

.«
u

..

..

‘
I
w
u
v
a
'
l
‘
-
L
’

“
c
,

.
I

M

W

J

.

.

..

n

.n

r

<
.

.
.
‘
V
-
n
.

 Allv

V5...

.Ii... .

, 7

. 3.2L:

. I _ . . a . . .

. ‘ . . 7 . . .

, . a L , .4

. . A A 1 .V . A .

.. .. .

‘ . ,

. . ‘ .._.

.‘A C . . T. .
. .. ‘. 4 .

V. A A : z ‘ .

... . A ,.. . ,

. ‘ I ‘ .. V‘.._. .. ‘ .A

_. ‘ . . A .1 .
f A ,

uuc . . ‘ V < A . :74 ..

MICHIGAN STAT

ll! W“ I”! l I! Wit
4757

mm!“

iii

This is to certify that the

thesis entitled

A go” firm“ FOP Sg/fl/ Decmer/j

U971? é¥rZZ/3/7 parttzrmti’hj.

presented by

C5dd
fi§w€

flefl
CA,(,(

has been accepted towards fulfillment

of the requirements for

Ma SI"; 3Y5 degree in S ci‘e M (12,

3”“ /9. my,“
Major professor

Date 3107M. 9/

0.7639 MSU is an Affirmative Action/Equal Opportunity Institution

.

——.

LIBRARY

”chumState

i University

x» J
~——-

V
‘
—

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or'betore date duo.

DATE DUE DATE DUE DATE DUE

Eire gflw" H

"i

.‘.

‘ MSU Is An Affirmative Action/Equal Opportunity Institution

ennui-damn}

ALGORITHMS FOR SIGNAL DECODING

USING GRAPH PARTITIONING

By

.C'huang-Chien Chiu

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

1991

ABSTRACT

ALGORITHMS FOR SIGNAL DECODING

USING GRAPH PARTITIONING

By

Chuang-Chien Chin

This work is concerned with graph partitioning algorithm, which can be used to

select 06/1?) nodes for evaluation from an N node decoding graph. The theoretical

basis for this work is found in the paper by Venkatesh, Deller and Cozzens [1], and

it is the primary purpose of this study to develop algorithms for implementing and

testing the methods. The small number of nodes selected by the partition will cover

a significant number of paths in the decoding graph, offering a cost-effective method

for simultaneously evaluating multiple paths. When a pruning strategy is combined

with partitioning, the overall graph search complexity is 0(x/1—V). This represents

a significant decrease with respect to conventional left-to-right decoding approaches

which are usually 0(N).

Theoretical and implementation issues involved in the development of computer

algorithms for the partitioning procedure are the principal focus of this work. The

algorithms are tested on a large graph (103 nodes, 1,200 edges) using a preliminary

version of a “multiple stack” search procedure described in [l].

Copyrighted by

CHUANG—CHIEN CHIU

1991

ACKNOWLEDGEMENTS

The original idea for using graph partitioning techniques in signal decoding con-

tained in this thesis was suggested by Professor John R. Deller, Jr., who is my thesis

advisor, and Dr. C.G. Venkatesh in CTA Incorporated. I would like to express

my gratitude to both of them for their invaluable guidance and helpful suggestions

throughout this research. I am also gratefully indebted to Professor Abdol-Hossein

Esfahanian and Professor Majid Nayeri, for their time and effort in discussing and

reviewing my thesis.

A special word of thanks for my thesis advisor, Professor John R. Deller, Jr.,

for all his patience and encouragement and support over last year we have worked

together. It is a very nice and unforgettable experience to be his student.

This work is supported in part by a grant from CTA Incorporated in Bedford,

Massachusetts.

iii

Contents

1 Introduction and Background

1.1 The Graph Search Problem in Signal Decoding

1.2 The Outline of the Vertex Partitioning Algorithm

Planarity of a Finite Graph

2.1 Preliminaries.

2.2 A Planarity Testing Algorithm and a Topological Embedding . . .

2.3 Creating a Planar Decoding Graph

Development of a Partitioning Algorithm

3.1 Planar Separator Theorems

3.2 An Algorithm for Planar Graph Partitioning

Graph Search with Partitioning In Signal Decoding

4.1 Application of the PST to Graph Search Problem

4.2 A Multiple Stack Algorithm for Search with Partitioning

4.3 Application Example

Conclusions and Future Work

The Data File for Creating the Large Graph in Section 4.3

The Nodes of the Large Graph ‘

The Planarity Breaking Arcs in the Large Graph

The Trained Models for Testing

The Surviving Paths in the Stacks

iv

11

11

14

19

24

24

30

39

39

40

44

47

51

57

65

68

70

List of Tables

1 The set of vertices in each face except the vertices which are on the

chosen cycle................................. 37

2 The boundary edges of each face. 37

3 The faces located on both sides of the cycle. 38

4 The set of vertices on each side of the cycle. 38

List of Figures

‘
D
M
N
O
S
O
‘
t
h
O
D
N
t
-
l

H
H
H
H
H
D
—
‘
H
t
—
‘
H

m
N
G
O
I
i
B
W
N
t
-
‘
O

The condition implied by the Planar Separator Theorem........ 3

A partitioning algorithm for implementation............... 7

A procedure for graph partitioning approaches in signal decoding. . . 10

Examples of planar and nonplanar graphsi 13

A planar graph with ten faces....................... 14

Kuratowski subgraphs K3,; and K5 15

The planarity testing algorithm of Demoucron et al. [9] 18

An example of a decoding graph. 20

An example of creation of a planar decoding graph. 23

The condition implied by case (1) in Theorem 6............. 27

The condition implied by case (2a) in Theorem 6. 28

The condition implied by case (2b) in Theorem 6. 29

The algorithm for finding the partitioning cycle............. 32

The planar graph for the example in Section 3.2............. 34

The planar embedding of the graph in Figure 14. 35

The breadth-first spanning tree of the graph in Figure 15........ 36

The chosen cycle in the graph in Figure 15................ 36

A multiple stack decoding algorithm. 42

vi

1 Introduction and Background

1.1 The Graph Search Problem in Signal Decoding

Graph theory has long been recognized as one of the most useful mathematical ways

to model many real world problems. For signal decoding problems (e.g., speech recog-

nition or image reconstruction), Venkatesh, Deller and Cozzens [1] have presented a

graph-theoretic strategy for reducing the computational complexity with respect to

conventional decoding approaches [2] [3]. The technique, which is based on the Pla-

nar Separator Theorem (PST) of Lipton and Tarjan [4], uses a partitioning approach

to locate (Xx/N) nodes for evaluation from an N node decoding graph G. Through

the evaluation of this relatively small number of nodes, an optimal path for a given

observation string is found. Venkatesh, et al. have worked out the theoretical details

underlying this method, but no computer algorithms were developed for selecting

these “high payoff” nodes of G. Therefore, the main purpose of this research has

been to develop algorithms for partitioning and search of graphs in signal decoding.

Before presenting the graph partitioning and search algorithms to solve the signal

decoding problem, it is important to sketch the underlying theory and discuss its

advantages with respect to conventional left-to-right search. The following fact [5] [6]

is fundamental to the methods:

Every planar graph with N vertices has a set of vertices C of size 0(x/N) which

separates the set of vertices A from the set of vertices B, where A, B, C is a partition

of the vertices in the given planar graph and the size of A and B are no more than

, 33$. The set C is called an (Xx/N) separator.

Since the nodes in C separate the graph into two sets of nodes A and B , making it

impossible to pass from one to the other without encountering C, the nodes in C must

contain many convergent and divergent paths. This condition is shown in Fig. 1.

Thus, the nodes of C can be considered as “bottlenecks” in the graph into which

many paths converge. The PST, therefore, guarantees the selection of significant

nodes (those nodes in C) which will cover many paths.

A pruning process [1] is generally included in a search procedure to minimize the

number of overall node evaluations. This procedure introduces the risk of pruning

the correct (most likely) path. The increased coverage provided by the partitioning

procedure will generally provide an acceptable “pruning safety” . The coverage issue

is at the heart of the pruning safety factor disscussed above. On the other band,

C is relatively small (Ob/N», and these nodes are selected at distributed locations

throughout G, rather than always “from the left” which is conventional [2] [3]. Thus,

the use of this set can minimize the number of node evaluations. If the procedure

for evaluating nodes is very costly, the partitioning approach will greatly improve the

computational cost compared to a conventional left-to-right search.

Many computational problems on graphs can be performed more efficiently on

planar graphs. We shall focus on the problem of finding an appropriate separator C

of size 0(\/N) in a planar decoding graph. The details for extending this method to

nonplanar graphs are founded in [1] and developing appropriate algorithms for this

more general case will be the subject of future research. After the node selection

process is completed, the decoding graph will be searched and pruned according to

a likelihood measure. A preliminary version of a multiple stack decoding algorithm

developed by Deller and reported in [1] will be presented to carry out this procedure.

2

Figure l: The condition implied by the Planar Separator Theorem. A, B, C form a

vertex partition in a planar graph such that no edge joins a vertex in A with a vertex

inB.

1.2 The Outline of the Vertex Partitioning Algorithm

In 1979 Lipton and Tarjan [4] presented a sequential algorithm which takes 0(N)

time for finding a separator of size VSN for planar graphs. The Planar Separator

Theorem (PST) of Lipton and Tarjan is as follows:

Theorem 1 (Planar Separator Theorem [4]) Let G be any N-vertex planar graph

having non-negative vertex costs summing to no more than one. Then the vertices of

G can be partitioned into three sets A, B, C, such that no edge joins a vertex in A

with a vertex in B, neither A nor 3 has total cost exceeding 3%, and C contains no

more than 2\/2N vertices.

The separator theorem described above is a general form pertaining to planar graphs

which have nonnegative costs on the vertices. However, for the purpose of partitioning

in signal decoding problems, the desired separator theorem is the special case of equal-

cost vertices [4, Cor. 2]. The relevant corollary is as follows:

Corollary 1 In any N-vertex planar graph G, a subset of vertices C in G is a sep-

arator if remaining vertices can be partitioned into two sets A and B such that there

are no edges from A to B, and IA], [B] S 33,1. Then the sets A, B, C form a partition

of V, and the separatorC is of size M. [A] denotes the number of vertices in A

and V is the set of all vertices.

In the following discussion, all vertices are assigned equal cost values which sum to

unity.

The algorithm for the theorem above (see [4]) requires a breadth-first search

(BF3)1 of the graph as input. Theoretically, given a.BFS of a planar graph, a sim-

ple cycle separator can be found. This fact was shown in the proof of Lemma 2 in

1A BFS ofa graph with respect to some vertex .9 is a labeling of the vertices such that the label

of a vertex v is the shortest distance from s to v.

[4]. Even though their separator in general is not a simple cycle, according to the

PST we still need to find a simple cycle to complete a satisfactory vertex partition in

one special case (we will describe this special case in Chapter 3). Finding a simple

cycle separator in a planar graph is an interesting and challenging task. In previous

research, Miller [5] presented an algorithm to find a small cycle separator for a 2-

connected2 graph. However, decoding graphs generally will not be 2—connected. For

actual implementation of the partitioning algorithm, finding an appropriate simple

cycle to complete the vertex partitioning is essential.

In [4], Lipton and Tarjan suggest a planarity algorithm [7] to construct a planar

embedding of the planar graph. Through the planar embedding, a vertex partition

can be found which satisfies the Planar Separator Theorem. However, the descrip-

tion of the planarity algorithm [7] does not provide suficient information for actual

implementation. First, the planarity algorithm does not provide direct information

for the determination of each face3 of the planar graph, but the boundary of the faces

is used to find a satisfactory simple cycle. Secondly, when a simple cycle has been

formed, the total number of vertices on each side (inside and outside) of this cycle

must be computed, and the determination that neither the inside nor the outside of

this cycle has a total number of vertices exceeding % must be made. However, this

task is not described in enough detail in their algorithm for actual implementation.

In this work we have solved these problems and recommend an algorithm for actual

implementation. The algorithm is shown in Fig. 2.

The method of Lipton-Tarjan for finding a planar separator was improved in

1982 by Djidjev [8], who obtained a separator of size \/6_N-. Our algorithm is based

2A 2-connected graphis a connected graph which contains no cut vertices.

3A facem a planar embeddingis a connected region bounded by edges and vertices; the boundary

of a faceis regarded as a closed walk.

on the solution of Djidjev with a smaller constant‘ to find a vertex partitioning.

We make use of the planarity testing algorithm of Demoucron et a1. [9] to find a

planarity embedding of the planar graph. The boundary of each face is easily found

by Demoucron’s algorithm, and these faces are recorded for future reference. It should

be noted that these faces can actually construct a planar representation of the graph

G (see Section 2.2).

The general outline of the partitioning algorithm is presented here, and its cor-

rectness is described in detail later. Let G(V,E) be a planar graph. G consists of

a set of vertices, V = {vi}, a set of edges, E = {ekj} (eh, connects vertex v], to

vertex v,). N is the total number of vertices. We implement a BFS to partition the

vertices into levels according to their distance from some vertex v. Let L(l) be the

total number of vertices on level I. For each a 6 (0,1), let la denote a level such that

2151 L(l) < aN and {3&0 L(l) _>_ (IN. The outline of the algorithm is as follows:

Step 1 Classify the vertices of G into levels according to their distance from some

vertex v in G.

Step 2 Find two levels 11,3 and l2/3.

Step 3 If there exists a level I in the interval [l1 /3, 12/3] such that L(l) S V6N, then

the nodes in the C set are the vertices on level I. Stop. Otherwise, go to step 4.

Step 4 Find a nonnegative integer, say j, such that

ls/s'i'j-l

X W) < 2—31!
bins-5+1

‘Lipton and Tarjan deduced the constant for the separator C is J8, Djidjev improved the constant

tO\/6-.

Figure 2: A partitioning algorithm for implementation.

'2/s+i

Z 13(02 3.1-V-
blue-1°

If there exists i 6 [0,3] and L(l1,3 - i) + L(lg/3 + i) S V6N, then the nodes in the C

set are the vertices on levels L(l173 - i) and L(12/3 + i). Stop. Otherwise, go to step

5. '

Step 5 Find two levels I’ and 1' such that l' .is the highest level and l" is the lowest

level which satisfies the following conditions:

{fill/3—j-l <Ig,3+j+1$l"

L(I') +201,3 —j-1-I') 5 NA?

L(I") + 2(1" — (1,,3 +j+1)) 5 MN —"'P

where M = 2113”“ La). P = 2113” La). _

Step 6 Shrink all the vertices on levels 0 through I' to a single vertex x and delete

all the vertices on levels l“ and above t3 form a new graph, say G'.

Step 7 Find a simple cycle separator, say 0, of the new graph G' (The procedure

will be presented in Chapter 3). The nodes in C set are the vertices on levels I' and

l" plus the vertices on the cycle 0.

In the following chapters, theoretic aspects of the partitioning graph search al-

gorithms, and complete discussion of the algorithms for finding an optimal path in

the decoding problem will be presented. Precise computer algorithms for the decod-

ing problem will also be presented. In Chapter 2, the planarity testing algorithm

is studied and a topological embedding of a graph in the plane for finding an ap

propriate vertex partition is found. A method for creating a planar decoding graph

8

for experiments is given. In Chapter 3, «IV-separator theorems are introduced and

an algorithm for finding a vertex partitioning is provided. In Chapter 4, the graph

search problem is discussed and a multiple stack decoding algorithm will be presented

to carry out this partitioning graph search. Also, a large planar decoding graph is cre-

ated for testing the graph partitioning and search method using a preliminary version

of the multiple stack search procedure described in [1]. The flow of topic coverage is

shown in Fig. 3.

1. Planarity

Algorithm

Separator

Theorem

3. Multiple

Stack

Best First

Search

Figure 3: A procedure for graph partitioning approaches in signal decoding.

“mil 3 3. mph

Y

No

Planaity? I

Extract out those

Yes nonplanar arcs

mam |<

l

l. 17“!!me

(Eggnodesin

gummyup multiple

Mk8 to store the

surviving paths in each

stack.

l

l.selectadditionalnodes

whicharenotthenodcsinC,

evaluatethoscnodesin

csurviving pattisagnin.

ZDecidemegmost

likely path.

10

2 Planarity of a Finite Graph

In this chapter, classical work concerning planar graphs is reviewed, and this material

is used to develop a planarity testing algorithm [9] for determining whether or not a

given finite graph is planar. If the graph is planar, then a topological embedding is

found for future usage; if it is not planar, then some arcs causing nonplanarity are

set aside for future reference. Finally, a way to produce a planar decoding graph for

testing the graph partitioning method is presented.

2.1 Preliminaries

In this section, some basic properties of planar graphs are noted. A graph G(V,E)

is called a planar graph if it can be drawn, or embedded in the plane in such a way

that the edges of the embedding intersect only at the vertices of G(V,E), i.e. no

two edges, share any vertices, except at their ends. Fig. 4(a) shows example planar

and nonplanar graphs, and in Fig. 4(b) different embeddings of the same graph are

shown.

A planar representation of a graph divides the plane into a number of connected

regions called faces, each bounded by some edges of the graph. The boundary of a

face can be regarded as a closed walks . A face f is said to be incident with the vertices

and edges on its boundary. Figure 5 indicates the faces of a particular embedding of

the graph. Let b(f) denote the boundary of the face I. For example, the boundary

of f3 in Fig. 5 is as follow:

503) = ”4843088530581.50161,130181.404

”A walk in G is a finite non-null sequence composed of some alternately vertices and edges; a

closed walk is a walk whose origin and terminus are the same.

11

Of course, any planar representation of a (finite) graph always contains one face

enclosing the graph. This face, called the exterior face, is f1 in Fig. 5. Note that if

e is a cut edge6 in a planar graph, then only one face is incident with e; otherwise,

there are two faces incident with e. For instance, e1,“ is a cut edge in Fig. 5. Thus,

only f3 is incident with it. On the contrary, cm is not a cut edge; there are exactly

two faces (f1 and f3) incident with it. Later, this prOperty is used to find a proper

vertex partitioning.

There are some important properties related to the planarity of a finite graph.

These properties are not proved in detail. However, proofs can be found in the

references indicated later. The understanding of these properties is the prerequisite

to understand the Planar Separator Theorem of Lipton and Tarjan (Theorem 1).

Theorem 2 (Kuratowski’s Theorem [12]) A graph is said to be nonplanar if and

only if there is a subgraph of G which is homeomorphic" to either K33 or K5.

K33 and K5 are called Kuratowski subgraphs, shown in Fig. 6. Neither K33, nor K5

is planar. Using Kuratowski’s theorem, Lipton and Tarjan show that if any edge of a

planar graph G is shrunk to a single vertex, the contracted graph will also be planar

[4, Lemma 1]. Furthermore, if G is any planar graph, then shrinking any connected

subgraph of G to a single vertex preserves planarity.

Theorem 3 For any connected planar graph with N Z 3,the following holds: _

|E|_<_3N-6

where [E] is the total number of edges, N is the total number of vertices.

.A cut edge in G is an edge whose removal will disconnect G.

_ 7Two graphs are said to be homeomorphic if both can obtained from the same graph by the

insertion of new vertices of degree two, in edges; i.e. an edge is replaced by a path whose intermediate

vertices are all new added.

12

(a)

Q

Petersen’s graph:

planar graph nonplanar graph

(b)

(Ir 4’) C‘ J)

planar embedding nonplanar embedding

Figure 4: (a) An example of the planar and nonplanar graphs .

(b) The same graph but different embeddings

13

V1 V

c1.4 . 4

91 13

31.2!

93.4

V
2 v3

Figure 5: A planar graph with ten faces, where f1 is called the exterior face.

This theorem results from Euler’s formula , a = |E| — N + 2, in which it is the total

number of faces of G [11]. Conversely, if [E] > 3N — 6, then the graph is nonplanar.

Theorem 4 (Jordan Curve Theorem [4]) Let C be any closed curve in a planar

graph. The removal of C divides the plane into exactly two connected regions, the

inside and the outside of C.

2.2 A Planarity Testing Algorithm and a Topological Em-

bedding

Kuratowski’s Theorem is the earliest characterization of planar graphs. This theorem

proves that no planar graph contains either a complete graph on five vertices or a com-

plete bipartite graph on six vertices as shown in Figure 6. Even though Kuratowski’s

statement is elegant, his condition is not useful as a. practical test of planarity. In

14

(a) (b)

\/

7:: VM

Figure 6: Kuratowski subgraphs (a) K33; (b) K5.

this work, to test for planarity, we attempt to construct a planar embedding of the

given graph. If such a representation can be completed, then the graph is planar; if

not, then the graph is nonplanar.

Hopcroft and Tarjan [7] were first to show that planarity testing can be done in

linear time (0(N)). In their algorithm, they also show how to draw the graph if

it is planar. The algorithm starts by finding a simple cycle and adding to it one

simple path at a time. Each new path connects two old vertices via new edges and

vertices. However, the Hopcroft-Tarjan planarity testing algorithm does not give a

clear description of how to determine each face of a planar graph. At the same time,

this algorithm is fairly complex and a complete description would require a much

more elaborate exposition. It might be possible to employ this eficient planarity

testing algorithm in future work to enhance the entire structure of our partitioning

graph search algorithm. However, here we apply the less efficient, but simpler and

15

still polynomial time, planarity testing algorithm, due to Demoucron, Malgrange and

Pertuist in 1964 [9]. Demoucron’s algorithm is based on a criterion for determining

when a path in a graph can be drawn through a face of a partial planar representation

of the graph.

The planarity testing algorithm of Demoucron et al. is shown in Fig. 7. Before

using this algorithm to determine whether a given graph is planar, some preprocessing

considerably simplifies the work. Note the following points:

1. If the graph is not connected, then each component should be subjected to

planarity testing.

2. If no cycle is found, then the graph is a tree. Therefore, it is planar.

3. If [E] < 9 or N < 5, then the graph must be planar; if IE] > 3N — 6, then the

graph must be nonplanar (see Theorem 3).

The following definitions will be required: Let G.(v.-,E.-) be a subgraph of G(V,E),

a bridge B of G related to G,- is then:

1. either an edge (u,v)EE where (u,v)¢E,- and u,v€V,-, or

2. a connected component of (G— G,-) plus any edge incident with this component.

We denote by V(B,G,-) the vertices of attachment of B to G,-. Let H; be an

embedding of G,- in the plane. If B is any bridge of G,-, then B is said to be drawable

in a face f of H,- if V(B,G,~) are contained in the boundary of f. We write F(B,H,-)

for the sets of faces of H; in which B is drawable. The algorithm to follow is based

on a very important criterion : IfF(B, Hg) = 0, then we cannot obtain further planar

subgraph embedding. Thus the algorithm will terminate for nonplanarity.

Given a graph G, the algorithm determines an increasing sequence G1,G2,- -- of

planar subgraphs of G, and corresponding planar embeddings H1,H2,' -- when G is

16

planar. Through the algorithm, it is easy to record the faces of each subgraph G,-+1

at each iteration i as shown in Fig. 7. The procedure is as follows :

1. If there exists a bridge B such that F(B, H5) = 0, then the graph G is nonpla-

nar. Thus, the planarity testing and planar embedding ceases.

2. If there exists a bridge B such that |F(B,H,~)| = 1, then let {f} = F(B,H,-).

From the bridge B, choose a path P.- Q B and set G,-+1 = G,- U P,-. Thus, the

faces of G,“ can be obtained by drawing P,- in the face I of G5.

3. Otherwise, choose any face f and any bridge B such that f 6 F(B,H,~). From

the bridge B, choose a path P,- Q B and set Gg+1 = G,- U P,‘. The faces of G,“

can also be obtained by drawing P,- in the face fof G,-.

Note that if G is planar, then by Euler’s formula, IE] - N + 2 farms will be found.

Since these faces have been found following implementation of the process shown in

Fig. 7, a. fixed planar embedding of the graph G can be constructed. In Chapter 3,

this result will be used to find an appropriate vertex partitioning.

17

Find a cycle G; and

a planar embedding

H1 Of G1

|

i8i+l

ForeachbtidgeBof

F'md a path P; in B

connecting two vertices

of attachnient.

Set Gi+1= G; U Pi'

DrawPiinftoEtHj” ,

r

Yes

k Choose any

3 andfif

‘ belong to

F(BHa)

Figure 7: The planarity testing algorithm of Demoucron et al. [9]

18

2.3 Creating a Planar Decoding Graph

A simple language graph, an example of a decoding graph, for experimental testing

of the partitioning methods is constructed as follows: Consider a set of sentences,

2 = {23,-}, composed of discrete words from the set, W = {10,-}. A sentence (of length

T) is of the form, 2,; = wgl, wig, . . . ,wav, where the comma denotes concatenation.

Let’s assume that the word set and the sentence length are finite, so that the set of

sentences can be representable as a directed graph (digraph), say G(V, A), in which

each vertex is associated with only one word, each edge (or dart in the digraph)

represents the transition from word to word in sentences, and each path represents a

legal sentence. Formally speaking, a Markov language graph G(V,A) consists of a set

of vertices, V = {v.-}, a set of edges, A = {Chi} (akj connects vertex v], to vertex v,-),

a special vertex 3 6 V indicating the start vertex of each path, and a set of transition

weights, {P(v,- | v;)}. P(v,- | v,-) is the probability that w(v,-) is followed by w(v,-) in

any sentence, where w(vk) denotes the word associated with vertex vi. Moreover, the

elements in'the set of complete paths through G (which means that those paths in

G begin at s and terminate at some v1.) will have one-to-one correspondence to the

elements in 2.

An example of a language graph is shown in Figure 8(a). This graph is created

from the following list of sentences, each sentence begins with a dummy point, say

“0”, the dummy point is the starting vertex 3 of each path in the graph G (or,

equivalently, the first word of each sentence in 2). The sentences are :

s It is a language graph example

0 It contains a list of sentences

0 He is not very angry

c He wants a piece of paper

19

(8) example

sentences

1/3 , .

g

o ”2

,

gt;

0

m m 1.0 m 1.0 “P 1.0 h“

C O O O Q2

Tune

81“ 1 2 3 4 5 5

(b) | I I I l l l

| | | l l l l

Observation

ms: 3° 18 not very mm

Figure 8: (a)An example of a decoding graph. The transition weights are shown on

each edge.

(b)The boundaries of the observation string are known.

0 She wants me to help her

The goal is to find a planar subgraph of the language graph by extracting out the

planarity breaking arcs (arcs which make the language graph G nonplanar). Note

that the planar subgraph, say G', will include all the vertices in the original graph G.

On the other hand, let G(V,E) be the underlying undirected graph of G(V,A), then

the undirected version of G(V,A) is the undirected graph formed by converting each

edge of G(V,A) to an undirected edge and removing duplicate edges. Since G(V,E)

is planar, G(V,A) will also be planar. The way to discover the planarity breaking

20

arcs in the original graph G is as follows:

A data file to store the set of sentences 2 is created (remember that each sentence

begins with a dummy point e). The sentences are stored in the data file one by one,

and every word in a sentence is stored line by line in the data file according to the

concatenation of the words in a sentence. After building up a data; file by using the

method described above, the data file is read line by line from the top. Whenever a

new line is read one' new vertex may be added to the partial graph which has been

built up to this point. At the same time, a new edge to the partial graph is added

(recall that each edge represents the transition from word to word in sentences).

Since the language graph is constructed in this fashion, a directed graph is obtained.

However, the digraph created might not be planar. Therefore, when one line is read

to'build a partial graph, the planarity testing algorithm discussed in Section 2.2 is

used to determine whether the newly added edge will result in nonplanarity. If so, it

is extracted from the partial graph and the next line of the data file is read. Finally,

a planar graph is obtained. An example showing the creation of the planar graph

using this method is shown in Fig. 9.

Note that when the data are read and checked for planarity line by line, there

are two situations which will never make the graph nonplanar. One is the reading of

the dummy point 0, because it is the first word of each sentence, or equivalently, it

is the starting vertex of every path in the graph G'. The other is the case in which

the entire content of the present line has not been previously entered. After reading

in this line, a new path of vertices and edges is added to the partial graph. However,

the new path will not cause nonplanarity.

Note also that the planar decoding graph constructed by using this procedure

is connected. From the discussion of the situations which will never make the graph

nonplanar, it can be concluded that the only situation in which the planarity breaking

21

arcs occur is when at least one word of the current line is already resident in some

node. The new edge formed by reading in this line which causes nonplanarity is

deleted. However, both ends of the edge are “old” nodes in the partial graph. These

nodes are still connected to some other nodes in the partial graph created so far.

Thus, after reading all data and the construction of a graph by this method, the final

graph is a connected planar graph.

22

A
A
A

E
”
E
i

t
o
"
.

5
2

age

8MP 0@ s
emaiple

0

g
.

g a
.

s
o
.

‘
O
O
O
Q
Q
M
A
U
J
N
»
-

A
A
M
A
A

"
°
O
§
S
p
u
n

3
’
.

5
:
.
"

It is
gra h is a grah

9 0 0

language example example

O O

It is

0 9

a

a

C)

Figure 9: An example of creation of a planar decoding graph.

23

3 Development of a Partitioning Algorithm

In this chapter, the x/N-Planar Separator Theorems are discussed and a vertex parti-

tioning algorithm for actual implementation is developed. The results in this chapter

are closely related to the efl'ective use of the divide-and-conquer‘s strategy for solving

problems on planar graphs.

3.1 Planar Separator Theorems

For problems defined on graphs, there are some general conditions under which the

divide-and-conquer approach is useful. Let ‘1' be a class of graphs closed under the

subgraph relation (i.e., if G1 6 ‘It and G2 is a subgraph of G1, then G; 6 W). In [4],

an f(N)separator theorem for ‘1' is a theorem of the following form:

Theorem 5 There exist constants a < 1, H > 0 such that ifG is any N-vertex graph

in \It, the vertices of G can be partitioned into three sets A, B, C such that no edge

joins a vertex in A with a vertex in B, [A], [B] _<_ aN, [CI 5 ,Bf(N).

In 1979, Lipton and Tarjan [4] proved that a J17-separator theorem (see Theorem

1 in Subsection 1.2) holds for the class of all planar graphs with constants a = g and

fl = 2J2. Djidjev [8] improved the constant 5 = 2J2 to \f6- in 1984. The construc-

tive proof of these separator theorems depends on two fundamental lemmas. Since

the algorithm presented here for finding an appropriate vertex partition is based on

Djidjev’s result, a brief description of Djidjev’s separator theorem and the supporting

lemmas is necessary.

8In [4], the following three conditions are shown to be necessary for the success and efficiency of

divide-and-conquer: (i) the subproblems must be of the same type as the original and independent

of each other (in a suitable sense); (ii) the cost of combining the subproblem solutions into a solution

to the original problem must be small; and (iii) the subproblems must be substantially smaller than

the original problem.

24

Lemma 1 Let G be any N-vertex connected planar graph. Suppose G has a spanning

tree of radius r. Then the vertices of G can be partitioned into three sets A, B, C,

such that no edge joins a vertex in A with a vertex in B, neither A nor 8 has total

number of vertices exceeding 37", and C contains no more than 2r + 1 vertices, one

the root of the tree.

The proof of the lemma proceeds by first embedding G in the plane and finding

a breadth-first spanning tree of G. Since each face is triangulated by adding some

additional edges, any nontree edge (including the new added edges) forms a simple

cycle with some of the tree edges. Therefore, the length of this cycle is at most 2r +1

if it contains the root of the tree. By the Jordan Curve Theorem (Theorem 4), the

cycle divides the graph into two parts, the inside and the outside of the cycle. Lipton

and Tarjan [4, Lemma 2] showed by examples that at least one such cycle separates

the graph so that neither the inside nor the outside of the cycle contains more than

g vertices. Note that the simplest class of graphs with small separators is trees. A

tree has the separator C of size 1, and the root of the tree is a proper separator.

Lemma 2 Let G be any N-vertex connected planar graph. Suppose the vertices of

G are partitioned into levels according to their distance from some vertex 3 and that

L(l) denotes the total number of vertices on level I. Given any two levels I' and I"

such that the number of vertices on levels 0 through l' - 1 does not exceed 335- and the

2.2!3 , it is possible to findnumber of vertices on levels I' + 1 and above does not exceed

a partition A, B, C of the vertices of G such that no edge joins a vertex in A with a

vertex in B, [A], [B] 5 13,1, [C] S L(l’) + L(l') + max{0,2(l’ - I" -1)}.

The lemma is very important for constructing a vertex partitioning algorithm for

actual implementation. The proof of the lemma concerns the relationship between

levels l' and l'. (i) Suppose I' Z I". Then the lemma is obviously true if we choose

25

all the vertices on level I' to be in the C set, and let A be all the vertices below the

level I' and B be all the vertices above the level l'. (ii) Suppose that l' < I". Since the

vertices in levels l' and l' are deleted, the graph naturally partitions into three parts:

vertices on levels 0 through l' - 1, vertices on I' + 1 through I” - 1, and vertices on

levels I" + 1 and above. To find an appropriate vertex partitioning in this condition,

two cases must be considered. One is the case in which the total number of vertices

between I' + 1 and l' - 1 does not exceed 359,-. A proper partition is obtained by setting

A the part of the three with the most vertices, B the remaining two parts, and C the

set of vertices in levels l' and l' . The other case is that in which the total number of

vertices between I' + 1 and l' - 1 exceeds “-391. In this case, the part between l' + 1

and l' - 1 requires sub-partitioning. A sub-partitioning is carried out as follows: All

vertices on levels 1' and above are deleted and all vertices on levels 0 through l' - 1

shrunk to a single vertex x. A new graph“, say G', is formed. Note that the new

graph preserves planarity [4, Col 1]. Apply Lemma 1 to the new graph. Let A', B',

C' be its vertex partition, the set C' being the vertices on the cycle. Therefore, a

proper vertex partitioning of the graph G derives from letting A be the set among

A' and 8' with more vertices, C the vertices in levels 1' and 1' plus the set C', and B

the remaining vertices.

Theorem 6 (Djidjev’s Planar Separator Theorem [8]) Let G be any N-vertex

planar graph. The vertices of G can be partitioned into three sets A, B, C such that

no edge joins a vertex in A with a vertex in B, [A], [B] S 33d, [C] S V6N.

Since our interest is in partitioning the connected decoding graphs for selecting

“high payoff” nodes to evaluate, we simply consider the case of connected graphs in

this theorem. The partitioning construction involves classifying the vertices of G into

”Note that the single vertex 2 will not be counted in the total number of vertices in G'.

26

Figure 10: The condition implied by case (1) in Theorem 6. Since we can find the

level I satisfying 1 e [11,3, l3/3] and L(l) S V6N, an appropriate vertex partition is

found.

levels according to their distance from some vertex v. Let L(l) be the total number of

vertices on level I. Find two levels first, say 11/3 and 12/3, satisfying certain numerical

restrictions: For each a 6 (0,1), let I, denote a level such that 23151 L(l) < 0N

and Z]; L(l) 2 (IN. (1) If there exists one level between 11/3 and 12/3, say I, such

that L(l) S y/6—N, then the set of vertices on levels 0 through I - 1 and the set

of vertices on levels I + 1 through above will not exceed %. Let C be the set of

vertices on level I. Then the theorem is true. This case is shown in Fig. 10. (2)

Otherwise, finding a nonnegative integer, say j, satisfying £3,331!“ L(l) < 2/3 . N

27

[2’3 12TH

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

A ‘
J

Figure 11: The condition implied by case (2a) in Theorem 6.

and 2:23;, L(l) 2 ¥-. Two subcases must be considered: (2a) If If there exists i E

[0,j] and L(11/3 - i) +IL(12/3 + i) S m, then the nodes in the C set are the vertices

on levels L(l1/3 - i) and Lag/3 + i). Following the numerical rule for finding j, let A

be the set of vertices on levels L(l1/3 - i + 1) through L(lg/a + i — 1) which does not

exceed 333, and B the set of the remaining vertices. Thus, this is a proper partition.

The case is shown in Fig. 11. (2b) Otherwise, two levels, say l' and l" satisfying the

following numerical restrictions, are located.

I’_<_I,,3-j-1<I,,3+j+15_1"

28

l' G r'

Figure 12: The condition implied by case (2b) in Theorem 6.

L(I') {a 2(11/3 —j — 1 — 1’) 3 NA?

L(z") + 2(1” _ (1,,3 + j + 1)) _<_ 2\/—N- P

where M = $213-1.“ L(l), P = 2:23” L(l). Apply Lemma 1 to the new formed

graph between I' and I", say G', to find a simple cycle separator, and use the result

in Lemma 2 to complete the vertex partitioning of the graph G. Since Djidjev [8]

proved mathematically that L(l') + L(l') + max{0,2(l’ — l" - 1)} < s/6W, the set of

vertices in C are the vertices in levels I' and l" plus the simple cycle found in the new

graph between I' and l". The case is shown in Figure 12.

29

3.2 An Algorithm for Planar Graph Partitioning

The proof of Theorem 6 discussed in Section 3.1 leads to an algorithm for finding a

vertex partition satisfying the theorem. The algorithm which has been outlined in

Chapter 1 is shown in Fig. 2. The only issue not discussed there is how to find a

sub-partitioning of the new graph G', where G' is formed by deleting all the vertices

on levels I" and above, and shrinking all vertices on levels 0 through I' -— 1 to a single

vertex, say x. Note that the single vertex x will not be included in the total number

of vertices in G'. Recall that finding the partitioning cycle in G' is necessary only

when the subcase 2.b of the proof of Theorem 6 occurs [8].

The algorithm for finding the partitioning cycle in the new graph G’ is presented

in Fig. 13. Demoucron’s planarity algorithm [9] is used to determine the boundary of

each face in the planar embedding of G', say H', and to find a breadth-first spanning

tree of G' as inputs.

Choose any nontree edge, say (v, w), and form the corresponding cycle by (v, w)

and some tree edges in the graph G'. If neither the inside nor the outside of the

chosen cycle contains more than 2/3(Nl — 1) vertices“, then the cycle will be a

proper separator of G'. However, if no set of these nontree edges in the graph G'

forms an appropriate cycle, then one new edge is added in a face for each test. The

new added edge is a nontree edge which can form a cycle with some tree edges. Note

that whenever one new edge is added in a face, this edge will divide the original face

into two parts, each part forming a new face of the planar embedding. Each time one

new edge is added to a face, it is determined whether the corresponding cycle formed

by the new added edge satisfies the condition that neither the inside nor the outside

of the cycle contains more than 2/3(N' - 1) vertices (see Lemma 1). From the proof

"Let N' be the total number of vertices in G’ including the single vertex 2

30

the proof of Lemma 2 in [4], at least one such cycle can be found. The problem arises

here. How can it be determined which vertices should be considered inside of the

cycle and which vertices outside of the cycle? A method which is shown in Figure 13

is proposed. 1 .

From Chapter 2, we know that each edge in the cycle has two faces incident to it

(note that every edge in a cycle is not a cut edge). We scan each edge in the cycle

once, and assign the vertices of the corresponding two incident faces (excluding the

vertices on the chosen cycle) to either the inside or the outside of the cycle. Note

that these two faces cannot exist on the same side of the cycle. In other words, if one

face is located on the inside of the cycle, then the other must be on the outside of the

cycle.

Choose one edge in the cycle. Let two incident faces be f’ and f”. We denote by

two vertex sets V}: and V,» the vertices in the faces f’ and f" excluding the vertices

. on the chosen cycle. Let F, be the set of the vertices on the outside of the chosen

cycle, and let F; be the set of the vertices on the inside of the chosen cycle. The

rule for determining which face is located on the inside of the cycle and which face is

located on the outside is as follows:

1. Assume that f’ is located on the inside of the cycle. Check to see if any vertex

in Vp is put to the outside of the cycle, i.e. V}: n. F. ;£ 0. If so, f’ must be

located on the outside of the cycle rather than on the inside of the cycle. Since

f’ is located on the outside of the cycle, f” must be located on the inside of the

cycle. Set F; = F; U {Vpo} and F, = I"" U {Viv}. Stop and scan another edge in

the chosen cycle.

2. Otherwise, check the status of f”. If some vertices in V,» are put to the inside of

the cycle, then f" must be located to the inside of the cycle. Since f” is located

31

Dan .

CB-thssudedpwlndi' fonnscyels

P-thssuofl’acssina’

fibudm‘mnds’' thscycls

F.-thssadvenieuousidsthscyds

P_-thssstd’fac-whd' havobsm

nudism-jthscyds

1.1. .

Fi-t all

Fo'lmnl

Fm'lMJ‘l

Lilnltwofac-f'ud 9h?

2.? -(t‘.f'}UF-.

3. anthem

No

 F iii-Shun? ,
* I

r.<hurl-ms... >

I‘Lsu-ths vision

dfwhmub

 [a- m1 UP. j [in/dun]

We '

LII-Inland“

”i.In Imlmdcdvufis-

Figure 13: The algorithm for finding the partitioning cycle in the new graph G'.

32

F.- = F; U {10"} and F. = F, U {”1}. Stop and scan another edge in the chosen

cycle.

1 3. Otherwise, put f’ to the inside of the cycle and f” to the outside of the cycle.

Set E = E U {VI'} and F, = Fa U {Vf"}'

4. Scan another edge in the chosen cycle.

In general, there will be faces which are not incident to any edge in the chosen

cycle. If so, the rule described above is used to locate every “unused” face to either

the inside or the outside of the cycle. Finally, the vertices on the inside of the cycle

and the vertices on the outside of the cycle can be determined.

An example will illustrate the method for finding an appropriate cycle separator.

The original graph is shown in Fig. 14. By using Demoucron’s planarity algorithm,

the boundary of each face is found, and the graph is embedded in the plane. The

planar embedding is shown in Fig. 15. The breadth-first spanning tree is shown in

Fig. 16. Then one nontree edge, say (3,10), and its corresponding cycle are found.

The cycle is shown in Fig. 17. After these processes are completed, three types of

data must be recorded. One is the set of edges which forms the cycle. In this example,

the edges of the cycle are 1, 17, 15, 14, 12, 7, 4. Another is the set of vertices in each

face except the vertices which are on the chosen cycle. This is shown in Table 1. The

other is the set of boundary edges for each face. These are shown in Table 2. Now,

the rule for determining which faces should be located inside of the cycle and which

should be located outside of the cycle is applied. The result is shown in Table 3.

From these results, the appropriateness of the chosen cycle as a separator can be

determined. This consideration is shown in Table 4.

Finally, we note that the vertex partitioning algorithm presented in this chapter

can obtain different partitions of the same graph by choosing a variety of reference

33

17

| 16

2 3

9 (3 9 10

1 5 ,

4 11

0 0 o a. 15?)

7 1

12

9 CD 9

13

N:- 2;

|B|=I=l7

Figure 14: The planar graph. Note that every vertex and edge is labeled.

nodes for drawing the level lines. The main criterion in choosing an adequate par-

tition is suficient path coverage. In the present stage of the research, choosing an

adequate partition of the decoding graph G must be done ofi-line prior to beginning

the decoding.

34

Figure 15: Embed the graph in the plane and find the boundary of each face (Using

Demoucron’s planarity algorithm).

35

Figure 16: The breadth-first spanning tree of the graph. The bold lines mean tree

edges. The node “0” is the root of the tree.

Figure 17: Choose one nontree edge from the planar graph, say (3,10), find its cor-

responding cycle with some other tree edges. Dotted lines are used to indicate the

cycle.

36

face 1 9, 7, 8

face 2 1

face 3 none

face 4 5

face 5 5, 1

face 6 9, 8

face 7 9, 7, 8

Table 1: The set of vertices in each face except the vertices which are on the chosen

cycle.

face 1 16, 11, 9, 2,1

face 2 10, 6,17

face 3 1213.14.15

face 4 4, 5, 7, 8

faceS 1, 6, 10, 15, 14, 12, 8, 5

faccé 16, 3, 2, 17, 13, 7, 4

face 7 11, 3, 9

Table 2: The boundary edges of each face.

37

Result:

outside the

face 5

face 5

face 5

face 4

Faces have been used to locate in either side of the cycle:

face 1, 2, 3, 4, 5, 6.

Faces haven’t been used: face 7.

Faces inside the cycle: face 1, 3, 6, 7.

Faces outsrde the cycle: face 2, 4, 5.

Table 3: Two faces to which each edge of the cycle is incident. The faces are located

to either side of the cycle. The unused faces are recorded.

- Total

Vernces number

Inside 9, 7’ 3 3(< 2/3N)

Outside 1. 5 2 (< 2/3 N)

Table 4: The set of vertices on each side of the cycle.

38

4 Graph Search with Partitioning In Signal De-

coding

4.1 Application of the PST to Graph Search Problem

In this section we give a simple example to illustrate the use of the partitioning

methods in signal decoding. Since the primary focus of this work has been on the

development of partitioning algorithms, this example is not meant to be completely

illustrative of the power of the methods, nor does it dwell upon many important

details (to be noted) which will be the subjects of future research.

Let’s consider the meaning of G in the decoding problem. Each node in G repre-

sents a physical entity in the sense that “resident” at v; is some abstract information

or model which represents the entity. For example, the node might represent a word

in a language graph (see Section 2.3), and resident at the node would be a statistical

model of the word features to be evaluated against measured acoustical observations.

Because we are working with a simple speech recognition problem in this example,

we will refer to the physical entity which is represented by a node as a word. A legal

concatenation of words (path through G) will be called, naturally, a sentence. The

evaluation of a node u,- will refer to some quantitative assessment (either likelihood or

probability) of the model at v,- with respect to the observations. The decoding prob—

lem is to find the most likely path (most likely sentence) in G, given the observation

string, say Y, and the a priori structure embedded in G.

After using the graph partitioning method to locate 0(\/—1\7) “high payoff” nodes

in an N node decoding graph G, the technique for implementing the search of paths

must be considered. In conventional “left-to—right” strategies, the evaluation of nodes

takes place as they encountered along paths. However, the evaluation of nodes occurs

39

as the selected nodes are encountered along paths in the partitioned case. Since we

only evaluate the preselected nodes of the paths in the partitioned case, the search

procedures must be modified to accommodate unevaluated nodes. The details of this

issue are the subject of the next section.

4.2 A Multiple Stack Algorithm for Search with Partition-

ing

A conventional left-to-right search can be carried out using a “stack” algorithm [2].

Each evolving path is entered into a “stack” (memory array), its position in the stack

determined by its likelihood. The most likely partial path is put at the top of the

stack. Since the stack is of finite length, say q, only the q most likely partial paths

survive. The finite stack, therefore, effects one type of pruning operation called hard

pruning [1]. A second type of pruning occurs when a partial path, for which there

is sufficient room in the stack, is deemed too unlikely to be viable and is removed.

' This type of pruning is called sofl pruning. At eaCh iteration, the partial path in

the top location of the stack is extended by one word (then paths are rearranged if

necessary). When a complete path appears as an entry at the top of the stack, the

decoding is complete.

To search the paths in the partitioned case, a modified left-to-right procedure is

suggested by Deller in [1]. For simplicity, we consider a special case of this procedure

in which the temporal boundaries in the observation string, Y, are known. By this we

mean that discrete groups of observations are known to be associated with particular

time slots in the utterance and can therefore be associated with exactly one word

(node in G). Of course which node is unknown, but the known boundaries in Y

greatly simplify the search process. The algorithm shown in Fig. 18 pertains to the

40

graph search in which the boundaries of the observation string, Y, are known. Let’s

begin generating paths from the leftmost (start) node in G.

The evaluation of nodes occurs as the selected nodes are encountered along paths.

To provide “fair competition” among partial paths with different numbers of evalua-

tions, a separate stack, say 5;, is built for each number of evaluations. 5',- denotes the

stack containing partial paths with exactly i evaluated nodes. As the decoding pro-

cess procedes, path segments will move into the increasingly “more evaluated” stacks

as more selected nodes are encountered. Hard pruning and soft pruning can also be

applied to the multiple stack graph search. The harding pruning takes place in each

stack when there is room for only, say q,-, partial paths in stack 5;. q,- is assigned for

each stack prior to search. Soft pruning occurs in stack .5'; when a partial path with

i evaluations falls below some predetermined likelihood threshold, even though there

is suficient room for it in 5;.

Let ng, denote the substring of observations t1 through t2. Here we take as

the likelihood (evaluation) of node x, P(Yg,,,, | 1:) when observations t; to t; are

known to be associable with the time slot in which a: is found. Assume that the

observation string with known boundaries is of length T. When each path extension

in the separate stacks reaches the length T, the question remains as to how to select

the optimal path. If the “highest” stack which contains a path is 5;, we need to

select a suficient number of additional nodes in paths of lower stacks to make every

surviving path move to the highest stack. What remains in the stacks are partial

paths which represent a small subgraph of G. We simply search the subgraph using

the standard left-to-right method, the new search problem will be very significantly

scaled down with respect to the original problem. Further if I is unacceptably small,

further evaluations might be necessary on paths in S1. The optimal path with the

best likelihood is found at the top of the highest stack. .

41

No

Wh i=lt0]

e uate the

use Bfifisgfih‘fi?

into

tackan

. ut ex} d

ax-l- sta'gt'llx.

 (if: i‘aamcfil18%”de
},setlength: theorder 0?

the element start in the path

led‘‘checking”

 h

initalization: length -—- path_ntax a 0:

checkinga-l;

variable. length- totalno.ofwordswesearchupmnow

-totalno.ofwordsinobsetvanonseq.

dfl- total no. of nodes adjacenttostart(stm--path searching begins)

PM," -pathwhichhasbeenscarchedwith “start"asitslastnodc

P,--temperarypathorderisearchedfi'omPM

checking- thelabelofthepsth

vi-thenodewhichisadjmnttostartinthedigraph

Figure 18: A multiple stack decoding algorithm.

42

In a large problem, the subgraph remaining in the stacks after the first partition

and search can be further partitioned and searched in a similar manner. This pro-

cedure is particularly attractive if the partitioning can be done in real time. The

solution would be expected to rapidly converge. Each partition and search involves

(Xx/17) or fewer evaluations.

43

4.3 Application Example

In [1], an example with relatively few nodes. was provided to keep the resulting graph

visually tractable. However, for the purpose of better illustrating the power of the

partitioning graph search method, a large planar graph with l, 061 nodes and 1, 196

edges is created in this work for the experiment.

The method presented in Section 2.3 for creating a connected planar graph is

applied to construct a large graph. The original data file is built by using the random

number generator in a C programming library to generate a few “sentences” , each

sentence, or equivalently each path in the resulting digraph, consists of 33 — 40 words

(nodes). Every word is represented by an integer number created from the random

number generator. Note that difi'erent integer numbers represent different words in

the sentences. The data file is shown in Appendix A. The resulting digraph (after

extracting 119 planarity breaking arcs), say G, is composed of 1, 061 nodes (including

one dummy node 0) and 1,196 edges. The nodes of the graph G are shown in

Appendix B, and the planarity breaking arcs extracted from the original data file (or,

the original graph) are shown in Appendix C.

After creating the planar digraph, the next task is to apply the partitioning al-

gorithm to. its underlying undirected graph. The main purpose of the partitioning

algorithm is to partition the vertices of the planar graph and find the nodes in the C

set for evaluation. Therefore, the direction of each edge in the decoding graph G need

not to be considered as the partitioning process procedes. The node “0” is chosen to

be the reference node for classifying the vertices of G into levels. In this graph, the

vertices are partitioned into 58 levels from level 0 to level 57. Using the partitioning

algorithm, there are a total of 63 nodes in the C set. These nodes are selected in this

graph for evaluation. The position of these selected nodes is shown in Appendix A.

Since these “high payoff” nodes have been chosen, let’s further consider how to

execute the decoding process. The experiment was carried out as follows:

1. A complete path in the graph was chOsen as the given word string. Of course

the word string will be unknown in practice. A path containing 37 nodes was

selected to be the symbol string.

2. In order to obviate the construction of 1, 061 word models (since we knew that

only 0(\/1V) of them would be used in the search), we trained 81‘ models. These

trained model are shown in Appendix D. These models corresponded to the C

set nodes found by partitioning, plus a few additional ones (see Appendix A) for

a purpose described below. For convenience, the trained models were evaluated

in advance with respect to each discrete set of observations representing words

in the chosen sentence (correct path).

3. The multiple stack graph search algorithm was used to search for the optimal

path. At the end of the search, there were nine stacks created holding 264

candidate paths. This means that the maximum number of the nodes evaluated

on a path was nine. The threshold at stack i was given by 2' times the best match

score for any given word in the 81 test words to its correct model. After the

threshold was set for pruning the unlikely partial paths at each stack, only 38

paths were remained in the stacks (see Appendix E).

4. A second subset of the key nodes from the surviving paths was evaluated (the

left-to-right search approach was applied) to move the surviving paths in the

lower stacks to Stack 9. An additional node was added to a path by inserting

the appropriate model from the the set of 81 trained model. It was necessary

to evaluate 18 additional nodes to move the paths in the lower stacks to Stack

45

9. The path which had the best likelihood in Stack 9 was the optimal path.

To find a optimal path using the graph partitioning and search method in this

graph, 81 nodes are selected for evaluation. Using the conventional left-to-right search

to this graph, to evaluate 9 nodes on every path requires 299 node evaluations. The

experiment demonstrates that a significant reduction in the number of evaluations is

possible with the partitioning procedure with respect to the left-to-right method. In

real problems in which a more carefully planned search strategy can be employed,

much more improvement than was achieved in this simple example is to be expected.

Further, since the partitioning algorithm’s main benefit is in reducing the complexity

to 0(\/1V), results will be more significant for very large N. N values of 106 — 1011

nodes are not uncommon, for example, in speech recognition graphs [3], [13].

46

5 Conclusions and Future Work

For signal decoding problems, the graph partitioning method offers a systematic way

of locating a very small number of nodes which are guaranteed to give effective cov-

erage of a decoding graph. Through the evaluations of this relatively small number

of selected nodes, an optimal path for a given observation string can be found.

The major contribution of this research is the development of a planar graph par-

titioning algorithm, which can be used to select (Xx/N) nodes for evaluation from

an N node planar decoding graph. In the process, a method for finding an appro-

priate simple cycle separator to complete the vertex partitioning has been developed.

When the search is combined with partitioning, the overall graph search complexity

is 0(w/17). This represents a steep~ decrease with respect to conventional left-to-right

decoding approaches which are usually 0(N). A procedure for circumventing the ap—

parent limitationof these W-Planar Separator Theorems to planar graphs is found

in [1]. To develop appropriate partitioning algorithms for the more general case will

be the subject of future research.

Following partitioning, “scattered” nodes are evaluated and the graph is searched

and pruned according to a likelihood measure. To provide “fair competition” among

the partial paths with different numbers of evaluations requires the use of an un-

conventional search algorithm since most existing methods assume the sequential

evaluation of nodes from left-to-right. For this purpose, a multiple stack decoding

algorithm has been applied to carry out this procedure. In the present research,

graph search in the presence of known boundaries in the observation string has been

presented. An important issue for future research is the implementation of methods

for search with unknown boundaries which is suggested in [1]. Another important

issue is the ability to perform in real-time the repartition of the subgraph following a

47

given search.

A summary of future work is as follows:

1. An appropriate vertex partitioning algorithm for generally nonplanar graphs

will be developed.

2. Strategies for “optimal” multiple partitioning, and recursive partitioning and

search, in real time will be developed and evaluated.

3. Graph partitioning and search algorithms will be applied to the problem of

continuous speech recognition. The algorithm developed for this search must

be applicable to the case of unknown acoustic boundaries.

48

References

[1] C.G. Venkatesh, J.R. Deller, Jr., and MB. Cozzens, “A Graph Partitioning

Approach to Signal Decoding,” in press Discrete Applied Mathematics (special

issue on Graph Theory in Electrical Engineering). .

[2] LR. Bahl and F. Jelinek, “Decoding for Channels with Insertions, Deletions and

Substitutions with Applications to Speech Recognition,” IEEE Transaction on

Information Theory, Vol. IT-21, No.4, pp.404-411, July 1975.

[3] L.R. Bahl, F. Jelinek and R..L. Mercer, “A Maximum Likelihood Approach to

Continuous Speech Recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. PAMI—5, No.2, pp. 179—190, March 1983.

[4] R.J Lipton and R..E. Tarjan, “A Separator Theorem For Planar Graphs,” SIAM

J. Computing, Vol. 36, No. 2, pp. 177-189, April 1979.

[5] G.L. Miller, “Finding small simple cycle separator for 2-connected planar

graphs,” Proceedings of the Sixteenth Annual ACM Symposium 0n Theory of

Computing, pp. 376-382, April 1984.

[6] H. Gazit and G.L. Miller, “A Parallel Algorithm for Finding a Separator. in Pla-

nar Graphs,” Proc. 28th Annual IEEE Symposium on Foundations of Computer

Science, pp. 238-248, 1987.

[7] J. Hopcroft and RE. Tarjan, “Efficient Planarity Testing,” J. Assoc. Comput.

Mach., Vol. 21, pp. 549—568, 1974.

[8] H.N. Djidjev, “On the problem of partitioning planar graphs,” SIAM J. Alg.

Discrete Math., Vol 3, No. 2, pp. 229—240, June 1982.

[9] J.A. Bondy and U.S.R Murty, Graph Theory with Applications, New York: Amer-

ican Elsevier Publishing, 1976.

[10] 8. Even, Graph Algorithms, Potomac MD: Computer Science Press, 1979.

[11] A. Gibbons, Algorithmic Graph Theory, New York: Cambridge University Press,

1985.

[12] J.A. McHugh, Algorithmic Graph Theory, Englewood Cliffs NJ: Prentice-Hall,

1990.

[13]. B.T. Lowerre and R. Reddy, “The HARPY Speech Understanding System,” in

W.A.Lea (ed.), Trends in Speech Recognition, pp.340—360, Englewood Cliffs NJ:

Prentice-Hall, 1980.

49

[14] S. Rao, “Finding Near Optimal Separators in Planar Graphs,” Proc. 28th Annual

IEEE Symposium on Foundations of Computer Science, pp. 225—237, 1987.

[15] R.J. Lipton and RE. Tarjan, “Applications of a Planar Separator Theorem,”

Proc. 18th Annual IEEE Symposium on Foundations of Computer Science, pp.

162-170, 1977.

[16] J.R. Gilbert, J.P. Hutchinson and RE. Tarjan, “A Separator Theorem for Graphs

of Bounded Genus,” Journal of Algorithms, Vol. 5, pp. 391-407, 1984.

[17] LR. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition,” Proc. IEEE, vol. 77, No. 2, pp. 257—285, 1989.

[18] RC. Read, “A New Method for Drawing a Planar Graph Given the Cyclic Or-

der of the Edges at Each Vertex,” Research Report CORR 86-14, University of

Waterloo, July 1986.

50

1716 <-- C

1136

1720

1832

751

1681

1106

1970 <—- C

1693

352 <-- C

[SJPI?IEPII)I){.AI

918

1416 <-- C

1488 <-- C

1936

391 <-- C

51

1315 <-- C

1572

1851

1944

1798 <-- C

1094

250

537

i420

546

453

1816

1972 <-- C

1964

1710

290

1012

1310

357

1901

1114

1515

1489

1298

520

1445 <-- C

1904

52

747 <-- C

53

1354

818

1452 <- C

1186

749

1000

1357

1491

1378

101

171

311

1176

54

Next

page

. 818 1586 4480 6389

63 1452 <-- C 622 3926 61261

1005 1186 1363 1032 2040

1470 749 1569 3329 9144

305 1000 1180 3682 21941

1144 1357 1493 5764 7872

1337 1491 1421 21615 5569

524 1378 326 7961 4972

1935 101 259 9273 5364

133 171 1076 31275 11684

367 311 192 4038 6931

466 1176 26 4923 8423

505 597 <- C 2000 <-- C 5490 7927

1704 585 931 7443 3594

59 566 852 <- C 7837 2182

1592 1963 901 41368 .

745 1661 841 7746 3401

506 19 1482 61469 9868

1579 1983 341 8505 6820

1196 558 1499 <- C . 6538

170 <-- C 1778 1112 9480 3940

742 1499 <- C 1489 6424 6512

378 793 649 6678 91289

744 413 825 81139 9621

680 1303 3387 <- C 9763 7970 <- C

580 <- C 1514 675 31959 3668

1075 1767 848 6707 5693

425 1572 83 6242 4352

1922 739 . 6663 <- 2940

1038 474 2914 3759 9208

1014 1901 8277 6332 8571

1075 1557 3062 3455 3579

1453 . 3631 7685 6821

20 1287 7845 3716 6963

897 658 2380 3136 2724

. 1030 8011 7720 8762

1516 786 1567 5832 51187

235 150 2350 4751 4645

635 1360 5307 <- C 5681 8600

1451 897 3339 5106 6551

368 673 8929 2379 6329

1002 92 9216 9719 7018

1917 25 6479 6381 4975

873 1622 4703 2919 6080

706 609 6999 7163 6964

328 991 9000 4219

54

3606 8225 4212 5046 81547

3377 4891 41425 8659 8367

8252 3954 3074 6685 6519

8387 7043 7923 7200

7317 7723 <-- C 2099 2249 7265

4764 6818 6882 4165 9324

4545 9545 31263 5792 71369

3291 6410 5546 6274 7238

2735 6234 7984 5807 7207

8214 3385 8663 9228 9333

5336 6929 8626 6470 3300

3439 6977 9012 2188 6849

71154 <- C 7834 6330 2868 2809

4544 8190 6551 2673 .

8362 4878 7215 9843 3097

1085 6206 2626 6723 9012

7717 3800 2701 9088 5310

5325 2508 3310 8922 4357

41617 6479 2876 5653 21901

2831 6740 7238 2546 3114

6512 3807 21127 6453 11515

4220 6297 7816 5307 <-- C

2918 2094 4024 9972 1489

9416 <- C 4750 5290 . 71298

7488 41048 2304 7964 4520

9936 8080 4196 9710 5445 <-- C

4391 21028 6381 7290 7904

81315 5288 7124 2274

3252 71572 2202 2130 2689

7900 61851 7654 6248 7183

2020 . 9851 3518

3618 9798 6415 7176 8168

7630 3094 9079 4908 <—- C 5550

2762 2500 8929 2889 6389

5222 4537 3458 21451 61721

4947 7531 7157 9168

91389 3420 2163 406 5714

4434 51074 8375 3090

4590 7810 8077 3431 2758

4760 9655 41497 9213 2273

9634 3820 9737 7603 8775

. 4739 3055 2594 6058

2697 2984 9160 11401 9122

7140 8006 6068 4824 7936

8202 51273 <-- C 9606 2927 4 92

Next

page

55

56

Node 0 8:

Node 1 s 914

Node 2 = 827

Node 3 = 302

Node 4 = 1631

Node 5 = 785

Node 6 = 230

Node 7 = 11

Node 8 = 1567

Node 9 = 350

Node 10 = 1307

Node 11: 1339

Node 12 = 929

Node 13 = 1216

Node 14 = 479

Node 15 = 703

Node 16 = 699

Node 17 =- 90

Node 18:- 440 (ABOUT)

Node 19= 1926

Node 20:1032

Node 21 = 1329

Node 22 = 1682

Node 23 = 1764

Node 24 = 1615 (ALL)

Node 25 = 1961

Node 26 = 1273

Node 27 = 1275

Node 28= 38 (AN)

Node 29= 923

Node 30:: 540

Node 31 = 1443

Node 32 = 1837

Node 33 = 1368

Node 34 = 1746

Node 35 =-- 1469

Node 36 = 505

Node 37 = 1480

Node 38 = 424

Node 39 -- 678

Node-40 = 1139

Node 41 = 1763

Node 42 = 1959

Node 43 = 707

Node 44 a 242

Node 45 = 663

APPENDIX B

Node 46 a 1759

Node 47 = 332

Node 48 = 1455

Node 49 = 1685

Node 50 a 1716 (AS)

Node 51 = 1136

Node 52 = 1720

Node 53 a 1832

Node 54 = 751

Node 55 a 1681

Node 56 = 1106

Node 57 = 379

Node 58 = 1719

Node 59 = 381

Node 60 = 919

Node 61 = 1163

Node 62 = 219

Node 63 = 639

Node 64 = 1261

Node 65 = 40

Node 66 = 1144

Node 67 = 1941

Node 68 = 1872

Node 69 = 1569

Node 70 = 972

Node 71 = 1364

Node 72 = 1684

Node 73 = 931

Node 74 = 423

Node 75 = 1927

Node 76 = 1594

Node 77 = 182

Node 78 = 1401

Node 79 = 1868

Node 80 -- 680

Node 81 = 538

as 3%:gram)
Node 84 a 1289

Node 85-- 1621

Node 86 = 1970 (BEARD)

Node 87 = 1668

Node 88 = 1693

Node 89 = 352 (BLACK)

Node 90 940

Node 91 = 1208

57

' Node 120: 1154

Node 92 = 571

Node 93 = 1579

Node 94: 821

‘ Node 95 = 963 (BUTTONS)

Node 96--- 724

Node 97= 762

Node 98 = 1187

Node 99 = 645

Node 100 = 86

Node 101 = 551

Node 102 = 329

Node 103 = 1018

Node 107: 1157 (CLINGS)

Node 108—- 1725

Node 109= 366 (COAT)

Node 110 = 1377

Node 111 = 252 .

Node 112 = 1317 E)

Node 113 = 764 OUR)

Node 114 = 545

Node 115 = 1291 SIX)

Node 116 = 735

Node 117: 214 IGHT)

Node 118 = 1336NINE

Node 119-- 1439 ZERO)

TRESSES)

Node 121= 544(TART)

Node 122: 362 (STOP)

Node 123-- 1085 YES)

Node 124 = 1717 NW)E

Node 125-- 1325 R)

Node 126=161(

Node 127 = 831 LP

Node 128 = 806 RUB UT)

Node 129 = 918 (REPEAT)

Node 130 = 1416 OCK)

Node 131 = 1488 GRANDFAT)

Node 132 = 1936 NTER)

Node 133 = 391

Node 134 = 448 (M)

Node 135 = 1252

Node 136 = 1900

Node 137 = 20 (G)

Node 138 - 1618 Node 184 . 1420 Node 230 = 375

Node 139 = 1630 Node 185 = 434 Node 231 =1o45

Node 140 = 272 Node 186 = 1810 Node 232 a 559

Node 141 a 522 Node 187 = 1655 Node 233 =685 SNIN'EI’Y'I’H)

Node 142 -- 947 Node 188 = 1820 Node 234 = 192

Node 143 a 1389 Node 189 = 739 Node 235 = 249

Node 144a 1068 A Node 1903984 Node236=165

Node 145 = 590 Node 191 = 6 Node 237 = 572

Node 146 = 476 Node 192 = 212 Node 238 = 274

Node 147 = 1634 (YO Node l93= 1425 Node 239= 1228

Node 148 = 267 Node 194= 1074 (LONG) Node 240: 470 (OLD)

Node 149 = 1140 Node l95= 1043 Node 241 = 188

Node 150 a 822 Node 196= 9920111881190) Node 242:.- 868

Node 151 = 629 Node 197-- 882 Node 243 = 573

Node 152 = 225 Node 198= 1263 Node 244 a. 1343

Node 153 :- 891 Node 199 a 546 Node 245 = 723

Node 154 a 1954 Node 200 = 1984 Node 246 = 1088

Node 155= 387 Node 201 -- 626 Node 247 = 922

Node 156 a 1723 (HIMSEIFNode 202=1012 Node 243 = 1553

Node 157:- 818 Node 203= 330 Node 249: 453

Node 158: 1545 Node 204 = 1215 Node 250: 1816

Node 159 = 641 Node 205 = 701 Node 251 = 1972 (SEVERAL)

Node160=234 Node206=310 Node252=11964

Node 161 = 1385 Node 207 = 876 Node 253 = 1710

Node 162-977 Node208=1238 Node254=290

Node 163a 1834 Node 209 = 1127 Node 255 = 1124

Node 164: 181 Node 210 = 297 (MY) Node 255 =13o

Node 165:878 Node 211 =24 Node 257:243

Node 166 a 206 Node 212 = 1290 Node 253 31176

Node 167 =- 1800 Node 213 a 304 Node 259 -- 908 (STILL)

Node 168 a 508 Node 214 = 196 Node 250 -.- 339

Node 169 = 674 Node 215 = 1288 Node 261 -- 1451

Node 170= 1807 Node 216:202 Node 252 -.- 1406

Node 171 = 220 Node 217 =- 1654 Node 263 = 1431

Node 172 = 94 (IN) Node 218 = 415 Node 264 = 1213

Node 173 = 750 Node 219 = 1079 Node 265 = 1603

Node 174 = 1048 Node 220 = 1458 Node 266 = 254

Node 175 =- 80 Node 221 = 1531 Node 267 = 824

Node 176 = 1028 Node 222 = 163 Node 268 = 927

Node l77=1315(IS) Node223=77 Node269=1244

Node 178 = 1851 Node 224 = 147 Node 270 = 1547

Node 179 a 1944 Node 225 = 1737 Node 271 = 367

Node 180= 1798 (KNOW) Node 226: 1055 Node 272: 519

Node 181 . 1094 Node 227= 1160 (NEARLYmode 273-.. 1200

Node 182= 250 Node 228: 68 Node 274a 1265 (SWIFI'LY)

Node 183 a 537 Node 229 =- 1606 Node 275 :3 1324

58

Node 276 =- 1369 Node 322 a 1437

Node 277 = 207 Node 323 = 268

Node 278 = 1333 Node 324 = 1117

Node279=l300 Node325=605

Node 280 = 849 Node 326 = 1982

Node 281 2809 Node 327=559

Node 282 = 1097 Node 328 = 1715

Node 283 = 1310 Node 329 = 1686

Node284=357 Node 330= 125 (WISH)

Node 285 = 1901 Node 331 = 1729

Node 286 = 1114 Node 332 = 1622

Node 287 = 1515 Node 333 = 317

Node288=1489 Node 334:300

Node 289 = 1298 Node 335 = 1819

Node 290 = 520 Node 336 = 1581

Node 291 = 1445 (THINKS) Node 337 = 477

Node 292 a 1904 Node 338 = 788

Node 293 = 269 Node 339 a 377

Node294=1183 Node340=1690

Node 295 = 1518 Node 341 = 1598

Node 296 = 168 Node 342 -- 1424

Node 297 = 1550 Node 343 = 1853

Node 298 = 389 Node 344 = 1527

Node 299 = 1721 Node 345 = 1784

Node300=ll68 Node346=729

Node 301 = 1714 Node 347 = 1061

Node302=1090 Node348=1663

Node 303 = 758 Node 349 = 850

Node304=273 Node 350=283

Node 305 -- 775 Node 351 = 1595

Node306=58 Node 352=265

Node307=TO Node353=154(YEARS)

Node 308 a: 192 Node 354 = 1522

Node 309 = 1502 Node 355 -- 872

Node 310 = 616 Node 356 = 1841

Node 311= 796 Node 357 = 1647

Node 312 = 861 Node 358 = 601

Node 313 = 458 Node 359 = 1815

Node314=446 Node360=901

Node 315 = 1734 Node 361 = 136

Node 316 = 255 Node 362 = 483

Node 317 a 351 Node 363 = 1919

Node 318 = 8 (USUALLY) Node 364 = 1276

Node 319 a 1534 Node 365 = 1212

Node 320 = 1878 Node 366 = 1610

Node 321 a 1044 (WELL) Node 367 =- 874

59

Node 368 a 36

Node 369 = 1034

Node 370 = 1915

Node 371 = 819

Node 372 = 160

Node 373 = 637

Node 374 = 179

Node 375 = 232

Node 376 = 1987

Node 377 = 1509

as. 333 =%(m
Node 380 = 1207 -

Node 381 = 747 (YOU)

Node 382 = 1825

Node 383 = 460

Node 384 = 1838

Node 385 = 313

Node 386 = 1295

Node 387 = 1757

Node 388 = 1589

Node 389 = 1367

Node 390 = 815

Node 391 = 896 (A)

Node 392 = 754

Node 393 = 246

Node 394 = 812

Node 395 = 1925

Node 396 = 141

Node 397 = 759

Node 398 = 1396

Node 401 = 1980

Node 402 = 307

Node 403 = 1962

Node 404 = 169

Node 405 = 568

Node 406 = 1651

Node 407 = 1678

Node 408 = 127

Node 409 = 399

Node 410 = 1855

Node 411 = 587

Node 412 = 237 (B)

Node 413 = 1883

Node 414 =3 346

Node 415 = 1758

Node 416 = 926

Node 417 = 1639

Node 418 = 468

Node 419 = 1172

Node 420 = 451

Node 421 = 745

Node 422 = 592

Node 423 = 1504

Node 424 = 1679

Node 425 a 913

Node 426 = 1732

Node 427= 1659

Node 428= 1694 (C)

Node 429= 731

Node 430--- 1741

Node 431 = 614

Node 432 = 382

Node 433 = 1771

Node 434 = 741

Node 435 = 781

Node 436 = 1627

Node 437 = 1680

Node 438 = 1796

Node 439 = 1563

Node 440 = 1906

Node 441 = 306

Node 442 = 832

Node 443 = 1946

Node 444 = 251

Node 445 = 397

Node 446 = 996

Node 447 = 640

Node 448 = 1342

Node 449 = 852 (D)

Node 450 = 671

Node 451= 584

Node 452= 682 (E)

Node 453= 630

Node 454= 1413

Node 455 = 1921

Node 456 = 1596

Node 457 = 44

Node 458 = 337

Node 459 a 577

Node 460 =1671

Node 461 =17

Node 462 =1948

Node 463 = 1933

Node 464 = 1665

Node465 = 1726

Node 466 2591

Node 467 = 1448

Node 470= 1619

Node 471 a 1047

Node 472 = 611

Node 473 = 1899

Node 474 = 1236

Node 475 = 835

Node 476 = 1415

Node 477 = 1817

Node 478 = 1730

Node 479 = 1688

Node 480 = 85 (F)

Node 481 = 102

Node 482 2 456

Node 483 = 108

Node 484 = 471

Node 485 = 756

Node 486 = 1928

Node 487 = 773

Node 488 = 1348 (G)

Node 489: 221

Node 490= 1268

Node 491 = 1885

Node 492 = 1240

Node 493 = 1524

Node 494 = 1319

Node 495 = 1570

Node 496 = 1486

Node504=23

Node505=21

Node 506 = 1649

Node 507 = 1958

Node 508 = 946 (H)

Node 509 = 1241

Node 510 =1483

Node 511 = 617

Node 512 = 1093

Node 513 = 1988

Node 514 = 187

Node 515 = 82

Node 516 = 944

Node 517 = 1086

Node 518 = 1943

Node 519 = 1870

Node 520= 1323

Node 521_= 1492

Node 536:- 846

Node 539 = 928

Node 540 = 1272

Node 541 = 1739

Node 542 = 1223

Node 543 = 1142

Node 544 = 1062

Node 545 = 1703

Node 546 = 502

Node 547 = 547

Node 548 = 1057

Node 549 = 865

Node 550 = 473

Node 551 = 28

Node 552 a 909

Node 553 = 1371

Node 554 = 1808

Node 555 = 436

Node 556 =- 1280

Node 557 -- 491

Node 558 = 1811

Node 559 = 100

Node 560 = 416

Node 561 = 1890

Node 562 = 138

Node 563 = 218

Node 564 s 439(1)

Node 565 = 1491

Node 566 a 178

Node 567 = 19

Node 571 = 1041 (K)

Node 572 = 447

Node 574 =- 450

Node 575 = 1312

Node 576 = 811

Node 577 = 830

Node 578 = 573

Node 579 a 1585

Node 580 = 331

Node 581 = 1745

Node 582 = 990

Node 583 = 1611

Node 584 = 63

Node 585 = 1005

Node 586 = 1470

Node 587 = 305

Node 588 = 1337

Node 589 = 524

Node 590 = 1935

Node 591 = 133

Node 595 = 1592

Node 596 = 1196

Node 597 =- 170 (L)

Node 598 = 742

Node 599 = 378

Node 600 = 744

Node 601 = 1075

Node 608 = 1516

Node 609 = 235

Node 610 = 635

Node 611 = 368

Node 612 = 1002

Node 613 = 1917

Node 614 = 873

Node 615 = 706

Node 616 = 328

Node 617 = 1452 (M)

Node 618 = 1186

Node 619 = 749

Node 620 a 1000

Node 621 = 1357

Node 622 = 1378

Node 623 = 101

Node 624 = 171

Node 625 = 311

Node 626 = 597 (N)

Node 627 = 585

Node 628 = 566

Node 629 = 1963

Node 630 = 1661

Node 631 = 1983

Node 632 = 558

Node 633 = 1778

Node 634 = 1499 (0)

Node 635 = 413

Node 636 = 1303

Node 637 = 1514

Node 638 = 1767

Node 639 = 474

Node 640 = 1557

Node 641 = 1287

Node 642 = 658

Node 643 = 1030

61

Node 644 a 786

Node 645 = 150

Node 646 = 1360

Node 647 = 92

Node 648 = 25

Node 649 -- 609

Node 650 = 1586

Node 651 = 622

Node 652 = 1363

Node 653 = 1180

Node 654 = 1493

Node 655 = 1421

Node 656 = 326

Node 657 = 259

Node 666 = 25

Node 667 =3387 (Q)

Node 668 = 675

Node 669 = 848

Node 670 = 83

Node 671 = 2914

Node 672 = 8277

Node 673 = 3062

Node 674 = 3631

Node 675 = 7845

Node 676 = 2380

Node 677 = 8011

Node 678 = 2350

Node 679 = 5307 (R)

Node 680 = 3339

Node 681 = 8929

Node 682 = 9216

Node 683 = 6479

Node 684 = 4703

Node 685 = 6999

Node 686 = 9000

Node 687 = 4480

Node 688 = 3926

Node 689 = 3329

Node 690 = 3682

Node 691 =- 5764

Node 692 -—- 21615

Node 693 = 7961

Node 694 = 9273

Node 695 = 31275

Node 696 = 4038

Node 697 = 4923

Node 698 = 5490

Node 699 = 7443

Node 700 = 7837

Node 701 = 41368

Node-702 = 7746

Node 703 a 61469

Node 704 = 8505

Node 705 = 9480

Node 706 = 6424

Node 707 = 6678

Node 708 = 81139

Node 709 = 9763

Node 710 = 31959

Node 711 a 6707

Node 712 = 6242

Node 713 = 6663 (S)

Node 714 = 3759

Node 715 = 6332

Node 716 =- 3455

Node 717 = 7685

Node 718 = 3716

Node 719 = 3136

Node 720 = 7720

Node 721 = 5832

Node 722 = 4751

Node 723 = 5681

Node 724 = 5106

Node 725 = 2379

Node 726 = 9719

Node 727 = 6381

Node 728 = 2919

Node 729 = 7163

Node 730 = 4219

Node 731 = 6389

Node 732 = 61261

Node 733 = 2040

Node 734 = 9144

Node 735 =- 21941

Node 736 = 7872

Node 737 = 5569

Node 738 = 4972

Node 739 = 5364

Node 740 =11684

Node 741 = 6931

Node 742 = 8423

Node 743 = 7927

Node 744 = 3594

Node 745 = 2182

Node 746 = 3401

Node 747 = 9868

Node 748 = 6820

Node 749 = 6538

Node 750 = 3940

Node 751 = 6512

Node 752 = 91289

Node 753 = 9621

Node 754 = 7970 ('1')

Node 755 = 3668

Node 756 = 5693

Node 757 = 4352

Node 758 -- 2940

Node 759 = 9208

Node 760 = 8571

Node 761 = 3579

Node 762 =-- 6821

Node 763 = 6963

Node 764 = 2724

Node 765 = 8762

Node 766 = 51187

Node 767 = 4645

Node 768 = 8600

Node 769 = 6551

Node 770 = 6329

Node 771 = 7018

Node 772 = 4975

Node 773 = 6080

Node 774 = 6964

Node 775 = 7157

Node 776 = 7572

Node 779 = 8252

Node 780 = 7317

Node 781 a 4764

62

Node 782 = 4545

Node 783 = 3291

Node 784 = 2735

Node 785 = 8214

Node 786 = 5336

Node 787 = 3439

Node 788 = 71154 (U)

Node 789 = 4544

Node 790 = 8362

Node 791 = 7717

Node 792 = 5325

Node 793 = 41617

Node 794 = 2831

Node 795 = 4806

Node 796 = 2918

Node 804 = 2020

Node 805 = 3618

Node 806 = 7630

Node 807 = 2762

Node 808 = 5222

Node 809 = 4947

Node 810 = 91389

Node 811 = 5068

Node 812 = 4590

Node 813 = 4760

Node 814 = 9634

Node 815 = 2697

Node 816 = 7140

Node 817 = 8202

Node 818 = 8629

Node 819 = 8225

Node 820 = 4891

Node 821 = 3954

Node 822 = 8387

Node 823 = 7723 (W)

Node 824 = 6818

Node 825 = 9545

Node 826 = 6410

Node 827 = 6234

Node 828 a 3385

Node 829 = 6929

Node 830 = 6977

Node 831 = 7834

Node 832 a 8190

Node 833 = 4878

Node 834 = 6206

Node 835 -- 3800

Node 836 = 2508

Node 837 = 6740

Node 838 = 3807

Node 839 = 4220

Node 840 = 2094

Node 841 = 4750

Node 842 = 41048

Node 843 = 8080

Node 844 = 21028

Node 845 = 81315

Node 846 = 71572

Node 847 = 61851

Node 848 = 9944

Node 849 = 9798

Node 850 = 3094

Node 851 = 2500

Node 852 = 4537

Node 853 = 3420

Node 854 = 4434

Node 855 = 7810

Node 856 = 9655

Node 857 = 3820

Node 858 = 4739

Node 859 = 2984

Node 860 = 8006

Node 861 = 51273 (X)

Node 862 = 4214

Node 863 = 4212

Node 864 = 41425

Node 865 = 3074

Node 866 = 7043

Node 867 = 2099

Node 868 = 6882

Node 869 = 31263

Node 870 = 5546

Node 871 = 7984

Node 872 = 8663

Node 873 = 8626

Node 874 = 9012

Node 875 = 6330

Node 876 = 7215

Node 877 = 2626

Node 878 -- 2701

Node 879 = 3310

Node 880 = 2876

Node 881 = 7238

Node 882 = 21127

Node 883 = 6297

Node 884 = 4024

Node 885 = 5290

Node 886 = 2304

Node 887 = 4196

Node 888 = 5288

Node 889 = 2202

Node 890 = 7654

Node 891 = 6415

Node 892 = 9079

Node 893 = 3458

Node 894 = 7531

Node 895 = 2163

Node 896 = 51074

Node 897 = 8077

Node 898 = 41497

Node 899 = 9737

Node 900 = 3055

Node 901 = 9160

Node 902 = 6068

Node 903 = 9606

Node 904 = 6375

Node 905 = 5046

Node 906 = 8659

Node 907 = 6685

Node 908 = 7923

Node 909 = 2249

Node 910 = 4165

Node 911 = 5792

Node 912 = 6274

Node 913 = 5807

Node 914 = 9228

Node 915 = 6470

Node 916 = 2188

Node 917 = 2868

Node 918 = 2673

Node 919 = 9843

C

63

Node 920 = 6723

Node 921 = 9088

Node 922 = 8922

Node 923 = 5653

Node 924 = 2546

Node 925 = 6453

Node 926 = 7816

Node 927 = 9972

Node 928 = 7964

Node 929 = 9710

Node 930 = 7290

Node 931 = 7124

Node 932 = 2130

Node 933 = 6248

Node 934 = 9851

Node 935 = 7176

Node 936 = 4908 (Y)

Node 937 = 2889

Node 938 = 21451

Node 939 = 3406

Node 942 = 9213

Node 943 = 7603

Node 944 = 2594

Node 949 = 81547

Node 950 = 8367

Node 951 = 6519

Node 952 = 7200

Node 953 = 7265

Node 954 = 9324

Node 955 =-- 71369

Node 956 = 7207

Node 957 = 9333

Node 958 = 3300

Node 959 = 6849

Node 960 = 2809

Node 961 = 3097

Node 962 = 5310

Node 963 = 4357

Node 964 = 21901

Node 965 = 3114

Node 966 = 11515

Node 967 = 71298

Node 968 = 4520

Node969=5445(2)

Node 970 = 7904

Node 971 = 2274

Node 972 = 2689

Node 973 = 7183

Node 974 = 3518

Node 975 = 8168

Node 976 -- 5550

Node 977 = 61721

Node 978 = 9168

Node 979 = 5714

Node 980 = 3090

Node 981 = 2758

Node 982 = 2273

Node 983 = 8775

Node 984 = 6058

Node 985 = 9122

Node 986 = 7936

Node 987 s 4192

Node 988 = 9502

Node 989 = 2929

Node 990 = 2616

Node 991 = 2796

Node 992 = 6861

Node 993 = 4558

Node 997 Q 6351

Node 998 = 51248 (ONE)

Node 999 = 8876

Node 1000 = 3534

Node 1001 = 9878

Node 1002 = 7044

Node 1003 = 5437

Node 1004 = 6268

Node 1005 = 5117

Node 1006 = 4605

Node 1007 = 41982

Node 1008 = 4559

Node 1009 = 3715

Node 1010 = 4255

Node 1011 = 9686

Node 1012 = 6125

Node 1013 = 9729

Node 1014 = 7622

Node 1015 = 3117

Node 1016 = 8300

Node 1017 = 9123

Node 1018 = 9819

Node 1019 = 7581

Node 1020 = 2477

Node 1021 = 8788

Node 1022 = 8377

Node 1023 = 5690

Node 1024 = 5598

Node 1025 = 3424

Node 1026 = 7853

Node 1027 = 9527

Node 1028 = 9784

Node 1029 = 6729

Node 1030 = 3061

Node 1031 = 9663

Node 1032 = 31925

Node 1033 = 4850 (TWO)

Node 1034 = 2283

Node 1035 = 21595

Node 1036 = 4265

Node 1037 = 6154

Node 1038 = 9522

Node 1039 = 4872

Node 1040 = 5841

Node 1041 = 5647

Node 1042 = 4601

Node 1043 = 9815

Node 1044 = 5964

Node 1045 = 2901

Node 1046 = 7090

Node 1047 = 2136

Node 1048 = 3483

Node 1049 = 5919

Node 1050 = 7276

Node 1051 = 5212

Node 1052 = 11610

Node 1053 = 2874

Node 1054 = 2036

Node 1055 = 5034

Node 1056 = 7079

Node 1057 =- 7915

Node 1058 = 4819

Node 1059 = 2160

Node 1060 = 5977

APPENDIX C

P1anarity_brealcing_arcs = from node 203 to 101

Planarity_breaking_arcs = from node 204 to 201

P1anarity_breaking_arcs = from node 222 to 194

Planarity_breaking_arcs = from node 238 to 170

Planarity_brea|cing_arcs = from node 248 to 199

P1anarity_breaking_arcs = from node 262 to 230

Planarity_breaking_arcs = from node 276 to 208

Planarity_breaking_arcs = from node 287 to 10

P1anarity__breaking_arcs = from node 292 to 238

P1anarity_breaking_arcs = from node 318 to 207

Planarity_breaking_arcs = from node 328 to 316

Planarity_b1ealdng_arcs = from node 334 to 29

Planarity_breaking_arcs = from node 348 to 330

Planarity_brealdng_arcs = from node 351 to 170

Planarity_breaking_arcs = from node 359 to 252

Planarity_breaking_arcs = from node 360 to 302

Planarity_breaking_arcs = from node 369 to 219

Planarity_breaking_arcs = from node 372 to 162

P1anarity_breaking_arcs = from node 374 to 324

Planarity_breaking_arcs = from node 376 to 315

'Planarity_brealdng_arcs = from node 315 to 189

Planarity_breaking_arcs = from node 379 to 377

P1anarity_breaking_arcs = from node 388 to 168

Planarity_brea.king_arcs = from node 395 to 303

Planarity_breaking_arcs = from node 412 to 404

P1anarity_breaking_arcs = from node 415 to 133

P1anarity_breaking_arcs = from node 133 to 301

Planarity_breaking_arcs = from node 421 to 350

Planarity_breaking_arcs = from node 427 to 108

Planarity_breaking_ams = from node 437 to 103

P1anarity_breaking_arcs = from node 441 to 263

Planarity_breaking_arcs = from node 444 to 284

Planarity_breaking_arcs = from node 450 to 316

P1anarity_breaking_arcs = from node 452 to 374

Planarity_breaking_arcs = from node 456 to 438

P1anarity_breaking_arcs = from node 462 to 335

P1anarity_breaking_arcs = from node 468 to 183

Planarity_b1ealdng_arcs = from node 472 to 151

Planarity_breaking_arcs = from node 473 to 147

P1anarity_brealcing_arcs = from node 475 to 333

Planarity_breaking_arcs = from node 479 to 454

P1anarity__bneaking_ams = from node 454 to 320

Planarity_b1ealdng_arcs = from node 486 to 485

P1anarity_breaking_ams = from node 487 to 191

P1anarity_breaking_arcs -- from node 491 to 140

65

P1anarity_breaking_arcs = from node 494 to 178

P1anarity_breaking_arcs = from node 178 to 36

Planarity_breaking_arcs = from node 496 to 430

Planarity_breaking_arcs = from node 498 to 377

Planarity_b1eaking_arcs = from node 0 to 491

Planarity_breaking_ares = from node 500 to 23

Planarity_breaking_arcs = from node 23 to 147

Planarity.breaking_arcs = from node 501 to 237

Planarity_breaking_arcs = from node 503 to 437

P1anarity_breaking_arcs = from node 505 to 249

Planarity_breaking_arcs = from node 249 to 59

Planarity_breaking_arcs = from node 59 to 299

Planarity_breaking_arcs = from node 299 to 169

Planarity_brealdng_arcs = from node 514 to 73

Planarity_breaking_arcs = from node 522 to 119

P1anarity_brealdng_arcs = from node 0 to 19

Planarity_breaking_a1cs = from node 529 to 452

Planarity_breaking_arcs = from node 530 to 354

Planarity_breaking_arcs = from node 533 to 395

Planarity_breaking_ares = from node 534 to 322

Planarity_breaking_arcs = from node 544 to 144

P1anarity_brealdng_arcs = from node 553 to 387

Planarity_breaking_arcs = from node 560 to 333

Planarity_breaking_arcs = from node 562 to 287

Planarity_breaking_arcs = from node 564 to 311

Planarity_breaking_arcs = from node 579 to 216

P1anarity_breaking_arcs = from node 583 to 412

Planarity_breaking_arcs = from node 587 to 66

Planarity_brealcing_arcs = from node 591 to 271

Planarity_breaking_a1cs = from node 592 to 36

P1anarity_breaking_arcs = from node 595 to 421

Planarity_breaking_arcs = from node 421 to 534

P1anarity_breaking_arcs = from node 534 to 93

Planarity_breaking_arcs = from node 600 to 80

P1anarity_breaking_arcs = from node 80 to 379

Planarity_breaking_arcs = from node 605 to 601

Planarity_breaking_arcs = from node 606 to 137

P1anarity_breaking_arcs = from node 610 to 261

P1anarity_breaking_arcs = from node 616 to 157

Planarity_breaking_arcs = from node 621 to 565

P1anarity_breaking_arcs = from node 625 to 258

P1anarity_breaking_arcs = from node 630 to 567

Planarity_breaking_arcs = from node 634 to 501

Planarity_breaking_arcs = from node 638 to 108

P1anarity_breaking_arcs = from node 108 to 189

Planarity_breaking_arcs = from node 639 to 285

P1anarity_breaking_a1cs =- from node 646 to 607

Planarity_breaking_arcs = from node 607 to 243

P1anarity_breaking_arcs = from node 648 to 332

Planarity_breaking_arcs = from node 649 to 528

P1anarity_breaking_arcs = from node 652 to 69

Planarity_breaking_arcs = from node 658 to 308

Planarity_breaking_arcs = from node 660 to 73

Planarity_breaking_arcs = from node 73 to 449

Planarity_brealdng_arcs = from node 449 to 360

P1anarity_breaking_arcs = from node 663 to 634

P1anan'ty_breaking_arcs = from node 664 to 288

P1anarity_breaking_arcs = from node 677 to 8

Planarity_brealdng_arcs = from node 688 to 20

Planarity_breaking_arcs = from node 790 to 123

Planarity_breaking_ancs = from node 794 to 751

Planarity_breaking_arcs = from node 836 to 683

Planarity_breaking_arcs = from node 875 to 769

Planarity_breaking_arcs = from node 887 to 727

Planarity_breaking_arcs a from node 892 to 681

Planarity_breaking_arcs = from node 938 to 775

Planarity_breaking_arcs = from node 955 to 881

Planarity_breaking_arcs = from node 961 to 874

P1anarity_breaking_arcs = from node 966 to 679

P1anarity_breaking_arcs = from node 679 to 288

Planarity_breaking_arcs = from node 976 to 731

P1anarity_breaking_a1cs = from node 987 to 760

Planarity_breaking_arcs a from node 760 to 958

P1anarity_breaking_arcs = from node 1035 to 913

67

APPENDIX D

ABOUT

BEARD

BLACK

BUTTONS

CLINGS

COAT

DRESSES

EVER

FROCK '

GRANDFAT

mm

KNOW

LONG

MISSING

NEARLY

OLD

SEVERAL

STILL

SWIP'I'LY

USUALLY

WISH

m
o
m
m
c
n
w
>
<

2
3
g

68

3
O
N
<
x
2
<
c
a
m
w
O
v
o
z
z
e
r
H

3
;
;

5
%

S
E
E

EIGHT

ZERO

START

STOP

NO

ERASE

RUBOUT

REPEAT

69

APPENDIX E

fitttitit*ttttifittfiit*‘tttttfittttttttttfifi

*Thedesiredpathwewantisz"

tttttittitttttt*tttttt*t****t***t**t**tt

s-112-113-114-115-116-117- 118-119-120-121-122-123- 124

-125-126-127-83-128-129-130-131-132-133-134-135-136

-137-138-139-140-141-142-143-144-145-146-147-*

fittfitttififitt***$$*$$$#*#**##tttittttttttttfifitttt

”**** The possible path we have searched ******

*ttitttitfittfititttttttttttttttttttttittttttttttt

s-37-38-39-40-41-42-43-44-45-201~205-206-207

-208-277-278-279-309-12-162-163-164-165-166-167-168

-14-169-506-507-508-509-510-511-512-513-514-*

stack=l

likelihood=197.062485

s-37-38-39-40-41~42-43-44-45-201-205-206-207

-208-277-278-279-309-12-162-163-164-165-166-167-168

-14-169-170-239-240-241-242-243-244-245-246-*

stack=1

likelihood=470.440613

s-l-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165-166-167-168-14-15-16-17-18-19-20

~689-690-691-692-693-694-695-696-697-698-699-"'

stack=1

' ° ood=657.660461

s-37-38-39-40-41-42-43-44-45-46-47-48-49

-50-51-52-53-54-55-56-57-58-59-60-61-62

-63-64-65-66-67-68-69-70-71-72-73-"I

stackzl

likelihood=684.381226

s-37-38-39-40-41-42-43-44-45-46-47-48-49

-50-51-52-53-54-55-56-57-58-59-60-61-62

-63-64-65966-67-68-69-653-654-655-656-*

stack=1

likelihood=684.381226

s-37-38-39-40-41-42-43-44-45-201-205-206-207

~208-277-278-279-309-12-162-163-164-165-166-167-168

-14-15-16-17-18-19-20-689-690-691-692-*

stack=1

likelihood a: 698.163513

s-37-38-39-40-41-42-43-44-45-201-205-206-207

-208-277-278-279-309-12-162-163-164-165-166-167-168

-14-15-16-17-18-19-525-526-527-528-529-*

stack=1

likelihood: 698.163513 70

s-37-38-39-40-41-42-43-44-45-201-205-206-207

-208-277-278-279-309-12-162-163-164-165-166-167-168

-14-15-16-17-18-19-525-526-527-528-650-*

stack=1

likelihood = 698.163513

s-1-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165-166-167-168-14-169-170-171-172-l73-174

-175-176-177-108-178-258-626-627-628-629-630-*

stack=3

likelihood=1611.415649

s-1-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165-166-167-168-14-169-170-171-172-173-174

-175-176-177-108-428-429-430-431-432-433-434-*

stack=3 .

likelihood =1616.514526

s-1-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165-166-167-168-14-15-16-17-18-19-20

-21-22-23-24-25-26-117-118-119-120-121-*

stack=3

likelihood =1627.363525

s-37-38-39-40-41-42-43-44-45-201-205-206-207

-208-277-278-279-309-12-13-14-169-170-171-172-173

-174-175-176-177-108-428-429-430-431-432-433-*

stack=3

likelihood=l941.516724

s-37-38-39-40-41-42-43-44-45-201-205-206-207

-208-277-278-279-309-12-13-14-169-170-171-172-173

-174-175-176-177-108-178-258-626-627-628-629-*

stack=3

likelihood = 1996.617798

s-1-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165- 166:167-168- 14-169-170-171-172-173-174

-175-l76-177-108-178-179-180-181-182-183-469-*

stack=3 '

likelihood = 2030.914551

s-l-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165-166-167-168-14-15-16-17-18-19-20

-21-22-23-24-25-26-27-28-29-30-31-*

stack=3

likelihood = 2100.762451

s-l-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165-166-167-168-14-15-16-17-18-19-20

-21-22-23-24-25-26-27-28-29-335-336-*

stack=3

1ikelihood=2101.063477 71

s-1-2-3-4-5-6-7-8-9-10-11-12-162

-163-164-165-166-l67-168-14-15-16-17-18-19-20

-21-22-23-24-25-26-27-28-29-335-463J

stack=3

1ikelihood=2101.063477

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-162-163-164-165-166-167-168--14-15-16-"l

stack=4

likelihood=1815.964478

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-162-163-164-165-166-167-168-14-169-170-*

stack=4 '

likelihood=1816.265503

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-162-163-164-165-166-167-168-14-169-506-*

stack=4

likelihood = 1816265503

s-112-113-114—115-116-117-118-119-120-121-122-123- 124

-125-126-127-83-128-129-130-131-132-133-134-135-136

-137-138—139-140-141-142-143-144--145-146-147-"I

stack=5

1ikelihood=2005.385254

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-133-134-135-136

-137-138-139-140-141-142-143-144-545-546-547-*

stack=5

likelihood =- 2005.385254

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-13-14-169-506-507-508-509-510-511-512-*

stack=5

likelihood=2056.364502

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

- 12-13-14-169-170-239-240-241-242-243-244-*

stack=5

likelihood a 2448.242676

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-13-14-169-170-239-240-241-242-243-647-*

stack-5

likelihood a 2448.242676 72

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-93-94

-95-96-97-98-99-100-101-102-103-104-105J

stack=5

likelihood a 2595.387207

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-93-94

-95-96-97-98-99-100-101-102-103-438-439-*

stack=5

likelihood a 2595.688232

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-93-94

-95-96-97-98-99-100-101-102-103-438-457-*

stack=5

likelihood = 2595.688232

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-13-14-15-16-17-18-19-525-526~527-*

stack=5

likelihood = 2768864502

s-112—113-114-115-116-117-118-119-120-121-122-123- 124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-13-14-15-16-17-18-19-20-21-22-*

stack=5

likelihood = 2769.165527

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-13-14-15-16-17-18-19-20-689-690-*

stack-=5

likelihood: 2769.165527

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309 ‘

-12-13-14-169-170-171-172-173-174-175-176-*

stack=5

likelihood = 2856.441650

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-13-14-169-170-352-353-354-355-356-357-*

stack=5

likelihood = 2856.742676

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12k-1§:-14-169-170-352-353-354-531-532-533-*

stac =

likelihood = 2856.742676 73

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-128-129-130-131-132-308-92-279-309

-12-162-163-164-165-166-167-168-389-390-391-*

stack=5

likelihood = 3199.663574

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126—127-83-84-85-86-87-88-89-90-91-92

-279-309-12-13-14-169-170-352-353-354-355-"I

stack=5

likelihood=3469.940430

s-112~113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-84-85-86-87-88-89-90-91-92

-279-309-12-13-14-169-170-352-353-354-531-*

stack=5

1ikelihood=3469.940430

s-112-113-114-115-116-117-118-119-120-121-122-123-124

-125-126-127-83-84-85-86-87-88-89-90-91-92

~93-94-95-96-97-98-99-100-101-102-103-*

stack=5

likelihood = 3505.184326

74

