1-7

or 1-8 for subject B) the direction of the axes change so that the

dominant axis of rotation is increasingly about the dorsiflexion axis;

with the foot dorsiflexing until midstance. At midstance there is a

sudden change in the direction of the axes as the foot motion switches

from dorsiflexion to plantar flexion. At midstance the helical axes are
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suuflx that medial rotation and inversion are the dominant rotations,

since the dorsi- plantar-flexion angular velocity is zero, or near zero,

at midstance. From midstance to toe off the direction of the axes

changes until they are nearly parallel with the plantarflexion (+Y)

axis. It is obvious from Figures 6.7 through 6.12 that a planar model

for ankle motion is inadequate as a description of the kinematics of the

ankle during running.

The axodes for subject A all cross near a single point (the HAC) in

the ankle joint. The HAC lies posterior to the Z axis of the shank and

slightly medial to the midline of the tibia. Table 6.2 lists the

location of the helical axes centroid (HAG) for each trial of both

subjects (relative to the origin of the shank coordinate system). The

HAC's listed in Table 6.3 all substitute the IAA for the IHA for small

wZ/a (typically < 0.10). There is relatively high intra-subject

consistency for the location of the HAC. Subject B has a greater

dispersion of the helical axes compared to subject A. In addition, the

location of the HAC differs slightly for subject B; it is closer to the

midline of the tibia, except for trial 3, where it is slightly medial to

the tibial midline. For most of the trials, the helical axes lie within

a sphere with a 1.5 cm radius from the HAC. Many of the helical axes

lie within a sphere of 1 cm radius.

Several researchers have investigated the finite helical axes of the

ankle joint (Hicks. 1953; Close, 1956; Lundberg, et a1, 1989; Van

Langelaan, 1983). However, it is not possible to use this literature to

compare the findings of this thesis. Besides the differences between

the finite helical axis and the instantatneous helical axis, the joint

loading and kinematics differ substantially between the above studies

and this study.
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(or IAA where appropriate) for subject A trial 2.
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lauadberg, et a1 (1989) found that the in vivo finite helical axes

for several ankle motions all crossed near a single point in the talus;

however, they did not describe tibial-calcaneal motion. The motion they

investigated was strictly talocrural while the results in this thesis

are essentially tibial-calcaneal. The motion between the talus and

calcaneus is not negligible (Van Langelaan, 1983); thus the relative

motion between the tibia and the calcaneus would be expected to be

different from talocrural motion. However, both this study and the

studies by Lundberg, et a1 (1989) and Van Langelaan (1983) agree on the

non-planar nature of the axes of rotation of the ankle joint.

6.5 He cal Axes Cente o t at

In this section the center point is reported for each helical axis

using the methods proposed in Chapter 5. The minimum velocity center

(MVC) will be reported first, followed by the path of minimum velocity.

The center point of each helical axis (defined by the algorithm in

Chapter 5) will then be reported and compared to the path of minimum

velocity.

Table 6.3 lists the minimum velocity center (MVC) for both subjects,

relative to the origin of the shank coordinate system. The point of

minimum velocity is, by definition, very similar to the helical axes

centroid; the two points differ due to the weight factor of the angular

velocity in the case of the point of minimum velocity. Therefore it

comes as no suprise that the two points are nearly equal.

Figures 6.13 through 6.18 show the least squares best-fit linear

path of minimum velocity for each trial for both subjects. The location

of the anatomically defined center of the ankle (equation 6.1) is

also shown, to provide a comparison. In general the path of minimum
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Table 6.2

 

Helical axes centroid (HAC) for each subject and trial

(the point in space that is closest to all the helical axes).

 

 

Squect HACx HACy HACz

Tna1 (cm) (cm) (cm)

A 1 -1.845 2.627 -13.693

A 2 -1.852 2.042 -13 730

A 3 -1 637 2.514 -13.780

B 1 -1.314 0.779 -16.798

B 2 -2.594 -0.353 -17 878

B 3 -1 181 2.174 -17.855

Table 6.3

Minimum velocity center (MVC) for both subjects.

Subject MVC MVC MVCz

Trial (cm) (cm) (cm)

A 1 -1.860 2.749 -13.590

A 2 -2.h77 1.832 -14.012

A 3 -2.331 1.561 -14.372

B 1 -2.497 0.319 -17.916

B 2 -2.805 -0.322 -18.405

B 3 -1.h8l 2.252 -17.985
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Path of minimum velocity for subject A trial 2.
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Figure 6 . l6

Path of minimum velocity for subject B trial 1.
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Figure 6.18

Path of minimum velocity for subject B trial 3.
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Figure 6.20

Helical axis center point for subject A trial 2.
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Figure 6.22

Helical axis center point for subject B trial 1.
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Figure 6.24

Helical axis center point for subject B trial 3.
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velocity travels from a superior medial position at heel strike to an

i“ferior lateral and posterior position at tee off, although there are

variations on this pattern for both subjects. ;

Figures 6.19 through 6.24 show the center point of each

instantaneous helical axis, where the center point was defined using the

algorithm in Chapter 5. The location of the anatomical center of the

joint is also shown in Figures 6.19 - 6.24.

The algorithm requires that a minimum angle (6min) and a minimum

angular velocity magnitude (”min) be defined. Since the position and

orientation of the IHA's for small angular velocities were replaced with

the IAA, the minimum angular velocity magnitude used in the algorithm

was wmin - 0. Several angles were used for 9min (ranging from 5° to

30°). It was found that the most stable results were obtained for large

angles. For Figures 6.19 through 6.24 the minimum angle used was 30°.

Although this is a large angle, the results follow the same general

trend as the linear model for the linear minimum velocity path.

For subject A, the center point is posterior to the origin of the

shank coordinate system at heel strike. The center point translates

anteriorly until midstance; then translates posteriorly until toe-off.

In the y and 2 directions the center point remains almost constant. For

subject B the center point begins slightly anterior to the z axis or

right on the z axis, then moves posterior a short distance, then

anterior, to lie on the z axis at mid stance; then translating

posteriorly again until toe off. In the y diretion, the center point is

constant near the midline of the tibia for trials 1 and 2 and slightly

medial to the tibia for trial 3. In the z direction, the center point

goes from superior to inferior for the first two trials; for the third

trial, the center point translates inferiorly until midstance, then

moves to a position superior to the position it held at heel strike.





 

84

 

The center points calculated in Section 6.5 were used as the

point(s) for the summation of the moments acting at the ankle. For the

purposes of this dissertation, the inertial properties of the feet will

be considered negligible. Verstraete (1988) reported that the inertial

effects of the foot were small compared to the forces and moments acting

at the ankle joint.

The center of pressure of the forces measured by the force plate

was calculated as the point on the force plate where the wrench pierces

the force plate surface. The center of pressure, the force and the

colinear moment were then transformed to the shank coordinate system.

The moments acting about a point defined relative to the shank

coordinate system could then be determined.

In this section the ankle joint muscle moment will first be

calculated about an anatomically defined center point. From the three

targets on the foot the position of the anatomical center of the ankle

joint can be estimated. The anatomical center of the ankle was

estimated to lie anterior and superior to the midpoint of the vector BF

(see equation 6.1 and Figure 6.2).

The moments acting at the anatomical center point were calculated

and compared to the moments acting about the minimum velocity center.

The moments about the points on the path of minimum velocity, and the

center points for each IHA were also calculated and compared to the

moments at the anatomical center of the joint.

Figures 6.25 and 6.26 show the moments about the anatomical center

of the ankle joint, as well as the moments about the point of minimal

foot-shank velocity, the path of minimal velocity (linear model) and the

center point for each IHA. The moments shown are for trial 1 for both
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subJGCts. The results for the other two trials were similar to the

reSults shown in these two figures.

The minimal velocity center for subject A was significantly more

medial than the ankle anatomical center point; thus the inversion moment

(x axis) shows a substantial difference in the magnitudes between the

moments calculated using the anatomical center and the kinematic

definititions for the center point. For subject B, the kinematic

definitions for the center point of the joint are very close to the

anatomically defined center; thus the differences in the resultant

moments are much smaller.

The moments about the y axis (dorsi/plantar flexion axis) show

little difference between the four joint center definitions for subject

A. For subject B, there is a dorsiflexion moment at heel strike if the

moments are summed about the path of minimal velocity, or if the IHA

center points are used to sum the moments. This dorsiflexion moment

does not occur for subject A. In addition, for subject B, the magnitude

of the moment about the y axis is slightly smaller if the linear model

or the IHA center point are used for summing the moments.

The moments about the z axis (medial/lateral rotation) show a marked

difference between the kinematic joint center definitions and the

anatomical center definition for subject A. The 2 axis moment about the

anatomical joint center is near zero until midstance, after which the

moment is that of lateral rotation. For the three kinematic

definitions, the moment is significantly larger and in the opposite

direction (medial rotation) throughout the entire stance phase. For

subject B the z axis moment about the kinematically defined center

points differs most significantly between heel contact and midstance.

Although the overall pattern of a medial rotation moment followed by a
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Ankle muscle moment for Subject A trial 1 using

all 4 ankle center definitions.
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Ankle muscle moment for subject B, trial 1 using

all 4 ankle center definitions.
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Total work, sagittal plane work and colinear

force work for the ankle (subject A, trial 1).

lateral rotation moment after midstance is prevalent for all four of the

center point definitions, the magnitudes of these moments differ

substantially.

The ankle muscle moment for running has been reported only in the

sagittal plane (Winter, 1983), corresponding to the moment about the

shank y axis in this dissertation. However, the results in this thesis

indicate that a sagittal plane model would be inadequate, as the

magnitude of the muscle moment about the x axis is almost equal to that

of the moment about the y axis. Thus a three dimensional approach to

ankle joint analysis is essential to understanding both the kinematics

and kinetics of the ankle joint. In addition, the effective muscle
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“Knnern; changes substantially, depending on the point used for the

SUNMnation of the ankle moments.

The work done by the ankle muscle moment can be easily determined by

using equation 3.12 (where the quantity dt in equation 3.12 can be

approximated as: dt - At - l/60.0 seconds). The work done by the ankle

moment is shown in Figure 6.27 for subject A, trial 1. The work done by

subject B is similar to that of subject A. The work follows the same

general trend as reported for sagittal plane ankle motion (Winter,

1983). The work done by the force that is colinear to the instantaneous

helical axis was found to be small. The work done by this force for

subject A, trial 1 is shown in Figure 6.27 and is labeled "colin work".

The work done by this force has a significant magnitude only between

heel strike and midstance, where this force does positive work on the

foot.

Between heel strike and midstance, negative work is done by the

muscles acting across the ankle joint as these muscles undergo a

lengthening contraction. From midstance to tee off, the work done by

the ankle muscle moment was positive as the muscles shortened and

contracted to generate the forces needed to propel the body forward. In

Figure 6.27 the work done by the total moment is compared to the work

done by the sagittal plane moment (the dorsi- plantar-flexion moment).

The magnitude of the work done by the total three-dimensional moment is

moderately larger than the work done by considering only the sagittal

plane moment, by a factor of about 1.3. In the past, only sagittal

plane moments were investigated, however, in this dissertation it has

been shown that the moments about the inversion/eversion axis are

significant and cannot be considered negligable. Figure 6.27 shows that

the work done by the inversion/eversion moment is also significant,
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tx“*s. in the future, ankle joint muscle moment analysis must be analyzed

iJl threeidimensions, not just in the sagittal plane.

The point about which the three dimensional moments are computed can

significantly change the magnitude and the direction of the net muscle

moment acting at the ankle as shown if Figures 6.25 and 6.26. The

moments about the kinematic center of motion can be as much as double

the moments about the anatomical center, as shown in the first graph of

Figure 6.25. The net muscle moment must be calculated about the

kinematic center of motion.



 



 

CHAPTER VII

CONCLUSIONS

Humans do not repeat the very same motions every time they perform a

task. Thus it is unlikely that the center of motion at a joint will be

the same for each individual, or indeed, for the same individual at

different times. Hence a method is needed to define a point in space

about which a biological joint can be said to be rotating. Three

methods for defining a center for a biomechanical joint have been

defined and investigated in this thesis. All of the definitions are

based on the kinematics of the joint in question, and are independent of

the anatomical placement of targets.

The motions taking place about a biological joint can be concisely

expressed by the instantaneous helical axis (IHA). The IHA is the line

in space where the velocity of‘a rigid body, moving relative to another

body, is a minimum. At each instant in time the IHA moves to some other

position; thus the motion of the IHA generates a ruled surface in space.

A center point can be defined for each instantaneous helical axis, where

the center of a helical axis is the intersection of the first and second

order helical axes. The path of center points on a ruled surface is

called the line of striction. The line of striction for a ruled surface

that is generated by a moving IHA is also the path of minimal velocity

for the entire motion. The IHA center point is ideal for defining the

three-dimensional center of a joint since it is the pivot about which

the IHA is rotating.

Two approaches can be taken for solving for the IHA center point.

The first approach is to determine the center point for each IHA by

finding the point on an IHA that is closest to the next successive IHA.

This approach requires that modifications be made for the two cases when
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the IRA center point cannot be defined. The center point cannot be

defined if two consecutive IHA's are parallel; or, if the angular

velocity vector is zero.

The parallel helical axis problem was solved by considering

helical axes beyond the first successive IHA. The next successive

helical axis that has a component significantly non-parallel to the

one in question can be used to define a center point. This definition

allows a center point to be defined as long as the metion of the joint

is not planar. For most biological joints the motion is truly three

dimensional; very few biological joints can accurately be modeled as

being planar.

 

The very definition of the helical axis must be modified for small

angular velocities. With the use of L’Hopital’s rule, an alternative

definition for the IHA can be shown to exist for a zero angular velocity

vector. The position and direction of the IHA can be defined using the

acceleration of a point on the body and the angular acceleration of the

body. This modified definition for the IHA can be used to determine the

location of the IHA if u is small; where the "smallness" of omega is

defined such that w2/a << 1.

An algorithm was developed in Chapter 5 for defining the center

point, given the direction and position of a series of lines in space.

This algorithm was applied to the instantaneous helical axes of the

ankle joint. The helical axis center point, as defined by the above

algorithm, was found to be fairly consistent for both subjects.

The second approach to locating the helical axis center point is to

model the line of striction as a function of time, and determine the

best fit function to the line of striction. The path of center points

can be approximated by a polynomial function or by any function of time

that can be defined using equation 5.9. As long as equation 5.9, or
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5.10, are overdetermined, a least squares approach can be used to solve

the equation. The solution serves to smooth the center points of the .

IHA's. The joint center in most anatomical joints is thought to vary

with the load and kinematics acting on the joint. In this thesis, a

linear model was applied to describe the path of the center of ankle

joint motion. It was found that the ankle joint path of minimum

velocity was consistent for each of the subjects, with slight variation

between trials. It was also found that a linear model provides a close

approximation to the path traced by the center points.

One other definition for the joint center was considered. For

 

anatomical joints that can be modeled as motion about a fixed point, the

minimum velocity center point provides an excellent means for

determining the joint center. The hip joint, and some argue (Lundberg,

et a1, 1989) the ankle joint, can be modeled as fixed point rotation.

Thus the minimum velocity center may provide the best estimate for the

location of the fixed point. In this thesis, the point of minimum

velocity for the ankle was fairly consistent for each subject; but not

consistent enough to be able to claim that ankle joint motion is

centered about a single point.

The muscle moment about the ankle joint was determined for the above

three joint center definitions, as well as an anatomically defined

center for the ankle joint. The anatomical center of the joint was

determined relative to the targets attached to the foot. The moments

about the anatomical joint center were then compared to the moments

calculated about the three kinematic joint center definitions. It was

found that there were significant differences in both the magnitude and

the direction of the muscle moment, depending on the joint center

definition used. There was a high degree of consistency between the

muscle moments calculated about the three kinematic joint center
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definitions. The moments acting on the ankle were found to be

COnsiderably non-planar, with the moments about the x axis being almost

as large in magnitude as the moments about the y axis. Thus, both the

kinematics and the kinetics of the joint would be inadequately modeled

if a planar model were adopted for the ankle.

The work done at the ankle joint was also determined. It was found

that the work done by the three dimensional moments was moderately

larger than the work done when only the sagittal plane moment and

kinematics were used to determine the work.

The results of the above investigations indicate that the ankle

joint center defined by the kinematics varies between individuals as

well as within the same individual for different strides. Due to the

complex nature of anatomical joints, this variation is not surprising.

It was found that for the ankle joint, the minimum velocity center

provides a better approximation for describing ankle motion than a

simple anatomically defined joint center. The path of minimum velocity

and the path of the helical axes center points provide an even better

means of-determining the center of motion at a joint for any given

instant. The path of minimum velocity provides a means of smoothing the

IHA center point, and therefore may be a better means of determining the

IHA center than calculating the center directly. However, the least

squares approach usually over-smooths, and thus may mask some features

of the center point motion.

For joints such as the hip, the point of minimum velocity would

provide an ideal means of estimating the location of the hip joint.

However, for joints such as the ankle and the knee, where the motion is,

in general, not about a single point, the path of minimum velocity and

the helical axes center point path, as defined in Chapter 5, provide a

better means for determining the joint center.  
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Tanere are several areas for future work. The first is to

investigate several "normal" individuals to determine patterns of IHA

center point motion for several joints, including the ankle and knee.

Chao and An (1982) recommended a similar study be done, although their

recommendataion was on the center point defined by the point in space

closest to two finite helical axes as opposed to the infinitesimal

helical axes used in this thesis.

Another area for further work is to develop other means of modelling

the IHA center point path. The least squares method used in this thesis

provides a means of estimating the IHA center point path directly.

However, the least squares method tends to over-smooth. It would

therefore be benificial to investigate other means of estimating the IHA

center point path.

Another area of application of helical axis theory is that of using

invariants as a description of the motion taking place at a joint. The

first order invariants of motion (velocity) are the angular velocity

magnitude and the magnitude of the translational velocity along the IHA.

The second order invariants (acceleration) are the rotation and

translation of the IHA along the second order helical axis (see

equations 4.36 and 4.37). The advantage of using invariants such as

these in the description of motion, is that the description is

independent of any reference frame. Work along these lines may yield a

wealth of information in our understanding of human kinematics.

However, higher order derivatives are needed in order to apply these

methods. Therefore work needs to be done in the area of measuring and

differentiating position data more accurately; or other means must be

developed for measuring velocity and acceleration of points on a rigid

body.
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Axuother set of invariants can be used to describe rigid body motion

The invariants used to describe the shape of a ruled surface have been

applied to describing the motions of spatial mechanisms (Yang, et a1,

1975; Kirson and Yang, 1978). These researchers used the invariants of

the ruled surface generated by the moving IHA to describe the kinematics

of general spatial mechanisms. The same theory could also be used to

describe the motions taking place at an anatomical joint.
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APPENDIX I

ERROR ANALYSIS '

The purpose of this appendix is to determine the effect of the

propagation of the target position measurement error on the position of

the instantaneous helical axis and the location of the center point of

the IHA. Errors will be estimated for the velocity, angular velocity,

the position of the IHA and the position of the center point on the IRA,

given the error in the target position.

A1.1 Eslssi£1_£rrer_£atiea£isa

Since the data available for analysis is discrete data, the velocity

is calculated from position data using either finite differences or

fitting a function through the data and differentiating the function.

The error in a target position is:

Al.1 R - R + AR

where R is the true position of a target and R is the measured position

of the target. The velocity can be calculated using central finite

differences:

A1.2 v - % (n1+1 - Ri'1)f + order(l/f)2

where f is the frequency of data collection. Therefore, in terms of the

target position, including the error in target position, the velocity

is:
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5.1.3 v - 32L(n1+1 - n1'1)£ + 3503111” - Ani'ln + order(l/f)2

For f >>1 the term (l/f)2 can be considered small compared to the (AR)f

terms, thus the magnitude of the velocity error is:

i+l i-l
A1.4 |Av| - [Jinn - AR )|f s 12‘(|AR| + [AR|)f - ARf

where AR is the maximum measurement error for the collected data.

A1.2W;

The angular velocity of a rigid body can be calculated using the method

of Verstraete and Soutas-Little (1990), as discussed in section 3.5.

With this method, the least square angular velocity can be found if at

least three non-colinear targets are attached to'a rigid body and the

positions and velocities of these targets are known at any given time.

The vector between any two targets on a rigid body and the relative

velocity between any two targets are:

A1.5 Dij - Ri - Rj (i f j, i < j)

and

Al 6 vij - v1 - v3

The velocity vector vij must be perpendicular to the vector Dij due to

the rigid body assumption. The relative velocity, vij can be expressed

in terms of the angular velocity vector and the relative position

vector:

ij - u x Dij
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01':

A1.8 [Pljlu-vlj I

where [913] is a skew symmetric matrix. Equation A1.8 can be expanded

so that all the vectors Dij and vij are included. This is an

overdetermined set of equations, that can be solved in the least squares

sense:

Al.9 [p] u - [v]

T T T T T T
where [D] - [912... 91“ 923... PZn - Pn-1,n]

and [v] _ [v1 v; VI v1 VI 1T

12"' ln 23"' Zn "' n-1.n

where n is the number of targets on the body. The solution to the above

set of equations is:

A1.lO w - IIQITIQII‘IIPI Iv]

The error in a due to errors in [P] and [v] can be found with the aid of

the relationship (Stoer and Bulirsch, 1983):

A1.ll (I + If1 a II - P)

where I is the identity matrix and F is "small". Thus if D - D + AD

where D is the true vector between each target and AD is the error in

vector between each target, then:

A1.12 {[9 + A9]T[D + AQII'l - (~TD + _TA9 + A~TP + A_TA9I’1

- I_Tg + _TA9 + AyTpI '1

. l_T9[I + (-T9)'1<~TA9 + A9T9>II'1
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= II - <9T9>'1<9TA2 + A2T2>I<9T9r1

In equation Al.12 it is assumed that APTAQ a 0. Using the approximation

from Al.12 the error in the angular velocity vector can be estimated:

Al.13 u + A» - [I-(9T9)'1(EFA9 + Apr)](pr)‘1 [p + A9]T[v + Av]

so A0 is approximately equal to:

A114 Aw - <9T951<9Tm+<1f1331 <A2Tv> - <9T9)‘1I9TA9+A2T21<2T9>'1<9Tv)

The magnitude of the error (using the euclidean norm) is:

 

T T T T T T

Al.15 |Au| _<_ “21“”+ IAPVI . 12 “2| |va + IA!) 2| In vI

IPTPI IPTPI IPTPI

the term Av can be estimated by using equation (Al.4) (Av = AR f = AD f)

and the term AD can be estimated by finding the maximum error in D by

the standard deviation in the length of each Dij for the entire data

collection. In this manner, an estimate can be obtained for the

magnitude of the error in the angular velocity for each time frame.

The right hand side of equation Al 15 can be approximated as follows:

 

Al.16 DH f AD + ADM vM + 2ADvM _ AD[ _£_ + 3 v” I

2 2

”M ”H OH

where the subscript M denotes the maximum value of the vectors D and v,

AD is the maximum error in the matrix [9]. Equation Al.16 is meant only
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to provide an approximation of the maximum error in the angular

velocity.

Equations Al.15 and Al.16 reveal that the error in the angular

velocity is directly dependent on the accuracy of the target position

measurements and that the error is amplified by the frequency of data

collection and the velocity of the rigid body. At low velocities the

error in the angular velocity is controlled by the measurement error,

for higher velocities the effect of the velocity term on the error is

only significant if DM is small. By maximizing the distance between

targets, the error in the angular velocity vector can be minimized.

A1.3 Brr2r_EatLsats_ia_Qalsslatins_£he_§£rez_sai§

The instantaneous screw axis can be calulated from a point in space

if the velocity at that point is known:

Al.17 r - ” x ‘1

0'9

where P is the vector from point i to the IHA and v is the velocity of
1

point i. The error is then easily calculated:

(u + An) x (vi + Avi)

(u + Au) - (u + Au)

Al.18 P + AP -

Thus the error in determining the position of the ISA (dropping higher

order terms) is:

Al.19 AP - w x Av: + A” x Vi a a X AvI + Au x vi

a - u + 2 w-Au u - u

where it is assumed that |Aw| << lwl. Thus:

lwIIAvil + IAwllvil

2

A1.20 [API 5 
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The error can be minimized if the target that is being used to find

the ISA is close to the screw axis and therefore has a minimal velocity.

Equation A1.20 also indicates that the position of the screw axis can be

more accurately measured for higher angular velocities.

A1.3 Brr2r_in_the_§enter_221nt_rgsitisn

The position of the center point can be found given the direction of

each IHA and a point on each IHA. Let 21 and 32 be the direction

vectors for two consecutive IHA's. Let 31 and R2 be vectors from the

origin to each of the IHA's, as shown in Figure Al.l. The angle between

the two lines is found from the dot product of $1 and £2:

A1.22 eloe2 - coso

Define:

A1.23 P - 22 - 21

A A

A1.24 e3 - e1 X e2

|e1 X e2]

A1.25 ea - e3 X e1

The point on line 1 that is closest to line 2 can be found as follows:

A1.26 q - - P . e4 e1 + Poe e

tan(0) 1

A

 

l

where q is a vector from the origin to the point on line 1 closest to

line 2.

The error in the angle 0 can be determined by differentiating

equation A1.22:

A1.27 -sin0 d0 - deloe2 + e1~de2

or in terms of A9 the error is:

A1.28 A0 - '[A;1';g + ;10A;2]

sinfi
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The error in the position of q due only to errors in the location of 21

and R2 is determined by differentiating equation A1.26: .

.e . .e A A A A A

A1.29 dq - de - 552 4 1 4 e1 + dR2-e1 e1 - de-e1 e1

tano

or:

A A .e A A A .; A

Al.30 Aq - A21 - AR1oe1e1 + cinch e1 + Akzcele1 - tinofi e1

The magnitude of the above error is:

Al.31 |Aq| s ARI + ARI-e1 + ARzoel + Afi'ea + 22W.

tano

s 21ml .+ AR2 + AR] + AR;

tan0

equation Al.3l indicates that the error in q increases if the angle

between line one and two is small. From equation A1.28 it can be seen

that if two lines are approximately parallel, the error in the

orientation of each line is greatly magnified, making the error in the

angle between the two lines much larger.

 
 

 

0
Figure A1.1

Vectors for defining the center point position.





 

APPENDIX II

NUMERICAL SIMULATION

AZ-lW

The main purpose of this section is to investigate the accuracy of

finding the instantaneous helical axes and the center point of the

helical axes given noisy measurement data. The model used in this

simulation was designed so that the orientation of the instantaneous

helical axes changed through time. The accuracy of assessing the

helical axis position and orientation must also involve variations in

the magnitude of the angular velocity vector, including the case of zero

angular velocity. The data for this simulation was generated from the

kinematic equations that describe the model shown in Figure A2.1

The model consists of a wheel on an axle, with the axle fixed to a

pivot. The axle rotates about the pivot with an angular velocity 0(t).

A coordinate system is defined so that the z axis is along the axis of

the pivot, as shown in Figure A2.1; thus 0(t) lies along the z axis.

The wheel rolls without slip on the x-y plane. The angular velocity of

the wheel is a function of 0(t), the length of the axle, RA' and the

radius of the wheel, R.

The IHA’s generated by the motion of the wheel describe a conically

shaped surface. Figure A2.2 shows the shape of the ruled surfaces

generated by the fixed and moving axodes of the wheel IHA's. The motion

of this model is constrained to motion about a fixed point; thus all

IHA’s must pass through the fixed point (0,0,10) as shown in Figure

A2.2.

The motion of this model can be defined mathematically, and

therefore the positions of points on the wheel can be used to generate

data for simulating rigid body motion. This data can then be used to
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Ruled surfaces generated by the fixed and moving axodes.
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determine the accuracy of the theory presented in this thesis. The

exact positions of points located on the wheel were defined as functions

of 0(t), RA, and R. The velocity, angular velocity, acceleration, and

angular acceleration can be determined exactly, for a given 0(t), R , R.

Random errors were introduced to the known point positions to simulate

measurement errors and soft tissue motion.

The following criteria were used to define the motion of this model:

A2.1a 0(t) - 4.0 sin(2wt) (0.0 S t 5 0.98333 seconds)

A2.1b RA - 20.0 cm

A2.1c R - 10.0 cm

A2.1d T1(0) - (20.0, 0.0, 2.0)

A2.1e T2(0) - (20.0, -6.928, 14.0)

A2.1f 13(0) - (20.0, 6.928, 14.0)

Where T1(0) are the initial positions of each target at time t-O. Three

targets are the minimum necessary for defining three dimensional rigid

body motion; thus this simulation used three points distributed equally

about the surface of the wheel as shown in Figure A2.1. These points

were used to simulate targets.

The position of each of the three simulated targets can be

determined mathematically; thus the exact position for each simulated

target can be generated for a given 0(t). The target positions were

determined for the values of 0(t), RA’ R and the initial simulated

target positions given in equation A2.1.

A random error bounded within i2.0mm was introduced to the known

position of each point. The following sections investigate the accuracy

of the angular velocity, the angular acceleration, the position of the

instantaneous helical axes, and the position of the center point of the

helical axes, comparing the data with the 12.0mm random noise to the

exact known solutions.
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The simulated data consists of 60 "frames"; however, due to the '

effects of smoothing and differentiating numerical data, the beginning

and end points of the data set are unreliable. Therefore, the first

five frames and the last five frames of the simulated data will not be

used in the comparison to the true data. In this section, the true

angular velocity, angular acceleration, the location and position of the

instantaneous helical axes, and the location of the center point of the

helical axes will be compared to the solutions obtained from the noise

induced data.

 

The noise induced data was smoothed and differentiated using a

quintic spline smoothing routine (Woltring, 1986). The velocity and

acceleration were calculated for each of the three targets from the

derivatives of the quintic spline. The angular velocity was determined

using the method of Verstraete and Soutas-Little (1990).

The true angular velocity was compared to the noisy data angular

velocity. The differences in the measured angular velocity and the true

angular velocity are small. One means of quantifying the difference

between two vectors is to find the root mean square error (RMSE) between

the vectors. The RMSE between the true angular velocity and the angular

velocity calculated from the noise induced data is 0.218 rad/sec; the

maximum magnitude of the angular velocity was 9.0 rad/sec. The RMSE

between the true angular acceleration and the angular acceleration

calculated from the noise induced data was 3.151 rad/secz; the magnitude

of the angular acceleration was as high as 50 rad/secz.

The two primary concerns for the helical axes are the position and

ggigggagign of the lines of the axes. First, the orientation of the

angular velocity vector calculated from the noise induced data was

compared to the true angular velocity vector. The error in the
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orientation between the true, and noise induced, data angular velocities

were plotted against the magnitude of the true angular velocity, as '

shown in Figure A2.3 (the direction of the true angular velocity for

|"truel - 0 was defined by the direction of the true angular

acceleration vector).

For an angular velocity above 4 radians per second, the error in the

orientation between the true and error induced angular velocity vectors

is less than 3 degrees. For angular velocities above 3 radians per

second, the orientation error is less than 6 degrees. For 2 radians per

second, the orientation error is less than 8 degrees; and for 1 radian

 

per second, the error is less than 12 degrees. Thus, for large angular

velocities ( > 4 rad/sec), lines can be considered parallel if they are

within 3 degrees of each other. For small angular velocities ( < 2

rad/sec), it is not possible to determine the angle between lines any

better than 12 degrees.

The positions of the noise induced IHA's were compared to the true IHA

position. The shortest vector from the origin to each IHA (for each

instant in time (every 1/60 second)) was calculated, for both the true

and the noise induced data. The differences in these two vectors were

then used as a measure of the error in the IHA position. The RMSE in

the position of these two vectors, and therefore in the IHA position,

was found to be 0.4241 cm.

In Chapter 5, a means was developed for calculating the IHA for an

angular velocity of zero; this method was expanded in Chapter 6,

equation 6.3, to determine the IHA for small angular velocities. The

instantaneous axis of acceleration (IAA) was substituted for the IHA for

the noise induced data (for w < 2.0 rad/sec), in order to determine the

position and orientation of the IHA more accurately. When this was

done, the RMSE between the true and noise induced IHA positions dropped
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to (3.2925 cm. Thus, a significant improvement in the IHA position was

achieved by simply substituting the IAA for the IHA for small angular

velocities.

In addition to improving the position of the IHA, an improvement in

the orientation of the IHA was also obtained by substituting the IAA for

small angular velocities. Figure A2.4 shows the improvement in the

orientation of the noise induced angular velocity direction relative to

the true angular velocity direction. The error in the orientation

improved dramatically, decreasing the error by as much as 10 degrees.

The center point of the motion was calculated using three different

methods. The first method used the algorithm in Chapter 5 to determine

the center point of each IHA. For the algorithm, 0min and mm are
in

required. The minimum angular velocity magnitude was ”min - 0, due to

the substitution of the IAA for the IHA for small angular velocity, no

minimum angular velocity vector was needed. For the minimum angle

between consecutive helical axes, several different minimum angles were

investigated. It was found that the larger the angle for 9m the
in

greater the accuracey of the results. In the table below, the results

are given for 0min - 15' and 30°.

The center point was also calculated by determining the minimum

velocity center using equation 5.8. The third method used to find the

kinematic center of motion was a linear (1° polynomial) model to

determine the path of minimal velocity (equation 5.11).

The true center of motion for the simulated data is located at the

point (0,0,10) in the coordinate system shown in Figure A2.1. The RMSE

between this true center point and the center point(s) calculated from

the above three methods are shown in Table A2.1.
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Table A2.1

Root mean square error between the calculated center

points and the true center point.

 

Method Used

to Determine

 

 

the Center

Point RMSE

Algorithm 1.205 cm

0 - 15°
min

Algorithm 0.622 cm

0 - 30°
min

 

 

Min Vel Point 0.160 cm

 

Min Vel Path 0.126 cm     

The error in the center point when using the linear path of

minimum velocity or the point of minimum velocity are extremely small

relative to the induced error in the original data. The error in the

center point calculated using the algorithm of Chapter 5 was larger.

The reason for this increase in error is the l/tan0 term in the

equation for calculating the position of the center point on each IHA

(see equation 3.7). For small angles, the error is magnified by the

l/tanfl term. The error in locating the position of the IHA was  
previously shown to be 0.2925 cm. The algorithm in Chapter 5 requires

that a minimum angle and a minimum angular velocity be entered by the

user in order to determine: i) if two lines are "parallel" and ii) if

the axis under consideration is stable enough to be used to define a

center point. The angle used for this algorithm was 30°, a

significantly high angle, but still having a 1/tan9 of 1.73.
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Therefore the error in the center point will be almost double the

error in the position of the IHA.

The path of minimum velocity and the point of minimum velocity

are more accurate than the results obtained from the algorithm. These

two methods are therefore preferable for calculating the kinematic

center of a biological joint.
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