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ABSTRACT

CHARGED PARTICLE CORRELATIONS FROM
INTERMEDIATE ENERGY NUCLEAR COLLISIONS

by
Daniel Alan Cebra

Charged particle correlations have been used to analyze experimental data with
the purpose of determining the answers to questions concerning the bulk properties
of nuclear matter. A two-particle analysis has been performed on a set of 500 MeV
p+Ag and p+Be data. In this analysis questions were studied concerning the density
and the temperature of the interaction region reached during nuclear collisions. The
radii that are extracted vary between 2.0 and 12.0 Fm depending on which particle
pair is considered. The temperatures that are extracted vary between 3.0 and 5.0
MeV. These results are not significantly different from those of similar studies using

heavy-ion projectiles to probe nuclear systems.

A multi-particle analysis has been performed on a set of data from the system
Ar+V at a range of energies from 35 to 85 MeV/nucleon. These data were analyzed
in an effort to determine at what energy the multi-fragmentation reaction channel
is opened. This channel is expected to become the dominant reaction mechanism at
energies which are sufficient to allow the system to expand into a region of mechanical
instability. The event shape is used to determine whether a sequential decay or a
simultaneous multi-fragmenta,ti;m is the dominant disassembly mechanism at a given
incident energy. A clear signature of the multi-fragmentation mechanism is observed

at and above bombarding energies of 45 MeV /nucleon.
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Chapter I

Introduction

A The Equation of State of Nuclear Matter

In 1881, van der Waals demonstrated that a system containing particles that exhibit
both a weak attraction and a strong short range repulsion will contain at least two
discrete phases. This was demonstrated in the study of the equation of state of

systems of molecules. The equation of state used by van der Waals was:

_ 2 (L1)

where P is the pressure, R is the gas constant, T is the temperature, v is the mo-
lar volume, and a and b are constants. For temperatures below a critical value,
isotherms on a Pressure-Volume (P-V) diagram are multivalued with respect to pres-
sure. A Maxwell-Gibbs construct can be used to explain this area on the diagram
as a metastable region in which there is a coexistence of both the liquid and the gas

phases.

The force between nucleons is similar in nature to the intermolecular forces. Nu-
cleons exhibit an attractive force and a short-range hard-core repulsion. Estimates of
the nuclear equation of state suggest that the matter should exhibit the same prop-

erties and phase transitions as a van der Waals system [Lamb78, Dani79, Barr80,
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Frei81, Schu82, Curt83, Bert83, Jaqa83, Bond85a]. Using a Skryme parameterization

of the nuclear force, one can determine an equation of state for nuclear matter (EOS):

2
P=20+ Z_cr+2i+ 2 1 (1.2)

c+1lw o v? o(c+1)vot?

where P, T, and v are the pressure, temperature, and volume, and o is a parameter
that controls the value of the compressibility (k) [Jaqa83]. The compressibility is
defined as the density (n) times the partial of pressure (P) with respect to density at
constant entropy () [Bert83]

0P

KR = TLE;Is. (13)

One observes from Equations I.1 and 1.2 that the nuclear EOS is similar in form to

van der Waals EOS.

B Phases and Phase Transitions

Using an EOS, one can construct a phase diagram for nuclear matter. Figure 1.1
displays an example of such a diagram [Bond85a]. This diagram resembles that of a
van der Waals system. Isotherms for temperatures below a critical value pass from
a liquid phase at high densities into a region of coexistence marked by the hashed
region on the figure. The portion of the total volume occupied by the liquid and gas
phases is determined by the condition that the chemical potentials of the two phases
be equal, which corresponds to the Maxwell-Gibbs construct. As one first enters the
metastable region from the liquid region, the majority of the volume is in the liquid
phase. The gas phase contribution is represented by bubbles contained within the
liquid volume. The proportion of the matter that is in the gaseous phase will increase
as the density is reduced. As the gas phase contribution increases, the bubbles will
expand and proliferate. A point of critical opalescence will be reached when the

majority of the volume is filled by matter in the gaseous phase. At this point, instead
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F gaseous bubbles contained within a volume that is mostly liquid, the system will

pnsist of droplets of liquid matter contained within a mostly gaseous volume.
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gure [.1: A diagram of the predicted phases of nuclear matter in Pressure-Density
ace [Bond85a).

A phase transition is expected to occur if a homogeneous system enters a region
instability. The requirements for stability are a positive heat capacity (thermo-
namic stability), a positive compressibility (mechanical stability), and a positive
essure [Barr80]. A negative pressure can not be excluded for any physical reasons
and59]. For the EOS suggested for nuclear matter, the heat capacity is positive for
temperatures. The compressibility, however, is negative at low temperatures and
nsities. In this mechanical instability region (spinodal region) a homogenous sys-
is unstable against fluctuation growth [Bert83, Peth87, Heis88, Sura89, Boal89].
these density fluctuations are able to grow, the system will separate into distinct
uid and vapor components. The magnitude of the fluctuation growth will be deter-
ned by the duration of time spent in the spinodal region and the growth rate of the

ctuations [Heis88]. The growth rate of the fluctuations is related to the velocity of
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sound in nuclear matter and hence to the EOS [Sura89).

C Reaction Trajectories

A nuclear reaction should proceed through several stages as diagrammed in Figure [.2.
These stages can be characterized by their thermodynamic properties. The first stage
of the reaction occurs from the point of initial contact between the projectile and the
target. During this phase, the interaction region is compressed and heated. Entropy is
generated during the course of this compression as the kinetic energy of the projectile
nucleus is converted into internal excitation energy of the system. The second stage is
marked by the expansion of the thermalized region. This expansion stage is expected
to be isentropic [Curt83]. If the system has sufficient energy, it will fragment upon
reaching a freeze-out density, which is defined as the density for which the mean free
path of a nucleon is equal to the size of the thermalized region. During this stage of
the interaction, the system will disassemble into an array of excited nuclear fragments.
These newly formed fragments will continue to de-excite in the post-interaction phase

until they have dissipated all of their internal energy.

Figure 1.3 displays an alternate EOS diagram for nuclear matter [Bert83]. On
his figure one can follow the trajectory of a reaction (dashed line). The solid line
orresponds to the S = 0 unperturbed state. The initial compression of the system
ill generate entropy which will place the excited system above the S = 0 line as
1dicated in the figure (dashed line). The relationship between the energy put into

he system and the density should be [Bert83]
E = a(n - no)2 (14')

here a is the binding energy, n is the density, and no is the normal nuclear density.

he system will follow the trajectory suggested by the dashed line on Figure 1.3.
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igure .2: A schematic diagram of the stages of a nuclear reaction and the subsequent
eacy of the highly excited system.
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llowing the initial compression of the system, it will then expand along an isentrope.
e isentropes follow the same form of the S = 0 line. If the initial excitation energy
s sufficient to place the system in the overstressed region, it will expand into the

inodal zone.
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gure 1.3: EOS of nuclear matter. The solid line is an isentrope. The shaded region
the left is the spinodal region. The shaded region on the right corresponds to
tial conditions that will lead to breakup after expansion. The dashed line suggests
= trajectory of the compression stage of a reaction [Bert83|.

~ Statistical Properties of Nuclei: The Question
of Temperature

the previous discussion of phases of nuclear matter it has been tacitly assumed that
tistical concepts can be applied to nuclear systems. However, nuclear interactions
duce systems that contain fewer than 500 particles (the experiments described in
s particular work consider systems of approximately 100 nucleons). The relaxation
e of these nuclear systems is of the same order of magnitude as the duration of the
eraction. Therefore, the simplifying assumptions of infinite matter and thermal

ilibrium can not necessarily be applied. One method of probing the statistical
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ature of thermalized nuclear systems is to study the apparent temperatures formed
uring the course of an interaction. If a true equilibrium has been achieved, all

ethods of measuring the temperature should yield<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>