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ABSTRACT

EVALUATION OF MULTI-LAYERED MATERIAL PROPERTIES
BY ACOUSTIC REFLECTOMETRY

BY

Tainsong Chen

This dissertation consists of two parts. One part presents a time domain technique
to evaluate multi-layered material properties (attenuation coefficients and acoustic imped-
ances) by a two sided interrogation configuration. The second part employs the spectral
shift method to measure the multi-layered material properties (attenuation coefficients and
acoustic impedances) by a single sided interrogation.

The time domain approach utilizes transducers applied to both sides of the target to
measure the attenuation coefficient and the acoustic impedance for individual layers under
the assumption of a narrow-band incident wave. This method is developed based solely on
peak amplitude ratios of the successive time domain echo returns from both sides of the tar-
get. We can determine the attenuation coefficient and acoustic impedance from the impulse
response of the target. The results of a five-layer experimental model are compared with the
reference values determined by a single layer measurement for checking the validity of the
approach.

The spectral shift method requires that the propagating pulse has a Gaussian-shaped
spectrum, and the transfer function of each layer be characterized by either linear or qua-

dratic frequency dependent attenuation. Since this method does not require information on
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the reflection coefficients to determine the attenuation coefficient, we can determine the
attenuation coefficient and acoustic impedance for each layer by a single sided interroga-
tion. This method derives the attenuation coefficients and acoustic impedances for individ-
ual layers from the information of down-shifted center frequency and spectral amplitude
peak ratios of successive gated pulses. Experimental results for a three-layer model are
compared to the published data to confirm the validity of the approach.
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CHAPTER 1

INTRODUCTION

I.1. Applications of ultrasonic imaging

Pulsed-echo ultrasound is an important and valuable tool in nondestructive evalu-
ation (NDE) of material and noninvasive clinical applications. It employs high frequency
mechanical wave propagation and interaction with the objective of deriving information
on internal structure. The ultrasonic imaging system has provided valuable clinical diag-
nostic information with no apparent harm to the patient or the operator. Therefore much
effort has gone into improving the diagnostic significance of an ultrasonic examination with
the concentration on improving the quality of the resulting images. X-ray computerized
tomography (CT) utilizes the narrow beam X-ray to get images of specific tissue, where the
X-ray interaction is proportional to the density of the tissue. Therefore, injection of a con-
trast medium (such as iodine) for visualization of nonbony tissue is necessary and the pro-
cedure is no longer noninvasive. The nuclear magnetic resonance (NMR) techniques,
which measure the selective resonances of radioactive isotopes in particular organs and
thus provide information concerning organ function, provide a third form of significant

1
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medical imaging diagnosis. Although ultrasonic imaging systems unlike X-ray tomogra-
phy and nuclear magnetic resonance imaging systems which provide excellent pictures of
internal structure, yield unclear images the lower cost and a good differentiation of soft tis-
sue by noninvasive techniques continue to favor ultrasound for material property evalua-

tion.

L2 Parameters of ultrasonic imaging

Differences in the acoustic impedance, attenuation and sound speed of various nor-
mal and abnormal tissue were studied under a variety of known and controlled ultrasonic
field conditions. These were found to be quantitatively significant and could be correlated
with differences in tissue structure and pathological changes. In the past two decades, there
were many techniques proposed for estimating these quantities. Attenuation has been con-
sidered an important tissue characteristic capable of forming the basis for a tissue differen-
tiation scheme [1]. Attenuation estimation has progressed from specifically transmission
techniques to the more clinically acceptable backscattering methods. The transmission
methods [2-3,6] are conceptually simple and straightforward. However, these approaches
are limited to in vitro measurements so that few human organs can be accessed (such as
woman’s breasts). For example, transmission computer-assisted tomography has been used
to estimate attenuation in lesions and normal breast tissue [3-6]. Attenuation estimation in
the reflection mode was developed by Kuc ez al. [7-10]. This method is a modification of
the transmission substitution method under the assumptions that the attenuation coefficient
is proportional to the frequency. Under this assumption the Gaussian frequency spectrum
of the interrogating wave yields an echo whose Gaussian mean spectrum is downshifted.
The attenuation coefficient is estimated by comparison to the normalized spectrum. A num-

ber of methods for estimating attenuation coefficients from the reflected signals have been
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proposed including both time domain and frequency domain techniques. The time domain
method extracts the attenuation information from A-mode signals [11-16], while the fre-
quency domain method employs the spectral shift or spectral difference from broadband
signals for estimating the deviation of the mean log spectrum of backscattering echoes [10].
Time domain methods encounter the difficulties in resolving consecutive echoes from thin
layers due to echo overlap, and in identifying pulses from highly dispersive media, due to
pulse shape distortion. To avoid the pulse distortion, a narrow band spectrum for the inter-
rogating pulse should be assumed. However, a narrowband incident pulse will result in
reduced range resolution. In addition, a narrow-band signal pulse is very difficult to realize
in conventional ultrasonic systems. Therefore, if the bandwidth of the ultrasonic signal is
very large and the frequency shift due to material attenuation is significant, the time domain
method might produce a biased estimate. P. He [11,16] proposed a modified envelope peak
(EP) method by pre-processing the wideband echo signal using a split spectrum technique
[17-23] to obtain a bank of narrow-band signals which were used to estimate the attenuation
by narrow-band approaches. The split spectrum technique was used by Newhouse et al.
[19,21,23] to improve signal-to-noise ratio (SNR) in ultrasonic flaw detection and used by
Gehlbach et al. [22] to increase SNR in B-scan images. For overlapping echoes a number
of deconvolution schemes have been proposed to improve range resolution [24-27], or lat-
eral resolution [28-29]. The received signals deconvolved with the incident signal are used
to obtain the impulse response of the test object. The impulse response of the test object
contains information about the attenuation and the reflection coefficient as well. The over-
lapped signals in the time domain can be resolved two boundaries by separating locations
of peaks of the impulse response. For the cases, where frequency dependent attenuation is
not linear or quadratic, a closed form impulse response is not possible. Thus, it becomes
impossible to obtain the attenuation coefficient from the impulse response. In spite of these
limitations, the time domain technique provides an excellent possibility of real-time imag-

ing because of its short processing.
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The acoustic impedance is an important quantity for evaluating mineral and biological
resources. J. P. Jones [30] utilized the returning echoes deconvolved with the transmitted
wave to produce the impulse response in which yields impedance as function of time under
the assumption of the wave propagating through non-attenuating media. Finally, he set up
an experiment to determine the impedance profile of multi-layered biological tissue. Parra
and Guerra [31] determined the impedance profile of a multi-layered ocean floor. However,
their technique required complicated processing for impulse deconvolution; and their treat-
ment of attenuation is overly simplified by the hypothesis of linear frequency-dependency
and the same acoustic thickness for each layer. In this dissertation, we will relax these

assumptions in the theoretical development.

The speed of sound propagation in tissue is an important physical property of mate-
rial. Kossoff et al. [32,42] demonstrates that this parameter correlates with some patholog-
ical characteristic of tissue. However, the propagation velocity has not been extensively
utilized in medical diagnosis to date, because, the pathology related changes in the speed
of sound are on the order of several percent, and measurement of sound speed in vivo is
difficult. Greenleaf er al. [4-5] used transmission techniques and time-of-flight (TOF)
tomography to produce two dimensional sound speed images of female breast tissue. In
practice, the speed of sound can be measured using transmission [33-38] or by using pulse
echo methods [39-41]. Simple transmission techniques in general measure the transit time
of the primary sound pulse as it passes through different layers which could have different
sound speed, thus a particular layer may not be identified. Thus, even with an accurate tran-
sit time measurement the precise material thickness is required to determine the sound
speeds. However, the material thickness is not available in most experimental configura-
tions. Another problem results from the ultrasonic pulse passing through frequency depen-
dent attenuating media resulting in pulse distortion which complicate the estimate for

transit time based on peak pulse locations.



L3 Research objective

Evaluation of multi-layered material properties (attenuations and acoustic imped-
ances) by pulsed-echo ultrasound is very useful in the areas of geoacoustic exploration, ma-
terial evaluation and biomedical studies. An ultrasound signal reflected from internal
discontinuity contains not only information about the reflection coefficients at each discon-
tinuity, but also the attenuation of the medium between each boundary [43]. It is almost im-
possible to separate backscatter and attenuation by using a single pulse echo return in the
time domain. J. P. Jones [30] derived the acoustic impedance profile of multi-layered struc-
tures under the assumptions of equal reflection coefficients at each boundary for non-atten-
uating media. These two assumptions are rather restrictive and not practical for modeling
a multi-layered structure. Parra and Guerra [31] determined the impedance profile and es-
timated the overall attenuation of a multi-layered ocean floor. Their approach requires com-
plicated processing for impulse response deconvolution and assumes equal acoustic
thickness. Moreover, their treatment of attenuation is overly simplified by the hypothesis
of linear frequency-dependency of each layer. Dines and Kak [2] utilized the spectral-shift
and transmission substitution method to estimate the overall attenuation for multi-layered
tissue. None of the above mentioned methods can evaluate both attenuation and acoustic
impedance for individual layers. A dual pulse echo technique proposed by B. Ho et al. [44],
and modified by T. Chen et al. [45] to evaluate material properties of multi-layered struc-
tures, in which a narrow-band incident signal approximation is used to interrogate the
multi-layered structures. If the attenuation remains constant within the bandwidth of the in-
cident wave, then the total stress wave will travel undistorted through the medium. Under
this condition the attenuation coefficients and acoustic impedances can be evaluated by us-
ing echo returns from both sides of the target. However, a narrow-band assumption is very
difficult to realize in conventional ultrasonic systems. For frequency dependent ultrasonic

attenuation, the individual frequency components of an acoustic pulse will be attenuated by
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different degrees, resulting in pulse shape distortion. The diminution in pulse amplitude
with distance will not follow the commonly assumed exponential law, such as exp(-B f,"D),
where B is the attenuation coefficient, f, is the center frequency of the incident pulse and D
is the distance traveled. The deviation from exponential form is a function of pulse width,

attenuation and distance traveled [46].

In general, frequency domain techniques can be broadly divided into spectral dif-
ference and spectral shift approaches [47-51]. The spectral difference method [52-53] esti-
mates the attenuation, o(f)=Py f ", by curve fitting from the information of spectral
difference. Thus, no specific spectral form of the incident pulse is required to estimate the

parameters B and n, where n is not restricted to be an integer. However, the spectral dif-
ference between the input and output signals contains both the attenuation and reflection
coefficient parameters. They could not be determined by simply using the signal informa-
tion of a single trace of the echo return. In order to obtain meaningful results, one can either
ignore the effect of reflection coefficient [8-9] or assume it to be a known quantity [2]. In
reality, the reflection coefficient does exist at an interface and is an important factor gov-
erning the reduction in spectral power of the reflected signals. When a multi-layered struc-
ture is considered, the strength of the echo return is heavily dependent on the reflection
coefficient of successive layer interfaces. Therefore, in the research reported here we will

take the reflection coefficients into account as well.

The spectral shift techniques for ultrasound propagation through frequency-depen-
dent media was originally suggested by Serabian [47]. Kuc [7-9] applied this concept to
evaluate attenuation coefficients in linear frequency-dependent soft tissue. Dines and Kak
[2] employed the technique to measure the overall attenuation of multi-layered tissue. J.
Ophir et al. [51] extended the method to nonlinear frequency-dependent media. The spec-

tral shift approach requires a Gaussian-shaped spectrum for the incident pulse. However, it
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does not require knowledge of the reflection or transmittance for estimating the attenua-
tion. As a result, one can obtain both attenuation and acoustic impedance for individual lay-
ers from single sided interrogation alone, which is easier to carry out experimentally than

two sided interrogation.

In summary, the objectives of this dissertation are:

1. Determination of multi-layered material properties (attenuation and acoustic imped-
ance).

2. Under a narrow-band assumption, to utilize a two-sided interrogation to provide a
simple resolution of attenuation and impedance.

3. Todetermine multi-layered material properties with a linearly frequency-depen-
dent attenuation and quadratic frequency-dependent attenuation model and a single
sided interrogation.

4. To extend the attenuation parameter n to the range 1 <n <2.

L4 Thesis organization

The organization of this dissertation is as follows: In chapter II, some background
material is presented. Section II.1 shows the basic wave behavior and some acoustic termi-
nology. This includes solution of the one dimensional wave equation, definition of acoustic
impedance and determination of ultrasonic intensity. Section II.2 defines and derives the
reflection and transmission coefficients and derives them in terms of pressure amplitude
and power. Section II.3 builds up the wave propagation model in the time domain and in
the frequency domain, respectively. Evaluation of multi-layered material properties by
time domain techniques is presented in chapter III. The limitations and advantages of time

domain approaches are pointed out in section III.1, and it provided a review of some
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existing time domain approaches. The theroretical development of the time domain method
to investigate multi-layered material under a narrowband assumption is derived in section
II1.2. The deviation from a narrow-band assumption is discussed in section III.3. Evalua-
tion of multi-layered material properties by spectral shift techniques is presented in chapter
IV. Some existing frequency domain approaches are reviewed and compared in section
IV.1. This includes a comparison of advantages and disadvantages of the spectral difference
and spectral shift methods. Section IV.2 fomulates relationships between the downshifted
center frequency and attenuation coefficients and the spectral amplitudes and acoustic
impedance. The attenuation parameter n extended to 1 < n <2, is formulated in section
IV.3. This includes the closed form for attenuation coefficient and for the exponent fre-
quency dependency. The experimental setup and results for the time domain technique and
for the spectral shift technique are shown in chapter V. Finally, some conclusions and sug-

gested future research is provided in chapter VI.



CHAPTER 11

BACKGROUND

I1.1 Basic wave behavior and some acoustic terminology

The ultrasonic wave parameters are pressure, particle displacement and density.
Unlike electromagnetic waves, sound waves require a medium through which to travel. If
the driving source produces particle displacement in the propagation direction, the wave is
called a compressional or longitudinal wave; if it produces displacement perpendicular to
the propagation direction it is called a shear or transverse wave. Ultrasonic waves used in
medical and material evaluation applications are longitudinal. Therefore, only longitudinal
waves are considered in this dissertation. In order to simplify the analysis, we consider an
one-dimensional plane longitudinal wave. Mechanical waves that propagate through

media, have a behavior that is governed by the following equations:

D20 (x1) = -2 (x,1) (IL.1.1)
o ox*

where ®(x,?) is the acoustic field and c is the propagation speed of sound.
9
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The acoustic field ®(x,) in equation(Il.1.1) has the general solution:
D (x,1) = Ae' (O (I.1.2)

where A is amplitude, w is radian frequency, and & = (—: is the wavenumber, ‘-’ sign repre-
sents a forward wave, and the ‘+’ sign represents a backward wave. The velocity of the par-
ticle oscillating back and forth is called particle velocity. It should be noted that this
velocity is different from the rate of energy propagating through the medium, which is
defined as the group velocity or the sound propagation speed.We shall characterize the
acoustic wave by a pressure field p(x,f). In the case of a harmonic wave in a homogeneous
medium, the particle displacement velocity in the acoustic field is given as:

y= VP _ A ek (I1.3)

iop pc

where p is the density of the medium. The characteristic acoustic impedance is defined as:

P Aei(o)l:tlu)

=P _ = I.1.4

z v i .ei(mx:th) pe ( )
pc

In general, the ultrasound imaging systems use pulsed ultrasound instead of con-
tinuous waves. It is assumed that the medium is non-dispersive (i. e. the speed of propaga-
tion ¢ does not depend on the frequency of ultrasound). The time, ¢, for a pulse to travel a
distance, d, through a non-dispersive medium is used to measure the speed, c, of ultrasonic

propagation; where

2d

-+ (IL.1.5)

Cpulse
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Thus if the speed in the medium is independent of frequency, the shape of the pulse (which
may contain a wide range of frequency) remains unchanged as it propagates through the
medium. If the pulse shape changes the pulse speed measurement in equation (I1.1.5) is not
precise since it relies upon some feature of the pulse shape (e.g. pulse peak). Few materials,
however, are truly nondispersive, and pulse distortion to some extent is inevitable. Another
source of pulse dispersion is due to propagating attenuation. It is well known that the higher
frequencies suffer greater attenuation than lower frequencies, thus creating a situation
where pulse distortion would be expected. A detailed discussion will occur in the next

chapter.

The intensity of a wave is defined as the average power carried by the wave per unit
area normal to the direction of propagation. For ultrasonic propagation, the intensity, i(t),
is related to the medium velocity and pressure by the following relation:
i(®)) =p()-v(n (IL.1.6)
For sinusoidal propagation, the average intensity, I, can be found by averaging i(¢) over one

cycle to obtain:
1
I = 3Povo (IL1.7)

where pg and v represent peak values. However, most ultrasound imaging systems use

pulsed waves and the intensity of the beam is not uniform. Therefore, there are two com-
mon intensity definitions used in the pulsed ultrasonic systems: spatial average-temporal
average intensity (SATA) where the temporal average intensity is averaged over the beam
cross section area in a specified plane (may be approximated as the ratio of ultrasonic power
to the beam cross sectional area); and spatial peak-temporal average intensity (SPTA)
where the value of the temporal average intensity is taken at a point in the acoustic field

where temporal peak intensity is maximum.
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I1.2 Reflection and transmission of acoustic waves at a normal to the boundary

When a plane wave impinges normally on an interface between two different media
(different characteristic acoustic impedance), it will be partially reflected and partially
transmitted as shown in Figure I1.1. Let p;, p,, and p, represent values of acoustic pressure

for incident, reflected and transmitted waves, respectively, or

p;=p;(x,1) = A ™H? (2.1)

] [} 1]

p,=p,(x,1) = A,e{*H (1.2.2)
i(ot—k;x)

P, =p,(x,1) = Ase (11.2.3)

The symbols A;, A, and A, represent pressure amplitudes and k; and k5 the wavenumber, 2—: ,
for the two media. From equation (II.1.3), we can obtain the particle displacement veloci-
ties v;, v; and v, for the incident, reflected and transmitted waves, respectively,

or

Vop. A i
v VP -(_‘ e "*"’) (1.2.4)
10p, P11

) = (Vp,) - A, gt (@t ki) 1.2.5)
re iop, P16 -

V= (Vp) o i.ei(mt-k,x) @2.6)
‘o iwp, P16 o
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Medium 1 Medium 2

kl, P1,C1 ka, p2, 2
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S 11122112212222122211277

Pr

Figure II.1 Normal incident wave at interface between two different media

with different acoustic impedance.
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At the interface, the following conditions must be satisfied at all times:
(a) In order to preserve continuity, the pressure at the interface must be the same on both

sides, or

p,(0,1) = p;(0,1) +p,(0,¢) (I1.2.7)

(b) particle velocities normal to the interface must be equal on both sides, otherwise the two

media would not remain in contact, so that:
v,(0,8) =v;(0,1) +v,(0,1) (I1.2.8)

From the above boundary conditions, one can define the pressure reflection coeffi-

0,¢ 0,¢
p’—(—-—)-, and the pressure transmission coefficient, t= p,(_)
p;(0,0) p;(0,1)

equations (I1.2.1)-(I1.2.6) into equations (I1.2.7) and (I1.2.8), gives the pressure reflection

cient, r= . Substituting

coefficient and pressure transmission coefficient as follows:

p,(0,0)  PC2=PCy  Z,-2,
p;(0,1)  pycatpyey  Zy+Z;

(I1.2.9)

r

and

pg (Ov t) 2 (p202) 222
= = = =1+ 11.2.10
pi(o) t) p202+plcl 22+Zl r ( )

In order to derive the dual interrogation relationship, the reflection coefficient, r’,
and transmission coefficient, ¢’, from the opposite direction incident waves, (i.e. the wave
propagating from media 2 to media 1) must be obtained. These have the following relation-
ships with respect to reflection coefficient, r, and transmission coefficient, ¢:

r=-r (I1.2.11)
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and

t=1+4r=1-r (I1.2.12)

In general, the acoustic intensity, /, is proportional to the square of the amplitude of

pressure,

Ie=<|p(x,1)|? (I1.2.13)

It is possible to define an acoustic power reflection coefficient and a power trans-
mission coefficient. At the interface, the ratio of the acoustic intensity of the reflected wave
to that of the incident wave defines the acoustic power reflection coefficient, R, while the
ratio of the intensity of the transmitted wave to that of the incident wave is the acoustic
power transmission coefficient, 7.  Since the incident wave and the reflected wave propa-

gates through the same medium, the acoustic power reflection coefficient is easily given by:

2 7, -7,V
ACLI ( 2 ‘) (11.2.14)

Ir
R=-—- = =
I |p;(0,0))? Z,+Z,

While at the interface, the conservation of energy results in the acoustic power transmission

coefficient:

(e

42,7
=1-R= —22

T = 7 172
i (Z,+2,)

(I1.2.15)

~

where I;, I, and I, are the intensity of the incident wave, reflected wave, and transmitted

wave, respectively.

It is interesting to note the reciprocity that exits for the acoustic power reflection and
transmission coefficient. For example, R and T have the same value whether the acoustic

wave propagates from medium 1 to medium 2 or from medium 2 to medium 1, or:
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R' =R (I1.2.16)
and

I'"'=1-R'"=1-R=T (I1.2.17)
where R’ and T” represent the acoustic power reflection coefficient and the power transmis-
sion coefficient from the opposite direction of wave propagation. The behavior of both the
pressure and the power at the boundary are important in ultrasound interrogation. Maxi-
mizing the power transfer is an important factor for designing efficient transducers. This
can be accomplished through proper impedance matching of transducer and the receiving
material. Moreover, the selection of using a coupling medium (i. e. a liquid or gel having
an impedance similar to human tissue) between the transducer and tissue for diagnostic

application is essential for generating a good power transfer.

I1.3 Wave propagation with attenuation

Attenuation of acoustic energy during propagation is a complex phenomena. Two
mechanism are primarily responsible for the attenuation, (1) the scatter of energy away
from the acoustic pathway and, (2) absorption, in which the acoustic energy is transformed
into another energy form. There is experimental evidence [55-56] to suggest that shear
waves are so strongly damped that only compressional waves need to be considered in diag-
nostic medicine (0.5~20MHz) and material evaluation. Shear waves generated by mode
conversion at inhomogeneities within the tissue will be so rapidly damped that their pres-
ence will not appear in pulse-echo measurements but their effect will be to contribute to the

effective attenuation coefficient.

The absorption loss in liquids and solids, relaxation absorption [57], occurs as the

wave propagates through material and neighboring particles intercept wavefronts moving
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at different speeds. This attenuation loss can be quantified in the following way: For a plane

acoustic pressure wave propagating through the material, the output acoustic pressure is:

P = pyexp (—a (f) D) (I1.3.1)

where
P = original pressure level at a reference point
p = pressure level at a second reference point
D = the traveled distance

and the frequency-dependent attenuation can be expressed as:

a(f) = af " (11.3.2)
where
0 = attenuation coefficient

n = exponent dependency

If the incident wave is a narrow-band signal, the attenuation, o(f), will not change
appreciably with frequency over a range around the center frequency, f ., where the incident
energy is concentrated. The attenuation can be considered at the frequency f;, and inde-
pendent of frequency. Under this assumption, we can describe the wave propagating
through a multi-layered structure; the amplitude reduced by attenuation, reflection coeffi-
cient and distance traveled as shown in Figure I1.2. This model will be employed for the

time domain analysis.

A narrow-band signal is very difficult to realize in conventional ultrasonic systems.

Therefore, the attenuation, o, independent of frequency will not hold. In general, the
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magnitude of the transfer function, | Hi(f) |, can be characterized by:

|H;(f)| = exp (-a;,(ND)) (=1, (IL3.3)

where o;()=B; /", and P; is the attenuation coefficient of the i-th layer medium. The wave
propagating through multi-layered structures can be described in the frequency domain.
Specifically, the spectrum can be given by the transform of the incident signal convolved
with the attenuation process and associated reflection coefficients, so that:

i-1

) =r, [TA-DH0AXO] LN @3
k=1

This frequency domain model is shown in Figure I1.3.
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signal assumption.
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CHAPTER 111

TIME DOMAIN ANALYSIS FOR
MULTI-LAYERED MATERIAL

ITL1 Limitations and advantages of time domain techniques

The time domain technique extracts information on material properties, attenuation
coefficient, acoustic impedances and propagation velocity, from a purely one-dimensional
echo sequence (A-mode signals). The major limitations of this technique are: (I) The diffi-
culty of resolving consecutive echoes from the layered object when the thickness of the
sample is small compared with the pulse width (i. e. echo overlapping), and (II) the diffi-
culty of accounting for frequency dependent attenuation. To resolve echo overlap, decon-
volution is used to enhance the resolution [24-29], however, this increases the
computational complexity. The received signals deconvolved with the incident signal gen-
crate the impulse response of the target. This can resolve two boundaries by separating
locations of peaks of the impulse response. For the cases where frequency dependent atten-
uation is not linear or quadratic, a closed form solution for the impulse response is not pos-

sible. Thus, it becomes impossible to obtain the attenuation coefficient from the impulse

21
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response. The frequency attenuation dependence present in the incident pulse propagating
through the medium, with frequency components attenuated by different degrees, results in
pulse shape distortion. The reduction in pulse amplitude with distance will not follow the
commonly assumed exponential law, exp(-a f; N D), where a is the attenuation coefficient,
1. is the center frequency of the incident pulse and D is the distance traveled. The deviation
from exponential form is a function of pulse width, attenuation coefficient and the distance
traveled (see section I11.3). In spite of these limitations, time domain processing provides

an excellent possibility for real time imaging because of its short processing time.

J. P. Jones [30] derived the acoustic impedance profiles of multi-layered material
from the integral of the impulse response of a test target under the assumption of equal
reflection coefficients at each boundary and non-attenuating medium. These two assump-
tions are rather restrictive and not practical for modeling a multi-layered structure. The
accuracy of the impulse response is strongly dependent on the form of the incident signal
as well as the particular deconvolution algorithm utilized. Since the acoustic impedances
are related by the integral of the impulse response, the errors associated with its integral are
larger than the impulse response itself. The relationships between the acoustic impedance
and integral of the impulse response are obtained under the assumption of non-attenuating
media. However, the attenuation process is actually the dominant factor for the interrogat-
ing wave, unless the layer thicknesses are very small, so that the erroneous results from this

technique are predictable.

P. Cobo-Parra et al. [31] estimated the impedance profiles and overall attenuation
of layered ocean floors by impulse response decovolution and an inversion algorithm. First,
he estimated the overall attenuation coefficient of the whole sedimentary column from the

logarithmic regression on the spectral ratios of nonoverlapped replicas (this step is similar
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to the spectral difference method.). Secondly, he separated the attenuation factors from the
impulse response and generated the impedance profiles. His treatment of the attenuation is
simplified by the hypothesis of frequency linearity, and that the acoustic thickness for each
layer should be equal. It is not always practical to model a multi-layered medium with the
same acoustic thickness for each layer. The computations are complicated and the accuracy
depends on the signal-to-noise ratio which is not easily obtained experimentally. In spite
of the simplified model the individual attenuation coefficients for each layer, cannot be

determined.

A narrow-band pulse echo amplitude attenuation estimation method was described
by Ophir et al. [58]. The technique assumes that the excitation is essentially monochro-
matic, with a single frequency continuous wave approximated by a finite duration pulse.
The approach utilizes the difference in the log of the mean amplitudes from two planes
divided by the plane separation to estimate the attenuation coefficient over some band of
frequencies. They eliminated the beam profile variation effects by axial translation of the
transducer such that the plane of interest remains at a constant range. This method must
neglect the reflection coefficient between the boundaries which is a dominant factor in
pulse echo amplitude reduction Thus the Ophir approach can not be employed for multi-

layered material properties measurements.

Kak et al. [46] derived the attenuation coefficient for linear frequency-dependent
media equal to 2 x times the root-mean-square duration of the impulse response of the layer.
Measurement of attenuation therefore reduces to estimating the time between the impulse
response from the incident and from the received waveforms. Although the deconvolution
scheme can be performed either in the time domain or in the frequency domain, it will
involve complicated computations. Moreover, the formulation assumes that the reflection

coefficients (or transmittances) can be neglected so that the technique can not be employed



for multi-layered material.

II1.2 Evaluation of multi-layered material properties by time domain techniques

Consider a multi-layered structure, as shown in Figure II1.1, where ;;, Z;, r; and D;
are the attenuation coefficients, acoustic impedances, reflection coefficients and layer thick-
ness, respectively. In order to simplify the analysis, the following assumptions are made:
(1.) The object under investigation consists of parallel homogeneous layers with the inci-

dent signal normal to the boundaries.

(2.) Wave propagation through the medium is a linear time-invariant process.

(3.) A narrow band transducer is used so that the attenuation process can be modeled as
exp(-0x), where @ is the attenuation coefficient at the center frequency, f, of the in-
cident wave, x is the distance traveled.

(4.) Higher order multiple reflections can be ignored, or eliminated by suitable gating.

(5.) The thickness of layers are large compared to the incident pulse width(i.e. the return

echoes do not overlap).

By using the convolution theorem, the relationship between the received echo signal,

Y(t), and the incident signal, x(), can be expressed as:
Y, (0 = [Lx(@h (-1 (II.2.1)
and

Y,(0 = [Cx(®hy(t-1) dr (IL.2.2)
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where Y(#) and Y5(t) are the received echo signals from the left-side and right-side respec-
tively, while h,(z) and hy(1) are the left-side and right-side impulse response of the test ob-
ject. In general, the estimation of A;(t) and A,(t) from the measurement Y(t) and Y,(t) is
called deconvolution, or system identification. There are many deconvolution processes for
improving resolution [24-29], but only a few for obtaining the attenuation properties, be-
cause they lack mathematical rigor except for linear or quadratic frequency-dependent at-
tenuation [46].The impulse responses of targets are not ideal delta functions [46]. J. P.
Jones [30] expressed the impulse response by a sequence of delta functions under the as-
sumption of waves propagating through non-attenuating media. Under the assumption (3)
above, we can express the received echo signals, Y;(t) i=1 or 2, as a sequence of delayed
incident signals (i.e. amplitude reduction in terms of reflection coefficients and frequency-

independent attenuation), or the impulse response of the target is:

N
hy(1) = Y ad(1—1) (11.2.3)
i=1
where a; is the echo peak amplitude at r=¢;. The values of g; can be related to the attenuation
coefficient O, layer thickness D; and reflection coefficients r; (for the boundary between

the (i-1) th and i th layer) by:

i-1 (111.2.4)
a; = exp (-ZGODO) r; 1_.[ (1 - ri) exp (—zaka) G=1,...... ,N)
k=1

Similarly, the impulse response from the right side is:

N
hy(8) = Y b3(1-1) (I1.2.5)

j=1
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where b; corresponds to the amplitude of the echo reflected from the boundary between the
(-1) th and j th layer. The amplitude b; has the following form:

N
bj = —exp(=20.0)r; [I (1-r)exp(-2a,D)) (=1......N) (I1.2.6)
k=j+1

The minus sign accounts for the fact that the reflection coefficient changes sign when the
incident wave is from the opposite side of the object. The magnitude g; and b; (i, j=1, 2,......,

N) can be read directly from the impulse responses h;(t) and hy(t) from the dual pulse echo

measurements shown in Figurelll.2.

The amplitude ratio of successive echoes can be expressed as:

a4 _ i T — N) (I2.7)

%G1 1y, (1= exp (-2a,D))

and

b. r;(1 -r‘?ﬂ)exp (—2api)

i+1 Tiv1

The product of equations (II1.2.7) and (II1.2.8) gives:

ab. B r?(l —rfﬂ)

a;41bi (l—rf)r?,(l




28

hy(t) 2y
aN
* L |
-
* Time
A
hy(t)
-4
Time * bn.1
by by

bn

Figure III.2 Impulse responses of the dual interrogation configuration.
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If we define a new parameter R; as:

R. = r,'2 (i=1,......... ,N) (I11.2.10)
S P

i

then equation (II1.2.9) can be reduced to:

ab; _ R (i=1,u..ree.N) (IL.2.11)

a;1biv1 Ry

The R parameters for successive layers are related by:

a;,b; .
Ri+l = Ril: "*al.b"*’l] (i=1,........ ,N) (II1.2.12)
i“i

The reflection coefficient r;, at an impedance discontinuity, can be expressed in terms of R;,

as follows..
R; .
— i=1,......,.N+1
=5 ik ( ) @2.13)
where
S = 1 (a;>0)

From the amplitude ratios, equations (II1.2.7) and (I11.2.8) give:

abivy _ 1
Gabi (1-rY) (1-12, ) exp (—40,D)) (i=1,......N) (I1.2.14)
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Therefore the attenuation coefficient, O, of the i th layer, is:

1 ab. .
% = 4D."‘[a'.+'l+bl.(1-'?) (l-rfﬂ)] @=LsN) (m1.2.15)
s ] [}

Observing above equation (II1.2.15), we can find that, once the reflection coefficients
are determined and the layer thicknesses are available, the attenuation coefficients for each
layer can be obtained. The following algorithm can be used to find the reflection coefficient

at each boundary and the attenuation coefficient in each layer:
1. The reflection coefficient of the first interface is evaluated from the following:
r, = a,exp (20,D,) (111.2.16)

where a; is obtained from the impulse response function. The transducers are immersed
in a coupling medium (usually water), so that the attenuation coefficient 04 is assumed
known. The distance between transducer and test object D is a fixed distance which
can be measured. In practice, it is rather difficult to get a replica of the incident pulse
from the transmitter/receiver transducer. Therefore, the simple experimental setup in
Figure I11.3 is suggested to obtain the reflection coefficient r; at the first boundary (de-
tailed description see next paragraph)

2. The reflection coefficient, r;, 1, of successive interfaces can be obtained once the param-

eter R; is found, by:

a. . .b.
Riyy = Rz[%] (i=1,......N) m.2.17)
[}

and
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(b) comparing the amplitude y’(t) with y(t) to obtain ry.
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R; (111.2.18)
ri = S TR, (i=1,urrnr,N+1)
where
S = 1 (a;>0)
i~ -1 (a;<0)

Therefore, the acoustic impedances for each layer can be related by:

z, = Fi g - I0.2.19
i T 1=r “i-1 (i=1,......,N) (I11.2.19)

i

Once the acoustic impedance of water, Z,), is known, the acoustic impedance for each
layer can be iteratively obtained.

3. From the r;, R;, amplitudes g; and b;, and known D, the attenuation coefficients C; can
be explicitly evaluated from equation (II1.2.15). D cannot be measured directly from the
A-mode echo sequence - it is a distance which is inferred from the measurement of time
delay between two echoes. A precise specification of D would require knowledge of the
mean sound velocity in each material layer. Therefore, we can only obtain the attenua-

tion-velocity product (axv) from the experimental data [59].

The procedure of obtaining the first reflection coefficient, ry, is described as fol-
lows: The impedance of air is assumed negligible compared to that of water (i. e. Zy;, <<
Zya1er) and the reflection coefficient at water / air interface equals approximately -1. There-

fore, the amplitudes of y(t) and y’(t), in Figure II1.3, can be expressed as:
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-20,D,

and

Voear (1) = ryAge "0 (I.2.21)
where
Ag = the amplitude of the incident pulse
o = attenuation coefficient of water
D = the distance of the coupling media
r; = the reflection coefficient at the first boundary of the target

From equations (I11.2.20) and (II1.2.21), the reflection coefficient r; is given by:

Fo = -ypgak (I)
! ypeak (t)

(II1.2.22)

Therefore, we do not require information from the incident pulse at the in transmitter /

receiver to obtain r;.

3.3 Accuracy of time domain technique for attenuation measurement

Although the time domain technique proposed in the previous section provides a
simple way to evaluate the multi-layered material properties, it was developed under a nar-
row-band incident signal assumption. Actually, in order to obtain narrow-band signals, the

ultrasonic pulse duration must increase, which reduces axial resolution. The spectrum
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of the incident wave in our experimental setup is shown in Figure II1.4, Clearly, this is not
a truly narrow-band signal, since the bandwidth of the incident signal is about 1.8 MHz.
Because the incident acoustic wave is not truly narrow-band, an erroneous result will occur
when utilizing the peak amplitude in the time domain. The error incurred by using time do-
main techniques to evaluate the attenuation of material, which is frequency dependent, is
discussed next. In order to gain insight into how the bandwidth affects the signal measure-

ments, we will assume Gaussian incident pulses.

In order to obtain a Gaussian shaped spectral signal, we assume the incident pulse has

the Gaussian-shape:

12

x(t) = e 2. St (II.3.1)

where f o is the center frequency, ¢ is time and © is the standard deviation. The signal and

its spectrum are related by the Fourier transform pair [60]:

X = [Tx e gy

(11.3.2)
X (l) = I;X (f) eiz"f'df
The spectrum of the incident pulse can thus be obtained by:
X(H = I"' x () eIy = m oe—znzoﬁ(f_ f)?
o2
= J2noexp (—(f_fg_)) (11.3.3)
20

f



35

QO O o
« o o

Amplitude
]

3

11
00 00
e o

= 00 0" & NON-MO 00 =
4

-

10 12 14

6 8
Time (U sec.)

H |4

Normalized Magnitude
[ —]
H

N N n R /

3 4 5 6 7
Frequency (MHz)

Figure II1.4 Time and frequency domain representation of the incident signal.
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where o} = 1/ (4n202) is the variance of the incident spectrum, equal to 0.18 BZ, B

is the half amplitude bandwidth.
The transfer function of the medium can be characterized by:

H(f) = exp (—of™D) - e7*P (I11.3.4)
where « is the attenuation coefficient, D is the distance traveled, n is equal to 1 or 2, and
k=27flv is the wave number with phase velocity, v, assumed constant for a nondispersive

medium, and the output y(t) for a linear time invariant system is:

y(@) =x() oh(1)

and

YN =X0OHY
1m.3.5)
Two attenuation cases can now be considered:
I
CASEIn=1 H(f) =e .o v
The output spectrum for this case is given by:
ot —jan2

Y() = X(PDH) = L2roe X Y7 abf 77 (I1L.3.6)
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and

y = [LY ™

—o0

oo _ _ —j2nf2 .
= j [JZ_nce ot (f f°)2-e-°Df-e ":|e’2"f‘df

2
2D { (t-2) }
= exp (— aDf,+ )-exp —-—

8n2g? 202

aD
exp {21 (o= 5 5)) (4= g)} )

Observing equation (II1.3.7), when =D / v, one can obtain the peak amplitude, y(D/

v), in the time domain signal:

a2D? )

i 111.3.8
8nlc? ( )

Ypeak (1) = y(g) = exp(—ano+

Hence, it is apparent that the decay of the peak amplitude in the time domain will not follow

strictly the exponential exp(-aDf)). From equation (II1.3.8), if oD is very small (low atten-
2n2
a

uation) or o?is very large (narrow-band signal approximation), approaches zero.

8n2o?
For this case we can accurately measure the attenuation in the time domain by following

the signal peak amplitudes.
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-—i21tf2

CASEIIn=2. H(f) = exp(-ofD) -e °

The output spectrum for this case is given by:
Y@H =X -HK

21t202f 2
= J2%nG - exp {— (oD + 21:20'2) (f— 0 )
21262 + aD

21202

- exp { - (2n%0%f,) (1 - ) }exp(~j2nf0) (W39

0
2n202 + oD

After the inverse Fourier transformation operation, one can obtain the output signal

in the time domain:

y® = [T Y™

D 2
7 oDf (=)
= exp|— exp | —
D D D
1+ a2 5 1+___a2 5 262 1+——OL2 5
2n“o 2n°o 2n°c
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When =D / v, we obtain the peak amplitude in the time domain for the output signal, y(D/
v):

y = y(2) = 1| aDfg (IIL.3.11)
Ypeak (1) = v T 14 aD P 14 oD
21262 2n2g2

Again, it is apparent that the decay of the peak amplitude in the time domain signal
will not follow a simple exponential law axp(-anoz). If aD is very small (low attenuation)

or o2 is large (narrow-band approximation) so that,

7 = 0 , we can accurately mea-
2n°c
sure the attenuation in the time domain by following the signal peaks.

From the above derivation, we can find the attenuation of material subject to the
appropriate assumptions. However, the only factor which can be controlled is the band-

width of the incident signal. The larger the bandwidth used, the larger the resultant error
2 D2

8n2g?
agating through 2.0 cm and 1.0 cm plexiglass is shown in Figure II1.5. Although a small

in the measurements. The theoretical peak amplitude error,exp ( ), for a wave prop-

bandwidth of the incident signal will give a good attenuation estimate, it will give very

poor range resolution.
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CHAPTER 1V

FREQUENCY DOMAIN ANALYSIS FOR
MULTI-LAYERED MATERIAL

IV.1 Comparison of the spectral difference and spectral shift methods

The frequency domain approaches which utilize broadband signals for estimating the
attenuation can be broadly divided into the spectral difference and the spectral shift meth-
ods. The spectral difference method [7,10,61,62] estimates the attenuation, a(f)=0g f ", by
fitting the spectral difference between the input and output signals. Therefore, no specific
spectral form of the incident pulse is required to estimate the parameters oy and n, where n
is not restricted to be an integer. Kuc [9] estimates o, for liver by comparing the spectrum
of a broadband pulse reflected from a planar interface, with and without a volume of liver
interposed, under the assumption of linear-dependent attenuation and ignorance of the
reflection coefficient between the coupling media (usually water) and the liver. This
assumption is reasonable in this case since the impedance of the coupling medium is similar
to that of tissue so that the reflection coefficient at this boundary can be neglected. Insana
et al. [52] modified the spectral difference method to improve the overall measurement

41
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accuracy. The Insana modification involved counting for the transducer beam diffraction
pattern in the data analysis by using empirically determined correction factors. In general,
the spectral difference between the input and output signals contains information on both
the attenuation and reflection coefficient. These material properties can not be determined
simply by using the signal information in a single trace of the echo return. Some authors
[10-11] ignore the effect of the reflection coefficient or assume it a known quantity [2,46].
In reality, the reflection factor does exist at an interface between two different acoustic
impedance media, and it is an important factor governing the reduction in spectral power
of the reflected signals. The absence of a reflection coefficient is acceptable in transmission
techniques (where the broadband pulse passes through the tissue of interest and is received
by a second transducer.) for measuring the tissue attenuation, of material with acoustic
close to that of water. The measurement is carried out using a substitution method in which
the received signal obtained with only water between the transducers is compared with the
received signal obtained when the tissue is substituted. Although the transmission tech-
nique is usually not suitable for clinical use, it provides a valuable reference point for eval-
uating approaches based on reflected ultrasound. When a multi-layered structure is
considered, the transmission technique provides the accumulated attenuation, rather than
the individual attenuation for each layer. Therefore, the reflected pulse interrogation should
be employed and the reflection coefficient be considered for multi-layered material inves-

tigation.

When an ultrasound pulse passes through an attenuating medium, it experiences a
frequency-dependent attenuation. The attenuation experienced at higher frequencies is
larger than at lower frequencies. This results in a down-shift of the center frequency of the
spectrum after passage through a lossy medium. The spectral shift technique for ultrasound
propagation through frequency-dependent media was originally suggested by Serabian
[47]. He experimentally showed the downshift in center frequency for a pulse propagating
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through different thicknesses of graphite material which has very high attenuation. Kuc [7-
10] applied this concept to evaluate attenuation in linear frequency-dependent soft tissue.
Dines and Kak [2] employed the transmission substitution technique and spectral-shift
method to estimate the overall attenuation of multi-layered tissue which models the linear-
dependent attenuation with different attenuation coefficients for each layer. J. Ophir ez al.
[51] extended the method to nonlinear frequency-dependent media. The spectral shift
approach requires a Gaussian-shaped spectrum for the interrogating pulse. However, it does
not require knowledge of the reflection coefficient or transmittance for estimating the atten-
uation. Most imaging systems place no constraint on the transmitted signal other than that
it be of short duration. By slightly modifying the transducer driving voltage and impedance
loading, a Gaussian-shaped pulse with a corresponding Gaussian power spectrum can be
produced. The effect of the linear attenuation on a Gaussian spectrum is readily shown to
shift the peak to lower frequencies while maintaining the same Gaussian shape. For the
nonlinear frequency-dependent attenuation medium, the Gaussian shape remains but the
shape becomes narrower (i. e. the standard deviation is less than that of the incident pulse
spectrum). Narayana et al. [49] derived the theoretical relation between the center fre-
quency downshift and the spectral bandwidth with a sinc(x) spectrum pulse propagating
through lossy media. If the sidelobes are considered, the usable bandwidth is large. For a
given target material, greater frequency downshift can be expected for higher order side-
lobes. Therefore, this model can improve the spectral shift resolution compared to a Gaus-

sian pulse.

An alternate approach to arrive at the spectral downshift is to utilize time domain
measurements of the zero-crossing frequency of the rf signal. The relationship between the
zero crossing frequency and the spectral power density of the signal was investigated by
Rice [63] and Papoulis [64]. Flax et al. [65-66] applied this method to estimate the tissue

attenuation and Narayana et al. [67] extended this technique to nonlinear attenuation with
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frequency. Shaffer er al. [68] relaxed the Gaussian spectrum signal requirement. However,
their techniques required knowledge of the parameter n, four moments of the power spec-

tral density and the derivative of the mean frequency with respect to depth.

IV.2 Evaluation of multi-layered material properties by spectral shift techniques

Consider a multi-layered structure with frequency-dependent attenuation (linear de-
pendency and square law dependency) as shown in Figure IV.1, where Hy(f), r; and D; are
the transfer function, the reflection coefficient and the layer thickness of the i-th layer me-

dia, respectively. The magnitude of the transfer function, IH;(f)l, can be characterized by:

|H; ()| = exp(-af"D)) (=1, ,N) ava.
where
o,;=attenuation coefficient of the i-th layer.
n = exponent of frequency dependency.
D;= the thickness of the i-th layer.
f =frequency.

In order to simplify the analysis, the following assumptions are made:

(1.) The incident signal has a Gaussian-shaped spectrum.

(2.) The object under investigation consists of parallel homogeneous layers with the inci-
dent signal normal to the boundaries.

(3.) Wave propagation through the medium is a linear time-invariant process.

(4.) The thickness of layers is large compared to the incident pulse width to avoid signal
overlapping.

(5.) Higher order multiple reflections can be ignored (or eliminated by suitable gating).

(6.) The attenuation of the coupling medium (usually water) is considered to be zero.
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Figure IV.1 Multi-layered medium model.
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In order to have a Gaussian-shaped spectrum in the frequency domain of the incident

pulse, we choose the incident pulse in the time domain as follows:

x(t) = exp (—%)sin (2rfyt) (Iv2.2)
0

where
Jo = the center frequency

o( = the standard deviation of the Gaussian-shaped envelope.

The toneburst duration of x(¢) is approximately equal to 60(. The range resolution, in the

time domain, is determined by the selection of oy,

The Gaussian-shaped spectrum of the incident pulse, X(f), and its magnitude can

be expressed as:

_ (f’fo) z
20}

XD =[x ) 7 = ce av2.3)

where
c = ./21:00 is a constant

o} = 1/(4n’c}) is the variance.

Therefore, the half amplitude bandwidth, B for X(f) in (IV.2.3) can be expressed as:

B =2357-0, = 0.589

TGy (IV.2.4)
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After the pulse propagates through the multi-layered structure and echoes back
from each boundary, we can use a variable window size and location to gate a nonover-

lapped sequence of pulses (y;(?), y2(2),....... YN+1(0) from the return signal, y(t), as shown
in Figure IV.2. The window size should be larger than the toneburst duration of the

nonoverlapped echoes. The rectangular window is centered at each nonoverlapped pulse.

By transforming each gated pulse into the frequency domain by some FFT (Fast
Fourier Transform) algorithm, Y;(f), (i=1,.....,N+1), the magnitude for each gated signal can
be expressed as following:

Y1 | = XDliry|

and

where A;,1(ry......r;41) is defined as the reflectivity function and expressed as:

A1 (ryeeriyy) = ’i+1H (1"'%) (i=1,........ Ny, (IV.2.6)
k=1

If we substitute equations (IV.2.1) and (IV.2.3) into equation (IV.2.5), we obtain the
following spectral magnitude of gated pulses:

Y1 (D] = X DIy

and

i
-2a,D.f
Vi1 O] = XDIAy e D [T o,
=1
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Consider the following cases:
CASE L Linear frequency-dependent attenuation (n=1).

The pulse spectrum from the (i+1) th interface can be found from:

_ (f-f;‘+l)z

202 .
[Yie1 D] = Cipa]Aisi|e K @(=1,.......N) (Iv.2.8)

with f=f, (assuming the coupling medium has no attenuation),

fiv1 =0~ Zoﬁkglaka @(i=1,......N) (Iv.2.9)

C;,1 a constant and independent of frequency, and A;, | is given in equation (IV.2.6). Ob-

serving equation (IV.2.8), we find that the gated pulse spectrum maintains the same Gaus-

sian shape form as that of the incident pulse, with the same standard deviation, but down

shifted in center frequency.

From equation (IV.2.9), the center frequency difference, Af;, between two succes-

sive gated pulses is defined as:

1
&f; = fiy1~f; = 26}a.D; = ——aD

f 2n2g? © ¢ (@=h..uN) (Iv.2.10)

Observing equation (IV.2.10), we find that the downshifted center frequency difference is

proportional to the bandwidth of the incident signal. Therefore, a larger bandwidth signal

has not only good range resolution in the time domain but also good resolution in the



50
frequency domain. This is the reason to choose broadband signals for frequency domain in-

terrogation.
The attenuation coefficient of the i-th layer, a;, is obtained from equation (IV.2.10)
and given by:

Af. 21262 Af;
o= SNV avaan

As the pulse propagates through a medium with linear frequency-dependent at-
tenuation, its spectrum is not only down-shifted in center frequency, but its amplitude is at-
tenuated as well, as shown exaggerated in Figure IV.3. The peak spectral amplitude, p;, of
the i-th gated pulse at center frequency f; can be obtained as follows:

The peak spectral amplitude of the first gated pulse, py, is
p1=X(fl 1yl

and the (i+1)th peak spectral amplitude, p;, 1, is

Piv1 = [Yis1 Uis )|

= X E) il TTHGD? o, TV212
k=1
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Figure IV.3 The downshift in center frequency and amplitude reduction
for sequential gated pulses.
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The amplitude ratio of successive gated pulses can then be expressed as:

i+1

i
X iy DN Aie ol TT1H s D)2
— k=1

i-1

X llAd TTIH 6D
k=1

p;

|X(fi+l)| H'Hk(fi+l)|2
_ k=1

"i+1(1"?)

i-1

X ()| [T |He (2
k=1

We observe from equation (IV2.13) that the left hand side is a known quantity which
is measured experimentally. Once, the a;, are determined from equation (IV.2.11), the right
hand side of equation (IV.2.13) can be calculated except for ;. and r;. If the reflection co-
efficient, ry, at the first boundary is known (r; can be measured by a simple experimental
setup such as shown in Figure IV.4), the successive reflection coefficients, rp, r3,......”N4 1,

can be evaluated iteratively, from equation (IV.2.13):

i-1
X @1 TGP
k=1 (=1,...N) (IV.2.19)

X e )| [TIH Gis D)
k=1

The sign of r;, is determined by the same method as described in the previous chapter.
Once the reflection coefficients, r;, are determined, the acoustic impedance can be obtained

by the following relationship:
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1+r, .
- =1,
Zi-zi—l'l_r‘, @
1]

........ N (va.15)

Since the acoustic impedance, Zg, of the coupling media (usually water) is a known quan-

tity, the acoustic impedance, Z;, for each layer can be obtained.

CASE I1. Quadratic frequency-dependent attenuation (n=2):

By substituting  H; (f) = exp (-20,f’D,) into equation (IV.2.7) we obtain the

following relationships:

Y1 (D] = |ry|IX DI

and

UV @OD (=, N) (V216

[Yie1 D] = Ciya|Aisile
where C;, 1 is constant and independent of frequency, A, is the same as given in equation
(IV.2.6). Since the wave through the coupling medium has no down-shift in center frequen-
cy, the center frequencies and standard deviation of the i-th gated signal are:

f 1 =f 0

and

fis1 = ; G=1...N) (V217
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and

2
o2 = % (i=1

i+1 i
1+40y oD,
k

----- N) (IV2.18)

Judging from equations (IV.2.16)-(IV.2.18), we find that the spectrum of the gated
pulses remains Gaussian with a down-shifted center frequency. The spectral bandwidth be-

comes narrower since the standard deviation is less than that of the previous pulses. Denot-

ing the ratio of center frequencies by F;, we obtain:

f ]
5 =1+40; Y oD, (=1,..N)  (V219)
+1 k=1

F.

i+1

The spectral ratio difference, AF;, is then:

—_— . (IvV.2.20)
nz og @(=1,......N)

The attenuation coefficient, o, is found to be:

AF;  ®’G3AF; _ (Iv.2.21)
o = 5 = 3D (i=1,....... ,N)
40fD‘- i

Once the individual attenuation coefficient, o are determined, the reflection coeffi-

cients r;j can be calculated from equation (IV.2.14). Therefore, the acoustic impedances, Z;
(i=1,....,N), can be calculated from equation (IV.2.15).
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In summary, the following procedure can be used to find the attenuation coefficients
and acoustic impedances of multi-layered structures:

(1.) Obtain a series of gated pulses from the echo return by using appropriate window
widths.

(2.) Transform these gated pulses into the frequency domain. The attenuation property (i.e.
n=1 or n=2) can be determined by comparing the standard deviation of the successive
gated pulse spectra. If the standard deviation of successive gated pulses remain
unchanged, one can conclude that the attenuation is linear frequency-dependent and the
value n=1 should be used. The attenuation coefficient is then evaluated by the technique
outlined for case L. If the standard deviation is less than that of the previous gated pulse,
the square-law dependent model (n=2) should be used. The attenuation is calculated by
using the method employed in case II.

(3) The reflection coefficient, ry, at the first interface, can be obtained experimentally as
suggested in Figure IV.4. In practice, it is rather difficult to get a replica of the incident
pulse from the transmitter/receiver transducer. Experimentally, the incident pulse x(t)
can be obtained from the water/air reflection as shown in Figure II1.3(a) which is used
to compare with the amplitude of the echo return signal from Figure II1.3(b) to deter-
mine ry. Finally, the remaining reflection coefficients can be computed iteratively from

equation (IV.2.14).

IV.3. Evaluation of nonlinear attenuation parameters.

The formulation of the previous section is only valid for the cases of n=1 and n=2.
Many researchers [68-71] were shown that the frequency dependency of attenuation n for

most biological tissue is between 1 and 2. (i.e. 1 < n < 2). Although most attenuation esti-
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mation methods are based on the assumption that tissue attenuation is linearly frequency
dependent, for nonlinear attenuation, such methods could produce biased results. In this
section, we intend to utilize the spectral shift technique to estimate the parameter . In gen-

eral, the transfer function of the attenuation process can be characterized by:

|H ()| = exp (-20/"D) avai.l)

where

a = attenuation coefficient.

= exponent of frequency dependency (typically,1 < n < 2).
D = propagating distance.
f = frequency.
We can utilize the Taylor expansion to expand f " about the center frequency f; =

2.25 MHz as follows:

n(n

=favnfy L -1 + f' 2(f=fp) 2 +. (IV.3.2)

If the bandwidth of the interrogating signal is within 2.0 MHz at 2.25 MHz center fre-

quency, we can obtain the following approximation from equation (I'V.3.2).

(n

Papienfil -ty + 20D a-2p cy2 (IV3.3)

The approximation error for n=1.2,n=1.5, and n=1.8 with 1.7SMHZ <f<2.85MHZ is

shown in Figure IV.5

LTI
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From Figure IV.5, it is obvious that the narrower the bandwidth, the better the trun-
cated Taylor series approximation. For an incident signal bandwidth of less than 2.0 MHz.
The approximation limited to the quadratic term is appropriate. By substituting equation
(IV.3.3) into equation (IV.3.1), the transfer function of the attenuation process can be

expressed as:

H®| = exp(—aD(n2—3n+2)f'o—2n (2—n)f8'lan_2n(n_ l)ﬂ)—zwf'z)
av.ia)

Again assuming that the incident pulse has a Gaussian shaped spectrum given by:

1 (f"fo) 2
X (f) = _ _ IV.3.5
| | ./21tcoexp ( 2020 ) ( )

The output spectrum after passing through an arbitrary medium is, from equations
(IV.3.4) and (IV.3.5), given by.

F-£y?
Y| = X HO)| = Jz—:w exp(—T‘;)-
0 0

exp(-aD (n?-3n+2)fo-2n(2-n)fo " laDf-2n(n-1)f3~ 2aDf?)

2
v f;) ) (IV.3.6)
20

= c-exp(—
f



where
1
c = o, - exp [2 (n* - 4n -2) f3c*,0D
2
(fo—4n(2-n)fy~ 'c2aD)
-0 ek M ava
1+2n(n-1)f;" “ogoD
fo=2n(2-n)ft"'c%aD
fo== —— (IV3.8)
1+2n(n-1)f; “cjoD
and 02
o2, = 0 . (IV.3.9)

I 142n(n-1)f3"262aD

From equation (I'V.3.9), a variance ratio, g, is given by:

re = — = 1+2n(n-1)f; 2c2aD (IV.3.10)

f

The center frequency ratio, ry, is given by:

-2_2
1+2n(n-1)f3 “c-aD
rf=f—0 = S (IV3.11)
fe 1-2n@2-n)fy *c50D

From equations (IV.3.10) and (IV.3.11), the exponent of frequency dependency, n, is as fol-

lows:

_ rf(ro— 1)

—1+1°% - 3.12
" 7o (= 1) v3.12)
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From the above equations, the parameter 2 is related to the variance ratio and to the
center frequency ratio. Therefore, n can be estimated from the measured values of 74 and
ry without information on the thickness, D, of the region of interest. This is fortunate since
D cannot be measured directly from an A-mode echo sequence because a precise value for
the mean sound velocity is unavailable. In general, the sound velocity of medium under
investigation has an unknown value. If the thickness, D, is available, we can substitute the

estimated 7 into equation (I'V.3.10) and obtain the attenuation coefficient, o

re—1

a = 2 2
2n(n—1)f3 c,D

(Iv.3.13)



CHAPTER V

EXPERIMENTAL SETUP
AND
RESULTS

V.1 Time domain methods for material properties evaluation

In order to substantiate the theory developed in chapter III, a five-layer model was
constructed as shown in Figure V.1. (Layers I, IIl and V are plexiglass with linear fre-
quency-dependent attenuation [72], Layers II and IV are water with quadratic frequency-
dependent attenuation [55]. The reasons for choosing this experimental model are (1.) it is
easy to implement in the laboratory, (2.) we can employ the existing techniques to measure
the properties of single layer material for reference in comparing to the results of multi-lay-
ered models, and (3.) thin layers give less error using time domain techniques than thick
layers, as discussed in section III.4. The ultrasonic transducer (2.25MHz, Panametrics) was
excited by a pulser / receiver (Panametrics 5052 PRX7S5). The reflected signal was sampled
at a 20 MHz sampling rate by an 8-bit resolution A / D converter (Waag II). For the 2.25
MHz transducer, this rate is more than adequate to prevent significant spectral distortion

62
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due to aliasing. The captured signals were averaged S0 times for the purpose of improving
the signal-to-noise ratio. In general, the noise has zero mean so that the more signals that
are averaged the lower the relative noise level will be. The received signals from the two
sided transducers are shown in Figure V.2. The impulse responses of the test object were
obtained by simply locating the positions and amplitudes of the peaks of the echo signals
y1(t) and y,(t). The processed impulse responses h;(t) and hy(t) are shown in Figure V. 3.
From h;(t) and hy(t), we can obtain a;, b; and T;, where a; and b; are the amplitudes of the
impulse responses, T; are the travel times within the i-th layer. Putting these experimental
data (a;, b; and ;) into the expressions developed in chapter III, we can determine the prop-

erties (attenuation coefficients, ; and acoustic impedance, Z;) of the five-layer model.

In order to measure the acoustic properties (attenuation coefficient and acoustic
impedance) of the sample, we established the experimental setup shown in Figure V. 4. The

amplitudes of the returned signals have the following relationships:

A, = RAye 2% (V.1)

A, = R(R*—1)Age 0Pog 20 (V.2)

B, = RAge 2% (V:3)
B, = R(R®=1)Aye CPog 2h 4+ %) (V.4)

where
Ag = incident pulse amplitude
0= attenuation coefficient of coupling medium

Dg= the distance between transducer and sample
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R = reflection coefficient from the boundary between the coupling media
and the sample
o= attenuation coefficient of the sample
d;= width of the thin sample
d, + d; = width of the thick sample.

From equations (V.2) and (V.4), the attenuation coefficient of the sample can be

determined by:

@, = o In (’3) (V.5)
2d, "B,

The reflection coefficient, R, at the coupling medium / sample interface is:

R=|1+—-|% V.6)
A (32) (

Once the reflection coefficient is determined, and the acoustic impedance, Zg, of the cou-

pling material (usually water) is known, the acoustic impedance of the sample is given by:

1+R
sample = Zy- 1=-R

z V.7)

The received signals from the Figure V. 4 experimental configuration are shown in
Figure V. 5. In general, it is difficult to measure the incident amplitude A; directly from the
transmitter / receiver transducer. However, from equations (V.5) to (V.7), we find that it

does not require the information of the incident amplitude to determine the attenuation
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coefficient and the acoustic impedance of the sample. From Figure V.5, we can obtain A=
0.4125, Ap=-0.201, B;=0.4125 and B,=-0.116. The thickness of samples are 3.2 mm and
5.9 mm respectively. Substituting these data into equation (V.5), we can obtain the attenu-
ation coefficient of the sample as:

1 -0.201 np

=3e027 "8 =0 o

a

The reflection coefficient at the coupling medium / sample interface, can be obtained from

equation (V.6):

= 0.28

0.3210.27
[ 0201 -0201
R = ~/1+0.4125 (5116’

The acoustic impedance of the water coupling medium, Zy, is assumed to be known,

so that the acoustic impedance calculated from equation (V.7) is given as:

6 1+0.28

z 1-0.28

sample

= 15 x10 = 267 x10° X&

m's

The widths of the multi-layered experimental structures are: layer I (d}=3.2 mm),
layer II (d»=3.0 mm), layer III (d3=3.2 mm), layer IV (d4= 3.1 mm) and layer V (ds=5.9
mm). From the impulse responses of the two sided target shown in Figure V.3, we obtain
the following numerical data: a;=0.802, a;=-0.572, a3=0.508, ay=-0.215, a5=0.205, and
ag=-0.079; b;=-0.057, by=0.125, b3=-0.145, by=0.268, bs=-0.301, and bg=0.802. The
travel times for each layer are: 1;=2.9 psec., 7,=4.05 psec, T3=2.85 psec, 14=4.15 psec, and

T5=5.25 psec.
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Putting these data (a;, b;, T; and d;) into the expression developed in section I11.2, we
can determine the attenuation, acoustic impedance and sound velocity profiles for multi-
layered models. The experimental results are compared to the values obtained from single
layer measurements as shown in Figures V.6 to V.8. If the thicknesses of multi-layered
model are not available, we can only get the attenuation-velocity product profiles as shown

in Figure V. 9.



67

Left
Transducer

Right
Transducer

Water tank
Pulser/Receiver Pulser/Receiver
A/D A/D
ToP.C. To P.C.

Figure V.1. Schematic for the experimental setup for time domain measurements.
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Figure V.4 Schematic for measuring sample properties.
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Figure V.5 The captured signals from Figure V.4 setup.
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Figure V.6 Attenuation profiles of multi-layered model by time domain techniques.
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V.2 Frequency domain methods for material properties evaluation

In order to substantiate the spectral shift method developed in chapter IV, a three-
layer model was constructed as shown in Figure V.10. The reason for choosing this exper-
imental model are: (1.) the attenuation of plexiglass is linear frequency dependent (n=1)
[72] while that of water is quadratic frequency dependent (n=2) [55], and (2.) thicker layers
will generate a larger center frequency downshift which is easily measured in the frequency
domain. The ultrasonic transducer, pulser / receiver unit and A / D converter are described
in the previous section. Fifty captured received signals were averaged as shown in Figure
V.11, to improve the signal-to-noise ratio. The received signals were gated by rectangular
windows which are greater than the pulse widths of the incident signals in the time domain
in order to preserve the spectral content of the signal. Therefore, a sequence of gated pulses,
y1(t), y2(t), y3(t) and y4(t) were obtained as shown in Figure V.12. The gated pulses were
zero padded to 1024-point signals as shown in Figure V.13 and transformed into the fre-
quency domain, as shown in Figure V.14, using a decimation-in-time Fast Fourier Trans-
form (FFT) program. The frequency resolution, Af, is determined from the following
relationship:

Af = NLT (V.2.1)

where N is the number of samples and T is the sampling period. From our specification,
N=1024, and T =

202 10° second (20 MHz sampling rate), so that Af = 19.5 kH:z.
x

There are two ways to increase frequency resolution namely to increase the number of sam-
ples or to reduce the sampling rate. However, the latter method will increase aliasing while
the former will increase the computational complexity. In order to clearly see the down-

shifted center frequency, we plot the normalized spectra of the gated pulses as shown in
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Figure V.15. The first moment formula to find the center frequency, f;, given by:

[fen; @ af
fi =
|G

(i=1,2,3,4)

where f,, and f; are the upper and lower 3 dB cut-off frequencies of | Hy(f) |, was used to
obtain the following center frequencies of the gated pulses: f;=2.1289 MHz, f,=1.9922
MHz, f3=1.9726 MHz, f4=1.6992 MHz. Since layer I and layer III are plexiglass with linear
frequency dependent attenuation (n=1), we can use equation (IV.2.11) to calculate the atten-

uation coefficients as:

2

2n2a2af, 21:2(%2-10‘10) (2.1289 — 1.9922) 10
“WT= 7D, ~ 1154
_ np
= 00935 "0
and
2 212 . 1076 2 6
oan’o2af, 20 (Z-107°) (1.9726-16992) 10
= 7D, ~ 1778
= 0.1214—"P

cm-MHz
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Layer II has a quadratic frequency dependent attenuation (n=2), so that we can uti-

lize equation (I'V.2.21) to calculate oy,

2

12 ..—6.2 21289 2.1289
n2 2 1:2 . —

_ ®ouhf (& 107 (79726 ~ 10923

2~ 72D, 2-1.125

(0]

= 0.00172 np 5
cm- (MH?2)

Once the attenuation coefficients in each layer o1, 0 and o3 have been determined,
these values, along with r;=0.38 and the spectral amplitude ratiose—‘;—1 , can be substituted
into equations (I'V.2.13) and (IV.2.14) to determine the reflection éocfﬁcients, 15=-0.32,
r3=0.30, and r,=-0.28, respectively. These reflection coefficients can be used to obtain the

acoustic impedances from the relationship:

1+r‘- 7
i 1=p, “i-1 (i=1,2,3)

From the known acoustic impedance of the water coupling medium, Zy=1.5 x 108
kg/mzs, we can successively calculate the acoustic impedance for each layer giving:
Z,=3.34 x 100 kg/m?s, Z,=1.72 x 10° kg/m?s and Z3=3.19 x 10° kg/m?s. The acoustic
impedance and attenuation coefficient profiles and compared with the published data [71-
72] as shown in Figures V.16 and V.17. The results demonstrate the adequacy of the spectral
shift technique. The worst case deviation occurs for layer III in Figure V.16 which shows
an error of 13% from the published value. The discrepancies is due to the signal degradation
in the deeper layers. In addition, the signal to noise for the third layer medium from the
experimental apparatus employed approaches minimum acceptable level. Improvement in

measurements would certainly result if higher quality instrumentation were available.
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Nonetheless the experimental results were very encouraging.
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Figure V.10 Schematic for multi-layered target measurements.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

VL1 Limitations and advantages of the proposed time domain method.

It has been shown that the time domain method proposed in this dissertation pro-
vides a simple way to evaluate the properties (attenuation coefficients and acoustic imped-
ances) of multi-layered materials. The required experimental data for material
characterization are merely the locations and the amplitudes of the echo return from each
boundary. Since the time domain process employs the two sided interrogation configura-
tion, this technique can determine not only acoustic impedance but also attenuation coeffi-
cients. The technique presented in this dissertation can overcome the common drawbacks
of conventional approaches. In particular, the drawbacks considered are: (I) A single-sided
pulse-echo interrogation cannot provide the attenuation coefficient and acoustic impedance
simultaneously. One of the two quantities (attenuation coefficient or acoustic impedance)
must be assumed known, or can be neglected, to obtain the other quantity. (I) A transmis-
sion measurement can only provide the accumulated attenuation rather than the
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individual attenuation of a multi-layered target.

From the experimental results, the propagation velocities of waves in each layer
agree favorably with the reference values. Furthermore, it can be seen that the locations of
the boundaries can be accurately determined from an envelope peak detection algorithm.
The values of acoustic impedances of each layer agree well with the reference values. Since
three separated layers are of the same material in the experimental model, the respective
values for those attenuation coefficients are found to be approximately the same, as
expected. From the experimental measurement, it was found that the deeper layers have a
greater deviation from the reference value than that of the shallower layer. We suspect that
the deviations are due to the following:

(1.) The incident wave is not a truly narrow-band signal, as was shown in Figure I11.4,
and the attenuation coefficients are not totally frequency independent. Conse-
quently, the longer the path of propagation, the greater the wave distortion.

(2.) In the developed algorithm, the reflection coefficient r; at the first boundary is
assumed to be accurately known. In practice, this value must be obtained from
experimental data. So that if this value is not accurately determined, additional
error will accumulate in the deeper layers.

(3.) Since eight-bit A / D conversion is used for signal acquisition, quantization error
will occur for weak signals from the deeper layers.

As has been mentioned, the time domain technique developed in this dissertation has lim-
itations. Nevertheless, it offers a simple way to achieve acceptable results from multi-lay-
ered structures. Moreover, it provides an excellent possibility for real-time imaging because

of its short processing time.
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V1.2 Limitations and advantages of the proposed spectral shift method.

The proposed spectral shift method discussed in this thesis provides a novel way to
evaluate the properties (both attenuation coefficient and acoustic impedance) of multi-lay-
ered material. In particular, material for which attenuation can be characterized by either a
linear or a quadratic frequency dependency, the frequency shift can be analytically and
experimentally validated. It is noteworthy that the technique does not require the informa-
tion of reflection coefficient or transmittance coefficient to evaluate the attenuation. We
were able to determine both the attenuation coefficients and the reflection coefficients (i.e.
acoustic impedances) by a single sided interrogation configuration, which is a simpler mea-
surement to perform. However, the technique requires that the incident signals have a Gaus-
sian-shaped spectrum. In practice, it is very difficult to generate a signal with a perfect
Gaussian-shaped spectrum. From the experimental results, it was shown that the attenua-
tion coefficient of 0.0935 np cm *! MHz "1, of the first layer plexiglass sample agrees favor-
ably with Kuc’s experimental value of 0.096 np cm " MHz "1 [72]. For the model used, the
first and third layer are made of the same plexiglass material and provided similar values
for the attenuation, as expected. The attenuation coefficient for the third layer deviated
from the expected values. The deviation of the third layer relative to the first layer is due to
the lower signal levels reflected from the deeper sample layer and the quantization error
from the eight-bit A / D converter. These factors tended to distort the Gaussian spectrum.
For the second layer, which is water, the attenuation coefficient is only 0.00172 np cm 1
MHz 2. For example, an incident wave at 2.25 MHz propagating through 5 cm of water
will be attenuated by only 4%. Thus, the assumption of no attenuation for the coupling
medium (2~3 cm water) is reasonable. Once the attenuation coefficients for each layer are

determined, the acoustic impedances for successive layers can be calculated. From the

experimental results, the measured data agree favorably with the published values.
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In summary, the mathematical development for multi-layered attenuation coeffi-
cients and acoustic impedances, supported by experimental measurements, provides a
highly promising technique for material property specification. Applications to composite

material evaluation and inspection of alloys appear to be feasible.
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