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ABSTRACT

DISTANCE-PRESERVING GRAPHS

By

Ronald Nussbaum

Let G be a simple graph on n vertices, where dG(u, v) denotes the distance between

vertices u and v in G. An induced subgraph H of G is isometric if dH(u, v) = dG(u, v) for

all u, v ∈ V (H). We say that G is a distance-preserving graph if G contains at least one

isometric subgraph of order k for every k where 1 ≤ k ≤ n.

A number of sufficient conditions exist for a graph to be distance-preserving. We

show that all hypercubes and graphs with δ(G) ≥ 2n
3
− 1 are distance-preserving. Towards

this end, we carefully examine the role of “forbidden” subgraphs. We discuss our obser-

vations, and provide some conjectures which we computationally verified for small values

of n. We say that a distance-preserving graph is sequentially distance-preserving if each

subgraph in the set of isometric subgraphs is a superset of the previous one, and consider

this special case as well.

There are a number of questions involving the construction of distance-preserving

graphs. We show that it is always possible to add an edge to a non-complete sequentially

distance-preserving graph such that the augmented graph is still sequentially distance-

preserving. We further conjecture that the same is true of all distance-preserving graphs.

We discuss our observations on making non-distance-preserving graphs into distance pre-

serving ones via adding edges. We show methods for constructing regular distance-preserving

graphs, and consider constructing distance-preserving graphs for arbitrary degree sequences.

As before, all conjectures here have been computationally verified for small values of n.
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Chapter 1

Introduction

Applications of graph theory to real world networks often focus on the use of par-

ticular graph structures. Maximization or minimization of a given invariant may correlate

with increased network reliability. Only considering graphs of a certain class may allow the

use of otherwise unavailable polynomial time complexity algorithms. In this chapter we

briefly cover basic graph theory terminology, formally define distance-preserving graphs,

discuss our motivation for investigating them, and provide an overview of the rest of the

dissertation.

1.1 Definitions and Terminology

Unless otherwise stated, we will use Bondy and Murty [7] as our basic reference for

graph theoretic terms. Most other introductory graph theory texts should serve the reader

just as well, although notation may vary considerably. A complete list of symbols used in

this dissertation may be found in Appendix A. Drawings of special graphs under discussion

may be found in Appendix B. For sake of brevity we will refer to distance-preserving graphs

as dp, and distance-hereditary graphs as dh.

A graph G = (V,E), alternately G = (V (G), E(G)), consists of a set V of vertices,

and a set E of edges, plus an incidence function ψG assigning each edge to exactly two
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vertices. The number of elements in the vertex and edge sets, |V | and |E|, are referred

to as the order and size of the graph, respectively. The graph of order 1 and size 0 is

called a trivial graph. A pair of vertices are said to be adjacent if they are connected

by an edge. The degree of a vertex is the number of times it is used as an end-vertex of

edges in G. The minimum vertex degree in G is denoted δ(G), and the maximum vertex

degree in G is denoted ∆(G). A vertex of degree 1 is known as a pendant vertex, or a leaf.

Unless stated otherwise, we will consider simple graphs only, without any loops (edges that

connect a vertex to itself) or parallel edges (pairs of vertices connected by multiple edges).

When discussing networks, the terms node and link are used instead of vertex and edge,

respectively.

In some cases, we want to orient the edges in a graph. A directed graph D = (V,A),

alternately D = (V (D), A(D)), consists of a set V of vertices, and a set D of arcs, together

with an incidence function ψD that assigns each arc to an ordered pair of vertices. If D has

an arc ψD(a) = (u, v), we say that there is a directed edge from u to v. A directed graph

is often referred to as a digraph.

We need to define some additional terms before we can begin discussing dh and dp

graphs. A graph H is a subgraph of G, denoted H ⊆ G, if V (H) ⊆ V (G), E(H) ⊆ E(G),

and ψH ⊆ ψG is restricted to E(H). A (vertex) induced subgraph H ⊆ G is one where

E(H) contains every possible edge from E(G), based on the choice of V (H). Given a

vertex set X ⊆ V (G), we use G[X] to denote the subgraph induced by X. The complement

of G, denoted G, is the graph with the vertex set V (G) and the edge set consisting of

exactly those edges not present in E(G). We also need to define a number of basic graph

classes. A path graph Pn is a graph on n vertices whose vertex set can be arranged in a

linear sequence such that two vertices share an edge if and only if they are adjacent in the

sequence. Similarly, a cycle graph Cn is a graph on n vertices whose vertex set can be

arranged in a cyclic sequence such that two vertices share an edge if and only if they are

adjacent in the sequence. The length of a path or cycle is the number of edges it has. The
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length of a shortest path between vertices u and v is denoted by dG(u, v). A cut vertex is a

vertex whose removal disconnects the graph. A graph is connected if every pair of vertices

are joined by a path, and acyclic if it has no cycles. A graph that is connected and acyclic

is a tree. The star graph Sn is a tree with one vertex connected to n− 1 other vertices.

A nontrivial graph is k-connected if there are k internally disjoint paths between

any pair of vertices u and v. In the complete graph on n vertices, denoted Kn, every pair

of vertices shares an edge. A bipartite graph is a graph whose vertices can be partitioned

into two disjoint sets U and V such that every edge connects a vertex in U to a vertex in

V . If every vertex in U shares an edge with every vertex in V , then the graph is a complete

bipartite graph. The complete bipartite graph with partitions of order m and n is denoted

by Km,n.

We might wish to weight or color the vertex and edge sets in a graph, or use

directed arcs instead of undirected edges. These variations will be discussed later as needed.

However, we now have enough terminology to define the class of dp graphs.

Definition 1.1. Let G be a graph on n vertices, and H a subgraph of G. We say that H

is a dp (isometric) subgraph of G if dH(u, v) = dG(u, v) for every u, v ∈ H.

A dh graph is one in which the distances in every connected induced subgraph are

the same as they are in the original graph [43], i.e., every connected induced subgraph is

isometric. Dh graphs have been studied extensively in the literature; a brief summary is

given in Chapter 6. It suffices for now to say that they are a much “stronger” version of

our dp graphs. The lowest order graph that is dp but not dh is shown in Figure 1.1.

Definition 1.2. Let G be a graph on n vertices. We say that G is a dp graph if for each

integer k, 1 ≤ k ≤ n, there exists a k-vertex isometric subgraph.

When working with dp graphs and subgraphs care must be taken with terminology.

Consider a graph G and subgraph H ⊆ G. G may or may not be a dp graph. In either

case, H may or may not be a dp subgraph. Furthermore, H may or may not be a dp

3



Figure 1.1 A Non-DH DP Graph (5-Pan)

graph in its own right. To avoid any confusion, we will henceforth refer to dp subgraphs

as isometric subgraphs.

1.2 Goals and Motivations

Proposing a new class of graphs provides us with some obvious and immediate

goals. Alternate characterizations give a deeper understanding of dp graphs. Beyond the

connection to dh graphs, we want to know how dp graphs are related to other graph classes.

Figure 1.2 [8, 58, 70] shows the known relationships between dp graphs and other known

graph classes. Algorithms for recognizing dp graphs and other problems that are NP-

Complete for the case of all graphs, or proofs that these are NP-Complete, would be useful

as well. Our initial results indicate that recognition and other problems are likely to be

NP-Complete. If this is the case, we will want to develop heuristics for finding isometric

subgraphs of arbitrary order within a graph.

Regardless of the difficulty, finding isometric subgraphs is an important goal, and

perhaps the most likely to lead to practical applications. However, we are also interested

in extremal cases, such as the problem of determining the minimum number of additional

edges required to turn a non-dp graph into a dp one; a trivial upper bound for this is

4



Figure 1.2 Graph Classes Hierarchy

Hypercube Tree Threshold

Bipartite DH Split

Parity Chordal

Perfect DP

|V (G)| − δ(G)− 1. Ultimately, these pursuits may prove more fruitful when working with

actual networks.

Another significant goal is finding construction methods for distance-preserving

graphs. We know a number of constraints for which this can be done, with varying degrees

of difficulty. We have a construction algorithm that works for certain arbitrary degree

sequences.

5



1.3 Isometry in Real-World Networks

Our hypothesis is that isometric subgraphs have applications to real world networks.

A low order connected subgraph is very likely to be isometric. A high order isometric

subgraph may not be particularly useful in all cases, such as when a graph has few or no

cycles. But our expectation is that dense isometric subgraphs of larger order will provide

insight into a graph. For example, with the graph of a social network, we expect that the

centers of social groups would be dense, with fewer edges between different communities. If

this is the case, then partitioning the graph into disjoint isometric subgraphs could provide

the basis for a community finding algorithm.

Definition 1.3. We define the average distance increase for a subgraph of G as the sum

of the distance increases between the subgraph and G, divided by the number of vertices in

the subgraph. If the subgraph is distance-preserving, then this value is 0. The less distance-

preserving the subgraph is, the higher this number will be.

To help validate our hypothesis we examined five small social media datasets from

http://mlg.ucd.ie/networks/index.html. Each dataset is a subset of Twitter users

representing a network of similar communities. Two are political networks with party

affiliations, and three are sports networks with sport / team affiliations:

• United Kingdom Members of Parliament

• Irish politicians and organizations

• Premier League players and clubs

• Olympic atheletes and organizations

• Rugby players and clubs

Each node in these datasets represents a Twitter account. Nodes u, v share a link if u

is following v, v is following u, or both. Nodes are assigned to one of several disjoint

6



communities based on political party or team affiliation. The node lists and ground-truth

communities were curated manually. Figure 1.3 [37] provides a visualization of one of the

datasets.

Figure 1.3 United Kingdom Members of Parliament on Twitter

For each dataset we considered the subgraphs induced by the vertex sets for each

class label. The data for these tests may be found in Tables 1-5 in Appendix C. In all cases

7



these subgraphs were isometric, or very nearly so. However, there were a few instances

where a subgraph had a few disconnected nodes, such as the Labour party in the UK.

Since these networks were fairly small, and the communities for political parties

and sports teams might have fewer edges between them than other sorts of communities,

we performed the same tests on two slightly larger networks from http://linqs.cs.umd.

edu/projects//projects/lbc/. CiteSeer and Cora are paper citation networks. Each

node represents a publication. Nodes u, v share a link if u cites v, or v cites u. Nodes

are assigned to one of several disjoint communities based on topic. The data for these

tests may be found in Tables 6 and 7 in Appendix C. For these datasets, some of the class

labels induced clusters that were very nearly distance-preserving with few infinite paths. A

few clusters saw distance increases, and some of them had large numbers of disconnected

vertices.

1.4 Overview

In this chapter we introduced the notion of dp graphs and isometric subgraphs, ad-

dressed our motivations for studying them, and provided some definitions and background.

In Chapter 2 we give a formal problem statement for dp graphs, along with some other

important questions about them. In Chapter 3 we discuss our observations and character-

izations of dp graphs. The role of the four subgraphs forbidden to dh graphs in dp graphs

is considered, along with the role that various types of vertices play. In Chapter 4 we focus

on constructing dp and non-dp graphs given certain invariants. We show how to construct

regular dp graphs, as well as dp graphs for a subset of arbitrary degree sequences. We

also address augmenting dp graphs. In Chapter 5 we investigate finding isometric sub-

graphs, and their applications to community finding using the datasets CiteSeer and Cora.

In Chapter 6 we discuss related work, specifically perfect graphs, dh graphs, geodetically

connected (gc) graphs, and other graph classes. In Chapter 7 we state our conclusions thus

far.
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Chapter 2

Problem Statement

It immediately follows from the definitions of dh graphs and dp graphs that the

former is a subset of the latter. However, the mere presence of one or even many of the

four induced subgraphs forbidden to dh graphs - the house, gem, domino, and long cycle

- does not mean that a given graph is not dp. So we are unable to claim that a graph is

not dp by looking locally. Furthermore, we know that each non-dp graph must contain at

least one of the forbidden subgraphs. For more information about dh graphs and the four

aforementioned forbidden subgraphs, see Section 6.2 and Figure 3.1.

Let G be a graph on n vertices, and k an integer, where 1 ≤ k ≤ n. Our primary

concern is answering the following question. Is there an isometric subgraph H ⊆ G of order

k? If we can come up with an algorithm to determine whether G contains an isometric

subgraph of arbitrary order, we can use O(n) invocations of the algorithm to determine

whether G is dp. If it is possible to do this in polynomial time this would greatly expand

the potential applications for dp graphs. In the event that this problem is NP-Complete,

our interest would focus on specific cases which have a polynomial time complexity.

We have a number of other questions regarding characterization. Foremost, any

classes of graphs that are non-trivially dp. We also want to know more about the roles

certain types of vertices play in determining whether a graph is dp, e.g., vertices whose

deletion from a graph does not change any other distances. Similarly, there might be
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operations we can perform on graphs to make it easier identifying whether the original

graph is dp or not.

The construction of dp graphs is another concern. Let n be the desired number

of vertices and C be some constraint on the graph, such as a specific degree sequence.

Can a dp graph G on n vertices be constructed which satisfies condition C? Answering

this question for a wide variety of conditions will not only provide more insight into dp

graphs, but such constructions may have applications as well. Ultimately, we would like

to enumerate all dp graphs give some condition C. The construction of non-dp graphs is

another variation on this question.

Another construction consideration involves the addition of edges to a non-dp graph

such that the resulting graph is dp. Let G be a non-dp graph. What is a smallest set of

edges E such that G′ = G + E is a dp graph? E must always exist since G can always

be transformed into having a vertex with degree |V (G)| − 1. Does each non-complete dp

graph have at least one edge that can be added such that the resulting graph is dp? If not,

what is the bound on the size of E? Variations on this problem, such as the maximum

number of edges that can be added to a non-dp graph such that the resulting graph is still

non-dp, might also provide insight into dp graphs.

One last major concern involves the nature of isometric subgraphs in a dp graph.

While our first priority is simply to determine whether a graph has an isometric subgraph

of a given order order, we would also like to know the bound on the number of isometric

subgraphs the graph must contain, and any other characteristics they may possess. Let n

be the desired number of vertices and C be some constraint on graph. What are the upper

and lower bounds for the number of isometric subgraphs of order k, where 1 ≤ k ≤ n? This

problem yields two important questions. First, do all graphs have isometric subgraphs for

values of k besides 1, 2, 3, 4, and n? For an explanation of why these are trivial, see Section

6.2. Second, do all dp graphs have a large number of isometric subgraphs for 3 ≤ k ≤ n−2,

say at least 2k?
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We have made considerable amounts of progress in addressing these questions. While

we do not yet know the time complexity of the recognition problem, we have a number of

sufficient conditions for a graph to be dp. Some of these are bounds on invariants, while

others are well known classes of graphs. Thus far our investigation into adding edges to dp

graphs has been largely experimental. However, we have shown that when G is sequentially

dp, there does always exist an edge e such that G + e is dp. Along with Ross et al., we

have developed a construction algorithm to generate regular dp graphs of arbitrary order

and vertex degree for which it is possible to construct a dp graph. We have made further

progress into generating dp graphs given an arbitrary degree sequence. As with the edge

augmentation problem, our investigation into bounds on the number of isometric subgraphs

has been largely experimental thus far.
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Chapter 3

Characterizations

In our investigation of dp graphs we seek to identify conditions which are sufficient

to ensure that a graph is dp. Moreover, we want to determine the exact role the induced

subgraphs forbidden to dh graphs play in dp graphs. Our observations indicate that the

four forbidden subgraphs are not equally “bad” when it comes to dp graphs. We provide a

number of sufficient conditions for a graph to be dp in Section 3.1, and conjecture a number

of other conditions that we believe to be sufficient in Sections 3.1 and 3.2. Another avenue

of investigation is the existence of special vertices in dp graphs, and the complexity of the

recognition problem for dp graphs.

3.1 Observations

We know that all subclasses of dh graphs are dp graphs. The best known of these

are trees, but there are many other such classes [8]:

• cograph ([20])

• ptolemaic ([44, 49])

• threshold ([17])

• trivially perfect ([34])

12



3.1.1 Forbidden Subgraphs

We first examine the four forbidden subgraphs, shown in Figure 3.1. Whenever we

are talking about these graphs as subgraphs of a graph rather than as stand-alone graphs,

we are always referring to induced subgraphs. Of these, the long cycle is the only one

that is not itself a dp graph. Specifically, C5 lacks an isometric subgraph of order 4. More

generally, we observe that the cycle graph Cn lacks isometric subgraphs of order dn
2
e + 1

up to order n− 1. We also note that the existence of a single connected induced subgraph

which is non-isometric will ensure that a graph is non-dh, so all four forbidden subgraphs

are on equal ground in this respect. However, the presence of a gem creates 1 non-isometric

connected induced subgraph in a graph, while a house or a gem create 2 of these, and a

long cycle creates at least 5.

Figure 3.1 Forbidden Subgraphs

house gem domino long cycle

Adding just one crossing chord to the 5-cycle allows for an isometric subgraph of

order 4, and so the house and the gem are dp. Likewise, the domino is also dp. So the

presence of long induced cycles in a graph would appear to be somehow more “disruptive”

than the other three forbidden subgraphs. In fact, Conjecture 3.1 is that the presence of a

long induced cycle is a necessary condition for a graph to be non-dp.

Conjecture 3.1. Let G be a graph. If G does not contain an induced subgraph H, where

H is a cycle of length 5 or greater (a long induced cycle), then G is dp.
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The conjecture that every non-dp graph must contain an long induced cycle has

been difficult to prove so far. Intuitively, we felt that when attempting to add each vertex,

we should be able to separate the problem into a few cases, and give a simple proof for

each. This might be a direct proof, or a proof by contradiction which relied on the fact

that the graph didn’t contain any long cycles. After a considerable amount of effort, no

counterexample has been found. We have computationally verified that the following classes

of graphs are not counterexamples to the Conjecture 3.1:

• all graphs of order n ≤ 12

• all regular graphs of order n ≤ 13

• C3 and C4 free graphs of order n ≤ 13

• bipartite graphs of order n ≤ 13

Randomly searching through graphs of order 12+ has so far been futile.

Of course, a graph can be dp in the presence of an long induced cycle, or even many

long induced cycles. In fact, we can construct a dp graph that contains an arbitrary number

of induced subgraphs, forbidden or otherwise, as we will see later in Lemma 3.10.
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Table 3.1 Percentage of DH Graphs

n # dh graphs # connected unlabeled graphs % dh graphs

1 1 1 100

2 1 1 100

3 2 2 100

4 6 6 100

5 18 21 85.7143

6 73 112 65.1786

7 308 853 36.1079

8 1484 11117 13.3489

9 7492 261080 2.8696

10 40010 11716571 0.3415

Another difference between dh and dp graphs is the percentage of all graphs that

are dh and dp. Almost all graphs contain an arbitrary induced subgraph [25], and we see in

Table 3.1 how quickly the percentage of graphs which are dh approaches 0 as the number

of vertices increase. The fact that dp graphs are so much more common leads us to make

Conjecture 3.2.

Conjecture 3.2. Almost all graphs are dp. That is, as n goes to infinity, the percentage

of graphs G of order n that are dp converges to 1.

Experimentally, the results in Table 3.2 would indicate that this converges fairly

quickly, but we would like to prove even some weak lower / upper bounds on n.
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Table 3.2 Percentage of DP Graphs

n # dp graphs # connected unlabeled graphs % dp graphs

1 1 1 100

2 1 1 100

3 2 2 100

4 6 6 100

5 20 21 95.2381

6 111 112 99.1071

7 849 853 99.5311

8 11098 11117 99.8291

9 260897 261080 99.9299

10 11714097 11716571 99.9789

The Erdős-Rényi random graph model G(n, p) [29] constructs a graph G on n ver-

tices by connecting each pair of vertices in the graph with probability p. We now ask if the

percentage of random graphs that are dp approaches 1 even for arbitrary edge probabilities.

In Table 3.3 we compute the percentage of such randomly generated graphs that were dp

at regular probability intervals. We do the same for the percolation theshold (p = 1
n
) [38]

and the connectivity threshold (p = log n
n

)[29], running 100,000 trials for each combination

of n and p. For all values of p that we examined, almost all graphs are dp.

Table 3.3 Percentage of Erdős-Rényi Graphs Which Are DP

n\p .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

5 1 1 1 .999 .997 .995 .995 .990 .988 .987

6 1 1 1 1 .999 .998 .998 .998 .998 .998

7 1 1 1 1 .999 . 998 .998 .998 .998 .999

8 1 1 1 .999 .997 .997 .997 .997 .998 .999
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3.1.2 Sequentially DP Graphs

In a sequentially dp graph, each subgraph in the set of isometric subgraphs is a

superset of the previous one. In other words, there exists some permutation of the vertices

such that the subgraphs induced by the first 1, 2, . . . vertices in the permutation are all

isometric. A sequentially dp graph is necessarily dp, but the converse is not always true.

The lowest order example of dp graph which is not sequentially dp is the 5 − Pan graph

shown in Figure 3.2, which consists of C5 plus an additional pendant vertex.

Figure 3.2 A Non-Sequential DP Graph (5-Pan)

3.1.3 Special Vertices

From the definition of a dp graph we know that it must have at least one vertex which

may be deleted from the graph without increasing any distances. A vertex in a graph may

be contained in isometric subgraphs of every possible order, or significantly fewer isometric

subgraphs than that. We consider vertices which exist in isometric subgraphs of every

possible order, and vertices for which a set of isometric subgraphs of every possible order

exist without that vertex. We want to determine how many of these vertices a graph must

contain to be dp, if any, and their nature. Knowing more about these kinds of vertices

could help prove conjectures, and to characterize graph operations on dp graphs.
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Definition 3.3. Let G be a graph on n vertices, and v a vertex in G. We call v an anchor

vertex if G contains a k-order isometric containing v for 1 ≤ k ≤ n.

Table 3.4 Percentage of Vertices in DP Graphs of Order n Which Are Anchor Vertices

n % anchor

3 100

4 100

5 100

6 99.6997

7 99.9159

8 99.9212

From Definition 3.3, a graph with an anchor vertex must be a dp graph. We see

in Table 3.4 that the majority of vertices in dp graphs are anchor vertices. We want to

determine if the converse is true. In Table 3.5 we count the number of anchor vertices for

every graph of a given order, for n ≤ 8.

Table 3.5 Number of DP Graphs of Order n With Exactly k Anchor Vertices

n\k 1 2 3 4 5 6 7 8

3 0 0 2

4 0 0 0 6

5 0 0 0 0 5

6 0 0 0 0 2 109

7 0 0 0 0 0 5 844

8 0 0 0 0 3 4 54 11037

In fact, every dp graph of order 5 ≤ n ≤ 8 contains at least 5 anchor vertices. So

does the subset of dp graphs of orders 9 ≤ n ≤ 12 we checked, as well as higher order

graphs from the House of Graphs dataset [9] at http://hog.grinvin.org. Since so many of
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the vertices in dp graphs are anchor vertices, it is hard to say much about them, although

it allows us to make Conjecture 3.4.

Conjecture 3.4. Every dp graph contains at least one anchor vertex.

Figure 3.3 A DP Graph With Central Anchor Vertices

Non-anchor vertices often belong to the periphery of a graph, but not always. In

the small order graph of Figure 3.3, the subgraph induced by the set of anchor vertices was

always connected.

Definition 3.5. Let G be a graph on n vertices, and v a vertex in G. We call v a nonessen-

tial vertex if g contains a k-order isometric subgraph not containing v for 1 < k < n.

A nonessential vertex is different from a vertex where the subgraph induced by the

remaining vertices is isometric, e.g. a pendant vertex. While a nonessential vertex is by

definition the latter, the converse is not true. In Figure 3.4 we again see the 5-pan graph.

The pendant vertex is contained in all isometric subgraphs of order 4, and all other vertices

comprise the single isometric subgraph of order 5.

Definition 3.6. Let G be a graph on n vertices, and v a vertex in G. We call v a simplicial

vertex if the neighbors of v are a clique and G− v is an isometric subgraph of G.

We are, however, interested in those vertices which can be deleted without increasing

any distances in a graph. We call these vertices removable, or non-hinge vertices. Simplicial

vertices, which include pendant vertices, are a subset of these. From the definition we know

that each dp graph must have at least one removable vertex. Unfortunately, almost all
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Figure 3.4 A DP Graph With No Nonessential Vertices (5-Pan)

graphs do not have a simplicial vertex, so we are forced to find the other removable vertices

to show that a graph is dp or sequentially dp. In Tables 3.6 and 3.7, we examine the result

of deleting simplicial vertices from dp graphs. We observe that deleting just one simplicial

vertex in a low order graph often causes the resulting graph to be non-dp. Our interest in

simplicial and similar types of vertices is to develop strategies to solve problems such as

Conjecture 3.1.

Table 3.6 Graphs With Simplicial Vertices Whose Deletion Results in a DP Graph

n # connected graphs with # connected graphs % connected graphs with

a simplicial vertex whose a simplicial vertex whose

deletion leaves a dp graph deletion leaves a dp graph

2 1 1 100.000

3 2 2 100.000

4 5 6 83.333

5 17 21 80.952

6 86 112 76.786

7 660 853 77.374

8 8000 11117 71.962

9 165726 261080 63.477
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Table 3.7 Highest Degree Simplicial Vertices in Connected Graphs Whose Deletion Results
in a DP Graph

n\# 1 2 3 4 5 6 7 8

2 1 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0

4 2 2 1 0 0 0 0 0

5 4 9 3 1 0 0 0 0

6 20 41 20 4 1 0 0 0

7 132 314 171 37 5 1 0 0

8 1478 3653 2312 490 60 6 1 0

9 28064 73582 51412 11390 1179 91 7 1

3.1.4 Hinge-Free Graphs

Definition 3.7. Let G be a graph on n vertices. We say that G is a k-geodetically-connected

(k-gc) graph if every induced n− k order subgraph of G is isometric.

A hinge-free or 1-geodetically connected (1-gc) graph is a graph composed entirely of

removable vertices. For more background on hinge-free graphs, see Section 6.3. Hinge-free

graphs necessarily have redundant shortest paths, which leads us to give Conjecture 3.8.

Conjecture 3.8. Let G be a k-gc graph, where 1 < k < n. Then G is a dp graph.

At present we are focused solely on 1-gc graphs, since graphs with δ(G) > n/2 are

1-gc graphs, and a proof for Conjecture 3.8 would also prove Conjecture 3.12. Table 3.8

shows invariant bounds for hinge-free graphs. The extremal cases for most bounds on graph

invariants that we looked at are Kn and Kn−2,2.
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Table 3.8 Invariant Bounds for 1-GC Graphs

n # size(G) ≥ diam(G) ≤ girth(G) ≤ largest induced cycle

3 1 3 1 3 3

4 3 4 2 4 4

5 7 6 2 4 4

6 30 8 3 4 5

7 141 10 3 4 5

8 1259 12 4 4 6

9 21176 14 4 4 6

As with long induced cycle free graphs, Conjecture 3.9 states that for any vertex in

a hinge-free graph, we can find an isometric subgraph of arbitrary order containing that

vertex, and another one lacking it. Table 3.9 shows that the minimum number of k-order

isometric subgraphs in a graph of order n is quite large.

Conjecture 3.9. Let G be a hinge-free graph on n vertices, and v a vertex in G. Then

G contains k-order isometric subgraphs H and H ′, such that v ∈ H and v 6∈ H ′, for

1 ≤ k ≤ n.

Table 3.9 Minimum Number of k-order Isometric Subgraphs in Hinge-Free Graphs

n\k 1 2 3 4 5 6 7 8 9

3 3 3 1

4 4 4 4 1

5 5 6 9 5 1

6 6 8 14 9 6 1

7 7 10 21 16 12 7 1

8 8 12 24 26 24 16 8 1

9 9 14 33 45 45 32 18 9 1
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We might prove the Conjecture 3.8 by showing that every k-order subgraph that

maximizes or minimizes some invariant must be isometric. Experimentation has shown

that maximizing size or minimizing diameter will not work.

We might also start with a random vertex, and by maximizing or minimizing some

invariant as we go, build a set of distance preserving subgraphs incrementally. Adding ver-

tices in the 1-neighborhood, then the 2-neighborhood, and so on, will not work. We would

expect maximizing size or minimizing diameter not to work, but we are doing something

slightly different than we did before.

3.1.5 Line Graphs of DP Graphs

Let G be a graph. The line graph [69, 42] of G, denoted by L(G), is defined as

follows:

• |V (L(G))| = |E(G)|, where each vertex in L(G) corresponding to an edge in V (G).

• Vertices u, v ∈ L(G) are adjacent if and only if uv ∈ E(G).

Line graphs may be characterized in a number of ways. Beineke characterized line

graphs in terms of forbidden subgraphs, proving that there are only nine minimal graphs

that are not line graphs [2, 3]. Furthermore, there is a one-to-one correspondence between

isomorphisms of graphs and the isomorphisms of line graphs, for all graphs with more than

4 vertices [24]. This led us to consider the possibility that the line graph of a dp graph

might always be dp. Some experimentation quickly shows that this is not the case. Also,

the line graph of a non-dp graph is not necessarily non-dp, as seen in Figure 3.5.
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Figure 3.5 A DP Graph Whose Line Graph is Non-DP

Similarly, the line graph of a non-dp graph is not necessarily non-dp, as seen in

Figure 3.6.

Figure 3.6 A Non-DP Graph Whose Line Graph is DP

3.2 Results

Our first question is on the relationship between dp graphs and other graph classes.

All graphs of up to order 4 are both dp and perfect. The only non-dp graph on 5 vertices

is C5, which is also the only non-perfect graph on 5 vertices. However, C6 is perfect, but

not dp. Likewise, each of the graphs containing induced 5-cycles on 6 vertices are dp, but

not perfect. So, neither dp graphs nor perfect graphs are subsets of each other.
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A simple result highlights the different between dh and dp graphs. Dp graphs cannot

be defined strictly in terms of forbidden subgraphs, as shown in Lemma 3.10.

Lemma 3.10. Given a multiset F = {F1, F2, . . . , Fp} of simple graphs of order n1, n2, . . . , np,

we can construct a dp graph G containing every element of F as an induced subgraph.

Proof. Let n = 2 · (n1 + n2 + . . .+ np), G be the disjoint union of Kn/2 ∪ F1 ∪ F2 ∪ . . .∪ Fp

on n vertices, and u be an arbitrary vertex in Kn/2. Add edges {u, fi}, where fi is an

arbitrary vertex in Fi, 1 ≤ i ≤ p. We can find isometric subgraphs in G of order 1 up

to order n
2

simply by choosing arbitrary vertices from the subgraph Kn/2. We can find

isometric subgraphs in G of order n
2

+ 1 up to order n
2

+ n1 by choosing all the vertices in

G corresponding to F1, plus u and arbitrary other vertices from the subgraph Kn/2. We

can find isometric subgraphs in G of order n
2

+ n1 + 1 up to order n
2

+ n1 + n2 by choosing

all the vertices in G corresponding to F1 and F2, plus u and arbitrary other vertices from

the subgraph Kn/2. We can continue with this to find isometric subgraphs in G of all the

way up to order n. Thus, Qn is a dp graph.

3.2.1 Minimum Degree and Size

In Table 3.10 we see that although almost all graphs may be dp, δ(G) has to be quite

high to ensure that G is dp. For n = 13 and n = 14, we tested likely non-dp candidates

where δ(G) ≤ ∆(G) + 1, hence the asterisk. This was done out of computational necessity.
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Table 3.10 Minimum δ(G) Necessary to Ensure G is a DP Graph

n δ(G)

3 1

4 1

5 3

6 3

7 3

8 4

9 5

10 5

11 5

12 6

13 7*

14 7*

Lemma [58] 3.11. Let G be an n-vertex graph with δ(G) ≥ 2n
3
− 1. Then G is a dp graph.

Proof. Let Hk denote the proposed isometric subgraph of order k. G must contain star

subgraphs up to at least order δ(G) + 1. For 1 ≤ k ≤ 2n
3

, let Hk be the star subgraph

consisting of an arbitrary vertex, and k − 1 of its neighbors. Each star subgraph is dp, as

the distance between the internal node and each of the leaves is 1 in G and Hk, and the

distances between each pair of leaves remains 1 if they share an edge in G, and 2 if they

do not. For 2n
3
< k ≤ n, let Hk be an induced subgraph containing k arbitrary vertices.

Now consider each pair of vertices u, v in these random induced subgraphs. If u and v

share an edge in G, dG(u, v) = dHk
(u, v) = 1. If u and v do not share an edge in G,

dG(u, v) = 2, since they must have common neighbors. Now consider the the worst case,

where deg(u) = deg(v) = 2n
3
− 1. Then there are n− 2− (2n

3
− 1) = n

3
− 1 vertices u does

not share an edge with (besides v). Even if v shares an edges with each of these n
3
− 1
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edges, u and v still have (2n
3
− 1) − (n

3
− 1) = n

3
shared neighbors. Since k > 2n

3
, u and v

must have at least one shared neighbor in Hk, which means that dHk
(u, v) = 2, and each

random induced subgraph where k > 2n
3

is dp. Thus, G is a dp graph.

δ(G) ≥ bn/2c is sufficient to ensure that every pair of vertices in G are adjacent or

have at least one common neighbor, that G is Hamiltonian [26], and G has diameter of 1

or 2. Every graph with δ(G) ≥ bn/2c contains a triangle, except for K1,1, K2,2, . . . It is not

a sufficient condition for G to be dp if G has odd order (n = 5, 9, 13, . . .), as seen in Figure

3.7.

Figure 3.7 Non-DP Odd Order Graph With δ(G) = bn/2c

Conjecture 3.12. Let G be an n-vertex graph with δ(G) > n/2. Then G is a dp graph.

This conjecture is a lower bound on the minimum vertex degree needed to ensure

that a graph is dp. Doing this indirectly by specifying the minimum degree of each vertex in

the graph might make it easier to prove. Ideally, we would like to go beyond edges and think

of bounds in terms of the number and arrangement of forbidden subgraphs, but nothing so

far leads one to believe that this is even possible. We have computationally verified that

the conjecture holds for n ≤ 12. We have also ruled out likely counterexamples for n = 13

and n = 14, which are graphs where ∆(G) ≤ dn/2e+1. We have further verified that these

graphs are sequentially dp for n ≤ 11 except for the graph in Figure 3.8.
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Figure 3.8 Non-DP Odd Order Graphs With δ(G) = bn/2c

Table 3.11 Minimum Number of Isometric Subgraphs of Graphs of δ(G) ≥ n/2

n\k 1 2 3 4 5 6 7 8 9 10 11 12

3 3 3 1

4 4 4 4 1

5 5 8 10 5 1

6 6 9 14 9 6 1

7 7 14 28 28 21 7 1

8 8 16 32 26 24 16 8 1

9 9 23 59 76 88 73 36 9 1

10 10 25 60 65 62 80 60 25 10 1

11 11 33 99 154 220 252 231 143 55 11 1

12 12 36 100 159 200 228 244 165 100 36 12 1
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Figure 3.9 Graphs With the Minimum Number of Isometric Subgraphs of Order n− 2

The Cartesian product Kn/2 × K2 does not always give a graph with the fewest

number of isometric subgraphs for all 1 ≤ k ≤ n. For example, K4 × K2 contains 32

isometric subgraphs of order 4 and 32 isometric subgraphs of order 5, and K5×K2 contains

80 isometric subgraphs of order 4 and 102 subgraphs of order 5. These graphs have the

fewest number of isometric subgraphs of order n/2 for n = 8 and n = 10, respectively

(K5 ×K2 has more than the minimum number of isometric subgraphs for 6 ≤ k ≤ 8:
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Figure 3.10 Fewest Number of Isometric Subgraphs of Order n/2 for n = 8 and n = 10

If every graph with δ(G) ≥ n/2 contained at least one induced subgraph with

minimum degree of at least bk/2c, for 1 ≤ k ≤ n, we would be done. This is not the case:

Table 3.12 Minimum Maximum δ(G) of Induced Subgraphs of Graphs of δ(G) ≥ n/2

n\k 1 2 3 4 5 6 7 8 9 10

3 0 1 2

4 0 1 1 2

5 0 1 2 2 3

6 0 1 1 2 2 3

7 0 1 2 2 2 3 4

8 0 1 1 2 2 2 3 4

9 0 1 2 2 3 3 3 4 5

10 0 1 1 2 2 3 3 3 4 5

These two graphs of order 8 lack induced subgraphs of order 6 with minimum degree

greater than 2:
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Figure 3.11 Graphs With the Fewest Number of Isometric Subgraphs of Order n/2

In both cases some, but not all, of the maximal minimum degree induced subgraphs

of order 6 are isometric. We have not found a graph with δ(G) ≥ n/2 where none of

the maximal minimum degree induced subgraphs of some order are isometric. Contrast

this to subgraph size, where we have found examples of such graphs where none of the

maximal size induced subgraphs of some order are isometric. In the graph in Figure 3.12

the maximal size induced subgraphs of order 6 have 13 edges, none of which are isometric:

Figure 3.12 A Graph Where No Maximal Size Induced Subgraph of Some Order is Iso-
metric

Looking for maximal maximum degree induced subgraphs of a given order produces

too many counterexamples on 8 and 10 vertices to list.
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Conjecture 3.13. Let G be a simple graph of order n and size m. If m > n · (n − 1)/4,

then G is dp.

This is a stronger version of Conjecture 3.12. Rather than requiring every individual

vertex in G to have over half the number of potential edges, this conjecture only requires

that G as a whole contain half the number of potential edges. As previously mentioned,

we expect that this conjecture will be harder to prove. Again, this conjecture has been

experimentally verified for graphs of up to 10 vertices, as seen in Table 3.13.

Table 3.13 Minimum Size Necessary to Ensure G is a DP Graph

n size

5 6

6 7

7 11

8 13

9 19

10 22

Conjecture 3.14. Let G be a graph. Except for C5, at least one of G or G is a dp graph.

Thus, all self-complementary graphs, except for C5, must be dp. If true, this conjec-

ture will likely follow as a corollary of a Conjecture 3.13 regarding the number of edges in

a dp graph. This conjecture has been verified experimentally for all graphs of up to order

9.

The only non-trivial superclass of dp graphs currently known is the set of all simple

graphs.
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3.2.2 Hypercubes

By making use of the binary labeling of a hypercube, we show that hypercubes

are dp. We suspect there are other methods for selecting a set of isometric subgraphs in

hypercubes, and that generalized de Dbruijin graphs on a binary alphabet are dp as well.

Theorem 3.15. Consider the n-dimensional hypercube Qn, with standard n-bit binary

string vertex labeling. Then the induced subgraph on the first k vertices in lexicographic

order, denoted Hk, is an isometric subgraph of Qn, for 1 ≤ k ≤ 2n. So Qn is a dp graph.

Proof. Proof is by induction on k.

Basis: For k = 1, H1 is trivially dp, since it contains only the zero length path

starting at v0.

Inductive Hypothesis: Now assume the statement holds true for k = 1, 2, . . . , K.

Inductive Step: For K + 1, we know from applying the inductive hypothesis that

distanceHK+1
(vi, vj) = distanceG(vi, vj) for all vi, vj ∈ HK+1\{vK}. So we only need con-

cern ourselves with the shortest paths in HK+1 between vK and vi. We know from the

definition of the hypercube that distanceQn(vi, vK) is equal to the total number of bits that

differ between the labels of vi and vK . Now we will create a path of the same length in

HK+1, starting with vK . If there are any bits that are 1 in the label for vK and 0 in the

label for vi, we can flip these bits from 1 to 0 one at a time in some arbitrary order, adding

each corresponding vertex to the path in turn. Every vertex traversed so must be found in

HK+1, since they all come lexicographically before vK . After this step is complete, if there

are any bits that are 0 in the label for vK and 1 in the label for vi, we can flip these bits

from 0 to 1 one at a time in some arbitrary order, again adding each corresponding vertex

to the path. Since vi comes lexicographically before vK , the position of the leftmost bit

we flip from 0 to 1 must be to the right of the leftmost bit that we flipped from 1 to 0,

and each of the vertices added in this step must come lexicographically before vK as well.

Because the length of our path is equal to the total number of bits that differ between the
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labels of vi and vK , distanceHK+1
(vK , vi) = distanceQn(vK , vi). So HK+1 is an isometric

subgraph of Qn, and our inductive step is complete.

Thus G is a dp graph.

We note that hypercubes are not only dp, but sequentially dp. If the dp qualities of

hypercubes have practical applications, other sequential dp orderings may be of interest;

consider Conjecture 3.16.

Conjecture 3.16. Consider the n-dimensional hypercube Qn, with standard n-bit binary

string vertex labeling. Then the induced subgraph on the first k vertices in reflected binary

code (Gray code) order, denoted Hk, is an isometric subgraph of Qn, for 1 ≤ k ≤ 2n. So

Qn is a dp graph.

We believe undirected generalized de Bruijn graphs over binary alphabets are dp as

well. We have computationally verified that B(2, n) is dp for 1 ≤ n ≤ 4.

Conjecture 3.17. The undirected generalized n-dimensional de Bruijn graph B2,n on the

alphabet {0, 1} is a dp graph.

3.3 Complexity

Proving which complexity class the dp graph problem belongs to may be very dif-

ficult. As with most problems that belong to NP, it is straightforward to show that the

decision problem for dp graphs does in fact belong to NP. The problem of finding the longest

cycle in a graph, itself transformed from the Hamiltonian cycle problem, has the most su-

perficial resemblance to the dp graph problem. As a dp graph may have long induced cycles

of arbitrary sizes, performing a reduction between the two is not a simple matter, and it

is not clear how we might split / add / remove vertices and edges to accomplish a correct

reduction. It appears to be difficult or impossible to do this without knowledge of how to

determine whether a graph is dp from its long induced cycles.
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Lemma 3.18. The decision problem for dp graphs belongs to NP.

Input. A simple graph G on n vertices, and k an integer, where 1 < k < n.

Question. Is there a subgraph H ⊆ G of order k such that H is an isometric subgraph

of G?

Proof. We provide an appropriate certificate and verification algorithm.

Certificate. The certificate is a subgraph H ⊆ G of order k.

Algorithm. We use the Floyd-Warshall algorithm (or any other all-pairs shortest

paths algorithm requiring polynomial time) on G and H. If any pair of vertices u, v ∈ H

such that distanceH(u, v) ≥ distanceG(u, v), then the algorithm returns no. Otherwise,

the algorithm returns yes.

Since a solution to the dp graph problem may be verified in polynomial time, the

problem belongs to NP.

Conjecture 3.19. Deciding whether a graph G contains an isometric subgraph of order k,

for 1 ≤ k ≤ n, is NP-Complete.

Assuming the isometric subgraph problem is NP-Complete, we have several choices.

We can:

• Look for special cases.

• Relax our requirements.

• Find a worst case EXPTIME algorithm that is fast in practice.

Examination of special cases seems least likely to be useful for practical application, al-

though it may be of some theoretical interest. For some cases, such as planar graphs,

generating fundamental cycles can be done in O(E) time. Relaxing the requirements is

probably the most suitable option here, and that is what we did in [59]. It seems that any

exponential time algorithm should run too slowly to be useful even for very sparse social

network datasets, but it is a possibility.
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Our first attempts at exploring dp graphs were done through attempting to build

up large isometric subgraphs in an incremental fashion. We learned that maximizing or

minimizing certain graph invariants led to larger isometric subgraphs before we got “stuck”.

If our long cycle conjecture holds, it is reasonable to believe that diameter minimization

should find good clusters even in non-dp graphs. Unfortunately, doing this in the context

of a clustering algorithms requires O(n5) or O(n6) time complexity, which is too slow to be

useful in practice. We might try to overcome this hurdle by resorting to easier to calculate

measures that behave similarly to minimizing the diameter of our cluster.

3.4 Summary

We have found a number of results that help us to characterize dp graphs, which

have in turn led to more open problems. Although the most pressing of these now are

Conjecture 3.1 and the question of NP-Completeness, we have a number of other important

questions. We would like to formally prove Conjecture 3.2, which states that the percentage

of graphs that are dp converges to 1 as the number of vertices approaches infinity. Many

of our conjectured possible alternate characterizations right now are extremal in nature.

We would like to find some radically different characterizations as well, although there are

probably not any that only consider forbidden subgraphs.
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Chapter 4

Constructions

In this chapter we consider the problem of constructing dp graphs. If we have a dp

graph, we would like to know what edges can be added such that the augmented graph is

dp. We do not consider the addition of vertices, as a dp graph plus an isolated or pendant

vertex will always be dp. Given some constraints, we would like algorithms that generate dp

graphs satisfying those constraints, assuming any exist. As with finding characterizations

this process provides us with more insight into the nature of dp graphs. We also look at

the problem of adding edges to non-dp graphs so that the augmented graph is dp, and

constructing non-dp graphs for some given constraints. Unless otherwise stated, we are

only considering connected constructions.

4.1 Observations

For certain constraints such as order, size, diameter, radius, etc., finding a construc-

tion is trivial. For each of these we can simply take the appropriate order path graph, or

another tree. For other constraints it is less obvious what a general algorithm might look

like. Combinations of constraints increase the difficulty of finding a construction, although

not always by very much. For example, in Lemma 3.11 we used the fact that induced

subgraphs of a graph which have an underlying star subgraph are isometric. Similarly, a
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graph with an underlying star subgraph must be dp. To construct a dp graph of order n

and size m, we can start with the star graph Sn and add edges at random until the resulting

graph is of size m.

Our primary goal here is to find a construction algorithm that can generate a dp

graph given an arbitrary graphical degree sequence for which any dp graphs exist. Table

3.2 gives some credence to the possibility that the construction problem should be straight-

forward for any constraints for which a deterministic construction method exists. This

problem proved quite challenging, so we first look at specific cases.

4.2 Altering DH and DP Graphs

In this section we examine adding edges from dh and dp graphs while leaving them

dh and dp. We give a number of results for these problems. We also consider the minimum

number of additional edges needed to make a non-dp graph into a dp one. So far we have

no new conjectures in this regard, although there are some results regarding the former

problem for special cases of graphs [31].

4.2.1 Adding Edges to DH and DP Graphs

As with a dh graph, adding an arbitrary edge to a dp graph may make the augmented

graph non-dp. For example, consider adding an edge connecting the two leaves in P5, or

the graph in Figure 4.1. However, there exists an edge e that we can add to P5 such that

P5 + e is dp. We would like to show that such an edge exists for an arbitrary dp graph.

Towards this end, we begin with Theorem 4.1.
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Figure 4.1 An Edge Whose Addition Makes a DP Graph Non-DP

Theorem 4.1. Let G be a non-complete dh graph with at least one bridge or a non-complete

block. Then there exists some new edge e such that G+ e is dh.

Proof. Let G be a non-complete dh graph with at least one bridge or a non-complete block.

We adopt a simple strategy for selecting an edge to add to G.

Case 1: Every block in G is complete. Let e = (u, v) be any edge not in E(G) where

dG(u, v) = 2, where uw, vw, or both are bridges. Either w will be in the same block as

u, v, or both, or w will itself be part of another block. Regardless, adding e to G will not

create any of the four forbidden subgraphs.

Case 2: At least one block in G is not complete. Let H ⊆ G be one such component,

and e = (u, v) be any edge where dG(u, v) = 2 and u, v ∈ V (H). We note that every pair of

non-adjacent vertices in the same block in a dh graph with one common neighbor must have

two common neighbors. Let two arbitrary common neighbors of u and v be denoted by w

and x. We show by contradiction that if G + e were to contain one of the four forbidden

subgraphs, G would as well. Suppose that G + e contains one of the following induced

forbidden subgraphs:

House: G must contain a domino or at least 2 induced 5-cycles.

Gem: G must contain at least one house.

Domino: G must contain at least two induced 5-cycles, and possibly an induced 6-cycle.

Long Cycle: G must contain at least one gem, house, domino, or long induced cycle.
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In each of the four cases we arrive at a contradiction. Once again, G+ e must not contain

any of the four forbidden subgraphs.

Thus G+ e is a dh graph.

We note that if a dh graph G contains no bridge edges and all blocks are complete,

there are no edges e such that G + e is dp. Any possible edge addition will create one or

more gems. The lowest order example of this is the butterfly graph, shown in Figure 4.2.

Figure 4.2 Butterfly Graph

Furthermore, this technique does not work on dp graphs. We note that if we add an

edge e = (u, v) to a dp graph G with isometric subgraph H where u 6∈ V (H), or v 6∈ V (H),

or both, the subgraph in G + e induced by V (H) may not be isometric. However, if

u, v ∈ V (H), the subgraph induced by V (H) is isometric in G+ e, as shown in Lemma 4.2.

Lemma 4.2. Let G be a graph. Then any set of vertices which induce an isometric subgraph

in G will induce an isometric subgraph in G+ e if both endpoints of e are in that set.

Proof. By way of contradiction. Let G be a graph with isometric subgraph H ⊆ G, and u

and v vertices in V (H) that do not share an edge in G. We will denote G+ uv by G′ and

H+uv by H ′. Now assume that w and x are vertices in V (H ′) which do not have a shortest

path in G′ consisting entirely of vertices in V (H ′). Let P = {v1 (w), v2, . . . , vk−1, vk (x)} be

such a shortest path, with vertices vi, . . . , vj which are not in V (H ′), where 1 < i < j < k.

Since P cannot contain the edge uv, dG′(i − 1, j + 1) = dG(i − 1, j + 1), and there must

be another path P ′ of the same length as P which contains vertices in V (H ′) instead of

Vi, . . . , vj. In the event that P ′ has other vertices not in V (H ′), we can repeat this process

until that is not the case. So w and x do have a shortest path consisting entirely of vertices

in V (H ′), which is a contradiction. Thus H ′ is an isometric subgraph of G′.
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Now all we need to do is to show that there must exist some edge we can add

to an arbitrary dp graph that belongs to an isometric subgraph of almost every order,

where isometric subgraphs of the other orders are created by (or at least not destroyed

by) the addition of the new edge. We note that adding an edge to a graph will not

destroy any isometric subgraphs in which every pair of vertices share an edge or have at

least one common neighbor. Lemma 4.3 demonstrates that this is straightforward for any

non-complete sequentially dp graph.

Lemma 4.3. Let G be a sequentially dp graph. If G is not the complete graph, then there

exists some new edge e such that G+ e is sequentially dp.

Proof. Let G be a sequentially dp graph on n vertices which is not Kn, with isometric

subgraphs H1 ⊂ . . . ⊂ Hn. Let i be the largest integer such that H1, . . . , Hi−1 are cliques

in G, and u and v two vertices in Hi which do not share an edge. Now consider G+uv and

subgraphs H1, . . . , Hi−1, Hi + uv, . . . , Hn + uv. H1, . . . , Hi− 1 are isometric in G′ because

they are cliques. Hi, . . . , Hn are isometric in G′ by the previous lemma. Since V (Hi) =

V (Hi + uv), V (Hi+1) = V (Hi+1 + uv), etc., H1 ⊂ · · · ⊂ Hi−1 ⊂ Hi + uv ⊂ · · · ⊂ Hn + uv

as well. Thus G+ e is a sequentially dp graph.

Since all dh graphs are sequentially dp, we can use Lemma 4.3 to add an edge to a

dh graph and have the resulting graph be dp. However, we would like to do so and have

the resulting graph be dh, which this method does not always do, unlike the one given in

Theorem 4.1. We have not been able to apply either of these techniques towards solving

the general edge addition problem for dp graphs, stated in Conjecture 4.4.

Conjecture 4.4. Let G be a non-complete dp graph. Then there exists some new edge e

such that G+ e is dp.

We have computationally verified that the following classes of graphs are not coun-

terexamples to the Conjecture 4.4:

• all graphs of order n ≤ 10
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• all regular graphs of order n ≤ 12

4.2.2 Making Non-DP Graphs DP

Making a non-dh graph into a dh graph is fairly straightforward. We need 2 edges

for a domino, 1 edge for a house, 1 edge for a gem, and n−3 or n−4 edges for an n−cycle,

depending on whether n is odd or even. This means that for a non-dh graph with entirely

edge-disjoint forbidden subgraphs, it is straightforward to count the minimum number of

edges needed to make that graph dh. Of course, many non-dh graphs contain overlapping

forbidden subgraphs, making the number harder to count. We observe in Table 4.1 that

the n-cycle does not require the most edges of all non-dh graphs on n vertices to make it

dh except for 5 ≤ n ≤ 6.

Table 4.1 Maximum Minimum Number of Additional Edges to Make G a DH Graph

n size

5 2

6 2

7 5

8 6

When making non-dp graphs into dp graphs it is harder to find a non-naive bound

for the number of edges needed. We can always add n − ∆(G) − 1 edges to a maximum

degree vertex in a graph G to create a spanning star subgraph. Though adding an edge to

a graph may destroy existing isometric subgraphs, this is often not the case, and we see in

Table 4.2 that making non-dp graphs into dp graphs takes far fewer edges than with the

dh case.
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Table 4.2 Maximum Minimum Number of Additional Edges to Make G a DP Graph

n size

5 1

6 1

7 1

8 1

4.3 Regular Graphs

We start with the case of regular graphs, where the degrees of the vertices are all

the same. When we look at Table 4.3, we note that while almost all regular graphs appear

to be dp, the convergence is slower than in the case of all graphs. Let (n, r)-regular denote

an r-regular graph of order n. Here we only consider admissible values of n and r for which

(n, r)-regular graphs exist, which is when n ≥ r + 1 and n and r are not both odd. We

want to find a dp (n, r)-regular graph for all admissible values of n and r where a dp graph

exists. Note that for r < 3, no connected dp (n, r)-regular graph exists, except for very

small n. As we saw in Chapter 3, graphs with a high minimum degree are dp, and the

union of a number of dp graphs is dp. If connectivity is not a constraint, an algorithm is

straightforward.

For the connected case, Ross et al. provide a dp construction for all admissible pairs

with r ≥ 3 [65] in four cases:

• For n = 2r

• n = 2r + 1

• n ≥ 2r + 2, r > 3

• n ≥ 2r + 2, r = 3
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Table 4.3 Percentage of Regular Graphs Which Are DP

# connected # connected

n regular graphs regular dp graphs % dp graphs

5 2 1 50.000

6 5 4 80.000

7 4 3 75.000

8 17 14 82.353

9 22 20 90.909

10 167 153 91.617

11 539 484 89.796

12 18979 18405 96.976

13 389436 384319 98.686

Theorem 1. For each admissible pair (n, r) there exists a dp (n, r) regular graph.

4.4 Constructing Regular Non-DP Graphs

Some of the more well-known construction methods for generating regular graphs

often fail to generate graphs which are dp. Let Cn,r be the circulant graph, with vertex set

V = {1, . . . , n} and edge set E with edge ij ∈ E if 1 ≤ |i−j| ≤ r/2, as well as i(i+n/2) if r

is odd, with all calculations here done modulo n. We can prove that (n, r)-regular circulant

graphs constructed using an offset list of {1, 2, . . . , b r
2
c} (with an extra offset of n

2
for odd

r) are distance preserving when r ≥ n
2
. Since this should be the case for all graphs with

δ(G) > n
2

if the Conjecture 3.12 is true, and we have already provided a dp construction for

such inputs, we omit the proof here. However, this construction generates non-dp graphs

for almost all values of 3 ≤ r < n
2
, as seen in Lemmas 4.5 and 4.6.

Lemma 4.5. For any integers n ≥ 5 and 2 ≤ r < n
2
, where r is even, there exists an

r-regular graph on n vertices that is non-dp.
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Proof. Let n and r be integers such that n ≥ 5 and 2 ≤ r < n
2
, where r is even. Then

let G = (V,E) be the circulant graph on n vertices with offset list {1, . . . , r
2
}. Now let

H ⊂ G be an induced subgraph of order n − 1 whose vertex set is G\{vi}, for arbitrary

vi ∈ V . Then dG(vi−r/2, vi+r/2) = 2, and dH(vi−r/2, vi+r/2) > 2, since the only path of

length 2 between vi−r/2 and vi+r/2 in G is the one going through vi, and the two vertices

do not share an edge. So G has no isometric subgraphs of order n− 1. Thus G is a non-dp

graph.

The circulant graph construction can accommodate even values of n and odd values

of r by using the offset n/2. We note that the this construction does not yield a non-dp

graph when r = n
2
− 1.

Lemma 4.6. For any integers n ≥ 5 and 2 ≤ r < n
2
− 2, where n is even and r is odd,

there exists an r-regular graph on n vertices that is non-dp.

Proof. Let n and r be integers such that n ≥ 5 and 2 ≤ r < n
2
− 2, where n is even and r is

odd. Then let G = (V,E) be the circulant graph on n vertices with offset list {1, . . . , r
2
, n
2
}.

Now let H ⊂ G be an induced subgraph of order n − 1 whose vertex set is G\{vi}, for

arbitrary vi ∈ V . Then dG(vi−r/2, vi+r/2) = 2, and dH(vi−r/2, vi+r/2) > 2, since the only

path of length 2 between vi−r/2 and vi+r/2 in G is the one going through vi, and the two

vertices do not share an edge. So G has no isometric subgraphs of order n− 1. Thus G is

a non-dp graph.

Despite the drawbacks of this construction and other similar ones, we have been

able to find (n
2
− 1, r)-regular non-dp graphs for n = 8 (see Figure 4.3) and n = 12. This

leads us to make Conjecture 4.4.

Conjecture 4.7. For any integers n ≥ 5 and 2 ≤ r < n
2
, where n and r are not both odd,

there exists a non-dp (n, r)-regular graph.
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Figure 4.3 A Non-DP (8, 3)-Regular Graph

4.5 Arbitrary Degree Sequences

We would like to expand our construction abilities to arbitrary sequences of integers

which are graphical and have at least one dp construction. In Lemma 4.8 we prove that a

modified version of the Havel-Hakimi algorithm generates a dp graph when no reordering

of the vertices is done, even when such a reordering would be called for by the original

algorithm. However, the modified algorithm fails to generate graphs for many sequences

which are graphical.

Lemma 4.8. Let S = (d1, . . . , dn) be a sequence of n positive integers such that d1 ≥

· · · ≥ dn, where S is a graphical sequence. Let G be the graph constructed using a modified

version of the Havel-Hakimi algorithm on S, where no reordering of the sequence / vertices

is allowed. If G is constructable using this algorithm, G is a dp graph, with the set of

isometric subgraphs {H1, . . . , Hn}, where Hk ∈ {H1, . . . , Hn} is the graph induced by the

vertices corresponding to the first k terms of S.

Proof. Proof is by induction on n.

Basis. For n = 1, the only graphical sequence is (0), which is constructable using

the modified Havel-Hakimi algorithm, and G = K1 with the isometric subgraph H1 = G is

dp.

Inductive Hypothesis. Assume the statement holds true for n = 1, 2, . . . , N .

Inductive Step. For the graphical sequence S = (d1, . . . , dN+1), we construct G from

S using the modified Havel-Hakimi algorithm. Let V (G) = {v1, . . . , vN+1}, where vertex

vi ∈ V (G) corresponds to di ∈ S. Let G′ = G\{vN+1}. By the inductive hypothesis, G′ is
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dp, with isometric subgraphs {H1, . . . , HN}. Adding back the vertex vN+1, we consider an

arbitrary Hk ∈ {H1, . . . , HN} as a subgraph of G. Let w and x be arbitrary vertices such

that w ≤ x ≤ k. We want any shortest path P between w and x in Hk to also be shortest

in G. This must be the case, since a shortest path involving vN+1 would necessitate w or

one of the intermediate vertices in P sharing an edge directly with x, and P would still be

a shortest path. So {H1, . . . , HN , G} is a complete set of isometric subgraphs of G.

Thus G is a dp graph.

Table 4.4 Success Rate of the Modified Havel-Hakimi Algorithm

# graphical

n degree sequences # successes % successes

5 20 12 60.000

6 71 32 45.070

7 240 86 35.833

8 871 243 27.899

9 3149 703 22.332

10 11655 2094 17.967

11 43332 6369 14.698

12 162769 19770 12.146

Even if we continue without reordering the vertices when such a reordering is needed,

the algorithm will still often fail. In Table 4.4 the results of the modified Havel-Hakimi

algorithm are provided for 5 ≤ n ≤ 12. Note that any time the algorithm terminates

properly is counted as a success, whether the resulting graph is connected or not, as some

graphical degree sequences do not have a connected representation.
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4.6 Summary

Constructing connected dp graphs is difficult for many constraints, in particular

when dealing with an arbitrary degree sequence. Although we have an algorithm that

works for certain cases, we wish to find one that works for all degree sequences. Also of

interest is the problem of determining the minimum number of edges needed to make a

non-distance preserving graph into a dp one. While we do not have any conjecture here

that improves on the trivial |V (G)|−δ(G)−1 upper bound, experimental evidence indicates

that this number is quite low. The question here is how much of an improvement we can

make over augmenting the graph so that it contains a star subgraph with the least number

of additional edges.
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Chapter 5

Isometric Subgraphs

More efficient isometric subgraph finding is integral to recognizing dp graphs. Our

computational work in Chapters 3 and 4 used brute forced methods, which is slow even for

very low order graphs. In practice we are often able to find quite large isometric subgraphs

using Monte Carlo methods. This is despite our observations that the larger a graph is,

the lower the ratio of isometric to non-isometric subgraphs tends to be.

5.1 Finding Isometric Subgraphs

Lemma 3.18, along with a proof of Conjecture 3.19, would demonstrate that the

recognition problem for dp graphs is NP-Complete. Our experiences so far suggest that it

is, and we have commenced searching for sub-isometric subgraph finding heuristics under

this assumption. The first observation here is that an isometric subgraph of order k is not

necessarily constructable from some isometric subgraph of order k − 1. However, we can

still construct an incremental Monte Carlo algorithm that attempts to find an isometric

subgraph in G of up to order k:

i. Select an arbitrary vertex from G. This vertex is trivially an isometric subgraph of

order 1, which we denote H.
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ii. Attempt to add a neighbor from G not in H to H such that the resulting induced

subgraph is dp. If no such vertex exists, stop.

iii. If H is of order k, stop. Otherwise, go back to step ii.

While inelegant, randomized, and computationally inefficient, this algorithm may

be used to find reasonably high order isometric subgraphs. When we need to be certain

whether a graph contains an isometric subgraph of order k, we use a brute force search.

For experimental results, see our previous paper [59].

5.2 Bounds on the Number of Isometric Subgraphs

Tables 5.1 and 5.2 illustrate the potential difficulty of finding isometric subgraphs.

While the average number of isometric subgraphs increases with the order of a graph, the

percentage of all induced subgraphs which are isometric decreases.

Table 5.1 Average Number of Isometric Subgraphs of All Connected Graphs

n\k 1 2 3 4 5 6 7 8 9

1 1.000

2 2.000 1.000

3 3.000 2.500 1.000

4 4.000 4.167 3.333 1.000

5 5.000 6.190 6.952 3.857 1.000

6 6.000 8.491 12.179 9.839 4.958 1.000

7 7.000 11.198 19.355 19.60 12.907 5.190 1.000

8 8.000 14.412 29.284 35.167 29.011 16.322 5.780 1.000

9 9.000 18.219 42.782 58.951 57.802 40.825 20.173 6.382 1.000
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Table 5.2 Average Percentage of Isometric Subgraphs to Total Subgraphs of all Connected
Graphs

n\k 1 2 3 4 5 6 7 8 9

1 100.0

2 100.0 100.0

3 100.0 83.3 100.0

4 100.0 69.4 83.3 100.0

5 100.0 61.9 69.5 77.1 100.0

6 100.0 56.6 60.9 65.6 76.6 100.0

7 100.0 53.3 55.3 56.0 61.5 74.1 100.0

8 100.0 51.5 52.3 50.2 51.8 58.3 72.2 100.0

9 100.0 50.6 50.9 46.8 45.9 48.6 56.0 70.9 100.0

5.3 Applications

In [59], we proposed a clustering algorithm using isometric subgraphs [59]. While

the results of our algorithm compare favorably to hierarchical clustering methods, we need

a more sophisticated algorithm for finding isometric subgraphs. This is because of the poor

time complexity of the current one. In addition to using the incremental isometric subgraph

algorithm described in Section 5.1, it introduces the notion of almost dp subgraphs. For a

subgraph H ⊆ G, we define the average distance increase for H as the sum of the distance

increases between H and G divided by the number of vertices in H. If H is actually an

isometric subgraph of G it will have an average distance increase of 0. This relaxation

allows us to address the fact that we are not always able to disjointly partition G into an

arbitrary number of isometric subgraphs.
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5.4 Summary

Our work in [59] and on small Twitter datasets demonstrates that isometric or nearly

isometric subgraphs do make good clusters, at least for certain kinds of datasets. How-

ever, a practical algorithm will require not using exact distances, as the all pairs shortest

paths problem requires O(V E+v2 log V ) (Bellman-Ford) to O(V 3) (Floyd-Warshall) time.

Even so, a better than brute force non-approximation algorithm would still be helpful for

theoretical exploration and practical problems involving small datasets.
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Chapter 6

Related Work

Hundreds of graph classes have been covered in the literature. Many families of

graphs, including such well known ones as trees and bipartite graphs, form a large hierar-

chical structure, with perfect graphs at the top. In this chapter we will review the literature

on perfect graphs and relevant subclasses, particularly dh graphs.

Before we proceed, we need to define some standard functions on graphs. The

following definitions and notation are taken from Brandstädt et al. [8]. Let G = (V,E) be

a graph.

• The clique number of G, denoted ω(G), is the order of the largest clique in G. A

clique is a subset of vertices such that every pair of vertices in the subset are adjacent.

• The chromatic number of G, denoted χ(G), is the minimum number of independent

sets V can be partitioned into. An independent set is a subset of vertices such that

no two vertices in the subset are adjacent.

• The stability number of G, denoted α(G), is the order of the largest independent

(stable) set in G.

• The clique cover number of G, denoted k(G), is the minimum number of cliques V

can be partitioned into. Note that we use k(G) rather than κ(G) here, as κ(G) is

used to denote vertex connectivity in Bondy and Murty [7], and elsewhere.
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All four of these problems are included in Karp’s list of 21 NP-Complete problems [48].

Since the complement of a clique is an independent set, the equalities α(G) = ω(G) and

k(G) = χ(G) immediately follow from the above definitions [35]. Furthermore, a clique and

an independent set can share at most one vertex, so we have the inequalities ω(G) ≤ χ(G)

and α(G) ≤ k(G) as well [35].

6.1 Perfect Graphs

First formalized by Berge in the 1960’s [4, 6], a perfect graph is one where for every

subset A ⊆ V , we have χ(G[A]) = ω(G[A]), where G[A] is the subgraph of G induced by

A. In the context of perfect graphs and related graph classes, an induced cycle of order 5

or more is often referred to as a hole. An antihole, denoted Cn, is the complement of a hole

of order n. This definition can be reformulated in a number of ways using the previously

stated identities. Berge also provided us with two important conjectures (now theorems)

regarding perfect graphs [4, 5]:

• (Weak) Perfect Graph Conjecture. The complement of a perfect graph is perfect.

• Strong Perfect Graph Conjecture. A graph is perfect if and only if it does not

contain any odd order holes or odd order antiholes.

Obviously, the latter statement implies the former. These theorems and other nontrivial

characterizations are discussed below.

6.1.1 Characterizations

The following characterizations of perfect graphs are equivalent:

i. ω(G[A]) = χ(G[A]), for all A ⊆ V .

ii. α(G[A]) = k(G[A]), for all A ⊆ V .
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iii. ω(G[A]) · α(G[A]) ≥ |A|, for all A ⊆ V .

iv. PI(A) = P (A), where A is the clique matrix of G. The clique matrix of G is the

maximal cliques versus vertices matrix.

v. G contains no odd holes or antiholes.

Characterization (i) is Berge’s definition of a perfect graph. In 1972, Lovász demonstrated

the equivalence of (i) and (ii), proving the Perfect Graph Conjecture, now known as the

Perfect Graph Theorem [52]. In another paper Lovász sharpened this result by proving the

further equivalence of (iii), although this characterization is still weaker than the Strong

Perfect Graph Conjecture [51]. Chvátal gave the polyhedral characterization of (iv) in

1975 [18]. The equivalence of characterization (v) and (i) is the Strong Perfect Graph

Conjecture. In 2005 it was finally proven by Chudnovsky et al., and is now known as the

Strong Perfect Graph Theorem [16]. Subclasses of perfect graphs include bipartite graphs,

dh graphs and trees [8].

6.1.2 Strong Perfect Graph Theorem

Minimal imperfect graphs appear often in attempts to prove the Strong Perfect

Graph Theorem. A graph is minimal imperfect if it is not a perfect graph, but every

proper induced subgraph is a perfect graph [35]. The Strong Perfect Graph Theorem can

be restated in terms of minimal imperfect graphs: The only minimal imperfect graphs are

odd holes and odd antiholes [8]. The following are properties of minimal imperfect graphs:

i. |V | = α(G)ω(G) + 1 [35].

ii. Every vertex in G belongs to exactly ω(G) maximum cliques of size ω(G) [60].

iii. Every vertex in G belongs to exactly α(G) maximum independent sets of size α(G)

[60].

iv. G contains exactly |V | maximum cliques of size ω(G) [60].
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v. G contains exactly |V | maximum independent sets of size α(G) [60].

vi. G does not contain a star-cutset [19]. A star-cutset is a set of vertices X ⊂ V (G)

whose removal disconnects G, and that there exists some vertex u ∈ V adjacent to

every other vertex in X.

vii. G does not contain an even pair [55].

viii. G is (2ω(G)− 2)-connected [68].

For a deeper analysis of attempts to prove the Strong Perfect Graph Theorem, see Rousse

et al. [66].

6.1.3 Complexity

For some time all that was known about perfect graph recognition was that the

problem of recognizing Berge graphs belonged to Co-NP [53]. It has recently been shown

that Berge graphs, and hence perfect graphs, may be recognized in polynomial time [15].

For perfect graphs, ordinarily NP-Complete problems such as the chromatric number, clique

problem, and independent set problem are solvable in polynomial time [54].

6.2 Distance-Hereditary Graphs

First proposed by Howorka [43], a dh graph is one in which every connected induced

subgraph is isometric. Given a a connected graph G with interval function

I(u, v) = {x | x is a vertex of G on some shortest (u, v)-path},

Bandelt and Mulder provide a number of equivalent characterizations:

i. G is distance hereditary.
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ii. For any two vertices u and v with dG(u, v) = 2, there is no induced (u, v)−path of

length greater than 2.

iii. The house, hole (long induced cycle), domino, and gem are not induced subgraphs of

G.

iv. The house, hole (long induced cycle), domino, and gem are not isometric subgraphs

of G.

v. The house, domino, and gem are not induced (or isometric) subgraphs of G, and

I(u, v) ∩ I(u,w) = {v} implies dG(u,w) ≥ dG(u, v) + dG(v, w)− 1.

vi. The gem is not an induced subgraph of G, and for any three vertices u, v, w, at

least two of the following inclusions hold: I(u, v) ⊆ I(u,w) ∪ I(v, w), I(u,w) ⊆

I(u, v) ∪ I(v, w), and I(v, w) ⊆ I(u, v) ∪ I(u,w).

vii. For any four vertices u, v, w, x, at least two of the following distance sums are equal:

dG(u, v) + dG(w, x), dG(u,w) + dG(v, x), dG(u, x) + dG(v, w).

viii. G satisfies condition (vii), and if in (vii) the smaller distance sums are equal, then

the largest one exceeds the smaller ones by at most 2.

Dh graphs are a subset of perfect graphs [43].

Hammer and Maffrey proposed a linear time recognition algorithm [39]. This al-

gorithm was later shown to be incorrect by Damiand et al., who provide their own linear

time recognition algorithm that attemps to decompose a graph into a sequence of pendant

vertex and twin operations [22], shown in Figure 6.1. As a subset of several other graph

classes, dh graphs inherit a number of polynomial time optimization algorithms. Several

algorithms designed specifically for dh graphs also exist, including a linear time algorithm

for the Hamiltonian cycle problem [45].
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Figure 6.1 Pendant Vertex and Twin Operations

pendant vertex false twins true twins

6.3 Geodetically Connected Graphs

The connectivity of a non-complete graph G is the number of vertices required to

disconnect the graph. Similarly, the geodetic connectivity (gc) of G is the number of vertices

required to increase dG(u, v) for some u, v ∈ V (G). First defined by Entringer et al. [28],

these graphs are also known as self-repairing graphs [32, 33]. While not as well studied as

perfect or dh graphs, a number of other papers attempt to characterize [27, 56] and find

minimum examples [57, 62, 63, 50] of gc graphs.

Chang and Ho provide a polynomial time recognition algorithm for geodetically

connected graphs [11], and a linear time recognition algorithm for some specific cases [14,

12]. Other papers of Chang examine special cases of 2-gc graphs, which are referred to as

hinge-free graphs [13, 10]. Let G be a graph and k ≥ 2 be an integer. Then the following

characterizations are equivalent [13]
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i. G is a k −GC graph.

ii. Every pair of nonadjacent vertices in G are joined by at least k vertex-disjoint

geodesics.

iii. Every pair of nonadjacent vertices in G are joined by at least k edge-disjoint geodesics.

iv. G is a k −GEC graph.

v. Every pair of vertices u, v ∈ V (G) with d(u, v) = 2 satisfies |N(u) ∩N(v)| ≥ k.

6.4 Distance-Preserving Graphs

There are a number of concepts in the graph theory literature that involve con-

straints on distances or other invariants as vertices are deleted from the graph. Except

for the work on gc graphs, they are subtly but significantly different that dp graphs and

isometric subgraphs, and their proof techniques have not been applicable to our work.

Recently, Zahedi proved several characterizations and constructions of dp graphs [70]. No-

tably, chordal graphs are dp. Also, every graph with girth of at least 5 where each vertex

is a cut vertex or contained in a cycle is non-dp.

6.5 Other Graph Classes

For further coverage of perfect graphs and related subclasses, including dh graphs,

see Brandstädt et al. [8], Alfonsin and Reed [1], and Golumbic [35]. In this section we

cover several other graph classes with connections to dp graphs.

6.5.1 Hypercubes

The n-dimensional hypercube, denoted Qn, is the graph on 2n vertices whose vertex

set is the set of all n-tuples of 0s and 1s, where two vertices share an edge if their n-tuples
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differ by exactly one element [7]. While they are usually referred to as hypercubes, or n-

cubes, they previously went by the term measure polytopes [21]. Less formally, an n-cube

is a generalization of the cube to n dimensions. They can also be defined recursively using

the Cartesian product, where Q1 = K2, and Qn = K2 × Qn−1 [40]. Figure 6.2 gives a

drawing of Q4.

Figure 6.2 A Tesseract (Q4)

Given the nature of the tuples associated with each vertex, the distance between

any two vertices is the number of elements that differ between their respective tuples. The

average distance between two vertices in Qn is n·2n−1

2n−1 , which approaches n/2 as n goes to

infinity [47]. The vertex connectivity and edge connectivity of Qn is n, i.e., Qn cannot be

disconnected without removing a minimum of n vertices or edges [41].

6.5.2 De Bruijn Digraphs

An n-dimensional de Bruijn digraph, denoted Bm,n, is the directed graph on mn

vertices, where the vertex set is the set of all sequences of length n over an alphabet of

cardinality m, and there exists an arc from vertex (a1a2 · · · an) to vertex (b1b2 · · · bn) if and

only if ai+1 = bi for 1 ≤ i ≤ n − 1 [7]. In other words, vertex (a1a2 · · · an) has arcs going

to vertices (a2a3 · · · an∗), where ∗ is an arbitrary element in the alphabet. Also known

as de Bruijn-Good digraphs, they were discovered independently by de Bruijn [23] and

Good [36]. Like hypercubes, de Bruijn digraphs have applications in communication and
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multiprocessor networks [67]. They have also been used to represent genomic sequences in

bioinformatics [61, 71]

De Bruijn digraphs may be generalized as simple directed graphs by removing multi-

ple edges and loops [46]. The undirected version of the generalized de Bruijn graph further

replaces arcs with edges [64, 30]. We consider undirected generalized de Bruijn graphs over

the alphabet {0, 1}, as shown in Figure 6.3.

Figure 6.3 A De Bruijn Digraph (B2,3)

000 001 010 011 100 101 110 111
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Chapter 7

Conclusions

In this work we defined dp graphs, a fundamentally new class class of graphs. We

proved several characterizations involving dp graphs, and provided construction methods

for a variety of constraints. We proposed a number of key conjectures critical to the

understanding of dp graphs. Additionally, we used a simple isometric subgraph finding

algorithm to demonstrate that dp graphs and isometric subgraphs have some applications

in data mining. It is our hope that future researchers will not only solve these conjectures,

but find more applications for dp graphs as well, by using what we have learned.
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APPENDIX A LIST OF SYMBOLS

V (G) vertex set of G

E(G) edge set of G

ψG incidence function of G

δ(G) minimum vertex degree of G

∆(G) maximum vertex degree of G

G[X] subgraph of G induced by X

G complement of G

dG(u, v) distance function of G

Pn path of order n

Cn cycle of order n

Sn star graph of order n

Kn complete graph of order n

Km,n complete digraph with partitions of order m and n

ω(G) clique number of G

χ(G) chromatic number of G

α(G) stability number of G
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k(G) clique cover number of G

Qn n-dimensional hypercube of order 2n

Bm,n n-dimensional De Bruijn graph of order mn
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APPENDIX B SPECIAL GRAPHS

Figure B.1 Butterfly Graph

Figure B.2 Complete (Kn)

K1 K2

K3 S4 K5

Figure B.3 Complete Bipartite (Km,n)

K1,1 K1,2 K1,3 K2,2 K2,3
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Figure B.4 Cycle (Cn)

C1 C2

C3 C4 C5

Figure B.5 Domino

Figure B.6 Gem

Figure B.7 House
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Figure B.8 Hypercube (Qn)

Q0 Q1

Q2 Q3

Q4

Figure B.9 Pan

3− Pan 4− Pan 5− Pan 6− Pan 7− Pan

Figure B.10 Path (Pn)

P1 P2 P3 P4 P5

Figure B.11 Star (Sn)

S1 S2 S3

S4 S5
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APPENDIX C REAL WORLD NETWORKS

Politics (UK), Politics (Ireland), Premier League Football, Olympics 2012, and

Rugby Union are political and sports related Twitter datasets. A node in these datasets

represents a Twitter user. A link between two nodes represents one or both of the users

following the other. The class labels are political parties, sports teams, or in the case of

Olympics 2012, sports.

The CiteSeer and Cora datasets are paper citation networks. A node in these

datasets represents a scientific publication. A link between two nodes represents a citation

by one of the papers of the other. The class labels are areas of research. The original

CiteSeer dataset has 3312 nodes and 4536 links. We extracted the largest component,

which has 2110 nodes and 3668 links. The original Cora dataset has 2708 nodes and 5378

links. We extracted the largest component, which has 2485 nodes and 5069 links.

Tables C.1 through C.7 consider distances in the clusters formed by the class labels

for these seven datasets. The distances between vertices in the subgraphs induced by the

class labels are compared to the distances between those vertices in the original graph.

Tables C.8 and C.9 examine the same metrics using clusters found with k-means and

hierarchical clustering algorithms instead of those based on the class labels.
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Table C.1 UK MPs on Twitter (419 nodes, 27340 links, 5 communities)

class order avg. distance avg. distance increase # infinite paths

conservative 173 1.58 0.0 0

labour 187 1.44 0.0 186

libdem 43 1.25 0.0 0

snp 5 1.0 0.0 0

other 11 1.62 0.28 26

Table C.2 Irish Politicians and Organizations on Twitter (348 nodes, 16856 links, 7 com-
munities)

class order avg. distance avg. distance increase # infinite paths

ff 49 1.39 0.0 0

fg 143 1.56 0.0 0

green 7 1.0 0.0 0

ind 31 1.71 0.04 0

labour 79 1.28 0.0 0

sf 31 1.31 0.0 0

ula 8 1.14 0.0 0

70



Table C.3 Premier League Players and Clubs on Twitter (248 nodes, 3819 links, 20 com-
munities)

class order avg. distance avg. distance increase # infinite paths

arsenal 12 1.36 0.0 0

aston-villa 11 1.2 0.0 0

chelsea 12 1.23 0.0 0

everton 15 1.36 0.0 0

fulham 10 1.16 0.0 0

liverpool 13 1.24 0.0 0

man-city 10 1.13 0.0 0

man-utd 10 1.18 0.0 0

newcastle 10 1.31 0.0 0

norwich 9 1.36 0.0 0

qpr 10 1.4 0.0 0

reading 14 1.07 0.0 0

southampton 14 1.24 0.0 0

spurs 23 1.47 0.0 0

stoke 15 1.43 0.0 0

sunderland 13 1.13 0.0 0

swansea 11 1.07 0.0 0

west-brom 17 1.26 0.0 31

west-ham 8 1.29 0.04 0

wigan 11 1.25 0.0 0

71



Table C.4 Olympic Athletes and Organizations on Twitter (464 nodes, 10642 links, 28
communities)

class order avg. distance avg. distance increase # infinite paths

archery 7 1.14 0.0 0

athletics 52 1.53 0.0 0

badminton 13 1.26 0.0 0

basketball 14 1.27 0.0 0

beach-volleyball 9 1.39 0.0 0

boxing 21 1.19 0.0 0

canoeing 19 1.23 0.0 0

cycling 29 1.39 0.0 0

diving 20 1.31 0.0 0

equestrianism 15 1.54 0.0 0

fencing 21 1.45 0.0 0

gymnastics 16 1.38 0.0 0

handball 13 1.1 0.0 0

hockey 43 1.3 0.0 0

judo 14 1.32 0.0 0

pentathlon 11 1.02 0.0 0

rowing 21 1.3 0.0 0

sailing 10 1.33 0.0 0

shooting 7 1.14 0.0 0

swimming 34 1.19 0.0 0

swimming-sync 10 1.0 0.0 0

tabletennis 7 1.24 0.0 0

taekwondo 11 1.18 0.0 10

tennis 12 1.67 0.0 11

triathlon 7 1.0 0.0 0

waterpolo 20 1.12 0.0 0
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Table C.4 (cont’d)

class order avg. distance avg. distance increase # infinite paths

weightlifting 3 1.33 0.0 0

wrestling 5 1.2 0.0 0

Table C.5 Rugby Players and Clubs on Twitter (854 nodes, 35757 links, 15 communities)

class order avg. distance avg. distance increase # infinite paths

america 2 1.0 0.0 0

argentina 1 — — 0

australia 61 1.53 0.0 0

canada 1 — — 0

england 218 1.86 0.01 433

fiji 2 1.0 0.0 0

france 105 1.8 0.02 0

ireland 91 1.6 0.01 90

italy 18 1.48 0.0 0

new-zealand 64 1.6 0.0 186

samoa 11 1.25 0.0 0

scotland 63 1.44 0.0 0

south-africa 99 1.77 0.01 480

tonga 5 1.33 0.0 7

wales 113 1.62 0.01 112
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Table C.6 CiteSeer (2110 nodes, 3668 links, 6 communities)

class order avg. distance avg. distance increase # infinite paths

Agents 463 5.56 0.42 33007

IR 532 4.57 0.28 44185

DB 388 8.59 0.6 42500

AI 115 1.64 0.08 6455

HCI 304 7.42 0.31 25056

ML 308 5.89 0.07 37188

Table C.7 Cora (2485 nodes, 5069 links, 7 communities)

class order avg. distance avg. distance increase # inf. paths

Neural Networks 726 5.72 0.49 61201

Rule Learning 131 3.77 0.27 3338

Reinforcement Learning 214 3.26 0.08 7190

Probabilistic Methods 379 6.41 0.32 16282

Theory 344 4.72 0.59 17892

Genetic Algorithms 406 3.54 0.01 4396

Case Based 285 5.27 0.72 11034
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Table C.8 k-means Clustering

dataset # cluster cluster average average dist. average # average

trials order order σ distance increase inf. paths entropy

Politics (UK) 100 83.60 28.63 1.38 0.19 305.49 0.16

Politics (IE) 100 49.71 19.47 1.41 0.08 156.18 0.34

Football 100 12.41 6.21 1.51 0.15 14.95 0.72

Olympics 100 16.67 9.36 1.50 0.20 34.90 0.61

Rugby 100 56.53 26.52 1.70 0.17 85.56 0.48

CiteSeer 20 351.67 173.01 4.89 0.02 21328.48 0.69

Cora 20 355.00 136.61 4.16 0.70 29814.84 0.67

Table C.9 Hierarchical Clustering (Average Linkage)

dataset cluster cluster average average dist. average # average

order order σ distance increase infinite paths entropy

Politics (UK) 83.60 161.20 1.78 0.00 1.80 0.65

Politics (IE) 58.00 105.99 1.77 0.00 0.50 0.72

Football 12.35 6.78 1.47 0.01 0.00 0.53

Olympics 16.54 16.91 1.55 0.02 0.00 0.43

Rugby 56.63 62.60 1.77 0.01 0.00 0.39

CiteSeer 351.67 718.84 8.84 0.00 0.00 0.91

Cora 355.00 803.11 5.90 0.00 0.00 0.89
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sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 10:114,
1961.

[5] C. Berge. Sur une conjecture relative au probleme des codes optimaux, commun. 13
eme assemblee gen. URSI, Tokyo, 1962.

[6] C. Berge. Some classes of perfect graphs. Six Papers on Graph Theory, pages 1–21,
1963.

[7] J.A. Bondy and U.S.R. Murty. Graph Theory (Graduate Texts in Mathematics).
Springer Berlin, 2008.
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[19] V. Chvátal. Star-cutsets and perfect graphs. Journal of Combinatorial Theory, Series
B, 39(3):189–199, 1985.

[20] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs.
SIAM Journal on Computing, 14(4):926–934, 1985.

[21] H.S.M. Coxeter and H.S.M. Coxeter. Regular polytopes. Dover Publications, 1973.

[22] G. Damiand, M. Habib, and C. Paul. A simple paradigm for graph recognition: ap-
plication to cographs and distance hereditary graphs. Theoretical Computer Science,
263(1-2):99–111, 2001.
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