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ABSTRACT

APPLICATION OF THE BOUNDARY ELENIENT METHOD

TO FINITE ELASTICITY

BY

HUSAIN JUBRAN ALGAHTANI

A boundary element method solution for the problem of finite

plane deformation of elastic compressible and incompressible

solids is presented. Two types of constitutive relation are

considered: the Blatz-Ko model for compressible materials and

the Mooney-Rivlin model for incompressible materials. The

finite elasticity solution is obtained by solving the

nonlinear boundary element equations using an iterative

procedure. The iterative procedure is implemented in two

computer codes which can be used to solve the problem of plane

finite elasticity of Blatz-Ko and Mooney-Rivlin materials,

respectively. The computer codes were tested using several

numerical examples.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

The possible nonlinearites which may be present in boundary

value problems of continuum mechanics are

1. a nonlinear strain—displacement relationship (geometric

nonlinearity),

2. a nonlinear stress-strain relationship (material

nonlinearity), and/or

3. nonlinear boundary conditions.

In finite elasticity, the finite strain is a nonlinear

function of the displacement. The constitutive law (stress-

strain relationship) for a hyperelastic material is derived

from a strain energy function, and the result is a nonlinear

relation. Furthermore, due to the large deformation there is

a distinction between the undeformed and deformed coordinates.

This means that in finite elasticity, all of the above types

of nonlinearity are present.
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In addition to the above, the analysis for incompressible

materials involves a constraint on the solution. That

constraint is characterized, for finite deformation, by the

fact that I,==1, where I,is the third principal invariant of

the Cauchy-Green strain tensor C. While such a constraint is

favored in analytical solutions since it leads to certain

simplifications in some problems, this is not the case for

numerical techniques. Moreover,the stress tensor for an

incompressible material is determined within a scaler function

called the hydrostatic pressure. Particularly, in the

displacement-based finite element method, numerical

difficulties arise when implementing the incompressible

constraint since Poisson’s ratio equals 0.5 and therefore the

bulk modulus is infinite and the relationship between

volumetric stress and strain is indeterminate [1-3].

Many engineering materials belong to the class of nonlinear

elastic materials. These materials are commonly subjected to

large strains and deformations. Examples of these materials

are synthetic rubbers, polymers, solid. propellant. rocket

grains and biological materials such as human skin, brain

tissue, and papillary muscles. Even in normal physiological

functioning, these biological. materials are subjected 'to

finite strain. As examples, the skin over the middle joint of

a finger elongates about 20% when the joint is bent [4].

Likewise, the brain tissue may be subjected to strains of the
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order of 30% in the situation of head injury [5].

Although many problems of nonlinear solid mechanics such as

plasticity, elastoplasticity, and finite deflection of plates

have been treated by the boundary element method, there has

been only a very limited application of this method to finite

elasticity.

The main objective of this dissertation is to present a

general boundary element formulation of the equations

governing the finite deformation of compressible and

incompressible plane elastic bodies for given constitutive

laws. The formulation is then applied to obtain solutions for

special cases.

1.2 Background

In solving boundary value problems in finite elasticity, one

must deal with highly nonlinear partial differential

equations. Analytical solutions exist for only a few problems

involving simple geometries and constitutive laws. This

difficulty has been overcome by the use of numerical

techniques.

The finite element method (FEM) is the most widely used
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numerical technique for solving problems in finite elasticity.

Since most of the highly elastic materials such as rubbers

and polymers are considered to be incompressible under finite

deformation, most studies utilizing FEM deal with

incompressible bodies. In some of these studies, however, the

formulation can be reduced to the compressible case.

The first applications of FEM to finite elasticity were due to

Herrmann [6], Becker [7], Oden [8], Peterson et al [9], Oden

and Sato [10], Oden and Kubitza [11], Oden and Key[12], and

others.

In all of the references cited above, the "mixed formulation"

was used to incorporate the incompressibility constraint. The

general procedure involved deriving the stiffness equations

based on the principle of stationary potential energy. The

resulting nonlinear algebraic equations were then solved by a

suitable algorithm such as the Newton—Raphson method. Oden

[13] also used.the method of incremental loading where, during

each increment, the body was assumed to behave linearly. At

the end of each increment, the nonlinear equations of

equilibrium were satisfied using iterations. The above

procedure was applied to solve some problems of plane stress

and plane strain for the so-called Mooney-Rivlin material.

Murakawa and Atluri [14,15] developed a hybrid finite element



5

formulation based on a complementary energy principle. Their

variational.principlezhad ,as independent variables, the first

Piola-Kirchoff stress tensor, a point-wise rotation tensor,

the hydrostatic pressure and an interelement boundary

displacement field. The incompressibility constraint was

introduced through a Lagrangian multiplier applied to the

strain energy function of the material.

One of the approaches which has been employed to incorporate

the incompressibility constraint into the FEM formulation is

the reduced/selective integration technique [16-18]. In this

technique, the volumetric terms in the stiffness matrix are

integrated using a lower-order Gauss integration than is used

to integrate other terms. Malkus and Hughes [16] showed that

this selective integration can be equivalent to a mixed

formulation, with the number of integration points used to

evaluate the volumetric terms equal to the number of pressure

degrees of freedom used in the mixed formulation.

Argyris et al. [19] presented a method for incompressible

analysis in which the strain energy function was divided into

two parts: a deviatoric part and a dilatational part. The

usual finite element discretization was applied to the

deviatoric part of the strain energy such that the nodal

displacement became the single field. variable. The

dilatational strain energy was, however, assumed to be
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associated with another continuum behavior which was defined

by the nodal displacements as well as another unknown vector

representing the lack of compatibility between the two

continua.

More recently, in a paper by Chang et a1. [20] a finite

element formulation for the large strain analysis of nearly

incompressible materials was presented. The finite element

equations were derived on the basis of a perturbed Lagrangian

variational principle from which both the displacement and the

hydrostatic pressure fields were independently approximated by

appropriate shape functions.

There are many other papers on the application of FEM to

finite elasticity, but.a complete bibliography on this subject

is beyond the scope of this dissertation.

The first application of the boundary element method (BEM) to

geometrically nonlinear elastostatics was due to Novati and

Brebbia [21]. The general statement of the integral equations

was presented but no numerical examples were given.

Kamia and Sawaki [22] gave a BEM formulation for the finite

deflection of elastic plates with immovable edge conditions.

Such boundary conditions allowed the use of Berger’s equation

which is a simplified form of the equation governing the
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nonlinear deflection of plates [23].

Tosaka and. Miyake [24] presented a BEM formulation for

geometrically nonlinear problems of elastic bodies with

extremely nonlinear behavior such as the snap-through

phenomenon” Two numerical exampleS‘were[consideredz bending of

a one dimensional shallow arch, and bending of a shallow

spherical shell. In both examples, the nonlinear system of

equations obtained from the nonlinear integral equations was

solved using the Riks-Wempner method.

The earliest BEM application to elastoplasticity was due to

Swedlow and Cruse [25]. This was based on an "initial strain"

approach. Kumar and Mukherjee [26] used a similar initial

strain formulation and presented solutions for simple problems

of expanding cylinders and spheres.

The first formulation of BEM for 3—D elastoplasticity was due

to Banerjee et al. [27]. Their formulation was based on the

"initial stress" distribution within the yielded zone. Both

boundary and domain elements were chosen to be constant (i.e.,

constant shape functions) so as to simplify the analysis. The

deformation gradients inside the domain were calculated from

the nodal displacements as in the FEM in order to avoid

singularities. This analysis was improved in another study

[28] by the use of isoparametric quadratic boundary elements
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and a superior numerical integration scheme over the boundary

elements and the elastoplastic volume cells.

In all the elastoplastic applications discussed above, the

numerical solutions required an iterative procedure which was

not efficient in some cases. For that reason, Raveendra [29]

and Banerjee and Raveendra [30] presented a non-iterative two

dimensional elastoplastic analysis which is similar to the

variable stiffness method used in FEM. This procedure was

extended to the three dimensional case by Henry and Banerjee

[31].

There has been very limited work on the applications of BEM to

finite elasticity. In a paper by Phan-Thien [32], a

constitutive law based on a micro-structural model was

derived. The resulting 2-D integral equations involved domain

integrals due to the nonlinear part of the constitutive law.

The numerical solution of the integral equations was obtained

by discretizing the boundary into constant elements (for

displacement and traction) and the domain into triangular

elements. The solution of the resulting algebraic equations

was then obtained by iteration. A computer program based on

the above procedure was tested by two examples. In the first

example, the problems of homogeneous simple shear and uniaxial

extension were considered. The results were satisfying for

deformations up to 300% and 185% in the shear and uniaxial
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extension cases respectively. In the second example, the

problem of finite deformation of a circular elastic slice

perfectly bonded to two parallel rigid end plates was

considered. Phan-Thien extended the above analysis to include

the three dimensional case [33]. In both studies, the

computational problem of singular domain integrals was avoided

by calculating the deformation gradients indirectly from the

domain nodal displacements as in FEM. The hydrostatiijressure

inside the domain was not determined and therefore, the stress

obtained was only a part of the total stress.

In.the present study, a boundary element formulation for large

elastic deformation of compressible and incompressible plane

bodies is presented. The constitutive law is divided into

linear (Hooke’s law) and nonlinear parts. A linear solution is

first obtained by neglecting the nonlinear part of the

constitutive law. The linear solution is then corrected by

considering the nonlinear terms through an iterative

procedure. Unlike reference [32], the domain deformation

gradients are calculated directly from the domain integral

equations. Also unlike :reference [32], the hydrostatic

pressure is; obtained inside the domain and therefore, the

total stress can be calculated. The above formulation is

tested using numerical examples for the following cases:



1. plane

2. plane

3. plane

4. plane

stress

strain

stress

strain

deformation

deformation

deformation

deformation

10

of a compressible body;

of a compressible body;

of an incompressible body; and

of an incompressible body.



CHAPTER 2

FORMULATION OF THE BOUNDARY

INTEGRAL EQUATIONS

2.1 Linear Elasticity

The formulation for the case of linear elasticity is given

here in order to introduce the boundary integral method and

because the linear solution will be utilized as a part of the

nonlinear solution later.

2.1.1 Governing Equations

Consider a plane linear elastic, isotropic, homogeneous body

that occupies a region Q and is bounded by a boundary P. The

equations of equilibrium can be written as:

”11.: +19, =0, er, (2.1)

11
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where caissthe stress tensor, biis the body force vector, and

i=1,2, j=1,2. Summation on repeated indices is assumed and the

comma indicates differentiation.

The stress tensor is related to the strain tensor through

Hooke’s law which can be expressed as

a” = 15116“: + 2pc”, (2.2)

where 6“ is the Kronecker delta whose properties are

_ 0 1*1
511 ‘ {1 1:1: (2-3)

A and u are Lame’s constants which can be expressed in terms

of the more familiar shear modulus, G, the modulus of

elasticity, E; and Poisson’s ratio, v, tar the following

formulae

= = _______ = vEI

" G A (1+v)(1-2v)’ (2‘4)
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and efi is the strain tensor which is defined by

1
e” = —2- (u1'j+uj'1) , (2.5)

where u,is the displacement vector.

The boundary conditions considered here are such that at each

point on the boundary either a displacement or a traction is

specified in each coordinate direction. i.e:

u, = u, or gun, = t1 = (:1, (2.6)

where niis the unit vector normal to the boundary.

2.1.2 Integral Formulation

The weighted residual statement correspondimg to equations

(2.1) can be written as

’ = , 2.7four,“ +191) u, do 0 ( )
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where u; is a weight function which will be chosen later.

Integrating equation (2.7) by parts, one obtains

Equation (2.8) is usually' called the "weak" variational

statement and it is the basic equation needed to derive the

stiffness equations of the finite element method. Integrating

the first domain integral in equation (2.8) by parts again

results in

foobd u, do - Lo}, 11, ui d[‘

(2.9)

+fp011 111 u; dI‘ +[0u1'b1 d0 = 0,

where a; is the stress due to uf. Equation (2.9) is sometimes

called the "inverse" variational statement and it is the basic

equation needed to obtain the boundary element equations.

Let us choose the weight function, uf, such that

011,, + A (x.£) e, = o, is infinite plane, (2.10)

where eiis a unit load applied in the i direction at f and A
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is the Dirac delta function which has the following

properties

Anni) =0. xsfi.

(2.11)

fof(x) A(x,€) do = HE) . tea.

The displacement and traction solutions associated with

equations (2.10) can be written in the form

C H
. H U,, (x. E) e].

(2.12)

= T11 (xlfi) ejl

where U0. represents the displacement at point x in the 1

direction due to a unit load applied at E in the j direction

in infinite space, and I} is the corresponding traction. The

expressions for U0. and Ti; can be written as

 

_ 1 u 1 .

U11 "’ aflflh[(3—v ) O1jln; + (1+V )Pipj] r

1 u u

T1;: = ‘zn—ruu’v )511 + 2(1+v)pipj]pknk

(2.13)

-(1—v') (pjn, — 91111)}.

where r is the distance from S, the point of application of
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the unit load, to any point x under consideration, i.e.

 

r qua-51)? + (29—5,)2. (244)

piis given by

P: = _, (2.15)

n,is the normal to the boundary, u’is given by

v for plane stress,

(2 . 16)

—; for plane strain,

where v is Poisson’s ratio, u is the shear modulus, and h is

the body thickness.

This solution is usually called the "fundamental" solution.

Substituting equations (2.10) and (2.12) into equations (2.9),

we obtain

u,<£) = — fP Tkj(X:€) ukm arm

+frUkj(x,£) 1:,r dI‘(X) (2.17)

+ [a U,,(X.£) bkm dam. £60.
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where we have employed equations (2.11) and (2.13).

Equations (2.17) express the displacement at any point inside

I2 in terms of the boundary displacements, u*, the boundary

tractions, tk, the known domain body forces, bk, and the known

fundamental solution.

Note that only one half of the information on the boundary

values of displacements and tractions is available, i.e.

specified. The other half of the information can be obtained

if we apply equations (2.17) at the boundary, i.e. take £ to

P. In doing so, the boundary integrals in equations (2.17)

become singular. This singularity and other singularities

presented in the finite elasticity formulation are discussed

in Chapter 3. The resulting boundary integral equations can be

written as

a,,(£)u,,(£)+[r T,,(x.£) ukm arm

=[P U,,(x.£) txm d[‘(X)

+[0U,,,(x.£)b,m dam. teI‘. (2.13)
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where the integral on the L.H.S is interpreted in the Cauchy

principal value sense and the components of aKi depend on the

boundary geometry at 5. For a smooth boundary aKi = k6”, where

5H is the Kronecker delta.

Once equations (2.18) are solved for the non-specified

boundary displacements and tractions, the solution at any

point inside the domain can be obtained by means of equations

(2.17). Unlike the finite element procedure, the displacement

gradients inside the domain can be obtained directly by taking

the proper derivatives of equations (2.17). The result is

auj(£) __ 623,,
aa, — fr ——(x,£) ukun arm

35,

an”
+fp a—E...’(x’£’ txm arm

 .fo aU*1(x.§) mm mm. gen.
35. (2.19)
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2.2 Finite Elasticity

2.2.1 Governing Equations

The formulation presented here will be based.on the undeformed

configuration (total Lagrangian formulation). The position

vector of a particle in the undeformed configuration is

denoted by x. After deformation, the particle takes a new

position denoted by x. The deformation gradient tensor is

defined by

- 6x1
F11 — 5171' (2.20)

The left and right Cauchy-Green deformation tensors can be

found from F0. according to

311 = Fur-'11:!

_ (2.21)

The physical meaning of these kinematic quantities can be

found in any standard text book, (e.g. [34]).
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If the material is incompressible, then the following

constraint must be satisfied

detF= 1. (2.22)

The equations of equilibrium can be written as

011“, + bi = 0' (2.23)

where a“ is the stress tensor per unit undeformed area (known

as the Piola-Kirchoff stress) which is, in general, a

nonlinear function of the deformation gradients (and a

hydrostatic pressure, in the case of an incompressible

material).

The boundary conditions are the same as described in Section

2.1.

Let us assume that a“ can be split into linear and nonlinear

parts, i.e

1
011 = 011 + 031, (2.24)

where 0% is the stress encountered in linear elasticity which
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is related to the strain via Hooke’s law and onij is the

remaining part. Then, the equilibrium equations become

011.: + ”’1 + 031.1) = 0' (2'25)

where the nonlinear part has been added to the body force,

resulting in a "fictitious" body force.

Note that, in general, 0“ cannot be directly split into

"Hookean" and "non-Hookean" parts as inferred by equations

(2.24). However, this can be accomplished simply by replacing

0"" by (“ii - a'ij) .

2.2.2 Constitutive Law

The constitutive law for a hyperelastic material is derived

from a strain energy function, W. The general form of the

constitutive law can be written as

__ 3W

01:, - “61:71, (2.26)

where “fl is the stress per unit undeformed area and Ffi is the
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deformation gradient tensor. If the material is

incompressible, another term involving a hydrostatic pressure

due to the incompressibility constraint is added to the R.H.S.

of equation (2.26) as follows:

BW' -T
= — F I .

011 31..” P 11 (2 27)
 

where p is the hydrostatic pressure and F57 is the transpose

of the inverse of I}.

For an isotropic material, W is usually given as a function of

the jprincipal invariants of the Cauchy-Green. deformation

tensor , CU I i e e e

W=W(Il,Iz,Ia), (2.28)

where 11,12 and I3 are the invariants of C“ and are given by

11 = bijcaj'

”
H n

1

E (aijaklcijckl _ bijbklcikcfl) ’ (2.29)

I3 = det CU .
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Using equation (2.28) in equation (2.26) and applying the

chain rule for derivatives yields the following

6W 3W
OIJ=Z[—Fij+-a_i-:

BI;

6W

'“53*(1}F31"1HF31CE1"IQmCLH%u)]-

a

( 11F11"53k‘%u )

(2.30)

Equations (2.30) suggest that one should know the form of the

strain energy function, w, in order to obtain a stress-

displacement relation. Various forms of W have been proposed

for specific materials. Although the methodology for the

solutions given here is valid for the various forms of w, only

the following two forms will be considered for compressible

and incompressible materials, respectively.

1. The Blatz-Ko model [35]:

1:
W:.E(

2 .I

+2¢I§—5), (2.31)

U

where u is the shear modulus. The constitutive law for this

material then becomes
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I I

3 3 3

2. The Mooney-Rivlin model [36]:

W=C1(I1-3) +Cz(Iz-3), (2.33)

where Cl and C2 are elastic constants called the Mooney-Rivlin

constants. Note that the third strain invariant, I“ does not

appear in this model because for an incompressible material,

I3== 1. This constraint will be used later to determine the

unknown hydrostatic pressure which was introduced in the

constitutive law. The constitutive law for a Mooney-Rivlin

material becomes

011 = 2 [ (C1 + 0211) F1: ‘ 02311511] ‘ PFu—T' (2'34)

2.2.3 Integral Formulation

If the body force in equations (2.17) corresponding to the

linear case is replaced by the fictitious body force, then we
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obtain the following domain integral equations

u,(£> = —fr rumt) aux) arm

+ [P mama) aim dI‘(X)

+ f‘1 mama) ohm) dam

+ [a ovum) him dour), 550' (2.35)

where Tkj and UKi are the same influence functions derived for

the linear elasticity case and tk is the linear part of the

traction, which is given by

t; = a,“ n1. (2.36)

Note ‘that the second. boundary integral on ‘the lR.H.S of

equations (2.35) involves only the linear part of the boundary

traction, while in a finite elasticity problem the total

traction is prescribed. The nonlinear part, however, can be

retrieved by applying the divergence theorem to the domain

integral in the expression. Equations (2.35) then become
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u,<£) =—fr T,,(x.£) ukm arm

+f U,,(x.£) t,(X) arm

’faa6155”,“ 07mm dD(X)

+1; Huang) bkur) dQIXI. 560- (2.37)

Equations (2.37) express the displacement at an internal

point, f, in terms of the boundary displacements, the boundary

tractions, the body force and a domain integral whose

integrand consists of nonlinear functions of the deformation

gradients (and a hydrostatic pressure in the case of an

incompressible material). By applying equations (2.37) at the

boundary, one can obtain the following boundary integral

equations

a,,(£)u,(£)+fr T,,(x.£) ukm arm

= [P U,,(x.£) gm arm

 -06].60” (X15) 072m dO(X)

. [a Uk,(x.£) bk(x) doom. 6613 (2.38)

Note that the domain integral in equations (2.38) contains
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additional unknowns compared to the linear elasticity case,

equations (2. 18) . These unknowns are the deformation gradients

(and a hydrostatic pressure in the case of an incompressible

material) which are contained in the expressions for oflm.

The displacement gradients can be obtained by differentiating

equations (2.37) to obtain

au,(£) ____ aTk

35.. P —a—€"(LE) u),(X) dI‘Ur)

 

U'

+faa £10125) tax) are!)

an; n
Mfr—Kali (X,E) 0),..(1') arm

6U”

6E?

(2.39)

   
 

E) b,,(X) (10 (X) 560.



CHAPTER 3

BOUNDARY ELEMENT FORMULATION

3.1 Boundary and Domain Discretization

In order to derive a system of algebraic equations, let us

divide the boundary into N elements and the domain into M

cells as shown in Figure 3.1. In the case of no real body

forces (i.e b=0), the boundary integral equations (2.38)

 

become

N

a,,(£)u,,(£)+ {f r,,(x.£)u,,mdrm}
1;}. I“

= U x, t dl‘ (3.1gun ,,( z) ,m m} >

in: an” (x no” (X) dO(X) EeI‘
1,1 max, ' k” ' '

Let.us next approximate the displacements and tractions on the

boundary by assuming linear variations over each boundary

element, i.e.

28



U: = 9. (n) uj‘H’ + 0. (n) u)“,
_ (3.2)

t1 = ¢1(n) t;21 1) + Q: (n) t;31),

over element. i, ‘where 12‘ is the displacement in the j

direction at node i, tfim and t?”” are the tractions in the j

direction "before" and "after" node 1 respectively, and‘P.and

‘P.are linear interpolating functions which can be written in

terms of a local coordinate n as

@101) =(—1‘2‘-9-)—. 92m) =—(—1—;fll. 451151. (3.3)

where n ranges linearly from a value of -1 at node i-1 to a

value of 1 at node i over element 1.

Furthermore, let us assume that the fictitious body force is

constant over each domain cell and assumes the value at the

centroid of the cell.

The global coordinate system X is transformed linearly to the

local coordinate n using the same linear interpolating

functions

x = o1(n)x<1-n + «b, (mx‘i’. <3-4>

over element 1. Similarly,

29
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d8(X) = (5(1) -28(1-1))dn .__ 3381“, (3.5)

where Asiis the length of element i.

Using equations (3.2) through (3.5) in equations (3.1), we

obtain

 

” As
ak,(5)u,,(€)+ { 4‘ afifnuml T,,,(X(n).E)dn}

=1

+" ”“1 u‘[ (1— ) 1' m ) 0dr:2: 4 I: I‘ '1 Id 7| I

1+1

 

 4 czi'lfnu-manum)man} (3.6)

s
{ ‘ti‘f (1+n) U,,(x(n).£)dn}

1a. 4

" 60,:
-Z ( of...) iafa (x<n).£)dmx(n))}.

 

 

 

Similarly, equations (2.39) become

duj

3E (E)=      
 

        

N ark

23— ...: }

mm], .. I-1 U265

} (3.7)

65:;Uk,

4 tfi‘ [(11:11) BE. (XIn).E)dn}

" 620

-2{( 0;.) 10f 6x51(X(n).E)d0(XIn))}.

 

 

 
        

 

41:121-P1
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Applying equations (3.6) at the N boundary nodes and computing

the various integrals numerically yields the following system

of algebraic equations

[1"] {U} =[Gl {t} +{15(Vu)}. (3.8)

where [H] is a 2N by 2N matrix containing the results of the

integrations of the boundary integrals on the L.H.S of

equations (3.6) and the free term, [G] is a 2N by 4N matrix

containing the results of the integrations of the boundary

integrals on the R.H.S of equations (3.6), {f} is a 2N by 1

column matrix containing the results of the integrations of

the domain integrals in equations (3.6), and

1 21

{u} =(u‘1). {t} =< ind). (3.9)
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Similarly, applying equations (3.7) at the centroids of the M

domain cells yields the following 4M equations for the four

plane displacement gradients

{V11} = {EMU} + {But} + {9(Vu)). (3.10)

where [B] is a 4M by 2N matrix containing the results of the

integrations of the first two sets of boundary integrals on

the R.H.S of equations (3.7), [D] is a 4M by 4N matrix

containing the results of the integrations of the second two

sets of boundary integrals on the R.H.S of equations (3.7),

{g} is a 4M by 1 column matrix containing the results of the

integrations of the last domain integrals in equations (3.7),

and

{Vu} =+ ' ). (3-11)
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Recall that if the material is incompressible, then the stress

is a function of the deformation gradients and a scaler

function called the hydrostatic pressure. This means that the

fictitious body force contained in the column matrices {f} and

{g} in. equations (3.8) and (3.10) are functions of 'the

deformation gradients and the hydrostatic pressure. If the

hydrostatic pressure is assumed constant over each domain

cell, then the additional number of unknowns is M. The

additional M equations can be obtained by satisfying the

following incompressibility constraint over the M domain

cells, i.e

f0 (det F — 1) d0 = o, 1=1,M. (3.12)

1

Since the deformation gradients are assumed constant within

each domain cell, the above equations reduce to

(det F)1 — 1 = o, .i=1,M, (3.13)

where (det F),is the value of the determinant at the centroid

of cell i.

In summary, the solution for a compressible material can be

obtained by solving the 2N+4M equations given by (3.8) and
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(3.10), while the solution for an incompressible material can

be obtained by solving the 2N+5M equations given by (3.8),

(3.10) and (3.13).

Before attempting to solve the above nonlinear equations, note

that some of the components of the matrices in these equations

are to obtained from singular integrals. The type of these

singularities and their treatments are discussed in the

following section. The regular integrals will be computed

using the standard Gaussian quadrature formulas.

3.2 Singular Integrals

Due to the singular nature of the fundamental solution, some

of the integrals in equations (3.8) and (3.10) are singular.

These can be classified as follows.

1. Boundary integrals involving a 1n (r) singularity.

These integrals make up the 2x2 diagonal blocks of matrix [G]

in equations (3.8) and have the following form

I1=fr1(1-n)1n(r(n,£))dn, 5 is at node 1-1,

(3.14)

Iz=fr1(1+n)1n(r(n.E)) dill £18 at node 1
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These integrals can be either computed analytically or

numerically using a logarithmic Gaussian quadrature table.

2.Boundary integrals involving a 1/r singularity.

These integrals have the following form

— __}___I1 _fr,(1+n) rm,“ dn, 5 is at node 1,

1 (3.15)

12 = fr1.1(1—n) mm, 5 18 at node 1.

These integrals make up the 2x2 diagonal blocks of matrix [H]

in equations (3.8) and they can be computed indirectly by

considering the special case of rigid body motion. Let the

body be subjected. to a :rigid body“ motion that has the

components u,and uzin the X,and.x,directions, respectively.

Then equations (3.8) reduce to

I: (3.16)

0
0
-

-
C
O

   

and therefore the following equations can be obtained for the

components of the 2x2 diagonal blocks



U m

n I

t
1
:

H(2.1-1) (21-1) H(21-1) (21-1) '

II I
E
L
L
;

M
2
1
.
)

H(21-1) (21) ”(21-1) (21) .

L
A
M
.

$
il

K
P

(3.17)

T“

1:1

N

- LI .
131 (21) (21)

jvi

I b
i
z

H(21) (21—1) Hui) (21-1) I

H(21) (21)

3. Domain integrals involving a 1/r singularity.

These integrals make up the components of column matrix {f}

and have the following form

= .1I [01331 {1n(r(X.£))idO, where E is on a 01. (3.18)

These integrals can be transformed to boundary integrals by

use of the divergence theorem. i.e.

a

..—

foifizilmflxiiiidfl — L01{1n(r(X,E))}nde‘, (3.19)

where niis the normal to the boundary of the cell. The results

are boundary integrals with ln(r) singularities and therefore

can be computed as described earlier.
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4. Domain integrals involving a l/r2 singularity.

These integrals make up the components of the column matrix

{g} and have the following form

_ 6“
1_f01m {1n(r(X.E))}d0.wh91-'9 E 18 ins-“1901030)

Similarly, these integrals can be transformed to boundary

integrals

I: [MK—7521(1n(r(x.£)ndo

(3.21)

=faong{1n(r(X.£))}nkdI‘,

so 'that the results are non-singular boundary integrals

(because the collocation point,£, is inside the domain cell)

and therefore, the regular Gaussian quadrature integration

method can be used directly.
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e a boundary node

0 a cell centroid

 

 
Figure 3.1 Discretization of the boundary and the domain.



CHAPTER 4

COMPRESSIBLE MATERIALS

Although, the boundary element formulation given in Chapter 3

is general, the solution of the boundary element equations in

this Chapter will be obtained for a material obeying the

Blatz-Ko [35] constitutive law. The methodology of the

solution, however, will still be valbd for other types of

constitutive laws.

4.1 Plane Stress

The deformation gradient F for the plane stress case is given

by

A'11 A12

F: A'21 A'22 0 - (4'1)

0 0 133

where

1,, = um + 611. (4.2)

39
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Recall that the constitutive law for a Blatz-Ko material is

given by

I I

3 3 3

Am can be expressed in terms of the plane deformation

gradients by using the plane stress assumption of zero stress

normal to the X,-X2 plane, i.e.

033 = 0. (4.4)

Substituting equations (4.1) and (4.3) into equation (4.4) and

simplifying, we obtain the following result

p

A33 = (111122 _ A1212:.) -3' (4.5)

Equation (4.5) can be used in equation (4.3) to calculate the

stress in terms of the plane deformations only.

4.2 Plane Strain

In this case A” =1, so that F9 involves only the plane

deformation gradients.
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4.3 Iterative Procedure

We recall from Chapter 3 that the boundary equations for a

compressible material are given by

H u = G t + f(VU) . (4.6)

Equations (4.6) can be rearranged such that all the boundary

unknowns are taken to the left hand side. i.e.

()(Mm)

where [A] is a 2Nx2N coefficient matrix, {x} is a 2le column

.A

  

matrix containing the boundary unknowns and {C} is a known

2le column matrix containing the results of the product of

the prescribed boundary conditions and the corresponding

components of [H] and [G].

The equations for the plane displacement gradients are

u=Bu+Dt+ (Vu), (4.8)
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The solution of the 2N+4M nonlinear equations (4.7) and (4.8)

can be obtained using the following procedure.

1. Assume that the nonlinear part of the stress, afi=0, i.e.

(42(0)-

2. Apply the first increment of the boundary displacement or

traction (depending on the type of boundary conditions).

3. Calculate the 2N boundary unknowns using equations (4.7),

i.e.

()1 H

where [x}‘ contains the initial values of the boundary

unknowns.

4. Calculate the four plane displacement gradients inside the

domain cells using equations (4.8), i.e.



1

{t} - (4.11)

The normal deformation gradient, A33, is calculated using

    

equation (4.5) for the plane stress case. For the plane strain

case Ax=1.

5. Use the results of step 4 to calculate the components of

(f)' and (91‘.

6. Use the results for {f}‘from step 5 in equations (4.7) to

get a new set of values for the boundary unknowns, i.e.

    

(4.12)

 

7. Use the results for {g}'from step 5 and the results of the

boundary unknowns, (xffi from step 6 in equations (4.8) to get

a new set of values for the plane displacement gradients, i.e.



H’IF-

8. Continue iterations until convergence is obtained.

  

9. Add another traction.(or displacement) increment.and.repeat

the above procedure until the total boundary conditions are

applied.

Note that the purpose of the increments is only to update the

components of the column matrices {f} and {g} at the beginning

of each increment. The matrices A, B and D, however, are the

same in every iteration within each increment and therefore,

are calculated once.

4.4 Computer Program BLATZKO

The iterative procedure described above is implemented in a

program written in Fortran called BLATZKO, which can be used

to solve finite elastic plane problems for a Blatz-Ko

material. The program can be used for other compressible

materials by modifying the portion of the code that computes
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the constitutive relations. In the program, the boundary is

modeled by linear elements over which linear variations of

both displacements and tractions are assumed. The tractions

are allowed to be discontinuous at the boundary nodes. The

program accepts triangular or quadrilateral cells to model

the domain. The displacement gradients are assumed constant

over these cells. The flow chart for the program is shown in

Figure 4.1.
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Figure 4.1 Flow chart for the program BLA'FZKO
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CHAPTER 5

INCOMPRESSIBLE MATERIALS

In this Chapter, the boundary element solution is obtained for

a material obeying the Mooney-Rivlin constitutive law. The

solution is obtained using an iterative procedure for solving

the nonlinear equations. The implementation of the iterative

procedure leads to a Fortran computer program called RIVLIN.

5.1 Plane Stress

Using’ the incompressibility constraint. given by (equation

(2.22), the deformation gradient tensor for the plane stress

case becomes

A11. A12 0-!

F = 121 A22 0 , (5.1)

o o l

A.  

where A is given by

47
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A = 111122 — 112121. (5.2)

Recall that the constitutive law for a Mooney-Rivlin material

is given by

“11 = 3 [ (C1 + 9211) F1: ‘ czaungj] - pFij‘T. (5.3)

The hydrostatic pressure can be expressed in terms of the

plane deformation gradients by using the plane stress

assumption

033 = 0. (5.4)

Substituting equations (5.1) and (5.3) into equation (5.4), we

obtain the following equation for the hydrostatic pressure:

2

P=?[C1+Cz(lii+lgz +412+121HI (5-5)

where C, and C, are the Mooney-Rivlin constants, and A is given

by equation (5.2).

Note that we have eliminated.the hydrostatic pressure from the
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equations. The hydrostatic pressure ,however, can be

calculated from the solution of the deformation gradients by

the use of equations (5.5).

5.2 Plane Strain

The deformation gradient in this case is given by

A11 A12 0

F = 121 12, o. (5-6)

0 O 1

The incompressibility constraint becomes

111122 - 112121'-1 = O. (5.7)

Note that for small deformations (linear elasticity), the

above constraint reduces to the following linearized version

of the incompressibility constraint

in + 122 — 2 = 0. (5.8)
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5.3 Iterative Procedure

Recall from Chapter 3, that the BEM equations for an

incompressible material are given by

      

A {x} = {a} + {flVuml}. (5.9)

(det F)1 - 1 = o, 1=1,M. (5.11)

Note that equations (5.11) are not necessary for the plane

stress case since the hydrostatiijressu e was eliminated from

the equations and the incompressibility constraint was

satisfied.by the(deformation.gradient.given.in equation (5.1).

The solution for the above nonlinear equations can be obtained

using the following procedure.

1. Apply an increment of the boundary traction (or

displacement) and use equations (5.9) and (5.10) to calculate

the initial values for boundary unknowns, (x}fi and the plane

displacement. gradients, {uU}H based. on linear' elasticity
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assumptions (i.e: {f}={g}=0). Thus

H

1 1 1

{Va} = B u + D {t}. (5.13)

2. Obtain initial values for the hydrostatic pressure as

 

follows

a. For the plane stress case, the initial hydrostatic

pressures are calculated by substituting the results for the

initial plane displacement gradients, obtained in equations

(5.13), into equations (5.5).

b. For the plane strain case, the initial values for the

hydrostatic pressures can be obtained by satisfying the

linearized. incompressibility' constraint, i.e. substituting

equations (5.13) into equations (5.8) . The resulting algebraic

equations have the following form

9 = qr (5°14)
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where [Q] is an M by M matrix, and {q} is an M by 1 column

matrix. The components of [Q] and {q} are functions of the

initial values of the boundary displacements and tractions,

and the displacement gradients obtained in step 1. {p} is an

M by 1 column matrix containing the values of the unknown

initial values of the hydrostatic pressure in the domain

cells.

3. Use the results of the displacement gradients from step 1

and the results of the hydrostatic pressure from step 2 to

calculate the components of [ff and {g}K This completes the

first iteration.

4. Use the results for [ff from step 3 in equations (5.9) to

get new values for the boundary unknowns.

II

p

4
.

b

A

H
)

.
.
.
:

5. Use the results for {g}‘from the first iteration and the

updated values of the boundary unknowns obtained in step 4 to
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calculate new values for the displacement gradients, i.e.

2 2 2 1

6. Obtain new values for the hydrostatic pressure by

 

satisfying the nonlinear incompressibility constraint given by

equations (5.7) over every domain cell. This can be

accomplished by using the updated values for the boundary

unknowns and the displacement gradients in equations (5.7) and

(5.10). The resulting nonlinear algebraic equations have the

following form

f,(u , t , Vu , p) = 0, 1=1,M. (5.15)

The above nonlinear equations require initial values for the

hydrostatic pressure as required by any iterative solution.

The results of step 2 can be used for this purpose.

7. Continue iterations until convergence is reached.

8. Add another increment of boundary traction (or

displacement) and repeat the above iterative procedure.

9. Add.more increments until the total boundary conditions are

applied.
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5.4 Computer Program RIVLIN

The iterative procedure described above is implemented in a

computer program, RIVLIN, written in Fortran to solve finite

plane deformation problems involving Mooney-Rivlin materials.

The approximations utilized for the boundary and domain

elements are the same as those assumed in the program BLATZKO.

The flow chart for the program is shown in Figure 5.1.
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CHAPTER 6

NUMERICAL EXAMPLES

The two computer programs described in Chapters 4 and 5 for

the compressible and incompressible finite plane deformation

cases, respectively, are employed in this chapter to obtain

numerical solutions for several example problems.

6.1 Incompressible Plane Stress Deformation

Plane Stretching of an Elastic Sheet

Consider an 8" square rubber sheet, 0.05" thick, subjected to

a uniform plane stretching as shown in Figure 6.1. As noted in

[13], this problem corresponds to the so-called bi-axial strip

test commonly used to characterize ultimate properties of

materials such as rubbers and polymers. The sheet is made of

a Mooney-Rivlin material with elastic constants Ch and C5 of

24.0 and 1.5 psi, respectively. The boundary conditions are:

56
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u1(:):4.yl — 14(1-1).

u3(t4..v) - 0.

t1(x,1:4) — 0.

83(1):,14) — o, (6-1)

where A is the extension ratio along the xq direction such

that for A=1, the sheet is undeformed. In order to see the

effect. of the mesh refinement, the four boundary-domain

element models shown in Figure 6.2 were considered. The total

edge force required to stretch the sheet to twice its length

was obtained for each model as shown in Figure 6.3. The total

edge force was calculated by simply summing the products of

the x1 components of the tractions on the boundary x1 = 4"

times the lengths of the corresponding boundary elements.

Figure 6.3 shows that the total edge force converges to

approximately 35.9 lb as the boundary-domain mesh was refined.

FEM solutions are available for this problem [13,15]. In

reference [13], the solution was based on 72 elements and

yielded a value for the edge force of 36.0 lbs. The second FEM

solution [15] used a 6x6 mesh of 4—nodded quadrilaterals to

model quarter of the sheet and yielded a value of 161 N (36.2

lb). The finite elasticity solution is compared to the linear

elasticity solution in Figure 6.4 where the total edge force
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is obtained for different values of the extension ratio, A.

Figure 6.4 shows that for A=2, the edge force solution by

linear elasticity is about 1.8 times the finite elasticity

solution. A comparison of the present results to the FEM

results from reference [15] are given in Figure 6.5 where the

total edge force is plotted as a function of the extension

ratio, A. This figure shows a good agreement between the two

solutions.
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Figure 6.1 Uniaxial stretching of an elastic sheet.
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Figure 6.2 Various models used for the elastic

sheet problem.
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Uniaxial Stretching of a Sheet with 3 Circular Hole

Consider a 6.5" square rubber sheet, 0.079" thick, containing

a central 0.5" diameter hole and subjected to a uniform

uniaxial stretching as shown in Figure 6.6. The boundary

conditions are

13-25 (1‘1):u,(13.25,y)

u,(13.25,)d -0.

u,(x,13.25) = O,

t1(x,13.25) =0, (6-2)

where A is the axial extension ratio. In this problem, the

sheet is assumed to be made of a Mooney-Rivlin material with

elastic constants Cl and C2 of 27.02 and 1.42 psi. FEM

solutions for this problem are available [13,15]. Due to the

symmetry of the problem, we consider a quarter of the sheet.

The boundary was modeled by 24 unequal elements and the domain

by 36 cells as shown in Figure 6.7. The results for the

required edge force as a function of the extension ratio, A,

are given in Figure 6.8 along with a comparison with the

linear elasticity solution. For an extension ratio of 3, the

linear solution is almost three times the finite elasticity

solution. A comparison between the present results and the FEM
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results [15] for the edge force are given in Figure 6.9. The

FEM solution in [15] was based on a 6x6 mesh of 4-nodded

quadrilaterals similar to the one used in the present

analysis. The deformed.profiles of the initially circular hole

are shown in Figure 6.10 for various values of A along with a

comparison to the FEM results.
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6.2 Incompressible Plane Strain Deformation

An Infinite Cylinder under Internal Pressure

Consider an infinitely long thick—walled cylinder subjected to

an internal pressure, p,, as shown in Figure 6.11. The cylinder

is assumed to be made from a Mooney-Rivlin material with

elastic constants C1 and C2 of 80 and 20 psi , respectively.

This problem has been analyzed by several investigators, e.g.

[37,38], due to the availability of its analytical solution

[34,36]. The analytical solution as obtained in [34] is given

by“

 

 

_ R2

tr: ‘1’ + 2C2 + 2(C1+C2) I2,

I2

Too "‘1’ + 202 + 2(01-1-02) 123'

p = -p1. - zc2 - 2(c1+c,)(1nir— + §(—1———i) - 1nR£ + £2),

 

 

1 r2 122 1 r2

122 +1) R R -R2

m =(01 + C2) (1n : - 2111—1 +b °= ‘

no +b Ra (123 +1») (1234-12)

13 = 212vr + urz,

'r=R+ur'.
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In these equations Ri and R0 are the inner and outer radii,

respectively, R and r are the undeformed and deformed radial

distances to the point of interest, respectivelyg mg is the

displacement in the radial direction, p is the hydrostatic

pressure due to the incompressibility constraint, 5% is the

internal pressure,1rr is the radial Cauchy stress, 199 is the

circumferential Cauchy stress, and C5 and Cg are the Mooney-

Rivlin elastic constants.

The BEM solution is obtained based on the axisymmetric model

shown in Figure 6.12. The results for the internal pressure,

p,, versus the radial displacement of an interior node are

given in Figure 6.13 along with the exact solution. The

results for the radial displacement.profile for various values

of internal pressure are given in Figure 6.14. This figure

shows that the BEM and exact solutions are the same for an

internal pressure of 42.5 psi. For an internal pressure of 131

psi the BEM solution is about 5% higher than the exact

solution. The results for the average hydrostatic pressure

profile are given in Figure 6.15. The stresses obtained by the

present analysis are based on the undeformed configuration

"Piola-Kirchoff stresses" while the stresses given in

equations (6.3) are based on the deformed configuration

"Cauchy stresses". The two types of stresses are related by

the following equation
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where J=Iy=1 for an incompressible material, I} is the

deformation gradient and a". and 19- are the Piola-Kirchoff and

Cauchy stress tensors, respectively. Since the deformation

gradients were obtained inside the domain as part of the

iterative solution, we can use equation (6.4) along with the

stress transformation procedure to obtain the radial and

circumferential Cauchy stresses in the cylinder. The results

are given in Figures 6.16 and 6.17, respectively.



X2 74

Pi   
 

Figure 6.11 Infinite cylinder under uniform

internal pressure
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Figure 6.12 Axisymmetric model for the infinite

cylinder
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6.3 Compressible Plane Stress Deformation

Plane Stretching of an Elastic Sheet

Consider an 8" square sheet, 0.06" thick, subjected to a

uniform plane stretching. The sheet is made of a Blatz—Ko

material with a shear modulus of 40 psi. The same problem was

discussed in Section 6.1 but the sheet was assumed to be

incompressible. A FEM solution is available for this problem

[14]. In reference [14], the solution was based on 6x6 mesh of

4-nodded quadrilaterals to model a quarter of the sheet as

shown in Figure 6.18. The same model was used in the present

study. The finite elasticity solution is compared to the

linear elasticity solution in Figure 6.19 where the total edge

force is obtained for different values of the extension ratio,

A. A comparison between the present results and the FEM

results from reference [14] are given in Figure 6.20.
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6.4 Compressible Plane Strain Deformation

Simple Uniaxial Tension

Consider simple uniaxial tension of a Blatz-Ko sheet as shown

in Figure 6.21. The exact solution can be obtained for this

problem as follows. The deformation gradient is given by

where A22 can be obtained as a function of A” by using the

equation

This gives the following equation for An

._ -1/3

Use equations (6.5) and (6.7) in equation (2.32) to get the

following

011 = '1 (xii/3 .. 1;:

The boundary-domain mesh used to model the sheet consists of
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4 linear boundary elements to represent the four sides of the

sheet and 1 domain cell to represent the area. The BEM results

for a" and An are given in Figures 6.22 and 6.23 as functions

of A" along with the exact solutions.
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