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ABSTRACT

COMMUNICATION PERFORMANCE OF MULTICOMPUTERS

By

Suresh Suryanarayana Chittor

Massively-parallel distributed-memory concurrent computers or multicomputers

are beginning to dominate the supercomputing arena. The continued success of mul-

ticomputers has resulted in an ever increasing demand on their communication per-

formance. In this thesis, we perform theoretical, experimental and simulation studies

to understand and improve the communication performance of large multicomputers

that use direct networks. We show that 2D/3D mesh networks provide much higher

performance than popular hypercube networks, when the effect of contention is neg—

ligible. The performance improvement is due to higher bandwidth channels, and the

ability of the switching technique to efficiently handle communication over long paths.

However, in the case of large multicomputers that use mesh networks, contention for

network channels can be significant which will lower the performance. We study the

effect of contention for a given mapping of parallel tasks on a set of multicomputer

nodes. A metric called path contention level is introduced as a measure of contention

and quality of mapping. The results of our studies have been used to implement a

tool that helps users predict the effect of contention, identify communication bottle-

necks and to evaluate the adequacy of a mapping for a given application. We also

show that random mapping is not advisable for large multicomputers that use mesh

networks. We illustrate in several cases that careful mapping and routing can mini-

mize contention which in turn can significantly improve communication performance.

Theoretical results are supported and complemented by experimental results on a Sy-

mult 2010, and simulations that give the performance of large multicomputers not yet

available. We conclude that mesh networks will replace hypercube networks as they

can provide better performance under contention-free conditions, and that research

interest will shift from minimizing path length to minimizing contention.
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Chapter 1

INTRODUCTION

Rapid progress has been made in concurrent computing technology, and the result is

increased interest in this technology. Some important reasons for this interest are

e Feasibility : Large systems are becoming viable and cost-effective due to rapid

advances in VLSI technology. Available systems have demonstrated remarkable

performance for various applications.

0 Supercomputing : Concurrent systems that use more than one computing ele-
 

ment are already capable of providing 1—10 Gflops peak performance, and are

expected to reach a teraflop speed in the near future.

0 Scalability: The performance of concurrent systems is scalable in the number of

computing elements. Real systems in the supermini range have demonstrated

that the capacity of the systems can be easily increased by adding processor

boards. Large systems having hundreds of processors have shown that the

performance can be directly proportional to the the number of processors used

for various scientific applications.

The architecture of concurrent systems varies widely and is changing rapidly, as

the technology is far from maturity. There are many research problems and issues

that need to be investigated.

1.1 Concurrent Computers

A concurrent computer consists of a set of nodes connected by a communication

network (Figure 1.1). Individual nodes may have a processor or memory or both.

In addition, nodes will have communication hardware that will provide the interface

1
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Figure 1.1: Overview of a concurrent computer

  
 

to the network. Concurrent computers can be divided into three broad categories

depending on the organization of the memory and access to it by various processors.

1. Shared Memory systems : In these systems any processor can access any part
 

of the memory with the same latency. The entire memory is global as it is

physically and logically shared. Individual nodes will be either a processor or

a memory, each with a communication interface to the network. The size of

such systems tend to be small, at most 20-30 nodes, due to limitations of the

communication network technology. Sequent’s Balance and Encore’s Multimax

are examples of such commercially available systems.

2. Non-Uniform Memory Access (NUMA) systems : In these systems, as in shared
 

memory systems, any processor can access any part of the memory. There is,

however, a difference in access times to various parts of the memory. Each node

has a processor and some memory called local memory. Access to the memory

of another node, called remote memory, is slower than access to the local mem-

ory. The memory is physically distributed, but logically shared. Medium sized

NUMA systems are available which have hundreds of nodes. BBN’s Butter-

fly GP1000 [1] or its successor the TC2000 are examples of such commercially

available systems.

3. Distributed memory systems or Multicomputers : In such a system, memory is

physically and logically distributed. Each processor can only access its local

memory. Interaction between processors is by passing messages. The systems

are also known as message-passing concurrent computers or multicomputers [5].



Some of the largest parallel systems available belong to this category such as

NCUBE/l [48], iPSC/l [67], Symult-2010 [74], iPSC/2 [4] etc.

Large multicomputers are gaining interest as they already have achieved some of

the fastest computing rates, and seem to be the way to design a teraflop 1 computer

in near future. A critical architectural component of all concurrent systems, including

multicomputers, is the communication network.

1.2 Communication Networks

The network provides a means for the various nodes in a concurrent system to com-

municate, exchange information and coordinate their activities. The performance of

the communication network is essential to the success of any concurrent computer.

Extensive research has explored alternate network architectures over the last ten to

fifteen years. Ideally one wants a completely-connected network where each node

has a dedicated communication link to every other node. Implementation difficulties,

however, prevent one from using such a network. The goal is therefore to design a

network that is feasible and cost-effective, and can provide a performance comparable

to that of a completely-connected network. Four types of networks have dominated

current concurrent systems.

1. High-speed time-shared bus : In such a network a single bus, typically, connects
 

all the nodes in the system [51]. As a result, communication time will be same for any

pair of nodes. The main disadvantage is that the single bus becomes the bottleneck

when the number of nodes or the size of the system reaches a certain threshold (20-

30 for current technology). For large systems, we have to modify the network. One

possibility is to use more than one bus. Researchers have proposed various ways of

using more than one bus such as the hierarchically organized buses [78, 63], multi-

dimensional structures as in Hyperbus [7] and so on. In spite of those modifications,

contention for the bus continues to be a major problem with bus-based networks.

 

lA computing rate of 1012 floating point instruction per second.





2. £21;st bar network : Here, a crossbar switch of N2 cross points is used to connect

N nodes to one another [51]. Such a network allows any node to communicate to

any other node, and the time taken will be same for any pair of nodes as in bus

based systems. One major advantage of the crossbar over the bus is that all the

nodes can communicate simultaneously without any contention, provided that no

two nodes communicate to the same node. However, the cost of a crossbar increases

quadratically with the size of the system. In addition, power and pinout problems

make a crossbar network unattractive for large systems.

3. Indirect or Multistage Interconnection Network (MIN) : These networks strike
 

a compromise between the price/performance alternatives offered by the bus and the

crossbar networks. An N x N MIN network connects N nodes to one another by

employing multiple stages of banks of switches in the interconnection pathway. One

approach possible with N as a power of 2 is to use lgN stages of N/2 switches,

each switch being a 2x2 crossbar. Different ways of connecting successive stages of a

network have been proposed, such as Omega, indirect binary n-cube and so on, with

some of them shown to be equivalent. One advantage of a MIN is its expandability,

since the number of stages increases only as 1g N. There are also disadvantages.

Contention for paths such as the hot-spot problem can degrade the performance

significantly. The network cost increases with the system size as the number of

switches increases as N lg N. Communication time remains the same for different

pairs of nodes, provided there is no contention for resources within the network.

4. Direct or Point-to-point networks : In direct networks, nodes are connected
 

by high-speed communication links. Each node is connected to only a small number

of other nodes. Two nodes that are connected directly by a communication link are

called adjacent nodes. The communication hardware in each node, called the router,

is used to support communication between two non-adjacent nodes. If each node

is connected to only a fixed number of other nodes irrespective of the system size,

then we have N routers, one in each node, and O(N) total communication links

connecting the N routers. The cost of the network increases only as O(N). Direct

networks are therefore much simpler to build than either MINs or crossbars. In
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earlier direct networks, the communication time depended on the relative position of

the communicating nodes. Communication between adjacent nodes was much faster

than the communication between non-adjacent nodes. However, with recent advances

in technology, the dependence of the communication time on the position of the nodes

has been significantly reduced.

Shared memory systems use a bus-based network or a crossbar network. NUMA

systems use MIN networks, where as direct networks seem to be the choice for multi-

computers. The performance of direct networks has dramatically improved recently

due to advances in technology, so they have become competitive to other networks.

Direct networks can be used for both small and large concurrent systems. In this

thesis, we study the performance of direct networks when used for message-passing

in multicomputers. Such a performance study will be useful even if systems using

direct-networks are organized as a shared-memory or a NUMA system at the user

level.

1.3 Direct Network Architecture

Direct networks have four main characteristics: the switching technique, the routing

scheme, the network topology and the channel bandwidth. The switching technique

determines how communication takes place between two non-adjacent nodes. The

routing scheme decides the sequence of channels, the path, used for communication

between any two nodes. The network topology determines the set of adjacent nodes

for any given node in the network. The bandwidth of a network channel depends on

the width of the channel and the maximum rate at which the channels can transmit

bits. The bandwidth will put an upper limit on the communication performance.

The last few years have witnessed changes in all the four main characteristics of

a direct network used by a multicomputer. Current series of multicomputers such as

the iPSC/2 [4, 28, 66] and the Symult-2010 [74] are called second-generation multi-

computers, while earlier systems such as the Cosmic—cube [73], the NCUBE/l [48],

and the iPSC/1 [67] are called first-generation multicomputers [5]. The technology





of the networks used by second-generation systems differs significantly from that of

the first-generation multicomputers.

 

 

Switching Routing Network Channel
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First. Generation Store-and-forward Fixed Hypercube 1-bit wide

Multicomputers . : : .

i v V i

. Second Generation CircuitOSWitching Fiéed 2D 1311,9511 8—32 bit

Multicomputers Wormhole routing Adaptive 2D Torus w1de

Figure 1.2: Trends in direct networks

  
 

The trends in network characteristics from first to second-generation multicom-

puters are shown in Figure 1.2. It is necessary to understand the changes in network

features, as they have a significant influence on the network behavior and perfor-

mance. As we see later, changes in one network characteristic influence changes in

other network characteristics. We now discuss the four main network characteristics

and trends in more detail.

1.3.1 Switching Technology

The three common switching techniques used in current multicomputer networks

are shown in Figure 1.3. First generation multicomputers used store-and-forward

switching which is common in wide-area and local-area networks. A message is split

into packets if necessary. Each packet is then sent completely to an adjacent node

that is nearer to the destination than the source. This adjacent node, called an

intermediate node, relays the message to one of its adjacent nodes and the process

repeats. Each transmission takes the message nearer to the destination until the

message finally reaches it.

Definition 1 Path length is the number of hops a message travels, and is denoted by

D.
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Path length depends on the routing scheme which determines the channels used

for a communication. First generation multicomputers used fixed routing schemes,

and path length was equal to the shortest distance between the communicating nodes.

The total communication time, t“, is proportional to the number of hops. The time

taken for one hop, th, is a linear function of message length L, i.e. th = a + bL. Here,

a and b are system-dependent constants. The fixed overhead is denoted by a, and b

denotes the effective message transmission rate. Hence, total communication time is

t“ = D * t}, = D(a + bL) = O(DL) (1.1)

Processors at each intermediate node are involved in processing messages passing

through the node. Software control at each intermediate node slows communication

significantly as the number of hops, D, increases. Typical values for a and b for first

generation computers are 1000 ps and 1 ps/byte.
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Figure 1.3: Common switching techniques  
 

The switching technology has changed in second-generation multicomputers. In-

stead of store-and-forward switching, circuit switching or wormhole routing is used.

Also, each node has dedicated communication hardware to process the messages pass-

ing through the node. In circuit switching, a header (one or two words) is sent from

the source, and the header reserves channels on its way to the destination node thereby
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establishing a physical communication path between the source and the destination

nodes. Once the path is established, it takes the same time to send the message to

the destination as it does to an adjacent node, th. Hence the total communication

time for a circuit switched network is

to, = 01D + th = C1D + a + OL = 0(1) + L) (1.2)

Here, 01 is a system dependent constant that represents the time taken per hop to

establish the path. One example of a second generation multicomputer that uses

circuit switching is iPSC/2 for which 01 is 10—30 as, and a and b are 660 as and

0.36 as respectively [13].

Wormhole routing has also been used in commercial, second-generation multicom-

puters [32]. Wormhole-routing is a modified form of virtual cut-through switching

proposed earlier for computer networks [54]. It is similar to circuit switching as the

header reserves channels establishing a dedicated path for the message. However,

words, called flits, of a message follow the header in a pipelined fashion instead of

waiting until the entire path is established as was done in circuit-switched networks.

The last message word, called the tail flit, automatically releases the channels as

it moves towards the destination. This switching appears to be similar to packet

switching where the packet size is reduced to one flit. There is, however, an im-

portant difference between this level of packet switching and wormhole routing. In

packet switching, it is possible for several packets to accumulate in an intermediate

node which requires each node to have a sufficient number of buffers for packets and

to manage these buffers. In contrast, there is no need for a large number of buffers

in wormhole routing. A flit is not sent to a subsequent node unless the previous flit

has left that node. Hence, if a message header is blocked due to a reserved channel,

then the entire flit stream following it stops progressing, with typically one flit in

each intermediate node. Hence, one buffer that can hold a flit is enough per channel

per node. Details of wormhole routing and actual implementations can be found in
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[37, 77, 32, 40, 35]. For wormhole routing, the communication time needed is

twh =a+CgD+b(L-— 1) = 0(D+L) (1.3)

Once again, Cg is a system dependent constant that represents the time taken per

hop to establish the path. Current technology is quite impressive as the lowest values

claimed for 01 and b is about 20 us for NDF [77] and 13 ns/byte for iWarp [14]

respectively; However, a is still high for currently available systems as the lowest

value claimed is 177 psecs for Symult 2010 [75]. Systems are being designed to have

low overheads such as the iWarp [14] and the J-machine [29, 30].

Note that all the three equations above for t“, tc, and twh gives the communica-

tion time under contention-free conditions. We see that both circuit switching and

wormhole routing used in second-generation multicomputers take O(L + D) time in-

stead of the O(LD) time required by the store-and-forward switching used in the

first-generation multicomputers. Since, L > D, O(L + D) z O(D), and hence com-

munication time is not sensitive to D, the distance between the two communicating

nodes. However, in both circuit switching and wormhole routing channels need to be

reserved. The resulting contention for channels can become a serious problem and

affect network performance. Hybrid switching schemes have also been suggested such

as Staged Circuit Switching [3] which is similar to virtual cut—through.

1.3.2 Routing Scheme

The routing scheme decides the path taken by a message, and is another main feature

that can significantly affect the network’s performance. Multicomputers put a tight

constraint on the time spent in deciding routing. We need to implement all routing

functions in hardware to keep the processing times at an acceptable level. Hence,

routing schemes should be simple. At the same time, it should ensure freedom from

deadlocks and utilize the channels as best as possible.

Routing schemes can be divided into two main classes.

0 Fixed routing schemes : In such schemes, the choice of a path depends only
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on the communicating nodes. A message between two given nodes always uses

the same path. The choice of the path does not change with time or current

utilization levels of various network channels.

0 Adaptive routinfichemes : These schemes tend to be smarter as the choice of
 

path depends on the network state or the state of various network channels.

The choice of a path taken by a message between a given pair of nodes may

change with time. Adaptive routing schemes attempt to avoid already congested

channels, strike a balance in the utilization of the channels and improve the

communication times.

The routing scheme depends on the switching technology used. In first-generation

multicomputers which used store-and-forward technology, it was essential to minimize

the path lengths. Hence, the routing scheme was designed to select the shortest

path possible between the communicating nodes. The routing decision was made by

processors in each node by software, and hence the overheads were high. Network

channels were never a bottleneck as messages were not injected fast enough to increase

their utilization to high levels. Hence, fixed routing scheme were used and were

sufficient.

Second-generation multicomputers use circuit switching or wormhole routing

which, as explained in the previous section, are not sensitive to path lengths. Hence,

routing schemes are not constrained to choose the shortest path possible. The routing

overheads are significantly reduced as all routing decisions are made by the hardware,

and the utilization of the channels can become quite high. Hence, network channels

can become a bottleneck as individual communications reserve channels. Routing

schemes may have to choose a path that reduces contention and balances the utiliza-

tion of channels [10, 8]. Simple adaptive routing schemes may increase the network

performance appreciably .

We see that the challenge is to design a routing scheme that is simple enough to

be implemented in hardware, but at the same time good enough to keep the network

performance at a high level. Both fixed and adaptive routing schemes have been
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proposed that are simple and avoid deadlock for modern networks [36, 60]. However,

we do not have much information on the relative performance of various routing

schemes to make a correct choice for the routing scheme.

1.3.3 Network Topology

The network topology defines the way nodes are connected; the topology determines

the-set of adjacent nodes for any given node. It is represented by the graph obtained

when each node is defined as a vertex and each physical channel between two nodes

is represented by a directed edge between corresponding vertices. The topology is

represented by G(V,E), where V is the set of vertices and E is the set of edges. Two

important features of a topology are

m : The degree of any node is the number of its adjacent nodes. The degree

of a topology is the maximum degree of any node, i.e. mmev d(V).

Meter: The shortest distance between any two nodes u, v is denoted by I(u, v).

The diameter of a topology is the maximum value of the shortest distance over all

pairs of nodes, i.e. diameter = maxumev [(11,21).

The network topology should have a small number of edges, a fixed degree (degree

does not increase with the system size), regular (all vertices have the same degree),

a low diameter, symmetric (network looks alike from each node), and fault-tolerant

(alternate paths between vertices). Various network topologies have been suggested

[16, 42, 50, 64, 71, 43, 38, 53], and compared [2, 56, 70]. Since an increased number of

hops slowed communication in first-generation multicomputers, low diameter topolo-

gies were suggested and used [27, 39]. The hypercube topology was the most popular

(Figure 1.4), which is a member of k-ary n-dimensional topology. In such a topology,

the vertices can be numbered by a n—digit k-radix number d = dndn_1 . . . d1, where

0 S d.- < k. Two vertices a = anan_1 ...a1 and b = bnbn-1...b1 are adjacent if

a.- = b.- for all 3' except i = i, and 6.- = b; :l: 1. Hypercube topology is obtained when

k = 2, and n = lg N. The diameter and the degree of a hypercube are both lg N, and

the number of edges increases only as O(N 1g N). The hypercube topology was also

shown to have other topologies such as meshes and trees as subgraphs. Even though
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the degree and the number of edges are reasonable when compared to a completely

connected network, they are still quite high for large systems having hundreds or

thousands of nodes. The large number of edges results in increased wire densities and

pin-outs, making network implementation difficult.

 

 
Hypercube 2D Mesh

Figure 1.4: Two common network topologies   
 

In the second-generation multicomputers, the distance between communicating

nodes is no longer a serious problem, and hence a low diameter topology is no longer

necessary. Simpler topologies such as the 2D mesh or torus (mesh with wrap-around

edges) are worth considering. Mesh is also a member of Ic-ary n-dimensional topology,

for which n = 2, and k = x/N. In case of a 2D mesh, the number of edges increases

only as O(N) and the degree of a node is constant, i.e. independent of N. A mesh

is therefore easier to implement. However, if we use circuit switching or wormhole

routing and a 2D mesh or a 2D torus, then there will be increased contention for

network channels as only O(N) of them are available. Some important characteristics

are summarized in Table 1.1. 2 .

It is also possible to use switching element to increase the flexibility of a chosen

topology, or even provide configurable networks i.e. networks whose topology can be

changed by setting the active switching elements properly [76, 18, 41].

 

2The concept of bisection width, wire density and wire lengths are precisely defined in Section 2.2
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2D Mesh Hypercube

Degree + 4,fixed - 1g N, variable

No. of edges + 2(N — x/N), O(N) - (ng N)/2, O(N lg N)

Diameter - 2N7? — 1), O(x/N) + lg N, O(lg N)

Alternate paths + yes + yes

Bisection width + \/N,O(\/N) - N/2, O(N)

Wire Density + Uniform - Non uniform

Wire lengths + Uniform and short , O(l) - Non uniform

(+(-) indicates an advantage (disadvantage))

Table 1.1: Important characteristics of mesh and hypercube topologies

1.3.4 Channel Bandwidth

The physical bandwidth of the network channels is another important feature that can

affect the network performance. The bandwidth depends on the width of the channel,

i.e. number of data bits that can be simultaneously transmitted across the channel,

and the rate at which bits can be transmitted. The bandwidth puts an upper limit

on the communication performance of a direct network. A higher channel bandwidth

will not only increase the peak communication rates, but also reduce the possibility of

individual channels getting saturated. High bandwidths may ensure that the channel

will never become a bottleneck and avoid the need for adaptive routing schemes.

The maximum bandwidth possible depends on the network topology. A topology

that has more edges is difficult to implement as it will increase the wire density.

Hence, width of channels has to be reduced if we use a richer topology. Hypercube

networks typically use bit-serial lines to keep the wire complexity to a manageable

level. However, if a simpler topology such as the 2D mesh is used, then it is possible

to increase the width of the channels to 8 or even 32 bits wide, and operate them at

faster rates as the length of the channels will be small. Mesh networks can therefore

can be designed to have channels with much higher bandwidths than hypercubes.

The tradeoff between simpler, high-diameter networks that have wide, fast channels

and complex, low-diameter networks that have slower channels is not clear, and needs

to be studied.
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In addition to the changes in network switching technique, network topology and

network channel bandwidth, the router or communication coprocessor is becoming

increasingly complex and that in turn is minimizing the involvement of the node

processor in handling communication. It is essential that all these developments are

complemented by sufficient performance studies to clearly understand the issues, to

achieve highest possible performance, and to ensure that the communication network

does not become the bottleneck. Efficient communication performance in turn will

help us to achieve efficient computation, i.e. actual computation rates close to the

maximum possible rates of the system.

1.4 Network Performance Studies

The discussion in the previous section indicates that the choices of the four main

features of a direct network are not independent of one another. A change in one

network feature will have influence on the choice for another network feature. Such

a dependence makes network design difficult. Rapid advances in network technology

and changes in individual network features further complicates the design decisions.

A detailed understanding of the dependencies and the effect of the choices on the

network performance is essential to design a good network.

Appropriate performance studies help both the system designer and the user. The

studies will help the system designer in understanding the drawbacks of the current

architecture, and to come up with better network designs for future systems. The

studies also help a user to get a better and deeper understanding of the factors that

will degrade the communication performance when his application is run on modern

multicomputers. Such an understanding will enable him to get the best possible

performance on a given machine for his application. In this section, we briefly review

the performance studies done so far and explain why there are still many questions

about the performance for which answers are not clear. The discussion also explains

the motivation for our thesis.

Researchers have attempted to compare the performance of different switching
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techniques suggested for direct networks of multicomputers. Simulation studies have

been made considering small hypercube systems [46, 26, 49, 15]. Results show that

adaptive circuit switching and wormhole routing perform well for small systems hav-

ing less than a hundred nodes. The studies do not consider larger systems. Re-

cently, experimental results are available about the performance of iPSC/2 [13], a

second-generation hypercube multicomputer that uses Direct-connect (a type of cir-

cuit switching) technology [66]. The results show that path lengths have negligible

effect, and that the communication rate is about 5 times better than that of the

iPSC/1. The results also show that contention for network channels can be a serious

problem. The experiments were run on a small system having less than a hundred

nodes.

Fixed routing schemes have been suggested that make the wormhole-routed net-

works deadlock-free. A general scheme has been suggested based on virtual channels

which avoids deadlocks [36]. All channels are appropriately numbered and the fixed

routing scheme is designed such that it always routes a message from a higher num-

bered channel to a lower numbered channel. Circular waits are thus avoided, making

the network deadlock-free. The scheme can also be used for circuit-switched networks.

The fixed routing scheme, however, fails to utilize all the channels and can result in

increased contention for network channels. Virtual channels have been suggested to

improve the performance under contention [34]. Virtual channels have also been used

to provide adaptive routing schemes [52, 60]. A new adaptive routing scheme has

been suggested for which network traffic is shown to saturate at 80% network capac-

ity instead of 40% capacity if we use fixed routing [65]. Multicast communication

that reduce network traffic has been suggested and evaluated [59, 58].

Recently, different network topologies have been compared considering their suit-

ability to implementation [69, 62, 31, 33]. Different studies show that the wire density

is an important implementation constraint. Hence, the network topologies have been

compared assuming constant wire density [31, 33]. The studies clearly indicate the

advantage of simpler networks such as the 2D mesh or torus over richer topologies

such as the hypercube. Simpler networks can be designed to have higher bandwidth
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channels for a given wire density than rich networks. Higher bandwidth channels

result in higher communication rates between adjacent nodes. Dally has recently

compared various members of k-ary n-dimensional torus networks, which include 2D

torus and hypercube, to determine the best dimension for a given network size [33].

The studies assume wormhole routing and uniformly distributed messages, and con-

sider the effect of path length and the difference in channel bandwidths. The results

show that the best dimension is 2 or 3 for systems up to ten thousand nodes. All these

studies have resulted in a 2D or 3D mesh or torus topology being used for networks

of modern multicomputers in place of a hypercube network used earlier.

High bandwidth channels of simpler, high-diameter topology networks enable

them to provide higher performance if contention is negligible. Smaller number of

channels and fixed routing, however, may result in increased contention and reduced

performance. A recent study by Dally shows that 2D mesh performs better than

hypercube even if we consider the effect of contention for the network channels for

system sizes up to 4K nodes [33]. The theoretical study has been supported by simula—

tions. The results hold only for uniformly distributed communication; an assumption

made in the studies. Even though uniformly distributed messages give a common

ground to compare different topologies, in reality it is difficult to achieve. Traffic will

be non-uniform. Some nodes will suffer from contention more than others, and they

can degrade the overall performance of an application. Hence, it is necessary to study

the nonuniformities in network traffic and the effect of such nonuniform traffic on the

network performance.

Current results also indicate that contention may become a serious problem for

large systems [13, 33, 10]. Parallel algorithms are designed to be scalable. Hence,

an individual node running a parallel task will have the same message injection rate

irrespective of the system size. The network traffic [33], which is inversely propor-

tional to the path length, will then increase with the system size. Results show that

communication time increases exponentially once the network traffic reaches a certain

threshold. Hence, we can expect a saturation effect at lower message injection rates

for larger systems. Large systems are not yet available, and we do not have a clear



10 svste

the last

a 1961:]

II a At

L

35 com:

(7:13.11:

at a ree



17

idea of the message injection rates at which the saturation effects will be visible for

a given communication pattern and system size.

The performance also depends on mapping—the way parallel tasks are assigned

to system nodes. The problem of mapping has been explored by many researchers in

the last decade in order to find the effect of mapping and to find the best mapping

[9, 6, 12, 44, 72] Most of these studies have concentrated on minimizing path lengths

as communication time increased linearly with path length. For a given mapping,

communication may be appropriately routed to ensure utilization of channels remain

at a reasonable level, and none of the channels are becoming a bottleneck [8, 11]. It

has also been claimed that the mapping problem no longer exists in second generation

multicomputers [75]. The claim is based on the observation that the path length effect

is negligible, and that the peak node injection rates are limited. Even though the

claim seems to hold for current, small systems, it is not clear if random mapping is

sufficient for large, future systems having hundreds (or thousands of nodes. Future

systems can also have higher message injection rates as a result of improved node

architecture and reduced fixed overheads per message. Mapping will decide the exact

communication pattern for a given application and the non—uniformity in network

traffic, and random mapping may result in saturation of network channels. A careful

mapping and routing may balance the utilization of channels and network traffic,

and hence avoid saturation of channels and the consequent exponential increase in

communication times. It is necessary to study how non-uniformity depends on the

mapping and how it increases with the system size.

We find that most of the performance studies done so far are from the system

designer perspective, and help the system designer to make correct design choices.

The performance studies do not give sufficient information for the user to run his ap-

plications well on the second-generation multicomputers, and ensure the best possible

communication and overall performance.
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1 .5 Thesis Overview

We explained in Section 1.3 that direct communication networks used in second gen-

eration multicomputers are quite different from that used in first generation multi-

computers. The discussion clearly showed that the choices of network features are

dependent on one another, which makes network design difficult. In addition, changes

in one network feature will influence changes in other network features. Section 1.4

explained that performance studies of modern networks are still inadequate and that

many questions related to network performance remain unanswered. This thesis is an

effort to improve our understanding of the performance of communication networks

used in second generation multicomputers. Results from our studies will complement

the results already available. In particular, we investigate the following important

research issues about the network performance.

1. Performance of large, mesh-connected networks: Second generation multicom-
 

puters are using 2D/3D mesh or Torus networks instead of hypercube network. We

do not have much information about the performance of mesh-connected wormhole-

routed networks. The impact of the transition from hypercube networks to 2D or 3D

mesh networks on the user is also not clear. Currently only small second generation

multicomputers having less than a hundred node are available. Larger systems are

expected in the near future.

2. Contentien end Non-nniform fI'taffic: It is not clear how the contention problem

scales up with the system size, and whether the effects of contention will be more

easily visible in larger systems. We need to be able to model and predict the effect

of contention on network performance. The results will be useful to a user of second-

generation multicomputers in ensuring the best possible communication performance.

Non-uniformity in traffic also needs to be modeled and analyzed to understand the

variation in performance, and to predict the performance of the worst-case node.

3. The Mapping Problem: For second-generation multicomputers, minimizing

path lengths no longer seems to be important, and random mapping seem to be

good enough. Contention for network channels depends on the mapping, and hence
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a. mapping can affect the communication performance if the effect of contention is

visible. We may need to redefine the mapping objective based on contention rather

than on path length. It would be useful for a user to have a quick way of deciding if

random mapping is sufficient for a problem at hand.

The three issues are related as we see later. The thesis is organized as follows. In

Chapters 2 and 3, we study theoretically several issues that affect the communica-

tion performance. Theoretical studies provide a rough estimate of the performance.

However, it is difficult to develop exact models to accurately predict the performance

for many cases. Experimental and simulation studies are needed, which also help

in validating the theoretical results. The theoretical studies are complemented by

experimental studies in Chapter 4, and by simulations in Chapter 5.

In Chapter 2 we study the improvement in performance provided by simpler,

high-diameter topology networks over richer, low-diameter topologies [19, 23, 17].

We do this by comparing the performance of two typical networks: hypercubes which

represent rich topologies that have been quite popular and 2D mesh networks that

represent a simple topology highly suitable for implementation. We take into consid-

eration the difference in bandwidth, the effect of the switching technique, path lengths

and contention for network channels. Results show that mesh networks are capable

of O(N log N) improvement in performance. Path lengths are negligible as long as

message lengths are much longer than path lengths. However, increased contention

for network channels reduces the performance, and may take away the advantage of

mesh networks.

We study the problem of contention for network channels for a given mapping

in Chapter 3 [24, 20, 22]. We model the contention for network channels, and the

nonuniformity in traffic in terms of path contention level and relate mapping to con-

tention. We also show that the effect of contention is to put an upper bound on the

rate at which messages can be injected into the network by a node—measured by

node traflic. For a given communication pattern and mapping we show how to com-

pute the saturation node traffic. We also analyze the case of random mapping, and

show that random mapping may not be advisable for large systems having hundreds
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or thousands of nodes that use mesh networks. Careful mapping and routing will

reduce contention and nonuniformity in traffic and increase the saturation levels for

node traffic. We illustrate the advantage of a careful mapping in the case of several

common communication patterns. We also develop a software module based on the

theory which computes the upper bound on node traffic, and nonuniformities for a

given communication pattern, and mapping.

In Chapter 4, we describe several experiments we conducted on a second-

generation mesh-connected multicomputer, and analyze the results [21]. The exper-

imental results demonstrate the performance offered by the modern mesh-connected

wormhole-routed multicomputers at the user level. The results confirm that the effect

of path lengths are negligible, and that the effect of contention may no longer be neg-

ligible as suggested by theoretical studies. The experimental results agree well with

the theoretical results, and hence validate theoretical analysis in the earlier chapters.

Analysis of the the results indicates that high, fixed overheads and smaller system

sizes are currently limiting the effect of contention, and that the contention prob-

lem will be more serious in future, larger multicomputers. The studies identify other

architectural drawbacks in current networks, and suggest improvements needed in

future networks.

In Chapter 5, we describe a high-performance simulator that can be used to study

the performance of large future multicomputers not yet available [25]. We discuss

the design of the simulator to show that the design is flexible and efficient. The

simulator implements all the essential features of a wormhole-routed network, but

can still simulate large networks in reasonable time. Several simulation experiments

were done to investigate questions about the network performance. The results of

the experiments are presented. The experiments demonstrates the usefulness of the

simulator. The results agree with the theoretical as well as the experimental results

given in earlier chapters, thus assuring the credibility of our results. Finally we

conclude our thesis and suggest some interesting research problems.



Chapter 2

COMMUNICATION

PERFORMANCE :

CONTENTION-FREE CASE

In this chapter, we analyze the simpler case of contention-free communication. We as-

sume that there is no contention for network channels or any other network resources.

The communication time then depends on the bandwidth of network channels, path

length and the switching technique used. The channel bandwidth depends on the

network topology, so communication performance depends on the network topology.

We illustrate this dependency by analyzing the improvement in performance provided

by 2D mesh networks relative to hypercubes. The analysis can be easily extended to

evaluate the performance of other networks such as the 3D mesh.

We first introduce our notation in Section 2.1. In Section 2.2, we describe how

implementation constraints can be taken into account in the analysis. The perfor-

mance of mesh networks relative to hypercubes is analyzed in Section 2.3. Finally, in

Section 2.4 we summarize the results of this chapter.

2.1 Terms and Notations

We already introduced the notations L, D, N, and rm in previous chapters which

represent message length, path length, number of nodes in the system, and com-

munication time per message respectively. In addition, we introduce the following

terms and notations that will be used later in the analysis. We make the following

assumptions about the network which hold for most implementations.

o All network channels are identical and have the same bandwidth.

21
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o The transmissions are error-free.

Definition 2 Channel width, denoted by W, is the number of bits that a physical

channel can transmit simultaneously between two adjacent nodes.

Definition 3 Channel rate, denoted by R, is the peak rate in bits/sec at which bits

can be transferred over the individual lines of a physical channel, and is equal to the

reciprocal of the time delay to transfer one bit.

Definition 4 Channel bandwidth, denoted by B, is the peak rate in bits/sec at which

data can be transmitted over a physical channel between adjacent nodes. Channel

bandwidth is equal to product of channel width and channel rate, i.e. B = W x R.

Definition 5 Message aspect ratio, denoted by A, is the ratio of the message length

to the channel width, i.e. A = L/W.

Definition 6 Header length, denoted by H, is the length of a message header (gener-

ated and used by the communication network) in number of bits. For current systems,

H is typically 1—4 bytes.

Definition 7 Network latency, denoted by n, is the time from the instant the first bit

of a message leaves the source PE to the instant the first bit reaches the destination

PE.

Definition 8 Network message time, denoted by TM, is the time from the instant the

first bit of a message arrives at the destination PE. to the instant the last bit of a

message arrives at the destination PE.

Definition 9 Network delay, denoted by Tn, is the total network delay for a message.

We have 1“,, = 1'; + TM.

Communication time per message, rm, will be sum of network delay and the

processing delays per message at the source and the destination nodes. Since, we

are not interested in studying the node architecture and its effect on communication
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time, we assume that communication time per message is equal to network delay, i.e.

Tm = 7'". However, fixed overheads at the source and the destination nodes can be

accounted for by adding them to the computation time between messages.

Definition 10 Effective Bandwidth, denoted by E, is the rate at which a message

can be transmitted between the source and the destination; it is equal to the ratio of

the message length to the network delay, i.e. E = L/rn.

Any parameter with a superscript h(m) indicates its value for a hypercube (2D

mesh) network.

Definition 11 Channel bandwidth ratio, denoted by R5, is the ratio of the channel

bandwidth of a mesh network to that of a hypercube network of the same size, i.e.

R, = Bm/B".

Definition 12 Effective bandwidth ratio or Speedup, denoted by Re, is the ratio of

the efl'ective bandwidth for mesh network to that of a hypercube, i.e., Re = Em/E".

Note that effective rates and speedup depend on the specific case under consider-

ation. We use the speedup as the metric to compare the performance, and show how

to derive the speedup for various cases in later sections.

2.2 Wire Complexity

A major implementation problem is the wires that connect various components of a

system. In a large concurrent system, most of the wires will be the communication

wires that connect different nodes of the system. The complexity of the connection

is limited by the maximum wire density possible. The communication rates are

limited by the wire lengths, and the majority of the power consumed by the system is

used to drive the wires. Concurrent systems are therefore wire-limited [33, 31]. Any

reasonable analysis of network performance should account for the wire complexity.

Recently, several researchers have suggested ways to account for the wire complexity

in theoretical analysis of the performance of communication networks of concurrent

Systems [62, 69, 31, 33].
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2.2.1 Wire Density

First, we should be able to relate wire density to topology and system size, and

measure wire density. The following definitions help us to quantify and define a

metric for the wire density.

Definition 13 A linear layout of a concurrent system is a I-to-I mapping of the N

nodes onto the integers 0—(N-1)

A linear layout in which node i is mapped onto integer i is called the identity

layout.

Definition 14 For a given linear layout and k, cut width is the number of edges

connecting a processor numbered less than or equal to k, to a processor numbered

higher than k, and is denoted by n(k).

Definition 15 The bisection width of a topology, denoted by m, is the minimum

value of 17(N/2) taken over all possible linear layouts of the given topology.

Definition 16 Bisection density is the product of bisection width and the width of a

channel i.e m, x W.

Bisection density denotes the minimum number of wires needed to connect any

two halves of a system. Researchers have proposed bisection density as a measure of

wire density [31, 33]. Hence, different network designs can be compared by assuming

equal bisection density. Here, we use a more general metric, peak density defined

similar to bisection density.

Definition 17 The peak width for a given linear layout is equal to the maximum

value of cut width, i.e. m k; n(k). The peak width of a topology, denoted by 17",, is

the minimum peak width over all possible linear layouts.

Definition 18 Peak density is the product of the peak width and the width of a chan-

nel, i.e 17m x W.
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We denote the value of k which gives the maximum cut width by km. We can

compare different topologies assuming same peak densities. We then find that the

width of a channel will be inversely proportional to the peak width of the network

topology.

 

   
a I

Peak Width Bisection Width

8-Nodc Hypercube A linear Layout of 8-node Hypercube

 

Figure 2.1: Linear layout and wire density : An example

  
 

Figure 2.1 shows the identity layout of an 8-node hypercube. The bisection width

and the peak width are 4 and 5 respectively for the given layout. For an 8-node mesh

(4x2), the values will be 2 and 3 respectively for an identity layout. For a given

topology, the peak width is a function of the system size. We now derive peak width

for hypercube and 2D mesh.

Let us consider the hypercube topology first. The dimension of the hypercube is

denoted by n so N = 2". Let ni(k) denote the cut width if we consider only the 2""

dimension edges of the hypercube so that

We) = ink) on
i=1

It has been shown that the identity layout gives the minimum cut width for the

hypercube topology [47], but the value of nm is not derived for the identity layout.

Before we can derive the value of nm for the identity layout, we have to find the value

of km, value of k for which 17,. is maximum (2 nm).

For the identity layout of an N-node hypercube topology, observe the value of

ni(k) as It increases. We find that 111(k) increases from 1 to 2""1 and then decreases
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to 0, and the cycle repeats. We can state this observation precisely as

n‘(k) = min(k + 1,2i — 1 — k) where k = (k tnod 2‘) and 0 S k S N — 1 (2.2)

Hence, n‘(k) = 7: +1 over the range 0 S k < 2i/2, and n‘(k) = 2‘ — 1 - k over

the range 2‘/2 S k < 2‘.

Lemma 1 The cut width for an identity layout of hypercube is symmetric if we leave

out the last value 17(N — 1), i.e. n(k) = n(N — 2 - k) for 0 S k S N — 2. The

symmetric property also holds for edges of each dimension, i.e. 17‘(k) = n‘(N —

2 — k)for1SiSn andOSkSN—2.

Proof: We prove the lemma by induction on the dimension of the hypercube.

Eagle : For n = 1 (N = 2), we have the cutwidth values 17(0) = 171(0) = 1 and

77(1) = 171(1) = 0 which satisfy the lemma.

Hypothesis : The lemma holds for an (n — 1)-dirnension hypercube, i.e n‘(k) =

17"(2"'1 — 2 — k) for 0 S k S 2'”1 — 2, and hence 17(k) = 17(2"'1 — 2 — k).

Indnetign : Consider n-dimension cube, N = 2". First, consider the highest, i.e.

 

nth dimension edges. We can show that n"(k) satisfies the symmetric property. From

Equation 2.2, we have for 0 S k S N - 2

n"(k) min(k +1,N -1-— k)

as k=(kmed2")=(kmedN)=k and 2"=N

= min(N -— 1 — k, k + 1) ; after swapping the two terms

= min((N — 2 — k) + 1), N — 1 — (N — 2 — k)) ; after rewriting the terms

= 1;“(N — 2 — k) ; by Equation 2.2 (2.3)

Next, consider the lower dimension edges, i.e. i < n, we have from Equation 2.2

nl(k) = 71"(2"’1 — 2 — k) from the induction hypothesis

= 17:72“ + 2'"1 — 2 — k) as a: mod 2" = (a: + 2'“) mod 2‘

= n‘(2" - 2 — k)
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= new — 2 — k) ve < n (2.4)

From Equations 2.3 and 2.4 we have n‘(k) = n‘(N — 2 — k) for 1 S i S n. Com-

bining this result with Equation 2.1, we have n(k) = 17(N — 2 — k), and induction

completes the proof for the lemma. E]

Due to the symmetry of the cut width values, we find that peak width should

occur in both halves of the layout. Hence, we have the following corollary.

Corollary 1 The peak width for an identity layout of the hypercube occurs in the first

half of the layout, i.e. 0 S km S N/2 — 1.

The next lemma restricts the possible value of km further.

Lemma 2 The cut width for an identity layout of an n-dimensional hypercube, 17(k),

is related to the cutwidth for an identity layout of an (n — 2)-dimensional hypercube,

"’06): as

11(16) = N/2+77’(lc—N/4)Zn(lc—N/4) Vk N/4Slc<N/2

Proof: From Equation 2.1, we have

n-2

We) = n"(k) + n"‘1(k) + Z 17"“) (2-5)
i=1

We can use Equation 2.2 to find the values of the terms on the RHS of the above

equation, for the range of k values considered (N/4 S k < N/2).

n"(k) = min(k+1,2"—1—k) ;as k = kmod2n=kmodN=k  

= k+1; as 2”—1—k2k+1 (2.6)

Similarly, we can show in case of the second term of Equation 2.5 that

Wu) = min(k+1,2"“1—1—k) = 2"“-1-k (2-7)
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as 2""1 — 1 — k 2 k + 1 for the range of k values considered

In case of the third term on the RHS of the Equation 2.5, we have

n‘(k) = n‘(k — N/4) as k mod 2i = (k — N/4) mod 2‘ (2.8)

We can use Equations 2.6, 2.7 and 2.8 in Equation 2.5 to get the following result for

N/4 S k < N/2.

n—2

n(k) = (k +1) +(2"“- 10+ 2(n( —)N/4
i=1

n-2

= 2""1 + Z n’(k - N/4)
i=1

= 2'”1 + n'(k — N/4) ; by Equation 2.1 (2.9)

By a similar argument, we can show that if 0 S k < N/4

We) = ra) + n“‘1(k) + Era)

= (k +1) +(k + 1) +71%)

3 2"") + 2"-2 + n’(lc)

_<_ 2""1 + n’(k) 0 s k < N/4 (2.10)

or 17(k — N/4) 2 2"”1 + 17(k — N/4) ; N/4 s k < N/2 (2.11)

Using Equation 2.11 in Equation 2.9, we get

n(k)= 2"1 + n’(k— N/4) Z 17(k — N/4) (N/4 S k < N/2) (2.12)

which completes the proof. D

From the lemma it follows that nut) g ”(k + N/4) for o g k < N/4. Hence, 1:...

cannot occur in the range 0-(N/4 — 1). From Corollary 1, we know that km is in the

range 0 S k < N/2. Hence, we have the following corollary.



29

Corollary 2 The cut width is maximum in the second quarter of the layout, i.e.

N/4 S km < N/2.

We find that 17(k) reaches the maximum value at a value of (k+ N/4), if 17’ reaches

maximum at a value of k. From Lemma 2, the maximum values of 17(k) and 17’(k)

are related as given by the first part of its equation. Hence, we have the following

corollaries from Lemma 2.

Corollary 3 The values of km for n and n — 2 dimensional hypercubes {N and N/4

nodes) are related as km(N) = N/4 + km(N/4).

Corollary 4 The peak width of an n-dimensional hypercube is related to the (n — 2)-

dimensional hypercube as nm(N) = N/2 + nm(N/4).

We are now in a position to state and prove the main theorems. The next theorem

states the value of km.

Theorem 1 The cut width for an identity layout of an n-dimensional binary hyper-

cube is maximum when k = [N/3]

Proof: The proof is by induction on the dimension of the hypercube.

m : For a hypercube of dimension 1 (N = 2), the cut width values for the

identity layout are (1,0). We find that the theorem is satisfied as km = 0 = [2/3].

For a hypercube of dimension 2 (N = 4), the cut width values for the identity

layout are (2,2,2,0). The theorem is once again satisfied as km = 1 = [4/3].

Hypothesis : The cut width of an identity layout of an i-dimensional binary

hypercube is maximum when k = [2‘ /3] for all i S n.

Indnetien : Consider the n-dimensional hypercube (N = 2“). From Corollary 3,

we have

km(N) = N/4+km(N/4)

= N/4 + |_-N—3/é ; by the induction hypothesis

2 [N/4 + (N/4)/3] ; since N/4 is an integer

lN/3l
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and induction completes the proof. ' D

The next theorem gives the value of the peak width.

Theorem 2 The peak width for an n-dimensional hypercube topology is [2N/3] .

Proof: As mentioned earlier, it has already been proven that the identity layout

gives the minimum peak width. Hence, we only have to prove the theorem for the

case of the identity layout. We once again prove the theorem by induction on the

dimension of the hypercube.

m : For a hypercube of dimension 1 (N = 2), the cut width values for the

identity layout are (1,0). We find that the theorem is satisfied as nm = 1 = [(2 x 2)/3] .

For a hypercube of dimension 2 (N = 4), the cut width values for the identity

layout are (2,2,2,0). The theorem is once again satisfied as 17m = 2 = [(2 x 4) /3].

Hypothesis : The peak width for an identity layout of an i-dimensional binary

hypercube is 17m = [_(2 x 2‘) /3] for all i S n.

Induction : Consider the n-dimensional hypercube now. By Corollary 4, we have

nm(N) = N/2 + nm(N/4)

= N/2 + [2N/(3 x 4)] ; by the induction hypothesis

.—_ [N/2 + N/6] ; as N/2 is an integer

i4N/61 = i2N/3J

and the induction completes the proof. C]

Now that we have proven the peak width of the hypercube topology, we consider

the peak width for the other topology—2D mesh.

Theorem 3 The peak width for an identity layout of a 20 square mesh of size N

(x/Nxfo) isx/IV+1.

Proof: Consider the identity layout for a 2D mesh network, in which a node

(i,j), 0 S i,j < W is mapped onto the integer ix/N+j. Let 170(k) and 171(k) denote
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the contribution to the cut width by dimension 0 (row) and dimension 1 (column)

edges of the mesh so

7706) = 770(k) + 771(k) (2-13)

 

(0,0 091) fl$lO/N'1)

/ | \/N X \/l_Vmesh

O

/ Rio) (WN-ln/N-l)

1 -1

 

Figure 2.2: Identity layout of 2D mesh   
 

The identity layout of 2D mesh is shown in Figure 2.2 which is basically a row-

major layout. A little observation shows that

17°(k) = o if (lc+l)110_d\/N=0,

= 1 otherwise (2.14)

171(k) -_- k+1 OSkSW-Z

= \/N W—lskS(N—W—l)

= N—k—l (N—x/N)SkS(N—1) (2.15)

From equations 2.13, 2.14 and 2.15 we find that maximum value of cut width or peak

width is x/N + 1 which proves the theorem. C]

We assume that the identity layout gives the lowest peak width, and hence the

peak width for mesh topology is W + 1 as proven in Theorem 3. Theorem 2 and 3

shows that the peak wire density of the mesh and hypercube are of O(x/N) and O(N)
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respectively. We have the following theorem if networks are limited by wire density.

Theorem 4 Mesh networks can have 24? wider channels than hypercubes for the

same wire density.

Proof: We can get the ratio of channel widths by equating the peak wire

densities for the hypercube and the 2D mesh. By using the definition of peak density

from the previous section (Definition 18) and the values of the peak width for the

hypercube topology (Theorem 2) and 2D mesh (Theorem 3), we have

(x/N+1)W"‘ = [2111/3] W"

Wm _ 2W
_~———_

2N/3

Wh ~ WV _ 3

which completes the proof. Ci

2.2.2 Wire Length

Apart from wire densities, we must also account for the effect of the length of the

wires on the communication rates. Three models have been suggested by researchers

[33] to relate the wire lengths to the communication rates. In the constant delay

model, we assume that the rate is independent of the the wire length. This model is

appropriate if wire lengths are small. In the linear delay model, which is appropriate

if wires are long and propagation delay is the limiting factor, rates are assumed to be

inversely proportional to the wire lengths. For medium wires, the logarithmic delay

model is used where rates are inversely proportional to the logarithm of the wire

lengths. Since wire lengths are shorter in 2D meshes than in hypercubes, linear or

logarithmic delay models make the communication rates in 2D meshes greater than

in hypercubes. We assumed that all physical channels of a network are identical so

they are designed to operate at the same rate. Hence, the longest wires (worst case)

determine the communication rates. The ratio of the length of the longest wires in
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mesh and hypercube can be calculated from the topological properties, which will

give the ratio of the communication rates for the three delay models.

Theorem 5 The ratio of the length of the longest wire of a hypercube network, 1", to

that ofa mesh network, 1’", of the same size will be at least (V2N — \/2)/lg N, if we

use a two dimensional layout.

Proof: Without loss of generality assume that a node can be laid out in a

square area of size a x a units. The best way to lay out a mesh network is x/N

rows by \/N columns, so each wire will be of length a (if assumed to be equal to the

distance between the centers of the layouts). On the other hand, the best lay out for

hypercube is not immediately obvious. Here, we derive a lower bound on the length

of the longest wire. In the case of a hypercube network, the most compact layout

will again be in a square area of \/Na x x/Na assuming a 2D layout. This is true

as we have a total layout area of Na, and a square layout minimizes the distance

between diagonally opposite corner nodes. The distance between the centers of the

farthest nodes (diagonally opposite corner nodes) will then be (M — \/2)a. The

maximum path length between any two nodes in a hypercube, and hence the diago-

nally Opposite corner nodes, can be at most lg N. Hence, we get that the length of

each of the wires along the path between diagonally opposite corner nodes must be

at least ((x/2N — J2) x a)/ lg N. Hence, the ratio of the lengths of the longest wires

must be at least ((x/2N — \/2) x a)/(lg N x a), which proves the theorem. CI

The observation of the lengths of the wires in the two networks leads to the

following theorem on the ratio of channel rates.

Theorem 6 The ratio of the channel rate of a mesh network to that of the hy-

percube network for linear, logarithmic, and constant delay models is given by

(V2N - fifllg N, (3.89 + lg(N) — 2lg(lg N))/2.89, and 1 respectively.

Proof: For the constant delay model, the ratio is 1, as channel rates do not depend

on the wire length. In the case of the linear delay model, channel rates will be inversely
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proportional to the wire lengths. The ratio of channel rates then is the same as the

ratio of the longest wires in the two systems which is derived in Theorem 5. In the

case of the logarithmic delay model, the ratio Rm/Rh will be (1 + 1n 1"/1'"), where

lh(lm) is the length of the longest wire in a hypercube (2D mesh) [33]. Hence

rem/Rh = (1+1n(z’:/1m))

z 1 + 1n (Vii—V7 lg N) ; from Theorem 5

= 1+ 0.5ln(2) + 0.5ln(N) - ln(lg N)

= 1+0.5/lgex(1+lgN+2lg(lgN))

= (3.89 + lgN + 2lg(lg N))/2.89

which completes the proof. . C]

2.3 Performance Comparison

We now derive expressions for the speedup provided by the mesh network over the hy-

percube network when both are of size N. The derivations are done at three levels as in

the experiments to measure the network performance (Chapter 4). First, contention-

free adjacent node communication is considered. Such a speedup is achieved for

applications that naturally map onto the mesh network resulting in communication

between adjacent nodes only. We then consider contention-free, non-adjacent node

communication. Here, communicating nodes are no longer adjacent so communication

performance is affected by path length D. Such speedup is achieved for applications

that are not communication intensive so the efiect of contention for network channels

on communication performance can be neglected. Finally, we consider the speedup

while allowing contention for network channels.

By the definitions of effective bandwidth and speedup from Section 2.1 (Defini-

tion 10 and 12), we have

R¢=—=—”—=—" (2.16)
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We can therefore derive the speedup by computing the time taken to communicate a

single message of length L for the case under consideration.

2.3.1 Contention-free Adjacent-node Communication

When all communication is limited to adjacent nodes only, we have the path length

D = 1. In addition, there is no contention for network channels. In such a case we

have from Equation 2.16

T: (L+Hh)/Bh
 

(L+H") ~
since L>>H, wehave f=(L+Hm)~ 1 (2.17)

We find that speedup is almost equal to the channel bandwidth ratio, which in turn,

is the product of the ratio of channel bandwidths and the ratio of channel rates from

the definition i.e. m ‘

e = a = (t?) x (a) m
We can multiply the results of Theorems 4 and 6 to get the ratio of channel

bandwidth for all three delay models: constant, logarithmic, and linear. The results

obtained are stated in the following theorem. (In the case of the linear delay model, we

have ignored the term \/2 in the numerator for the ratio of channel rates (Theorem 6)).

Theorem 7 The ratio of channel bandwidths of a 2D mesh network to that of a

hypercube network for the three delay models are given in the Table 2.1.

 

 

 
 

    

Delay Model Constant Logarithmic Linear

R 31‘}: \f1\7(:3.139+152 ~41QO N1) zlgw

b 3 4.33 3152 N
 

Table 2.1: Ratio of Channel Bandwidths for the three delay models

From Equation 2.17, the speedup R6 for contention-free adjacent—node commu-

nication is approximately equal to the channel bandwidth ratio given in Table 2.1.
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As a result, we find that the speedup is a function of the system size. From the

Table 2.1 we find that the speedup increase as O(x/N), O(x/ng N) and O(N/ 1g N)

for constant, logarithmic and linear delay models respectively. In Table 2.2, we give

the speedup value for different system sizes. The speedup is appreciable for systems

having hundreds of nodes.

 

 

 

 

 

 

 

 

 

 

          

Speedup (Re)

N $17,- Linear Logarithmic Constant

delay delay delay

64 11 10.4 8.9 5.3

128 18 17.2 13.7 7.5

256 32 30.2 21.8 10.7

512 57 53.7 34.1 15.0

1024 103 97.1 53.6 21.3

2048 187 176.3 83.3 30.1

1.1096 341 321.8 129.6 42.7
 

 _;

Table 2.2: Speedup (Re) for different system sizes

Table 2.3 shows the channel widths and channel rates for several commercial

systems. The ratio of channel widths and rates agrees with that predicted by analysis

(Table 2.1). For example, if we compare iPSC/l and MRC, both of which can have

up to 128 nodes, the channel width ratio 8/1 = 8 and channel rate ratio 20/ 10 = 2.

The channel width ratio is equal to R, for the constant delay model. From Table 2.2

for N = 128, we find channel width ratio is 7.5 (value of R.3 for the constant delay

model) which matches the actual value 8. From Table 2.2 we can also derive the ratio

of channel rates, assuming the linear delay model, by dividing the value of Re for the

linear delay model by channel width ratio. Hence, the channel rate ratio for N = 128

is 17.2/7.5 z 2, which also matches the actual ratio. We find that the results of the

analysis gives a reasonable estimate of the increased bandwidth possible by using a

2D mesh instead of a. hypercube network for a given system size, when we consider

the suitability of the network for implementation.

In the subsequent sections, we show that speedup will be lower than the channel

bandwidth ratio due to longer path lengths and contention for network channels. In
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System ] Network Topology ] W ] R ] B = WXR []

Ametek(sys 14) hypercube 1 3 3

iPSC/ 1 hypercube 1 10 10

Torus 2D Torus 8 8 64

MRC 2D mesh 8 20 160

iWarp 2D mesh 32 10 320

NDF 2D mesh 9 50 450
 

Table 2.3: Channel width, rate and bandwidth for some commercial systems

fact, the channel bandwidth ratio is an upper bound for the speedup, i.e. R.2 S Rb.

From now on, we will assume the constant delay model and use the corresponding

value for the channel bandwidth ratio, as they have been found to be appropriate for

current technology and system sizes [33].

2.3.2 Contention-free Non-adjacent-node Communication

For many applications it may not be possible to map the communicating tasks onto

adjacent nodes. The path length will be more than 1 in such a case. If communication

is not frequent, contention can still be ignored. We analyze the speedup for such a

case in this section.

The network latency will be the time taken by the header flit to reach the desti-

nation node. For each hop, communication time for the header is H/B. For a path of

length D, the network latency will be D x H/B. The data flits follow the header in

a pipelined fashion. Hence, once the message header arrives at the destination node,

remaining data flits arrive at the rate of B. The total time for all the data flits will

then be L/B. Hence, the network delay for communication over a path of length D

will be

rn=rz+rM=DxH/B+L/B=(DxH+L)/B (2.19)

The speedup can be derived as it is the ratio of the communication times. From
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equations (2.16) and (2.19), we have

r" B’">< DhH + L Dh + L’

= _n = —- —= 2

R‘ 7,71 B—h' xDmH + L :3, x Dm + L’ M" ( 20)

Dh + L’

where L'=L/H and f=m

Normally, D’" 2 D". Hence, we find that speedup is a fraction of R5 (Re S Rb),

and the value of the fraction f depends on the message length (expressed in units of

header length) and the path length. If the header length is one flit, then L’ will be

the length of the message in flits. Let Davg and Dmar be the average and maximum

path lengths in a hypercube and a 2D mesh. The values of Davg and Dm“ are known

for 2D mesh and hypercube networks [65, 33], and are stated below.

Dgg~2\/_/3 Dmax=2(‘/1-V—1)

h h (2.21)

D...=1s N/2 Dm..= ls N

The speedup can be expressed as a function of systemsize for various message

lengths by substituting the values of Rt (from Theorem 7) and the values of the

distance from Equation (2.21) into Equation 2.20. The speedup for an average node

(Dm = D39, Dh= Davy) and a worst case node (Dm = D3”, Dh= Din”) are given

by the following equations.

 Re X23((2lf/11:V:231L’)) (average case) (2.22)

Re -_- Rb x (lgN + L) (worst case) (2.23)
 

2(\/1_V_-l)+L’

The speedups are plotted for various message lengths in Figure 2.3. We observe

that as long as the message length is much greater than the path length, the path

length does not affect the speedup and R, = R1,. Experimental results in Section 4.2.2

later clearly confirm this conclusion. We assumed the header length to be 1 flit. If

the header is longer, the speedup will be further reduced for a given message length

(as L’ decreases for a given L).
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Figure 2.3: Speedup R, for contention-free non-adjacent node communication
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2.4 Conclusion

The results of our studies in this chapter leads to the following conclusions.

1. Mesh networks can be designed with one or two order higher bandwidth channels

than hypercube networks, and hence have the potential for greater performance.

2. Under contention-free conditions meshes perform better than hypercubes due

to higher bandwidth channels except when message sizes are comparable to

path lengths. Applications that either map naturally onto a mesh or are not

communication intensive can benefit from mesh networks.

However, increased contention in mesh networks may make meshes perform worse

than hypercubes. The contention problem scales up with the system size so the

performance of large networks is more sensitive to contention. In the next chapter,

we show how to model the the effect of contention on the communication performance

for a given mapping.
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Chapter 3

COMMUNICATION

PERFORMANCE UNDER

CONTENTION

We study the communication performance of large multicomputers under contention

in this chapter. Contention can be a significant factor that determines the perfor-

mance of large mesh networks. We develop a framework to predict the effect of

contention for a given application and mapping. The results help to estimate the

saturation node traffic, and to find if the effect of contention is negligible or signifi-

cant. We also show that we will loose the speedup provided by mesh networks if we

use random mapping, and hence random mapping is not advisable in case of large

networks. We concentrate on 2D mesh networks in this chapter. However, our results

can be extended to networks that have 3D mesh or other topologies.

The chapter is organized as follows. In Section 3.1 we describe several key concepts

including the mapping problem, notations and assumptions that lay the foundation

for later sections. We model the performance for a given path of communication

(defined later) in Section 3.2. Several paths originate from a given node. Hence,

we use the performance model for a single path to compute bounds on the message

injection rates for various nodes in Section 3.3. We investigate the special case of

random mapping in Section 3.4. Results show that contention scales up with random

mapping, and is significant for large systems (having hundreds or thousands of nodes).

Hence, random mappingiis not advisable for large multicomputers. Optimal mappings

that minimize contention are given in Section 3.5 for several common communication

patterns. Contention is reduced significantly by a careful placing of parallel tasks, and

by routing various communications. We also describe steps in analyzing the effects of

41
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contention and the effect of mapping in Section 3.6. Finally, we summarize the main

results of this chapter.

3.1 Modeling Communication and Contention

The effect of contention on communication time depends on the communication char-

acteristics of an application, and the level of contention for network resources, In

this section, we model both which will help us later to estimate the degradation in

communication performance due to contention.

3.1.1 Communication Model

Parallel programs are usually designed assuming a specific topology such as a tree, a

ring, a 3D mesh, a hypercube and so forth. Hence, the communication pattern of a

parallel program can be represented by a process graph.

Definition 19 Process Graph, GP, represents a parallel program. The vertices de-

note the parallel tasks and the edges denote the communication between tasks.

Definition 20 System Graph, Gm, represents the concurrent system. The vertices

represent the nodes and the edges represent the communication channels.

We denote the set of vertices and edges of the process graph (system graph) by V(Gp)

(V(Gm)) and E(G'p) (E(G'm)) respectively. In general, G1, and Gm are different. The

system graph Gm is chosen based on implementation constraints, whereas Gp may be

any topology that suits the problem at hand. Hence, the problem of mapping arises.

Definition 21 Mapping Scheme, [1, decides the placement of the nodes of GP. It is

a function that maps the vertices of G1, to that of Gm, i.e. [1 : V(Gp) —+ V(Gm).

If we assume a fixed routing scheme R, then each edge of the process graph (v1, v2)

corresponds to a path between p(v1) and n(v2) defined below.
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Definition 22 A Path, p(e), is the image of an edge e = (v1,v2) of the process

graph for any given mapping p. The path is a sequence of edges of the system graph

(e1, e2, . . . , eD) defined by the routing function for communication between nodes p(vl)

and p(vg), where D is the path length.

We restrict the domain of our study by making the following assumptions about

the process graphs and mapping.

1. Process graphs, GP, have an adjacency matrix that is symmetric. Hence, the

indegree is equal to the outdegree for any vertex v, and is denoted by 6(v).

2. A task communicates uniformly with its neighbors in GP.

3. Message lengths are exponentially distributed.

4. Message generation on each path of 0,, is a Poisson process with an arrival rate

of A’ messages/sec.

5. The mapping function is one-to-one, i.e. every vertex (node) of the system

graph, Gm, is assigned at most one vertex (parallel task) of the process graph,

G’-

6. We assume that blocking communication is used, and that communication and

computations do not overlap.

These assumptions imply that a node of Gm communicates uniformly with only a

small set of other nodes of Gm onto which the neighbors (in GP) of the parallel task

running on that node are mapped. Two nodes that communicate during a run are

called peers. Assumptions 3 and 4, are made so we can analyze the performance

using queueing theory. Our results, however, apply quite well to other distributions

of message lengths and message interarrival times. The last assumption is made so

we consider the simpler case first. We can extend our results to the cases when the

last assumption may not be true.

One important characteristic of a process graph is its richness measured by the

total number of edges. Since we assumed the process graph to have a symmetric
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edge-matrix, we have an even number of edges in a process graph. Let E be equal to

half the total number of edges. The average and the maximum degree can be defined

by considering all nodes of the process graph. If Np denotes the number of vertices

in the process graph, then we have

6m: = i Z 6(v) 6m”: max 6(v) (3.1)

N, vet/(op) ”El/(6’)

Here, 6(v) denotes the indegree (equal to outdegree) of a vertex of GP. Observe that

2E is equal to sum of the degrees (outdegree or indegree) of all the nodes of the

process graph. Hence,

_ _1_ 2B
5... — N, ”Egg“ 6(v) = F; (3.2)

We see that E and 601,9 are related, and either one of them can be used as a measure

of the richness of a process graph.

In addition to the process graph, we need to model the communication intensity

of the parallel tasks to completely define the communication characteristics of an

application, and the effect of contention. We use the following notation.

o t represents the average time for local computations between two successive

message injections by a node.

L is the average length of a message.

7' is the communication time for a message of length L.

r’ is the value of r if the communication is contention-free. 0 is the factor by

which communication time has increased due to contention, i.e. 0 = r/r’.

T represents the average time between two successive message injections by a

node, i.e. T = t+ r.

T’ represents the average time between two successive message injections under

contention-free communication conditions, i.e. T’ = t + r’.

The following definitions help
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Definition 23 Applied path traffic, A,“ is the ratio of data generated on any edge of

G, in bits/sec under contention-free conditions to the capacity of a network network

channel, B, in bits/sec.

Definition 24 Applied node traffic, A,, is the ratio of the rate of data generated by

a vertex of G, (or Gm) in bits/sec under contention-free conditions to the capacity of

a network channel, B, in bits/sec.

Since a message of length L is generated by a node in T secs, we find that A, = LLg—Il.

Applied node traffic is the sum of the applied path traffic over all paths that originate

from the given node. We assumed that a node of G, communicates uniformly with 6

other nodes; so node traffic A, = 6A,“, where 6 is the degree (in G,) of the parallel

task running on the given node. Hence, A,“ = Aa/6 = (#511, Applied path traffic and

applied node traffic depend only on the application and the system constant B.

Contention will increase the communication time, and hence the time between

messages, T. This contention will reduce the path traffic and also the node traffic.

Hence, we have the following definitions for the traffic under contention.

Definition 25 Actual path traffic, A,, is the ratio of the rate of data generated on

any edge of G, in bits/sec to the capacity of a network channel, B, in bits/sec, i.e.

A __ [LIT]

P — B '

Definition 26 Node traffic, A,, is the ratio of the rate of data generated by a vertex

of G, (or Gm) in bits/sec to the capacity of a network channel, B, in bits/sec.

Similar to the path traffic, we find that A, = L99, and A, = 6A,. Observe that

A, S A, and A, S A,“ as T Z T’. The relation between 0 and A, can be found by

their definitions.

 

, = (M) = (L/B) = (L/B) = Tu.
" B T t+r t+r’+(0—1)T’

Au Aa

  

= 1+(0—1)T’/T’ = 1+(6—1)A, (3'3)
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We can also show a similar relation between A, and 6.

A = @531 = (L/B) = 5T'Ap.

B 6T 6(t + r)

Ape

= 1 + (9 _ 1))‘pe by proceeding as inA, derivation above (3.4) 

Since, 0 and A, are related, we can represent the effect of contention by the ratio

of A, to A,“ or by the ratio of A, to A,, instead of 0. As we see later, this way of

representing the effect of contention has some advantages.

We make the following assumptions about the system graph or the communication

network. Most of these are reasonable for current networks, and simplify our analysis.

1. All network channels (edges of G,,) have the same bandwidth.

2. All transmissions are error free.

3. Wormhole-routing or Circuit-switching is used. Header length is assumed to

be negligible compared to message length, and the time taken by intermediate

routers to process headers is assumed to be negligible compared to the overall

message transmission time.

4. A fixed deadlock-free routing scheme is used in which messages travel along the

row channels first, and then along the column channels.

5. Physical channels do not support virtual channels.

The last assumption is not true for some new mulitcomputers, such as iWarp. Our

analysis needs to be extended to cover those systems.

3.1.2 Contention Parameters

We define the following three parameters for a given G,, G,,, p and R which help us

to measure the contention for network channels.
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Definition 27 Channel load, x, for any edge e of G,,, which represents a network

channel, is the number of paths that share the given edge, i.e. x(e) = [{e’ : e’ E

E(G,,) A 6 6 P(€')}|-

Channel load helps in characterizing the non-uniformity in traffic through various

network channels, and gives an upper bound on path traffic A,. If the path traffic

along each path sharing a channel is A, then A, S l/x. The average and maximum

channel loads, denoted by x,,, and Xma, respectively, are defined considering the

various edges of the system graph. We have

1

Xav = —— x e Xma, = max x(e) (3.5
g ]E(Gm)| 66%,”) ( ) CEE(Gm) )

Channel load alone cannot characterize the contention. We define two additional

contention parameters—logical path length and path contention level—for an edge of

the process graph. First, we need to define the concept of path contention sets which

is used in the definitions.

Definition 28 For any edge e of G, which corresponds to a path p of G,,, the path

contention set 3,- is the set of paths that share with p at least one of the first i segments

(which correspond to channels.) of p.

Let path p = e1, e2, . . . , eD. Then the corresponding path contention sets 3;, 0 S i S

D, are defined as

so = 45, s, = 3,-1 U {file 6 p'} (3.6)

Here, 45 denotes the null set.

Definition 29 Logical path length (d) for any edge of G, is the number of path

segments in which at least one new path is “encountered”, i.e. d = [{i : 1 S i S

D /\ 3; ;£ 35-1“.

Definition 30 Path contention level, V, for any edge of G, is the total number of

paths that share at least one network channel with the given path, and is equal to

cardinality of the set 31), i.e. 1x = [81)].
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The logical path length is bounded by the physical path length D, and denotes

the number of queues (for network channels) at which a message on a given edge

of G, may have to wait. High values of logical path length indicate a possibility of

longer wait times.

The significance of path contention level is that a message on a given edge of the

process graph will be blocking messages on that many paths. Hence, path contention

level also puts another upper bound on the path traffic as A, S 1/(1/ + 1). As in

case of channel loads, we define average and maximum logical path lengths and path

contention levels considering all the edges of the process graph.

An example is given in Figure 3.1 to illustrate the contention parameters. The

figure shows a. random mapping of a 15-node binary tree (G,) onto a 16-node, 2D-

mesh system graph (G,,). The paths are shown in Figure 3.1.B for the tree edges from

parents to their children. We have only shown edges from parents to children in G,

to keep the example simple and the figures clear. In Figure 3.2, we present the values

of the contention parameters for this example. In Figure 3.2.A, the tree edges are

labeled by the triple (D, d, u). The mesh edges has are labeled by the corresponding

channel loads. The average and maximum values of the contention parameters for

the example are also given. Note that for this example d and u is same for all edges of

G, as G, is sparsely connected and maximum channel load is 2. In general, 1/ Z d.

@A”)9

this eee

A. Process Graph (15 node binary tree) B. System Graph (16 node 2D mesh)

 

Figure 3.1: An example of a random mapping
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Physical path length (D) 2.71

Logical path length (d) 1.00

Channel load (x) 0.79

Path contention levels (u) 1.00 N
M
M
O
‘

Average and Maximum values of contention parameters

Figure 3.2: Contention parameters for the mapping example

We later see that computing channel loads and path contention levels for a given

mapping can be useful in several ways.

3.2 Saturation Path Traffic

An exact analysis of the contention for network channels requires treatment of a

multiple server queuing system with a non-Poisson input process, and non-exponential

service times, and hence is very difficult. Here, we examine a simpler, analytically

tractable model used earlier to study circuit-switched networks [55]. This model can

also be used for wormhole routing as its behavior is similar to circuit switching (in

blocking mode) when the message lengths are much longer than path lengths. The

results show the effect of contention for a single path. The results based on this simple

model not only provide insight into the contention problem, but also can be used to

reasonably predict the performance as we show later.

Consider a single path of communication from a source node 5' to a destination
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router
  

  

 

   d mation

node

source

node

 

 
(13)

Figure 3.3: A simple contention model   
 

node D (Figure 3.3.A). The path goes over n physical channels and n - 1 interme-

diate nodes. In wormhole routing or circuit switching the header of a message will

progress from the source node to the destination node reserving the channels. All the

n channels must be reserved before a message can be successfully communicated. If

the header encounters a busy channel, it waits in a FIFO queue associated with the

channel. Assume that at any node there are k other paths over different incoming

channels needing the same output channel as the path under consideration. Con-

tention for a channel at an intermediate node can be modeled as an M/M/1 queue

(Figure 3.3.B).

Let :5,- and s".- be the random variables that represent the service time and the

overall delay (sum of wait time and service time) at the ith intermediate node. At

each intermediate node, the service time is equal to the overall delay at the next

node since processing overheads are negligible (Assumption 3), i.e. e, = 3,-1.1. We use

the generalized version of the independence assumption of Kleinrock to remove the

stochastic dependence of the service time of one node’s queueing system on that of

the succeeding node [57]. The assumption is
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Assumption: The distribution of service time at each of the queuing

systems shown in Figure 3.3.A is a negative exponential with the average

values stated in Equation 3.7, and is stochastically independent of the

service time of its succeeding nodes.

At each node i, the length of the message is assigned a new value from the exponential

distribution with the same average value of L at each node i even though the length

does not really change. We can then ignore the dependence of service time of any

stage on the service times of successive stages. The results obtained based on this

assumption have been found to be reasonable for networks with moderate connectivity

[57]. By virtue of our earlier assumptions, and this independence assumption, the

contention for a channel at each intermediate node can be modeled as an M/M/l

queue. Also, the mean values of the overall delay, 5;, and service time, 53,-, are related

as s"; = 1/(11; — kA’), where p,- = 1 /23;, and kA’ represents the net arrival rate of the

k headers requesting services from the same output channel. Once the entire path

is established, i.e. all channels are successfully reserved, communication time will be

§,+1 = L/B. The results can be summarized in the following recurrence equation.

1

-i = < O < 1' .1: =s 1/§,-+1-kA’ (1 _ 2 _ n) s ...,
 

L

B (3.7)

The recurrence equation can now be solved for the 5;, the overall delays once the

header reaches node i.

_ (L/B) _ §n+1

5‘ = 1 — (n—i+1)ch’L/B ‘ 1 — (n—i+1)kA’L/B (3'8)

We are not interested in the absolute value of the overall delay, but the factor

by which the overall delay increases due to contention. The delay can be normalized

with respect to the communication time under contention-free conditions given by

§,+1 = L/B; this normalized time is denoted by 0,.

8,‘ 1

9; = = , ; . '

5..., 1 — (n—z+l)kA’L/B (39)
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The normalized delay from the source (01) is denoted by 0.

l

9: 0‘ =1 — nkA’L/B

 (3.10)

The factor (A’L/B) in the denominator of Equation 3.10 is the actual path traffic

A, (Definition 25) since A’ = 1 /T. Hence, we have A, = A’L/B. The remaining factor

in the second term of the denominator, which is nk, can be shown to be V + D from

the definition of V and D. The system is therefore equivalent to a single M/M/l

queue with nk = V + D paths contending for a single resource. We derived this result

assuming a FIFO queue policy at each intermediate node. However, if messages are

stamped with the time they entered the network and priority is given for messages

that have earlier time stamps, then we find that nk = (V + 1). Therefore, we have

1 l
= :: —- I), so = .0 1-(V+1)A, 1-Ap/Aaat w ere A , 1/(V+1) (311) 

Equation 3.11 shows that 0 increases exponentially as A, -+ A,,. In fact, the

saturation path traffic, A,.“, is an upper bound on the value of A,. There is an easy

explanation for that fact. Observe that the path under consideration is competing

with V other paths, and that it blocks all of them when it is progressing. If all

paths have the same path traffic A,, i.e. are busy for a A, fraction of the time, then

(V+1)A, S 1 or A, S 1/(V + 1) = Am.

The effect of contention given by Equation 3.11 is shown in Figure 3.4. Fig-

ure 3.4.A displays the normalized communication time 0 as a function of A,, for

different values of V. The figure illustrates the factor by which communication time

increases due to contention. For example, A, = 0.15 and V = 5 yields a 0 of 4;

that is, the communication time under contention is 4 times higher than the time

for contention-free communication. Figure 3.4.B shows the same result in a different

way: the figure shows constant 0 curves in the A, x V space. The curves are shown

for 0 = 2, 5, 10 and 00. Everything in the “forbidden region” requires “more” than

infinite time, and hence the network cannot operate in this region.

Observe that the region of operation where the contention effect is negligible is
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restricted to a small region in which the value of A, or V is small. In current systems

such as the Symult 2010, small sizes are limiting the value of V, and high overheads

are limiting the peak value of A,. We, therefore, always operate in the region where

the effect of contention is negligible. However, in future systems both A, and V will

increase due to larger system sizes and lower overheads. Hence, the contention effect

will be increasingly visible in future systems.

We can combine Equations 3.11 and 3.4 by eliminating 0 from these two equations

to express A, in terms of A,“ and A,,t. After some simplification, we get the following

quadratic equation for A,

A:(1 — APa) —. A13(Apa + Asat) + APoA-fllt : 0 (3'12)

The solution for A, can be simplified by approximating Equation 3.11 using a thresh-

1 if A, g A,,.
0 = (3.13)

> 1 if A, = A,,,

old function.

Actual path traffic, A,, will then be the solution of Equations 3.4 and 3.13. We

find that A, = A,“ if A,“ < Am, and that A, = A,,, if A,“ 2 Am. The exact

and approximate solutions for A, are shown for a specific instance of A,“ = 0.5 in

Figure 3.5.A.

We can repeatedly solve for A, for different valuesof A,,, for a given Am. We can

then plot A, as a function of A,,. The resulting curves are shown in Figure 3.5.B

when A,,, = 33.33% (V = 2).

3.3 Saturation Node Traffic

In last section, we analyzed the effect of contention considering a single path. The

results show that path traffic saturates at a level determined bythe path contention

level. The effect of contention on node traffic is similar—to put an upper bound on

the node traffic. We can determine the bound on node traffic by considering multiple

paths originating from a given node.



54

 

   

 

 

      

I I I I

5_V=15V=10 u=5 V=2 _

4 -
..

Normalized

communication 3 1 _

time 0

2 - a

1 -«

0 l l l l l l

0 5 10 15 20 25 30 35 40

Path traffic A, in percentage

(A)

14 r

12 *-

10 -

Contention

level _-

V

6 — Efcht

4 _ contention

negligible

2 .-

0 l l l l l l l

0 5 10 15 20 25 30 35 40

Path traffic A, in percentage

(B)
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The following assertion holds for the limited problem space we are considering.

Assertion 1 For any node, the path traffic is same for all the paths originating from

that node.

We assumed that each node is running at most one parallel task, and that a

parallel task communicates uniformly with its neighbors in the process graph (refer

to Section 3.1). Hence, over a given time a node would have sent an equal amount

of data to all paths originating from the node. The result is that path traffic will be

equal for any node.

We consider an average node first.

Lemma 3 The saturation node trafiic for an average-case node is given by A“ =

five/(Vault +1)-

Proof: The average number of paths that originate in a node is 6,,,. Each of

these paths has an average path contention level of V,,,. From the results for a single

path in Section 3.2, the saturation path traffic for each path is A,,, = 1/(V,.,9 + 1)

(Equation 3.11). Hence, we have

AZ“, = 6angsat = éavg/(Vavg‘l'l)

which completes the proof. [:1

We can also use our framework to estimate the saturation levels for individual

nodes and the worst node which will help in characterizing the nonuniformities in

traffic We have the following result for the worst case.

Lemma 4 The saturation node trafi‘ic for the worst-case node A3“, is bounded by

buoy/(”max ‘I’ 1)-

Proof: Consider the path p that has the maximum path contention level (Vmu).

Let S" be the set of paths that are in the path contention set of p. Let A,(x) denote
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the actual path traffic on a path x. Then, since the traffic on the different paths of S

and on p are mutually exclusive, we have

2 A,(x) g 1 (3.14)

xE(S’Up)

Since the worst-case node has the least node traffic, the node traffic of every other

node should be greater than or equal to the node traffic of the worst node, Ag“...

Also, 6 paths originate from a node, and from Assertion 1 all paths should have the

same traffic. Since the sum of each node’s path traffic is its node traffic, we have

6A, = A, 2 A3“, or Ag’m/s S A,.

The value of 6 is not constant for a given process graph as the process graph need

not be regular. Let go,- be the probability that a randomly selected path is from a

node of degree i. Since [5'] = (Vmaz + 1), we find that p;(Vmaz + 1) paths in set S

originate from a node whose degree is i, and each of these paths have a path traffic

of at least Ax’m/i. Since, the range of i is 0-6max, we have

677503

2(pi(umax+l))(film/i) S 1 (3-15)
i=0

We can find so.- easily. If n.- is the number of nodes whose degree is i, then ngi

paths originate from nodes of degree i. The total number of paths is 2E (from the

definition of E). Hence, p,- = n,-i /2E. Using this result in Equation 3.15, we have

m 1 1
n“; S 6mm: ' 6

(14...... + 1) 2.40 (Rt/2)= (”max + 1) 2126’ iii:

2E 6avg

(Vmax +1)Np =(Vmax +1)

 

 

 

by Equation 3.2

which completes the the proof. D

We show in the next chapter by simulation that the above bound is tight, i.e. the

node traffic for the worst-case node saturates at this bound if messages are given pri—

ority based on the time they entered the network. Hence, we conclude that saturation
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node traffic for the worst case node is given by bag/(Um: + 1).

We can also compute an upper bound on the node traffic for any individual node

which is stated as the following lemma.

Lemma 5 For any node, the node trafl‘ic is bounded by 6 (1 — where V,, is_..._.>”mos'f'l ’

the maximum path contention level for any path originating from the node

Proof: From Assertion 1, we know that all of the paths that originate in a

given node should have the same path traffic in the steady state. We know that the

path traffic for any path is bounded by A,,, = 1 / (V +1), V being the path contention

level for that path (Equation 3.11). Hence, the bound is lower for paths that have a

higher path contention level. Therefore, of all the paths originating from a node, the

path pm that has the maximum path contention level equal to V,, will determine the

path traffic on the remaining paths from the node. Let S be the set of paths that are

in the path contention set for pm. The sum of path traffic on pm, and path traffic on

all paths in S should be less than 1. Therefore, we have

to...) s l—ZMP) (3.16)
P65

Using the same argument as in the proof of Lemma 4 we find that

67750: 6111a:

A,(p,,) S 1- Z 10th(/\.‘1’.../2') = 1 - I’m/Wm. 2(601/2')
i=0 i=0

V,,A‘” Um
= 1 _ _AL: < 1 __—

5m; _ (”mm + 1) by Lemma 4

Since, A, = 6A,, we prove the lemma. E]

Lemmas 3, 4 and 5 show that it is possible to estimate the bound on node traffic

for an average node, the worst-case node or any node.
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3.4 Random Mapping

We consider the special case of random mapping now. In random mapping, as the

term suggests, tasks are mapped onto a randomly—selected system node that is free.

We first show that we can use graph theory and probability theory to estimate the

average and maximum values of contention parameters for a random mapping. We

show that our estimates are sufficiently accurate by comparing them with the com-

puted values from 25 different random mappings for several known process graphs.

Combining the estimates for path contention levels with the results of the previous

section, we can find the saturation node traffic, and decide if random mapping is

sufficient for the given application. We can estimate the worst-case values in addition

to the average-case values. Hence, the results also show the extent of nonuniformity

in traffic and contention.

Here, we assume that process graphs are randomly mapped onto the smallest

possible mesh network. Such a system graph will have N nodes where N = [m]2.

A node in row i and columnj is denoted by (i,j), 0 < i,j' < \/N.

3.4.1 Path Lengths

_Path length depends only on the size of the system graph onto which the process

graph is mapped, and is independent of the richness of the process graph. The max-

imum path length (pmaz) occurs for communication between the diagonally-opposite

corner nodes of the system graph. The average path length (p,,,) can be computed

by assuming that the lengths of the segments of a path in the two dimensions are

stochastically independent [33, 65]. The average path length will then be twice the

expected length in each dimension. We, therefore, have

1),, = 2(\/N-—1) (3.17)

1 m-IJN-l . .

llnm :: 2(YV'ZE: :E: h'—Jd) :=

i=0 j=0

[
\
D

w
l
a
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We observe that Dmu z 3D,,g, i.e. the maximum path length is approximately three

times higher than the average path length.

The logical path length is approximately equal to and is bounded by the physical

path length. It can be seen that if the process graph is richer, there is higher prob-

ability that a new path will be “encountered” at each segment of the path. Hence,

the logical path length become closer to the physical path length as a graph becomes

richer. The estimates and actual values from 25 random mappings are shown in

Figure 3.8.A and B. We observe that estimates match well with actual values.

3.4.2 Channel Loads

The average channel load is easy to calculate as it is related to the average path

length. The sum of the channel loads over all edges of the system graph should be

equal to the sum of path lengths over all edges of process graph, as both count the

same quantity in two different ways. Hence, we have-

 

 

1 1

X609 _ |E(Gm)|c€E§;m)X(e) '_ 4flv—(m— _ 1) aegip)D(e)

|E(G,)|D..,,

MFR/F — 1)

2E(2\/l—V—/3)
 x/N(4\/N _ 1) usingEquation 3.18

E

22 W (3.19)

To find the maximum channel load, consider the load on a row channel between

nodes (i, j - 1) and (i, j) (Figure 3.6.A). The source nodes of paths that need that

channel are the nodes (i, 0) .. (i, j — 1), and the destination of these paths should be in

a column greater than or equal to j (This is a consequence of the fixed routing scheme

used by the network). A total of j6,,, paths originate from nodes (i,0) . . . (i, j — 1).

If destinations are uniformly distributed, the probability, so, that the destination of a,

given path is in a column greater than or equal to j is (\/N — j/x/N) Therefore,

the number of paths through, or channel load, on the channel under consideration,
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Figure 3.6: Estimating contention parameters

ij, is a fraction p of the j6,,9 paths.

Xij = 5006“,) = j(m‘/‘Nj)5avn 

The above expression will be maximum when j = W/2 (which makes p = 1/2).

Hence,

were, _ «It 2 E
Xmas = 4 — 4 X _ = 2W (3.20)

N?

The maximum channel load derived so far is the expected value for a single row. There

are N rows. When we consider all the rows, it is possible that for the worst-case

row, all destinations are on the right half. Hence, we conclude that the maximum

channel load is given by

E

Xmax = W (3.21)

Here, only row channels were considered. The distribution of loads on column chan-

nels can be estimated similarly, i.e. considering the possible source and destination

nodes for the paths that need a given channel. We find that the distribution of loads

on column channels is similar to that of row channels. Hence, we conclude that max-

imum channel load is given by the Equation 3.21. Note that loads increase as one
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moves towards the center of the mesh network.

The estimated and the actual values as computed from 25 random mappings are

shown in Figure 3.9 for four common process graphs. The results show that our

estimates for channel loads are good. The actual values are slightly less than the

estimate, except for the binary tree, for maximum channel loads. We find that actual

values are better approximated by

x"...- = 0.75E/x/7V— (3.22)

instead of E/x/IV. The maximum channel load is therefore about 0.75 x 3 z 2.25

times higher than the average channel load.

3.4.3 Path Contention Levels

The path contention level is more difficult to estimate. A path on average has a

length of W/3 in each dimension as explained in Section 3.4.1. The path can be

partitioned into four segments V.-, 1 S 2' S 4 (Figure 3.7). We can estimate the values

of V1 .. V4 by considering the possible source and destinations of paths “encountered”

on various segments of the path, and making use of the results for channel loads and

path lengths. We can then add them to get V, i.e.

V 2 V1 + V2 + V3 + V4 (3.23)

The first term, V1, is the number of paths that use the first, higher dimension

(row) channel. The average value of V1 will be one less than the average channel load.

We showed in Section 3.4.2 that the average channel load is E/3x/7V— so

E
V=au—1z————1z— 3.24

1 X9 3W 3J1? ()

The next term, V2, in Equation 3.23 is the number of new paths encountered on the

remaining channels of the higher dimension. To estimate, consider the possible sources

and destinations for a new path encountered at the channel connecting node (i, j) to
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Figure 3.7: Estimating path contention level.

   

 

   
(i + 1, 3'). According to the routing protocol, the source must be the intermediate

node (i, j), and the destination be a node in a column higher than j. By definition,

5229 paths originate at each of the W/3 intermediate nodes, and approximately half

of them can be expected to go in the same direction as the path under consideration.

Hence,

6ng $117 2E W~ E
x_—

2 3‘2TVIXT~3,/N

The third term, V3, in Equation 3.23 is the number of new paths encountered on

 

V28 (3.25)

the first channel of the lower dimension, which is approximately equal to the average

channel load.

E

V3 = V1 z -— (3.26)

3\/N

The last term, V4, in Equation 3.23 is the number of paths encountered on the

remaining channels of the lower dimension. We can compute this value by considering

the number of new paths encountered at each intermediate node (Figure 3.7). The

source node of these new paths should be one of the nodes in the same row as the

intermediate node under consideration. The total number of paths emanating from

that row to all destinations is 6m,g x x/IV. The destination of the paths we encounter

should be one of the nodes in the same column as the node under consideration, and

in a row numbered higher than the intermediate node. The probability so will be



64

‘/N/2/N = 1/2x/N on an average. Hence,

 

WV ,—) W 1 2E E
V4——3—'X(pX6avg N —TX2‘/NXE\/N—3\/N (3.27)

Combining Equations 3.24-3.27 with Equation 3.23, we have

”avg = V1+V2+V3+V4

E 4E

_E..._E_+ E + =_ (32.)
3W 3W 3W 3W 3W '

 

From Equations 3.28 and 3.19 we find that Vang/X4",g = 4, i.e. the average path

contention level is about four times the average channel load.

The maximum path contention level is more difficult to estimate. The problem is

that the values of the four components are dependent on one another. For no path

can all the components reach their maximum values. There are two cases to consider.

In the first case, the source node of the path is at the center of the mesh. In that case,

the first channel of the path in each dimension can be shoWn to have the maximum

load equal to Xmas = E/2\/1V. The maximum length of the path segments can only

be [JV/2. Hence, V2 and V4 will not have maximum possible values. Using W/Z

instead of W/3 in Equations 3.25,3.27, we can show that V2 and V4 to be E/2x/IV.

The maximum path contention level will be

Vmaz=i+i+i+i=£ (3.29)

2W 2W 2W NW \/1-V-

Another possible case resulting in high path contention level is when the length of

the path segments is maximum i.e. W — 1 instead of W/3. In that case, we find

that V; and V4 will be maximum (z E/x/IV), by using the values (x/JV - 1) instead

of J17/3 in Equations 3.25,3.27. However, V1 and V3 will be minimum equal to 0.

Once again we find that um“, z 2E/x/1V, and we conclude that Equation 3.29 is the

estimate for maximum path contention level.

Actual values of average path contention level are slightly lower than our estimates.

We find that Vang = E/x/IV fits the actual values better than our estimate of



4E 3 v

are 110‘

m

q E
;

Q

0111' CS

21:51

0 1

We

With 1.

The re

LEmn

rmIdor



65

4E/3\/N . The difference arises due to the fact that the values of the four components

are not independent of each other, and some error is introduced when we estimate the

four components independently and then add them to get Vavg. We, therefore, modify

our estimates, and summarize the final results in Table 3.1 where C = 6a,,gv =

2Ex/1V/N, z 2E/\/-1V.

 

 

 

 

Contention Parameter Average Maximum

Channel load (x) C/6 3C/8

Path contention level (V) C/2 C   
 

Table 3.1: Contention parameters : summary of estimates

From the results so far, we conclude the following about the special case of random

mapping.

0 contention increases with both system size and the degree of the process graph.

0 the worst case values are 2 to 3 times higher than the average case.

a the ratio of path contention level to the channel load remains approximately

equal to 3 as the system size or richness of process graph changes.

We can combine the estimates of the contention parameters for random mapping

with the result of the previous chapter for saturation node traffic (Lemmas 3 and 7).

The results are the following lemmas.

Lemma 6 The saturation node trafl‘ic for an average node when an application is

randomly mapped onto a mesh of N nodes is A3,.“ = 2/\/1—V-.

Proof: We have shown that the average path contention level for random

mapping is E/x/IV (Table 3.1), and 6“,, = 2E/N, (Equation 3.2). Using these

results in Lemma 3, we have

A, 50,, _ 2E/N, ... 2W 2

"W _ u..g+1_(E/\/N)+1~ N. ~ W

   as szN (3.30)
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Figure 3.8: Path lengths, estimated and actual values
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which completes the proof. 0

Lemma 7 The saturation node trafi‘ic for the worst node when an application is

randomly mapped onto a mesh of N nodes is bounded by A3“. = l/JN.

Proof: We have shown that the maximum path contention level for random

mapping is 2E/x/N (Equation 3.29), and 6409 = 2E/N,D (Equation 3.2). Using these

results in Lemma 4, we have

64”,, 2E/N, VN 1
w=___=—E_—z—z—asNzN .1

which completes the proof. 1:]

Lemmas 6 and 7 also give a rough estimate of the saturation levels when applica-

tions are randomly mapped. However, we can actually compute the path contention

levels even for the case of random mapping, and use these values with the results of

Lemmas 3, 4 and 5 to estimate the saturation levels more precisely. Table 3.2 gives

the estimated saturation levels for four different topologies when they are randomly

mapped (a specific instance). In fact, the software we have developed automatically

computes the saturation node traffic values for any given process graph and mapping,

in addition to contention parameters.

 

 

 

 

 

         

2D Mesh Binary tree 3D mesh Hypercube

Avg Wc Avg Wc Avg Wc Avg Wc

N = 64 47 23 31 14 36 19 41 22

N = 256 19 10 12 6 13 7 17 9

N = 1024 8 4 5 3 5 3 7 4
 

Table 3.2: Saturation node traffic for various process graphs for a specific random

mapping

In the next chapter, we show by simulations that average estimates are quite

accurate. The worst case (Wc) estimates also match, but simulation results seem to
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give about 20% higher values consistently for all process graphs.

Observe that the saturation node traffic for an average node as well as the worst

node (Lemma 6 and 7) is independent of the the richness of the process graph as the

expression for A,.”, does not contain the term 6“, or E. In general, the result applies

to any process graph including a completely connected graph. If the process graph

is completely connected, then a node communicates with all other nodes uniformly

which results in uniformly distributed messages. Therefore, we have the following

corollary.

Corollary 5 For uniformly distributed messages in an N-node mesh, the saturation

node trafi‘ic is 2/x/N.

In the case of uniformly distributed messages, all nodes are identical and the worst

node is the same as the average node. For a 256-node mesh, the saturation level will

be 2/16 = 12.5%. The saturation traffic level for uniformly distributed messages has

recently been derived in a different way by Dally [33], in which a different unit, called

network traffic, was used to measure traffic.

Definition 31 Network traffic per node is the ratio of the data injected by the node

to the capacity of the network, and is denoted by A,. Network capacity per node is the

total bandwidth out of a node divided by the average distance traveled by a message,

and is denoted by C.

We have C’ = 48/0“, for a mesh network, as there are four outgoing channels,

each having a bandwidth of B. The data injected by a node is A,.B by the definition

of node traffic, our metric for traffic (Definition 26). Hence, we have

 

C "" 413/1)“, ‘ 4 (3'32)

For uniformly distributed messages in a mesh network, we know the value of D,mg to

be 2x/N/3 (Equation 3.18). Hence, we have

91/17 x A" - E)" (3.33)A: —_.

‘ 3 4 6
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The expression above shows that node traffic is related to network traffic. The above

relationship holds even for saturation traffic values. Hence, using the value of A2,“,

(Corollary 5) we have

,. _ fl... _ a
too: 6 "eat - T

= 33.33% (3.34)

O
O
H
—
t

which match the reported result for the uniformly distributed messages by Dally in

[33];

The advantage of our framework is that it is more flexible, and can be used to

predict the saturation node traffic levels for various process graphs and mappings.

3.5 Optimal Mapping

In this section, we present mappings and routings that minimize contention (measured

by path contention level and channel load) in the case of several common process

graphs. Simulations later show that these mappings provide a significant performance

improvement over random mapping.

3.5.1 Binary Tree

Several schemes have been suggested recently to optimally layout a binary tree. Youn

and Singh [79] have suggested a tile-based scheme which uses just one extra node i.e.

N = N, + 1. We adapted their scheme to reduce xmu to 2. Three types of basic

tiles that give the mapping and routing for a 15-node complete binary tree onto a

l6-node mesh are shown in Figure 3.11. The edges shown in the figure indicate the

routing for communication in either direction i.e. child to parent or parent to child.

Observe that for these tiles Xmas is 2. The scheme can be extended for larger trees by

combining the basic tiles. The path corresponding to higher level edges of the larger

tree uses only the channels along the perimeter of the basic tiles. Also, no two paths

corresponding to higher level edges share a channel. Hence, the maximum channel

level still remains 2. The scheme also reduces path contention levels significantly.
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Contention is reduced even if we only use the placement suggested, and use the

standard fixed routing instead of the suggested routing. In the next chapter, we

show that even if we only use the placement suggested by Youn’s scheme and the

standard fixed routing (i.e. ignore the routing suggested by this scheme) we still

get significant improvement in performance compared to random mapping. Another

scheme suggested by Gordon [45] uses slightly more nodes for a given tree, but reduces

xmq, to 1 and 11m“,- to 0, completely eliminating contention.
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1 indicates the leaf level, and 4 indicates the root level)

  
 

3.5.2 Mesh-3D

The 3D mesh is another popular communication pattern used by many applications.

Figure 3.12 suggests two schemes. Scheme A does not use any extra nodes, but

results in high channel loads of xmu = {7Np + 1. Scheme B may need more nodes,

but reduces the value of xm“ to 3” N, + 1.

3.5.3 Hypercube

We explained and proved in Section 2.2 that an identity layout of hypercube topology

gives the minimum peak width equal to [2N/3J. We can therefore use an identity
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mapping to minimize contention where node (i, j) of mesh runs the ix/N + j task

of the hypercube process graph. If the dimension of the hypercube is even, then we

will be mapping N,D = 2" nodes of the process graph onto a 2"/2 x 2"/2 mesh (then

N, = N and «N = 2"”). Each row or column then will have x/N nodes. The

maximum channel load for this optimal mapping will be |_2\/N/3j , from the result

of Theorem 2.

Alternate schemes of mapping and routing that are possible in the case of several

process graphs indicate that there is a tradeoff between the number of extra nodes

used (i.e. N — Np) and the extent to which the contention can be minimized (x

values or V values).

3.6 Speedup

Contention can reduce the performance of 2D or 3D mesh networks more than a richer

topology such as the hypercube. The following lemma relates A,“ to a reduction in

effective rates.
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Lemma 8 The efi'ective rate under contention can be reduced by a factor of Aug, i.e.

E = AgatBo

Proof: By Definition 26 A,, = (£492). or T = %. Also, the communication time

is the loop time. minus the computation time, i.e. r = T -— t. For communication

intensive applications, A,, -> Am. Also in such applications, the term t can be ignored

in comparison to 1'. Hence, T m 1'. By the definition of effective rate (Definition 10),

we have

L L L
E:: = .1." = m = Asat-B (3.35)

Asa:

Cl

In the case of a richer topology, the effect of contention will be negligible and

A,“ z 1. Hence, the effective rate will be the same as channel bandwidth. We

find that the speedup also decreases by a factor of A.“ for communication intensive

applications if we use random mapping.

Rc = E- (Definition 12)

A,“ B'"

= fi— (Lemma 8)

= AmRb (Definition 11)

2 2W

1.33

 (Table 2.1)

22

This result shows that all the speedup we obtained by using a mesh would be canceled

by increased contention if we use random mapping. Hence, mesh would perform just

slightly better than hypercube for communication intensive application. In reality,

the bandwidth of mesh networks may not be exactly 2\/N/3 times that of hypercube

networks. If the bandwidth is less than this factor, the mesh will perform worse than

hypercubes.

For applications that have applied node traffic comparable to 2/x/N or greater,

we can use careful mappings. Such careful mappings will reduce the path contention
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level, and increase Am. If mapping and routing are sufficient to make A”. > A,,,

then the effect of contention will be negligible, and R. R: R1,. Hence, we conclude

that to retain the advantage of the higher bandwidth of mesh networks and to get an

effective communication speed equal to the channel bandwidth, we may have to be

careful in mapping parallel tasks.

3.7 Contention Analyzer: A Software Tool

The theoretical framework developed in this section has been implemented in the

form of a contention analyzer. It does all the computations involved, and hence gives

the saturation levels for node traffics directly, for a given process graph and mapping.

At present, the tool works for Linear array, 2D mesh, 3D mesh, Hypercube, and

2D Torus. The tool can be easily modified for other system graphs, as it involves

rewriting one or two small functions. Random mapping is built into the tool. Any

other user-specific mapping has to be defined by the user in the form of a function.

The software tool is useful in analyzing contention, and evaluating the mapping

for an application. The following steps are suggested.

1. First estimate the applied node traffic for the application. This estimation can

be done in several ways.

a Program analysis : If the program involves a single kernel loop, we can esti-

mate the data generated per loop on average, say L bytes. We can also estimate

the average number of instructions, say I, executed per loop. Then, from the

multicomputer specification sheet we can use the MIPS rating of the node pro-

cessor P to find the computation time t. Recall that communication time under

contention-free conditions can be specified by a linear function a+bL. The value

of a and b are either known from the machine specification or can be easily de-

termined. Hence, communication time under contention-free condition can be

computed if we know L. The Applied node traffic, A“, can also be computed as

- - bL

1t Wlll be ”7,15%.

0 Run the application on a small system say 9 or 16 nodes, carefully mapping the
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parallel tasks if possible. In such a case contention will be negligible. Measure

the total amount of data generated by a node L’, and the total run time T’.

Then, A“ = bL’/T.

2. Compute the worst-case saturation node traffic under random mapping A3,“.

using the tool. If A, is comparable to or greater than Ana“, then a random mapping

is not good enough. Try an improved mapping, and recompute A3,“. Once A3“,

becomes at least a few percent greater than A“, then the mapping can be considered

good enough.

If A3,.“ is less than or equal to Am, the performance of most of the nodes is

affected. However, if A3,.“ is greater than Ac but A3“, is lower than A,,, only a few

nodes are affected by contention. The bound on individual node traffic can be used to

determine the nodes that will be affected by contention. If the performance of those

nodes is not critical to the overall performance, the mapping may be considered good

enough.

3.8 Conclusion

The communication performance under contention for network channels was modeled

in this chapter. The results show that message injection rates, measured by node

traffic, are bounded for a given communication pattern and mapping, and that this

bound can be predicted. The special case of random mapping was analyzed to show

that the performance can be poor for large multicomputers, and hence random map-

ping is not advisable for them. Increased contention in mesh networks will effectively

neutralize their advantage—higher bandwidth channels. Careful mappings that min-

imize path contention levels can increase the saturation levels well above the applied

node traffic of an application, and hence make the effect of contention negligible.



Chapter 4

EXPERIMENTS ON

SYMULT-ZOIO

In this chapter, we describe several experiments we conducted on a Symult 2010, a

second-generation multicomputer that uses a mesh-connected wormhole-routed net-

work for interprocessor communication. Although the Symult computer is no longer

in production, there are many lessons to be learned from this machine. For a long

time, the largest machine available had only 64 nodes, but it was recently increased

to 192 nodes.

The experimental studies in this chapter are significant for several reasons.

0 The experiments were run on a real system that uses a state-of-the-art,

wormhole-routed network, so the results indicate the performance that can be

expected from current technology at the user level.

0 The experiments reveal the problems and bottlenecks in the current architec-

ture, and indicate architectural areas to be examined in future designs for im-

proved performance.

0 The experimental results for communication under contention are analyzed, and

compared with our theoretical results. This comparison is done by expressing

the performance in terms of node traffic defined in the previous chapter.

0 We discuss the current architectural trends and how they will affect our con-

clusions.

In particular, our results show that path lengths are no longer a problem whereas

the effect of contention for network channels will become an important concern, even

though the effect is negligible in small systems currently available.
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The chapter is organized as follows. In Section 4.1, we briefly describe the Symult

2010’s architecture and show how wormhole routing is implemented. In Section 4.2,

we describe the experiments and present the results. The results give the network

performance both under contention-free condition and under contention at user level.

The results under contention are analyzed in detail in Section 4.3. We generalize

the performance curves by expressing them in terms of the applied node traffic (de-

fined in Chapter 2). In Section 4.4, we discuss the weakness and idiosyncrasies of

Symult 2010, and current architectural trends in order to extend the results to the

performance of future multicomputer. The discussion clearly shows that contention

for network channels will become a serious concern in future multicomputers. Finally,

we summarize our results.

4.1 Symult 2010 Architecture
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‘
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Figure 4.1: The architecture of a node of Symult 2010.   
We briefly describe the architecture and salient features of a Symult 2010, as that

will help in understanding our experiments and experimental results. The overall

architecture of a node is shown in Figure 4.1. The two main components of a node

are the router and the processing element (or a PE). The PE includes a processor,

local memory and an interface to the router. The router supports interprocessor

communication through five bidirectional physical channels, one connected to each of
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its four neighbors in the 2D mesh topology and one connected to the local PE. We

refer to a router-to-router channel as a network channel or rr-channel and a PE—to-

router channel as a pr—channel. Each physical channel is 8 bits wide and operates

at a peak rate of 20 MHz, giving a peak bandwidth of 20 Mbytes/sec. Traffic in

opposite directions is supported by time-multiplexing the physical channel at a flit

level, a flit being the data unit for communication between adjacent nodes. Hence, a

physical channel can be thought of as supporting two logical, unidirectional channels

in opposite directions. For each such unidirectional channel, the router has one buffer

whose size is big enough to hold one flit.

The Symult 2010 uses wormhole routing which was explained in Section 1.3.1.

A message consists of a set of data flits preceded by two head flits—one for each

dimension. The head flit indicates the number of hops needed along each dimension

to reach the destination node. As soon as a router receives a message, it examines

the head flit to determine whether the message is for the local PE. If it is, the head

flit and the message flits following it will be forwarded to the local PE through the

interface. Otherwise, the router will determine the next channel, and forward the flit

if that channel is available.

 

high
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. it
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Transfer 1‘ Send acknowled ement

from outport of A 3331"ineriort of B to complete hagdshake
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to recelve anot er flit

Figure 4.2: Transfer of a single flit over one hop  
 

A single control line is sufficient for each logical channel. The line will be used
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both for handshaking and for flow-control. Figure 4.2 shows the basic steps involved

in a single hop of a data flit from one node to its adjacent node. The control line is

normally low, indicating the readiness of the receiving router. Whenever data is to

be transmitted, the sending router will raise the line indicating the availability of a

new data flit. The receiving router will then read the data flit on the channel into

its input buffer. The router will then examine if the next output port to which data

flit is to be routed is free. If it is free, the router will transfer the flit to the output

port, and lower the control line to acknowledge to the sender the successful transfer

of a data flit, and also to indicate its readiness to receive another data flit. Once the

sending router detects the lowering of the control line, it will mark the output buffer

free to be used for another transfer. A router cannot transfer the received flit to the

next output port, if that port has been reserved by another message. In that case,

the router will not lower the line, and hence will not complete the message transfer.

Similarly, the sending node will not be available to use the output port for another

transfer. Successive flits then get blocked along the partially established path, one

flit per node.

Each router requires only a limited number of storage buffers, one per channel, to

hold the flits of the messages passing through. All routing functions are implemented

in hardware so the PE is not involved in processing messages that are merely passing

through. The time taken to process a newly arrived flit and to send it to the appro-

priate adjacent node is less than 100 ns. In order to avoid communication deadlock,

the Symult 2010 uses a fixed (static) routing scheme. In such a fixed routing scheme,

flits first travel along the rows until they reach the column of the destination node

and then travel along the columns to reach the destination node.

4.2 Experiments

Experiments were run on Symult 2010 systems at Caltech under the Cosmic Envi-

ronment / Reactive Kernel (CE/RK) — a message-passing programming environment

available on several multicomputers [75]. All test programs were written in the ’C’



81

language and used the run time library supported by the CE/RK environment for

interprocessor communication. We ran the experiments using 16 nodes (connected as

4x4 2D mesh), 64 nodes (8x8) or 144 nodes (12x12). We start this section with a

list of general comments, notation and precautions that were necessary to ensure the

validity of the measurements.

In our experiments, the following steps were taken to isolate the desired network

performance from other system characteristics.

1. Once the programs were spawned onto the nodes, the host waited for 5 secs

for spawning to complete before sending (broadcasting) the input parameters of the

experiment. This delay ensured that intensive traffic due to program spawning will

end before the start of the experiments. If we had not waited, this extraneous traffic

would have interfered with the messages generated by the experiments and affected

the measured times.

2. In each experiment our aim was to find the average time taken by a node to

complete a given program segment. Such a segment, called the base loop, consists

of both local computation and communication with other nodes. The loops of the

experiments require 0.5-15 ms, but the clock resolution is only lms so the base loop

was repeated N times. Traffic due to the broadcast of the experimental parameters

interfered with the communication in the initial loops. Hence, the first n loops were

ignored. The clock reading at the beginning of the n + 1‘h loop was subtracted from

the clock reading at the end of the n"h loop, yielding the time for n’ - n loops, say

Tut-.. ms. The average loop time, T, was then computed as T = an_n/(n’ -n). In our

experiments we found that n’ = 11,000 and n = 1000 were sufficient. We measured

the loop time on each node in milliseconds by averaging the time for 10,000 loops.

3. The objective of the experiments was to measure the performance of the com-

munication network and not the Cosmic Environment functions that support mes-

sages. Hence, messages were created before the beginning of the first loop, and the

Same set of messages was used throughout the experiment. Messages were neither

Created nor destroyed once the first loop started. This strategy prevented any pro-

cessing time by functions, such as xalloc or xfree (which manage message buffers),
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from affecting the measured times.

4. Blocking receives were used in all experiments to capture the delays in the

communication. The design of the base loop ensured that receiving nodes were al-

ways ready to receive by the time a message arrived at the node. This technique

prevented any program-generated delays in accepting a message from appearing as

communication delays.

5. The kernels were different on different machines, and were modified during the

course of the experiments. Changes due to kernel performance were avoided as follows.

Many experiments were performed in pairs one after the other; the first tested the

inclusion of a specific factor under study, while the other tested the exclusion of the

factor. We then calculated the difference in communication times. Timings measured

on different days were never compared.

6. Each node computed the average loop time as described above, by using its own

clock for each reading. This local timing avoided any problems due to the variance in

different clock readings. In addition, each node executed the same program. In some

experiments, the mean of the loop times determined by individual nodes was used as

the final loop time to avoid idiosyncrasies of individual node hardware (or kernel).

We use the following notation. The system consists of N nodes connected as a

x/Nx \/N 2D mesh. Nodes are numbered 0..N-l, and rows and columns are numbered

0..\/N~1. Node (i, j) refers to a node located in the 2"“ row and the j‘h column.

Definition 32 Two nodes which communicate with each other during an experimen-

tal run are called peer nodes.

In most experiments a node (i, j) will communicate with only one other node, and

hence has a unique peer node. A communication pattern is specified by defining the

peer nodes. The positions of the peers were changed to form different communication

patterns, causing changes in the demand on the network.

In all the experiments, the base loop consisted of communication with peer nodes

f0110wed by local computation. Communication is represented by two functions tsend

alrld trecv.
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o tsend (dst,msg,L) : Send a message of length L bytes, which is stored starting

at the address msg, to the node dst. The function is non-blocking.

0 msg = trecv (src) : Receive a message from the node src. The message will

be put at the address msg when the call returns. This function is a blocking

receive so that the call will not return until the message arrives.

In all experiments the length of the message is same in each base loop. The com-

putation times of different loops are uniformly distributed over the interval 0..2ta.,g.

We used such a distribution to reflect the fact in actual applications the computation

times may vary depending on the contents of the received messages. Hence, tag, is the

average computation time per loop, and is the same for any node. On the other hand,

the communication time per loop is different for different nodes as messages from dif-

ferent nodes are affected differently by contention and path length. Communication

time per loop is represented by r.- for the ith node.

Since communication time differs for different nodes, the loop times differ for

different nodes, and are denoted by T; = taug + r.- for the it" node. The loop times for

an average and a worst node, denoted by T.my and Tm”, are defined as

1 N N-l

Tan—= N E051",- and Tm“, = mgrxT (4.1)

The communication time per loop for an average and a worst case node can be

computed by subtracting to”, from the corresponding loop times.

In each experiment, nodes are partitioned into three classes: I, A and B. Nodes

belonging to the the class I are idle, and do not participate in the experiment. The

remaining nodes belong to either class A or B, and execute the corresponding base

loop repeatedly. A node and its peer usually belong to different classes.

The experiments are explained in three sections.‘ In Section 4.2.1, we measure

the performance for contention-free communication between adjacent nodes, which

is the best an application programmer can achieve. The times in this section are

neither affected by longer path lengths, nor by contention for channels and data

paths. In Section 4.2.2 we concentrate on the effect of path lengths. Non-adjacent



84

nodes communicate, but contention is still carefully avoided. In Section 4.2.3, several

experiments are described which involve communication under contention.

4.2.1 Contention-free Adjacent-node Communication

In the first set of experiments, communication is restricted to physically adjacent

nodes. The communication pattern is defined by (Figure 4.3).

peer of node(i, j) = node(i, j ED 1) (6 denotes the bitwise ex-or function

)

class of node(i,j) = even(j) :5 A , odd(j) =72 B.

None of the nodes are idle, i.e. none belong to the class I. The N active nodes

of the system are partitioned into N/2 pairs, and these pairs do not interfere with

each others communication. In the base loop, a message of L bytes is sent from an

A node to its peer, and then a message of the same size is sent back from the peer

(Figure 4.3).
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Figure 4.3: Contention-free adjacent-node communication  
 

Contention is carefully avoided. First notice that at any time a node will be either

sending or receiving. Thus there is traffic along only one direction on the pr-hannels.

The communication between the various pairs does not interfere with one another.

Also, on each network channel, the traffic is only along one direction at any instant.
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In addition, both the peers compute for the same amount of time after completing

their communication. This strategy ensures that the receiving node will always be

ready for the incoming message.

The communication time should be approximately the same for all the nodes as

there is no contention and all path lengths are unity. Each loop involves communica-

tion of two messages sequentially. Hence, the communication time per message, rm,

will be half the communication time per loop. We have

T... = r/2 = (T — tavg)/2 (4.2)

The experiment was repeated for different message lengths; communication time

per message was plotted as a function of the message length in Figure 4.4. The plot

shows the mean value of 1'... computed by 16 nodes. Even though different pairs could

progress at their own rates, the communication time per message for different nodes

was not significantly different. The maximum deviation of rm from the mean value

is less than 4 us for messages up to 8 Kb long. This small variation demonstrates

that the communication performance of different nodes (hardware and the kernel) are

almost identical.

These experiments show that the communication time per message can be specified

as a linear function of message length L, i.e. a+BL. Here, a is the fixed overhead and

fl is the effective bandwidth. We observe that the fixed overhead is still significant in

this second generation machine—about 210 us. Our measured value is slightly larger

than the value of 177 [18 reported recently [75]. The effective bandwidth is l /0.0577

n 17 Mbytes/sec for small (_<_ 256 bytes) messages which is about 87% of the channel

bandwidth (20 Mbytes/sec). Larger messages are sent as packets of 256 bytes. The

packetization is enforced1 to prevent long messages from blocking the transfer of small

messages. We observe in Figure 4.4.B that packetization has a noticeable impact on

the effective bandwidth. The packetization overhead reduces the effective bandwidth

to 1/0.1536 z 6.5 Mbytes/sec. The effective bandwidth is again slightly lower than

 

1In fact, there is no way to avoid this packetization in the current system.
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the claimed value of 1 /0.11 as 9 Mbytes/sec [75]. Communication of longer messages

is about 17/6.5 = 2.6 times slower than for smaller messages.

4.2.2 Contention-free Non-adjacent-node Communication

In this section, we examine the performance when communication is between nodes

that are not physically adjacent. Contention for both rr-channels and pr-channels is

to be avoided so we can concentrate on the effect of longer path lengths. We achieve

that goal by only allowing nodes along the the leading diagonal to be active. The

communication pattern is defined by (Figure 4.5)

peer of node(i,j) = (x/N-i— 1,\/N— i — 1)

class ofnode(i,j) = (i #j) => I,(i < \fN/2) => A,(i 2 x/N/2) => B

Thus, we have VN/2 pairs communicating—avoiding any interference between their

communications. The result is no contention for network channels. The base loop

is the same as shown in Figure 4.3. Hence, contention for pr-channels is avoided as
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Figure 4.5: Contention-free, non adjacent node communication   
The path lengths for the various pairs are 2, 4, 6, ..., 2s/N-2. If longer path

lengths increase delays, we would expect to see communication time (and hence loop
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time) increase as we move from node (x/N/2,\/—N/2) to node (0,0). The average loop

times for the diagonal elements of a 12x12 2D mesh are shown in Figure 4.5.B. The

times are for 4 Kb messages and 450 ps average computation time per loop. The

times do not show any dependency on path length. Figure 4.6 shows how time for

a single message varies with path length for different message sizes. The change is

less than :l:4 us. Since such variations existed for adjacent node communication, we

conclude that the effect of path lengths can be ignored in current wormhole-routed

 

 

 

 

 

    
 

networks 2.

14‘_ I A i _A_ I _L r .L.

" " " "8 Kb “

1600 - ‘

1400 - ‘

1200 r -

rm in as - k L + L :1 Kb A j

800 — ' -

600 - 1 Kb -‘

400 -Ms-

:__ : : 1' :2 byte *
200 " l " T " 1 " I fi

0 5 10 15 20

Path length (D)

Figure 4.6: Communication time per message as a function of path length   
 

2The times here are slightly different than the values given in Section 4.2.1, as the systems were

different and so were the CE kernels.
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4.2.3 Communication Under Contention

In this section, we describe several experiments designed to study the effect of con-

tention on the communication time. We establish communication patterns so mes-

sages will have to compete for network channels (rr..channels) and/or PE. to router

channels (pr-channels). Unlike the experiments in the previous two sections, we find

that communication time increases exponentially as the computation time decreases.

Contention for Network Channels

In order to study the effect of contention for network channels, we need a communi-

cation pattern in which the nodes are affected differently by contention, and in which

node pairs can progress independently of each other. Under these conditions, it is

possible to measure the effect of contention by computing the difference in loop times.

We call the pattern used here the matrix-transpose pattern (Figure 4.7.A).

In this pattern, all nodes along the leading diagonal are idle, and others are active.

The communication pattern is defined by

peer of node(i,j) = node(j,i)

classofnode(i,j) = (i =j) => I, (i>j) => A , (i<j) => B

We have x/N(\/N — 1)/2 pairs communicating. The base loop is identical to that

of the earlier experiments, and there is no contention for pr-channels. The experiment

is more demanding on the network because the peers are widely separated, and the

messages between them will result in severe contention for network channels.

An examination of Figure 4.7.A provides an idea of the distribution of contention

due to communication in the matrix-transpose pattern. To construct that contention

pattern, we have utilized the fact that Symult 2010 systems use a fixed routing scheme.

Messages travel along rows first, and then along the columns. The channels connected

to the two corner nodes (0,0) and (s/N—1,\/N-1) have the maximum loads (\/N -1),

whereas the channels connected to the other two corner nodes have the lowest loads

(1). The loads on other channels vary between those two extremes. Logical path

lengths (equal to 1/2 the physical path length) increase as we move away from the



 

90

 

(0.0)

--, 2.085, 2.097. 2.095, 2.102, 2.109, 2.116, 2.110

2.084, -, 2.086, 2.099, 2.104, 2.116, 2.116, 2.115

2.092, 2.086. -, 2.095. 2.101, 2.106, 2.112, 2.110

2.095, 2.099, 2.094, -, 2.092. 2.099, 2.104. 2.103

2.102, 2.104, 2.101, 2.092, -, 2.091, 2.092, 2.092

2.109, 2.116, 2.105, 2.098, 2.091, -, 2.088, 2.086

A A A 2.115, 2.116, 2.112, 2.103, 2.092. 2.088, -, 2.086

2.109, 2.114, 2.110, 2.102, 2.092, 2.085, 2.086, -- 

 
(3.0) (3.3)

A. Communication pattern 8. Loop time for different nodes in ms

. Figure 4.7: Communication under contention for network channels

 

leading diagonal. Hence, logical path length is highest for the corner nodes (On/N -l)

and (W -1,1), and is equal to (\/N -2). Path contention levels are higher for upper

(lower) row nodes if we consider nodes above (below) the leading diagonal, and vary

from 0 to (\/N -2). l

The loop times for a specific case when the message length is 4 Kb and the mean

computation time is 150 as is shown in Figure 4.7.B. Observe that nodes that are

away from the leading diagonal have higher loop times. The observed distribution

can be explained. Symult 2010 does not use priority queues. Hence, nodes whose

paths have longer logical path length are affected more. For example, a message from

node (On/NJ) to its peer node (x/N-LO) must compete for each of the \/N — 1

horizontal segments (channels) of its path. On the other hand, a node near the

principal diagonal, such as node (0,1), will only have to compete for the one channel

between nodes (0,0) and (0,1). Hence, communication time as well as loop time is

higher for node (x/N-1,0). Later we show that path contention level still determines

the increase in communication time for an average and a worst case node.

Let TMg and T...“ denote the average and maximum loop time taken by any node

in this experiment (refer to Equation 4.1). Let Tévg and T4,” be the corresponding

Values when the peers are mapped onto adjacent nodes as in the experiment in Section
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3.1 (note that Tgug as TIMI). The increase in loop time for an average node is (ATM, =

Tavg - T;,,), and for the worst node is (ATM, = T...” — Tim”). The increase in

communication time, Ar, will be equal to the increase in loop time, AT, because

the computation time for any loop is fixed. The increase in communication time per

loop for an average and a worst-affected node are plotted for various systems sizes in

Figure 4.8. Note that decreasing the average computation time per loop has the effect

of increasing the communication time. Our results show that the communication

time increases exponentially with the communication-to-computation time ratio. The

increase is greater for larger system sizes and longer messages.

Since we showed in Section 4.2.2 that path lengths cannot account for that ex-

ponential increase in communication time, we conclude that the increase in commu-

nication time here is due to contention for network channels. The pattern in loop

times (Figure 4.7.B) further confirms that the increase can only be due to contention

for network channels. Although the results show that the increase in communication

time is significant only for large messages and very high communication to compu-

tation ratios, analysis in Section 4.3 shows that these delays can occur for smaller

messages and more reasonable communication-to-computation ratios in future, larger

systems.

Contention for PR—channels

We now examine the effect of contention for the PE-to-router channel, the pr-channel.

Contention for pr-channels will occur if a node receives and/or sends several messages

simultaneouslya. Such contention was carefully avoided in all our previous experi-

ments. Contention for pr-channels is more serious in current systems than contention

for network channels. For many common communication patterns, contention for

pr-channels can occur and increase the communication times significantly.

The architecture of a node (shown in Figure 4.1) indicates the problem. All five

channels (four rr-channels and one pr-channel) have the same bandwidth. If messages

3Multiple, simultaneous sends and receives will also result in contention for any node hardware

involved in sending or receiving a message, including the CPU.
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arrive on more than one rr-channel to a given node, the messages must compete for

the single pr-channel and create a bottleneck. This pr-channel bottleneck can slow

down an incoming message by a maximum factor of eight. We use variants of the

popular near-neighbor communication patterns here to demonstrate the effects of

contention for the pr-channel. The communication patterns are shown in Figure 4.9.

In near-neighbor patterns, a node typically exchanges data with one or more neigh-

bors in each loop. Consider the experiment in Section 4.2.1. In that experiment, each

node exchanged (sent and received) a message with its peer in each loop. Contention

Was avoided for both rr-channels and pr-channels. Let us call that pattern the AB-

1NN pattern‘. The base loop is the same as given in Figure 4.3. If we now make all

nodes in Figure 4.3 belong to the class A, then each node will first initiate a send and

then receive the incoming message from its peer (Figure 4.9). We call this pattern

the AA-INN pattern. In this pattern, a node will be simultaneously sending and re-

ceiving. Traffic exists in both directions on pr-channels as well as rr-channels. Since

messages are progressing concurrently, we expect the communication time per loop

to be half of that for the AB — 1NN pattern. However, the-measured times indicate

that it is almost the same as for a AB - 1NN pattern (Table 4.1). We find that if

traffic exists in both directions, the communication time for a message is increased

by a factor of 2.

Instead of sending and receiving from one neighbor, we next consider the case

where a node communicates to all its four neighbors in each loop—a more common

Situation. Typically, a node sends the same message to all the four neighbors in

each loop. The four-neighbor pattern which avoids contention for network channels is

given in Figure 4.9 (AB-4NN pattern). The base loops of A and B nodes are given in

Figure 4.10. A node (i, j) belongs to class A (B) if i + j is even (odd). Even though

contention for network channels is avoided, four messages will be contending for the

pr-channel. The communication time for the AB-4NN pattern is four times that of

the AB-lNN pattern. Hence, the communication time per loop is eight times that

for a single message. As in case of the 1NN pattern, we can place all nodes in class

‘

4One Near Neighbor and peer nodes belong to classes A and B.
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Figure 4.9: Near-neighbor communication patterns
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for each neighbor do for each neighbor do

tsend(neighbor,msg,1.) ; msg I trecv(neighbor) ;

for each neighbor do for each neighbor do

neg - trecv(noighbor) ; tsend(neighbor,msg,L) ;

compute(t) ; computeft) ;

Figure 4.10: Base loop for four near-neighbor (4NN) communication patterns
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Msg ln AB-INN AA-INN AB-ilNN AA—JNN

(in bytes) 71 1'1 /rm 7'2 1'2 /rm 7;, r3 /rm 74 74/13,,

1 .412 2.00 .385 1.87 2.422 11.75 2.269 11.01

515 .687 2.00 .681 1.98 3.425 9.97 3.059 8.90

1027 .791 2.00 .785 1.98 3.782 9.56 3.683 9.31

4099 1.767 2.00 1.766 1.99 7.648 8.65 7.508 8.49

8196 3.306 2.00 3.295 1.99 12.938 7.82 12.793 7.73 
 

 

- Table 4.1: Communication time per loop for near-neighbor patterns in ms.

(rm is the time for a single message under contention-free condition)

A to create the AA-4NN pattern. The loop times for AA-4NN pattern are given in

Table 4.1. Again, we find little difference in the loop times of AA-4NN and AB-4NN,

even though nodes in AA-4NN pattern initiated all sends first before receiving any

messages in a loop. As before, the problem is due to the contention for the pr-channel

by the four incoming and the four outgoing messages.

The experiments in this section lead us to the conclusion that the pr-channel or

node-architecture can become a serious performance bottleneck in current systems.

One solution is to increase the bandwidth of the pr-channel, and design the memory

with sufficient bandwidth so that multiple incoming and outgoing messages can be

handled without any degradation in performance. Another solution is to improve the

router to provide multicast communication support. This support will be useful as

a node will often be trying to send the same message to more than one node. In

that case, a single message on a pr-channel could generate multiple copies of itself

on the network channels, and significantly reduce the bandwidth requirements of the

pr-channel.

4.3 Analysis of Experimental Results

In Section 4.2.3, experimental results showed that contentions for network channels

can increase communication times exponentially. The increase in communication time
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was significant (>10 usecs) only for messages larger than 1 Kb. In this section, we

analyze the results further to examine if the increase in delays can be significant in

future systems even for smaller messages and higher computation times per loop.

Theoretical results in Chapter 2 had indicated that normalized communication time

should be a function of applied node traffic. We also verify if experimental results

agree with the theory. To convert the experimental data, we need to take a look at l

the various components of loop time.

Consider the components of loop time for contention—free communication for the

base loop shown in Figure 4.3 (refer to the experiments in Section 4.2.1). Figure 4.11

shows the components for a specific instance when the message length is 4 Kb and the

average computation time per loop is 1 ms. The communication time per loop includes

the time to send a 4 Kb message from an A node to its peer (A-B communication)

and the time for another 4 Kb message from the peer back to node A (B-A commu-

nication). Each message was shown in Section 4.2.1 to take 210.2+0.1536x4096 =

839 11s. Of this, 210 us is fixed overhead and 629 ,us is needed to send 4096 bytes as

16 packets of 256 bytes each. Each packet therefore takes 629/16 = 39.3 psecs. The

data of individual packets are communicated over the network channels at the rate

of 0.0577 psec/byte, or 0.0577x256 = 14.8 ysecs per packet as measured for smaller

messages (Figure 4.4). These times are shown as shaded regions in Figure 4.11. The

remaining time, (39.3 - 14.8) = 24.5 psecs is the overhead to process each packet.
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 Figure 4.11: Components of loop time for 4 Kb messages  
 

An understanding of the components of loop time indicates how to express the
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experimental data in terms of applied node traffic and normalized communication

times. For contention-free communication, we have by Equation 4.2, T = ta,g +2rm =

to”, + 2(a + bL) where a and b are system dependent constants whose values can be

easily determined (Section 4.2.1). The values for Symult 2010 are shown in Figure 4.4.

Hence, we find that for our base loop, applied node traffic (Definition 24) is

A, = (L/B)/(t,.,, + 2(a + bL)) . (4.3)

Observe that applied node traffic depends only on the characteristics of a parallel

task (L,t.,,,,) and the machine dependent constants (B,a,b). The significance of

A0 is that under contention-free conditions, the pr—channel of a node will be busy

injecting data into the network for A,, fraction of time. For the example in Figure 4.11

A,, =Wx 100 z 7.64%.

We can also normalize the communication time per message under contention to

the communication time under contention-free.conditions less the fixed overheads,

bL. The results of the experiments (Section 4.2.3) shown in Figure 4.8.A gives the

increase in communication time per loop Ar. Since, each loop (Figure 4.3) involves

the communication of two messages, the increase in communication time per message

will be Arm = Ar/2. The normalized communication time therefore will be given

by

_ bL+Arm _ bL+Ar/2

9 _ bL _ ————bL (4.4)

The results given in Figure 4.8.A for a 144-node system are represented in terms of

applied node traffic and normalized communication time in Figure 4.12. Figure 4.12

shows that for the same applied node traffic, the increase in communication time

is greater for larger systems. We also observe that some nodes (such as the worst-

case node) perform much worse than an average node. The behavior can be easily

explained. The maximum path contention level for the matrix transpose pattern is

um” = (W — 2), and maximum channel load is Xmu = (\/N - 1). For a 144 node

system \/N - 2 = 10. Hence, from Equation 3.11 we find that the saturation node

traffic for the worst-case node is A3“, = 1 /(10 + 1) = 9.1%. A 9.1% node traffic will
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saturate physical channels as Xmas = 11. We can therefore expect a dramatic increase

in communication time when applied node traffic is higher than A3”. = 9%.
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Figure 4.12: Normalized communication time per message for different system sizes.

(Matrix-transpose pattern, 4 Kb messages)

Figure 4.13 gives the normalized communication time per message for three dif-

ferent message lengths for a 144-node system using the matrix transpose pattern.

The graph clearly shows that the normalized communication time is a function of

the applied node traffic and is independent of the message length. The plots in Fig-

ure 4.13 stops at A,, = 13% because overheads and architectural bottlenecks in the

Symult 2010 limited applied node traffic. If fixed overheads and architectural bottle-

necks are removed in future systems, applied node traffic will increase for the same

message length and computation time ( as the values of a and b in Equation 4.3

are reduced ). Such an increase in applied node traffic will seriously degrade the

communication performance. Figure 4.13 also shows why we do not observe the ef-

fects of contention for less than 1 Kb messages in a Symult 2010. In that case, the

overheads limit the applied node traffic to less than 6% for small messages, reducing
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the percentage increase in communication time. In addition, for small messages the

communication time T... is also small. Hence, the absolute increase in communication

times, Arm, will be too small to be observable. However, with reduced overheads,

increased applied node traffic is possible, and we will observe the effect of contention

even for small messages.
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Figure 4.13: Normalized communication time per message for different message

lengths.

(Matrix-transpose pattern, 144 node system)

One may argue that even such an increase in communication time may not af-

fect the overall loop time significantly, since communication is only a small part of

the loop time. We could plot the percentage increase in loop time instead of per-

centage increase in communication time. However, an interesting and useful way to

present the effect of contention on the overall performance is to plot actual node traf-

fic (Definition 26) as a function of applied node traffic (Definition 24). An increase

in communication time will increase the loop time which will reduce the actual node

traffic. The results given in Figure 4.13 are presented in terms of actual and applied

node traffic in Figure 4.14.
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Figure 4.14: Actual node traffic for different message lengths

(Matrix-transpose pattern, 144 node system)

If the contention effect is negligible on the overall performance, the actual node

traffic, A,,, should be approximately the same as the applied node traffic, A,,. The

curves in Figure 4.14 clearly shows that for a 144-node system the actual node traffic

begins to saturate at about 9% applied node traffic for the worst-case node as ex-

pected. The effect of contention on the overall performance (or loop time) then will

be visible if a node attempts to generate a traffic which is more than the saturation

level. Applications can never achieve a node traffic higher than the saturation level.

The level at which actual node traffic saturates in general depends on the communi-

cation pattern, the mapping and the size of the system as elaborated in the previous

chapter.
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4.4 Discussion

In the previous section we saw that although path lengths are not a problem in

wormhole-routed networks, contention can be a serious problem. Our experiments

were conducted on Symult 2010 systems, which may not be a typical representative

of the class of 2D mesh connected, wormhole-routed networks. In this section we

discuss some of the architectural idiosyncrasies and drawbacks of the Symult 2010

system which may not be present in future systems, and extend our results to such

systems.

-to- uter chan an ode arc itec : In a Symult 2010, the

Processor-to—Router channel (pr-channel) bandwidth is the same as that of the net-

work channels. Hence, the pr.channel can become a bottleneck for several communi-

cation patterns, and it limits the peak rates at which a node can inject traffic into the

network. It is possible to increase the bandwidth between the router and the proces-

sor by either increasing the channel width or the channel rates. Ideally four times the

bandwidth of the network channels in each direction should be suflicient to eliminate

this bottleneck. In addition, the node and its kernel should be designed to handle

multiple incoming and/or outgoing messages. Future designs (such as iWarp [14]) are

increasing the bandwidth between the router and the PE. With these improvements,

however, higher applied node traffic is possible and the problem of contention for

network channels can be increasingly visible.

2. System Size : At present, the largest Symult system has 192 nodes. However,
 

system sizes are expected to be as high as 1K nodes or more in the near future.

Applied node traffic is a characteristic of the parallel program, and parallel programs

should be designed to be scalable. Hence, applied node traffic remains the same as

system size increases. As we saw earlier, the utilization of some channels can increase

to very high levels due to nonuniform traffic even though applied node traffic remains

reasonable. Longer path lengths in larger systems will force a message to compete for

more channels before successfully establishing a path for communication. With larger 4

systems sizes, interference between traffic due to different users (or applications) and
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between system and user traffic will also increase. Hence, the contention effect will be

increasingly visible in larger systems, and contention may have to be studied seriously

if inefficient performance is to be avoided.

3.WM: In current systems, the fixed overhead per message

is about 210 psecs which is quite high compared to network delays. It is possible

to reduce this overhead further by a careful design of the node architecture, good

interface between the communication and the computation processors and restrict-

ing the flexibility of the message primitives. Some of these improvements are being

implemented in latest multicomputers [14, 30]. As explained in the previous section,

reduced overheads can increase peak applied node traffic, and hence the effect of con-

tention. Even with current overheads, which limit peak node traffic to about 12%,

the effect of contention will be visible in large systems as saturation may occur at less

than 10% node traffic.

4. WWW; : In a Symult 2010, [messages larger than 256 bytes

are sent as 256 byte packets. Packets were introduced to prevent large messages

from affecting the communication of smaller messages due to contention for channels.

However, packetization introduces additional software overhead which causes larger

messages to progress 2.7 times slower than smaller messages. In addition, there is no

way a user can prevent this, even if he is sure that he is avoiding contention, and is not

interfering with the communications of other applications. Increasing communication

times by a factor of 2.7 may reduce overall performance significantly and may not

be acceptable. Such packetization cannot be very effective if channels are getting

saturated. Turning off packetization will increase the applied node traffic, and hence

the effect of contention. However, we may achieve a significant speedup if we turn off

packetization, and carefully avoid contention.

5. Multicast and Broadcast support : At present, support for multicast and

broadcast communication is very inefficient. In fact, if the host needs to broad-

cast a message to all nodes, it will simply send a copy to each node. Only one node is

connected to the host, and all the messages from host to nodes must pass through a

single channel. This implementation will slow down the broadcast by a factor of N.
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Similarly, if a node has to send the same message to more than one node, it has to

make copies of the message and send one copy to each node. Architectural support

for broadcast and multicast will be useful. However, such support will also increase

network traffic for a given applied node traffic, and hence the problem of contention

for network channels.

6. Wider Data paths : Future systems are being designed to have wider data
 

paths. As the width of the channels increases, the network delays become smaller

which will reduce the node traffic and utilization of channels for a given application.

Hence, increased width is one main factor which may reduce the applied node traffic

and hence the the problem of contention. Detailed studies are needed to determine

whether increases in channel widths can compensate for all the earlier factors which

increased the problem of contention.

We see that a number of trends in network architecture indicate that the problem

of contention for network channels will become serious in near future. It is not clear

if the higher bandwidth possible in mesh networks can compensate for the changes,

and enable the mesh networks perform better than hypercube networks.

4.5 Conclusion

The results of our experiments and the analysis of these results indicate of the per-

formance of a state-of-the-art mesh-connected wormhole-routed interprocessor com-

munication network. The communication time per message under contention-free

conditions is one of the best any implementation has achieved, and is given by the

linear function 210.9 + 0.0577L usecs (210.2 + 0.1536L psecs if L > 256) where L is

the message length. This expression is accurate to within :l:4 psecs, even for paths of

length 22. Hence, with current technology we find that the effect of path length on

communication performance can be ignored.

However, contention for network channels may turn out to be the new problem

as predicted by theory. Contention is a more serious problem than path length as it

can result in an exponential increase in the communication time once communication
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intensity of an application reaches a certain threshold. In the Symult 2010, the effect

of contention is significant (> 10 psecs) only for large systems ( > 100 nodes) and

for long ( > le) messages. Large overheads are limiting the applied node traffic to

less than 13%, and hence the effect of contention in small systems currently available.

However, our analysis indicates that the effect of contention may be visible even at

applied node traffic of less than 10% for large systems not yet available so the problem

of contention can become serious in the near future.

Improvements are needed in the current architecture to reduce overheads,

to remove bottlenecks in the node architecture, and to provide efficient broad-

cast/multicast support. Future multicomputers under development are already plan-

ning to provide some of the improvements. Although such improvements will improve

the network performance for contention-free communication, those improvements will

also increase the problem of contention for network channels. The network perfor-

mance will become more sensitive to the contention.



Chapter 5

NETWORK SIMULATOR

5.1 Introduction

We decided to develop a high-performance simulator that can be used to study the

performance of large networks. Such a simulator is needed for several reasons. Ex-

perimental studies on systems larger than 200 nodes are not possible as such large

multiprocessor systems that use wormhole-routing or circuit-switching are not yet

available. Such large networks and systems are, however, expected in the near future.

In addition, experiments reveal only the characteristics of a specific system or network,

and may fail to highlight the characteristics common to all wormhole-routed networks.

Theoretical analysis in earlier chapters clearly showed that contention can be serious

problem in large networks, and appropriate mapping can result in significant improve-

ment in performance. Simulation studies can be used to confirm the simulations. If

the results of the theory and simulations agree, then that would validate our sim-

ulator, too. Once the simulator is validated, it can be a useful tool to investigate

various cases that are difficult to model and analyze by theory. To our knowledge,

there is no published literature that describes the design of a general-purpose, efficient

wormhole-routed network simulator that can simulate large networks in reasonable

time. We were, therefore, motivated to design a simulator which can be used to study

the performance of large, wormhole-routed networks.

We had the following goals for our simulator

0 Generalpurpose : The simulator was not intended to study any particular
 

multiprocessor system or network. It was intended to model the fundamental

characteristics of a wormhole-routed network, and to be sufficiently general so

we can study the performance characteristics common to all wormhole-routed

105
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networks.

0 High performance : We wanted the simulator to be fast enough so that we can
 

use it to study large networks having hundreds or thousands of nodes.

0 flexible : It should be easy to modify the simulator to include specific character-

istics of a machine so that a specific machine can be simulated more accurately

if needed.

0 Portable : The simulator should run on any computing resource available, and

is not to be designed to run on a specific machine or require special support

from the operating system.

We describe how we managed to meet our goals, and show that our simulator

can be useful in understanding the behavior of modern wormhole-routed networks.

In this chapter, we concentrate on the performance of 2D mesh networks as they

have potential for high performance, and are also significantly affected by contention.

However, the simulator can be easily modified (as explained later in the chapter) to

study performance of networks having other topologies. In Section 5.2, we describe

the design of the simulator kernel and explain how we could make it simulate all the

essential features of a wormhole-routed network, and still keep it simple and efficient.

Additional code, called the simulator shell, needs to be written to complement the

kernel and complete the simulator. We describe the design of a simulator shell to study

the effect of mapping of the performance on the network in Section 5.3. In Section 5.4,

we describe how we validated our simulator by comparing its outputs with results from

experiments on a real system and from theoretical analysis. We present the simulator

results for several experiments in Section 5.6 which demonstrate the usefulness of the

simulator in understanding the behavior of wormhole-routed networks. Details of the

performance of the simulator on a Sun Sparc workstation are given in Section 5.5.

The results show that our simulator can give useful results in reasonable time even

for large systems. Finally, we conclude and mention limitations of our simulator, and

possible improvements to make the simulator more powerful and flexible.
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5.2 Simulator Design : Kernel

The major challenge in designing the simulator was to make it fast enough so we

can simulate large networks in reasonable time and get useful results. After careful

study, we chose to implement the simulator in C, a high level language, rather than a

simulation language. The network model we simulate is simple, and we do not require

the power of a simulation language, and we can avoid the processing overheads of a

simulation language. Simulators using a language such as CSIM have been found to

be too slow to simulate large wormhole-routed networks [68]. Our kernel design is

similar to that of another work reported recently [61].

For the first version of our simulator, we made the following assumptions that

let us concentrate on the main characteristics of a wormhole-routed network. These

assumptions simplify the simulator design, and hence improve the simulator perfor-

mance.

o All network channels are assumed to have the same bandwidth and all trans-

missions are assumed to be error-free.

0 Channels between adjacent nodes are assumed to be full-duplex.

o A node-processor or memory will never be a bottleneck. We made this assump-

tion as we were interested in studying effects of contention and non-uniform

traffic, and not the limitations of a node’s capability on communication perfor-

mance.

o All routers are synchronized by a global clock. We assumed that the duration

of a clock period is sufficient to process all the newly arrived data flits by a

router.

o No support for virtual channel.

0 One flit buffer per channel in each direction.

At the same time, the following essential features of a wormhole-routed network

are retained, so the simulator predicts the network performance reasonably well.
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reservation of network channels and datapaths by the message header

small headers of one or two words

pipelined flow of message flits that follow the header

release of reserved channels by the tail flit of the message

0 limited number of buffers per router, typically one or two per channel

blocking the the message flits if the header is blocked.

We also decided to implement the main functions in the form of a kernel, a library

that supports key functions. A problem-specific shell can be then written to complete

the simulator. Such a design will help us optimize the key functions, and at the same

time keep the simulator quite flexible. We first describe the main datastructures, and

then the algorithms for key kernel functions. Design of a simulator shell is described

in the next section.

5.2.1 Kernel Data Structures

The overview of the network model simulated by the kernel is shown in Figure 5.1,

and is similar to the model used in another work recently [61]. There are N nodes,

each node consisting of a PE and a router. Each router, and hence the corresponding

node, is connected to a limited number of other nodes by physical links. The PE’s

generate and absorb messages, whereas the routers communicate the messages from

one node to the other. We need data structures to remember the state of the links,

the routers and the PE’s.

Each output port is connected to the input port of an adjacent node by a physical

link. The state of a link or an input port is not remembered explicitly as they can be

deduced from the state of the corresponding output port, We, therefore, can represent

the status of the network and the routers by a N x 6 array of PORT structures, each

structure remembering the status of an output port (Figure 5.2). Here, 6 is the degree

of a node, i.e. number of output or input ports in a router.
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Each PORT has two fields: pstatus and waitq. The field pstatus stores the state

of the output port. Its value will be IDLE, if it is not currently reserved for any

message. Otherwise, its value indicates the message which has reserved it. The other

field vaitq is a small FIFO or priority queue. The queue is not for message flits, but

for message headers that have arrived on input ports, and are waiting to reserve this

port and the corresponding physical link. When the tail flit of the message currently

holding the port passes through the port, it will release the port and the channel.

Once the port becomes free, the first message in the waitq will get the channel. In

an actual network, the elements of waitq may be input ports. In our simulator, each

queue element is the index of a message, as it is more convenient to process.

A PE is treated as a source/sink for messages. Observe that every incoming

message corresponds to an outgoing message from some other node. The kernel

handles only the messages currently in the network and leaves other details of the

PE behavior, including generation of messages in future, to the shell. Hence, the

status of PBS is represented by a N x 6 array of MESSAGE structures, each MESSAGE

structure remembering the status of a message currently in the network, which has

the following fields:

0 mstatus: status of the message: IDLE if there is no message at present, BUSY

if the message is not blocked and is progressing, or WAIT if the message is

blocked and waiting for a network channel.

o are, dst , msgln, bt ime: give the details about the message: source node,

destination node, length of the message and the time at which it entered network

respectively.

0 headposn, tailposn: position of the head and tail flits respectively. If the

value of the headposn (tailposn) is i, then the head (tail) flit of the it" message

has arrived at an input port of node i. Tailposn will be -1 if the tail flit has

not left the source PE yet.

0 nbytssent: indicates the number of message flits that have already left the

source PE
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Arrays of PORT and MESSAGE structures can remember the status of the entire sim-

ulator kernel. The total space needed is O(N), and hence we find that our simulator

is space efficient.

5.2.2 Simulation Cycle

The kernel functions essentially take the simulator through one simulation cycle (Fig-

ure-5.2.2). It is necessary to understand the functions carried out by a router in

one simulation cycle before we can describe kernel functions. The initial state of a

router before a new simulation cycle is as follows. Some of the input ports would

have received message flits from adjacent nodes in the previous cycle and need to be

processed. Other input ports are currently either blocked or idle. Some of the output

ports would have sent flits to adjacent nodes and are waiting for acknowledgment.

Other output ports are either idle or waiting for the next data flit to arrive. We

decided on a four-phase simulation cycle based on related work [77, 61].

Phase 1, Routing: In the first phase, the router has to decide the output port for
 

each newly received message flit. If the flit received is a header flit, then the router

has to decode the header, and decide the output port to which the header should be

sent. Otherwise, i.e. the received flit is not a header, its output port can be inferred

by the path taken earlier by its header.

Phase 2, Blocking and Arbitration: In the second phase, the router has to decide
 

if the required output port is free for each flit. For non-header flits, it just checks

if the previous flit of that message has been successfully transmitted to an adjacent

node so the output port is free to receive the next flit. For a header flit, it has to check

if the required output port is idle. It also has to compete and win the arbitration if

headers on several input ports are requesting the same output port.

Phase 3, Internal data transfer: (input port to output port) In this phase, the
 

router will transfer all unblocked flits from their input ports to their specified output

ports and send an acknowledgment to the adjacent nodes which sent these flits. All

output ports for which acknowledgments are received are marked ready, and if an

acknowledgment is received for a tail flit then the output port is marked IDLE.
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Phase 4, External data transfer (output port to input port): In this last phase, all
 

output ports that received new flits in Phase 3 will transmit them to the respective

adjacent node.

At the end of the simulation cycle, we are back to the initial state except that all

unblocked message flits have advanced by one node.1

5.2.3 Kernel Algorithms

The computational requirement will be high if we process each flit of each message.

We reduced the requirement significantly, and made the simulator computationally

efficient based on the following observations.

0 Handling message flits: Instead of processing each message flit, we process only

the head and tail flits. The movement of other data flits is implicit as they are between

the head and tail flits.

o Idle routers: The fraction of routers that have an event to process in a cycle

is small. We skip idle routers in a simulation cycle by scanning the list of active

messages instead of scanning routers.

0 Blocked messages: Any message whose header is waiting for the release of a

channel is marked to be in the WAIT state, put in the appropriate waitq and is not

processed until the required channel is free. The message will be signaled when the

channel becomes free (when the tail flit passes through). Hence, in each cycle we

process only the unblocked messages.

0 Arbitration policy: We also need to handle efficiently the case of two or more

headers which arrive in the same cycle and compete for the same output port. Each

port is associated with a priority queue, and each message is associated with some

priority. In Phase 1, all headers which need the channels are inserted into the queue.

In the second phase, each header checks if it is at the head of the queue to determine

if a channel is granted to it.

 

iObserve that it takes two cycles to complete the transfer of a message flit, and hence message

flits follow one another separated by 2 nodes. However, if we have two buffers for each outport, then

it is possible for the message flits to follow one another separated by just one node.
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By default, the priority value of any message is the time it was injected into the

network, and the the message having the lowest priority value will be the winner.

Such a policy will ensure that the network tries to minimize communication time for

each message when there is contention. Also, in such a policy no message can wait

forever. We later demonstrate that these improvements result in a simulation rate

per cycle which is independent of the system size, and is only proportional to the

number of progressing messages.

The following are some important functions implemented in the kernel.

1. route (curnode,dstnode,outport,nextnode) The dependence of the sim-

ulator on network topology and on the routing scheme is constrained to only this

function so we can easily adapt our simulator to any network topology. Given a cur-

rent node number, curnode, (for a head or a tail flit) and destination node number,

dstnode, the function route will determine the next node along the path to the des-

tination and the output port the flit should be routed to (which is connected to an

input port of nextnode).

The function is given for 2D mesh network below. Here, an is a global variable

whose value will be «N: The function is simple even for hypercube or 3D mesh

networks, and can be implemented in a few statements of C language.

 

procedure route (curnode, dstn, nextnode, nextport)

curnode, dstn : integer ; /* Inputs, curnode <> dstn */

nextnode : integer; PORT *nextport ; /* outputs */

begin

fn I curnode - (curnode % sn);/* First node in curnode’s row */

nextnode 8 curnode ;

idestn < fn) { nextnode -- sn ; nextport 8 UP ; }

else if(dstn >8 (fn + sn)) {nextnode += sn ; nextport 8 DOWN;}

else if(dstn < curnode) { nextnode-- ; nextport 8 LEFT ; }

else if(dstn > curnode) { nextnode++ ; nextport - RIGHT ; }

else /* dsnt 8' curnode */ { nextport 8 PE ) ;

end
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2. adenessage (srcnode, dstnode, msgln) Given a source node, srcnode,

a destination node, dstnode, and message length, msgln, this function will add a

message to the network in the current simulation cycle. The function will search for

an available MESSAGE structure, initialize it appropriately, and add it to the active

message list.

3. advancenessage: This is a key function which will attempt to move a single,

unblocked message through the network by one step. It executes phase 3 and 4 of the

simulation cycle. It will advance the position of the header and/or tail flit, if that flit

is in some intermediate node, and it increments the number of flits that have left the

source. The function will also signal the first waiting message in the queue associated

with the channel being released by the tail flit. The function is given below.

 

procedure advance-msg(msgp)

MESSAGE *msgp ;

begin

if(msgp->headposn <> msgp->tailposn) /*advance header flit*/

route(msgp->headposn,msgp->dstn,nextnode,nextport) ;

msgp->headposn I nextnode ;

endfi

if(msgp->nbytssent < msgp->msgln)

II Release one more flit from source */

msgp->nbytssent +I 1 ;

else if(msgp->tailposn !I msgp->dstn) IImove the tail flitI/

route(msgp->tailposn, msgp->dstn,nextnode,nextport) ;

if(!empty_queue(nextport->waitq))

/* Signal the message at the head of the wait queue */

msgp I get-queue(nextport->vaitq) ;

msgp->mstatus I BUSY ;

endfi ;

msgp->tailposn I nextnode ;

else /* tail has reached destination node */

msg-finished(msgp) ; /* inform shell */

msgp->mstatus I IDLE ;

endfi

end  
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Here, the functions put.queue, get_queue and first.elem operate on waitq,

and put an element, get an element or examining the first entry respectively.

4. advance (n) : This function will make the simulator execute n simulation

cycles, and is the main function supported by the kernel. The algorithm for advance

is given below, where the global variable simclock is the virtual time of the simulator.

Here, userin is a function implemented in the simulator shell which will simulate the

behavior of the PE’s at the start of a new cycle. Typically, as we see later, userin

may inject several fresh messages by calling the add.message function.

5.3 Simulator Shell

The interface between the simulator shell and the kernel is shown in the Figure 5.4.

The shell has to essentially implement three functions main, msgiinished and

userin. The shell functions call the kernel functions init_kernel, add.message

and advance. The kernel function advance calls the shell functions msgiinished

and useri‘n on specific events. The function msgiinished is called on the event of

the tail flit reaching the destination node indicating completion of a message transfer.

The function user_fn will be called by the advance function at the beginning of each

simulation cycle. A proper design of msgiinished and userin can implement the

behavior of the parallel tasks running on the PE’s—the goal of the shell module.

In this section, we briefly describe a simulator shell for studying the effect of

mapping on network performance. We use the example to illustrate how to write a

simulator shell for a specific problem, and to show that the shell can be simple and

efficient. The mapping problem is to find an optimal assignment of the tasks of a

parallel application to the nodes of a parallel system to get the best communication

performance.

The shell has to simulate the behavior of the individual tasks of a parallel appli-

cation running on different nodes. A parallel task, typically, performs local computa-

tions for some time, and then sends a message to one of its neighbors (in the process
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procedure advance(n)/* Advance simulation clock by n cycles */

n : integer ;

begin

n +I simclock ;

while (simclock <> n) do /* Execute a simulation cycle */

user_fn() ; simclock++ ;

/* Phase 1 *l

for each active, unblocked message, msgp, do

if(msgp->headposn <> msgp->dstn)

/* If header has not reached the destination */

/* Attempt to get the next segment of the path */

route(msgp->headposn,msgp->dstn,nextnode,nextport);

put-queue(nextport->waitq,msgp) ;

endfi

endfor

/* Phase 2 */

for each active, unblocked message, msgp, do

if(msgp->headposn <> msgp->dstn)

route(msgp->headposn,msgp->dstn,nextnode,nextport);

if(nextport->pstatus <> IDLE or

first-e1em(nextport->waitq) <> msgp) /* Wait */

msgp->mstatus I WAIT ;

else /* Port granted, remove entry from queue */

get_queue(nextport->waitq) ;

/* Phase 3 and 4 */

for each active, unblocked message, msgp, do

advance-msg(msgp)

endwhile ;

end
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Figure 5.4: Interface between shell and kernel
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graph). The sequence is then repeatedz.

In our shell, the status of a PE is maintained in a structure called

MESSAGEJIISTORY, whose fields are

start.t ime : time at which first message was sent.

nextnessage : time at which next message is to be generated.

no_messages.comp1eted : number of messages completed so far.

completion.time : time at which the nth message was completed.

Various functions of the simulator shell set and use MESSAGEJ'IISTORY to simu-

late the communication behavior of a RE. The functions implemented in shell are

described now.

1. init_msgs : This function is called in the beginning of a simulation run.

The function schedules a message from each PE by setting nextmessage field to a

value chosen randomly from the interval 0.. 2t¢vg. The function also initializes other

members of the MESSAGEJ-IISTORY structure for each PE. _

2. msgiinished : This function is called by the simulation kernel whenever a

message is completed. This function will increment the count of messages completed

(no_messages.completed field) for the source RE, and will schedule another message

from the source after a time randomly chosen from the interval 0..2ta,,g. This randomly

chosen time simulates the time needed for local computation by the RE before sending

another message. The function will also record the completion time, if the message

just transmitted was the a“ message from the source node.

3. userin : This function is called at the beginning of each simulation cycle, and

must be efficiently implemented. In this shell, all active MESSAGEJIISTORY structures

are linked by a linked-list sorted in ascending order of next_message field value. This

function will examine the head of this list and add the required number of messages

to the network by calling the kernel function add.message.

The functions init.msgs and msgiinished together with userin will simulate

the message injections by a node. The destination of these messages has to be decided

 

2Note that a node will also be receiving messages from neighbors asynchronously.
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based on the knowledge of the process graph and the current mapping. The knowledge

is set and used by calling the following two functions.

4. map : maps the parallel tasks in a requested way, and remembers the mapping

for later use. The function is called before a simulation run begins.

5. find.dstn : chooses the destination node given the source node, and is called

whenever a new message is to be added to the network. The choice is made so that

each parallel task communicates with all its neighbors uniformly. The function uses

the knowledge of current mapping and the characteristics of the process graph.

The main function is shown below. It will call initializing functions including

init.msgs and the map. After initialization, the main function enters a loop calling

advance in each iteration to advance the simulation clock by 1 until all nodes complete

17. messages. The command line arguments specify parameters for a simulation run:

the process graph, message length, average computation time per loop, system size,

and number of messages to be completed by each node.

In our simulations, nodes continue to generate messages even if they have finished

n messages. This continued generation maintains the traffic levels in the network

and avoids any tail-effect. This strategy also makes a small value of n (100 in our

experiments) sufficient. A small value of n in turn reduces the time taken by a

simulation run.

After a simulation run is completed, the function statistics will scan the

MESSAGEJ-IISTORY structures and compute the time taken by each node to successfully

send n messages. The difference in times computed for two different mappings will

then show the effect of mapping on the network performance. Note that even though

parallel tasks are communicating in exactly the same way, a mapping changes the

way the system nodes communicate. The change in communication pattern affects

the traffic and contention, and hence the time to complete a message.
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procedure main()

begin

prcs_args() ;/* Process command line arguments */

init__kerne1();/"l Initialize kernel */

mapC) ; ;/* Map the process graph in a required way */

init_shell() ;II Initialize shell and a message on each node*/

simclock I 0 ;II Initialize simulation clock */

cnt I O ;/* No of nodes that completed ‘n’ messages */

do

advance() ;

whileCcnt < N) ;/* Advance simulation time till all

nodes complete ‘n’ messages */

statistics() ;/* Process results and compute statistics */

end

Figure 5.5: Outline of the simulation main function  
 

5.4 Simulator Validation

One of the major challenges in developing a simulator is to validate it after it is im-

plemented. We validate our simulator by comparing its output with the results from

experiments on a real system, and by comparison with the results from theoretical

analysis. We use the Matrix-transpose pattern (Section 4.2.3) for validation. Fig-

ure 5.6 shows the network performance for N=144, i.e. a 12x12 mesh. The legends

in Figure 5.6 are from experiments on a Symult 2010 (Figure 4.12). We find that the

simulation results match well with the experiments. The curves match even though

simulator used 50 byte messages, and the experiments on the Symult used 1K, 4K or

8K bytes. The figure indicates that the node-traffic tends to saturate as predicted by

theoretical results.

From theoretical analysis in the previous chapter, we also know that the saturation

node traffic for a worst-case node is ).‘:m = 1/(uma, +1) as 60,9 = 6",“ = 1 for the

matrix-transpose pattern (Any node communicates with only one other node). For a

144 node (VI-V- = 12) system, um“ = W — 2 = 10, and hence A3”, = 1/11 z 9.1%.



The saturation node traffic for an average node will be 1/(1+Va,,g). To compute

mug, notice that u value for any path originating from a node (i, j) below the principal

diagonal (i.e. i > j) is i — 1, and is also equal the u for the path originating from

node (VI—V- — l — 23W — l — 2'). Hence, considering the average over the paths

121

originating from the nodes below the principal diagonal, we have
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3/23 z 0.13 or 13%. Figure 5.6 confirms that simulator results agree with the satu-

ration node traffics predicted by theoretical results—further validating the simulator.

We verify in Section 5.6 that the saturation levels indicated by the simulation results

match with that predicted by theory even for other communication patterns (process

graphs).

5.5 Simulator Performance

One criterion for judging the quality of a simulator is its execution performance—how

long will it take to generate the desired results. The time for a simulation run depends

on the message generating rate and the system size. We measured the simulation

rate by running the simulator on Sun SPARC 1 workstations. Figure 5.7 shows the

simulator performance as a function of applied node traffic for different system sizes.

The Y-axis represents how many cycles can be simulated per CPU second, and the

X-axis is the applied node traffic as defined in Section 5.4. Performance curves are

presented for two different communication patterns in Figure 5.7. In one pattern,

each node only communicates with its four neighbors so there is no contention for

network channels (solid line). The second pattern is the uniformly distributed pattern

in which each node communicates to every other node uniformly (dotted line). In

this case messages need to compete for channels. In fact, simulation run times are

approximately the same irrespective of the exact communication pattern used. The

results show that the simulation rates are quite high. The simulation rate when

there is significant contention is slightly lower due to additional work as messages are

blocked and released.

We can observe from our simulator design that the time per simulation cycle

depends essentially on the number of unblocked messages in the network in that cycle.

Given the system size N and the node traffic A,,, the number of unblocked messages

in the system at any instant will be N x A,,. Hence, another useful way to display

the performance of the simulator is shown in Figure 5.8. The Y-axis represents how

many micro seconds of CPU time will be needed to process one, unblocked message
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Figure 5.7: The simulator performance in cycles per CPU second  
 

per simulation cycle. The X-axis is still the applied node traffic. We observe that the

CPU time needed is approximately a constant; about 10-15 micro seconds to process

one message per simulation cycle. The CPU time is independent of the system size

and the communication pattern.

We can also estimate the time needed for a simulation run by using the curves in

Figure 5.8. Let m be the number of messages that need to be sent by each node in a

simulation run. As a first step approximation we assume A,, = A,, = #33 (Section 3.1).

So, we have L = iii? If the simulator processes events at the rate of a: psecs per

message per cycle (as shown in Figure 5.8), the execution time for m simulation loops

will be:

CPUtime = z x number_of.messages_in.the.system_per.cycle

xnumber.of_cycles_per.loop x number.of_loops

t x A

1

= xx(Nx/\a)x(t+ -A °)><m

a
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Figure 5.8: The simulator performance in micro seconds per message per cycle    
For example, consider simulating a network with 256 nodes (N = 256), and each

node completing 100 messages per simulation run (n = 100). Also, assume that

t = 270 cycles, and A,, = 10% (I = 30). From Figure 5.8 we find that the simulator is

processing at a rate of a: z 15psecs/message/cycle. Hence, we can estimate the time

for the simulation run to be

300 x 0.1

15 x (256 x 0.1) x (300 + 1 _ 0.1 ) x 100 z 13 seconds

which is very efficient. The simulation time is directly proportional to N if all other

parameters remain the same. Hence, in the above example if instead of a 256 node

network, we wanted to simulate a 1024 node system, we would need 13x4 = 52 secs

to complete the simulation run. We find that our simulator performs well and can

simulate even large networks in reasonable time.
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5.6 Simulation Experiments

The simulator formed by combining the simulator shell with the kernel can be a

very useful tool in understanding the network performance under the effects of con-

tention for network channels. In this section, we describe some of the experiments

we conducted using the simulator to better understand the network performance.

The experiments show the flexibility of our simulator and the ease with which we

can‘use the simulator to answer various questions about the network performance.

In all cases, we present the performance results as a plot of actual node traffic vs.

applied node traffic (refer to Section 4.3). We also indicate the saturation node traffic

predicted by our theoretical results to demonstrate that our theoretical results agree

with the simulator results.

5.6.1 Small vs. Large Messages

Figure 5.9 shows the results for for three different message lengths of 5, 50 and 250

flits, when the entire message is sent as a single packet. The saturation levels for 50

and 250 flits are almost identical, and match the theoretical results. We conclude that

if message lengths are greater than path lengths, the saturation effect is independent

of absolute message length. For small message lengths, the saturation occurs at a

slightly lower value.

5.6.2 Constant vs. Probabilistic Computation Times

Another important characteristic of our experiments is the distribution for compu-

tation times of various loops. We tried two distributions. In one we had the same

computation time in each loop equal to tow, and in the other, computation time was

distributed uniformly over the interval 0..2ta,,g. The average computation time was

equal to tavg in both the experiments, and hence applied node traffic was same. The

results are given in Figure 5.10. We observe that the performance is almost identical.

The performance is slightly better for constant computation times, and the worst

case node shows a sharper transition in performance when applied node traffic is near



saturation level.

25

20

Actual node 15

traffic (A,,) in

percentage

10

126

 

I I

oL=5flits

_ >L=50flits

*L=250flits

 

 

, ' Average-case node 4

913.0%

 
 

0 5 10 15 20 25 30

Applied node traffic (A,,) in percentage

Figure 5.9: Effect of message length

25

20

Actual node 15

traffic (A,,) in

percentage

10

 

I I

b

-

I

 

* Constant computation times

0 probabilistic computation times -

 

I I l

, ' Average-case node d

 
 

0 5 10 15 20 25 30

Applied node traffic (A,,) in percentage

Figure 5.10: Effect of distribution on computation times



127

5.6.3 Packetized vs. Unpacketized Messages

The effect of packetization on performance was measured next. We sent 250-flit

messages as ten packets of 25 flits each, with a inter-packet interval of 10 cycles to

account for the processing overhead per packet. The results were then compared

with that obtained in the first experiment when 250—flit messages were sent as a

single message (Figure 5.11). We observe that the performance once again is almost

identical. Experiments also revealed that neither processing overheads per packet

(which determines time between packets) nor packet size has a significant effect on

the saturation level. However, if the average length of the messages generated by

various nodes are different, then packetization may be useful. Packetization will

prevent a long message from blocking a small message for a long time, and hence the

network response will be fair to different messages.
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Figure 5.11: Effect of packetization

These results indicate that none of the factors—absolute message length, packeti-

zation, or distribution of computation times—affect the saturation levels. We there-

fore use 50 byte, single packet messages and uniformly distributed computation times

in the remaining experiments.
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5.6.4 Mapping

We now examine the effect of random mapping on the network performance for four

common process graphs: binary tree, 2D mesh, 3D mesh and hypercube. We also

present the results for a uniform distribution which acts as a reference for other re-

sults, and shows the effect of non-uniformity in traffic due to random mapping. A

uniform distribution was realized by selecting the destination node randomly each

time a message was generated. Figure 5.12 give the actual node traffic for different

communication patterns for two system sizes of 64 nodes and 256 nodes. We observe

that the actual traffic tends to saturate at different levels, depending on the com-

munication patterns, and that the results match the saturation levels predicted by

theoretical analysis in the previous two chapters.

Compare Figure 5.12.A and Figure 5.12.B. We find that saturation occurs at a

lower level for larger system sizes—less than 10% for systems having 256 node or

more. Hence, random mapping may not be advisable for multicomputers having

hundreds of nodes if the applied node traffic of an applications is 5% or higher. As

mentioned in the previous section, overheads in current multicomputers are limiting

the applied node traffic to 13% or less (6% or less for small messages). With reduced

overheads in future machines, higher applied node traffic are possible depending on

the application. Hence, the effect of contention on performance will be increasingly

visible in future multicomputers if we use random mapping. We also observe that

the saturation level for the worst-case node is about 2-3 times lower than the level

for an average node. The saturation levels predicted by our theoretical analysis are

indicated in parenthesis in the graph’s legends (average case, worst case). We find that

theoretical predictions match the simulation results further validating our simulator.

The actual saturation levels for the worst case are about 20% higher than the value

predicted by the theoretical analysis.

One solution to the saturation problem is to use careful mappings that reduce con-

tention. Simulations showed that for careful mappings actual node traffic was almost

equal to applied node traffic for all our patterns even for a 25% applied node traffic.

Hence, the mapping problem still exists, and mappings that minimize contention may
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still make a significant difference in the performance of large multicomputers.

The results confirm our fear that the problem of contention will be increasingly

visible in future, larger multicomputers. Random mapping may not be advisable and

careful mapping may improve the performance significantly.

5.6.5 Arbitration Policy

The previous experiments considered a software solution—mapping. One possible

hardware improvement is to find a good queueing policy when message headers on

different input ports request an output port. In our simulator, we time-stamped mes-

sages when they entered the network and gave priority to messages with earlier time

stamps while granting output ports. Intuitively it seems to be the best policy as the

network attempts to complete older messages and minimizes the time spent waiting

for messages by parallel tasks. We investigate performance of other queueing policies

to determine if this is the best policy. For each policy we evaluate the performance

for the four process graphs used in Experiment 2.

A simple queueing policy is FIFO with ties resolved by giving a fixed priority to

input channels. Figure 5.14 shows that performance is significantly worse, and A,,

actually declines when applied node traffic is increased beyond a level. Hence, we

need a better queue policy than the FIFO. FIFO can be improved by using a tie-

resolution scheme that gives priority to an input port that least-recently requested

the output port. However, there is little performance improvement.

An effective policy is to discourage message injections by the local node when the

router senses heavy network traffic passing through the node. Different input ports

are given different base priorities—the port with a lower priority is granted the output

port. To prevent infinite waits, each time an input port fails to get an output port its

priority is reduced by 1, and when it succeeds its priority is set to its base value. We

call this queue policy biased priority policy. Figure 5.15 shows the performance when

the bias for the input port for the channel connected to the local node was 9, and

the other ports were 4. The performance is comparable to that of the time-stamped

priority policy. The advantage of the biased priority policyis that it is simple and
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does not require time stamp information in messages.

Another queue policy whose performance is comparable to the time-stamped pri-

ority is the message-source priority. If the message header contains the source node

number, this policy can be easily implemented. Each output port remembers the

source of the last message that used the port and acts as a clock hand. The message

whose source node number is nearest to the clock hand gets the port next. The perfor-

mance for such a policy seems to be quite similar to the time-stamped priority policy

(Figure 5.16). We conclude that the time-stamped priority policy seems to be the

best of all the policies considered, and that the performance of other simpler policies

such as biased priority policy and message source priority policy are comparable.

The experiments and the results clearly demonstrate that our simulator can be a

useful tool in understanding the performance of modern wormhole-routed networks.

Our results indicate that the contention problem is significant for large networks, and

that the effect depends on the applied node traffic (a measure of the communication

intensity of an application) for a given communication pattern and mapping. Careful



25"

20-

Actual node 15

traffic (A,,) in

percentage

10

Figure 5.15:

25*-

20-

Actual node 15

traffic (A,,) in

percentage

10

133

 

I I I I I

* Uniform distribution

x 2D Mesh

o Binary tree

0 3D Mesh

o Hypercube

  

   

— Average-case node °

- - - Worst-case node

. .
....

C I......

O O
.0

C

   
5 10 15 20 25

Applied node traffic (A,,) in percentage

Biased priority queue policy, 256 node system

30

 

 

I

 

I I I I T

* Uniform distribution

x 2D Mesh

t> Binary tree

0 3D Mesh

o Hypercube

— Average-case node '

e 0.
0....

I o

..O:'o

.-

  
5 10 15 20 25

Applied node traffic (A,,) in percentage

30

Figure 5.16: Message-source priority queue policy, 256 node system



134

mappings seem to be the main solution to the contention problem even though system

level solutions such as appropriate queueing policies and adaptive routing can help.

5.7 Conclusion

We described a high-performance simulator for wormhole-routed interprocessor com-

munication networks. A careful design and implementation in a high-level language

resulted in a simulator that can simulate large networks in reasonable amount of time.

We demonstrated that the simulator can be a useful tool in understanding the effect

of contention on network performance. The simulator was validated by comparing its

outputs with the results from experiments on a real machine, and the results from

theory. The design clearly shows that our simulator is quite flexible, and can be easily

modified to simulate any network topology, routing scheme or even circuit-switched

networks. '

The simulator performance can be improved further. The performance for large

messages, and longer computation time per loop is not good. It is possible to improve

the performance by recognizing the messages that have successfully established their

paths, and avoid processing them until the tail flit leaves the source. The simulator

was not designed to study the architecture of the router or node in detail. It is

not useful in evaluating the bottlenecks that may be present in the router or the

limitations of the node or the PE. Some recent network implementations support

virtual channels that do not consume any channel bandwidth if idle. Our simulator

cannot simulate such virtual channels at present.



Chapter 6

CONCLUSION AND FUTURE

RESEARCH

In this thesis, we studied the performance of direct interprocessor communication

networks—a critical component of message-passing distributed-memory concurrent

computers. The main objective was to model and improve the performance of large

direct networks that use wormhole-routing, and to determine if network performance

can limit the overall performance of a multicomputer. Results showed that rapid

advances in the technology of direct networks have made their performance charac-

teristics quite different from the characteristics of the earlier networks. The results

also showed that the performance of direct networks is now comparable to that of

other networks. Our studies involved

0 theoretical analysis to model and predict the communication performance, and

to study some design tradeoffs. The analysis was in two parts. First, we studied

the simpler case of contention-free communication, i.e. we assumed that there

was no contention for network channels. Next, we modeled the performance

under contention for a given communication pattern and mapping.

experimental studies to evaluate the performance of a real multicomputer that

uses a stateof-the-art communication network. Our experimental results pro-

vided an understanding of the performance characteristics of current networks,

and helped to verify theoretical results.

simulation studies to evaluate the performance of large future multicomputers.

The simulator was validated by comparing its results with those from theoretical

analysis and experiments. Simulations were also used to investigate the effect of

several design factors on performance that are difficult to model theoretically.
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We summarize the main contribution of our thesis now.

6.1 Summary and Major Contributions

The communication performance under contention-free conditions is determined by

the bandwidth of the network channels and the switching technique. The bandwidth

depends on the width of the channels and the rate of communication over these chan-

nels. Since large networks are wire-limited, the choice for network topology affects

the width of network channels. Topology also affects the length of the communica-

tion wires, and the length of wires determine the maximum rate of communication.

We estimated the improvement in channel bandwidths if we use 2D mesh networks

instead of the popular hypercube networks. Our results showed that channel widths

improve by a factor Ru, = 2\/N/3 and that channel rates improve by a factor, 12,,

in the range 1..\/2—N_/ lg N, depending on the dependency of the channel rate on the

length of a channel. Hence, overall bandwidths improve by a factor R5 = R", x IL.

Calculations showed that Rb z 100 for a 1024 node system, i.e. bandwidths of

mesh networks could be two orders of magnitude higher than that of hypercube net-

works for a 1024 node system. Current networks use wormhole routing which is

efficient for non-adjacent node communication. Considering the characteristics of

wormhole-routing, we showed that higher bandwidth channels improved performance

significantly even for non-adjacent node communication, in spite of longer paths in

mesh networks. In short, we concluded that a mesh topology was a better choice

than a hypercube because we get a significant improvement in performance under

contention-free conditions.

However, in large multicomputers that use mesh networks, we showed that the

effect of contention can be significant unless carefully reduced. Contention for network

channels results in additional wait times which reduces effective communication rates

to only a fraction of the channel bandwidths. Contention depends on mapping—

the way parallel tasks are assigned to various multicomputer nodes. We developed

a framework to model the effect of contention on the communication performance
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for a given application and mapping. For a given mapping, we introduced a new

metric, path contention level, to measure the contention for a specific communication

path. Path contention levels for various paths together with channel loads for various

network channels can characterize the nonuniformities in traffic. We used queuing

theory to estimate and model the performance under contention as a function of path

contention levels. Our results showed that the level of message traffic that can be

injected by a node is bounded, and that this bound can be reasonably estimated

if we know the path contention levels. A simple tool was developed based on our

theoretical models to compute the bounds on node traffic for a given mapping.

We used the general results for performance under contention to study the special

case of random mapping. The objective was to determine if random mapping was

good enough, that is, to determine if the mapping problem no longer exists. We used

simple probability theory to estimate the channel load and path contention levels as

a function of system size. These estimates were verified by actual values computed

for different popular communication patterns. We then used those estimates for path

contention levels in our general results to predict the performance under random

mapping. Our results showed that message injection rates, measured by node traffic,

cannot exceed 2/\/N for an average node. Some nodes are affected more than others,

and the results also showed that bounds on node traffic for the worst case nodes can

be lower than that for an average node by a factor of two to three. We concluded

that careful mapping is necessary to have effective communication rates close to the

channel bandwidths, and hence retain the advantage of higher bandwidth channels

of mesh networks. We illustrated in case of several common communication patterns

how careful mappings can reduce contention and increase bounds on node traffic. Our

results clearly showed that the path contention level can be a useful metric as it can

reasonably predict the communication performance under contention. Minimizing

path contention levels can replace minimizing path lengths as the mapping objective.

Experiments were conducted on a Symult 2010—a real multicomputer that uses

a state-of-the-art wormhole-routed mesh-connected network. The objective of the

experiments was to understand the performance characteristics of current networks,
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and to verify theoretical results. Experimental results showed that contention-free

communication can be modeled as a linear function of message length, and that it is

independent of path length. The node traffic was limited to 6% if message lengths

were less than 1 Kb, and less than 13% even for a 8K message. The reason was high,

fixed overhead and packetization overhead. Limited injection rates and small system

sizes made the effect of contention negligible, and made the performance independent

of mapping for current systems. However, on the largest system which had 192

nodes was the effect of contention visible, and the performance curves matched well

with theoretical results. In the future, overheads are being reduced and system sizes

are increasing. We, therefore, concluded as predicted by theoretical results that the

effect of contention would no longer be negligible. Mapping can make a difference in

communication performance of multicomputers. We also showed that architectural

bottlenecks exist inside a node in current systems.

A high-performance simulator was developed in C to study the communication

performance of large multicomputers not yet available. A careful design resulted

in a simulator that can reasonably model the performance of wormhole-routed or

circuit-switched networks. At the same time, the simulator is fast enough to pro-

vide results for large multicomputers having hundreds of nodes in tens of seconds on

SPARCstations. The simulator is also flexible as it can be easily modified to simulate

any network topology, routing scheme or application characteristics under specified

mappings.

The simulator was used to verify the theoretical results for large multicomputers

and/or multicomputers which can have high message injection rates. Simulations

show that performance is as predicted by the theory. The results also match with

experimental results over the operation range of current multicomputers. Results

showed that performance is a function of node traffic, and is relatively independent

of message lengths, packet lengths, interpacket time and so on provided that the

average length of messages generated by various nodes is approximately the same.

We also used the simulator to study system-level solutions to the contention problem.

One such solution is an appropriate arbitration policy to resolve contention. Current
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networks use FIFO policy to resolve contention. Simulations show that performance

deteriorates fast in such networks once traffic reaches a certain threshold. Time—

stamping the messages when they entered the network, and giving priority to ’old’

messages provides the best performance.

6.2 Future Research

The results of the thesis indicate that contention for network channels will be a

growing concern in future, larger multicomputers as its effect on network performance

will be increasingly visible. In this thesis, we did some initial work to model and

improve network performance under contention. Still, there are many interesting

problems that need to be studied. Some of them are

1. Automated Mgping : In this thesis, we gave careful mappings that minimized
 

contention ( measured by path contention level ) only for a few common communi-

cation patterns. It is useful to have a tool that can find out such a mapping for any

given communication pattern specified as a process graph. It is useful if the tool can

accept process graphs with weighted edges to account for nonuniformities in message

intensity along different edges. Since finding such a mapping is a. hard problem, such

a tool may use heuristics. A heuristic algorithm is sufficient as it is only necessary to

find a mapping that results in bounds that are higher than the node traffic applied

by the application, and there is no need to find the best mapping. The tool may also

have to consider routing possibilities in addition to placement, as future systems may

provide adaptive or user-defined routing schemes.

2. System traffic : We considered only the user-generated traffic due to one appli-
 

cation. In a general system, the traffic from several users interfere with one another.

There is also system-generated traffic which interferes with user-traffic. Some exam-

ples of system-traffic are I/O traffic, operating system messages, etc. The character-

istics of such traffic may be different from that of user-generated traffic. For example,

message lengths may be greater than user-generated messages. One can study the

communication performance at this higher level considering the interference between
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different traffic using the framework we developed. Such a study may help in making

policy decisions such as the allocation of nodes to a parallel task and the position of

I/O nodes.

3. Fault tolerance : In a fault-tolerant system, the routing scheme may change un-

der faults. A different routing may in turn change contention levels, non-uniformities

and communication performance. It could be interesting to study how the com-

munication performance may change under faults, and whether we can extend our

theoretical results to those cases.

4. System-level solutions : We studied one system-level solution to the contention
 

problem—an appropriate arbitration policy. There can be other solutions such as

adaptive routing, whose effectiveness is still an open question. Another solution is

virtual channels. The improvements in communication performance provided by these

system level solutions need to be studied. It is not clear if these solutions can allow

random mapping to be sufficient. It would be interesting to see if we can model the

communication performance for a mapping considering adaptive routing and virtual

channels.

5.W:In our thesis, we made assumptions about

the communication characteristics of an application to simplify the model. It would

be interesting to see if we can extend our theoretical results to more general cases.

For example, a task may not communicate uniformly with its peers. We can handle

such a case by assigning weights to the edges of a process graph and take that into

account in our analysis. In addition, the messages generated may be bursty in many

applications. The message generation at a node may depend on the messages received

by a node, i.e. path traffic on one path may depend on another. Multicast and

broadcast communications may occur which need to be accounted for. The process

graphs itself may not be static and may change during the execution. It should be

possible to extend our framework to most of these cases.

To summarize, old problems such as path lengths may no longer exist due to

advances in network technology. However, the communication network is a critical

architectural component, and the demand on the network performance continues to
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grow. As a result, we face new problems, new issues, and we require new solutions to

be able to continue to improve the communication performance of multicomputers.
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