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ABSTRACT

THE APPLICATION OF HELICAL AXIS THEORY TO
THE STUDY OF HUMAN KINEMATICS:
A KINEMATICALLY DEFINED CENTER FOR BIOMECHANICAL JOINTS

By

Raymond Robert Brodeur

The forces acting within a biomechanical joint can be succinctly
described by a joint reaction force and a muscle moment. The least
invasive means of calculating these quantities is to use inverse
dynamics. The muscle moment is used in clinical evaluations, therefore
it is imperative that it be determined as accurately as possible;
however, the muscle moment is dependent on the point used for the
summation of the moments. Anatomically based definitions for a joint
center have been suggested, but these are-not applicable for subjects
with anatomical abnormalities. An alternative is to define the joint
center kinematically. This can be done for two dimensional motion using
the instantaneous center of rotation. The purpose of this dissertation
is to determine a kinematically defined center for biomechanical joints
for three-dimensional motion.

A solution can be found using helical axis theory. The
instantaneous helical axis (IHA) translates and rotates about a second
order helical axis. The first and second order helical axes intersect
at the center point of the IHA, the point of minimum acceleration on the
IHA. The path of center points is the path of minimum velocity for the
entire motion. An algorithm was developed for calculating the IHA

center point for continuous three-dimensional motion, including



solutions for two singularities. The equation for the velocity of a

point relative to the IHA can be written as an overdetermined equation;
this provides a means of locating the point of minimum velocity for the
entire motion. This equation can be expanded to determine the least
squares best-fit polynomial estimate for the center point path. Three
methods were investigated for defining the kinematic joint center: the
IHA center point algorithm; the point of minimum velocity; and a linear
best-fit path of minimum velocity.

Kinematic and kinetic data were collected for the right ankle joint
of two male runners. An anatomically defined ankle joint center was
compared to the three kinematic joint center definitions. The kinematic
center of motion was most often medial to the ankle anatomical center,
near the medial maleoli. The linear best-fit path of minimum velocity
provides a better means of calculating the center point path since it
serves to smooth the IHA center points. The moments about the ankle
were determined for each of the four joint center definitions. It was
found that moments about the three lginema!:ic joint centers were very
consistent, and the inversion/eversion moments were significantly larger

than the inversion/eversion moments about the anatomical center.
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In the study of biokinematics and biokinetics, the primary

objectives are to describe the motions of each body segment and to
determine the forces involved in generating these motions. These
objectives can be achieved by modeling the human body as a series of

rigid , so that s such as the foot, shank and thigh are

each considered a separate rigid body. The kinematics and kinetics of
each body segment are then determined separately.

In order to describe the kinematics of one body segment relative to
another, or relative to a fixed reference frame, it is necessary that
the positions of at least three non-colinear points are known on all of
the body segments being studied. The velocity and acceleration of each
point can be determined by numerical differentiation. The angular
velocity and angular acceleration can then be calculated for each body
segment (Verstraete and Soutas-Little, 1990).

The forces between two adjacent body segments are transmitted via
the articular joint surfaces, and the muscles and ligaments connecting
the two segments. These forces can be succinctly described by a joint
reaction force and a joint muscle moment. The joint reaction force is
the sum of the forces acting at a joint, including external forces,
inertial forces and the muscle contraction forces between the two
segments. The effective muscle moment acting at a joint is the net
moment generated by the muscles and ligaments connecting the two body
segments. The joint muscle moment is an extremely important factor in
biomechanical analysis since it is often used as a comparison between
"normal" and "abnormal" biomechanics and in pre- and post-operative

comparisons (Prodromos, et al, 1985, Wang, et al, 1990).






The least invasive means of calculating the joint reaction force

and the joint muscle moment is to use inverse dynamics. External forces
and moments acting on each body segment can be measured via a force
platform, load cell, or pressure plate. The inertial properties of the
body segments can be measured using methods such as those outlined by
Clauser, et al (1969); or the body segments can be modeled
mathematically and the inertial properties can be calculated directly
from the idealized geometry of a mathematical model (Verstraete, 1988).
The joint reaction force is found by summing the external forces and
inertial forces acting on each body segment. The net muscle moment
acting at a joint can then be calculated by summing the moments about a
point that defines the joint center.

Unfortunately, it is not clear as to what defines a joint center.
In three dimensional kinetic analysis, the point in space used for the
summation of the moments has a direct effect on the magnitude and
direction of the calculated moments. This is due to the r X F term in
the moment equation. Thus the joint muscle moment is highly dependent
on the definition of the joint center.

Many researchers have used anatomical definitions for the joint
center (Procter and Paul, 1982, Prodromos, et al, 1986, Verstraete,
1988, Wang, et al, 1990). The center of a joint is defined relative to
anatomical landmarks and is based on assumptions of the motions which
take place at the joint. One major disadvantage with an anatomically
defined joint center is the question of how to modify the definition
when dealing with subjects that have anatomical abnormalities.

If the motion under consideration is planar, then the instantaneous
center of rotation (ICR) is the natural definition for the joint center

between two body segments. Unfortunately most biological joints cannot







be modeled as having planar motion due to significant nonplanar axes of

rotation.

The purpose of this research is to define a biomechanical joint
center for three dimensional motion. By considering the acceleration of
a rigid body it will be shown that a unique point exists on the
instantaneous helical axis, and that this point is the center of motion
for a rigid body moving in three dimensions. The motion of a rigid body
can be uniquely defined by the instantaneous helical axis (IHA). In
general, the helical axis itself translates and rotates about a second
order helical axis. The second order helical axis intersects the first
order helical axis at a unique point, called the center point of the
helical axis.

It will be shown that the center point of an instantaneous helical
axis is the point on the IHA where the acceleration is minimal. It will
also be shown that the path of center points is the path of minimum
velocity for the entire motion. Thus the center point path is the path
of points where motion is minimal; hence the center point of each IHA is
a naturally defined center of motion for three dimensional kinematics.

In order to apply the helical axis center point to define the joint
center for biomechanical joints, some adaptation is required for two
singularities where the center point cannot be defined. The first
singularity occurs when the angular acceleration vector is parallel to
the angular velocity vector: the center point is not unique for this
condition. The second singularity occurs when the angular velocity
vector is zero: if the angular velocity vector is zero, then the
instantaneous helical axis may not exist. The above two problems are
addressed in Chapter 5.

Helical axis theory is essential to this research, therefore, in

Chapter 2, a portion of the literature review is dedicated to a brief






history of helical axis theory, including recent developments. The
biomechanical application of helical axis theory is also reviewed.
Finally, the literature regarding the definition of the center of a
biomechanical joint is reviewed.

In the third chapter, the fundamental definitions of helical axis
theory are presented. The equations of a line, the extension of those
equations to a helical axis, and basic mathematical definitions are
made. In the last part of Chapter 3, there is a discussion on the
relative motion of two rigid bodies in space. The helical axis of one
body moving relative to another body is defined and the three axis
theorem is reviewed.

In Chapter 4, the center point of the instantaneous helical axis is
defined. It is shown that the center point of an instantaneous helical
axis is at the point of minimal acceleration on the helical axis. The
center point is the center of motion for three dimensional kinematics
and therefore is the obvious choice for defining the center of a three-
dimensional joint. A natural result of the definition of the center
point is a kinematically defined coordinate system. Some discussion is
given to the physical interpretation of this naturally defined
coordinate system.

In Chapter 5, two singular cases are investigated wherein the
center point is not defined. The solutions to these problems are found
in higher order derivatives of the helical axis. The application of
these theoretical solutions to develop a practical algofithm for
defining the center point is then given. A least squares approach to
the joint center problem is also given in this chapter. The least
squares approach defines a point of minimum velocity for the entire
motion. It is shown that the minimal velocity point is a weighted

average of the helical axis center points. This point of minimum






Velocity can be used to define the joint center, if the motion at a

joint is known to be about a fixed point such as the motion at the hip
joint. It is also shown that the path of center points is the path of
minimum velocity for the entire motion. The center point path can be
modeled using a least squares, best-fit path of minimal velocity. The
best-fit path of minimum velocity acts as a filter of the center points.
Thus, in this chapter, three center point definitions were developed:
the algorithm for calculating the center point for each IHA; the least
squares point of minimum velocity; and the least squares best-fit linear
path of minimum velocity.

In Chapter 6, the above three center point definitions are applied
to the ankle joint. The angular velocity vector results and the
positions of the instantaneous helical axis are given. The center point
of each helical axis is found using the algorithm developed in Chapter
5. The helical axis center points are compared to the point of miminum
velocity and to the least squares best-fit linear path of minimum
velocity. The moments about an anatomically defined ankle joint center
are compared to the moments about the three kinematically defined center
points. The total work done at the ankle is compared to the work done
by the sagittal plane moment (the dorsi- plantar-flexion moment). The
work done by the colinear force was also determined and compared to the
total work done at the ankle.

In Chapter 7, the theoretical and experimental results are
summarized and the conclusions of this dissertation are given.

In Appendix I an error analysis is done for the angular velocity
vector equation; the location of the instantaneous helical axis
equation; and for the equation used to determine the location of the

center point of each helical axis.






Appendix II shows the application of the theory developed in this

dissertation to numerically simulated data. Random noise is introduced

to simulated target points. The velocity, angular velocity, angular
acceleration and helical axis positions are determined given only the

noise induced data. The results from the noise induced simulated target

data are then compared to the known results.






LITERATURE REVIEW

2.1 Historical Background

Chalses (1830) is generally regarded as being the first to show
that a finite or infinitesimal motion of a rigid body can be described
by a translation and a rotation about a line in space. However, it has
been reported by Rittershaus (1878) and Schoenflies (1893) that the
screw axis was first described by Giulio Mozzi in 1763 or 1765 (see
Hunt, 1967).

Poinsot (1806) was the first to show that the forces acting on a
rigid body can be reduced to a single force and a couple in a plane
perpendicular to the force. The mid and late nineteenth century saw a
rapid growth in the area of rigid body kinematics with the works of
Poinsot (1851), Hamilton (1830,1845,1848), Mobius (1837,1838), and
Plucker (1865,1866).

In order to apply the helical axis theory to the study of
mechanisms several means of expressing screw coordinates were developed.
In 1865, Plucker defined his six coordinates of a line. In this
publication (titled "On a New Geometry of Space"), he defined a line
based geometry and applied it to optics, kinematics and kinetics.

Hamilton developed quaternions, a vector and scalar based system
that used traditional algebraic multiplication and complex number
definitions to define what we today call the vector dot product and
cross product. Hamilton's quaternions looked much like our modern
vectors; the multiplication of two quaternions results in the equivalent
of a dot product and a cross product in terms of modern vector

terminology.






In 1873, Clifford developed a mathematics based on a new type of

complex number, where the multiplier w was used, and defined by wew = 0.
He termed this complex number system dual numbers, consisting of a real
number and the dual quantity, . He combined dual numbers with
Hamilton’s quaternion notation to develop biquaternions.

In 1900, Ball published his monumental work on the theory of
screws. Ball used a screw coordinate system based on six parameters,
five of which must remain independant. Ball studied the infinitesimal
displacements of a rigid body having between zero and six degrees of
freedom. His major emphasis was on the restraining forces necessary to
maintain the given degree of freedom and the motion that would be
imparted to a body given the restraints, the initial position of the
body and the direction of an impulse acting on the body. He is known
for his geometrical intuition in his approach to kinematics.

Study (1903) used Clifford's dual numbers to represent a screw as a
dual vector. A dual vector was defined as two vectors; the first being
a real vector that defined the direction of a line in space, the other
being the moment of the line about the origin multiplied by the dual
multiplier, w. Dual vectors are similar to Plucker coordinates, in that
they both use the directional cosines of a line and the moment of a line

about the origin as a means of describing a line in space.

2.2 Modern Developments

Little work was done in the area of screw theory between the early
twentieth century and the post World War Two era. Dimentberg
(1948) adopted Study’'s notation and used it in the analysis of kinematic
chains and in the finite displacement of general three dimensional

mechanisms. In 1965, Dimentberg published "The Screw Calculus and Its






Application in Mechanics", a work that summarized his substantial

contribution to mechanism design. The publication also helped raise
Study’s notation from obscurity.

A good portion of the helical axis theory literature over the past
thirty years has been the rediscovery and further advancement of work
that was done in the late ninteenth century, but re-written in terms of
modern vector and matrix notation.

A. T. Yang (1963) used dual vectors and re-introduced the concept
of dual quaternions to the analysis of spatial mechanisms. He combined
the work of Clifford, Hamilton and Study to define vectors and line
geometery in terms of dual quaternions. The result of this is a very
concise and elegant notation for expressing the motions of a mechanism.
Yang (1971) expanded dual notation to express the dynamics of a rigid
body. He expressed the acceleration of a rigid body and the rate of
change of momentum of the body as one dual vector equation. This lead
Beggs (see the discussion of Yang, 1971) to comment that Yang's dual
dynamic equation "... compares with a DNA molecule in information
density!".

Woo and Freudenstein (1970) and Yuan and Freudenstein (1971)
precede their work by extensively reviewing the notation and findings of
Plucker, Clifford, Study and Ball. The above two papers extended the
application of screw coordinates to the kinematics and statics of
mechanisms. The application of screw coordinates to rigid body motion
and mechanisms provided the development of more efficient methods for
studying the displacement, velocity, acceleration, and forces acting on
spatial mechanisms.

Veldkamp (1963, 1967a, 1967b) defined and described the concepts of
instantaneous invariants and a canonical system of reference for rigid

body motion. The instantaneous invariants are scalar parameters that
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describe the motion of a rigid body and are independent of the
coordinate system used to define the motion of the body. For first
order motion (velocity), there are two instantaneous invariants, the
first being the magnitude of the angular velocity, the second being the
translational velocity parallel to the angular velocity vector. The
canonical system of reference is a kinematically defined coordinate
system that has the instantaneous helical axis as one line of the
coordinate system and the second order helical axis as a second line in
the coordinate system. The third coordinate axis is the cross product
of the first two. The canonical reference system can be an extremely

useful tool in the analysis of spatial mechanisms.

2.3 Biomechanical Applications of Helical Axis Theory

There have been a number of papers concerned with the finite
helical axis (FHA) and the finite center of rotation for biomechanical
joints (Hicks, 1953, Close, 1956, Van Langelaan, 1983, Lundberg, et al,
1989, Blankevoort, et al, 1990). Most of the finite helical axis
research has been collected using stereoradiogrammetry and human
cadavers and/or excised joints. The biomechanical researcher faces a
number of dilemmas when investigating joint motion. Extremely precise
data can be collected on cadavers (or excised joints), using radiopaque
targets implanted into the bones that define the joint under
investigation. However, by gaining a higher degree of accuracy the
researcher sacrifices functional normality. On the other hand, when
using living subjects and skin mounted targets, the function of the
joint may be "normal"” but there is usually a loss in accuracy due to

tissue motion.
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The application of helical axis theory for describing biomechanical
motion date as far back as Weber and Weber (1836) who made the first
recorded attempt to measure the center of rotation of the knee joint
(using a planar model for describing knee motion).

In this century several researchers have applied the finite helical
axis or its planar equivalent, the finite center of rotation, to
biological joints (Manter, 1941; Hicks, 1953; Isman and Inman, 1969;
Walker, et al, 1972; Smidt, 1973; Blacharski, et al, 1975; Procter and
Paul, 1982; Lundberg, et al, 1989; and Blankevoort, et al, 1990). The
methods for determining the FHA vary widely between the papers listed
above. Hicks (1953) and Isman and Inman (1969) used simple visual
techniques for defining the axis of rotation. They defined the axis of
rotation to be through points of minimal motion. For example, for talo-
tibial motion, a point of minimum movement was visually determined on
the medial and lateral sides; then the axis of rotation was simply the
line between the points of minimal motion.

More recently, stereoradiographic and biplanar radiographic methods
have been developed for finite helical axis measurements (Selvik, 1974).
Van Langelaan (1983) did an extensive radiographic study of the tarsal
joints using ten shank-foot preparations. He described the FHA for the
talotibial, talocalcaneal, cuboid calcane:lil, naviculocalcaneal, and the
talonavicular joints. Lundberg, et al (1989) studied the talotibial
joint in vivo using eight volunteers. Tantalum balls (0.8mm diameter)
were implanted into the tibia and talus of each subject. Weight bearing
flexion-extension; pronation-supination; and medial-lateral rotation
were performed at 10° increments. They found that all of the axes
tended to cross near a point in the center of the talus.

Although many studies have been done on the finite helical axes,

few of the studies agree on the location and variation of the axes
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locations. Blankevoort, et al (1990) attribute this to several factors:
i) individual subject variation; ii) measurement errors; iii) variation
due to different loading and variations in the kinematic paths forced on
the body segments by the researchers. Blankevoort, et al expressed the
opinion that the third factor is probably the factor of greatest
importance. They, therefore, described in great detail the loading and
kinematic paths of the femur and tibia in their work. However, the
problem in general with biomechanical research is control over the
repeatability of the experiment.

Very little work has been done in the area of instantaneous helical
axes for biomechanical joints. Fioretti, et al (1990) used simulated
data to determine the accuracy of calculating the IHA. They simulated a
cylinder rolling on a plane, introducing noise of 0.5mm and 4.O0mm
standard deviation to the known target locations. For the 0.5mm error,
the location of the IHA could be determined to within 1.27mm using a
readily available spline smoothing technique (Woltring, 1986). For the
4.0mm standard deviation noise, the IHA could be determined to within
5.09mm using the same smoothing technique. Fioretti et al also
collected in vivo data on the metacarpophalangeal joint and described
the IHA path as it intersected the sagital plane of the metacarpal.

Verstraete and Soutas-Little (1990) described a method for finding
the angular velocity and angular acceleration from discrete position
data. They used numerical differentiation to determine the velocity and
acceleration of the position data, then used a least squares method to
find the angular velocity and angular acceleration.

Sommer and Buczek (1990a, 1990b) also described a least squares
method for determining the angular velocity and angular acceleration
vector from discrete target position data. They determined the accuracy

of the angular velocity and acceleration on a fixed axis mechanism.
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They found the average measured angular velocity and angular
acceleration to be very close to the true angular velocity and
acceleration.

Karlsson et al (1990) compared bone mounted targets to skin mounted
targets on the location of tibial-femoral instantaneous helical axodes.
As would be expected, they found that the IHA's found from bone mounted

target data had less variation than skin mounted targets.

2.4 A Biomechanical Joint Center

In the study of biomechanics, the inverse dynamics method is used
to determine the forces and moments acting at a joint. Body segments
such as the foot, shank and thigh are modeled as rigid bodies. External
forces acting on these bodies can be measured via a force platform, load
cell, or pressure plate. The inertial properties of the body segments
can be measured (Clauser, et al, 1969) or the body segments can be
modeled mathematically and the inertial properties can be calculated
directly from the idealized geometry of a mathematical model
(Verstraete, 1988). Since the external forces and moments are known,
the forces and moments acting at a joint can be calculated using the
inverse dynamics method.

The moment acting at a biomechanical joint is called the. joint
muscle moment. It is the effective moment acting at the joint due to
the forces generated by the muscles and ligaments connecting the two
body segments. The magnitude of the joint muscle moment is an extremely
important factor in the analysis of a biomechanical joint. The muscle
moment is often used as a comparison between "normal" and "abnormal"
biomechanics and in pre- and post-operative comparisons (Prodromos, et

al, 1985, Wang, et al, 1990).
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Unfortunately, it is not clear as to what defines a joint center.
In three dimensional kinetic analysis, the point in space used for the
summation of the moments acting on a rigid body has a direct effect on
the magnitude of the calculated moments. This is due to the r X F term
in the moment equation. Thus the joint muscle moment is highly
dependent on the definition of the joint center.

If the motion under consideration is planar, then the instantaneous
center of rotation (ICR) is the natural definition for the joint center
between two body segments. Yamaguchi and Zajac (1989) used the
instantaneous center of rotation to more accurately determine the
effective moment arm of the quadriceps. Unfortunately most biological
joints, including the knee joint (Karlsson, et al, 1990, and
Blankevoort, et al, 1990), cannot be modeled as planar due to
significant nonplanar axes of rotation.

Many researchers have used anatomical definitions for the joint
center (Procter and Paul, 1982, Verstraete, 1988, Prodromos, et al,.
1986, Wang, et al, 1990). The center of a joint is defined relative to
anatomical landmarks and is based on assumptions of the motions which
take place at the joint. One major disadvantage with an anatomically
defined joint center is the question of how to modify the definition
when dealing with subjects with anatomical abnormalities.

The need for a three dimensional biomechanical joint center has
been recognized by several researchers. Chao and An (1982) proposed
that a joint center be defined by the midpoint of the common
perpendicular between two consecutive helical axes. They proposed that
the path of this midpoint could be used as a description of the motion
taking place at a joint. Woltring (1990a) has proposed that the

intersection of the first and second order helical axis be used to






15

define a joint center. It will be shown in this thesis that, in the
limit, the above two definitions converge.

Much of the debate regarding the definition of a joint center has
taken place on Biomch-L, a biomechanics electronic bulletin board.
Woltring (1990b) suggested a point at which the absolute velocity and
acceleration are minimal. For any given instant in time, this point
occurs at the center point of the IHA. Chao (1990) stated that the
three dimensional joint center as defined by Woltring (1990b) should be
utilized for the calculation of joint muscle moments. Chao indicated
that the joint articulating surface contact point does not necessarily
coincide with the center of motion of the joint.

Joint muscle models require the moment arm between the line of
action of a muscle and the center point of the joint in order to
accurately model the joint kinematics and kinetics. Spoor, et al (1990)
suggested that the moment arm be determined using the relationship
between the work done by a muscle and the work done by the moment of the
muscle. For planar motion, the work done by a muscle generating a force
F is simply F ds where ds is the infinitesimal change in the tendon
length. The work done by the muscle moment on the joint is M df where M
is the moment generated by the muscle and df is the change in angle of
the joint. Then:

Fds =M déd

the effective moment arm "a" is:
M _ds
F as

This relationship allows the researcher to calculate the moment arm by
relating the change in tendon position (ds) to the change in the joint
angle (df); the actual moment arm does not need to be measured. This

method assumes that the motion is planar; an assumption that is not true
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for most biological joints. The other obvious disadvantage to this

method is that tendon length changes are difficult, if not impossible to
measure in vivo.

The purpose of this research is to define a biomechanical joint
center based on the kinematics of the body segments that define a joint.
Helical axis theory is essential to this research, therefore, a review

is provided for basic definitions and mathematical tools that are used
in this thesis.






CHAPTER III

MATHEMATICAL TOOLS

3.1 Definitions

Six independent parameters are needed to describe the motion of a
rigid body in space. A line in space can be defined by four independent
parameters. Equation 3.1 defines the projection of a line onto the x-z

and y-z planes, respectively:

3.1a X =az +b

3.1b y=cz+d

The parameters a,b,c,d are four independent parameters that can be used
to define a line in three dimensional space. The rotation and
translation along a line account for two more degrees of freedom;
therefore the motion of a rigid body can always be expressed as a
translation and a rotation about a line. The line about which a rigid
body is translating and rotating is call the helical axis. The ratio of
the translation to the rotation is called the pitch of the helical axis.
Thus the motion of a rigid body can be described by the four parameters
that define a line in space and two other parameters, the pitch and the
rotation. Alternatively, the rotation and translation can be used
instead of the rotation and the pitch, due to the relationship between
the rotation, translation and pitch.

The motion of a body can be described in terms of finite relative
positional changes or instantaneous motion. The finite helical axis
(FHA) describes the line in space about which a body translates and
rotates in order to move from one position to some other position in

space. However, it must be emphasised that the FHA describes the most
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Succinct means by which a body may move from one position to another
position; it does not necessarily describe the exact means by which a
body has moved.

The motion along a helical axis is described in terms of the twist
and the pitch, where the twist is the magnitude of the rotation of the
body. As the motion of the body becomes infinitesimally small, the
helical axis is referred to as the instantaneous helical axis (IHA).
The IHA is not only the most succinct means of describing the motion of
the body, it is also the exact means by which the body moves from one
position to another new position. Since the infinitesimal translations
and rotations occur over an infinitesimal time, the ratio of the
differential quantities to the infinitesimal time do not go to zero,
but, in the limit, become the translational velocity and the angular
velocity, respectively. The pitch of the instantaneous helical axis is
the ratio of the translational velocity to the angular velocity. The
-twisting motion of the body is the magnitude of the angular velocity.

In a similar fashion, the forces acting on a body can be reduced to
a force and a colinear moment. That is, any number of forces and
moments acting on a rigid body can be reduced to a single force and
moment acting along a line in space. This combination of a force and a
colinear moment is called a wrench. The magnitude of the wrench is
equal to the magnitude of the resultant force. The pitch of the wrench
is equal to the ratio of the colinear moment to the force.

The free translation of a body or a pure moment acting on a body
cannot be reduced to acting on a single line in space. However, in
terms of helical axis theory, a pure translation is an infinitesimally
small rotation about a line at infinity; and a pure moment is an
infintesimally small force acting on<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>