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ABSTRACT

A COMPARATIVE STUDY OF MANPOWER SCHEDULING ALGORITHMS: A

MULTI-OBJECTIVE HEURISTIC PROCEDURE, TABU SEARCH, AND SIMULATED

ANNEALING

By A. P. Blossom

Achieving minimum staffing costs, meeting worker's requests for hours worked

and time offwhile maintaining required staffing levels are all important but conflicting

Objectives when scheduling service employees. Current employee scheduling methods

address only one or two of these Objectives.

This research implements two algorithms new to the manpower scheduling field,

simulated annealing and tabu search. The algorithms were then compared against each

other and a multi-objective heuristic developed by Loucks on several measures of

solution quality. This research was conducted in the domain of the tour scheduling

problem with non-interchangeable workers and using the full set of possible shifts. All

previous comparative research has used a working subset approach.

Tests were conducted with problems constructed with data from service

businesses and with synthetic problems. The solution methods were tested for the effect

of several independent variables measuring solution quality, cost and time-to-completion.

Simulated Annealing was found to generally outperform Loucks' heuristic and tabu

search on the measures of solution quality and cost, while Loucks' heuristic was clearly

better in time-tO-completion.
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CHAPTER 1. INTRODUCTION

1. I. INTRODUCUON

Labor scheduling is a required managerial task in any firm which employs

workers in the production of goods and services. Labor is typically a limited and

indispensable resource which must be managed effectively in order for the firm to

achieve its objectives. The effective scheduling of manpower is a major component of

the management of labor. As such, manpower scheduling has a great deal of impact on

profitability, customer service and employee morale. The specific manpower scheduling

decisions that a manager must consider depend upon the environment, business and

labor, that the scheduling decisions are made in. This research focuses on manpower

scheduling in the service sector, which has characteristics distinct from other sectors of

the economy.

1.2. SPECIAL CHARACTERISTICS OFSERVICEBUSHVES'SES'

The special characteristics of the service environment relevant to manpower

scheduling are [Aggarwal, 1982]:



. The output of service systems (a service system is a "factory" that

provides services), generally cannot be placed into inventory. The

exceptions are products, such as hamburgers, that have a very short shelf

life (10 minutes). Consequently in service systems it is not possible to

level output to meet demand.

. Service systems require equipment, labor and space capacity to handle

peak or near peak demand conditions. In other words, the capacity

decision in service systems is to buy capacity for peak, rather than

average, demand levels.

. The demand for output of service systems varies greatly from month-to-

month, week-to—week and day-to-day. Extreme variations from hour-to-

hour exist in some service systems. The demand may also have seasonal

variations.

. The demand for output of service systems cannot be easily backlogged.

Usually unsatisfied demand is lost business. In cases where the demand

can be backlogged, the indirect costs may be significant.

. Since in most service systems, the customer receives the service directly

from the server, they are labor intensive.

Since demand must be satisfied or lost and material costs are fixed for a particular

product, the most significant opportunity for reducing costs is through better scheduling

of manpower. In addition, the opportunities for improving customer service and

employee morale lie primarily in improved manpower scheduling.



1. 3. OBJECTIVESFOR SCHEDULING INSERVICESYSTM

Service systems also differ from manufacturing systems in that they have

different objectives. Indisputably, cost minimization is an objective of service systems,

but their primary objectives are often different because of the direct interaction with the

customer. The objectives of a service firm might include the following:

. Minimization of average response time to start of service delivery.

. Minimization of the average customer waiting time.

o Minimization of average customer service time.

. Minimization of the average number of facilities or work crews.

. Improvement and maintenance of employee morale through scheduling

employees at preferred times (of the employee).

Additionally, the manager of the service system must operate within a large

number of legal, regulatory, union, policy, and budgetary constraints.

In summary, labor scheduling is a major concern in service businesses, with the

conflicting objectives of maintaining desired levels of customer service and minimizing

costs.

I. 4. PROBLWSETHNG

The research is concerned with scheduling problems faced by four environments,

food service, retail, banking and a series of synthetic problems. The research will

consider scheduling ofwork tours with limited worker interchangeability in the four

service environments mentioned above. Limited worker interchangeability refers to



restrictions placed on the assignments of workers. Not all workers can perform all tasks,

and must not be assigned to tasks for which they are not qualified.

A typical demand pattern from a fast food restaurant is shown in figure 1-1.
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Figure 1-1, Typical Demand Pattern For A Fast Food Restaurant

Note that the demand varies significantly over short time periods. In order to

minimize costs, scheduling is typically done in relatively small time increments, one hour

or less, creating a large set of possible shifts. A review and taxonomy of labor scheduling

problems is presented in chapter 2. The particular problem studied here of work tour

scheduling with limited worker interchangeability is detailed in section 2.5.2.

1. 5. PROBLEMSTAIWT

The manpower scheduling problem presented here is one of deciding who works

when and at what task. Stated more precisely, the manager must decide an employees



work shifts and task assignment over the time span chosen. In this research a one week

time horizon is chosen for the scheduling activity. Further, each day is broken into 1 hour

increments. The manager, in order to provide adequate customer service, will desire to

have on duty, during every hour of each day scheduled, enough employees to satisfy the

demand for services forecasted during that hour. Because of restrictions in the problem

setting, such as minimum shift length, a manager may not be able to schedule the

optimum number of workers during a particular hour. The manager may then decide to

over staff a particular hour.

1.5.1. Three Step Manpower Scheduling Process

The manpower scheduling process consists of three steps, Swart and Donno

[1981]. First, a weekly sales/demand forecast is developed. Second, the weekly

sales/demand forecast is converted into hourly staffmg requirements. And third, the

manpower schedule is developed, which specifies for each worker, the hours on duty, i.e.

the "tour", and the task to be performed during each on-duty hour.

Sales / Volume Forecasting. Short-term, i.e. one week, sales/demand forecasting

is the first step in the manpower scheduling process. This forecast is typically made using

three sources of data, historical sales/demand data, current trends of sales/demand and the

schedule of special events. The manager will gather past sales/demand data (for example,

last week's sales/demand data, or same week last year sales/demand data). This data may

be used as is or the manager may average several past periods to provide an initial

sales/demand forecast.

Second, the manager will adjust the forecast using the two remaining sources of

information, current sales/demand trends and the schedule of special events. Trends in



the sales/demand patterns of the firm may cause the manager to adjust the forecast of

individual hours or the entire week up or down. Special events, such as a sale, athletic

event, or parties may cause increased demand for the services of the organization. In this

case, the manager would estimate the effect of the special event and adjust the forecast

accordingly.

Determination ofStafiing Requirements. Once the sales/demand forecast is

complete, the forecast is converted into staffing requirements for each hour. These

requirements would be the number of workers required to staff each task for each hour

forecasted.

Often, a table is used to convert hourly sales forecasts into staffing requirements.

Such a table is shown in table 1.1. This particular table divides the work load into eight

tasks, each of which may or may not be staffed at a particular demand level. Note that

this table specifies tasks and staffmg levels associated with meeting customer demand

and does not include activities where the timing is not critical, such as planned

maintenance. Tables like these may be developed in a variety of ways, such as expert

Opinion and simulation, Swart and Donno [1981].

Table 1-1, Table for Translation of Sales into Required Manpower.

Task 1 Task Task 3 Task Task 5 Task Total

1

1 1

1 1

2 1

2 2

2 2

3 2

3 2

3 3

3 3 



Two additional points about staffing requirements may be made. First, the

staffing requirements shown on the table are minimum staffing requirements. And

second, typically in fast food and retail establishments, some amount of staffing is

required before opening and after closing. The staffing requirements for these hours

cannot be determined by using a table based on hourly sales/demand volumes.

Task and Time Scheduling of Workers. The final stage of the manpower

scheduling process is the development of a manpower schedule that specifies the workers

on duty and the task assignments. A schedule usually consists Of at least two reports, one

for the manager that lists the workers for each hour and task, and the second for each

worker that lists the days scheduled, the hours scheduled during those days, and the tasks

assigned during those hours.

The objectives for the manpower schedule development include minimizing

overstaff'mg of task hours, minimize under staffmg of task hours, and meeting the

worker's preferences for the number of hours scheduled, while not violating work rules

such as minimum shift length, maximum shift length, task qualifications, etc.

It might seem that once a schedule for a week is developed, it would only need

minor modification for use in subsequent weeks. There are several factors that cause that

supposition to be true only occasionally. These factors include, high worker turnover (at

least in some industries/firms), variations in sales/demand patterns, special events,

changes in worker availability, and etc.

This final stage of the manpower scheduling process is the focus of this research.
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I. 5. 2. Restrictions on Work Tours For This Research Setting

To facilitate discussion of the problem, related literature, mathematical

formulation and results, a common set of terms will de defined. After these definitions

common to the scheduling literature are established, three aspects of the problem, limited

worker interchangeability, limited worker availability, and worker task qualifications will

be discussed.

Definitions/Terminology. The first terms to be defined are "shift" and "work

shift". These two terms may be used interchangeably. A shifi is a period ofwork during a

day. A work shift has a start and a finish time. The period of time between the start time

and finish time is sometimes called a "work stretc ". A work stretch may contain rest

breaks or lunch breaks. In some scheduling environments "split" shifts exist. A split shifi

is a daily work shift that has a break of more than one half hour. A split shift would be

defined by two sets of start and finish times for a single day. These two sets would not,

of course, overlap.

The term "work tour" is used to describe the set of shifis scheduled for a worker

over the scheduling horizon. A work tour would consist of the shifts scheduled as well as

the days off, or "relief days". The "scheduling horizon" is the length of time for which a

schedule is produced. For our research, the scheduling horizon is one week. In this

research the scheduling process produces schedules where the shifts are generally not the

same from workday to workday. Such a tour is said to contain "mixed shifts."

Limited Worker Interchangeability. The term limited worker interchangeability

refers to existence of characteristic differences between workers that must be considered

during the third step of the scheduling process. Ifthere are no such differences, the

workforce is called homogenous. A homogenous workforce has workers that are

completely interchangeable. On the other hand, a heterogeneous workforce has workers



whose differences must be taken into account when the schedule is constructed. These

differences might be due to differing times available during the day and/or week, and

different tasks the worker is qualified to perform.

Limited Worker Availability. A worker's availability is defined as the specific

hours during the week that the worker has agreed to be available for work. Because the

variety of workers in service fums ranges from full-time professionals to part-time high

school students, it can be reasonably inferred that the availability of workers would vary

from one to another, being limited for some or all employees. School, family,

transportation, and curfews are examples of conditions that can restrict a worker‘s

availability.

A part-time employee will accept a schedule with mixed shifts and non-

consecutive workdays in order to restrict his availability and to have the option of

changing that availability to accommodate needed (or desired) changes in schedule. The

manager, however, would like to have unrestricted availability to ease the scheduling

process and to maintain the greatest degree of flexibility for use in the scheduling

process. Some companies require unrestricted availability of their full time employees, in

exchange for the benefits of full time employment, such as health insurance,

unemployment insurance, guaranteed number of hours, etc.

Worker Task Qualifications. The particular tasks (or functions) that a worker is

qualified to perform are referred to as the worker‘s task qualifications. Because of the

cost of training, and the rate of employee turnover (sometimes high), the manager may

not train every new employee on every task as quickly as possible. The manager may

train the employee on those tasks which the manager deems most necessary, probably

based on an assessment of task coverage needs. Task coverage is the degree to which the

task required to be performed by the forecast can be covered by the employees available

to be Scheduled.
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1. 6. RESEARCHFocUSAND OBJECIIVEs

1.6.1. Critical aspects ofresearch setting

The characteristic of service systems that output cannot be inventoried requires

scheduling enough workers for adequate customer service or, alternatively, minimization

of staffing shortage hours (too few workers scheduled can cause unacceptable service

delivery times). When delivery of service is critical, such as in an health care

environment, stafi'mg shortage hours cannot be tolerated. On the other hand, high volume

and low margins in food service require minimization of staffing surplus hours

(scheduling too many workers does not improve service delivery times sufficiently to

offset increases in costs). Changes in the relative importance of surplus and shortage

hours can be accommodated in the problem formulation to be used in this research

(chapter 3) by adjusting parameters associated with the decision variables.

Task specific, non-interchangeable workers exist in the problem settings ,

considered in this research. Workers can be qualified in more than one task, however.

This means that workers must be scheduled for specific tasks at specific times.

As noted before, in the food service environment demand patterns vary from

hour-to-hour, day-to-day, week-to-week, and etc. This requires the scheduling to be

performed with short time intervals in order to minimize surplus hours, and hence cost.

In order to accommodate part-time workers, to increase worker satisfaction levels

and to reduce worker turnover, worker preferences must be taken into account. The

worker preferences would include: minimum and maximum work hours per day and per

week, preferable work times during the day (mornings, afternoons or evenings) as well as

days off.
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These characteristics suggest that the number of potential solutions to be

considered to identify the "best" solution is large. As an example, consider a fast food

restaurant with these characteristics: it is open 18 hours per day, 7 days per week, the

worker shifts are from 3 to 8 hours in length and the number of days worked per week

can vary from 1 to 5. In this example there are 74,747,846,439 possible combinations of

shifts or work tours. For a calculation method for the theoretical number ofwork tours,

please see appendix 1.

In addition, a mathematical characterization of the work tour scheduling problem

leads to a combinatorial optimization problem, since many of the variables are integer

valued. Because of the combinatorial nature of the problem and its large size, integer

programming methods are currently not useful. There are two primary reasons integer

programming solution methods are not useful [Glover, 1990]: First, solution times are

unacceptably long, given the size of the problem for even small businesses, and second,

most computer codes available for small computers will not accommodate the large

number of variables necessary to model the problem.

1.6.2. NewMethods UsedFor Solution OfThis Problem

This research applied two new methods to this research problem, simulated

annealing and tabu search. Their implementation in this research demonstrates that more

general procedures can be applied to this labor scheduling problem and provides

additional information about the relative merits of tabu search and simulated annealing.
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1. 7. ALGORITHMSPREVIOUSLYAPPLIED IN msSETTING

There have been three algorithms discussed in the literature to solve the problem

ofwork tour scheduling with limited worker interchangeability; Heuristic Programming

[Glover, 1988], Multi-Objective Heuristic [Loucks, 1987], and Network Solution

Methods [Love and Hoey, 1990]. A distinction might be made between the research

problems used by Glover and Love and Hoey, and Loucks. In the Glover and Love and

Hoey research the length and position of the shifts during the working day were fixed. In

Loucks, neither the shift length nor the position of a shift is fixed within the day. The

research describing the development and application of these three techniques are

detailed in the literature review section 2.5.2.

1.8. ORGANIZATIONor IHEDISS‘ERTAHON

The remainder of the dissertation consists of: a literature review comprises

chapter 2, and the mathematical formulation of the research problem is given in chapter

3. The initial feasible solution generator is presented in chapter 4, and the

implementation of tabu search is discussed in chapter 5. The subject of chapter 6 is the

theory and implementation of simulated annealing. Chapter 7 is devoted to the

experimental design. Results of the experiment are discussed in chapter 8, with the

summary and conclusions presented in chapter 9.
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CHAPTER 2. REVIEW OR RELATED LITERATURE

2.1. ORGANIZATIONOFLITERATUREREVIEW

The organization of this review is an adaptation of Loucks' (1987) scheme for the

categorization of the labor scheduling problem. He proposed two criteria for

classification of labor scheduling problems, work tour set composition and worker

interchangeability. A work tour set is the set of different work shifts (tours) from which a

worker’s schedule is selected. A work tour set can be multiple shifts or a single shift per

day. The work tour set can be further characterized by its "days-off" patterns, whether

there is a single days-off pattern or multiple days-Off patterns.

Worker interchangeability is defined as the degree to which the workers being

scheduled differ in their qualifications to perform the various tasks in the work

environment, times available to work, or other relevant properties. Worker

interchangeability, for the purposes of this literature review , can be split into two

categories, limited and unlimited. Figure 2-1 shows a taxonomy which can be used to

classify the existing body of literature. Figure 2-2 shows a representative sample of the

literature classified into the taxonomy presented in figure 2-1.
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2.1.1. Taxonomy of Literature Review
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Figure 2-1, Taxonomy of Literature Review
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2.1.2. A Classification of Labor Scheduling Research

Labor Degree of Worker Interchangeability

Scheduling

Problem Unlimited Limited

 

None" Holstein/Berry [1972] Chames/COOper [1961]

Job Shop Workers Job Shop Workers

Church [1973]

Telephone Service Reps.

Miller/Berry [1974]

Job Shop Workers

 

Days-Off Baker [1974a]

Generalized

BrownelllLowerre [1976]

Generalized

Monroe [1970]

Baggage Handlers

 

Shift Baker/er a1. [1973] Pappas [1967]

Baggage Handlers Railroad Personnel

Hmderson/Berry [1977]

Telephone Operators

Keith [1979]

Telephone Operators

 

Tour Showalter/et a1. [1977] Warner/Prawda [1972]

Mail Sorters Hospital Nrnses

Morris/Showalter [1983] Ritzman/et a1. [1976]

Generalized Mail Sorters

Mabert/Watts [1982] Loucks [1987]

Check Encoders Fast Food

 

* This category is characterized by an absence of any work time decision, as described in the text. The

decision is primarily one ofjob assignment.

Figure 2-2. A Classified Sample of Labor Scheduling Research



l6

2. 2. NO WORK-7MSCHEDULING DECISION

This category represents the single shift - single days-off pattern. In the absence

of any work-time scheduling decision, the decision is primarily job assignment. This

scheduling decision is primarily used in an operation that operates one shift per day, five

days per week.

2.2.1. No Work Time Decision - Unlimited Worker Interchangeability

Given a single work tour and manageable work loads, the scheduling problem

becomes one ofjob assignment. Miller and Berry [1974] examine the problem of

assigning workers to several semi-automatic machines. Two heuristics were developed

for determining labor assignments: the "man-loading" and "labor-saved" heuristics. Their

heuristics minimize the combined costs of idle labor and machine time. They compare

their heuristics against the optimal solutions found by a branch and bound algorithm.

The scheduling of staff to answer phones and process paperwork was studied by

Church [1973]. The problem he studied was to assign workers to one of two tasks over

half hour time intervals. His heuristic assigned workers to tasks with the objective of

equalizing work load among workers and keeping a worker's task the same through

several consecutive periods and then switching tasks.
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2. 2. 2. No Work Time Decision - Limited Worker Interchangeability

The scheduling problem with a single work tour and limited worker

interchangeability is a restricted assignment problem. This type of problem has been

dealt with in the linear programming literature and is efficiently solved by such methods

[Charnes and Cooper, 1961].

2. 3. DAYS-OFFSCHEDULING DECISION

This category represents the single shift - multiple days-off pattern. This

scheduling decision is typically found in a business that functions 8 hours per day and

more than 5 days per week. Thus the decision is categorized as a days-off problem or a

days-off and task assignment problem, for unlimited and limited worker

interchangeability, respectively [Loucks, 1987].

2.3.1. Days-0,5rScheduling Decision - Unlimited Worker Interchangeability

The most common form of this problem is scheduling five day work tours with a

seven day operation. The objective is to find the minimum labor force size while meeting

the demand for the worker's services, and permitting two consecutive days off. If excess

staffmg is necessary to assure feasibility, the algorithms by Baker [1974a] and Tibrewala

[1972] are optimal and simple to use.

Several variations of this problem can be found in the literature. Bartholdi and

Ratliff [1978] examine the problem with several different days-off policies. Monroe
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maximized consecutive days-off without employing part-time workers. Baker [1974b]

relaxes the five day work tour constraint to minimize the number of part-time man-days

to exactly meet the staffing requirements.

Brownell and Lowerre [1976] compare days off policies, with regard to the

manpower requirements for each different policy.

Miller, Pierskalla and Rath [1976] use a cyclic coordinate descent algorithm to

find near optimal solutions. They compared their algorithm to an optimal branch and

bound algorithm, and found that their solutions were near-optimal and that the algorithm

was much faster than the branch and bound. Their algorithm was also found to be better

than the manual methods in use at the time.

Khan [1979] uses a capacitated network flow method for producing manpower

schedules. Khan found that this method was substantially more efficient than the Simplex

method in this application.

Baker and Magazine [1977] present a lower bound for workforce size and

feasible schedule construction algorithms for 4 different days-off policies.

Baker, Burns and Carter [1979] Develop lower a bound on workforce size and

manual methods for constructing schedules to meet these lower bounds.

Shepardson and Marston [1980] reformulate the two duty period scheduling

problem as a one duty period problem with side constraints. Since the one duty period

problem can be solved using a minimal cost network flow model, dualization is used

with respect to the side constraints, forming a Lagrangean relaxation that is easily solved.

Bartholdi [1981] solves the cyclic staff scheduling problem using linear

programming with a round-off procedure. He shows that his round off algorithm is

better than those presented earlier.

Burns and Carter [1985] developed a simple, one pass algorithm to generate

schedules and to compute lower bounds on the workforce size.
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2. 3. 2. Days-OflScheduling Decision - Limited Worker Interchangeability

There are undoubtedly scheduling environments with single work tours and

limited worker interchangeability. There seems to be no published work in this area.

2. 4. SIHFTSCHEDULING DECISION

This category represents the multiple shifts - single days-off pattern. The shifts

assigned to different workers might overlap or be contiguous. Overlapping shifts are

typical of a service environment. Labor costs can be reduced while maintaining customer

service levels with overlapping shifts.

2.4.1. Shifi Scheduling Decision - Unlimited Worker Interchangeability

Baker [1973] formulates the problem of scheduling 8 hour shifts with 4 hour

overlaps as an integer program. He develops results that show that a linear program

solution to his formulation will always produce an integer solution provided that the

period requirements are integer valued.

As requirement periods are shortened and the number of shifts are increased,

problem size grows. Problem size in business environments easily exceeds the limits of

existing, commonly available integer programming codes. As an additional complication

to the solution of the labor scheduling problem, LP solutions do not typically provide

integer solutions. In that sense, Baker's [1973] LP solution is uncommon in that it

provides integer solutions.
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As a result of the limitations of integer programming codes, researchers have

developed rounding heuristics for LP solutions. Keith [1979] developed a heuristic to

find an integer solution close to the optimal solution. First he rounds the solution to the

nearest integer, then he attempts to add or remove workers from the rounded solution.

For some large problems, such as those encountered in labor scheduling, even

linear programming can prove to be inefficient. Segal [1974] developed a network-flow

formulation which guarantees integer solutions for very large problems. The limitation of

Segal's formulation is that lunch and breaks cannot be explicitly modeled, or scheduled.

Henderson and Berry [1976] develop heuristics to select "working subse " of

shift schedules from the "master set" of all possible shifts, without appreciably reducing

solution quality.

Buffa [1976] outlines an integrated work shift scheduling system used to

schedule telephone operators. A heuristic is used to schedule the operators. An outline of

requirements for heuristics to solve manpower scheduling systems is given.

Mabert and Raedels [1977] compares two heuristic methods with an integer

programming formulation for scheduling part-time workers to meet varying daily work

loads. Computation time was the criterion for ranking methods.

Henderson and Berry [1977] have developed a branch and bound algorithm to

efficiently solve problems having as many as 100 shifts per day. The large number of

shifts allows breaks and lunch to be explicitly scheduled, assigning workers to both work

and break shifts.

Mabert [1979] develops a non-deterministic model for scheduling workers in a

bank. He also develops the idea of safety capacity, which is analogous to safety stock in

inventory theory, to meet varying volume demands when forecast errors are present.

Wilson and Willis [1983] developed a network flow and a LP model for this

problem, constrained by forecasted demand, shift sizes, number of supervisors and space

limitations for workers. Although the network flow model produced optimal solutions,
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the LP model was implemented because Of the excessive input requirements for the

network flow model.

Sinuany-Stem and Teomi [1986] develop both an optimal and heuristic algorithm

to schedule security guards. The Optimal algorithm was found to be inefficient for the

problem, which was rather large. The heuristic produced nearly optimal solutions, as well

as almost 50% cost savings over the manual system.

Burns and Koop [1987] present a way to develop optimal cyclic schedules (what

they call master schedules). Their approach allows differing (deterministic) demand

patterns for each shift.

2. 4. 2. Shift Scheduling Decision - Limited Worker Interchangeability

Pappas [1967] is one of few authors who have looked at limited worker

interchangeability. In his study several scheduling restrictions exist: no employee should

be scheduled to work on his preset rest days, and no morning shifts should be assigned to

a worker that worked an evening shift the day before.

Warner [1976] poses the scheduling decision as a large multiple choice

programming problem whose objective function quantifies preferences of individual

nurses. The problem is solved using a modified version of Balintfy and Blackburn's

algorithm for multiple choice programming problems.

Franz, et a1 [1989] develop a multi-Objective integer linear program for

scheduling an staffing multiple clinics. As we might expect optimal procedures for

solving this problem were not found to be computationally efficient. The problem was
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reformulated to resemble a generalized network flow model with substantially reduced

computation requirements.

2. 5. TOUR SCHEDULING DECISION

This is the labor scheduling problem that the proposed research focuses on. This

category represents the multiple shifts - multiple days-off pattern. A business that would

have this type of labor scheduling decision to make would typically be functioning more

than 8 hours per day and more than 5 days per week. Shifts may or may not overlap,

depending on demand patterns for workers and may change from day-to-day.

2.5.1. Tour Scheduling Decision - Unlimited Worker Interchangeability

The research referenced above has studied either shift scheduling or days-off

scheduling, not both simultaneously. There are many problem environments where both

decisions must be made such as in restaurants, banking, and retail operations .

Morris and Showalter [1983] treat this issue of integration, using two approaches,

bottom-up and top-down. The bottom-up approach solves the two problems sequentially,

while the top-down approach solves the two problems simultaneously. Their solution

method for the top-down approach used a LP model with a heuristic to round the solution

down. They found that the top-down approach was superior.

Mabert and Watts [1982] follow On the Henderson and Berry [1976] study of tour

scheduling problem. They develop and compare six techniques for selecting a working

subset of tours from the master set. They found that the techniques based on historical
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demand patterns produced the lowest cost schedules. The other techniques tried were

based on random selection and employee convenience.

Bechtold [1988] develops implicit optimal and heuristic methods for solving the

problem in a multi-objective, multi-location environment. He explicitly models the

tradeoffs between idle time, the number of employees required to work at multiple

locations and the size of the total labor pool.

Li, Robinson and Mabert [1991] compare 3 different heuristics for the tour

scheduling problem with unlimited worker interchangeability. They minimized total

labor costs, rather than minimization of the number of hours scheduled or the

minimization of the number of employees.

Bechtold, Brusco and Showalter [1991] compare 8 different heuristics with

optimal solutions generated by solution of an integer linear program. The primary

criterion for comparison was labor hours scheduled above optimum. Secondary criteria

evaluated for each of the 8 heuristics were percentage of employees with two consecutive

days off, number of active tours, mean number of daily shifts, and computational times.

Easton and Rossin [1991] develop a method for efficiently generating equivalent

alternative solutions for the tour scheduling problem. They show that their method works

best when it has a limited number of tours with which to work.
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2. 5. 2. Tour Scheduling Decision - Limited Worker Interchangeability

Ritzman, Krajewski and Showalter [1976] developed a combined heuristic and

simulation algorithm to construct tour assignments in a post office where workers differ

by the work centers in which they are qualified to work. Their algorithm has several

objectives; maximize service, minimize administrative costs and minimize night and

overtime wage premiums.

A nurse scheduling problem with different skill levels was investigated by

Warner and Prawda [1972]. The scheduling horizon used in the research was 3 or 4 days.

The problem is formulated as a mixed integer quadratic programming problem and is

decomposed into a linear 0,1 programming master problem with small quadratic

programming subproblems.

Loucks [1987] and Loucks and Jacobs [1991] developed a heuristic to solve a

goal programming formulation of this problem. His contention was that the problem was

so large that it precluded solution by optimal methods. His research indicated that the

heuristic produced high quality schedules but no comparison was made with other

solution methods.

A general heuristic for solution of this problem was outlined by Glover et. a1.

[1984, 1988]. This procedure was implemented and tested in a fast food restaurant, and is

unavailable for testing. The tests showed that the solutions were of high quality but the

only comparison (informal) was against manual methods.

Love and Hoey [1990] presented an integer formulation for this scheduling

problem, deveIOped from a fast food setting. The integer problem formulation is

amenable to a minimum cost network flow solution, after decomposition. The tests

showed that the solutions were of high quality but the only comparison (informal) was

against manual methods.
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2. 6. SUMMARYOF THEREVIEWOFLABOR SCHEDULING LITERATURE

As can be seen from reviewing the literature, real world labor scheduling can be a

complex problem. A researcher or practitioner has to accommodate multiple objectives,

multiple constraints, and many variables. Prior investigations have shown that the

solution difficulty is dramatically affected by limited worker interchangeability. Reliance

on specially developed heuristics is common because of the solution difficulty and

problem size, causing a large number of heuristics to be developed, but no general

methods. In addition, precedent exists for construction/improvement approaches, as will

be used in this research.

2. 7. OPPORTUNITIESFORRESEARCH

2. 7.1. Application ofnew algorithms

Two recently developed optimization techniques, tabu search [Glover, 1989] and

simulated annealing [Kirkpatrick 1983, van Laarhoven and Aarts, 1987], show promise

in the area of combinatorial optimization. These algorithms have not been applied in any

of the labor scheduling problems discussed above. Previous research [Knox, 1989 and

Skorin-Kapov, 1990] has shown tabu search and simulated annealing to be superior to

existing techniques in the problem areas tested (the traveling salesman problem and the

quadratic assignment problem, respectively). Adaptation of these algorithms to the

research problem considered in this proposal may yield a superior technique in terms of

solution quality and solution speed. In addition, incorporation of heuristic information

into these optimization techniques may provide some extensions to the theory of tabu



26

search and simulated annealing. These algorithms are explained in further detail in

chapters 5 and 6.

2. 7. 2. Comparison ofPreviously AppliedAlgorithms

As noted in the review of the solution techniques above, no comparative study of

different solution techniques for the work tour scheduling problem with limited worker

interchangeability has been performed. A comparison of available techniques will be

useful to guide future research in several ways.

Since the research problem is large and combinatorial, any research that compares

algorithms may have general applicability in guiding further research into areas that

appear to be more fruitful in terms of solution quality and solution speed.

Several algorithms have been suggested, apparently without knowledge of the

others, for the solution of the work tour scheduling problem with limited worker

interchangeability. A comparative study of the algorithms can provide guidance for

improvements in solution quality and speed. In addition to the computation aspects, the

new algorithms might enable the researcher to address the need for a different set of

objectives for each firm and provide a tool that can be used for more than one problem

type-
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CHAPTER 3, MATHEMATICAL FORMULATION

3.1. CHOICE OFFORMULATION

There are several ways to formulate the problem of scheduling work tours with

limited worker interchangeability [Love and Hoey, 1990], [Loucks, 1987], [Glover and

McMillan, 1986], [Warner, 1976], [Warner and Prawda, 1972]. The formulation selected

and described below is adapted from one presented by Loucks [1987].

The primary differentiator between formulations is that of fixed shifts or variable

shifts. In the fixed shift formulations [Love and Hoey, 1990] , [Glover and McMillan,

1986], [Warner, 1976], [Warner and Prawda, 1972] the manager defines, beforehand, the

shifts to be used in scheduling the workforce, so the problem becomes assignment of

workers to the predefined shifts. In the variable shift models [Loucks, 1986] , the authors

define their models in such a way that the Shifts are generated simultaneously with the

worker assignments to those shifis. The fixed shift model, because of the fixed shifts, is

more constrained than the variable shift model. The more highly constrained fixed shift

model has as smaller solution space and takes less time to solve, (compare, for example,

the results of [Glover and McMillan, 1986] to the results of the tabu search

implementation here).
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The advantage of using a variable shift model is that the labor costs can be lower

than those of a fixed shift model because that algorithm can more closely match the

demand for workers with the assignment ofworkers. The primary disadvantage of these

formulation is that they are more complex and time consuming to solve.

Loucks presents his formulation as a O-l/integer goal programming problem. His

formulation consists of ranked goals and constraints, and for solution, uses a two phase

procedure; Phase 1) the construction of an initial feasible solution and Phase 2)

improvement of the solution. Without loss of generality, and with the goal of reducing

implementation complexity, Loucks' formulation will be modified to be one phase.

There are several reasons for using Loucks' formulation. First, his formulation has

a large number of 0,] variables, easing application of simulated annealing.

Second, his formulation uses variable rather than fixed shifts. This has the

advantage of potentially lower costs than a formulation using fixed shifts, but may

require more computation time.

Third, Loucks' formulation explicitly considers worker preferences, an advantage

when workers are scarce.

3. 2. PROBLEMFORMULATION

This particular formulation of the work tour scheduling problem with limited

worker interchangeability was adapted from one presented by Loucks [1987]. His

applications were in a fast food restaurant, a banking environment and synthetic

problems. The mathematical formulation uses the following notation:
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Definition of Notation:

A capital letter with one or more subscripts represents a finite set.

The number of elements of a finite set, say A, is denoted by |A|.

I = number of workers being scheduled/assigned in labor pool,

J = number of tasks in operation,

K = number of operation hours per day,

T = number of operating days in scheduling horizon,

ci = wage rate for employee i,

Dht = Demand maximum for workers on day t, by task hour,

Dlt = Demand minimum for workers on day t, by task hour,

ejkt = number ofworkers scheduled in excess of the number required for task j in

hour k of day t,

bi = number of tour hours targeted for worker i,

Qj = workers qualified for task j,

rjkt = number ofworkers required for task j in hour k of day t,

8min = allowed minimum number of hours in any shift,

Smax = allowed maximum number of hours in any shift,

Ti = tasks for which worker i is qualified,

Uit = worker i's available hours in day t,

“it = worker i's first available hour in day t,

Vi = worker i's available days (partial or whole),

Vit = worker i's last available hour in day t,

Wmax = maximum number of days worker can be assigned in scheduling period,

xijkt = 1 ifworker i is scheduled to perform task j in hour k of day t,

‘ = 0 otherwise, and

Yit = 1 ifworker i is scheduled to work any hours in day t,

= 0 otherwise.
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The objective of the work tour scheduling problem with limited worker

interchangeability is to minimize the total man-hours of overstaffmg and to match as

closely as possible the workers desired hours and time off. So the objective function is

minimize:

w1* Zejkt +W2*(injkt-hi).

jkt ijkt

In Loucks' formulation, the two terms in the objective function were stated as

goals in his goal programming formulation. The weights W1 and W2 will be chosen to

ensure that this integer program behaves as his goal program does. The first term has first

priority and as such will have a large W1 value, W2 will have a relatively smaller value.

Subject to:

Z xijkt - ejkt = rjkt for all j,tEVit, kEUit,(1)

iEQj

Constraint set (1) states that the labor schedule must meet, but preferably not

exceed, the staffmg requirement for each task in each operating hour of the week.

2 Z xijk, =<1 for alli(where |Ti| > 1, tEVi and KEUit, (2)

lETi kEUit

Constraint set (2) restricts a worker assignment to not more than one task per

hour.

. 2 2 xijkt - 5min(Yit) >= 0 for all i and tEVi, (3)

JEUitkEUit

Z Z xijkt - lUitlYik =< 0 for all i and tEVi, (4)

lETi kEUit

Constraint sets (3) and (4) confines a worker's shift in any workday to be greater

than or equal to the minimum allowable duration, 3min. Constraint set (4) controls the

value (0 or 1) of Yit-
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2: Z xijkt =< Smax for all i and tEVi, (5)

jETi kEUit

Constraint set (5) restricts the worker's shift length to be less than or equal to the

maximum allowable shift length, Smax-

Z Yit =< Wmax for all i where NM > Wmax: (6)

tEVi

Constraint set (6) restricts the number of days worked per week for any worker to

less or equal to than the allowable maximum, Wmax-

E (Xijkt - xij(k+1)t + xij(k+2)t) =< 1 for all i

1 Ti

where lUitl>3mim k=(uit,..,vit-smin+l), and tEVi. (7)

The last constraint set (7) ensures that a worker’s shift will be contiguous.

3. 3. ASSUll/fl’IYONSOFFORMULATION

There are several assumptions inherent in this formulation. The first assumption

is that the forecast of worker requirements for the scheduling period is given; there are no

provisions in the algorithm or formulation to develop a forecast. The implications of this

assumption are two-fold; 1) performance differences between algorithms will be due to

the suitability of the algorithm to the problem and not superior performance of

forecasting methods and 2) the staffmg requirements are deterministic, that is, the

number ofworkers needed for each task in each hour is assumed to be known.

Second, the solution is constrained by limited worker interchangeability, and

specific task assignments. This assumption is derived from application to service

businesses. It makes the problem larger and more difficult to solve.
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Third, the schedule encompasses less than 24 hours, and no accommodation has

been made for shifts to overlap days. Reforrnulation of the problem would be necessary

to accommodate 24 hour schedules.

Fourth, the time period length has been set at 1 hour. There are two reasons for

this length. 1) A 1 hour scheduling period will allow the manager enough flexibility to

schedule lunch and breaks during lulls in customer demand without having to explicitly

model such break times. Reducing the time period would allow us to model the lunch and

rest breaks, but since demand is variable, even though it is assumed to be fixed, modeling

with reduced time periods may cause reductions in customer service. 2) Managers may

not care to adjust the staffing levels more often than once per hour, more frequent

changes might reduce productivity.

Fifth, this formulation assumes that the operating days are short enough to ensure

that there is sufficient rest time between shifts. So a worker may "close" the facility one

day and "open" the next day.

Last, the model allows customer or client demand patterns that are independent

from day-to-day. This assumption or feature of the model is a necessity for 7 day

operations.
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CHAPTER 4, GENERATION OF INITIAL FEASIBLE SOLUTION

4. I. INTRODUCTION

There are at least three approaches to the design and implementation of iterative

improvement algorithms. The first method is to generate an initial solution, possibly

feasible, using random methods, which is then acted upon by the improvement algorithm.

The second method is to generate an initial solution that is known to be feasible, which is

then acted upon by the improvement algorithm. The third method is to construct and

improve the solution simultaneously, this is the method used by Loucks [1987]. An

examination of the research literature of both simulated annealing and tabu search

revealed that the prevailing approach is to generate an initial solution using random

methods, which is then acted upon by the respective algorithm. The two predominant

reasons for previous researchers using this method are these. First, according to van

Laarhoven and Aarts [1989], simulated annealing is not sensitive to initial solution or

configuration. No such results are available for tabu search. Second, the problems

considered by previous research of both methods, simulated annealing and tabu search,

are such that it is a relatively simple matter to use random methods to generate an initial,

feasible configuration, because the problems previously considered have few constraints.
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The use of a random approach was deemed inappropriate in this research for

several reasons. First, no known, or easily conceived, methods are known for generating

an initial, feasible configuration randomly, for this highly constrained problem. Second,

after some investigation, it was determined that the algorithms, as implemented here,

could not always (less that 50% of the time) remove the infeasibilities present in an

infeasible initial configuration. Simulated annealing, given enough run time, tries all

possible configurations and so would remove all infeasibilities. Tabu search, being a

deterministic algorithm does not try all possible configurations and may never remove an

infeasibility. Last, it was found that estimating the change in the Objective function was

an excellent way to improve the speed of the algorithms, as explained in the following

chapters. It is relatively simple to estimate the effect of a feasible transition or move on

the objective function, but it is not easy to estimate the effect on the objective function of

causing an additional infeasibility, or partial removal of an infeasibility.

Previous authors have used the output from a previously developed algorithm as

the input to simulated annealing and tabu search. On reason this approach was not taken

is because Loucks' heuristic was shown to produce optimal results for a significant

proportion of the problems tested by Loucks [1987]. It seemed foolish to apply an

improvement algorithm to a heuristic that produces optimal solutions Often. Additionally,

Loucks presents evidence that his algorithm will not solve all problems produced by the

problem generator he used. So, the possibility existed that improvements could be made

in the number of problems that could be solved by developing a new method for

generating initial, feasible configurations. These considerations prompted development

of an initial configuration generator that, upon successful completion, produces feasible

configurations or solutions.
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4. 2. STRATEGYOFINITIAL FEASIBLESOLUTION GENERATOR

Several objectives and strategies for the development of an IFS generator were

identified as a result of the considerations above. The objectives for the IFS generator

were to have the algorithm work reliably and to produce a feasible solution quickly. This

algorithm works more reliably than the only other method known for this problem,

Loucks' heuristic. The method is also reasonably fast, it normally takes less than 10

seconds on a personal computer (33 MHz, 80386 processor) to produce the feasible

solution. The strategies are detailed below.

4.2.1. ”Fat" solution, vs. "Lean" solution

One consideration that guides the development of the IFS generator is that of the

type of solution to be produced. In this case the strategy was to develop the IFS generator

in such a way that a "fat" solution is produced. This means that there is not much attempt

to keep from over scheduling task hours. This is direct contrast to Loucks' heuristic,

which attempts to minimize over scheduling task hours at every opportunity. The result

of this strategy is that the improvement algorithms, simulated annealing and tabu search,

have more possible configurations to generate and choose from, hopefully improving the

prospects of a good final solution. This strategy is also responsible for the improved

ability of the IFS generator to produce feasible configurations.
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4. 2. 2. Margin on task hours

Some method must be used to determine the priority in which to schedule task

hours. While there are several methods to assign priority, such as starting at the

beginning of the week and proceeding in a linear fashion to the end, the priorities could

be assigned randomly, and etc., the method used in this research was to calculate the

margin for each task hour and use that margin as the basis for assigning priority. The

margin of a taskhour is defined as the difference between the number of workers required

for the taskhour and the number ofworkers available and qualified for that taskhour.

These margins are sorted from lowest to highest and the taskhours are assigned the

highest priority from lowest to highest margin.

This method of assigning priority based on margin has the advantage of ensuring

that when the scheduling assignments are made, those workers that were identified as

available at the beginning of the algorithm are available when they are needed for

assignment to the taskhour. The idea of margin is attributable to Loucks [1987].

4. 2. 3. Choice ofworkerfor task hour

Another strategic issue is the order in which workers are chosen for scheduling in

a particular taskhour. When a pool of workers for a particular taskhour is identified,

some method must be used to pick among the workers in that pool for assignment to that

taskhour. The method used in this research is to create a worker priority score. This

score, then, is used to differentiate among the workers. See figure 4-1.
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The first consideration in determining a worker score is the worker's scheduling

flexibility. This flexibility is determined by the number of tasks known by the worker,

the workers availability, and the number of days already scheduled. A worker is more

flexible when that worker knows more tasks, when that worker is more available, and

when that worker is scheduled for fewer days. Since any worker that is available and

qualified may be chosen for assignment to the taskhour at hand, it makes intuitive sense

to select the least flexible workers for assignment first, saving the more flexible workers

for later in the assignment process when greater flexibility is needed.

The other consideration in choosing a worker for assignment is that of hours

previously assigned to the worker. The method for calculating the score attempts to

minimize the number of fill-in hours and the number of off-target hours.

The score considers the number of fill-in hours between the hour to be scheduled

and the hours already scheduled, the number of hours a worker is under or over targeted

hours, the number of tasks known by the worker, the number of hours the worker is

available for the day, and the number of days the worker is already scheduled. The

equation for calculating the score is:

Score = (Number ofFill-In Hours) - (Number ofHours Off Target) A 2 +

(Number of Tasks Known) + (Number of Hours Available on Day) + (Number of Days

Already Scheduled) + (Worker Number)

The reader will note that the equation for worker score puts preference on lower

worker flexibility and endeavors to minimize the number of fill-in hours and off target

hours. The worker number is added to the score to alleviate potential ties among workers.
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4. 2. 4. Elimination ofConstraint Violations

The methods used to produce an initial schedule typically produce a number of

constraint violations. In order to produce a feasible solution, these constraint violations

must be eliminated. As elucidated in chapter 3,there are seven types of constraints in the

mathematical formulation of this problem. Seven separate methods were developed to fix

the various constraint violations. See figure 4-2.
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Constraint Type 1: The labor schedule must meet or exceed demand

requirements expressed in man-hours needed per taskhour. For constraint violations of

this type the correction is to add a worker(s) to the taskhour in violation. If the Average

Worker Utilization is low enough, this is an easy correction to make. If the AWU is too

high, the procedure fails, and the algorithm fails to find a feasible solution.

Constraint Twe 2: A worker must not be assigned to more than one task in an

hour. Given the data structure of the programs representing the implemented algorithm, it

is impossible to have a constraint violation of this type.

Constraint Twe 3: A worker must not be scheduled for less than the minimum

shift in any day. A rectification of this type of constraint violation requires that an

hour(s) be added to one end ofthe shift in violation. The method used examines the

taskhours on either end of the shift that the worker is available and qualified to perform,

chooses the taskhour(s) with the lowest margin, and assigns the worker to that

taskhour(s).

Constraint Twe 4: The labor schedule must not exceed worker's available hours.

In this case, the worker has been inadvertently assigned to hours that the worker is not

available to work. If the shift length of the worker for the day, less the number of hours

scheduled in error, leaves a shift equal to or greater than the minimum shift then the

hours in error are given to another worker, available and qualified, of course. If no

worker can take the add on hours, the another worker is found who is available and

qualified and not scheduled for the day. This worker is then given the hours in error and

a shift ofminimum length is created around the hours given to the second worker. In the

case that after subtracting the hours in error, the remaining shift is shorter in length than

the minimum shifi, the entire shift is given to another worker, who is available and

qualified.

Constraint Type 5: A worker must not be scheduled for more than the maximum

shift in any day. In this case, the worker has been inadvertently assigned to hours that
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extend the shift beyond the maximum length. If the shift length of the worker for the day,

less the number of hours scheduled in error, leaves a shift equal to or greater than the

minimum shifi, then the hours in error are given to another worker, that is available and

qualified. If no worker can take the add on hours, the another worker is found who is

available and qualified and not scheduled for the day. This worker is then given the hours

in error and a shift of minimum length is created around the hours given to the second

worker. In the case that after subtracting the hours in error, the remaining shifi is shorter

in length than the minimum shifi, the entire shift is given to another worker, who is

available and qualified.

Constraint Type 6: A worker must not be scheduled to work more than the

maximum number of days per week. In case of a constraint violation of this type, the

shifi(s) with the highest average margin is given to another worker(s). The reason the

highest average margin shift is given away is that it is easier to find a worker to take the

shift for higher margin task hours than for lower margin task hours.

Constraint Twe 7: The worker's shift must consist of contiguous hours. This

type of constraint violation has the worker working several hours in a day, but with a gap

of a non-scheduled taskhour(s) somewhere in the shift. If the total shifi length (including

the non-scheduled taskhours), is less than the maximum shift, then the gap is filled in by

adding taskhours with the smallest margin. If the aforementioned shift length is longer

than the maximum shift, then the part of the shift with the highest average margin is

given to another worker.

Experience with the constraint violation correction routine showed that for some

constraint violations, especially violation of constraint 7, that not only was the intended

violation corrected, but that another violation(s) was corrected at the same time. For

example, let us suppose that the constraint violation was of constraint 7. If the shift

length was over the maximum shift length, then there would be a violation of constraint 5

also associated with the same scheduling error. Correction of the violation of constraint 7
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would fix the violation of constraint 5, but not vice versa. After some experimentation,

the order that the constraints were corrected, 6-1-5-4-3-7 (by number of constraint type),

was found to be the most effective in correcting violations. It was also found that often,

two iterations through the violations in the above order would completely correct the

constraint violations where one iteration would not. This behavior may be attributable to

the interactions between methods for fixing the violations.

4. 3. STEP BYSTEP EHLANAHON0FIFS GENERATOR

A brief description of the steps that comprise the initial feasible solution

generator is given below. A flow chart, figure 4-3, is presented as illustration of the

algorithm.
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4.3.1. Explanation ofSteps in Flow Chart

The description of steps below follow the flow chart in figure 4-3. The titles of

the sections below match the text in the boxes in the flow chart.

Step 1. ReadProblem File. This step reads a problem from a disk (generated

previously and stored on disk) and puts the problem data into the appropriate data

structures.

Step 2. Calculate Margin For All Task Hours. Step 2 loops through all taskhours

for the scheduling period, tallying the total number of workers available and qualified for

each taskhour and calculating the margin for each taskhour according to the following

equation:

Margin(Hour,Task,Day) =NumberOfiNorkersAvailable(Hour,Task,Day) -

NumberOflNorkersRequiredO-Iour,Task,Day).

These margins are stored in an array for future reference.

Step 3. Sort Margin Array in Ascending Order. The purpose of Step 3 is to sort

the array in which the margins are stored in ascending order so that the taskhours may be

selected from lowest margin to greatest.

Step 4. Pick Remaining Task Hour With Lowest Margin. This step begins a loop

that, when finished, assigns workers to all taskhours. This loop steps through the sorted

margin array from beginning to end, picking the taskhour with the lowest margin that has

not yet been scheduled.

Step 5. Check T0 See if This Task Hour Needs to Be Scheduled. During the

assignment of hours, performed in step 9, workers usually are assigned more to than one

taskhour. As these assignments occur, some or all of the taskhour requirements in

neighboring hours to the taskhour currently being scheduled are being filled.

Occasionally early, and especially late in the algorithm, a taskhour may not need any

further worker assignments. If a particular task hour's requirements are already met by
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previous worker assignment, there is no need to execute the loop, and this step skips the

remainder of the loop, returning processing to step 4.

Step 6. Create POOl OfAvailable Workersfor Task Hour. Once the taskhour is

chosen for scheduling, workers must be found that are available and qualified for the

taskhour. This step creates a pool of these workers by looking at all worker's availability

and task qualifications, and putting the worker numbers of all workers available and

qualified for that taskhour into an array for further processing.

Step 7. Sort Worker POOl According to Assignment Criteria, Figure 4-1. After

the all available and qualified workers are identified, a method for choosing a worker

from that pool must be used. While such methods as random selection might be used, the

method used, shown in figure 4-2 and detailed above, selects workers based upon their

flexibility and schedule thus far in the algorithm. This method considers the number of

fill-in hours between the hour to be scheduled and the hours already scheduled, the

number of hours a worker is under or over targeted hours, the number of tasks known by

the worker, the number of hours the worker is available for the day, and the number of

days the worker is already scheduled. As stated above the workers are assigned a score

based on the aforementioned criteria, the scores set into the worker pool array and then

the worker pool array is sorted into ascending order.

Step 8. Select Worker From Pool. Workers are selected from the pool, starting at

the beginning of the array. If more than one worker is needed, the workers are taken in

the order in which they were sorted in step 7.

Step 9. Create New Shift or Add to Existing Shifi, Figure 4-4. This step assigns

the worker chosen in step 8 to the taskhour. If the worker is already scheduled for to

work on the day of the taskhour, the hour(s) between the taskhour and the previously

scheduled shift are filled in with task assignments. If the worker was not scheduled to

work on the day of the taskhour, then a shift is created around the taskhour being
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scheduled. A more complete discussion is given above and the reader may also refer to

figure 4-4.

Step 10. Check tO See ifEnough Workers have Been Scheduledfor Task Hour.

Frequently more than one worker is required for a particular taskhour. This step

determines if the taskhour requirements have been met. If not, this step redirects the

processing to step 8.

Step 11. Check tO See ifthere are more Task Hours to Schedule. The algorithm

schedules workers into taskhours according to the order in the margin array. This step

checks whether any taskhours remain to be scheduled. If there are more taskhours to be

scheduled, this step directs the processing to step 4.

Step 12. Eliminate Constraint Violations, Figure 4-2. After all the taskhours have

been scheduled,. a schedule has been created for the problem read in step 1. Typically the

schedule created by the preceding steps will violate the constraints detailed in chapter 3.

This step rectifies constraint violations. A more complete description is given above, and

a graphical description of the procedure to eliminate constraint violations is given in

figure 4-2.

Step 13. Write Feasible Solution to Disk This step saves the initial feasible

solution in a disk file for improvement by the simulated annealing and Tabu search

algorithms.
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4. 3. 2. Pseudo Pascal Description ofIFS Generator Algorithm

The following is a description of the algorithm in pseudo pascal.

Procedure Initial Feasible Solution

Begin

Initialize;

Read Problem File;

Repeat

Calculate Worker Margin For Task Hour;

Until All Task Hours Are Done;

Sort Margins in Ascending Order;

Repeat

Pick Remaining Task Hour with Lowest Margin;

IfNumber Needed > 0 then

Repeat

Determine Worker Pool Available For Task Hour;

Sort Worker Pool According to Assignment Criteria;

Select Worker From Pool;

If Worker Is Already Scheduled Then

Add To Current Shift;

ElseIf

Create Shift Around Task Hour;

Endif;

Endif;

Until Number Scheduled >= Number Needed For Task Hour;

Until All Task Hours Have Been Scheduled;

Eliminate Constraint Violations;

Write Feasible Solution To Disk;

End:
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4. 3. 3. Conclusion

An algorithm for generating feasible solutions to the work tour scheduling

problem with non-interchangeable workers, as formulated in chapter 3, has been

presented. As discussed before, the performance of this algorithm exceeds previous

algorithms in terms of the number of problems for which it is able to produce a feasible

solution. This initial configuration generator produces initial, feasible configurations on

problems for which Loucks' heuristic produces an abnormal stop. The initial, feasible

configuration (IFS) generator produces feasible configurations on all problems that

Loucks' heuristic would run to completion, but Loucks' heuristic would not run to

completion on all the problems that the IFS generator would successfully run to

completion.
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CHAPTER 5 - TABU SEARCH: THEORY AND IMPLEMENTATION

5. I. INTRODUCTION

Tabu search is a strategy to solve combinatorial optimization problems

that uses an adaptive mechanism to guide other algorithms, such as linear programming

or other specialized heuristics, to avoid the limitations of local optimality. Tabu search

was initially developed by Glover [1986] and has since been the subject of considerable

research.

5.1.1. Overview OfTabu Search

Tabu search may be considered a supervisory heuristic imposed on another

heuristic in order to more rapidly solve combinatorial optimization problems. In general,

tabu search uses another heuristic(s) to generate a number of potential intermediate

solutions (moves) from which it picks the "best". This leads to rapid arrival at a local or

glObal optima. The approach endeavors to overcome local optima by imposing a strategy

of forbidding certain moves and forcing moves away from the local optima. Reversal of

these moves or directions are forbidden or tabu for a number of iterations so that cycling
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might be avoided. The flow chart and related discussion following will make the

operation of the tabu search algorithm clear. The tabu search described below is an

adaptation of that presented by Glover [1989].
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As shown in the flow chart, the first step is to generate an initial feasible solution. This

initial solution is generated using the procedure explained in chapter 4. The current best

solution is set to the initial solution. The next step is to generate a set of potential moves.

As mentioned before, these moves can be generated by other heuristic methods, by

optimization methods used on partitions of the problem, etc. The move generators used

in this investigation are detailed below. The potential moves are then sorted or ranked.

Ranking of potential moves might be done in a number of different ways, such as, on

objective function value, estimates of objective function value, change in objective

function value, or some other criterion. The ranking of potential moves for this research

is based on an estimate of the change in objective function value.

Testing the solution for tabu status is the next step. If the solution is not tabu, the

solution is accepted as the new solution. The tabu list, aspiration criteria list (to be

described shortly) and current best solution would be updated as necessary. If the prior

solution was a global or local optima, it is very likely that all of the potential solutions in

the current iteration would be worse than the current best solution. In this situation, there

are two items of interest; First, this is an example of the algorithm moving away from an

(local) optima in search of a better (local or global) optima and Second, in this situation

the current best solution as well as the aspiration criteria would not be updated.

If the solution is tabu, then the solution is tested against the aspiration criteria. An

aspiration criteria is a change in objective function value of sufficient magnitude to

override the tabu status. The aspiration criteria is set in such a manner so as to prevent

cycling of the algorithm. For example: if the algorithm was moving away from an

optima, the aspiration criteria must be set in such a way that it would not override the

tabu status and cycle back to the previously found optima. The aspiration criteria used in

this implementation of tabu search is to require a move to produce a solution better than

the current best solution, in order to override tabu status. Glover [1989] covers aSpiration

criteria in considerable detail. If the solution meets or exceeds the aspiration criteria, tabu
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status is overridden and the tabu list, aspiration criteria and current best solution would

be updated as necessary.

At each iteration, the algorithm checks against the stopping criteria. The stopping

criteria used in this research was based on two rules. First, a limit of one thousand

iterations was set, based on trial runs of the algorithm. Glover [1989] recommends that

such an overall iteration limit be set. This limit seems to be somewhat past the "point of

diminishing returns". The second rule used was to stop the algorithm if there had been no

improvement in the current best solution in 300 iterations. Again this rule is based on

Glover [1989] and trial runs of the algorithm.
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5.1.2. Description OfTabu Search Algorithm In Pseudo-Pascal

Procedure Tabu Search

Begin

Initialize;

M := 0;

repeat

Generate {Potential Solutions}

Sort {Potential Solutions} ...... (based on Objective Function Value,

Best First)

repeat

N := O;

TabuTest (Solution N, Tabu Status);

If (Solution N) = Tabu Then

AspirationTest (Solution N, Aspiration Criteria);

If (Solution N) > Aspiration Criteria Then

Accept (Solution N);

Else

Accept (Solution N) ;

Update (Tabu List, Aspiration Criteria, Current

Best Solution)

Accept Flag := l;

Endif;

Until Accept Flag = 1;

Until Stop Criterion = True;

End.
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5.1.3. Example OfTabu Search Algorithm

Consider maximizing the function f(x) = x2 : where x is an integer and permitted

to vary from 0 to 31. For this example the move generator will be a random number

generator that generates integers from O to 32. Furthermore, we will arbitrarily set the

number of moves to be generated at 4 and the tabu list length at 3.

Initialize: We select an initial solution at random, say x=3. The objective

function value is 9. We set the current best solution to x=3. The tabu list is empty as is

the aspiration criteria list.

Generate: We pick 4 potential solutions from our random number generator, 1,

8, l9, and 6.

Sort: We sort the values from high to low, 19, 8, 6, 1.

TabuTest: We test the lst solution (19) for tabu status. Since the tabu list is

empty the solution is not tabu.

Accept: We accept the solution (19) as the new solution.

Update: We update the tabu list, (it includes 19 now), the aspiration criteria list,

(a solution must beat 19), and the current best solution (set to 19).

Generate: We pick 4 potential solutions from our random number generator, 12,

7, 19, and 5.

Sort: We sort the values from high to low, 19, 12, 7, 5.

TabuTest: We test the lst solution (19) for tabu status. Since the tabu list

contains 19 the solution is tabu.

AspirationTest: The solution does not meet the aspiration criteria that the

solution must beat 19, so we go the next potential solution (12).

TabuTest: We test the 2nd solution for tabu status. The tabu list does not contain

12 so the solution is not tabu.
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Accept: We accept the 2nd solution as our new solution.

Update: We update the tabu list (it includes 12 and 19 now). The aspiration

criteria list and the current best solution remain unchanged.

The algorithm would continue until a stopping criteria is met.

Because the example is simple for clarity's sake, the aspiration criteria is almost

trivial in its simplicity. Normally, the aspiration criteria would allow a tabu variable back

into the solution if two conditions are met; I) the magnitude of the change in objective

function value is sufficiently large, and 2) there is some change in the solution, i.e. the

solution has a different variable set than it had when the tabu variable was in the solution

previously or equivalently, the solution is not identical to any previous solution.

5. 2. TABUSEARCHIWLMNTAHONISSUES

5. 2. 1. Tabu List Tmes

The basic idea of a tabu list is to restrict previous solutions (or some aspect of a

previous solution) from being used for a specified number of iterations. Each move that

is selected as a potential move is checked against the tabu list. Ifthat move is found on

the tabu list, that potential move is eliminated from consideration, and another potential

move is chosen. In prior implementations tabu search, Glover [1989], Knox [1990], used

tabu lists that prohibit reentry of a solution based on move type. Using the traveling

salesman problem as an example (that is what Knox researched), if a move had changed

the connection between two edges, the tabu list would not accept a move that

reconnected the two edges in the original order, for a certain period of time (based on the

length of the tabu list). In the implementation of tabu search for the work tour scheduling
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problem with non-interchangeable workers, the move types used precluded the use of

such conceptually simple tabu lists.

The tabu lists that are kept for this implementation of tabu search are based on

the types of move generators used. There are three types of move generators used; ones

based on hours (i.e. GiveAnHour, IncreaseOverScheduling, GiveAwayPartShift and

ReduceOverScheduling) , ones based on shifts (i.e. GiveADay, TradeTours, and

CrossTradeTours) and hybrids of the two (i.e. GiveAwayMinShifi and

GiveAwayPartShift). As mentioned before, in prior research, tabu lists were used for

each different type of move. In this research, however, separate lists for each type of

move would be very cumbersome to maintain and check for tabu status. For these

reasons, four lists were created that would preserve the idea of tabu lists and also allow

for easy maintenance and checking. These four lists track hours deleted from a workers

schedule on a particular day, hours added to a worker's schedule on a particular day,

shifts deleted from a workers schedule on a particular day and shifts added to a worker’s

tour for a particular day. As a particular move is implemented, the appropriate list is

updated with the relevant information from the move.

These four tabu lists were found to be adequate to prevent cycling, and to force

the algorithm out of local optima, which are the two objectives of using tabu lists.

5. 2. 2. Aspiration Criteria

The tabu lists, when properly specified, prevent the tabu search algorithm from

cycling. As was mentioned before, this is accomplished by prohibiting a previous

solution or some aspect of a previous solution from reentering the solution, for some

number of iterations. Aspiration criteria allow parts of a previous solution back into the
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solution, providing that the reentry of this part of the solution does not cause cycling.

Glover [1987] suggests that aspiration criteria allow a tabu variable, or solution, back

into the solution if two conditions are met; 1) the magnitude of the change in objective

function value is sufficiently large, and 2) there is some change in the solution, i.e. the

solution has a different variable set than it had when the tabu variable was in the solution

previously or equivalently, the solution is not identical to any previous solution. These

are the aspiration criteria used in this investigation.

5. 2. 3. Selection OfParameter Values

The only parameter value to be determined is the length of the tabu list. Although

there is some guidance given in the literature [Glover, 1989], the tabu list size is usually

determined by experimentation. Experimentation was used in this research to determine

the tabu list length. Results of the experimentation is shown in Figure 5-2, and in Table

5-1.

5. 2. 4. Comparison ofResultsfor Difi'erent Tabu List

Lengths.
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Figure 5-2, Tabu Search Improvement Path for Different Tabu List Lengths

 

As can be seen from Figure 5-2, the tabu list length of 17 seems to outperform

either 16 or 18. Table 5-1 shows that for other lengths of the tabu list, the best objective

function value is always higher than when the length is 17.

Table 5-1, Comparison of Tabu List Length and Objective Function Value

[:abu List Length 7 11 13 15 16 17 18 19

[Minimum r 221 225 225 209 203 185 233 215

 

30]

219|
 

         
 

As a demonstration that the tabu list length choice is important in eliminating the

threat of cycling, Figure 5-3 is offered. Cycling is clearly evident after about 600

iterations.
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Figure 5-3, Improvement Path for Tabu List Length = 7

5. 2. 6. Generation ofMoves or New Solutions

The generation of moves in the implementation of tabu search has been

approached in a problem dependent manner in the past [Glover, 1989]. Moves or

potential solutions have been generated by mechanisms based on salient aspects of the

problems to be solved or by utilizing portions of heuristics previously applied to the

problem [Knox, 1987]. As a result, there are no "generic" move generators, so for the

labor scheduling problem in this research, the methods below are used for generating

moves. In the computer program written to implement tabu search for this research, each

of the move generators was contained in a separate subroutine and each of those

subroutines are explained below. i

There are several strategies that guided the development of these move

generators. First, each of the move generators was designed to produce a move without
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creating constraint violations. The reasons behind this strategy are; 1) There is no good

way to estimate the change in objective function without assurance that the move is

feasible, and 2) If moves that produce constraint violations are allowed, there is no

assurance that a constraint violation will be rectified without a routine with which to fix

that violation. Therefore, move generators were designed so that no constraint violations

were generated along with the move.

The second strategy utilized was to design move generators that gave the

algorithms the greatest opportunity to arrive at a good solution. While adherence to such

a strategy, with a given set of move generators, probably cannot be proven, it is posited

that the set of move generators utilized in this research do, in substantial measure, adhere

to this strategy.

The last strategy utilized for designing move generators for this research was to

use moves that had the same underlying concepts for both tabu search and simulated

annealing. This strategy was rigidly adhered to because of the overriding policy of giving

no advantage to one algorithm over another.

5. 2. 7. Move Generators

Those subroutines that implement the move generators are explained in the

following sections. As each of the move generator subroutines are executed, all possible

potential moves of the respective type are generated. All these potential moves are then

evaluated and one is chosen for implementation.
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Reduce OverStafiing. This subroutine produces potential moves or transitions that

eliminate an hour from one end of a worker's (workerl) shifi. A flow chart of this

subroutine is given in figure 54. First, a list of all taskhours that are overstaffed is

generated. Then, for each overstafl'ed taskhour, a list of workers (workerz) is generated

that meet the following criteria: 1) workerz is scheduled for that taskhour, 2) the

taskhour is either the beginning or end of workerz's shift on that day, and 3) workerz is

scheduled for more than the minimum shift on that day. Finally, this list is combined

with the lists from all other overstaffed taskhours and added to the potential move list for

further processing.

The motivation behind this move is to reduce the cost of the schedule, and

secondarily to increase the availability, and hence flexibility of the worker, so that other

moves might be more easily made.
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Figure 5-4, Reduce Over Staffing
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Increase Over Stafiing. This subroutine produces potential moves that add an

hour to one end of a worker's shift. A flow chart for this subroutine is given in figure 5-5.

For each day, potential moves are generated by adding an hour to either end of the shift

for workers that are scheduled. The particular task the to which the worker would be

assigned is determined at the time of assignment, based on the taskhour margin, as

discussed in chapter 4. All p0tential moves generated are combined with the potential

move list for additional processing.

This move type is motivated by the idea that adding to a worker’s shifi might

decrease his deviation from targeted hours, and may provide additional opportunities for

the other move generators.



 

Start

Subroutine

IncreaseOverStaffing

   

 l

Select First Worker

l

-— Select First Day

 

   

 

 

   

  
   

   

  

Is Worker

Scheduled

For Day?

 

Add Hour to

Beginning of

Original Shift

l
Set Worker

And Hour Into

Potential Move List

L

Add Hour to

'End of

Original Shift

i

Set Worker

And Hour Into

Potential Move List

l

Select Next Day,

Until All Days

Have Been Processed

1

Select Next WOrker,

Until All Are Processed

i

End Subroutine

   

 

   
 

   
 

   

     

   
  
   

 

   

Figure 5-5, Increase Over Scheduling
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Give An Hour T0 Another Worker. In this subroutine, potential moves are

generated by moving a taskhour assignment from one worker to another worker. The

flow char for this move is given in figure 5-6. First, the shifts for each worker are

considered one-by-one and for each shift that is longer than the minimum shifi, a second

worker (workerz) is sought for the first or last hour of the shift. A candidate for workerz

will be considered only if the taskhour to be given away is either the hour immediately

prior to workerzs existing shift, or the hour immediately following workerzs existing

shift, and if workerz is available and qualified for the taskhour. All workerzs and

taskhours so identified are added to the potential move list for further processing.

This type of move is meant to simultaneously decrease two worker's deviation

from targeted hours. It may also decrease the cost of the schedule, if the two workers

have different wage rates.
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Figure 5-6, Give An Hour to Another Worker
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Give A Day T0 Another Worker. The subroutine that generates these potential

moves gives away one workers (workerl) shift to another (workerz). The flow chart for

this subroutine is given in figure 5-7. First, the shifts for each worker] are considered

one-by-one and for each shift, a workerz is sought for the entire shift. A candidate for

workerz will be considered for the potential move only if workerz is available and

qualified for the taskhour. All workers and taskhours so identified are added to the

potential move list for further processing.

This type of move is meant to simultaneously decrease two worker’s deviation

from targeted hours. It may also decrease the cost of the schedule, if the two workers

have different wage rates.
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Figure 5-7, Give A Day to Another Worker
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Trade Shifts With Another Worker. In this subroutine, potential moves are

generated by trading two worker's shifts on the same day. A flow chart for this move is

given in figure 5-8. For each worker and each shift for that worker, all other workers are

tested to see whether they are eligible to trade shifts. Both workers must be scheduled on

the same day, available for the hours of the other worker's shift and be qualified to

perform the task on the other worker's shift. If all these conditions hold, then a potential

move has been identified and is added to the list of potential moves.

Moves of this type are useful for reducing both worker‘s deviation from targeted

hour, and may also reduce the total schedule cost if the wage rates of the two workers are

different.
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Figure 5-8, Trade Shifts With Another Worker
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Cross Trade Shifis With Another Worker. In this subroutine, potential moves are

generated by trading two worker's shifts on different days. This move is illustrated with

flow chart 5-9. For each worker] and each shift for that worker], all other workers

(workerz) are tested to see whether they are eligible to trade shifts. Both worker] and

workerz must be scheduled on the different days, available for the hours of the other

worker’s shift and be qualified to perform the task on the other worker's shift. If all these

conditions hold, then a potential move has been identified and is added to the list of

potential moves.

Moves of this type are useful for reducing both worker's deviation from targeted

hour, and may also reduce the total schedule cost if the wage rates of the two workers are

different.
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Figure 5-9, Cross Trade Shifts With Another Worker
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Give Away Part OfA Worker's Shift. This subroutine gives away part of a

worker’s (workerl) shift to other workers (workerz) on an hour-by-hour basis. This move

is depicted in figure 5-10. First, the shifts for each worker] are considered one-by-one

and for each shift that is longer than the minimum shift, workerzs are sought for the first

and last hours of the shift. The number of hours to be given away is either the worker's

shift length less the minimum shift or the number of hours off target for the worker,

which ever is less. A candidate for workerz will be considered only if the taskhour to be

given away is either the hour immediately prior to workerz's existing shift, or the hour

immediately following workerz's existing shift, and if workerz's is available and

qualified for the taskhour. Once workerz's have been identified for all taskhours to be

given away, all possible combinations of those workerz's and taskhours are generated for

the appropriate end of the shift of worker]. All workerzs and taskhours combinations so

identified are added to the potential move list for further processing.
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Figure 5-10, Give Away Part of a Worker's Shift
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Give Away A Short Shift, Hour By Hour. This subroutine gives away a worker's

(workerl) short shift to other workers (workerz) on an hour-by-hour basis. A flow chart

depiction of this move is given in figure 5-11. First, the shifts for each worker] are

considered one-by-one and for each shift that is equal to or less than the minimum shift

plus one hour, workerzs are sought for the hours of the shift. The workerz will be

considered only if the taskhour to be given away is either the hour immediately prior to

workerz's existing shift, or the hour immediately following workerz's existing shift, and

if workerz's is available and qualified for the taskhour. Once workerz's have been

identified for all taskhours to be given away, all possible combinations of those workerz's

and taskhours are generated for the appropriate end of the shift ofworker]. All workerzs

and taskhours combinations so identified are added to the potential move list for further

processing.
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Figure 5-11, Give Away A Short Shift, Hour By Hour
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5. 2. 8. Formulation Ofconstraints.

Formulation of the problem for solution with tabu search is shown in appendix 2.

Although a complete exposition of the single function for the objective function and

constraints of the problem is given in appendix 2, the implementation of tabu search

utilized in this research does not require the problem to be in single function form. In

fact, the because the constraints are not violated when a potential move is implemented,

they are not required to be checked or calculated with the objective function. The routine

that calculates the objective function does, however, check for constraint violations every

time the objective function is calculated.

5. 2. 9. Objective Function Estimator

A routine to estimate the change in objective function value was developed and

implemented in the tabu search algorithm used in this research. An estimator was used

for several reasons. First, calculating the entire objective function is a time consuming

procedure. Second, computer memory constraints allowed only one copy of the schedule

in memory at a time (calculating the objective function requires a complete schedule), so

calculating the objective function rather than estimating would cause a great deal of disk

access, also very time consuming. Last, the change in objective function can be estimated

very accurately. The estimator that was developed determines the changes to be made to

the schedule, given the move type and information about the workers, and calculates the

changes to the objective function value based on differences in targeted hours, before and

after the move, and differences in overstaffmg, before and after the move. These
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estimates are then used to rank the potential moves, best first. The estimator also allows

the potential moves to be evaluated without any changes to the master schedule.

5. 3. CONCLUSTON

This chapter has described the implementation of tabu search used in this

investigation. The overall flow of the algorithm was shown and explained as were the

various move generators. The methods used to set parameters was explained and results

of those experiments were shown. A demonstration of the fact that the algorithm can

cycle with incorrect parameter settings for the tabu list length was demonstrated.

Contributions based on the implementation of tabu search include new types of tabu lists,

ranking the potential moves, and estimation of objective function value.
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CHAPTER 6 - SIMULATED ANNEALING; THEORY AND IMPLEMENTATION

6. I. INHODUCHON

Simulated annealing is a stochastic optimization technique derived from statistical

mechanics. It is used for finding (near) globally minimum cost solutions to wide variety

of large, combinatorial optimization problems. Kirkpatrick et a1 [1983] were the first to

propose and demonstrate the application of simulation techniques from statistical

mechanics to problems of combinatorial optimization. For a complete discussion of

simulated annealing the reader is referred to van Laarhoven and Aarts, [1987].

6.1.]. StatisticalMechanics

An understanding of statistical mechanics is necessary to comprehend the

relationship between the techniques of statistical physics and the solution of large

combinatorial optimization problems. Statistical mechanics is a body ofmethods for

analyzing aggregate properties of the large numbers of atoms to be found in samples of

liquids or solids, in thermal equilibrium at finite temperatures. Because the number of

atoms is on the order of 1023 per cubic centimeter, only the most probable behavior of
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the system in thermal equilibrium is observed. This behavior can be characterized by the

average and small fluctuations about the average behavior of the system, when the

average is taken over the set of such systems defined by the configurations of the

systems. Suppose that the configuration (configi) of the system is analogous to the set of

spatial positions of the components (atoms or molecules). If the system is in thermal

equilibrium at a given temperature c, then the probability p(config.i) that the system is in

a given configuration (configi) depends on the energy E(config.i) of the configuration.

This probability follows the Boltzmann distribution: p(config.i) = exp(-E(config.i)/ch),

where E(config.i) is the energy of the configuration, c is the temperature, and k3 is

Boltzmann's constant (kB=l .38 x 10'”).

6.1.2. 77w Simulation ofParticles at Iliermal Equilibrium

The behavior of a system of particles or components in thermal equilibrium can

be simulated using a stochastic relaxation technique developed be Metropolis et a1

[1953]. Suppose that at time t, the system is in configuration (configa). A candidate

(configb) for the configuration at time t+1 is generated using a random process. The test

for selecting or rejecting configuration (configb) as the configuration at time t+1 is

based on the difference between the energy levels of configurations (configa) and

(configb). If the energy level of (config.b) < (configa) then (configb) is accepted as the

new configuration. If the energy of (config.b) 2 (config.a) then (configb) is accepted

with probability p = exp(-(E(config.b) - E(config.a))/ch). It must be noted that higher

energy states can be attained (with probability p), but that the general trend of

configuration energy levels will be toward the lower energy states. This trend is also

confirmed by noting that the temperature, c, is decreasing periodically (as described in
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the definition of annealing, below). This decreases the probability that a configuration

with a higher energy level would be accepted.

6.1.3. The Relationship to Combinatorial Optimization

A primary question in statistical mechanics is the nature of the system at low

temperatures, for example, whether the atoms remain fluid or solidify, and if they

solidify, whether they form a crystalline solid or a glass. Very low energy states

predominate at low temperatures, because of the nature of the Boltzmann distribution. To

achieve low-energy configurations, simply lowering the temperature is not sufficient,

because of the possibility of the production of glasses (localized higher energy states). To

avoid these glasses or higher energy states, an annealing process must be used. In an

annealing process the temperature is raised, and then slowly lowered, spending enough

time at each intermediate temperature level to achieve thermal equilibrium.

The problem of finding the low-temperature state of a system when a formula for

its energy level calculation is given is similar to the optimization of a combinatorial

problem. This similarity comes from the fact that annealing attempts to transform the

entire solid into its lowest energy state, avoiding the formation of glasses inm part of

the solid. Such a solid is, of course, composed of very many molecules, that individually,

must be cooled evenly to avoid the formation of glasses.

For the analogy combinatorial optimization, the variables may be thought of as

molecules. When we simulate annealing we are attempting to reduce the objective

function value (energy level) by manipulating the variables (molecules and temperature).

The objective function value must be lowered evenly and slowly to avoid local optima

(glasses) as described above.
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6.1.4. Requirementsfor SimulatedAnnealing Optimization

Simulated annealing as applied to optimization problems involves several steps:

Identification of the analogs of the physical process in the optimization

process itself:

- the energy function becomes the objective function,

- the configurations of atoms becomes the configuration of parameters,

- finding a low energy configuration becomes finding a near-optimal

solution

- temperature becomes a control parameter for the simulation.

Formation of an annealing schedule comprised of the following parts:

- a set of steadily decreasing temperatures or control parameters designated c

in the description of the algorithm. The 0 parameters control the probability of

a higher temperature configuration being accepted as the new configuration at

each iteration.

- the amount of time (number of iterations) spent at each temperature. The

objective is to spend enough time at each value of c to minimize the formation

of glasses or locally optimal solutions.

The development of a method(s) of generating new configurations.
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6.1.5. Description ofSimulatedAnnealing Algorithm in Pseudo-Pascal

Procedure Simulated Annealing

Begin

Initialize;

M = 0;

repeat

repeat

Perturb(Config.i -> Config.j , ACij)

if ACij =< 0 then accept else

if exp(-ACij/c)>random[0, 1] then accept;

if accept then Update(configuration j);

until equilibrium is approached sufficiently closely;

cM+1 := f (CM);

M := M+1;

until stop criterion = true;

end.

Where Ci is the objective function value for configuration i and A Cij := Cj - Ci.

6.1.6. Flow Chart ofSimulatedAnnealing

A flow chart for the simulated annealing algorithm is given in figure 6-1.
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Figure 6-1, Simulated Annealing Flowchart
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6.1. 7. Example of The SimulatedAnnealing Algorithm

Consider maximizing the function f(x) = x2, where x is an integer and permitted

to vary from 0 to 31. To maximize the function using simulated annealing, we must first

code the decision variable as a finite length string. For this problem we will code the

variable as an unsigned binary integer string of length 5 (25:32). We also note that the

algorithm is inherently a minimization algorithm. For the purposes of this example we

will define AC3 to be Ci - Cj (rather than Cj-Ci), and we will arbitrarily set c at 2 (c is

the control parameter or temperature in the annealing schedule).

Initialize: We select an initial configuration at random, say 00101. The Ci value

for this configuration is 5.

Perturb: We select a bit to change at random, in this case the bit at position 3.

The Cj value is then 1.

ACij = 4 (5-1). This configuration fails the first if-then test. exp(-ACij/c)= 0.135,

a random U[0,1] pick (re-picked at each generation) gives .729, so we do not update and

loop back to perturb.

Perturb: We select a bit to change at random, bit 2, giving 00111, with Cj = 7.

ACij = -1 so we accept the new configuration.

Following the pseudo-PASCAL description above, the algorithm would continue

the inner loop until equilibrium is reached (determined by some stopping rule), when the

next c value is used and the process would repeat itself until the algorithm loops with the

final value of c. At that point, an optimal or near optimal solution would have been

reached.
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6. 2. SHl/IULATED ANNEALINGMLMNTATTONISSUES

6. 2. 1. The Annealing Schedule

The tradeoff in developing a cooling schedule is between solution speed and

solution quality. A faster annealing schedule will usually give a poorer solution. Several

types of cooling schedules are classified in van Laarhoven and Aarts [1987]. They

distinguish between two general classes of cooling schedules:

Class A: A variable number of searches, the number of configurations generated

and tried at a given temperature and a fixed decrement ofthe control parameter, or

temperature, and

Class B: A fixed number of searches and a variable decrement of the control

parameter.

Both class A and class B cooling schedules are theoretically sound, although most

prior research has used class A cooling schedules with good success. Prior research on

scheduling problems (Vakharia and Chang [1990] and Brusco and Jacobs [1993]), has

also shown good results with class A cooling schedules. Given the prior research and

some preliminary experimentation, a class A cooling schedule was selected and

implemented for this research. The method for setting the number of searches per value

of the control parameter (iteration) was determined in accordance with theoretical

concerns. Those concerns are: 1) the algorithm must have a finite probability of

accepting all possible configurations, and 2) the probability of accepting a configuration

decreases as the value of the control parameter decreases. One method for increasing the

likelihood of acceptance for new configurations is to increase the number of

configurations tried as the control parameter decreases. A rather elaborate method due to

Romeo [1985] was tried first and then compared to a simple method that multiplies the
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initial number of searches by the iteration number. The comparison of final objective

fiinction values indicated that the simpler method was preferred. The simpler method was

used in the remainder of this investigation, to multiply the initial number of searches by

the iteration number. After selecting the type of cooling schedule, experimentation was

performed to determine good cooling schedule parameters, as explained in the next

section.

6. 2. 2. Setting the parameter values

The cooling schedule used for this implementation of simulated annealing has

three parameters that require setting; the initial value of the control parameter, the

decrement of the control parameter, and the initial number of searches per iteration.

The initial value of the control parameter, Co, was set using the method of White

[1984]. In this method, a number of configurations are generated and the mean and

standard deviation of those configurations are calculated. The mean was calculated to be

1.38 and the standard deviation, 11.94. White proposes that CO 2 a, so Co was set at 12.

Setting the parameter in this manner allows most configurations to be accepted early in

the execution of the algorithm, which, theoretically, improves the performance of the

algorithm.

The rule for the decrement of the control parameter was first proposed by

Kirkpatrick [1982], and used in most of the applications published since then. This rule

is: ck+1= a ~ ck, k = 1, 2, ,n. a is usually set in the range of .5 to .99. After some

experimentation it was found that at = .8 produced satisfactory results. A more elaborate

method for decrementing the control parameter, c, due to Huang, et al [1986] was tried,

but the results were not as good as the simpler decrement rule.
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The initial number of searches per iteration was set using experimentation.

Several values for the initial number of searches were tried ranging from 75 to 300.

Analysis of the final objective function values from the range of values indicated that

there was no significant difference among the values. The implication is that this

implementation of simulated annealing is insensitive to the setting of the initial number

of searches per iteration. The initial number of searches per iteration was set at 75 for the

remainder of the research.

6. 2. 3. Stopping Rules

As is shown in the general description of simulated annealing given above,

stopping rules are necessary for termination of the algorithm. Two types of stopping

rules were implemented in this research. The first rule is based on a final value of the

control parameter, c. The final value of the control parameter can be set in a number of

different ways. The method chosen for this research is due to Lundy and Mees [1986].

The calculation yields a final value close to .05, so that was the value used for the final

value of the control parameter. The other stOpping rule used was to stop execution of the

algorithm if there had been no improvement in the objective fimction value after some

number of iterations. The rule developed after some experimentation was to stop the

algorithm when there had been no improvement for two iterations if at least 10 iterations

had been done (this would correspond to at least 1575 configurations tried with no

improvement).
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6. 2. 4. Perturbation Using Configuration Generators

There are several methods for generating new configurations explained in van

Laarhoven and Aarts [1987]. These methods were deemed unsuitable because there was

no protection from the generation of constraint violations along with the new

configuration. In order to ensure that each new configuration was feasible, and to keep

the comparison between simulated annealing and tabu search as fair as possible, the same

move generating methods used in tabu search were used in generating perturbations, or

new configurations (or moves), for simulated annealing.

The configuration generators used in the implementation of simulated annealing

use the same concepts as those used in tabu search. The primary difference is that the

move generators for tabu search generate all possible moves of the particular type each

time the generator is used, while the move generators used in simulated annealing

generate only one move of the particular type each time the generator is used.

Descriptions of each of the move generators follows.

Reduce Over Stafiing. The subroutine used to produce a transition to reduce

overstaffmg is shown in figure 6-2. This subroutine finds the task hour that is most over

staffed. Next, a pool ofworkers scheduled to work during that task hour and whose first

or last hour in the shift is the hour most over staffed are identified. From this pool of

workers, the worker most over targeted hours is selected. If that worker is not scheduled

in the over staffed task for that hour, an attempt to swap the workers task for the over

staffed one is made. Ifthe swap is not successful, then the next most over target worker

is selected. When a worker from the pool is found that is scheduled for the over staffed

task hour (whether the worker swapped for the task or not) that worker, and task hour is

returned to be tested for acceptance by the main program.
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Subroutine

ReduceOverStaffing

   l

 

Find the TaskHour

That is Most

OverStaffed

     

l
 

Find All Workers

Scheduled For Hour

on First or Last Hour

     

l
 

Pick Remaining Worker

Most Over Target

 

   

l
 

If Qualified, and Necessary

Swap With Another Worker

for TaskHour

   

  

  

   

Swap

Successful?  

 

Return Worker, TaskHour Pair

As Potential Configuration

   

Figure 6-2, Reduce Over Scheduling
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Increase Over Stafiing. The flow chart for the transition generator is given in

figure 6-3. The first step is to identify all workers under targeted hours, sort them

according to the number of hours under target and select the worker most under target.

Next that worker's shortest shift is found. Once the shortest shift is known an hour either

just before the shift or just after the shift is picked randomly. The task is set to be the

same as for assignment of the hour immediately before or after the hour picked, as the

case may be. This task hour and worker combination is returned to the main program for

acceptance or rejection according to the metropolis equation.



 

Subroutine

IncreaseOverStaffing

1
Find Worker Most

Under Target

l
Find Worker's

Shortest Shift

l
Pick Hour at

Beginning-1 or End+1

of Shift Randomly

l -
Set Task Same as

Preceding or Following

Hour

l
Return Worker,

TaskHour Pair as

Potential Configuration

   

 

     

 

   

 

   

 

   

 

   

Figure 6-3, Increase Over Scheduling
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Give An Hour To Another Worker Randomly. Figure 64 gives the flowchart of

the subroutine that creates a potential configuration that gives an hour to another worker

randomly. The first step is to pick a day in the scheduling period randomly, from a

uniform distribution. Next the pool of all workers scheduled for the day is created. From

the pool, a worker is picked randomly, and the rest of the pool is searched for all other

workers that can take for the first worker's first or last hour, considering availabilities and

task qualifications. From the pool of all workers that can trade, a second worker is

chosen, based on the shortest shift length. Based on the availability of the second worker,

the task hour is determined, and the first and second worker and the task hour are

returned to the main program for fiirther processing.
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Subroutine

GiveAnHourToAnotherRandomly

   

  

Pick a Day
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l
Return the Worker1,

Worker2, TaskHour Triple
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Figure 6-4, Give An Hour to Another Randomly
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Give A Day To Another Worker Randomly. The flowchart of the subroutine that

creates a potential configuration that gives a day to another worker randomly is given in

Figure 6-5. The first step is to pick a day in the scheduling period randomly, from a

uniform distribution. Next the pool of all workers scheduled for the day is created. From

the pool, a worker is picked randomly. A second pool of worker is formed that can trade

for the first worker's shift , considering availabilities and task qualifications. From the

pool of all workers that can trade, a second worker is chosen, based on the most hours

under target. Finally, the first and second worker and the shift are returned to the main

program for further processing.



99

 

Subroutine

GiveADayToAnotherRandomly

l
Pick a Day

Randomly

l
Find Pool of All Workers

Scheduled on Day
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l
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Return the Worker1,

Worker2, Shift Triple

As Potential Configuration

   

Figure 6-5, Give A Day To Another Randomly
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Trade Tours Between Workers Randomly. The subroutine that generates a new

configuration that trades tours between two workers randomly is given in figure 6-6. The

first step is to pick a day in the scheduling period randomly, from a uniform distribution.

Next the pool of all workers scheduled for the day is created. From the pool, a worker is

picked randomly. A second pool ofworker is formed that can trade for the first worker's

shift (and that the first worker can trade with), considering availabilities and task

qualifications. From the pool of all workers that can trade, a second worker is chosen,

based on the most hours under target. Finally, the first and second worker and the shift

are returned to the main program for further processing.
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Subroutine

TradeToursRandomly

   

 l

Pick a Day

Randomly

 

   

 l
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Return the Worker1,

Worker2, Shift Triple

As Potential Configuration

   

Figure 6-6, Trade Tours Randomly
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Cross Trade Tours Between Workers Randomly. Figure 6-7 gives the flowchart of

the subroutine that creates a potential configuration that cross trades tours randomly. The

first step is to pick a day in the scheduling period randomly, from a uniform distribution.

Next the pool of all workers scheduled for that day is created. From the pool, a worker is

picked randomly. Another pool of workers is created with workers that are under target

and are available and qualified to take the first worker's shift. The worker most under

target is picked as the second worker. All the days the second worker is scheduled to

work are checked to determine whether the first worker is available and qualified to take

the second workers shift on that day. If so, a match has been found and the first worker,

the second worker and the two shifts are retumed to the main program for further

processing. If not, another second worker is chosen and the process repeats.
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Subroutine

CrossTradeToursRandomly

l
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Randomly

   

 

   

 1
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Return the Worker1,
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Figure 6-7, Cross Trade Tours Randomly
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Give An Hour To Another Worker. The reader may refer to the flowchart shown

figure 6-8 for a depiction of the subroutine that generates a configuration based on the

method of give an hour to another worker. This subroutine first creates a pool of workers

that are over targeted hours. The worker with the most hours over target is picked from

the pool. From the worker's tour, the longest shift is selected. A second pool is created of

workers that are available and qualified for either the first or last hour of the first

worker's longest shift. This second pool's workers are required to have the shift they are

scheduled for on the day in question adjacent to the first worker's shift, so the second

worker might take either the first or last hour of the first worker's shifi, without fill-in

hours. Once a second worker is found, the subroutine returns the first and second workers

and the task hour to the main program for further processing.
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Subroutine
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Figure 6-8, Give An Hour To Another
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Give A Day To Another Worker. Figure 6-9 illustrates the subroutine that

generates a new configuration based on the method of give a day to another. This

subroutine first creates a pool of workers that are over targeted hours. The worker with

the most hours over target is picked from the pool. Next, the worker's tour is searched for

the shift whose length most closely matches the number of hours over target. Then a pool

of workers, available and qualified for the first worker's shift, is created. A worker with

the most hours under target is picked from this second pool. The first worker, the second

worker and the shift are returned to the main program for fiirther processing.
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Subroutine
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Figure 6-9, Give A Day To Another
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Trade Tours Between Workers. Figure 6—10 illustrates the subroutine that

generates a new configuration based on the method of trade tours. This subroutine first

creates a pool of workers that are over targeted hours. The worker with the most hours

over target is picked from the pool. Next, the worker's tour is searched for the shift

whose length most closely matches the number ofhours over target. Then a pool of

workers, available and qualified for the first worker's shift, is created. A worker with the

most hours under target is picked from this second pool. The second worker's shift is

tested to determine whether the first worker is available and qualified to take it. If so, a

match has been found and the first worker, the second worker and the shift are returned

to the main program for further processing. If not, another second worker is picked and

the process repeats.
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Subroutine
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Figure 6-10, Trade Tours Between Workers
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Cross Trade Tours Between Workers. The flowchart in figure 6-11 shows the

method for generating configurations by cross trading tours. This subroutine first creates

a pool of workers that are over targeted hours. The worker with the most hours over

target is picked from the pool. Next, the worker's tour is searched for the shift whose

length most closely matches the number of hours over target. Then a pool ofworkers,

available and qualified for the first worker's shift, is created. A worker with the most

hours under target is picked from this second pool. All the days the second worker is

scheduled to work are checked to determine whether the first worker is available and

qualified to take the second workers shift on that day. If so, a match has been found and

the first worker, the second worker and the two shifts (on different days) are returned to

the main program for further processing. If not, another second worker is chosen and the

process repeats .
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Subroutine
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Figure 6-11, Cross Trade Tours Between Workers
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Give Away Part OfShift To Other Workers. The subroutine used to produce a

transition to give away part of a worker's shift is shown in figure 6-2. This subroutine

first finds the task hour that is most over staffed. Next, a pool of workers scheduled to

work during that task hour is created and the worker that is most over targeted hours is

chosen as the first worker. The task hour chosen in the first step lies somewhere in the

first worker's shift. The portion and length of the shift to be given away are determined

by the location of the task hour in the shift and the number of hours the worker is over

target. Once the portion of the shift to be given away has been identified, a second

worker, available and qualified, and most under targeted hours is found. The first worker,

second worker, and portion of the shifi are returned to the main program for further

processing.



113

 

Subroutine
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Figure 6-12, Give Away Part Of Shift To Other Workers
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Give Away A Short Shift To Other Workers. An illustration of the subroutine to

give away a short shift is given in figure 6-13. This subroutine gives away a worker's

shortest shift (either minimum hours or minimum hours + 1), to other workers, one hour

at a time. First the worker with the most, over targeted hours is identified. Next that

workers shortest shift is identified. Other workers are identified that can take the hours,

one hour at a time. Then lists of the hours, and workers are returned to the main program

for further processing.
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Figure 6-13, Give Away A Short Shift
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6.2.5. Inclusion of Both Improvement And Random Configuration Generators

The type of configuration generators described in the simulated annealing

literature have been what might be termed random configuration generators. These

random configuration generators produce a perturbation in a random manner.

Configuration generators of this type have been used for several reasons, the first of

which is that annealing, in a physical sense, is a random process driven by the brownian

motion of the molecules in the solid. Additionally, the problems to which simulated

annealing has been applied lend themselves to random perturbations. As the

configurations generators for this problem were being developed, it became evident that

both random and "improvement" configuration generators could be developed. An

improvement configuration generator produces potential configurations that are chosen to

improve the objective function (solution), as apposed to the random configuration

generators that may or may not improve the objective function. Theoretically, there was

no reason why improvement configuration generators should not be utilized. Practically,

it was not known, however, whether immovement configuration generators would be

useful. As the reader will have noted from the descriptions of the configuration

generators, both random and improvement configuration generators were used in this

implementation of simulated annealing. Further, the reader will have noted that several

of the configuration generators had both a good and a random version. Statistical

justification for use of both types follows.

Separate runs on 15 test problems were made for the simulated annealing

algorithm with the set of both random and improvement configuration generators

(designated SA in tables 6-1 and 6-2), the set of configuration generators without the

random versions (SANR), and the set of configuration generators without the

improvement versions (SARO). An ANOVA was calculated as the statistical test for the

hypothesis that all sets of configuration generators perform similarly, vs. the alternative
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that there are significant differences among the sets of configuration generators. Results

of the ANOVA are given in table 6-1.

Table 6-1. ANOVA for Objective Function

 

ANOVA for Objective Function Value

VAR$: SA, SANR, SARO

DEP VAR: Objective Function Value

MULTIPLE R: 0.759

SQUARED MULTIPLE R: 0.577

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

VAR$ 1922542.178 2 961271.089 28.596 0.000

ERROR 1411841.467 42 33615.273  
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Table 6-2, TUKEY HSD Multiple Comparison Test For Objective Function Value

 

TUKEY HSD Multiple Comparison Test For

Objective Function Value

VAR$

SA, SANR, SARO

USING LEAST SQUARES MEANS.

USING MODEL MSE OF 33615.273 WITH 42. DF.

MATRIX OF PAIRWISE MEAN DIFFERENCES:

SA SANR SARO

SA 0.000

SANR 479.000 0.000

SARO 381.533 -97.467 0.000

TUKEY HSD MULTIPLE COMPARISONS.

MATRIX 0F PAIRWISE COMPARISON PROBABILITIES:

SA SANR SARO

SA 1.000

SANR 0.000 1.000

SARO 0.000 0.322 1.000

 

Ifwe take the objective function value as our measure of solution "goodness", we

find that there are significant differences between the three sets of configuration

generators. So we reject the null hypothesis that there are no significant differences

among the three sets of configuration generators. Table 6-2 shows the Tukey HSD

multiple comparison test for differences between the means of objective function values

for the three different sets of configuration generators. The ANOVA results in table 6-1

show that there are significant differences among means of the three sets of configuration

generators at p < .001. The Tukey HSD multiple comparison test shown in table 6—2

indicates that there are significant differences between SA and SANR and SARO but not
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between SANR and SARO. Further, the mean for SA is smaller than both SANR's and

SARO's. The implication is that the combination of both random and improvement

configuration generators is better than either alone, at least for this implementation of

simulated annealing. Full justification for the use of the Tukey HSD multiple comparison

test is given in chapter 8.

6.2. 6. Probabilities usedfor selection ofconfiguration generators

As is mentioned before, there are 12 different configuration generators. With 12

generators, a question naturally arises: "Would the algorithm perform better if some

configuration generators were used more frequently than others, or would choice of

configuration generator by equal probability random choice be better? ". To answer this

question some experimentation was done. Several schemes were tried, equal

probabilities, adaptive probabilities based on percentage of configurations accepted,

unequal probabilities produced randomly, and probabilities based on expectations of

what configuration generators would work best at the beginning and end of the run. The

results of the experimentation indicated the probabilities based on expectations of what

configurations would work best at the beginning of the run and what configuration

generators would work best at the end of the run produced better solutions, in terms of

objective function values. All configuration generators had positive probabilities at every

stage of the optimization procedure. Those configuration generators that were thought to

perform better at the beginning of the run had relatively higher probabilities of being

used at the beginning of the run, with decreasing probabilities each iteration. Those

configuration generators that were thought to perform better at the end of the run had
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relatively lower probabilities of being used at the beginning of the run, with increasing

probabilities each iteration.

6.2. 7. Improvement Pathfor SimulatedAnnealing

The improvement path of the objective function value is shown in figure 6-14.

This path has marked similarities to those shown in other investigations, see Knox

[1991], and Brusco and Jacobs [1993].
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Figure 6-14, Simulated Annealing Improvement Path

6. 3. CONCLUSION

The theory and implementation details of simulated annealing have been given.

Among the contributions of this investigation are the introduction of "improvement"
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configuration generators, and the use of weights to determine how often a configuration

generator is used at a particular stage of the algorithm.
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CHAPTER 7 - RESEARCH METHODOLOGY

7.1. ImoovcnoN

The objectives of this research were to adapt and implement two new algorithms,

simulated annealing and tabu search, and to compare the performance of these two

algorithms with an existing heuristic, Loucks', for solving large scale labor scheduling

problems. The comparison was to be made on three areas of performance; speed to

solution (measured in seconds), manpower cost of final schedule (measured in dollars),

and quality of solution, measured by the number of hours overstaffed, by the sum of

squared deviations from workers targeted hours and by the Objective firnction value (a

linear combination of the number Of hours overstaffed and the sum of squared deviations

from workers targeted hours).

The algorithms were tested across a spectrum of problems varying in difficulty as

measured by three factors; Average Worker Utilization, Average Percentage ofNumber

Of Tasks Known, and a measure of peak-tO-trough taskhour demand variation,

designated Max—Min Ratio.

Average worker utilization is the ratio, averaged across all workers, of the

number of hours scheduled to number of hours targeted, expressed as a percentage. This

factor is intended to measure the flexibility that a scheduler would have in assigning
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workers to particular task hours. As average worker utilization increases, the problem

becomes more difficult to solve, because there are fewer workers available to schedule

for each task hour.

The measure, average percentage of number of tasks known, is the ratio, averaged

across all workers, of the number of tasks known by a worker to the total number of

tasks, expressed as a percentage. This factor also is intended to measure the flexibility

that a scheduler would have in assigning a worker to a particular taskhour. As the

measure, average percentage of tasks known by worker, is increased the scheduler has

more flexibility to schedule workers, making the problem easier to solve.

The min-max ratio is the maximum demand in task hours for the day (summed

across all tasks) divided by the minimum demand for task hours (summed across all

tasks) within a four hour period. This factor was included in order to capture the

difficulty a scheduler might encounter in minimizing the total number of task hours

scheduled in the presence of peakedness in customer demand for task hours and a

constraint on the minimum number of hours scheduled in a shift for a worker (in this

case, 3). A higher level of this ratio indicates a more difficult problem.

This investigation was conducted in three phases. First a set of hypotheses were

developed, based on the Objectives of the research as stated above. Second, an

experimental design was chosen to accomplish the objectives of the research. And third,

the new methods as well as Loucks' heuristic were used to solve the labor tour scheduling

problems associated with the worker flexibility and labor requirements characteristics

specified in this research.
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7. 2. CHOICE OFALGORITWFOR COMPARISON

The heuristic solution method of Loucks [1987] was chosen for comparison for

several reasons; the method has found optimal solutions in research settings [Loucks

1987], software is available for comparisons between algorithms, and the underlying

formulation used in the sofiware is similar enough to the one chosen for the research

problem that it can be used for comparative purposes.

7. 3. HYPOTHES’ES'

As stated earlier, an Objective of the research was to compare the three

algorithms, Loucks' heuristic, tabu search, and simulated annealing. TO accomplish that

objective several hypotheses were developed relating to the speed, cost and quality of

solution. In the following discussion Of the hypotheses, the subscript attached to the

dependent variable of interest refers to the solution method. For example, Time] refers to

the Time for Loucks' heuristic, Timez refers to the time for simulated annealing, and

Time; refers to the Time for tabu search.

7. 3. 1. Time - Speed OfAlgorithm

Ho : Timel = Timez = Time3

H1 :Time1¢ Timez ¢ Time3

Speculation at the outset of this research was that tabu search and simulated

annealing will outperform the Loucks' method on this measure [Knox, 1989]. Further,
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related evidence [Knox, 1989, Skorin-Kapov, 1990], shows that tabu search outperforms

simulated annealing in solution time for small problems. However, since the problems to

be used in this research are large, the a priori expectation was that simulated annealing

will outperform tabu search in Total CPU Time. Accordingly, the alternative hypothesis

states that solution speeds are unequal.

7. 3.2. Cost - TotalManpower Cost ofthe Schedule.

H0 : Costl = Costz = Cost3

H1 : Cost] at Costz ¢ Cost3

There was no evidence at the outset of this research to suggest that there is a cost

difference between schedules developed by the different algorithms.

7. 3. 3. Quality OfSolution

TOS - Total man-hours of overstaffmg.

H0 2 TOS] = T082 = T083

H1 : TOS] #3 T082 at T033

There is no evidence to suggest any a priori ranking on this measure. This does

not diminish its importance, however, because as overstaff'mg increases so do costs. An

algorithm with a higher TOS will produce higher cost schedules.
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7. 3. 4. TSD - Sum ofsquared deviations between scheduled and targeted work hours.

H0 : TSDl = TSD2 = TSD3

H1 : TSD] at TSD2 at TSD3

The measure TSD is an important indicator of a worker's perception of schedule

quality. There is no evidence to suggest any rankings, however. Since simulated

annealing can be shown to converge to an optimal solution, given sufficient time [van

Laarhoven and Aarts, 1987], it may outperform the other algorithms on this performance

measure.

7. 3.5. OBJ - Objective Function Value

H0 : OBJ] = OBJZ = 03.13

H1 : 03.11 at 0312 at 0BJ3

The measure OBJ is a linear combination of TOS and TSD. This measure is

important because it is a measure of the overall level of quality of the schedule produced

by the algorithm, from the perspectives of both management and labor. Again there is no

i

evidence to suggest a priori rankings.
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7. 3. 6. Interactions among variables

Because there were several factors intended to measure problem difficulty, and

because the set of problems reflected those factors, it was deemed necessary that the data

be tested for the presence of significant interactions. At the time of the research, there

was no prior evidence to suggest which interactions might be significant.

7. 4. SELECTIONOFEHERMNTALDESIGN

7. 4. 1. Factor Levels

As discussed above, the problem difficulty factors are Average Worker

Utilization (AWU), Average Percentage of Tasks Known (PCTNTN) and the Max-Min

Ratio (MMR). Eighteen managers of firms in the service industry were interviewed to

determine the number of levels and the value of levels to be used in the experiment and

to substantiate assumptions basic to this research. These firms were chosen to be

representative of the different types of food service and retail establishments in the

locality. Based on the interviews, three levels were chosen for each factor, with the

values of the levels based on the average of the responses. The factor "Algorithm" has

three levels, Loucks, simulated annealing and tabu search. Those values are shown in

table 7-1.
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Table 7-1 - Factors and Factor Levels

Factor 2

Average . > .3 and S .5

verage . >35 and ..<. .625

OfTasksKnown

>23nd$5

 

7. 4. 2. Choice ofDesign

Because of the interest in investigating the interactions among factors and because

there were no prior expectations regarding interactions, other than that some would be

significant, a full factorial design was selected, in order to investigate all possible

interactions. Given three levels for each of the factors, the design is 3x3x3x3, for a total

of 81 treatments.

7. 4. 3. Sample size ofexperiment

As is widely known, sample size determination is a tradeoff between power of the

test, that is the probability of a type H error, and the amount of resources necessary to

carry out the experiment. For this investigation, the probability of a type two error was

desired to be no more than .05.

A number of methods exist for determining sample size for an experiment, some

quite general or "guesstimates", some quite analytical, see Kirk [1982], Larsen and Marx

[1981] and others. Montgomery [1984] outlines several analytical methods for
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determining sample size using Operating characteristic curves. The method of

determining sample size chosen for this research relies on estimates of treatment means

and overall variance.

7. 4. 4. Test data

Because no estimates of means or variances were available from past experiment

or experience, problems generated for use in the experiment were used to estimate the

means and variances required for the calculation of <1), a variable used in the analytical

method for determining sample size using operating characteristic curves. Four problem

types (a total of 12 treatments) were chosen at random to provide estimates of the

variance and treatment means. Each of the algorithms was run against 15 problems of

each type. Means and variances were calculated for each treatment. Further, treatment

effects were calculated for each treatment by subtracting from the treatment mean the

grand mean. Using the results of these calculations values Of (I) were calculated for each

of the five performance measures.

For the purposes of this analysis, the variable chosen was TSD - Sum of squared

deviations between workers scheduled and targeted work hours. This variable was chosen

because, based on the sample data used, the value of <1) had the largest magnitude of all

the performance measures, except for the performance measure time-to-solution (or

time). Since the performance measures associated with solution quality were deemed

more important that of time-tO-solution, TSD was used for the subsequent analysis. The

use of the performance measure with the largest value of (1) provides the most

conservative results from the analytical procedure, i. e. the largest sample size.
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7. 4. 5. Analysis

After analysis, the data calculated and given in table 6-2 indicated that a sample

size of 6 would be adequate to ensure that the probability of committing a type 11 error

would be less than .05.

Table 7-2 Results of the analytic procedure for determination of sample size.

 

 

 

 

   

n <I>"2 (I) a(n-1) B Power(1-B)

4 2.09882 1.44873 36 0.10 .90

5 2.623 525 1.61973 48 0.06 .94

6 3.14823 1.774325 60 0.03 .97    
 

7. 4. 6. Choice Ofsample size

Although 12 treatments out of 81 represents a relatively high percentage of total

treatments for determination of sample size, some uncertainty remained about how

representative were the observed values of both the treatment means and the variances.

Because of that uncertainty, and because of additional uncertainty regarding the ability of

the algorithms to come to solution on the various problem types, it was decided to

increase the sample size to 15. In this investigation, increasing the sample size merely

increases the amount of personal computer time spent on solutions, so increasing the

sample size was relatively cost free. It was felt that the tradeoff of increasing the total run

time was well worth the effort since a larger sample size would increase the power of the

experiment.

The total number of computer runs was set at, sample size * number of cells, or

15 * 81 =1215.
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7. 4. 7. Replicationsfor SimulatedAnnealing

As discussed in chapter 6, simulated annealing is a randomized search process,

that requires the use of a probability distribution associated with the "transition" and

therefore produces a different solution each time the algorithm stops (if it is stopped

before reaching optimality). Since Optimality for the simulated annealing algorithm can

only be guaranteed with an infinite number of transitions, the implementation used in this

research cannot be guaranteed to find the globally optimal solution. Since global

optimality is not assured, and since the algorithm produces a different solution, with a

different Objective function value, for each run on the same problem, some method to

characterize the performance of the algorithm was sought. Both Loucks' heuristic and

tabu search are deterministic, that is, the solution generated is the best one for each

problem solved, so they do not require repetition.

There are two ways to evaluate simulated annealing's performance - with no

repetitions and with repetitions. Using one run, the first solution and associated

performance measurement values, is an attractive suggestion. This has the benefit of

reduced computer time for the research, but leaves the question of "Is this the best

solution that this algorithm will generate?" open. It also rejects the probability that a

manager would run the algorithm at least twice to find the better solution. After some

discussion, the decision was made to run two or more replications of simulated annealing

on each problem for two reasons. First, a single run would not capture indications Of

simulated annealing's best performance, and second, it is likely that in a firm the

scheduler would run the algorithm at least twice, picking the best solution.

The number of replications for simulated annealing for each problem was set at 5,

based on two considerations. First, the total time required for 5 replications of simulated

annealing is just less than or approximately equal to the time that the tabu search
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algorithm takes for completion, that is, five is the largest integer multiple of simulated

annealing's run time that does not exceed tabu search's run time, on average. Second, the

analytical procedure for determining sample size indicated that for simulated annealing,

five replications would give a power of about .95, which was deemed sufficient for this

research.

The data used for the statistical analysis for simulated annealing is the best

solution of the five replications. The best of the five was chosen on the basis of the

lowest objective function value. Ties were broken based on the fastest run time. All the

associated values of performance measures of the best solution were used in the statistical

analysis.

Some might argue that the average of the five solutions be used in the subsequent

analysis, rather than the best solution. This argument was considered and rejected

because; 1) scheduling managers were very unlikely to run the algorithm five times and

then choose the average solution, and 2) while it is possible to average performance

indicators, it is impractical to average two (or more) schedules together. One of the

schedules, of the five, will have to be implemented. The obvious choice is the schedule

corresponding to the best objective function value. So the idea of an average schedule

represented by averages of performances is unworkable.
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7. 5. GENERATION0F TES‘TPROBLEMS‘

The generation of test problems followed the procedure of Loucks. For a full

discussion of his procedure, see Loucks [1987], but in general terms, his procedure is to

generate a work tour for each worker, to generate a set of available hours for each worker

that are inclusive of the work tour, to sum across workers to find the task hours required

for each hour of each day, and to use those hour by hour, task by task sums to construct a

scheduling problem. As you will note, since the schedule is constructed from an actual

schedule, Loucks' procedure provides a problem for which we know the optimal answer.

It was felt, however, that Loucks' procedure should be modified for the following

reasons.

First, actual demand patterns for workers, in terms of task hours, probably would

not have the implicit characteristic of a minimum shift of 3 hours. When the Loucks

procedure creates a scheduling problem, it sums the workers scheduled by task hour, with

the restriction that all workers shifts will be at least the minimum shift (3 hours). This

abnormally restricts the range of the Max-Min Ratio (MMR), or alternatively, reduces

the peakedness of the demand pattern. A review of demand patterns published in the

literature indicates that frequently the MMR will exceed 10. Measurement of the MMR

from the unmodified Loucks procedure revealed a maximum of seven. After the

restriction on minimum shift was lifled (by setting the minimum shifl = one hour) the

modified procedure showed MMR values up to 12. Unfortunately, the modification

causes the procedure to produce problems for which the optimal solution is not known.

Last, modification of Loucks' procedure, by removing the minimum shift

constraint, would also eliminate any favorable bias toward one algorithm or another

because no algorithm would possess prior knowledge about the characteristics of the

problem to be solved.
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As specified, Loucks' procedure produces problems in 6 of the 27 problem types.

To generate the other 21 problem types, the cumulative probability distributions for

number Of hours scheduled, number of tasks known and window of availability were

adjusted, simultaneously and singly. Adjusting the cumulative probability distribution of

the number of hours scheduled to increase the average of the number of hours scheduled

produces problems with increased average worker utilization. Adjusting the cumulative

probability distribution of the number of tasks known to decrease the mean of the

number of tasks known produces problems with a lower average number of tasks known.

Adjusting the cumulative probability distribution of the window of availability to reduce

the average size of the availability window produces problems that have higher average

worker utilization. These adjustments were performed to produce the problems for all 27

problem types.

This use of adjusting cumulative probability distributions as a method of

producing problems, coupled with the relaxation of the minimum shift constraint(as

explained above), causes the problem generator to produce a significant proportion of

infeasible problems. Depending on the problem type, as many as 60 problems were

generated to find 15 that were feasible. The problems were tested for feasibility by using

the program used to generate initial feasible solutions for the simulated annealing and

tabu search algorithms as described in chapter 4.
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7. 6. DATA GATHERING

Once the problems were generated, running the algorithm on the problems

commenced. After initial calculation of approximate run times for the algorithms and in

view of the total number of problems, additional computing power was arranged for this

research. A total of 17 computers were used to collect the data, at three locations. All but

five of these computers ran at different speeds. Several test problems were run on all

computers to establish the factors by which to adjust the run time of the algorithm on

each problem by computer on which it was run.

Loucks' heuristic would not run to completion on 20 of the feasible problems.

Upon examination of Loucks' computer code, it was found that the method by which the

workers were assigned to hours in Phase 1 of his algorithm, caused unresolvable

constraint violations, which in turn caused the algorithm to terminate prematurely. The

specific cause of the failures is thought to be related to the emphasis Loucks' algorithm

places on minimizing unnecessary over scheduling of workers during the early stages of

the algorithm. This caused a reduction of sample size in some cells to 13. To ensure a

balanced design, data points were eliminated randomly from cells to equalize the sample

size at 13 for all cells. As discussed previously above, the original sample size was set at

15 so that adequate power could be preserved in such a case as this.

The total time for computing on problems spanned 1014 hours of (adjusted to

33MHz, 386 standard time) computer time over the period of about 10 days:
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CHAPTER 8 - RESULTS OF EXPERIMENTATION

8. I. INTRODUCTTON

Before discussing the results of experimentation based on ANOVA, tests of the

underlying assumptions of analysis of variance that were carried out are explained, so

that there might be confidence in the results and the ensuing discussion. After the validity

ofusing analysis of variance is established, results of significance tests will be presented

and discussed. The level of significance used throughout the remainder of this discussion

of statistical tests is a = .05. All statistical tests were carried out using SYSTAT for

Windows.

8. 2. TFSTSFORASSUMPTIONSOFANOVA

To have confidence in the results obtained from an analysis of variance,

verification that the data conform to the assumptions underlying the analysis of variance

is necessary. The three assumptions of analysis of variance to be tested are; 1) that the

error residuals are normally distributed, 2) that the error residuals are independently
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distributed, and that all treatments have constant variance or that all treatments display

homogeneity of variance.

First, normality of error residuals was tested by using normal probability plots of

the error residuals. Second, first order autocorrelations are given to test for independence

of the distribution of the residuals, in tabular form. Last, homogeneity of variance was

tested by plots of residuals against estimates and by Bartlett's test for Homogeneity of

Variance.

8. 2. 1. Normalin oferror residuals

Montgomery [1984] suggests that a useful procedure for checking the normality

assumption is to construct a normal probability plot of the residuals. If the plot resembles

a straight line, then the underlying error distribution is normal. Figures 8-1 through 8-5

show normal probability plots of residuals corresponding to each of the performance

measures.
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8. 2. 2. Normal Probability Plots ofResiduals
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Figure 8-1, Normal probability plot of TOS residuals

 

 

4 I I I fl

3- . ..

../

2- -

E
X
P
E
C
T
E
D
V
A
L
U
E

0

I l

  
 

  
 

Figure 8-2, Normal probability plot of TSD residuals
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Figure 8-3, Normal probability plot of OBJ residuals
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Figure 8-4, Normal probability plot of COST residuals
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Figure 8-5, Normal probability plot ofTIME residuals

As can be seen from figures 8-1 and 8-4, the residuals plot seems to approximate

a straight line. However, figures 8-2, 8-3 and 8-5 indicate that the residuals may not be

normally distributed since the plots differ appreciably from a straight line. The non-

norrnal distributions for TSD, OBJ, and TIME may indicate that a transformation is

desirable.

8. 2. 3. Independent distribution oferror residuals

The independent distribution of error residuals can be assessed by measuring the

autocorrelation of the data. This is done automatically by SYSTAT. The values of

autocorrelation are listed in the following table. There seems to be no significant
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autocorrelation, so it may be concluded that the error residuals were independently

distributed.

Table 8-1, Autocorrelation Values For Dependent Variables

 

I TOS TSD OBJ | COST | TIME
 

   
I Autocorrelation -0.057 -0.002 -0.03O | -0.068 I 0.041
 

8. 2. 4. Homogeneity ofvariance

The plots of residuals vs. estimate for all dependent variables are shown in figures

8-6 through 8-10. Homogeneity of variance is indicated by a random dispersal of

residuals around a mean value of zero. There should be no apparent patterns in the data.
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Figure 8-6, Plot of Residual vs. Estimate - TOS



Figure 8-8, Plot of Residual vs. Estimate - OBJ
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Figure 8-7, Plot of Residual vs. Estimate - TSD
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Figure 8-9, Plot of Residual vs. Estimate - COST
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Figure 8-10, Plot of Residual vs. Estimate - TIME
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An examination of the figures 8-6 through 8-10 reveals that the plots of residual

versus estimate for all dependent variables exhibit a funnel shaped distribution. The

presence of firnnel shaped distributions is indication that a transformation of the data is

desirable.

8. 2. 5. Bartlett's Test

Bartlett's test for homogeneity of variance tests the hypothesis that the variances

of all treatments are equal for each performance measure. This hypothesis is rejected if

the test statistic exceeds the appropriate chi-square value.

The test statistics for each of the dependent variables is shown in Table 8-2.

Table 8-2, Bartlett's Test For Homogeneity of Variance

 

 

 

 

[ |TOS TSD | OBJ | cosr TIME |

LChi-Square, soar | 60.39 60.39 | 60.39 | 60.39 60.39 |

lTest Statistic, 80df |600.381 1334.183 [445.353 |242.852 3650.298 | 
 

As can be seen from the table, each of the test statistic values exceeds the chi-

square value, so we reject the hypothesis that all variances are equal for each dependent

variable.

8. 3. BOXAND COXANALYTICALWHODFORDETWNING TRANSFORMATTON
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The evidence presented indicates that the data violate the assumptions of

normality of residuals and homogeneity of variance. The usual approach for dealing with

non-homogenous variance is to apply a variance stabilizing transformation and then to

run the analysis of variance on the transformed data. In this approach, any conclusions

postulated apply only to the transformed populations.

A substantial amount of research has been devoted to the subject of the selection

of an appropriate transformation. Since there was no theoretical distribution for the

observations, there were two options for selection of the appropriate transformation:

empirical selection of a transformation or analytical selection of a transformation. A

researcher using the empirical selection method would try the various transformations

mentioned in the literature, one at a time, looking for a transformation that modified the

data in such a manner so as to remove heterogeneity of variance and non-normality of

error residuals (see Kirk, [1982] for example).

The use of the analytical method for selection of a transformation performs a

series of predefined transforms on the data, measuring the error sum of squares for each.

The intent is to generate a set of points from which the minimum error sum of squares

can be estimated. The selection of the transform is based on the minimum error sum of

squares. For this research, the analytical approach for selection of a transformation was

chosen.

8. 3. 1. Explanation ofAnalytical Determination of Transformation

Box and Cox [1964] have demonstrated how the transformation parameter it, in

y* = y1 may be estimated using the method ofmaximum likelihood, where y represents

the data to be transformed, y* is the transformed data, and A. is the exponent of the
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transform. The procedure involves of performing a standard analysis Of variance, for a

range of values for it, on the equation(s):

y?» =(yK-1)/(T.g(I-1)) for T. 00, and

y In y for 2. =0, Equations 8-1

where y = 1n"1 [(1/n) 2 1n y)] is the geometric mean of the (n) observations y.

The maximum likelihood estimate of 7. is the value for which the error sum of squares is

a minimum. This is designated as SSe(L) in table 8-2. We cannot select the value of A by

directly comparing the error sum of squares from analyses of variance on y)“, because for

each value of 2. the error sum of squares is measured on a different scale. For a more

complete discussion of this procedure, see Montgomery [1984].

8. 3. 2. Results ofthe Analytical Determination of Transformation

For this inquiry, nine values of A were chosen as shown in table 8-3. The SSe(it)

values are shown next to the 1. values under the appropriate column heading for

dependent variable. Each SSe(T.) value represents the error sum or squares from

performing an analysis of variance on the dependent variable as transformed by equation

8-1. In table 83, the row SSe(L) represents the minimum value found. If the minimum

SSe(T.) is near the value it = 1, this implies that the data do not support the need for

transformation. It can be seen from table 8-3 that none of the minimum values of SSe(Tt)

are close to the value of it = 1. This implies that transformation is desirable for each

dependent variable and that the value of 1. is close to the 3. associated with the minimum

SSe(A). At the bottom of the table the 3. associated with the minimum SSe(l.) is listed
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along with the transformation determined by using the Box and Cox procedure. The

remainder of the data analysis will use the dependent variables transformed as indicated.

Table 8-3, Results of Procedure for Analytic Determination of Transformation

 

 

 

 

 

 

 

 

 

 

 

    
 

p. TSD TOS OBJ cosr TIME

l1.00 2038104 1799965 4255743 6.01E+08 2.02E+09

“175 1255173 1500566 3657613 5.98E+08 6.48E+08

[0.50 876023 1345510 3277028 6.05E+08 2.24E+08

E25 73 8865 1298441 3076010 6.24E+08 8.87E+07

10.00 820865 1346459 3039912 6.57E+08 5.14E+07

-0.25 1289105 1495409 3176398 7.07E+08 7.34E+07

-0.50 2. 88E+06 1770814 3519015 7.79E+08 2.22E+08

_0.75 8.62E+06 2224573 4136779 8.80E+08 8.5 1E+08

-1.00 3. 19E+07 2949697 5153033 1.02E+09 3.48E+09

SSe(L) 738865 1298441 3039912 5.98E+08 5.14E+07

T. at SSE(L) 0.25 0.25 0.00 [0.75 0.00

Transformation yU-23 M15 ln(y) yU-73 ln(y)    
 

8. 3. 3. Normalprobabilityplots ofresiduals

 

After transformation, the variables are expected to adhere more closely to the

assumptions of the analysis of variance, those are, normality of error residuals,

independently distributed error residuals and homogeneity of variance of the residuals.

The analysis that follows tests the transformed variables against the assumptions of the

analysis of variance model. The tests follow the pattern set earlier, tests for normality of

residuals, results of autocorrelation analysis, and tests for homogeneity of variance.



148

 

 

E
X
P
E
C
T
E
D
V
A
L
U
E

0

I

  
 

  
 

Figure 8-11, Normal probability plot of TOS residuals After Transformation
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Figure 8-12, Normal probability plot of TSD residuals After Transformation
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Figure 8-13, Normal probability plot of OBJ residuals After Transformation
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Figure 8-14, Normal probability plot Of COST residuals After Transformation
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Figure 8-15, Normal probability plot of TIME residuals After Transformation

All normal probability plots now indicate that the residuals Of the transformed

dependent variables are approximately normally distributed (i. e. no major departures

from normality are indicated by the plots).

8. 3. 4. Independent distribution oferror residuals

The independent distribution of error residuals can be assessed by measuring the

autocorrelation of the data. The values of autocorrelation, after transformation, are listed

in the following table. There seems to be no autocorrelation, and it can be concluded that

the error residuals are independently distributed.

Table 8-4, Autocorrelation of transformed residuals

 

I [TOS |TSD OBJ COST TIME |

|Autocorrelation |-0.007 |0.047 0.003 -0.052 -0.047 |
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8. 3.5. Homogeneity of Variance

After transformation of the data, verification of homogeneity of variance is

necessary to establish credibility of results. The tests for homogeneity of variance are the

same as used before; plots of residuals versus estimates and Bartlett's test for

homogeneity of variance. Figures 8-16 through 8-20 present the plots of residual versus

estimate for the dependent variables.
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Figure 8-16, Plot of Residual vs. Estimate - TOS After Transformation
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Figure 8-17, Plot of Residual vs. Estimate - TSD Afier Transformation
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Figure 8-18, Plot of Residual vs. Estimate - OBJ After Transformation
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Figure 8-19, Plot of Residual vs. Estimate - COST After Transformation
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154

The plots of estimate vs. residual for the transformed dependent variables exhibit

no obvious patterns and hence no obvious heterogeneity of variance.

8. 3. 6. Bartlett's test after transformations

As stated earlier, Bartlett's test for homogeneity of variance tests the

hypothesis that the variances of all the treatments are equal for each performance

measure. We reject this hypothesis if the test statistic exceeds the appropriate chi-

square value.

The statistics for each of the transformed dependent variables is shown in

Table 8-5.

Table 8-5, Bartlett's Test For Homogeneity of Variance

 

 

 

I | TOS [TSD [OBJ | COST | TIME |

| Chi-Square, 80df | 60.39 | 60.39 [60.39 | 60.39 | 60.39 |

[Test Statistic, 80df |343.413 |481.981 |201.125 [236.360 |288.969J
 

As can be seen from the table each of the test statistic values exceeds the chi-

square value, so we reject the hypothesis that all variances are equal for all transformed

dependent variables.
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8. 4. JUSHHCATYONFOR USE OFANALYSISOF VARIANCE

At this juncture, it has been shown that the transformed dependent variables have

normally and independently distributed error residuals, and that the variance among cells

is heterogeneous. Therefore, the data still violate the assumptions of the analysis of

variance model. Both Montgomery [1984] and Kirk [1982] state that for a balanced,

fixed effects design, the F test is only slightly affected by heterogeneous variances if the

error residuals are normally distributed. Since the design is balanced, at a sample size of

13 (after random deletion of data points in treatment cells to balance the design), and

since the error residuals are normally and independently distributed, this research will

rely on the robustness of the F test to heterogeneity of variance as the justification for

using analysis of variance.

8. 5. RESULTSOFANOVA

The data, collected as described in chapter 7, were analyzed using the multi-factor

ANOVA routines in SYSTAT for Windows. A summary of significant effects is given in

Table 8-6.
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Table 8-6 Analysis Of Variance Results

indicates significance at p < .01, ”y" indicates significance at p < .05.
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[AWU

[WITNTN

t
-
l

 

 

 

 

MHMWM

mmmmmq

.mmwm

zmwuammM

pmmwmm

Pflmwuammm

Mmmmmmm:

ammamwmm

mmmmmv

mammM

Ammmmuammw

mmwmm*

LMMWM

mmmmwwm*

ammM

 

 

 

  
 

 

 

 

 

  

<
z
<

<
z
<
<
<
<
<
<
<
<
<
<

<
<
<

z
<
<
<
<
<
<
z
<
<
<
<

~
<

~
<
~
<

~
<
~
<
~
<
~
<
Z
v
<
~
<
~
<
r
<
~
<
~
<
~
<

z
2
2

z
<
z
z
<
<
<
<
<
<
<
<
8

i
-
i

<
<
4

<
<
<
<
<
<
<
<
<
<
z
<
g

        
As can be seen from table 8-6, the all main effects and the majority of interaction

effects are significant at the p < .01 level. All interaction effects were significant with

one or another dependent variable(s).

8. 5. I. DetailedResults

In this section, each of the hypotheses proposed will be considered. As was noted

before, a hypothesis was constructed for each of the dependent variables. In all cases

direct statements cannot be offered to reject or accept any hypothesis because of the

presence of significant interactions, Kirk [1982]. The data do offer supporting evidence

for hypotheses, as discussed below.
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In order to compare the performance of the solution methods by problem type, a

Tukey HSD multiple comparison test was performed on the data representing each of the

five performance measures. This test compares each of the 81 treatments against all the

other treatments, testing for significant differences among the treatment means. There is

very little agreement among statisticians about the relative merits of the various multiple

comparison procedures. Tukey's HSD multiple comparison test was chosen for several

reasons. First, the data meet the assumptions of the test. Second, the Tukey test is more

powerful than other tests for large number of comparisons. Third, the Tukey HSD

multiple comparison test controls the error at a for the entire collection of tests.

Following the presentation of relevant statistics for each dependent variable,

interactions of interest to this research will be examined and discussed. Since this

research is primarily interested in a comparison of algorithms, emphasis will be placed

on discerning the main effect ofALGORITHM in the presence of interactions.

The reader is reminded that when considering a hypothesis, the subscript attached

to the dependent variable represents an algorithm. For example, TIME] refers to the

TIME for Loucks heuristic, TIME2 refers to the TIME for simulated annealing and

TIME3 refers to the TIME for tabu search.

In the charts and discussion that follows an abbreviation for problem types will be

used consisting of a three letter code. The first letter in the code stands for the level of

Average Worker Utilization, H for high, M for medium and L for low. The second letter

in the abbreviation stands for the level of average percentage of tasks known per worker,

using the same letters as the abbreviation for AWU. The last letter stands for the level of

max-to-min ratio, again using the same letters, H, M, and L. As an example, the problem

with the label, HLM, would be a problem type having a high level (H) of average worker

utilization, a low level (L) of average percentage of tasks known per worker, and a

medium (M) level of max-to-min ratio.
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8.5.1.1. TIME - Speed of Algorithm

The hypotheses relating to this aspect of algorithm performance is:

Ho : TIME] = TIME2 = TIME3

H1 : TIME] 1: TIME; ¢ TIME3

This hypothesis tests whether there are significant speed differences among the

algorithms. Since there are significant interactions among the factors the hypothesis

cannot be tested directly.

Results ofANOVA on M, Transformed. The analysis of variance for the dependent

variable TIME as presented in table 8-7 indicates that all main effects and interaction

effects are significant at p < .001, with two exceptions. First, the main effect PCTNTN,

or average percentage of tasks known per worker, was not significant, and second, the

interaction ofPCTNTN*MMR, or the interaction of average percentage of tasks known

per worker with the max-min ratio, was significant at the p < .05 level. The multiple r

correlation coefficient was 0.990 (squared value = 0.980), indicating that the factors and

interactions accounted for most of the variation in the dependent variable TIME.

Examination of the mean-square for each of the effects indicated that the mean-square

for the main effect ALGORITHM is at least 2 orders of magnitude larger than any other

effect and about 3 orders of magnitude larger than the other main effects. Mean-squares

for all effects are an order of magnitude larger than the mean-square for error for the

variable TIME.
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Table 8-7. ANOVA on TIME, Transformed

 

ANOVA on TIME, Transformed

LEVELS ENCOUNTERED DURING PROCESSING ARE:

AWU$: High Low Med

PCTNTN$: High Low Med

MMRS: High Low Med

ALGORTHM$: Loucks Sim_Ann Tabu_Srch

DEP VAR: TIME N: 1053 MULTIPLE R: 0.990 SQUARED MULTIPLE R: 0.980

ANALYSIS OF VARIANCE

SOURCE SUM-OF—SQUARES DF MEAN-SQUARE F-RATIO P

AWU$ 4.199 2 2.100 21.515 0.000

PCTNTN$ 0.305 2 0.153 1.564 0.210

MMR$ 4.607 2 2.303 23.603 0.000

ALGORTHM$ 4456.638 2 2228.319 22833.320 0.000

AWU$*PCTNTN$ 4.645 4 1.161 11.898 0.000

AWU$*MMR$ 2.178 4 0.545 5.580 0.000

AWU$

*ALGORTHM$ 17.080 4 4.270 43.753 0.000

PCTNTN$*MMR$ 1.012 4 0.253 2.592 0.035

PCTNTN$

*ALGORTHM$ 19.868 4 4.967 50.897 0.000

MMRS

*ALGORTHM$ 12.223 4 3.056 31.312 0.000

AWU$*PCTNTN$

*MMR$ 4.800 8 0.600 6.148 0.000

AWU$*PCTNTN$

*ALGORTHM$ 16.451 8 2.056 21.071 0.000

AWU$*MMR$

*ALGORTHMS 5.094 8 0.637 6.524 0.000

PCTNTN$*MMR$

*ALGORTHM$ 5.183 8 0.648 6.639 0.000

AWU$*PCTNTN$

*MMRS

*ALGORTHMS 12.414 16 0.776 7.950 0.000

ERROR 94.858 972 0.098

DURBIN-WATSON D STATISTIC 2.090

FIRST ORDER AUTOCORRELATION -.047
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TIME by Algorithm vs. Problem Type. As can be seen from figure 8-21, the time to

completion for Loucks' algorithm is always less than simulated annealing which is

always less than tabu search (indicating the presence of an ordinal interaction). The

Tukey HSD multiple comparison test (3x3x3x3, all factors, all factor levels) verifies that

these visual results are, with two exceptions, statistically significant (for problems LLH

and MLL, the differences are not significant). The comparison was carried out by

looking for significant differences between solution methods on a pairwise basis for each

of the problem types. Such pairwise differences were found to be significant for all pairs

except between tabu search and simulated annealing on problem types LLH and MLL.
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Figure 8-21, Plot ofTIME by Algorithm vs. Problem Type

While nothing statistical can properly be said about other differences in the

performance of the algorithms on TIME-to-completion, examination of the charts leads

to several speculations. The performance of tabu search seems to exhibit a pattern of
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better performance when the problem type has a high level of MMR. Similarly,

simulated annealing seems to perform better (than others in the problem type group, i.e.

PM vs. HMH and HMM) with problems with a low level ofMMR, whereas Loucks'

heuristic performs worse with a low level ofMMR.

Due to the ordinal interaction effects (an ordinal interaction is the case when the

rank order of the treatment effects remains constant, Pedhazur [1982]), we cannot

directly test the hypothesis. The data does provide evidence in support of the alternate

hypothesis H1, that is, that the TIME-to-completion for each of the algorithms is not

equal.

Table 8-8, Table of the best TIME performance on problem type by algorithm .

 

 

 

 

  
 

 

 

TIME - Best

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN PCTNTN

MMR Low Med High Low Med High Low Med High

Low Loucks Loucks Loucks Loucks Loucks Loucks Loucks Loucks Loucks

Med Loucks Loucks Loucks Loucks Loucks Loucks Loucks Loucks Loucks

High Loucks Loucks Loucks Loucks Loucks Loucks Loucks Loucks Loucks           

Table 8-9, Table of the worst TIME performance on problem type by algorithm.

 

 

 

 

  
 

 

 

TIME -Worst

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN PCTNTN

MMR Low Med High Low Med High Low Med High

Low Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S

Med Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S

High Tie Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S Tabu_S          

As can be seen from tables 8-8 and 8-9, Loucks' heuristic always had the best

TIME-to-completion and tabu search always had the worst TlME-to-completion.
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8.5.1.2. COST - Total Manpower Cost of the Schedule.

To test for differences in COST, the following hypotheses were proposed:

H0 1 COST] = COST2 = COST3

H1 : COST] at COST2 at COST3

Results ofANOVA on COST, Transformed. The results of analysis of variance for the

dependent variable COST show that all main effects were significant at p < .001. The

interaction effects AWU*PCTNTN, AWU*MMR PCTNTN*MMR, and

AWU*PCTNTN*MMR are significant at p < .001 and AWU*ALGORITHM is

significant at p < .01. Most of the interaction effects were not significant at p < .05. An

examination of the mean-square for the each of the effects show that the mean-square for

PCTNTN is twice as large as for AWU and more that an order of magnitude larger than

any other effect. The multiple r correlation is 0.813 (squared value = 0.660), indicating

that the factors and their interactions accounted for most of the variation in the dependent

variable COST.

No evidence can be found for rejection of the null hypothesis,

H20 : COST] = COSTZ = COST3. Statistically, we cannot support the idea that one or

more algorithms is different in COST performance than any other.
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Table 8-10. ANOVA on COST, Transformed

 

 

ANOVA on COST, Transformed

LEVELS ENCOUNTERED DURING PROCESSING ARE:

AWUs: High Low Med

PCTNTN$: High Low Med

MMR$= High Low Med

ALGORTHMs: Loucks Sim_Ann Tabu_Srch

DEP VAR: COST N: 1053 MULTIPLE R: 0.813 SQUARED MULTIPLE R: 0.660

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

AWUS 2428046.223 2 1214023.111 235.282 0.000

PCTNTN$ 5234622.308 2 2617311.154 507.245 0.000

MMRS 246073.570 2 123036.785 23.845 0 000

ALGORTHM$ 182134.677 2 91067.339 17.649 0 000

AWU$*PCTNTN$ 146193.949 4 36548.487 7.083 0.000

AWU$*MMR$ 445239.567 4 111309.892 21.572 0 000

AWU$

*ALGORTHM$ 68764.822 4 17191.205 3.332 0.010

PCTNTN$*MMR$ 494109.619 4 123527.405 23.940 0.000

PCTNTN$

*ALGORTHMS 41125.660 4 10281.415 1.993 0.094

MMRS

*ALGORTHMS 43090.215 4 10772.554 2.088 0.080

AWU$*PCTNTN$

*MMR$ 252429.220 8 31553.653 6.115 0 000

AWU$*PCTNTN$

*ALGORTHMS 18298.392 8 2287.299 0.443 0.895

AWU$*MMR$

*ALGORTHMs 67488.884 8 8436.111 1.635 0.111

PCTNTN$*MMR$

*ALGORTHMs 32790.962 8 4098.870 0.794 0.608

AWU$*PCTNTN$

*MMR$

*ALGORTHMS 44171.530 16 2760.721 0.535 0.930

ERROR 5015379.444 972 5159.855

DURBIN-WATSON D STATISTIC 2.102

FIRST ORDER AUTOCORRELATION -.052  
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COST by Algorithm vs. Problem Type .Figure 8-22 plots the COST of the schedules

produced by the algorithms, by problem type.
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Figure 8-22, Plot of COST by Algorithm vs. Problem Type

Upon examination of the chart, the first pattern that might be noticed is that the

COST performance of the three algorithms seems to be highly correlated across problem

type. This is, indeed, the case. The correlation coefficients are shown in table 8-11.

Table 8-11, Correlation coefficients on COST performance between Algorithms

Coefficients

Tabu

- COST 1.0

im Ann - COST 0.96 l.

abu Srch — COST 0.93 O. l.

 

As can be seen from table 8-10, all correlations are very high, over .93. This

indicates that COST performance is more influenced by problem type than by algorithm

type.
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It is also apparent, from the chart, that the COST performance varies by problem

type. Ifwe group the problem types, first by AWU (the first letter) and then by PCTNTN

(the second letter), we note that when PCTNTN is low, the COST performance is lowest,

in the AWU group. This speculation is borne out statistically. A Tukey HSD multiple

comparison test (3x3x3x3, all factors, all factor levels) was performed on the COST data.

The Tukey test indicates that the COST performance for all the algorithms on problems

LLL, LLM, and LLH is lower than problem types LML, LMM, LMH, LHL, LHM, and

LHH at p < .001.

Another pattern in the data is that it seems that the COSTs are highest when

problem level PCTNTN is highest, and medium when the problem type has a level of

PCTNTN of medium. This speculation has only partial statistical support across problem

types.

Table 8-12, Best COST performance across problem types by algorithm.

COST - Best

AWU AWU

Med Med High High High

PCTNTN PCTNTN

Med High Low Med High

 

Inspection of table 8-12 reveals that across all problem types there were ties for

best performance.
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Table 8-13, Worst COST performance across problem type by algorithm

COST - Worst

AWU AWU

Med Med High High High

PCTNTN PCTNTN

Med High Low Med High

abu S

 

As can be seen from table 8-13, tabu search has the only worst performances at

problem type MHL. All others are tied for both best and worst performance.

8.5.1.3. TOS - Total man-hours of overstaffing.

The hypotheses to test total man-hours of overstaffmg were formulated as

follows:

H0 : T081 = TOS2 = TOS3

H1 : TOSl ¢ TOS2 ¢ TOS3

As with all other hypotheses proposed in this research, no direct test can be made

nor can general, statistically valid statements be made about main or interaction effects

because of the presence of significant disordinal interaction effects (a disordinal

interaction is present when an interaction changes the rank order of the treatment effects,

Pedhazur [1982]). As will be shown below, evidence can be offered in support of the

alternate hypothesis.

Results ofANOVA on TOS, Transformed. The analysis of variance for the

dependent variable TOS indicates that all main effects are significant at p < .001. The
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interaction effects, AWU*ALGORITHM, PCTNTN*ALGORITHM, PCTNTN*MMR,

MMR*ALGORITHM, AWU*PCTNTN*ALGORITHM and

AWU*MMR“ALGORITHM are significant at p < .001. The interaction effects,

AWU*PCTNTN, AWU*MMR, and AWU*PCTNTN“MMR*ALGORITHM are

significant at p < .05. Examination of the mean-square of all effects indicates that the

factor ALGORITHM has a mean square nearly an order of magnitude larger than any

other main effect. Only the interaction effect PCTNTN*MMR*ALGORITHM has a

lower mean-square than error. The multiple r correlation of 0.734 (squared value =

0.539) indicated that the factors and interactions accounted for most of the variation in

the variable TOS. Complete ANOVA results for TOS are given in table 8-14.



Table 8-14. ANOVA on TOS, Transformed.
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ANOVA on TOS, Transformed.

LEVELS ENCOUNTERED DURING PROCESSING ARE:

 

AWU$: High Low Med

PCTNTN$: High Low Med

MMRS: High Low Med

ALGORTHMs: Loucks Sim_Ann Tabu_Srch

DEP VAR: TOS N: 1053 MULTIPLE R: 0.734 SQUARED MULTIPLE R: 0.539

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

AWU$ 3.024 2 1.512 16.237 0 000

PCTNTN$ 4.368 2 2.184 23.456 0.000

MMR$ 2.269 2 1.135 12.186 0.000

ALGORTHMS 26.243 2 13.121 140.918 0.000

AWU$*PCTNTN$ 1.170 4 0.292 3.141 0.014

AWU$*MMR$ 1.082 4 0.271 2.905 0.021

Awus

*ALGORTHM$ 13.547 4 3.387 36.373 0.000

PCTNTN$*MMR$ 1.805 4 0.451 4.846 0.001

PCTNTN$

*ALGORTHM$ 36.714 4 9.179 98.575 0.000

MMRs

*ALGORTHM$ 4.218 4 1.054 11.324 0.000

AWU$*PCTNTN$

*MMRS 1.129 8 0.141 1.516 0.147

AWU$*PCTNTN$

*ALGORTHMS 2.574 8 0.322 3.455 0.001

AWU$*MMR$

*ALGORTHM$ 3.490 8 0.436 4.685 0.000

PCTNTN$*MMR$

*ALGORTHM$ 0.625 8 0.078 0.838 0.569

AWU$*PCTNTN$

*MMR$

*ALGORTHM$ 3.370 16 0.211 2.262 0.003

ERROR 90.506 972 0.093

DURBIN-WATSON n STATISTIC 2.013

FIRST ORDER AUTOCORRELATION -.007
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TOS by Algorithm vs. Problem Type. Figure 8-22 plots the total number of hours

overstaffed that each algorithm generated in the schedules produced, by problem type.
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Figure 8-22, Plot of TOS by Algorithm vs. Problem Type

Inspection of the chart indicated that there may be differences between Loucks'

algorithm and the other two algorithms when problem type has a low level of the factor

PCTNTN. A 3x3x3x3 (all factor, all factor level) Tukey HSD multiple comparison test

was performed on the TOS data. The results indicate that differences in total man-hours

Of overstaffing for problem types LLL, LLM, LLH, MLL, MLM, MLH, I-ILL, and HLH

are significant between Loucks' heuristic and the pair, simulated annealing and tabu

search. The exceptions to the "rule" that tabu search and simulated annealing outperform

Loucks' heuristic on problems with a low level of the factor PCTNTN are that for

problem type I-ILM there are no significant differences among the algorithms and for

problem type MLL the difference between Loucks' heuristic and tabu search is not

significant. There are no significant differences between simulated annealing and tabu
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search on these problems. These results provide evidence for the alternate hypothesis,

H1 : TOS] i T082 i T033.

Table 8-15, Best TOS performance across problem type by algorithm

 

 

 

 

  
 

 

 

TOS - Best

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN PCTNTN

MMR Low Med High Low Med High Low Med High

Low Tie Tie Tie Tie Loucks Tie Tie Tie Loucks

Med Tie Sim_Ann Sim_A Tie Tie Tie Tie Tie Loucks

High Tie Sim_Ann Sim_A Tie Tie Tie Tie Tie Sim_A         
 

The best performances across problem types by algorithm is presented in table 8-

15. These results may be summarized as follows, simulated annealing performed best on

5 of 27 problem types, Loucks' heuristic on 3 of 27 and ties for 19 of 27. There seems to

be no pattern to the best performances.

Table 8-16, Worst TOS performance across problem type by algorithm

 

 

 

 

  
 

 

 

TOS - Worst

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN I PCTNTN

MMR Low Med High Low Med High Low Med High

Low Loucks Tie Tie Loucks Tie Tie Loucks Tie TieL

Med Loucks Tie Tie Loucks Tie Tabu_S Loucks Tie Tie

High Loucks Tie Tie Loucks Tie Tie Loucks Tie Tie          
 

As shown in table 8-16, worst performances on TOS are dominated by Louck's

heuristic, with 9 "worsts" of 27 problem types, while tabu search had 1 "worst" of 27

problem types. There were 17 statistical ties.
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8.5.1.4. TSD - Sum of squared deviations between workers scheduled and targeted

work hours.

The hypothesis proposed to test for differences among the algorithms for the sum

of squared deviations between workers scheduled and targeted work hours is:

H0 : TSD] = TSD2 = TSD3

H1 : TSD] ¢ TSD2 :4 TSD3

As noted before, no direct tests on main effects are statistically permissible when

significant disordinal interactions are present. Nevertheless, indirect evidence will be

offered in support of the alternate hypothesis, H1 : TSDl ¢ TSD2 at TSD3.

Results ofANOVA on TSD, Transformed. The results of the analysis of variance for the

dependent variable TSD show that all main and interaction effects are significant at p <

.001 except the two interaction effects, AWU*PCTNTN and

AWU*PCTNTN*ALGORITHM. Examination of the mean-square for each of the effects

show that ALGORITHM and PCTNTN and the interaction ALGORITIIM*PCTNTN are

the dominant sources of variation. All mean-squares for main and interaction effects are

larger that the mean-square for error. The multiple r correlation coefficient for this

analysis of variance is 0.846 (squared value = 0.715), indicating that the main and

interaction effects account for most of the variation of the dependent variable TSD.
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Table 8-17. ANOVA on TSD, Transformed

 

 

ANOVA on TSD, Transformed

LEVELS ENCOUNTERED DURING PROCESSING ARE:

AWU$ : High Low Med

PCTNTN$ : High Low Med

MMRS: High Low Med

ALGOR'I‘HM$ : Loucks Sim_Ann Tabu_Srch

DEP VAR: TSD N: 1053 MULTIPLE R: 0.846 SQUARED MULTIPLE R: 0.715

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

AWUS 3.353 2 1.676 12.497 0.000

PCTNTN$ 70.965 2 35.482 264.518 0.000

MMRS 2.526 2 1.263 9.416 0.000

ALGORTHM$ 105.198 2 52.599 392.123 0.000

AWU$*PCTNTN$ 0.612 4 0.153 1.141 0.336

AWU$*MMR$ 4.113 4 1.028 7.666 0.000

AWU$

*ALGORTHM$ 20.303 4 5.076 37.840 0.000

PCTNTN$*MMR$ 2.485 4 0.621 4.632 0.001

PCTNTN$

*ALGORTHM$ 64.567 4 16.142 120.336 0.000

MMRS

*ALGORTHM$ 20.264 4 5.066 37.766 0.000

AWU$*PCTNTN$

*MMR$ 4.550 8 0.569 4.240 0.000

AWU$*PCTNTN$

*ALGORTHM$ 1.199 8 0.150 1.117 0.349

AWU$*MMR$

*ALGORTHM$ 10.064 8 1.258 9.379 0.000

PCTNTN$*MMR$

*ALGORTHM$ 8.206 8 1.026 7.647 0.000

AWU$*PCTNTN$

*MMRS

*ALGORTHM$ 8.843 16 0.553 4.120 0.000

ERROR 130.384 972 0.134

DURBIN-WATSON D STATISTIC 1.905

FIRST ORDER AUTOCORRELATION .047  
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TSD by Algorithm vs. Problem Type. Figure 8-22 plots that total squared deviations

between all worker's desired number Of target hours and the number of hours scheduled

for the workers by the algorithms, by problem type.

 

 

‘TSD, Transformed'
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Figure 8-22, Plot of TSD by Algorithm vs. Problem Type

Review of figure 8-22 indicates that there may be a significant difference between

the performance of the pair, simulated annealing and tabu search, and Loucks' heuristic,

when the level of PCTNTN is low. A Tukey HSD test was performed on the TSD data (a

3x3x3x3, all factor, all factor level test). Results of the test show that differences are

significant for problem types LLL, LLM, MLL, MLM, MLH, HLL, HLM, and HLH.

For these problems Loucks' heuristic outperformed both simulated annealing and tabu

search.

There are other significant differences between algorithms, among them being

significant differences between simulated annealing and Loucks on problem types LHH,
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LHL, LHM, LML, MHH, and MMH, where simulated annealing outperforms Loucks'

heuristic.

Further examination of the plots show that Loucks' heuristic "spikes up" and tabu

search "spikes down" when the level OfMMR is low. In addition, simulated annealing is

highest when the level ofPCTNTN is low and lowest when PCTNTN is high.

All these significant differences provide evidence for the alternate hypothesis,

H1 : TSD] :6 TSD2 ¢ TSD3. That is, there are significant differences between the

performance of the algorithms on the squared differences between a worker's scheduled

and targeted hours.

Table 8-18 Best TSD performance across problem type by algorithm

 

 

 

 

  
 

 

  

TSD - Best

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN I PCTNTN

MMR Low Med High Low Med High Low Med High

Low Loucks Sim_Ann Tie Tie Tie Tie Loucks Tie Tie

Med Loucks Tie Tie Loucks Sim_A Sim_A Loucks Tue Tie

High Tie Tie Sim_A Loucks Sim_A Sim_A Loucks Tie Tie         
 

For TSD, an examination of table 8-18 shows thatLoucks' heuristic performed

best on 7 of 27 problem types. Simulated annealing had the best performance on TSD for

6 of 27 problem types and tabu search for none of 27 problem types.
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Table 8-19, Worst TSD performance across problem type by algorithm

 

 

 

 

 

TSD - Worst

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN PCTNTN

MMR Low Med High Low Med High Low Med High

Low Tie Tie Loucks Tie Loucks Loucks Tie Tabu_S Tabu_S

Med Tie Tabu_S Tabu_S Tie Tabu_S Tie Tie Tabu_S Tabu_S

High Tie Tabu_S Tabu_S Tie Tabu_S Tie Tie Tabu_S Tabu_S

 

 

 

           
 

Table 8-19 shows which algorithm had the worst performance by problem type.

Tabu search had the largest number ofworst performances for 12 of 27 problem types,

Loucks' heuristic was the worst for 3 of 27, and there were ties for the worst for 12 of 27

problem types.

8.5.1.5. OBJ - Objective Function Value

The hypothesis as proposed to test for differences among the algorithms with

respect to the objective function value is:

H0 : OBJ1 = OBJz = OBJg

H1 : OBJ] at OBJ2 at OBJ3

As before no direct confirmation or rejection of hypotheses can be made in the

presence of significant interactions. The data do provide evidence in support of the

alternate hypothesis, H1 : OBJl at OBJZ at OBJ3.

Results ofANOVA on OBJ, Transformed. The analysis of variance results for the

dependent variable OBJ show that the main effects AWU, PCTNTN and ALGORITHM

are significant at p < .001, and MMR is significant at p < .002. All interaction effects are
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significant at p < .001 except for AWU*PCTNTN, AWU*PCTNTN*ALGORITHM and

PCTNTN*MMR*ALGORITHM which are significant at p < .05 and PCTNTN*MMR

which is not significant. An examination of the mean-squares for all effects indicates that

ALGORITHM is 4 times larger than any other effect, and that all main and interaction

effects are larger than the error mean-square. The multiple r correlation for this analysis

of variance is 0.755 (squared value = .570) indicating, along with the small error mean-

square that the main and interaction effects account for most of the variation in OBJ.

OBJ by Algorithm vs. Problem Type. This figure, 8-23, shows the objective firnction

performance of the algorithms by problem type.
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Figure 8-23, Plot Of OBJ by Algorithm vs. Problem Type

An examination of figure 8-23 reveals that the only discernible pattern is that the

performance of all three algorithms performance is most similar at LLL, MLL, and HLL.

Simulated annealing seems to perform worse than other problems when the level of
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MMR is low, this occurs 7 of 9 times. Another notable feature is that there appear to be

significant differences between the performance of algorithms at several points. A Tukey

HSD multiple comparison test (3x3x3x3, all factor, all factor level) was performed on

the OBJ data. Simulate annealing outperformed Loucks' heuristic and tabu search on

problem types LHH, LHM, LMH, and LMM. Simulated annealing and Loucks' heuristic

outperformed tabu search on problem types HMH, I-IML, and HMM.

These significant differences provide evidence in support of the alternate

hypothesis, H1 : OBJ1 at OBJ2 1t OBJ3. That is, there is significant difference among the

algorithms for the dependent performance measure OBJ on some problem types.

Table 8-20, Best OBJ performance across problem type by algorithm

 

 

 

 

0BJ - Best

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN PCTNTN  
MMR Low Med High Low Med High Low Med High

Low Tie Sim_A Sim_A 'fie Tie Tie Loucks Tie Tie

Med Sim_A Sim_A Sim_A Tie Sim_A Tie Loucks Tie Tie

High Sim_A Sim_A Sim_A Tie Sim_A Tie Loucks Tie Tie

 

 

 

           

Table 8-20 shows that simulated annealing has the best performance of all three

algorithms on OBJ for 10 of 27 problem types, Loucks' heuristic for 3 of 27, and ties for

14 of 27.



178

Table 8-21, Worst OBJ performance across problem type by algorithm

 

 

 

 

  
 

 

  

OBJ - Worst

AWU AWU AWU

Low Low Low Med Med Med High High High

PCTNTN PCTNTN I PCTNTN

MMR Low Med High Low Med High Low Med High

Low Tie Tie Tie Tie Tie Tie Tie Tabu_S Tabu_S

Med Tie Tie Tie Tie Tabu_S Tabu_S Tie Tabu_S Tabu_S

High Tie Tie Tabu_S Tie Tabu_S Tabu_S Tie Tabu_S Tabu_S         
 

In table 8-21 it can be seen that tabu search has the worst performance for 11 of

27 problem types, the rest were ties. No patterns are apparent in the worst performances.

8. 6. DIFFERENTIAL DIFFICULTY0FPROBLEM TYPES

The presence of significant interactions in the data presented, restricts what might

be said, on a statistically sound basis, about the differential difficulty of the problems,

and problem types used in this research. Further, these interactions have obscured any

indications that one or another problem type might be more difficult to solve than

another. Evidence for this statement is that the measures of problem difficulty, AWU,

PCTNTN, and MMR, all have significant disordinal interactions with ALGORITHM.

The nature of these disordinal interactions have been explored above and will not be

repeated here. This research provides no evidence in support of general conclusions

about problem difficulty, with the problems and algOrithms used here. Other research,

see Jacobs and Bechtol [1993] for example, have found that some problems are more

difficult to solve than others, for a single algorithm. This research would support the

conclusion that some problems are more difficult to solve for one algorithm or another,

but not when all three algorithms are considered jointly.
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CHAPTER 9 - SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

9.1. SUMMARY

Determining the work tours for workers with limited interchangeability is a task

faced regularly, usually weekly, by managers in thousands of service businesses. Prior

research of this problem is sparse. Only Loucks has investigated the problem considering

both dissimilarity of workers' available hours and task qualifications. This heterogeneity

ofworkforce characteristics is the key aspect ofLoucks' research, and of the research

presented here.

The Objectives of this study were to apply and implement two new algorithms,

simulated annealing and tabu search, to the work tour scheduling problem with limited

worker interchangeability, and to compare these two new algorithms to Loucks' heuristic.

Any of these methods might be used, on a computer, by a manager in the execution of

the tour of duty scheduling task, on a regular basis. All would be an improvement on the

manual, trial and error methods used in most service firms.

The data presented provide evidence in support of alternate hypotheses for all

performance measures. Stated another way, evidence was presented to support the

statement that there are significant differences among all three algorithms on all five

performance measures. The data further indicate that the algorithms perform very
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similarly with regard to cost, and very differently with regard to time-to-completion. For

the measures of solution quality, TOS, TDS and OBJ, the differences weren't clear cut,

over all problem types each algorithm was best at least once, and worst at least once.

On time-to-completion, the performance of the algorithms suggest that Loucks'

heuristic is better than simulated annealing and simulated annealing is better than tabu

search. On the other measures, simulated annealing might be preferred, having 21 of 34

"bests" and no "worsts". On the same measures, Loucks' heuristic had 13 of 34 "bests"

and 12 of 36 "worsts" and tabu search had no "bests" and 24 of 36 "worsts".

From a practical standpoint, a manager might prefer simulated annealing over the

other solution methods, based on the performance on the quality of solution performance

measures. Although simulated annealing was not the fastest solution method in time-to-

solution, its solution time was acceptably short, about 22 minutes on average.

Prior research concluded that tabu search outperformed simulated annealing, for

example see Knox [1990]. This research does not support that conclusion. Not only was

simulated annealing faster in time-to-eompletion, but, as shown above, outperformed

tabu search in measures of solution quality and cost.

9. 2. Commons

There are several contributions that this research offers the field of employee

scheduling.

. Comparative results of three algorithms on five performance measures for

the work tour scheduling problem, as detailed above.
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. Results contrary to previous research for the relative performance of

simulated annealing vs. tabu search, i.e. that simulated annealing generally outperformed

tabu search both on time-to-completion, cost, and quality of solution.

. Development of a method for generating initial, feasible solutions for the

work tour scheduling problem.

. Conception and development of transition generators for simulated

annealing and tabu search.

e Origination and development of the idea of differentiating between "good"

and "random" transition generators for simulated annealing.

. Evidence to show that the combination of "good" and "random" transition

generators for simulated annealing is more effective than either "good" or "random"

transition generators alone.

. The first use of the construction - improvement paradigm for simulated

annealing and tabu search. Published research, to date, has applied tabu search and

simulated annealing in an environment where an initial solution can easily be generated

with the implemented algorithm or where the generation of an initial can be done

randomly.

. The first use of simulated annealing and tabu search on a highly

constrained problem. Published research, to date, has applied tabu search and simulated

annealing in an environment where feasibility is easily maintained or guaranteed.

Designing transition generators that don't create constraint violations for the work tour

scheduling problem is a non-trivial process.
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9. 3. OPPORTUNITIESFORFURmER RESEARCH

Recently, a number of comparative studies of existing algorithms for employee

scheduling have been performed, see Bechtold, Brusco and Showalter [1991] and Li,

Robinson and Mabert [1991]. Each study used test problems generated with unique

problem generators, including this study. While these methods for generation of test

problems have merit, use of a standard technique for generation of test problems, or a

standardized set of test problems would make results comparable across studies, and save

researchers time and expense, while guaranteeing that the algorithm under investigation

gets a fair and vigorous (as the case may be) test. The use of a standardized problem set,

or a standard method for generating such problems, would also give the consumers of

such research more confidence in the results of research into new methods of problem

solution. Several other areas, such as the traveling salesman problem, have standard test

problems, with varying degrees of difficulty, that researchers use to test their algorithms.

The performance of both simulated annealing and Tabu search rely in large part

on the quality of the transition generators. In this research, effort was expended to ensure

as much as possible that neither algorithm, simulated annealing and tabu search, had an

advantage based on the set of transition generators used in the research. This was done by

using the same transition generators for each algorithm, with algorithm specific

modifications made during implementation. Further investigation into transition

generators probably would yield useful improvements in the performance of both

algorithms.

During each iteration of tabu search, every possible transition is generated using

the transition generators applied in the particular implementation. The time-to-

completion performance of tabu search could be improved by developing a method of

reusing previously generated solutions that would not have been affected by use of a
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transition to improve the current solution. If such a method were found and used, a

substantial proportion of the previously generated potential transitions could be reused,

saving computation time.

Prior research into simulated annealing has not established a set of guidelines on

when a particular type of cooling schedule might be useful. Most research has used what

van Laarhoven and Aarts [1987] call "conceptually simple" cooling schedules. This

research compared such conceptually simple cooling schedules with more complex

cooling schedules, and found that at least one of the more complex schedules yielded

better results, and, therefore, was used in the remainder of the research. While several

cooling schedules were investigated during the course of this research, there are many

types and permutations of cooling schedules that have not been investigated. Further

research into cooling schedules for simulated annealing probably would find a cooling

schedule that would converge to a better solution more quickly.

Practical testing of these algorithms in service firms is a reasonable next step in

continuing this research. Since the Objective firnction in tabu search and simulated

annealing is easily changed to accommodate the needs of different firms, they would

seem to be prime candidates for such real-world testing.



APPENDICES
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APPENDIX 1.

CALCULATION OF THEORETICAL NUMBER OFWORKTOURS ADAPTED FROM LOUCKS

[1987].

NOTATION

D = Number of Operation Days per Week.

Dmin = Allowed Minimum Number ofWorkdays per Week

Dmax = Allowed Maximum Number of Workdays per Week

H = Number of Operating Hours per Day

Hmin = Allowed Minimum Number ofWork Hours per Day

Hmax = Allowed Maximum number ofWork Hours per Day

ASSUMPTIONS

A worker's work hours within a day must be contiguous, a worker's work days

within a week need not be contiguous, and the worker's number of hours per day need

not be constant.
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EQUAHON

D H

28x11 230mm 1N Bum! (1)-N)!»

N=Dmin M=Hmin

EXAWLE

D=7Days H=18Hours

Dmin = 1 Day Hmin = 3 Hours

Dmax = 5 Days Hmax = 8 Hours

 

Number Of Number Of

Workdays (N) Tours In Subset

l 567

2 137,781

3 18,600,435

4 1,506,635,235

5 73,222,472,421

 

Total Tours 74,747,846,439
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APPENDIX 2

TRANSFORMATION OFPROBLEM FORMULATION INTO SINGLE FUNCTION FORM

Transformation of the integer program formulation into single function form is

necessary for the application of the tabu search and simulated annealing. In this

appendix, that transformation will be accomplished.

In a tabu search and simulated annealing there is no way to accommodate

constraints directly. Since there are constraints in the problem formulation, they need to

be incorporated into the objective function. This is done by using the penalty method . In

a penalty method, a constrained problem in optimization is transformed to an

unconstrained problem by associating a cost or penalty with each violation of a

constraint.

Suppose for example we have a constrained problem such as :

minimize g(x)

subject to hi(x >= 0, i = 1,2,...,n

where x is an m vector.

We transform this to the unconstrained form:

minimize g(x) + 6*}; (I>[hi(x)]

i

where (I) = penalty function
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p = penalty coefficient.

Several alternatives exist for the penalty function (I). A common penalty function

is to square the violation of the constraint, this is the firnction that we will use. p values

are generally proportioned so that moderate violations of the constraint yield a penalty

that is a significant percentage of the nominal operating cost. The p values will be

assigned after field experience.

When we apply the method outlined above, the following objective firnction is

generated:

Fr= W1*Zejk1 + Wz" (ZXijkm - hi)

jkl ijkl

+ 91*(rjk1+ eikl - Z xijkl)2

ijkl

+ 92*(1 - ZXijsz

ijkl

+ 93 *(Smin - Exam?

jk

+ 94*(IUill * 912743102

jk

‘1' 95*(2Xijkl ' smax)2

jk

+ 96*(23'11 - wmmoz

1

+ 97*(ZXijk1 - Xij(k+l)l + xij(k+2)l)2

1

It will be noted that the p], p2, etc. subscripts correspond to and indicate the

constraints as listed in the formulation in section 3. Since the most of the constraints are

inequality constraints, the value of the term to be squared determines whether it gets

included as a penalty, i.e. if the summation takes on any positive value then the constraint

is violated, so the term gets squared and included as a penalty, otherwise (the term's

value less than or equal to 0) it is ignored.
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APPENDIX 3

SYNTHETIC PROBLEM GENERATOR

A computer program, due in large part to Loucks [1987], will be used to generate

test problems in which experimental factors can be controlled and for which Optimal

solutions are known.

The first step in the program is to read in several general problem parameters;

Number ofWorkers (I), Number of Tasks (I), Number of Operating Hours (K), Number

of Days (L), Allowed Minimum (3min) and Maximum (Smax) Shift Length, and the

Allowed Maximum Number ofWorkDays (Wmax)-

The next step in the procedure is to decide for each worker i, how many tasks ”ii

and which specific tasks Ti the worker is qualified to perform. |Ti| is chosen by sampling

from a discrete probability distribution and Ti is chosen by sampling from a uniform

distribution.

Then for each worker i, IWiI, the number ofwork days, is chosen from a discrete

probability distribution. The workers specific workdays, Wi, are chosen by sampling

from a uniform distribution.

The worker's first assigned hour bi] is chosen by sampling from a discrete

probability distribution. Then the length of worker i's assigned shift for workday 1, Sil, is

decided by sampling from another discrete probability distribution.
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Using the same worker i and workday l task j is chosen from Ti for each hour k

from bi] to Ci] by sampling from a uniform distribution. The steps outlined above are

then repeated for each day and each worker to constitute a schedule.

At this point, decisions regarding a specific worker's availability must be

addressed. These three decisions are what days , how many hours on those days, and the

first hour the worker is available. These decisions are made by looking at the schedule

already developed and setting availabilities equivalent to the schedule extant. Additional

availability is determined by sampling from a uniform distribution for days not already

scheduled, hours not already scheduled and hours earlier than those scheduled.

Finally, calculation of the staffing requirements, rijkl, for each task j in each hour

k of each day l, and of the workers targeted hour hi is made. The staffing requirements

are set equal to the number of workers scheduled to the task-hour. The number of

targeted tour hours for each worker is set to the number of hours scheduled.

The three solution methods would receive as input parameters, the rijkl: hi, and

the several parameters input to the problem generator.
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APPENDIX 4

RAWDATA

The raw data from runs of the algorithms is as follows in table A4-l.

Table A4-1. Raw Data

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Awus PCTNTN$ MMRs Afdorrmms TOS TSD OBJ COST TIME

High High High Loucks 91 25 116 6237 52.66992

High High High Loucks 58 12 70 4264.25 27.73828

High High High Loucks 88 29 117 6575.25 54.15039

High High High Loucks 52 26 78 6179 42.07031

High High High Loucks 75 23 98 4736 33.55859

High High High Loucks 57 24 81 5781.25 36.62891

High High High Loucks 77 13 90 3506.25 20.04883

High High High Loucks 142 10 152 3422.5 24.92969

High High High Loucks 73 12 85 3996 24.21875

High High High Loucks 91 17 108 4495.5 27.58008

High High High Loucks 115 13 128 4930.25 35.15039

High High High Loucks 82 12 94 3646.5 27.52148

High High High Loucks 111 18 129 6354.75 49.88086

High High High Loucks 72 10 82 3795 26.4707

High High High Loucks 28 18 46 4141.5 29.21875

High High High Sim_Ann 80 41 121 5808 870.9895

High High High Sim_Ann 67 30 97 4042 1136.027

High High High Sim_Ann 78 37 115 6130 1194.244

High High High Simjnn 76 18 94 5809 952.1747

High High High Simjnn 39 11 50 4422 1080.146

High High High Sim_Ann 67 17 84 5421 942.2617

High High High Sim_Ann 41 10 51 3399 1074.136

High High High Sim_LAnn 34 21 55 3376 1271.589        
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High High High Sim_Ann 47 40 87 3867 1 141 .091

High High High Sim_Ann 36 14 50 4246 1657.1 1 5

High High High Sim_Ann 62 13 75 4690 1 222.279

High High High Sim_Ann 72 18 90 3531 1497.032

High High High Sim_Ann 75 42 1 17 6022 1080.31 2

High High High Sim_Ann 84 44 128 3762 91 8.1 513

High High High Sim_Ann 64 17 81 4051 1491 .598

High High High Tabu_Srch 126 31 1 57 6204 6585.908

High High High Tabu_Srch 1 13 1 34 247 4541 .75 4460.722

High High High Tabu_Srch 1 16 19 135 6484.5 8563.681

High High High Tabu_Srch 1 15 35 150 6225.25 6221 .88

High High High Tabu_Srch 88 74 162 4948.75 571 1 .454

High High High Tabu_Srch 103 33 136 581 8.25 8010.408

High High High Tabu_Srch 85 104 189 3852.75 5596.472

High High High Tabu_Srch 85 208 293 3894.25 2776.129

High High High Tabu_Srch 86 101 1 87 4347. 5 3048.144

High High High TahISrch 90 94 184 4800.75 3567.977

High High High Tabu_Srch 103 1 16 21 9 5050. 5 7707.466

High High High Tabu_Srch 122 1 36 258 3960 2735.551

High High High Tabu_Srch 1 14 47 161 6428.75 6650.193

High High High Tabu_Srch 107 71 178 3984.75 5354.23

High High High Tabu_Srch 93 88 181 4331 .25 551 1 .541

High High Low Loucks 128 17 145 6327 54. 54004

High High Low Loucks 23 39 62 7353.75 51 .95996

High High Low Loucks 33 20 53 6662.5 45.86035

High High Low Loucks 84 32 1 16 7187.25 61 .18945

High High Low Loucks 87 37 1 24 5948.25 45.3701 2

High High Low Loucks 90 22 1 12 7390.75 50.42969

High High Low Loucks 62 35 97 7045.5 58.22949

High High Low Loucks 32 28 60 4669.5 32.02051

High High Low Loucks 102 25 127 8722.75 75. 52051

High High Low Loucks 70 34 104 7078.5 51 .58008

High High Low Loucks 151 23 174 5975.5 63.26953

High High Low Loucks 59 30 89 6410.25 41 .46973

High High Low Loucks 107 36 143 6195.75 54.93066

High High Low Loucks 77 20 97 7210.5 54.27051

High High Low Loucks 108 29 1 37 6839.25 52.73047

High High Low Sim_Ann 131 37 168 601 3 851 .1406

High High Low Sim_Ann 90 38 128 6762 1051 .93

High High Low Sim_Ann 80 4 84 6468 1 297

High High Low Sim_Ann 89 58 147 6651 1437.078

High High Low Sim_Ann 103 25 128 5602 952.4062

High High Low Sim_Ann 138 33 171 7104 81 1 .4726

High High Low Sim_Ann 95 46 141 6575 1043.68

High High Low Sim_Ann 59 10 69 4389 1089.508

High High Low Sim_Ann 1 60 40 200 8408 832.7734         
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High High Low Sim_Ann 98 35 133 6551 1085.328

High High Low Sim_Ann 93 18 1 1 1 5661 917.461

High High Low Sim_Ann 75 1 1 86 6105 684.4594

High High Low Sim_Ann 106 15 121 5841 1060.281

High High Low Sim_Ann 137 21 1 58 6938 1268.766

High High Low Sim_Ann 1 10 45 1 55 631 1 1038.438

High High Low Tabu_Srch 163 59 222 6280.75 5279.299

High High Low Tabu_Srch 137 1 1 1 248 7215 9323.22

High High Low Tabu_Srch 140 186 326 7154.5 4141 .21 1

High High Low TabeSrch 146 53 199 7224.25 5043.595

High High Low Tabu_Srch 141 83 224 5907 8455.643

High High Low Tabu_Srch 178 51 229 7474 5767.549

High High Low Tabu_Srch 139 1 16 255 6963 9455.264

High High Low Tabu_Srch 93 76 169 4686 7685.332

High High Low Tabu_Srch 194 94 288 8704.25 7929.292

High High Low Tabu_Srch 156 257 41 3 7012.5 5741 .82

High High Low Tabu_Srch 129 76 205 6012.5 8303.015

High High Low Tabu_Srch 127 89 21 6 6660 41 49.88

High High Low Tabu_Srch 137 38 175 6105 8883.984

High High Low Tabu_Srch 165 29 194 7177.5 6987.894

High High Low Tabu_Srch 161 22 183 6748. 5 9041 .403

High High Med Loucks 105 22 127 6391 .75 48.56055

High High Med Loucks 43 40 83 7390.75 61 .50977

High High Med Loucks 27 21 48 6703.5 41 .29883

High High Med Loucks 48 32 80 7298.25 79.41992

High High Med Loucks 118 26 144 5923. 5 51.52148

High High Med Loucks 62 26 88 7501 .75 57.60938

High High Med Loucks 78 31 109 7062 58.05078

High High Med Loucks 18 28 46 4686 31 .201 17

High High Med Loucks 66 28 94 8833.75 79.9707

High High Med Loucks 60 33 93 7078. 5 55.46875

High High Med Loucks 1 19 28 147 6031 51.95898

High High Med Loucks 63 32 95 6484.25 44.43945

High High Med Loucks 45 36 81 6245.25 49.44141

High High Med Loucks 67 32 99 7359 55.31055

High High Med Loucks 96 27 123 6839.25 55.08984

High High Med Sim_Ann 139 39 178 6050 1368.738

High High Med Sim_Ann 101 21 122 6845 1666. 99

High High Med Sim_Ann 74 1 75 6478 1094.17

High High Med Sim_Ann 95 16 11 1 6854 1 190.841

High High Med Sim_Ann 89 22 11 1 5561 1237.52

High High Med Sim_Ann 141 15 156 7160 1463.881

High High Med Sim_Ann 86 37 123 6584 1461 .34

High High Med Sim_Ann 99 30 129 4422 1783.32

High High Med Sim_Ann 124 46 170 81 86 1350.07

High High Med Simhn 124 19 143 6749 1 518.141         
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High High Med Sim_Ann 88 21 109 5633 1 540.77

High High Med Sim_Ann 80 4 84 61 51 1 1 52.434

High High Med Sim_Ann 93 16 109 5816 1433.445

High High Med Sim_Ann 133 33 166 6971 1767.952

High High Med Sim_Ann 128 22 1 50 6485 1471 .392

High High Med Tabu_Srch 163 59 222 6271 .5 8252.854

High High Med Tabu_Srch 146 94 240 7316.75 5862.253

High High Med Tabu_Srch 139 196 335 7246.75 5933.308

High High Med Tabu_Srch 127 30 1 57 7205.75 7637.562

High High Med Tabu_Srch 140 85 225 6014.25 8065.934

High High Med Tabu_Srch 190 132 322 7612.75 8357.039

High High Med Tabu_Srch 129 58 187 6921 .75 6007.556

High High Med Tabu_Srch 126 73 1 99 4669. 5 4475.663

High High Med Tabu_Srch 184 70 254 8713.5 7101 .482

High High Med Tabu_Srch 165 202 367 7086.75 6491 .224

High High Med Tabu_Srch 131 96 227 6068 3626.68

High High Med Tabu_Srch 122 64 1 86 6576.75 5468.371

High High Med Tabu_Srch 142 89 231 6270 4127.216

High High Med Tabu_Srch 153 1 1 164 7169.25 6120.851

High High Med Tabu_Srch 157 25 182 6765 6385.818

High Low High Loucks 184 29 213 4142.25 41 .13965

High Low High Loucks 104 25 1 29 3874. 5 36.85059

High Low High Loucks 91 23 1 14 3433. 5 29.77051

High Low High Loucks 103 41 144 4812.5 38.1 709

High Low High Loucks 65 24 89 4281 .25 35.04004

High Low High Loucks 1 54 24 178 3769.5 29.21 973

High Low High Loucks 1 10 23 133 3979. 5 38.87988

High Low High Loucks 104 21 125 3549 39.65039

High Low High Loucks 109 25 134 3916.5 41 .46973

High Low High Loucks 145 30 175 4163.25 43.71973

High Low High Loucks 197 22 219 3412.5 54.26953

High Low High Loucks 52 36 88 3869.25 21 .86035

High Low High Loucks 126 21 147 3501 .75 28.71973

High Low High Loucks 142 1 8 1 60 3402 25.0498

High Low High Sim_Ann 56 1 67 223 4279 1 679.924

High Low High Sim_Ann 45 1 59 204 3948 1 852.921

High Low High Sim_Ann 49 1 73 222 3570 1 876.672

High Low High Sim_Ann 84 32 1 16 4594 1353.788

High Low High Sim_Ann 67 51 1 18 4275 1 604.355

High Low High Sim_Ann 42 1 30 1 72 3612 1724.24

High Low High Sim:Ann 49 168 217 3864 1728.107

High Low High Sim_Ann 45 147 1 92 4095 2591 .735

High Low High Sim_Ann 63 1 44 207 3659 1 605.01 8

High Low High Sim_Ann 78 203 281 4053 2301 .054

High Low High Sim_Ann 77 433 510 4389 3225.4

High Low High Simjflm 57 242 299 3539 1850.497
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High Low High Sim_Ann 35 1 50 185 3848 1 605.744

High Low High Sim_Ann 44 87 131 3575 1 303.976

High Low High Sim_Ann 45 81 126 3439 1 704.242

High Low High Tabu_Srch 48 1 39 187 4247.25 7049.514

High Low High Tabu_Srch 45 1 59 204 3942.75 7550.317

High Low High Tabu_Srch 35 1 15 150 3512.25 9792.619

High Low High Tabu_Srch 1 19 1 19 238 4850 7469.008

High Low High Tabu_Srch 1 15 247 362 4625 6355.903

High Low High Tabu_Srch 37 89 126 3591 4862.726

High Low High Tabu:Srch 33 142 175 3780 7528. 504

High Low High Tabu_Srch 25 65 90 4032 9206.476

High Low High Tabu_Srch 49 130 179 3601 .5 9594.32

High Low High Tabu_Srch 50 97 147 3906 7845.326

High Low High Tabu_Srch 46 196 242 4231 .5 8563.857

High Low High Tabu_Srch 60 179 239 3554.25 5538.024

High Low High Tabu:Srch 30 109 139 3827.25 10025.25

High Low High TahT__§rch 49 136 185 3601 .5 10067.6

High Low High Tabu_Srch 40 88 128 3412.5 9181 .166

High Low Low Loucks 132 19 1 51 3979.5 76.00977

High Low Low Loucks 162 44 206 3787.5 63.49023

High Low Low Loucks 107 36 143 41 50 46.1 2988

High Low . Low Loucks 143 27 170 3585.75 31.95996

High Low Low Loucks 234 31 265 4882.5 54.87012

High Low Low Loucks 64 29 93 3701 .25 37.57031

High Low Low Loucks 1 52 35 187 4341 .75 58.92969

High Low Low Loucks 1 37 45 1 82 4475 47.73047

High Low Low Loucks 78 20| 98 3360 24.5

High Low Low Loucks 1 13 25I 138 3942.75 37.24023

High Low Low Loucks 165 37I 202 4550 42.73047

High Low Low Loucks 167 30I 1 97 3638.25 41 .63086

High Low Low Loucks 1 28 43 171 4368 44.80957

High Low Low Loucks 140 22 162 3906 36.41992

High Low Low Sim_Ann 76 308 384 4195 2359.82

High Low Low Sim_Ann 96 75 171 3744 1 543.281

High Low Low Sim_Ann 74 59 1 33 4088 1 149.1 64

High Low Low Sim_Ann 55 90 145 3686 1677.21 1

High Low Low Sim_Ann 78 247 325 5009 1 636.944

High Low Low Sim_Ann 49 167 216 3796 1 447.719

High Low Low Sim_Ann 51 1 51 202 4426 1 61 3. 501

High Low Low Sim_Ann 801 88 168 4413 1777.16

High Low Low Sim_Ann 53 214 267 3491 1 503.414

High Low Low Sim_Ann 44 87 1 31 4043 2500.98

High Low Low Sim_Ann 100 147 247 4481 1488.922

High Low Low Sim_Ann 55 189 244 3770 2268.296

High Low Low Sim_Ann 65 268 333 4484 1 579.536

High Low Low Sim_Ann 48 125 1 73 4037 1 764.32         
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High Low Low Sim_Ann 83 1 1 94 5763 201 1 .916

High Low Low Tabu_Srch 61 199 260 4105.5 10421 .29

High Low Low Tabu_Srch 1 24 213 337 3931 .25 7760.36

High Low Low Tabu_Srch 99 146 245 4262.5 10343.34

High Low Low Tabu_Srch 39 66 105 3617.25 6817.057

High Low Low Tabu_Srch 63 200 263 4940.25 8790.045

High Low Low Tabu_Srch 39 1 13 1 52 3780 7635.036

High Low Low Tabu_Srch 43 1 1 5 158 4399.5 1 1071 .67

High Low Low Tabu_Srch 1 14 262 376 461 8.75 9586.769

High Low Low Tabu_Srch 29 68 97 3375.75 8850.957

High Low Low Tabu_Srch 37 86 123 4000. 5 10687.5

High Low Low Tabu_Srch 139 338 477 4743.75 1 1 169.62

High Low Low Tabu_Srch 36 76 1 1 2 3706. 5 10281 .32

High Low Low Tabu_Srch 45 144 189 4389 1 1087.76

High Low Low Tabu_Srch 37 108 145 3979. 5 10342.25

High Low Low Tabu_Srch 135 345 480 61 31.25 10499.45

High Low Med Loucks 85 22 107 4047.75 46.79004

High Low Med Loucks 83 33 1 16 3881 .25 37.1 8945

High Low Med Loucks 134 36 170 4193.75 41 .25

High Low Med Loucks 147 19 166 3596.25 35.96973

High Low Med Loucks 186 31 217 4924.5 52.56055

High Low Med Loucks 70 31 101 3732.75 31.25977

High Low Med Loucks 170 27 197 4352.25 59.10059

High Low Med Loucks 127 48 175 4550 46.95996

High Low Med Loucks 70 19 89 3370.5 24.66016

High Low Med Loucks 1 17 22 139 3953.25 34.7207

High Low Med Loucks 140 37 177 4581.25 41 .74023

High Low Med Loucks 1 30 25 1 55 3654 34

High Low Med Loucks 1 54 40 194 4378. 5 50.37012

High Low Med Loucks 80 26 106 3948 30.20996

High Low Med Sim_Ann 73 345 41 8 4221 4899.347

High Low Med Sim_Ann 94 1 10 204 3888 4409.528

High Low Med Sim_Ann 60 60 120 4081 2993.818

High Low Med Sim_Ann 49 1 27 176 371 2 4306.466

High Low Med Sim_Ann 76 259 335 5061 3958.614

High Low Med Sim_Ann 48 1 82 230 3812 1645.01 5

High Low Med Sim_Ann 49 1 81 230 4468 1 695.454

High Low Med Sim_Ann 86 44 130 4363 1 556.766

High Low Med Sim_Ann 51 209 260 3497 1687.77

High Low Med Sim_Ann 46 1 12 158 4069 1 541 .541

High Low Med Sim_Ann 96 1 56 252 4513 1765.36

High Low Med Sim_Ann 51 1 93 244 3791 1403.4

High Low Med Sim_Ann 57 1 56 213 4463 1446.859

High Low Med Sim_Ann 46 1 1 5 161 4048 1388.879

High Low Med Sim_Ann 74 12 86 5756 1322.522

High Low Med Tabu_Srch 63 285 348 4163.25 1 1078.23

 

 



Table A4-l. Raw Data, Continued.

196

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

High Low Med Tabu_Srch 1 16 266 382 4012.5 6866.375

High Low Med Tabu_Srch 105 191 296 4412.5 7480.438

High Low Med Tabu_Srch 31 81 1 12 3627.75 8283.397

High Low Med Tabu_Srch 56 241 297 4956 1 1325.34

High Low Med Tabu_Srch 39 93 1 32 3801 101 34.56

High Low Med Tabu_Srch 40 176 216 4410 10501 .86

High Low Med Tabu_Srch 1 1 7 285 402 4587.5 10724.9

High Low Med Tabu_Srch 24 72 96 3365.25 9092.756

High Low Med Tabu_Srch 35 91 1 26 4042.5 10700.86

High Low Med Tabu_Srch 1 19 243 362 4656.25 8503.333

High Low Med Tabu_Srch 33 63 96 3738 101 95.12

High Low Med Tabu_Srch 43 1 16 1 59 4394.25 9061 .921

High Low Med Tabu_Srch 35 90 125 4005.75 1031 5.41

High Low Med Tabu_Srch 127 163 290 6125 1 1819.57

High Med High Loucks 1 19 26 145 5038.75 44.33008

High Med High Loucks 74 22 96 3045 22.95996

High Med High Loucks 82 23 105 3443.75 30.65039

High Med High Loucks 127 35 162 561 1 .5 53.87988

High Med High Loucks 171 40 21 1 5169.25 48.71973

High Med High Loucks 69 39 108 5821.75 48.06055

High Med High Loucks 131 35 166 4516.75 36. 58008

High Med High Loucks 85 29 1 14 4828.5 35.25977

High Med High Loucks 55 41 96 4799.5 32.79004

High Med High Loucks 23 42 65 5858 39.33008

High Med High Loucks 82 20 102 4183.25 30.20996

High Med High Loucks 60! 19 79 2834.75 20.65039

High Med High Loucks 52 14 66 321 1.75 21.3701 2

High Med High Loucks 194 42 236 5183.75 47.07031

High Med High Sim_Ann 69 40 109 4865 2276.568

High Med High Sim_Ann 601 25 85 2980 1 370.1 17

High Med High Sim_Ann 64 43 107 3386 1 81 8.139

High Med High Sim_Ann 82 25 107 5365 1433.609

High Med High Sim_Ann 62 1 5 77 4814 1259.098

High Med High Sim_Ann 98 14 1 12 5525 1 519.795

High Med High Sim_Ann 67 59 126 4343 1 869.921

High Med High Sim_Ann 64 22 86 4575 1686.413

High Med High Sim_Ann 68 17 85 4524 1 303.401

High Med High Sim_Ann 94 9 103 5575 1446.48

High Med High Sim_Ann 65 44 109 4053 2151 .914

High Med High Sim_Ann 51 21 72 2748 2397.154

High Med High Sim_Ann 73 38 1 1 1 3125 1846.21 1

High Med High Sim_Ann 66 1 5 81 3857 1 620.617

High Med High Sim_Ann 76 34 1 10 4916 1081 .051

High Med High Tabu_Srch 125 246 371 5256.25 8622.104

High Med High Tabu_Srch 92 141 233 3342.25 2306. 329

High Med High Tabu_Srch 108 1 97 305 3741 3987.81 9         
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High Med High Tabu_Srch 1 1 9 78 197 5647.75 891 5.841

High Med High Tabu_Srch 104 95 199 5154.75 6051 .842

High Med High Tabu_Srch 121 35 156 5713 8225. 55

High Med High Tabu_Srch 1 14 212 326 4734.25 7728.248

High Med High Tabu_Srch 98 84 182 4857. 5 8344.492

High Med High Tabu_Srch 108 1 35 243 4850.25 7839.282

High Med High Tabu_Srch 144 1 1 5 259 5981 .25 4402.274

High Med High Tabu_Srch 103 1 80 283 4371 .75 6198.898

High Med High Tabu_Srch 73 85 158 2921 .75 3127.562

High Med High Tabu_Srch 100I 101 201 3342.25 4538.172

High Med High Tabu_Srch 96 1 19 215 4103.5 7776.352

High Med High Tabu_Srch 128 1 86 314 5292.5 3691 .746

High Med Low Loucks 81 31 1 12 5459.25 44.37988

High Med Low Loucks 124 39 163 5604.25 54.65039

High Med Low Loucks 140 35 175 5879.75 48.00977

High Med Low Loucks 137 34 171 4908.25 48.71973

High Med Low Loucks 102 28 130 5278 47.24023

High Med Low Loucks 120 27 147 4676.25 45.37012

High Med Low Loucks 58 41 99 5539 43.73047

High Med Low Loucks 89 31 120 4792.25 40.04004

High Med Low Loucks 87 41 128 5655 42.2998

High Med Low Loucks 69 31 100 5082.25 49.60059

High Med Low Loucks 55 37 92 4886.5 38.40039

High Med Low Loucks 11 1 34 145 51 18.5 43.12012

High Med Low Loucks 74 35 109 5814.5 44.92969

High Med Low Loucks 65 47 1 12 6169.75 44.31934

High Med Low Sim_Ann 96 12 108 5271 1379.929

High Med Low Sim_Ann 102 28 130 5278 2564.102

High Med Low Sim_Ann 109 33 142 5612 1066.021

High Med Low Sim_Ann 55 41 96 4568 2029.533

High Med Low Sim_Ann 80 17 97 4995 1442.489

High Med Low Sim_Ann 81 31 1 12 4568 1887.909

High Med Low Sim_Ann 83 35 1 18 5307 1561 .881

High Med Low Sim_Ann 74 29 103 4553 1430.566

High Med Low Sim_Ann 82 46 128 5271 1763.677

High Med Low Sim_Ann 79 1 1 90 4821 1243.98

High Med Low Sim_Ann 97 25 122 6010 1 600.959

High Med Low Simjnn 48 20 68 4604 1404.496

High Med Low Sim_Ann 72 16 88 4887 1832.316

High Med Low Sim_Ann 1 10 40 1 50 5496 1465.438

High Med Low Sim_Ann 103 9 1 12 5800 1410.733

High Med Low Tabu_Srch 123 95 218 5488.25 9620.726

High Med Low Tabu_Srch 147 167 314 5589.75 9669.143

High Med Low Tabu_‘Srch 145 93 238 5901 .5 91 1 1 .43

High Med Low Tabu‘Srch 125 283 408 5089.5 6948.048

High Med Low Tabu_Srch 128 149 277 5350. 5 9769.343         
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High Med Low Tabu_Srch 105 1 19 224 4799.5 9298.901

High Med Low Tabu_Srch 129 271 400 5655 9337.635

High Med Low Tabu:Srch 1 12 21 9 331 4843 5824.058

High Med Low Tabu_Srch 140 214 354 5676.75 8790.442

High Med Low Tabu_Srch 133 125 258 5285.25 6662.191

High Med Low Tabu_Srch 146 66 21 2 6351 6346.297

High Med Low Tabu_Srch 93 97 1 90 4951 .75 7956.849

High Med Low Tabu_Srch 103 67 170 5125.75 91 51 .667

High Med Low TahufSrch 137 69 206 5698.5 10176.05

High Med Low Tabu_Srch 141 1 67 308 6075.5 5976.499

High Med Med Loucks 41 32 73 5502.75 43

High Med Med Loucks 131 34 165 5611.5 48.05957

High Med Med Loucks 84 40 1 24 5952.25 45.4209

High Med Med Loucks 82 39 1 21 4988 43.94043

High Med Med Loucks 102 28 1 30 5278 47.23047

High Med Med Loucks 94 24 1 18 4676.25 38.73047

High Med Med Loucks 71 38 109 5560.75 60.68945

High Med Med Loucks 69 30 99 4806.75 37.23926

High Med Med Loucks 85 35 120 5640.5 45.30957

High Med Med Loucks 92 32 124 51 1 8.5 49.70996

High Med Med Loucks 97 54 1 51 6568.5 52.33984

High Med Med Loucks 60 40 100 4922.75 36.4707

High Med Med Loucks 105] 30 135 5147.5 41.7998

High Med Med Loucks 68] 38 106 5858 46.09082

High Med Med Loucks 62] 45 107 61 77 53.94043

High Med Med Sim_Ann 100 9 109 5293 2783.278

High Med Med Sim_Ann 85 55 140 5213 3167.208

High Med Med Sim_Ann 1 14 31 145 5612 2058.607

High Med Med Sim_Ann 52 26 78 4589.25 2089.365

High Med Med Sim_Ann 68 27 95 4908 2984.844

High Med Med Sim_Ann 81 27 108 4524 3102.753

High Med Med Sim_Ann 83 29 1 12 5263.5 2814.46

High Med Med Sim_Ann 65 38 103 4487.75 1054.1 18

High Med Med Sim_Ann 83 44 127 5357.75 1613.1 14

High Med Med Sim_Ann 94 2 96 4901 2587.141

High Med Med Sim:Ann 107 12 1 19 6104.5 2830.647

High Med Med Sim_Ann 53 19 72 4654.5 2327.558

High Med Med Sim_Ann 73 23 96 4908.25 1996.978

High Med Med Sim:Ann 123 1 1 134 5604.25 1 101 .294

High Med Med Sim:Ann 102 10 1 12 5821.75 3132.777

High Med Med Tabu_Srch 1 29 108 237 5502.75 8048.395

High Med Med Tabu_Srch 158 298 456 5756.5 1021 1 .44

High Med Med Tabu_Srch 1 55 136 291 5974 6743.694

High Med Med Tabu_Srch 1 16 220 336 5075 7556.386

High Med Med Tabu_Srch 128 149 277 5350.5 9769.5

High Med Med TabuiSrch 1 26 170 296 4843 71 98.274 
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High Med Med Tabu_Srch 1 15 1 17 232 5553.5 9259.342

High Med Med Tabu_Srch 125 248 373 4995.25 9666.027

High Med Med Tabu_Srch 1 32 21 5 347 5763.75 10024.34

High Med Med Tabu_Srch 129 77 206 5183.75 9218.443

High Med Med Tabu_Srch 1 36 67 203 6314.75 10302.79

High Med Med Tabu_Srch 94 98 192 5009.75 7389.456

High Med Med Tabu_Srch 107 85 192 5147.5 9775.879

High Med Med Tabu_Srch 141 67 208 5756. 5 10023.01

High Med Med Tabu_Srch 136 1 16 252 6068.25 7241 .36

Low High High Loucks 219 36 255 3778. 5 49.1001

Low High High Loucks 73 34 107 5296. 5 43.01025

Low High High Loucks 53 47 100 5984.75 46.56982

Low High High Loucks 141 47 188 3316.5 34. 5498

Low High High Loucks 72 32 104 4125 25.42969

Low High High Loucks 58 38 96 5280 102.6104

Low High High Loucks 137 51 188 5032. 5 42.24023

Low High High Loucks 85 47 132 5124.5 36.41992

Low High High Loucks 86 39 125 3481 .5 30.3701 2

Low High High Loucks 292 47 339 5057.25 39.9301 8

Low High High Loucks 43 35 78 41 74.5 33.00977

Low High High Loucks 163 48 21 1 4207. 5 31 .25977

Low High High Loucks 103 54 1 57 4083.75 29.77002

Low High High Loucks 107 38 145 3456.75 29.72021

Low High High Loucks 91 51 142 6080.25 54.47998

Low High High Sim_Ann 28 24 52 3514. 5 1262.175

Low High High Sim_Ann 62 6 68 4983 618.2425

Low High High Sim_Ann 61 1 62 5540.75 739.0205

Low High High Sim_Ann 38 17 55 301 9. 5 1025.09

Low High High Sim_Ann 42 3 45 3836.25 895.12

Low High High Sim_Ann 84 12 96 4884 761 .5492

Low High High Sim_Ann 59 24 83 4578.75 690.6294

Low High High Sim_Ann 58 2 60 4671 .25 604.34

Low High High Sim_Ann 36 23 59 3267 588.0055

Low High High Sim_Ann 63 1 64 4661 .25 805.6214

Low High High Sim_Ann 51 3 54 3877.5 743.4317

Low High High Sim_Ann '49 26 75 3861 632.9564

Low High High Sim_Ann 47 1 1 58 3696 716.1358

Low High High Sim_Ann 41 36 77 3242.25 1045.64

Low High High Sim_Ann 91 1 8 109 5527. 5 676.9068

Low High High Tabu_Srch 102 190 292 4191 6806. 579

Low High High Tabu_Srch 106 58 164 5403.75 1 1225.35

Low High High Tabu_Srch 120 102 222 6086. 5 121 14.73

Low High High Tabu_Srch 1 1 1 210 321 3638.25 4286.863

Low High High Tabu_Srch 131 194 325 4603.5 9085.792

Low High High Tabu_Srch 141 73 214 5403.75 9445.887

Low High High Tabu_Srch 1 37 174 31 1 5247 9061 .55        
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Low High High Tabu_Srch 1 16 1 22 238 5244.75 10897.02

Low High High Tabu_Srch 107 206 313 391 8.75 6260.292

Low High High Tabu_Srch 148 174 322 5387.25 12266.45

Low High High Tabu_Srch 106 1 38 244 4356 5831 .373

Low High High Tabu_Srch 140 243 383 4644.75 71 58.472

Low High High Tabu_Srch 101 135 236 4207.5 10363.71

Low High High Tabu_Srch 97 188 285 3770.25 9280.053

Low High High Tabu_Srch 140 39 1 79 5956.5 12449.53

Low High Low Loucks 73 60 1 33 4941 .75 42. 57007

Low High Low Loucks 195 66 261 5254 48.6101 1

Low High Low Loucks 185 67 252 7380 1 17.27

Low High Low Loucks 174 75 249 6270 56.07007

Low High Low Loucks 133 51 1 84 3802.75 40.20996

Low High Low Loucks 85 63 148 6252. 5 56.67993

Low High Low Loucks 85 42 1 27 3330 29.27002

Low High Low Loucks 121 77 1 98 6456.5 86.5

Low High Low Loucks 93 39 1 32 3034 27.67993

Low High Low Loucks 251 65 316 5254 49.55005

Low High Low Loucks 81 85 166 6971 .25 96.16992

Low High Low Loucks 108 68 176 5123.25 52.72998

Low High Low Loucks 177 64 241 4892.25 41 .03003

Low High Low Loucks 207 94 301 7647.75 107.4299

Low High Low Loucks 91 70 161 6954.75 105.73

Low High Low Sim_Ann 101 10 1 1 1 4364.25 776.708

Low High Low Sim_Ann 92 1 2 104 4551 568.9242

Low High Low Sim_Ann 164 25 1 89 6437 649.8895

Low High Low Sim_Ann 136 201 1 56 5502.75 645.7544 .

Low High Low Sim_Ann 35 6 41 3239 51 8.4334

Low High Low Sim_Ann 1 11 25 136 5412 551 .6926

Low High Low Sim_Ann 34 9 43 2876.75 732.98

Low High Low Sim_Ann 148 19 167 5605.5 549.7141

Low High Low Sim_Ann 44 9 53 2682.5 818.6563

Low High Low Sim_Ann 83 16 99 4541 .75 565.993

Low High Low Sim_Ann 161 1 5 176 6146.25 768.1727

Low High Low Sim_Ann 1 1 1 5 1 16 4537.5 644.2188

Low High Low Sim_Ann 78 21 99 4191 821 .1 563

Low High Low Sim_Ann 265 32 297 6608.25 669. 5452

Low High Low Sim_Ann 200 26 226 6179.25 628.918

Low High Low Tabu_Srch 148 63 21 1 481 8 9574.344

Low High Low Tabu_Srch 134 44 178 4976.5 141 96.18

Low High Low Tabu_Srch 194 5 1 99 6734.25 10025.82

Low High Low Tabu_Srch 160 18 178 5717.25 10530.81

Low High Low Tabu_Srch 91 106 197 3843.75 1 1088.67

Low High Low Tabu_Srch 143 23 166 5729.75 10381 .87

Low High Low Tabu_Srch 98 1 1 1 209 3468.75 10269.04

Low High Low Tabu_Srch 167 14 1 81 5836.75 1 5019.46        
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Low High Low Tabu_Srch 93 94 1 87 31 82 7797.804

Low High Low Tabu_Srch 108 17 1 25 4837.75 1 1 825.61

Low High Low Tabu_Srch 172 8 1 80 6303 1 5021 .73

Low High Low Tabu_Srch 130 1 8 148 4752 1 2400.55

Low High Low Tabu_Srch 125 36 1 61 4603. 5 8240.825

Low High Low Tabu_Srch 279 1 8 297 6707.25 20470.95

Low High Low Tabu:Srch 231 9 240 6435 20707.08

Low High Med Loucks 187 58 245 5222.25 47.01001

Low High Med Loucks 233 52 285 471 9 44.92993

Low High Med Loucks 194 44 238 5618.25 49.20996

Low High Med Loucks 1 63 46 209 5428. 5 52.83984

Low High Med Loucks 66 48 1 14 5255.25 40.42993

Low High Med Loucks 1 93 33 226 2945.25 36.58008

Low High Med Loucks 139 22 161 1716 25.76001

Low High Med Loucks 260 41 301 3638.25 41 .03003

Low High Med Loucks 69 54 123 4661 .25 33.38989

Low High Med Loucks 134 41 175 2813.25 37.9001 5

Low High Med Loucks 318 32 350 4290 54.70996

Low High Med Loucks 63 37 100 3902.25 31 .68994

Low High Med Loucks 281 45 326 3968.25 47.1 8018

Low High Med Loucks 51 40 91 3588.75 26.74976

Low High Med Loucks 108 41 149 4504. 5 40.47998

Low High Med Sim_Ann 67 14 81 4760.25 720.7294

Low High Med Simjnn 44 3 47 4281 .75 953.06

Low High Med Sim_Ann 89 9 98 5197.5 1332.813

Low High Med Sim:Ann 72 15 87 4925.25 942.5352

Low High Med Sim_Ann 50 12 62 4793.25 812.043

Low High Med Sim:Ann 39 41 80 2813.25 1145.645

Low High Med Sim_Ann 25 83 108 1707.75 728.7656

Low High Med Sim_Ann 37 19 56 3357.75 945. 81 26

Low High Med Sim_Ann 51 3 54 4191 742.7032

Low High Med Sim_Ann 33 50 83 2590. 5 686. 5468

Low High Med Sim_Ann 58 51 109 41 16.75 1027.223

Low High Med Sim_Ann 39 7 46 3638.25 734.4688

Low High Med Sim_Ann 52 97 149 3770.25 2481 .734

Low High Med Sim_Ann 30 5 35 3300 1407.609

Low High Med Sim_Ann 51 3 54 4191 1 1 80.266

Low High Med Tabu_Srch 1 18 161 279 5197.5 9737.797

Low High Med Tabu_Srch 134 213 347 5057.25 7058.071

Low High Med Tabu_Srch 144 84 228 5676 9737.406

Low High Med Tabu_Srch 129 74 203 5445 9508.459

Low High Med Tabu_Srch 129 147 276 5461 .5 10870.24

Low High Med Tabu_Srch 89 1 59 248 3242.25 9921 .771

Low High Med Tabu_Srch 45 107 1 52 1947 7619.292

Low High Med Tabu_Srch 105 1 97 302 3960 3957.21 5

Low High Med Tabu_Srch 1 10 1 14 224 4702.5 1 1 338.54        
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Low High Med Tabu_Srch 82 1 55 237 3102 6129.08

Low High Med Tabu_Srch 102 147 249 4529.25 9745.893

Low High Med Tabu_Srch 1 1 1 169 280 4273.5 6335.663

Low High Med Tabu_Srch 93 1 64 257 4207.5 8612.497

Low High Med Tabu_Srch 89 142 231 3828 10255.3

Low High Med Tabu_Srch 106 1 24 230 4686 7409.092

Low Low High Loucks 165 41 206 3001 .5 48.5

Low Low High Loucks 148 42 1 90 4581 .5 33.73

Low Low High Loucks 125 50 175 3687. 5 43.78

Low Low High Loucks 75 59 134 3512.5 33.17

Low Low High Loucks 295 52 347 2468.75 33.61

Low Low High Loucks 198 58 256 3175 37.01999

Low Low High Loucks 161 57 218 3968.75 44.16

Low Low High Loucks 483 40 523 2793 77.28

Low Low High Loucks 175 58 233 3056.25 37.46002

Low Low High Loucks 191 75 266 4425 40.63998

Low Low High Loucks 519 69 588 4131.25 57.99997

Low Low High Loucks 303 70 373 3687.5 46.35004

Low Low High Loucks 179 59 238 2831 .25 32.24005

Low Low High Sim_Ann 27 62 89 2849.25 1 189.801

Low Low High Sim_Ann 31 20 51 4307 1 668.34

Low Low High Sim_Ann 55 29 84 3493.75 2542.29

Low Low High Sim_Ann 52 36 88 3268.75 2662.776

Low Low High Sim_Ann 33 80 1 13 2331 .25 1 1 72.422

Low Low High Sim_Ann 46 54 100 2950 2347.958

Low Low High Sim_Ann 59 64 123 3775 1 234.07

Low Low High Sim_Ann 22 94 1 16 2000.25 1 557.25

Low Low High Sim_Ann 70 242 312 3318 994.3298

Low Low High Sim_Ann 33 159 192 2756.25 1082.375

Low Low High Sim_Ann 65 125 190 3012.5 3080.866

Low Low High Sim_Ann 79 107 186 4062.5 3002.002

Low Low High Sim_Ann 62 60 122 3887.5 1 1 45.521

Low Low High Sim_Ann 64 84 148 3450 3424.082

Low Low High Sim_Ann 45 63 108 2631 .25 1009.422

Low Low High Tabu_Srch 40 71 1 1 1 3008.75 2412.863

Low Low High Tabu_Srch 49 48 97 4502 2762.699

Low Low High Tabu_Srch 93 125 218 3756.25 2355.824

Low Low High Tabu_Srch 87 1 1 1 198 3506.25 2630.1 17

Low Low High Tabu_Srch 71 172 243 2643.75 1612.938

Low Low High Tabu_Srch 83 135 21 8 3231 .25 2737.1 56

Low Low High Tabu_Srch 121 258 379 4212.5 2564.738

Low Low High Tabu_Srch 24 66 90 2037 1 267.51 6

Low Low High Tabu_Srch 58 128 1 86 3265.5 2863.637

Low Low High Tabu_Srch 27 91 118 2735.25 1954.31

Low Low High Tabu_Srch 103 229 332 3306.25 1667.656

Low Low High TahiZSrch 109 141 250 4312.5 1636.696   



Table A4-1. Raw Data, Continued.

203

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low Low High Tabu_Srch 1 35 379 514 4400 1 531 .27

Low Low High Tabu_Srch 96 1 64 260 3668.75 2345 .96

Low Low High Tabu_Srch 92 224 316 2962.5 999.8594

Low Low Low Loucks 194 39 233 2604 89.14844

Low Low Low Loucks 1 54 25 179 1438.5 59.03906

Low Low Low Loucks 178 52 230 2766.75 77.32813

Low Low Low Loucks 141 58 199 2950 34.71094

Low Low Low Loucks 92 65 1 57 3486 69.26563

Low Low Low Loucks 331 51 382 3055.5 1 83.5625

Low Low Low Loucks 283 56 339 251 8.75 51 .57031

Low Low Low Loucks 181 32 213 1727.25 83.32031

Low Low Low Loucks 164 63 227 2803. 5 74. 58594

Low Low Low Loucks 137 49 1 86 321 8.25 83.1 6406

Low Low Low Loucks 250 67 317 2850 51 .46094

Low Low Low Loucks 209 40 249 2609.25 102.6016

Low Low Low Loucks 1 26 27 1 53 1449 58.9921 9

Low Low Low Loucks 290 53 343 2772 95. 52344

Low Low Low Sim_Ann 67 207 274 2751 728

Low Low Low Sim_Ann 51 179 230 1 575 638.2579

Low Low Low Sim_Ann 83 399 482 2929. 5 1 197.246

Low Low Low Sim_Ann 66 106 172 2862.5 909.4943

Low Low Low Sim_Ann 41 101 142 1601.25 814.3293

Low Low Low Sim_Ann 95 297 392 3643.5 2076.354

Low Low Low Sim_Ann 105 480 585 3333.75 1368.514

Low Low Low Sim_Ann 81 161 242 2537.5 1467.724

Low Low Low Sim_Ann 66 186 252 1905.75 658.981 1

Low Low Low Sim_Ann 76 206 282 2871 .75 757.8456

Low Low Low Sim_Ann 73 313 386 3344.25 777.4648

Low Low Low Sim_Ann 62 76 1 38 2643.75 1 795.322

Low Low Low Sim_Ann 70 1 56 226 2766.75 952.5607

Low Low Low Sim_Ann 51 1 39 1 90 1 575 839.6924

Low Low Low Sim_Ann 86 357 443 2945.25 891 .9806

Low Low Low Tabu_Srch 43 1 57 200 2661 .75 5751 .403

Low Low Low Tabu_Srch 31 351 382 1485.75 2129.258

Low Low Low Tabufich 60 224 284 2845.5 4205.222

Low Low Low Tabu_Srch 102 208 310 31 37.5 5414.227

Low Low Low Tabu_Srch 31 71 102 1 596 2846.293

Low Low Low Tabu_Srch 82 224 306 361 2 7750.327

Low Low Low Tabu_Srch 68 251 319 3144.75 4476.091

Low Low Low Tabu_Srch 102 220 322 2706.25 6259.887

Low Low Low Tabu_Srch 57 1 59 216 191 6.25 3349.801

Low Low Low Tabu_Srch 67 1 51 218 2856 441 1 .91 5

Low Low Low Tabu_Srch 55 141 1 96 3270.75 6864.893

Low Low Low Tabu_Srch 1 13 223 336 2993.75 4822.892

Low Low Low Tabu_Srch 50 1 84 234 2682.75 7514.857

Low Low Low Tabu_Srch 31 297 328 1 51 2 2860.348         
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Low Low Low Tabu_Srch 67 1 34 201 2856 4226.961

Low Low Med Loucks 199 56 255 3031 .25 38.66406

Low Low Med Loucks 299 57 356 3531.25 52.00781

Low Low Med Loucks 128 49 177 2800 35.14844

Low Low Med Loucks 404 57 461 3087. 5 51 .1 9531

Low Low Med Loucks 237 56 293 3575 43.39063

Low Low Med Loucks 179 53 232 3037. 5 44.42969

Low Low Med Loucks 122 37 1 59 3024 36.96094

Low Low Med Loucks 330I 68 398 3400 68. 5

Low Low Med Loucks 239 85 324 4318.75 40.101 56

Low Low Med Loucks 181 20 201 2344.25 41 .02344

Low Low Med Loucks 144 34 178 3385 .7 5 41 .91406

Low Low Med Loucks 225 64 289 4500 57.781 25

Low Low Med Loucks 167 50 217 3837. 5 49.601 56

Low Low Med Loucks 191 63 254 4306.25 42.57

Low Low Med Sim_Ann 33 47 80 2825 803.16

Low Low Med Sim_Ann 78 162 240 3512.5 1939.897

Low Low Med Sim_Ann 48 88 1 36 271 8.75 934.2608

Low Low Med Sim_Ann 66 1 37 203 3050 891 .964

Low Low Med Sim_Ann 65 1 33 198 3481 .25 1 641 .486

Low Low Med Sim_Ann 60 151 211 2975 912.8812

Low Low Med Sim_Ann 59 182 241 2968.75 1071 .983

Low Low Med Sim_Ann 75 192 267 3325 1 566.278

Low Low Med Sim_Ann 801 86 166 3987. 5 1 314.506

Low Low Med Sim_Ann 18 13 31 2276 1071 .214

Low Low Med Sim_Ann 25 16 41 3226.25 834.933

Low Low Med Sim_Ann 65 83I 148 4293.75 919.4609

Low Low Med Sim_Ann 64 93 1 57 3087. 5 1 629.605

Low Low Med Sim_Ann 51 56 107 3675 141 1 .74

Low Low Med Sim_Ann 100 21 6 316 4200 2004.764

Low Low Med Tabu_Srch 88 190 278 3187.5 17213.29

Low Low Med Tabu_Srch 107 231 338 3743.75 20874.25

Low Low Med Tabu_Srch 81 221 302 3006.25 1 1595.97

Low Low Med Tabu_Srch 105 286 391 3356.25 13071.19

Low Low Med Tabu_Srch 103 193 296 3762.5 7646.517

Low Low Med Tabu_Srch 104 269 373 3300 5459.535

Low Low Med Tabu_Srch 32 125 1 57 301 3.5 7682.857

Low Low Med Tabu_Srch 105 294 399 3550 7842.982

Low Low Med Tabu_Srch 129 231 360 4337. 5 7160.318

Low Low Med Tabu_Srch 36 61 97 2469 251 1 .988

Low Low Med Tabu_Srch 40 43 83 3385.75 7146.1 39

Low Low Med Tabu_Srch 1 1 1 201 312 4625 9174.21 1

Low Low Med Tabu_Srch 102 1 91 293 3375 4743.554

Low Low Med Tabu_Srch 100 1 63 263 4037.5 8462.1 67

Low Low Med Tabu_Srch 131 303 434 4437.5 6777.957

Low Med High Loucks 170 40 210 3414.75 32.34998         
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Low Med High Loucks 1 71 59 230 4451 .5 38.78003

Low Med High Loucks 71 47 1 18 3378.5 31.08997

Low Med High Loucks 294 45 339 2363.5 41 .58008

Low Med High Loucks 138 59 197 4567. 5 46.03003

Low Med High Loucks 1 66 59 225 3886 34.77002

Low Med High Loucks 105 47 1 52 401 6. 5 34

Low Med High Loucks 99 51 150 321 1 .75 33.22998

Low Med High Loucks 94 41 135 3849.75 37.17993

Low Med High Loucks 167 64 231 471 2. 5 41 .46997

Low Med High Loucks 207 48 255 4226.75 46.91016

Low Med High Loucks 259 43 302 3356.75 43.93994

Low Med High Loucks 1 83 41 224 4328.25 48.43994

Low Med High Loucks 102 32 134 3530.75 34.98999

Low Med High Loucks 47 51 98 4502.25 35.37012

Low Med High Sim_Ann 50] 37 87 3262. 5 1 610.704

Low Med High Sim_Ann 58I 20 78 4067.25 1 372. 542

Low Med High Sim_Ann 39I 27 66 3175.5 734.5739

Low Med High SimjAhh 30[ 64 94 221 1 .25 3063.1 97

Low Med High Sim_Ann 70 9 79 4205 1 857.685

Low Med High Sim_Ann 46 36 82 3545.25 1 180.669

Low Med High Sim_Thn 71 57 128 3842. 5 1259.727

Low Med High Simjnn 38 4 42 2842 3335.497

Low Med High Sim_Ann 50 1 9 69 3646.75 1 349.329

Low Med High Sim_Ann 69 16 85 4190.5 959.6131

Low Med High SimjAhn 59 26 85 3922.25 752.0529

Low Med High Sim_Ann 41 15 56 3110.25 1795.531

Low Med High Sim_Ann 63 44 107 4161 .5 1 524.585

Low Med High Sim_LAnn 51 61 1 12 3451 1 126.704

Law Med High Sim:Ann 57 14 71 4176 2012.282

Low Med High Tabu_Srch 92 133 225 3588.75 9622.247

Low Med High Tabu_Srch 120 146 266 4560.25 6893.072

Low Med High Tabu_Srch 1 1OT 224 334 3726. 5 7197.274

Low Med High Tabu_Srch 78 190 268 2617.25 5367.087

Low Med High Tabu_Srch 141 190 331 4727 10583.81

Low Med High Tabu_Srch 1 13 1 89 302 4089 5653.604

Low Med High Tabu_Srch 123 1 81 304 4263 4796.558

Low Med High Tabu_Srch 89 1 1 1 200 3277 7127.227

Low Med High Tabu_Srch 1 12 165 277 4147 1071 1 .26

Low Med High Tabu_Srch 122 139 261 4574.75 101 16.65

Low Med High Tabu_Srch 126 171 297 4458.75 7375.626

Low Med High Tabu_Srch 76 98 1 74 3422 8735.873

Low Med High Tabu_Srch 127 226 353 4698 10293.9

Low Med High Tabu_Srch 1 10I 206 316 3944 7339.302

Low Med High Tabu_Srch 114 123 237 4618.25 10709.55

Low Med Low Loucks 279 66 345 371 9.25 55.48004

Low Med Low Loucks 262 68 330 3132 42.45001 
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Low Med Low Loucks 1 16 55 171 3596 52.45996

Low Med Low Loucks 1 98 46 244 2660.75 34.54999

Low Med Low Loucks 234 83 317 4748.75 58.01001

Low Med Low Loucks 140 74 214 4879.25 48.98999

Low Med Low Loucks 234 69 303 3820. 75 43.1 7999

Low Med Low Loucks 164 77 241 4132.5 42.29004

Low Med Low Loucks 192 58 250 3182.75 39.38

Low Med Low Loucks 73 64 1 37 4698 44.05005

Low Med Low Loucks 338 79 417 4219.5 55.1 5002

Low Med Low Loucks 96 83 179 5995.75 65.25

Low Med Low Loucks 1 17 81 198 5763.75 70.41003

Low Med Low Loucks 63 93 156 6111.75 56.95996

Low Med Low Loucks 28 92 120 5843.5 49.42993

Low Med Low Sim_Ann 89 32 121 3400.25 646. 5704

Low Med Low Sim_Ann 58 33 91 2776.75 1 543.07

Low Med Low Sim_Ann 57 17 74 3146.5 636.9218

Low Med Low Sim_Ann 33 12 45 2356.25 550.8906

Low Med Low Sim_Ann 87 15 102 41 54.25 728.3282

Low Med Low Sim_Ann 95 3 98 4335.5 633. 5938

Low Med Low Sim_Ann 87 1O 97 3364 610.1094

Low Med Low Sim_Ann 93 1 5 108 3567 635.7968

Low Med Low Sim_Ann 46 16 62 2733.25 670.0938

Low Med Low Sim_Ann 95 16 1 1 1 41 18 644.8126

Low Med Low Sim_Ann 66 9 75 3668.5 686.4688

Low Med Low Sim_Ann 149 1 1 160 5372.25 592.125

Low Med Low Sim_Ann 134 5 1 39 51 54.75 586.3046

Low Med Low Sim_Ann 153 18 171 5459.25 591.9766

Low Med Low Sim_Ann 155 15 170 5299.75 702.711

Low Med Low Tabu_Srch 1 13 74 187 3581.5 10758.3

Low LMed Low Tabu_Srch 101 1 26 227 3103 10010.37

Low Med Low Tabu_Srch 107 75 1 82 3523. 5 10530.1 1

Low Med Low Tabu_Srch 80 1 19 199 2755 4277.104

Low Med Low Tabu_Srch 133 83 216 4495 7287.255

Low Med Low Tabu_Srch 128 44 172 4589.25 1 1978.08

Low Med Low Tabu_Srch 1 33 1 20 253 3741 7298.421

Low Med Low Tabu_Srch 124 50 174 3828 10637

Low Med Low Tabu_Srch 96 86 182 3146.5 51 94.014

Low Med Low Tabu_Srch 121 12 133 4357.25 10088. 52

Low Med Low Tabu_Srch 105 74 179 3958.5 10457.64

Low Med Low Tabu_Srch 184 36 220 5633.25 1 1 821 .77

Low Med Low Tabu_Srch 166 35 201 541 5.75 13043.45

Low Med Low Tabu_Srch 175 6 181 5640.5 1 1681 .94

Low Med Low Tabu_Srch 175 5 180 5459.25 17760.98

Low Med Med Loucks 215 40 255 3349. 5 36.91003

Low Med Med Loucks 306 48 354 4255.75 56.95996

Low Med Med Loucks 94 56 150 3581.5 30.31995
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Low Med Med Loucks 318 51 369 2892.75 43.98999

Low Med Med Loucks 21 1 47 258 4589.25 49.54004

Low Med Med Loucks 227 50 277 4850.25 38.60999

Low Med Med Loucks 109 64 173 4618.25 42.13

Low Med Med Loucks 231 57 288 3849.75 41 .46997

Low Med Med Loucks 801 47 127 2994.25 25.42993

Low Med Med Loucks 62 61 123 4980.75 39.92993

Low Med Med Loucks 98 44 142 3298.75 34.1 5991

Low Med Med Loucks 254 45 299 2552 42.72998

Low Med Med Loucks 145 53 1 98 4089 31 .91003

Low Med Med Loucks 238 63 301 3936.75 42.12

Low Med Med Loucks 277 54 331 3458.25 31.91992

Low Med Med Sim_Ann 58 66 1 24 3204.5 985.2095

Low Med Med Sim_Ann 63 79 142 41 18 1066.227

Low Med Med Sim_Ann 39 34 73 3262.5 973.1096

Low Med Med Sim_Ann 65 127 192 2878.25 806.3563

Low Med Med Sim_Ann SCI 78 1 68 4408 1 81 6.872

Low Med Med Sim_Ann 591 1 60 4495 971 .3322

Low Med Med Sim_Ann 66 1 8 84 4226.75 931 .1801

Low Med Med Sim_Ann 54 26 80 3523.5 1018.833

Low Med Med Sim_Ann 28 18 46 271 1 .5 1 517.404

Low Med Med Sim_Ann 54 4 58 4524 728.7225

Low Med Med Sim_Ann 37 13 50 3016 1019.898

Low Med Med Sim_Ann 35 65 100 2392.5 1496.205

Low Med Med Sim_Ann 501 12 62 3733.75 1231 .175

Low Med Med Sim_Ann 63 38 101 3610.5 885.9002

Low Med Med Sim_Ann 41 50 91 3226.25 1478.394

Low Med Med Tabu_Srch 99 169 268 3523.5 8479.467

Low Med Med Tabu_Srch 1 18 208 326 4574.75 9061.945

Low Med Med Tabu_Srch 94 1 53 247 3719.25 7776.426

Low Med Med Tabu_Srch 125 317 442 3371 .25 7401 .425

Low Med Med Tabu_Srch 135 1 55 290 4770.5 7829.894

Low Med Med Tabu_Srch 101 83 184 4843 1 1087.57

Low Med Med Tabu_Srch 122 128 250 4640 1 171 1 .88

Low Med Med Tabu_Srch 105 157 262 3951 .25 5642.389

Low Med Med Tabu_Srch 76 1 20 1 96 3103 4886.335

Low Med Med Tabu_Srch 131 143 274 5118.5 3117.3

Low Med Med Tabu_Srch 92 144 236 3458.25 8230. 509

Low Med Med Tabu_Srch 92 216 308 2820.25 1 187.308

Low Med Med Tabu_Srch 107 145 252 4197.75 5736.227

Low Med Med Tabu_Srch 95 96 191 391 5 2773.574

Low Med Med Tabu_Srch 1 17 280 397 3842.5 2989.664

Med High High Loucks 104 34 1 38 5387.25 43.66992

Med High High Loucks 79 51 1 30 7260 73.81934

Med High High Loucks 81 58 139 6154.5 44.31934

Med High High Loucks 901 60 1 50 6245.25 50.75         
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Med High High Loucks 100 50 1 50 5544 50.31055

Med High High Loucks 31 59 90 6575.25 48.61035

Med High High Loucks 93 41 134 5799.75 45.80957

Med High High Loucks 140 55 195 7242.75 59.26953

Med High High Loucks 100 23 123 5445 83

Med High High Loucks 97 66 163 8084. 5 63.92969

Med High High Loucks 99 45 144 5197.5 40.08984

Med High High Loucks 35 51 86 7501.75 59.25977

Med High High Loucks 185 38 223 4677.75 41 .2002

Med High High Loucks 1 12 36 148 4372. 5 42.73047

Med High High Loucks 283 46 329 5098.5 56.68945

Med High High Sim_Ann 87 29 1 16 51 15 1 195.172

Med High High Sim_Ann 132 12 144 6740.25 913.1876

Med High High Sim_Ann 90 10' 100 5593. 5 904.6094

Med High High Sim_Ann 118 17I 135 5610 915.4804

Med High High Sim_Ann 69 10l 79 5082 1212.875

Med High High 516311111 91 1 92 6096.75 1072.234

Med High High Sim_Ann 73 7 80 5403.75 1303.594

Med High High Sim_Ann 109 8 1 17 6660 1084.355

Med High High Sim_Ann 83 1 84 5247 754.1338

Med High High Sim_Ann 150 19 169 7298.25 891.9688

Med High High Sim_Ann 50 12 62 4727.25 1 279.75

Med High High Sim_Ann 102 18 120 6863.5 866.1856

Med High High Sim_Ann 51 201 71 4397.25 1 123.555

Med High High Sim_Ann 49 19 68 41 16.75 869.4766

Med High High SEAnn 57 5 62 4677.75 91 7.8984

Med High High Tabu_Srch 146 144 290 5610 7438.066

Med High High Tabu_Srch 196 86 282 7284.75 5000.086

Med High High Tabu_Srch 150 86 236 6096.75 6859.852

Med High High Tabu_Srch 166 45 21 1 6055.5 9909.55

Med High High Tabu_Srch 138 129 267 5742 4147.257

Med High High Tabu_Srch 123 39 162 6402 10546.68

Med High High Tabu_Srch 129 69 198 5890.5 7472.1 19

Med High High Tabu:Srch 153 46 199 7094.75 1 1427.97

Med High High Tabu_Srch 152 128 280 5832.75 8102.617

Med High High Tabu_Srch 194 31 225 7751.5 9681 .277

Med High High Tabu_Srch 129 139 268 5436.75 6968. 51

Med High High Tabu_Srch 171 99 270 7548 5792.108

Med High High Tabu_Srch 138 221 359 5148 891 1 .778

Med High High Tabu_Srch 1 15 159 274 4686 5416.699

Med High High Tabu:S_rch 135 171 306 5370.75 5305.424

Med High Low Loucks 100 58 158 8029 1 1 5.4502

Med High Low Loucks 236 90 326 7210.5 84. 25

Med High Low Loucks 22 69 91 8047.5 285.3398

Med High Low Loucks 44 66 1 10 6756.75 94.2002

Med High Low Loucks 1 54 81 235 8352.75 147.5303 
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Med High Low Loucks 141 84 225 7334.25 103.9697

Med High Low Loucks 129 84 213 7359 126.9307

Med High Low Loucks 107 71 178 7326 131 .8701

Med High Low Loucks 184 83 267 71 52.75 72.83008

Med High Low Sim_Ann 187 35 222 7224.25 818.6016

Med High Low Sim_Ann 178 45 223 4560.25 1 197.063

Med High Low Sim_Ann 32 8 40 2557.5 961 .9688

Med High Low Sim_Ann 178 16 1 94 6352.5 734.8046

Med High Low Sim_Ann 178 8 186 7335.25 1064.1 33

Med High Low Sim_Ann 84 14 98 4551 667.4532

Med High Low Sim_Ann 182 35 217 6789.75 944.375

Med High Low Sim_Ann 46 18 64 2886 731 .9532

Med High Low Sim_Ann 144 29 173 6435 983.836

Med High Low Sim_Ann 171 13 1 84 6558.75 744.5782

Med High Low Sim_Ann 1 52 8 1 60 6493. 5 936.9394

Med High Low Sim_Ann 171 10 1 81 6660 763.145

Med High Low Sim_Ann 139 22 161 6591 .75 892.2002

Med High Low Sim_Ann 204 14 218 6459.75 755.7578

Med High Low Sim_Ann 37 12 49 2598.75 1058.305

Med High Low Tabu_Srch 210 1 2 222 7409.25 8462.034

Med High Low Tabu_Srch 1 99 24 223 4726.75 51 55.003

Med High Low Tabu_Srch 55 53 108 2763.75 3679.271

Med High Low Tabu_Srch 190 g 200 6484.5 8295.267

Med High Low Tabu_Srch 180 10' 190 7390.75 1 1 326.3

Med High Low Tabu_Srch 101 5 106 4699 6079.922

Med High Low Tabu_Srch 186 31 217 6864 5497.299

Med High Low Tabu_Srch 59 45 104 3061 .75 9085.802

Med High Low Tabu_Srch 164 1 1 175 6624.75 1 1838.1

Med High Low Tabu_Srch 191 1 1 202 6756.75 10701.26

Med High Low Tabu_Srch 199 43 242 6900.5 141 1 3.67

Med High Low Tabu_Srch 186 7 193 6798.75 15656.73

Med High Low Tabu_Srch 162 1 1 173 6748.5 1 1756.63

Med High Low Tabu_Srch 205 1 3 21 8 6484.5 1471 0.02

Med High Low Tabu_Srch 60 41 101 2796.75 5923.634

Med High Med Loucks 141 33 174 5832.75 71 .9502

Med High Med Loucks 81 35 1 16 5387.25 41 .95996

Med High Med Loucks 801 32 1 12 4851 44.97949

Med High Med Loucks 53 59 1 12 6501 52.39941

Med High Med Loucks 26 50 76 5883 53.2793

Med High Med Loucks 61 44 105 6550. 5 66.24023

Med High Med Loucks 135 42 177 5395. 5 45.75977

Med High Med Loucks 17 66 83 6740.25 50.2002

Med High Med Loucks 46 45 91 6575.25 52.78027

Med High Med Loucks 131 49 1 80 5824.5 46.84961

Med High Med Loucks 77 39 1 16 5469.75 41 .41992

Med High Med Loucks 105 46 1 51 5214 37.12988          
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Table A4-1. Raw Data, Continued.

Med High Med Loucks 53 39 92 5717.25 40.47949

Med High Med Loucks 109 39 148 6278.25 56.08008

Med High Med Loucks 76 53 129 5758.5 42.18066

Med High Med Sim_Ann 95 10 105 5494.5 959.5468

Med High Med Sim_Ann 59 7 66 5040.75 1096.398

Med High Med Sim_Ann 59 16 75 4653 1 664.34

Med High Med Sim_Ann 91 9 100 5940 1078.641

Med High Med Sim_Ann 56 9 65 5337.25 1488.914

Med High Med Sim_Ann 137 15 152 6162.75 1019.625

Med High Med Sim_Ann 90I 5 95 5007.75 712.0626

Med High Med Sim_Ann 1 12 16 128 6063.75 820.3594

Med High Med Sim_Ann 97 17 1 14 6063.75 856.2968

Med High Med Sim_Ann 81 7 88 5412 823.8798

Med High Med Sim_Ann 69 21 90 4974.75 847.1718

Med High Med Sim_Ann 65 19 84 4776.75 819.9238

Med High Med Sim_Ann 801 8 88 5346 897.0468

Med High Med Sim_Ann 121 5 126 591 5.25 877.6894

Med High Med Sim_Ann 83 5 88 5346 702.8282

Med High Med Tabu_Srch 130 51 181 5865.75 9813.695

Med High Med Tabu_Srch 134 1 32 266 5700.75 6041 .461

Med High Med Tabu_Srch 104 1 1 1 215 5073.75 6935.43

Med High Med Tabu_Srch 164 1 18 282 6550.5 10330.87

Med High Med Tabu_Srch 141 1 68 309 6169.75 9889.275

Med High Med Tabu_Srch 171 59 230 6451 .5 10876.08

Med High Med Tabu_Srch 156 121 277 5618.25 8148.905

Med High Med Tabu_Srch 145 23 168 6402 1 1330.81

Med High Med Tabu_Srch 171 93 264 6690.75 5700.898

Med High Med Tabu_Srch 131 83 214 5857.5 9263.625

Med High Med Tabu_Srch 139 75 214 5593.5 6712.223

Med High Med Tabu_Srch 125 93 218 5304.75 5198.697

Med High Med Tabu_Srch 130 98 228 5832.75 3562.57

Med High Med Tabu_Srch 190 1 26 316 6492.75 6949.164

Med High Med Tabu_Srch 1 61 1 71 332 6030.75 4281 .1 76

Med Low High Loucks 229 57 286 4331 .25 43.39014

Med Low High Loucks 180 39 219 3365.25 48.93994

Med Low High Loucks 125 65 190 4868.75 41 .46973

Med Low High Loucks 234 71 305 4487. 5 42.24023

Med Low High Loucks 158 69 227 4831 .25 52.67969

Med Low High Loucks 21 1 72 283 4650 43.83008

Med Low High Loucks 269 78 347 4437. 5 56. 52002

Med Low High Loucks 96 43 1 39 3937.5 47.07031

Med Low High Loucks 243 37 280 3097.5 45.64014

Med Low High Loucks 237 34 271 3265.5 60.68994

Med Low High Loucks 132 38 170 3108 41 .8501

Med Low High Sim_Ann 96 21 1 307 3906 1 360.652

Med Low High Sim_Ann 57 281 338 3654 1030.231 
 

I
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Med Low High Sim_Ann 79 147 226 4181 .25 1 197.615

Med Low High Sim_Ann 42 103 145 3375.75 1 394.682

Med Low High Sim_Ann 64 72 136 3825 1533.71 1

Med Low High Sim_Ann 55 14 69 4475 1 670.368

Med Low High Sim_Ann 91 130' 221 4331.25 1714.152

Med Low High Sim_Ann 1 12 148 260 4675 1436.969

Med Low High Sim_Ann 68 47 1 15 4293.75 1434.713

Med Low High Sim_Ann 76 82 1 58 4100 1393.759

Med Low High Sim_Ann 71 222. 293 3953.25 1264.553

Med Low High Sim_Ann 45 127 172 3696 1076.865

Med Low High Sim_Ann 41 194 235 31 13.25 1029.591

Med Low High Sim_Ann 36 136 172 3276 1072.928

Med Low High Sim_Ann 42 125 167 3123.75 1 104.441

Med Low High Tabu_Srch 78 199 277 3801 4229.696

Med Low High Tabu_Srch 36 98 1 34 3570 4198

Med Low High Tabu_Srch 108 1 64 272 4431 .25 8448.304

Med Low High Tabu_Srch 42 1 19 161 3417.75 4226.261

Med Low High Tabu_Srch 120I 272 392 4206.25 8657.672

Med Low High Tabu_Srch 104 99 203 4843.75 6208.404

Med Low High Tabu_Srch 145 298 443 4700 9253.6

Med Low High Tabu_Srch 148 278 426 4931 .25 6265.438

Med Low High Tabu_Srch 124 1 51 275 4712.5 8576.398

Med Low High Tabu_Srch 126 286 412 4456.25 5879.25

Med Low High Tabu_Srch 63 1 54 217 391 1 .25 4883.992

Med Low High Tabu_Srch 44 1 54 198 3701 .25 6220.18

Med Low High Tabu_Srch 29 98 127 3071 .25 5299.454

Med Low High Tabu_Srch 28 1 02 1 30 3244. 5 5769.06

Med Low High Tabu_Srch 34 87 1 21 3102.75 3732.306

Med Low Low Loucks 65 39 104 241 5 28.5

Med Low Low Loucks 142 35 177 3506.25 39.48975

Med Low Low Loucks 146 44 1 90 2893.75 24.99023

Med Low Low Loucks 114 38 152 2982 43.17969

Med Low Low Loucks 101 33 1 34 2350 24.10986

Med Low Low Loucks 88 60 148 4331 .25 35.81006

Med Low Low Loucks 134 55 1 89 4425.75 89.08984

Med Low Low Loucks 1 56 90 246 5500 67.72998

Med Low Low Loucks 89 69 1 58 4814.25 67.33008

Med Low Low Sim_Ann 43 81 124 2425.5 1261 .41 1

Med Low Low Sim_Ann 70 1 1 81 3306.25 1 747.551

Med Low Low Sim_Ann 51 26 77 2706.25 2784.96

Med Low Low Sim_Ann 41 27 68 2662. 5 1721 .535

Med Low Low Sim_Ann 44 1 52 1 96 3013.5 1666.869

Med Low Low Sim_Ann 45 49 94 2275 2821 .674

Med Low Low Sim_Ann 30 89 1 19 2252.25 2642.253

Med Low Low Sim_Ann 33 54 87 2404. 5 2276.967

Med Low Low Sim_Ann 102 39 141 4037. 5 1 507.436         
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Med Low Low Sim_Ann 45 107 152 4373.25 1527.623

Med Low Low Sim_Ann 67 66 1 33 3300 1 650.5

Med Low Low Sim_Ann 38 82 120 3302.25 21 21 .262

Med Low Low Sim_Ann 62 146 208 4788 1 71 9.307

Med Low Low Sim_Ann 115 1 116 4931.25 967.1354

Med Low Low Sim_Ann 60 1 14 174 4756. 5 2174.806

Med Low Low Tabu_Srch 37 107 144 2425.5 2503.1 56

Med Low Low Tabu_Srch 99 80 179 3537.5 3329.594

Med Low Low Tabu_Srch 61 40' 101 2800 5886.1 53

Med Low Low Tabu_Srch 73 69 142 2893.75 3573.966

Med Low Low Tabu_Srch 40 98 138 3050.25 2735.606

Med Low Low Tabu_Srch 60 96 1 56 2387.5 2122.75

Med Low Low Tabu_Srch 30 93 123 2294.25 2442.207

Med Low Low Tabu_Srch 27 126 153 2399.25 21 54.414

Med Low Low Tabu_Srch 120 53 173 4187.5 6332.785

Med Low Low Tabu_Srch 51 99 150 4425.75 401 9.943

Med Low Low Tabu_Srch 102 143 245 3568.75 3961 .482

Med Low Low Tabu_Srch 41 105 146 3328. 5 2407.207

Med Low Low Tabu_Srch 73 171 244 4872 441 5.373

Med Low Low Tabu_Srch 151 39 190 5187.5 1 1 124.87

Med Low Low Tabu_Srch 64 1 12 176 4798. 5 7548.639

Med Low Med Loucks 203 67 270 4375 47.61963

Med Low Med Loucks 248 27 275 3291 .75 58.71973

Med Low Med Loucks 126 69 195 4456.25 45.58984

Med Low Med Loucks 193 33 226 31 18.5 39.33008

Med Low Med Loucks 184 38 222 3454. 5 40.75

Med Low Med Loucks 212 51 263 4212.5 58

Med Low Med Loucks 253 57 310 4493.75 52.02002

Med Low Med Loucks 185 85 270 4531.25 45.75977

Med Low Med Loucks 233 59 292 4500 56.07959

Med Low Med Loucks 213 52 265 4743.75 74.1 5039

Med Low Med Loucks 317 45 362 3685.5 106.1201

Med Low Med Loucks 120 59 179 4162.5 38.56006

Med Low Med Loucks 1 19 66 185 4825 38.78027

Med Low Med Loucks 214 55 269 3868.75 41.35986

Med Low Med Sim_Ann 28 182 210 3302.25 1 176.266

Med Low Med Sim_Ann 50 165 21 5 3407.25 1289.344

Med Low Med Sim_Ann 34 1 12 146 3155.25 1044.578

Med Low Med Sim_Ann 38 1 18 156 3491 .25 1 128.602

Med Low Med Sim_Ann 24 330 354 3071 .25 1202.633

Med Low Med Sim_Ann 38 182 220 3433.5 1576.258

Med Low Med Sim_Ann 39 105 144 3895.5 1 101 .039

Med Low Med Sim_Ann 70 45 1 1 5 4375 1 148.465

Med Low Med Sim_Ann 75 83 1 58 4306.25 1 384.24

Med Low Med Sim_Ann 101 89 190 4937.5 2208.998

Med Low Med Sim_Ann 94 196 290 4731 .25 1 138.279         
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Med Low Med Sim_Ann 42 127 169 3643.5 1 143.998

Med Low Med Sim_Ann 38 140 178 3664. 5 1047.859

Med Low Med Sim_Ann 64 183 247 3958.5 1768.383

Med Low Med Sim_Ann 73 39 1 12 3668.75 935.7226

Med Low Med Tabu_Srch 30 52 82 3354.75 3638.032

Med Low Med Tabu_Srch 32 77 109 3323.25 5996.126

Med Low Med Tabu_Srch 24 104 1 28 31 50 5800.89

Med Low Med Tabu_Srch 32 86 1 18 3501 .75 2217.226

Med Low Med Tabu_Srch 26 90' 1 16 3123.75 5171 .868

Med Low Med Tabu_Srch 39 123 1 62 3459.75 3668.602

Med Low Med Tabu_Srch 37 83 1 20 3942.75 9106.852

Med Low Med Tabu_Srch 125 192 317 4737.5 6393.968

Med Low Med Tabu_Srch 1 29 179 308 4681 .25 8052.21

Med Low Med Tabu_Srch 165 233 398 5412.5 9754.562

Med Low Med Tabu_Srch 1 15 201 316 4906.25 6961 .242

Med Low Med Tabu_Srch 29 58 87 3638.25 3230.71

Med Low Med Tabu_Srch 44 1 56 200 3690.75 4212.336

Med Low Med Tabu_Srch 55 146 201 3900.75 4812.554

Med Low Med Tabu_Srch 1 17 167 284 3975 2940.602

Med Med High Loucks 1 81 63 244 4872 1 17.3701

Med Med High Loucks 1 19 61 1 80 6409 49.97949

Med Med High Loucks 85 56 141 5183.75 46.2998

Med Med High Loucks 19 57 76 5089. 5 33.29004

Med Med High Loucks 66 49 1 15 5133 39.06055

Med Med High Loucks 73 59 132 491 5.5 42.01953

Med Med High Loucks 85 56 141 5829 45.25977

Med Med High Loucks 1 36 44 180 4640 46.95996

Med Med High Loucks 275 63 338 4002 33.71973

Med Med High Loucks 86 49 135 5227.25 43.5

Med Med High Loucks 1 1O 55 1 65 4930 43.83008

Med Med High Loucks 1 19 53 172 5046 43.33984

Med Med High Loucks 1 44 49 1 93 5829 58.33008

Med Med High Loucks 1 33 62 1 95 5234. 5 41 .4707

Med Med High Sim_Ann 69 14 83 441 5.25 978.2188

Med Med High Sim_Ann 104 16 120 5850.75 1 1 1 1.57

Med Med High Sim_Ann 95 0 95 4777.75 860.6718

Med Med High Sim_Ann 63 2 65 4690.75 1 108.484

Med Med High Sim_Ann 66 7 73 4756 997.9922

Med Med High Sim_Ann 64 19 83 4364. 5 1 121 .1 33

Med Med High Sim_Ann 105 9 1 14 5372.25 1007.43

Med Med High Sim_Ann 74 38 1 12 4277. 5 1062.391

Med Med High Sim_Ann 44 61 105 3639.5 1 356.375

Med Med High Sim_Ann 81 2 83 4857.5 1 123.564

Med Med High Sim_Ann 73 33 106 4625.5 1 503.859

Med Med High Sim_Ann 80 1 1 91 4712.5 783.127

Med Med High Sim_Ann 87 28 1 15 5328.75 1042.172        
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Med Med High Sim_Ann 86 56 142 4886. 5 818.7188

Med Med High Sim_Ann 74 41 1 1 5 4451 .5 965.4766

Med Med High Tabu_Srch 90' 51 141 4603.75 10170.55

Med Med High Tabu_Srch 1 38 32 170 6126.25 12442.79

Med Med High Tabu_Srch 137 82 219 5133 1 1 192.97

Med Med High Tabu_Srch ‘ 1 57 238 395 5408. 5 5442. 532

Med Med High Tabu_Srch 1 14 71 185 5162 1 1338.63

Med Med High Tabu_Srch 126 85 21 1 4879.25 8157.196

Med Med High Tabu_Srch 182 126 308 5952.25 1 1762.29

Med Med High Tabu_Srch 138 136 274 4785 8059.454

Med Med High Tabu_Srch 121 390 511 4263 1316.773

Med Med High Tabu_Srch 1 54 139 293 5444.75 9688.102

Med Med High Tabu_Srch 1 27 149 276 5053.25 3079.884

Med Med High Tabu_Srch 141 156 297 5220 6573.16

Med Med High Tabu_Srch 149 60 209 5814.5 2695.346

Med Med High Tabu_Srch 1 76 300' 476 5568 2780.887

Med Med High Tabu_Srch 148 177 325 5038.75 8395.376

Med Med Low Loucks 64 57 1 21 4161 .5 38.06006

Med Med Low Loucks 32 52 84 6496 92.06006

Med Med Low Loucks 84 89 1 73 7068.75 109.6299

Med Med Low Loucks 1 29 77 206 5887 59.38037

Med Med Low Loucks 75 73 148 6510.5 69.08984

Med Med Low Loucks 162 74 236 6387.25 235.1899

Med Med Low Loucks 101 74 175 6235 68.99023

Med Med Low Loucks 1 1 1 74 185 6285.75 72.06006

Med Med Low Loucks 94 89 1 83 6256.75 60.7002

Med Med Low Loucks 47 81 128 5923.25 52.11963

Med Med Low Loucks 29 94 1 23 6293 70.4101 6

Med Med Low Loucks 47 80 1 27 6278. 5 81 .02002

Med Med Low Loucks 50' 80 1 30 6278.5 81 .33984

Med Med Low Loucks 46 76 122 6300.25 74.85986

Med Med Low Sim_Ann 82 29 1 1 1 3770 859.4949

Med Med Low Sim_Ann 1 59 3 1 62 5720.25 1002.1 32

Med Med Low Sim_Ann 1 77 10' 1 87 6061 963.931 1

Med Med Low Sim_Ann 133 19 1 52 5321 .5 794.2955

Med Med Low Sim_Ann 107 24 131 5183.75 682.6358

Med Med Low Sim_Ann 324 53 377 5626 1 122.554

Med Med Low Sim_Ann 1 66 10 176 5807.25 732.8471

Med Med Low Sim_Ann 1 51 15 166 5604.25 801 .4178

Med Med Low Sim_Ann 1 57 12 169 5676.75 745.9403

Med Med Low Sim_Ann 131 23 154 5473.75 963.7977

Med Med Low Sim_Ann 1 35 13 148 5444.75 745.7781

Med Med Low Sim_Ann 149 30 179 5597 789.9418

Med Med Low Sim_Ann 172 26 198 5756.5 798.5589

Med Med Low Sim_Ann 165 34 199 5705.75 774.1353

Med Med Low Sim_Ann 1 57 31 188 5676.75 777.951 1        
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Med Med Low Tabu_Srch 1 21 72 193 4089 4214.455

Med Med Low Tabu_Srch 1 55 17 172 5749.25 9894.763

Med Med Low Tabu_Srch 1 78 9 1 87 6068.25 9910.408

Med Med Low Tabu_Srch 1 56 20 176 5495.5 10657.65

Med Med Low Tabu_Srch 130 17 147 5336 1 1946.71

Med Med Low Tabu_Srch 344 33 377 5785.5 5604.286

Med Med Low Tabu_Srch 190' 22 212 6024.75 1 1 574. 52

Med Med Low Tabu_Srch 1 63 9 172 5684 10457.44

Med Med Low Tabu_Srch 155 16 171 5655 12828.04

Med Med Low TabugSrch 145 1 5 160 561 1 .5 12542.54

Med Med Low Tabu_Srch 150 12 162 5589.75 12582.35

Med Med Low Tabu_Srch 164 1 9 183 5676.75 6026.188

Med Med Low Tabu_Srch 190' 16 206 5879.75 6502.94

Med Med Low Tabu_Srch 1 86 1 9 205 5821 .75 10400.03

Med Med Low Tabu_Srch 168 20 188 5756. 5 9122.642

Med Med Med Loucks 81 50 1 31 4886. 5 40.59033

Med Med Med Loucks 122 68 1 90 5604.25 174.4399

Med Med Med Loucks 77 43 120 4277.5 35.41992

Med Med Med Loucks 32 58 90 6691 .75 44.49023

Med Med Med Loucks 39 56 95 5959. 5 42.79004

Med Med Med Loucks 169 42 21 1 5633.25 49.98975

Med Med Med Loucks 68 53 1 21 5046 109.46

Med Med Med Loucks 128 42 170 4930 55.81055

Med Med Med Loucks 58 55 1 13 5270.75 41.62988

Med Med Med Loucks 212 43 255 5974 56.9091 8

Med Med Med Loucks 102 37 139 5270.75 55.96973

Med Med Med Loucks 144 54 198 4748.75 40. 59082

Med Med Med Loucks 69 50 1 19 5017 40.91992

Med Med Med Loucks 87 41 128 5140.25 38.4502

Med Med Med Loucks 1 50] 63 213 5959.5 72.4502

Med Med Med Sim_Ann 80r 4 84 4538.5 1471 .757 '

Med Med Med Sim_Ann 69 19 88 4988 1488.24

Med Med Med Sim_Ann 51 14 65 4038.25 869.3614

Med Med Med Sim_Ann 1 19 8 127 6213.25 970.9021

Med Med Med Sim_Ann 99 6 105 5539 1285.601

Med Med Med Sim_Ann 85 15 100 5234.5 1037.638

Med Med Med Sim_Ann 73 2 75 4676.25 1533.612

Med Med Med Sim_Ann 72 33 105 4632.75 968.059

Med Med Med Sim_Ann 59 5 64 4864.75 949.3903

Med Med Med Sim_Ann 69 21 90 4937.25 841 .5786

Med Med Med Sim_Ann 84 26 1 10 4959 1 292.436

Med Med Med Sim_Ann 60 14 74 441 5.25 1038.638

Med Med Med Sim_Ann 79 24 103 4669 1 228.901

Med Med Med Sim_Ann 62 5 67 4821 .25 1029.248

Med Med Med Sim_Ann 101 3 104 5481 861 .9123

Med Med Med Tabu_Srch 1 1 3 81 1 94 4843 10782.52         
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Med Med Med Tabu_Srch 138 104 242 5524.5 7365.099

Med Med Med Tabu_Srch 95 1 12 207 4437 10046.44

Med Med Med Tabu_Srch 187 1 10 297 6749.75 6023.649

Med Med Med Tabu_Srch 145 62 207 5894.25 10660. 56

Med Med Med Tabu_Srch 161 1 33 294 5836.25 1 1688.02

Med Med Med Tabu_Srch 136 1 31 267 5169.25 6490.522

Med Med Med Tabu_Srch 148 169 317 5198.25 6636.888

Med Med Med Tabu_Srch 154 222 376 5568 791 1 .051

Med Med Med Tabu_Srch 171 107 278 5966.75 2069.955

Med Med Med Tabu_Srch 140 1 56 296 5379.5 6363.073

Med Med Med Tabu_Srch 1 14 124 238 4835.75 8740.931

Med Med Med Tabu_Srch 162 223 385 5307 5679.787

Med Med Med Tabu_Srch 156 223 379 5560.75 10999.57

Med Med Med Tabu=Srch 139 45 184 5778.25 8055.93         
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APPENDIX 5

TRANSFORMED TREATMENT AVERAGES

The following table contains the averages for all treatments, transformed.

Table A5-l, Treatment Averages Of Transformed Data.
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2.259808

3.44

3.38104
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3.3211

3.

2.102858

3.41

3.31

2.
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4.

4.

4.561

OBJ

5.

4.9901

4.

4.679741

4.502941

4.36417

4.6

4.35251

4
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. 3
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1
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. 1
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1

1
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.386
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461.
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Table AS-l, Treatment Averages Of Transformed Data, Continued.

6.

.102331

.38961

6.

.01

451

6.

6.87511

6.

.1

.1

6.

.0131

6.9141

6. 4

6. 1

6.94831

7. 11
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.3284

.41

6.91 1
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8.62763

8.

9.4051

9.

9.

8.221



219

Table AS-l, Treatment Averages Of Transformed Data, Continued.

3.4 3.11 5. 683. 1 8.91

3.48 11 3.181 5.5541 693.311 8.8586

2.82931291 3.50541 . 523. 9.1664

2.8267 3. 5. 537. 9.1717

2.6691 3. 5.21 493 8.962131

3.353 3.401 . 638 8.9847

3.368651 3. .603 635.4891

3.2287 3.33051 5.

3. 2.921 5.411 744

3. 2.919401 5. 1

3.1743237 2.95141 .21 .1031 
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