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ABSTRACT

NEW SYNTHETIC APPROACHES TO REACTIVE MIXED-LIGAND
COMPLEXES AT THE INTERFACE OF COORDINATION AND
ORGANOMETALLIC CHEMISTRY

by
Sue-Jane Chen

The historic distinction between organometallic and coordination
chemistry is becoming less clear, and links between ‘classical’
organometallic and coordination chemistry have recently emerged in the
form of organometallic compounds with ancillary donor ligands such as
halides, nitrenes and alkoxide ligands. These new classes of compounds
demonstrate the ability of soft t—acceptor ligands such as CO to bond to a
metal in the presence of relatively extreme Hg@d environments.

In an effort to unite the two areas of chemistry, we investigated
reactions between multiply bonded metal-metal (M-~M) dinuclear
complexes, namely, ‘highly early transition metals’ and trinuclear
carbonyl clusters, namely low valent late transition metals’. We initiated

these studies by the reaction between Re,Cl (dppm), (Re2Re) (dppm =



Sue-Jane Chen
Ph,PCH,PPh,) and the electronically and coordinatively unsaturated
molecule Hy083(CO),o in the presence H,, work that resulted in the
isolation of the novel bridging hydride dirhenium species Re,(p-H)(u-
CI)C15,(CO)o(dppm)y. The compound Rey(p-H)(p-C1)Cl5(CO)o(dppm),
exhibits a rich redox activity, with four redox couples representing two
oxidations and two reductions being observed in the cyclic voltammegram.
A new carbonyl halide cluster, Rug(CO)g(Cl)o(PBuj")y, was synthesized
from the reaction between the multiply bonded dirhenium complex
Re,Clg(PBuz™), (Re2Re) and Ru3(CO);5. These results demonstrate the
feasibility of preparing mixed ligand complexes by ligand transfer reactions
between two entirely different metal systems; this new synthetic approach
provides a promising opportunity for the syntheses of unusual coordination
and organometallic compounds.

In a second area of investigation, our study of TMPP chemistry with
dinuclear metal-metal bonded systems led to the discovery of
unsymmetrical complexes containing an unusual bridging phenoxy-
phosphine ligand. The phosphine ligand, TMPP also exhibits novel
chemistry with trinuclear cluster complexes. In the chemistry of Group 8
carbonyls of Fe, Ru and Os, we observed facile cluster transformations
under extraordinarily mild conditions compared to all previously reported
phosphine reactions of these systems. Key results such as facile P-C bond
activation by intramolecular oxidative addition and cyclometallation in the
triruthenium system, and demethylation of the phosphine to give an open
trinuclear phenoxy-phosphine cluster in the triosmium system are

presented and discussed.
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INTRODUCTION
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Transition metal organometallic and coordination complexes
comprise a remarkably diverse group of compounds, and among them,
polynuclear clusters with two or more metals in close proximity are of great
interest [1]. The electronic properties of these compounds reflects the subtle
interplay of not only the metal-ligand bonding but also the metal-metal
bonding, and the system can display, through mutual metal-metal
interactions, chemical and physical properties different from those of the
corresponding mononuclear moieties.

There are two main classes of polynuclear cluster complexes in
transition metal chemistry. One subdivision is “low valent clusters” which
typically involve transition metals with n—acceptors such as isocyanides,
NO and CO ligands, and ‘classical’ organometallic compounds; metal
carbonyl clusters are common members of this family. The dominant role
of carbon monoxide as a ligand for stabilizing low oxidation state clusters
arises, in part, from the fact that CO is a very flexible ligand which can
occupy terminal, edge-bridging, or face—capping locations in a cluster.
Furthermore, this ligand functions as a two—electron donor in each of these
bonding situations, and therefore terminal to bridging intramolecular
exchange processes frequently have very low activation energies. The
second class of cluster compounds is the "high valent clusters" which are
formed by early transition metal elements and contain classical donor
ligands such as 072, S-2, CI-, Br-, I, and OR™. Geometrically these
clusters show a strong preference for triangular and octahedral metal
skeletal geometries such as ResClgLs and [MogClgLgl*t. An important
feature of this class of complexes is that it includes lower nuclearity x—

donor clusters that exhibit extensive bonding between the metal atoms. The
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multiply bonded metal-metal (MM) dinuclear complexes have
contributed significantly to the development of inorganic chemistry.

The past decade has seen remarkable progress towards a broad and
deeper understanding of multiply bonded metal-metal dinuclear
complexes [2]. The majority of these complexes have been found with the
transition metals V, Nb, Ta, Cr, Mo, W and Re, but other metals such as
Ru, Os and Rh have also been involved. In these systems, the assignment
of a formal metal-metal bond order usually rests on the collective data from
structural, spectroscopic, and magnetic measurements. For clusters of the
earlier transition metals, multiple bonds are frequently observed in
compounds without bridging ligands; in these cases, the structural and
spectroscopic data are completely consistent with the assignment of a
formal bond order on the basis of the number of d electrons associated with
each metal atom (one o, two n, and two 8 bonds) as shown in Figure 1, but
the maximum bond order in molecular clusters is generally considered to
be four because one of the d® orbitals is required for metal-ligand bonding.
The filling of metal-based orbitals in M-4M complexes renders a o2x*52
ground state configuration. Of importance to note in such systems is that
the HOMO and LUMO with 8—symmetries are formed from the weak
interaction between two adjacent d,, orbitals from each metal center. The
lowest energy absorption band of quadruply bonded dinuclear complexes
therefore corresponds to a 3(5 — &*) transition with the retention of a strong
metal-metal interaction.

The MEM (n = 14) dinuclear complexes often exhibit rich redox
activity and electronic flexibility, as the presence of two metal atoms united
by a multiple bond provides an electron source or sink for multielectron

redox reactions [3]. These reactions lead to stepwise changes in M—M



Figure 1. Schematic diagram depicting the five nonzero d—d overlaps

between two metal atoms.
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bond order by removing and adding electrons to the metal-metal bond.
Figure 2 demonstrates how M-“M complexes can either convert to
electron-rich M2M species by two one—electron reduction, or to electron—
deficient MM compounds by two—electron oxidation processes. In theory,
the unique structural and electronic properties of M-™~M complexes can be
tailored to promote multielectron transformations by coupling the one—
electron redox chemistry of individual metal cores in sequential steps or by
exploiting the two—electron activity of a discrete metal core in an effective
single step. The redox reactions of these complexes are significantly
influenced by coordination geometry and the nature of the coordinated
ligands, both of which determine whether such processes are accompanied
by ligand rearrangements. For example, the dinuclear complex
Re,Cl(dppm), undergoes reversible oxidations by electrochemistry that
suggest major structural rearrangement does not take place. On the other
hand, two electron oxidized MyX,L, (M = Mo(II), W(II), Rh(III); X = halide;
L = donor ligand including halide) species are best stabilized by adopting a
confacial [4] or edge-sharing bioctahedral configuration [5], which
enforces octahedral coordination about the oxidized metal core.

Finally, the ligands in many multiply bonded molecules exhibit high
substitutional lability, thus the coordinatively unsaturated MM core has
the ability to serve as a template for substrate assembly and coupling [6]. In
recent years, some organometallic ligands such as alkynes and ethylene
have been introduced to the M-~M systems, especially in the metal alkoxide
compounds [7], and some important reactions such as carbon—carbon and
carbon-hydrogen bond activations were observed [8]. For example, 1,2-
R,W,(OR), (W2W)8* (R = alkyl group) compounds have been shown to

undergo either reductive elimination reactions with loss of alkane and



Conversion of quadruply bonded d‘-d* dinuclear complexes
with 621482 configurations to electron—rich (d°-d®) and
electron—deficient (d3-d3) triply bonded dinuclear complexes
via a two-electron transfer reduction and oxidation,

respectively.
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alkene and formation of d*-d* (W-W) compounds, or oxidative addition
reactions with elimination of alkane and formation of d!-d! (W—W)
containing compounds supported by hydrido and alkylidyne ligands; these
competing pathways involve B- and a—-CH activation processes,
respectively [9].

In direct contrast to the n—donor ligands, the strong n—acid ligands
including CO, NO, and isocyanides only rarely occur in multiply bonded
dinuclear complexes; to date, none have been found in quadruply bonded
dinuclear complexes. In most cases, the introduction of n—acceptor ligands
into the MM framework results in M—M bond cleavage, and leads to the
formation of mononuclear complexes [10]. For example, reductive or
nonreductive Re—Re bond cleavage to afford mononuclear isocyanide
complexes of Re(I) and Re(III) was observed in the reactions of alkyl
isocyanides with dirhenium(III) complexes containing quadruple bonds
such as Re,(0,CR),Cl, (R = CHj or CgHj), Re,X2™, and RepXg(PR3), (X = Cl
or Br, PR; = monodentate phosphine ligands) or triply bonded complexes,
such as Re,X(PR3), (X = Cl or Br, PR3 = monodentate phosphine ligands).
The facile bond cleavage reactions induced by n—acceptors is presumably
because the metal d electrons necessary for the formation of the M—M =
and 3 bonds are involved in n—-backbonding with the ligands, thus
destablizing the M—M bond.

In contrast to the facile cleavage of the Re>Re bond in Re,X,(PRg),
(X = Cl or Br, PR3 = monodentate phosphine ligands) by CO and isocyanide
ligands, the analogous phosphine-bridged species Re,X,(dppm), (Re2Re)
(dppm = Ph,PCH,PPh,) reacts to give adducts in which a metal-metal bond

is preserved [11]. As the scheme below shows, the resulting dinuclear
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compounds consist of A-frame-like structures or edge-sharing

bioctahedral geometries [12].

7~ N\ 7~ N\
Fp P P P P
a | a a I a a a | a l
l\\ CO RO IO B CO N RGN IS a
/Rc ——7Re —_ Re: Re —_— Re‘\ /Re
AL T e Y
\j N4 N
Re,Cl,(dppm), A-frame-like geometry Edge-sharing bioctahedron

In an effort to unite the two areas of cluster chemistry, we
investigated reactions between multiply bonded metal-metal (M->=M)
dinuclear complexes, namely ‘high valent early transition metals’, and
‘classical’ organometallic compounds with n—acceptor CO groups, namely
‘low valent late transition metals’. One predicted outcome of this research
was a mild approach to the synthesis of new n-acceptor—containing
dinuclear compounds via ligand transfer reactions between the different
metal systems. Since the coordinatively unsaturated M—M core is known
to behave as a template for substrate assemply and coupling, several other
plausible modes of reaction such as mixed-metal assembly via a direct
interaction of the early and late transition metal atoms, and redox reactions
through outer sphere interactions might also be anticipated. Our initial
experiment in this study was the reaction of the phosphine—bridged species
Re, X, (dppm), (Re2Re) (dppm = Ph,PCH,PPh,) with some reactive
organometallic molecules such as H;0s83(CO),,, and the results and

discussion are presented in Chapter II.



11

The aforementioned approach describes a possible route for bridging
the areas of ‘classical’ organometallic and coordination chemistry. Along
this line, we know that the historic distinction between organometallic
chemistry and coordination chemistry is becoming less clear, and links
between ‘classical’ organometallic and coordination chemistry have
recently emerged in the form of organometallic compounds with ancillary
donor ligands such as halides, nitrides and alkoxide ligands. These new
classes of compounds demonstrate the ability of soft n—acceptor ligands
such as CO to bond to a metal in the presence of relatively extreme ligand
environments. Some of the new organometallic compounds have been
found to exhibit unique electronic properties induced by the combined
presence of the dramatically different donor ligands. For example, the
chemistry of carbonyl halide clusters has attracted much research interest
because facile CO dissociation reactions in these complexes provide a good
opportunity to study catalytic applications under mild condition. One
example shown in Figure 3 demonstrates the use of an edge double-bridged
osmium complex Osg(u-Cl)5(CO),o in surface organometallic chemistry
[13]. In this case, Os3(u-Cl)o(CO),( is rendered coordinatively unsaturated
by taking advantage of the labile character of CO ligands induced by the
bridging chloride atoms, which allows it to be attached to the phosphine—
functionalized silica to make the supported osmium catalyst. In general,
these complexes with combined ‘hard’ n—donor ligands and ‘soft’ n—
acceptor CO groups were derived from simple ligand substitution reactions
of metal carbonyls with n—donor ligands. Often these reactions are not easy
to effect, however, and simple substitution of one for another is usually not
possible. We postulated that an alternative approach to such compounds

via ligand transfer reactions between 'classical' organometallic



Figure 3.
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Schematic representation of the chemistry occurring during
the decomposition of Osz(u-Cl1)o(CO);o on phosphine-—
functionalized silica, showing the formation of an unsaturated
mononuclear compound OsCI(CO), which exhibits catalytic

activity due to its coordinative unsaturation.
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compounds, namely metal carbonyl clusters, and metal halide complexes
might be useful. In Chapter III, we report the syntheses of a new class of
halide carbonyl clusters derived from the reactions between Re—Re halide
complexes with metal carbonyl clusters.

An entirely different approach to uniting the distinct properties of
‘high valent early transition metals’ and ‘low valent late transition metals’
involves the use of functionalized ligands. Ligands bearing mixed donor
atoms have received special attention because "soft” and "hard" donor
ligands complement each other in their preferences for metals [14]. The
soft donors stabilize electron—-rich metal centers in low oxidation states,
whereas the hard donor ligands stabilize electron—poor metals in high
oxidation states. These ligands, with the potential to form weak chelate
interactions due to these two inherently different coordination abilities,
strongly influence the activity, selectivity and stability of a catalytic system
via electronic and steric effects. Furthermore, metal chelates containing
“hard” and “soft” donors exhibit catalytic potential due to the ligand
flexibility and lability. For example, ligands containing P~O chelates
exhibit high activity and selectivity in a catalytic process for the
manufacture of a-olefins [15]; this process is currently one of the most
important applications of homogeneous catalysis in industry.

The study of phosphines, especially tertiary phosphines, with the
capacity to stabilize a wide range of oxidation states in transition metal
complexes, continues to be a field of intense research area in both
fundamental and applied chemistry [16]. One of the primary reasons for
this interest is that metal phosphine complexes have been found to be good
homogeneous catalysts. Recent work has focused on the preparation of new

phosphine ligands which may enhance the reactivity of key industrial
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reactions such as hydrogenation, hydroformylation and hydrosilation. To
date, there are two main catagories of heteroatom phosphine ligands
bearing both “hard” and “soft” donors that have been investigated:

(1) Nitrogen—containing functionalized phosphines, denoted as P~N [17]:
Amino-phosphines contain a 'soft' phosphorus atom and a 'hard' primary
aromatic amine donor, both of which participate in bonding to the metal as

shown below [17(b)].

Ph,
P
[Rh(CO),X], co
Ph,P \F*h/
7\
N X
H,N H,

(2) Oxygen—containing functionalized phosphines, denoted as P~O [18]:
Ether-phosphines are one of the most extensively studied class of oxygen—
containing functionalized phosphines [18(a)]l. In addition to imparting
high reactivity to the metal center, the ligand itself can undergo
deprotonation or dealkylation to form rigid unsymmetrical chelates or
bridges. Examples of phenoxy—phosphine chelates have been reported in
the chemistry of remarkably stable Rh(II) and Ir(II) complexes as shown
below [18(G)<1)]:

R

P, (o)
R,P \M<

O/ P

MeO R2

( R=Me, Bu') ( M=Rnh(11), Ir(ll) )
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In the investigation of the chemistry of functionalized ligands with
transition metal complexes, our interest was sparked by a functionalized
tertiary phosphine, tris(2,4,6-trimethoxyphenyl)phosphine (TMPP) which is
depicted below.

OMe

MeO

Tris(2,4,6-trimethoxyphenyl)phosphine
(TMPP)

Since both oxygen and phosphorus are good donors, the presence of nine
potentially interacting pendant methoxy groups renders TMPP a versatile
ligand. The phosphorus atom promotes the formation of stable low valent
metal complexes, in which the metal binds strongly to the soft phosphorus
and more weakly to the harder oxygen donors. Finally, the ligand is quite
flexible, and provides sites of high lability thereby inducing desirable
conditions for increasing the rates of small molecule activation reactions.
The synthesis of tris(2,4,6-trimethoxyphenyl)phosphine (TMPP) was
first reported in 1957 by the reaction of 2,4,6-trimethoxybenzene, ZnCl, and
PCl; [19]. A more recent synthesis involves a two step reaction of 1,3,5-

trimethoxybenzene and n-butyllithium followed by coupling with
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triphenylphosphine, giving 60-70% yields [20-21]. The TMPP phosphine
ligand exhibits unusually high steric bulk which significantly dominates
its reactivity toward metal complexes. A quantitative measurement of the
steric bulk of phosphines, developed by Tolman [22], was used to define the
size of TMPP in the context of other PR3 ligands. The method is based on a
CPK model by measuring the cone angle (8) defined by the cylindrical cone
containing a metal atom bound to a P atom with a fixed M—P distance of
2.28 A and extending outward to the van der Waals radii of the outermost
atoms of the model as shown below. The cone angle concept has proved a
useful approach to the understanding of steric effects of the phosphorus
ligands.

The cone angle of the new tertiary phosphine TMPP was measured to be
approximately 184° by Wada [21]; this was confirmed in our laboratories.
Phosphine ligands with large cone angles have played an important role in
the development of new coordination chemistry. For example, bulky
tertiary PR3 ligands such as P(mesityl)s, P(o-tolyl); or P(Cy3); have been
used to design complexes with unusual geometries and properties. In

some cases, stable, coordinatively unsaturated 14 electron ML, palladium
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complexes have been synthesized with P(Cy;);3 and P(¢-Buj)s as ligands [23].
We anticipated that TMPP would have also a rich and unusual chemistry,
and were surprised to learn that no metal complexes of the ligand were
reported at the time of our beginning this project.

Electronic effects also influence transition metal-phosphorus
bonding [24]. The M—P bond is a donor covalent bond with the phosphorus
behaving as a Lewis base; the measure of phosphine basicity is usually
based on the proton affinity (i.e. Bronsted basicity) and represented by a pKa
value. A second method for the determination of the nucleophilicity of
phosphine ligands toward transition metal complexes is to measure the
value of the v,;(CO) stretching for the Ni(CO)3(L) (L. = phosphine) complex
[22]. A graph of the vA,(CO) for various Ni(CO)3(L) complexes plotted versus
the cone angle (8) for various tertiary phosphine ligands is shown in the
Figure 4. This is a good indication of the combined contribution of ¢ and n
bonding to the metal complex. This, of course, is in the absence of other
effects which would be expected to shift the v(CO) bands, such as geometry
changes of Ni(CO)s(L) with phosphines of greatly different sizes. In
general, electron—-releasing substituents will increase the electron density
on the phosphorus center, resulting in a greater nucleophilicity towards a
metal atom. In this vein, a series of methoxy—substituted
triphenylphosphines including PPh,R, PPhR,, and PR3 with R = (2,4,6) (i.e.
2,4,6-trimethoxyphenyl) or R = (2,6) (i.e. 2,6-trimethoxyphenyl) have been
synthesized and reported in the literature [21].
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Figure4. A plot of cone angles versus the v(CO), stretch for various
Ni(CO)3(L) complexes (L = phosphine).
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MeO MeO
R= OMe R=
MeO MeO
R = (2,4,6) R = (2,6)

The electron—donating methoxy groups in the ortho and para positions of
the phenyl rings have an enhancing effect on the nucleophilicity of the
phosphorus atoms. The basicities of the phosphines decrease as the extent
of methoxy substitution decreases as follows: P(2,4,6); > PPh(2,4,6); >
PPh(2,6); > PPhy(2,4,6) > PPhy(2,6) > PPhg (pKa = 2.3). The mesomeric effect
of the multi-methoxy substituents in the trisubstituted phosphine P(2,4,6)4
[tris(2,4,6-trimethoxy)phenylphosphine (TMPP)] results in the highest
basicity of any known arylphosphine, on the order of piperdine (pKa = 11.0).
The high basicity of TMPP suggested to us that the phosphine would behave
as a strong Lewis base. To verify this hypothesis, the value of v4,;(CO) in
Ni(CO)3(TMPP) was measured and found to be 2048 cm™ which reveals the
highest nucleophilicity ever reported for a phosphine ligand. Furthermore,
1H NMR studies in CDCl; of the phosphine TMPP and several
phosphonium salts were measured (Table 1). 3!P {{H}) NMR studies in
CDCl; revealed a singlet at 8 = —68 ppm versus 85% H3PO,4. The extreme
upfield position of the resonance is in agreement with the high basicity of
TMPP. When taken together with the fact that the ligand exhibits a large
steric bulk with a cone angle (6) of 184°, we concluded that TMPP would be

an excellent ligand for the preparation of coordinatively unsaturated metal

complexes.
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In our laboratory, some unique metal chelate TMPP complexes
[(Rh(TMPP),]" (n = +1, +2, or +3) were discovered in the chemistry of TMPP
with [Rho(NCMe),o]** [25]; recently a demethylated TMPP complex,
namely the phenoxy-phosphine chelate Ni(II)(TMPP-O), [(TMPP-0O) =
P(CgH3(OMe)3)a(CcHo(OMe),(0)] was isolated and structurally
characterized [26]. Besides chelation, heteroatom functionalized ligands
with both “soft” and “hard” donors are capable of coordinating to two
different metal centers to form unsymmetrically bridged metal complexes.
Unsymmetrical bridging ligands may form mixed—valence complexes by
inducing an electronic polarity to the metal-metal bond; these are of
considerable interest to synthetic chemists and spectroscopists alike. In
spite of the promising nature of this chemistry, the designed synthesis of
dinuclear metal complexes containing heteroatom functionalized ligands
with "soft" and "hard" donor atoms is still in an early stage.

Based on these considerations, we extended our studies of tris(2,4,6-
trimethoxyphenyl)phosphine to M~M complexes in the hopes of providing
a systematic synthetic route for the formation of unsymmetrically bridged
metal-metal bonded complexes. Metal tetracarboxylate compounds
M,(0,CR), with "paddlewheel" structures were regarded as attractive
candidates for the chemistry of TMPP for the following reasons:

(1) Carboxylate ligands are important in inorganic and biological chemistry
due to their versatile coordination ability [27]. This manifests itself in the
form of a wide range of metal bonding modes such as monodentate
bridging, bidentate bridging, as well as symmetric and asymmetric
chelating; therefore these metal carboxylate complexes in general exhibit

higher chemical reactivity due to their ligand flexibility.
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(2) The complexes My(0O,CR), (M = Mo(II), W(II) or Rh(II), R = alkyl or
aryl) have been extensively studied from the viewpoints of synthesis,
spectroscopy, electrochemistry, and chemical reactivity [28]. In particular,
theoretical studies of dirhodium (II,II) compounds confirm the existence of
a single o bond designated as 0?1525*2n*4 for the electronic configuration of
the Rhy** unit, and My(0,CR), (M = Mo(II) or W(II), R = alkyl or aryl)
compounds contain quadruply bonded metal-metal cores with the o2n*52
configuration.

(3) These types of molecules are symmetrical, but if a carboxylate group is
substituted by a hetero-bridging ligand such as a phenoxy—phosphine, the
electronic enviroment in the equatorial plane will be altered not only
because of the presence of ligands with different field strengths, but because
of symmetry changes; the result therefore is a degree of electronic polarity
in the metal-metal core which may give rise to mixed-valence complexes
that are of considerable interest [29].

To this end, Chapter IV reports our investigation of reactions of the
functionalized phosphine TMPP with dirhodium and dimolydenum
carboxylate metal complexes; in these studies, we discovered several
unique molecules containing unsymmetrical phenoxy—phosphine bridges

as shown below.

+
5
Tﬁ T MeO
o PR, R= OMe
OMe MeO
MeO M = Mo(ll), Rh(ll)
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The discussion of the formation of phenoxy—phosphine bridging dinuclear
complexes, characterization of these newly synthesized compounds, and
the electrochemistry of the dirhodium product are detailed.

As part of the investigation of the chemistry of TMPP with various
transition metal complexes, we included the study of metal carbonyl
clusters. A number of cluster-assisted ligand transformations have been
investigated in recent years [30]. Reactions involving transition metal
carbonyl clusters and functionalized ligands containing phosphorus,
sulfur, oxygen or nitrogen have provided some interesting models. For
example, cluster complexes containing oxygen donor ligands are good
models for oxide grafted species, and in some cases, they display a
comparable chemical reactivity. Alkoxo groups are of particular interest as
ancillary ligands due to the stability of the carbon—oxygen bond. The
intrinsic properties of coordinated oxygen can facilitate the activation of
various ligands including unsaturated hydrocarbons. In other cases,
metal-mediated transformations of coordinated phosphines are typical
reactions that are facilitated by a cooperative effect of several metal centers.
They proceed through sequential oxidative addition reactions (P—C, P—H
bond .cleavage and/or acitvation of the C—H bond of the phosphorus
substituents) and reductive eliminations involving migration of the
phosphorus substituents to other coordinated substrates, generally ending
with the stabilization of bridging phosphido or phosphinidene groups.

A major problem in cluster chemistry in terms of useful applications
is their tendency to undergo thermal or photochemical fragmentation
which often involves a preliminary heterolytic or homolytic metal-metal

bond cleavage to generate a polynuclear metal unit containing an
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unsaturated, 16—electron metal center. For example, a heterolytic fission of

a metal-metal bond in a trinuclear carbonyl cluster is represented below.

16—electron 18—electron
unsaturated unsaturated
atom atom
A
hv

M3(CO)12

The fragmentation arises from the fact that metal-metal and metal
carbonyl bond energies are often comparable and hence metal-metal bond
breaking is competitive with substitution processes. In the metal cluster
carbonyls of Group 8, it is found that reactions of Fe3(CO),, often lead to
cluster break—up, while substitution of CO groups in Ru3(CO);5 occurs only
at higher temperatures (ca. 80-100 °C), and in Os3(CO),, under even more
vigorous conditions. The activation of metal cluster complexes of the
second and third row metals to permit milder reaction conditions and
greater control of kinetic pathway is therefore essential.

In order to solve the problem of cluster fragmentation, the use of
activated clusters as presursors has provided a breakthrough in cluster
chemistry. Recent advances in the chemist<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>