

TRENDS IN NUTRIENT STATUS OF MICHIGAN ORCHARDS AS REFLECTED BY LEAF ANALYSIS

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY HARVEY JAMES BELTER 1970

TRENDS IN NUTRIENT STATUS OF MICHIGAN ORCHARDS AS REFLECTED BY LEAF ANALYSIS

By

Harvey James Belter

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Horticulture

ABSTRACT

TRENDS IN NUTRIENT STATUS OF MICHIGAN ORCHARDS AS REFLECTED BY LEAF ANALYSIS

By Harvey James Belter

A study of the analysis of leaf samples submitted by fruit growers in ten Michigan counties for a twelve year period was made to estimate the trends in nutrient status in Michigan orchards. A total of 2,465 leaf samples from the ten selected counties were analyzed between 1956 and 1968 for nine nutrient elements. These results were statistically analyzed to determine the trend (increase or decrease) for each of the elements. Such trends were noted on a state basis, by counties, and by kind of fruit. On a state basis, Michigan orchards have a projected decrease for N, K and Zn and a projected increase for P, Ca, Mg, Mn, Fe, and B. However, K appeared to be the element most likely to become deficient.

The state trends appeared to be generally true for the counties and kind of fruit. However, the trends were less frequently statistically significant.

ACKNOWLEDGMENTS

The writer wishes to express his sincere thanks and appreciation to Dr. A. L. Kenworthy for his assistance, guidance, and encouragement for suggesting the problem and in preparation of the thesis; to Michael Kilby for assistance in computer programming; to the Cooperative Extension Service for the sabbatical leave which made it possible to carry on this work; and to my family for their patience and sacrifices during my absence.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF APPENDICES	vi
INTRODUCTION	1
METHODS	2
RESULTS	3
DISCUSSION	11
SUMMARY	13
LITERATURE CITED	14
APPENDIX TABLES	15

LIST OF TABLES

Table		Page
1.	Number of leaf samples submitted by Michigan fruit growers for complete analysis	3
2.	Estimated nutrient trends for orchards in various counties	8
3.	Nutritional trends for orchards of various kinds of fruit	9

LIST OF FIGURES

Figure			Page
1		ritional trends in Michigan orchards. (All crops included.)	5
	Α.	Nitrogen	
	B.	Potassium	
	C.	Phosphorus	
	D.	Calcium	
	E.	Magnesium	
	F.	Manganese	
	G.	Iron	
	H.	Boron	
	I.	Zinc	

LIST OF APPENDICES

Table		Page
1.	Number of leaf samples analyzed for nine elements in ten counties, 1956-1968. (1966 data missing.)	16
2.	Number of leaf samples analyzed for nine elements in ten counties. Kinds of fruit	17
3.	Mean chart index (C.I.), significance of correlation coefficient, and regression equation values for estimating nutrient trends in each of ten counties in Michigan	18
4.	Mean chart index (C.I.), significance of correlation coefficient and regression equation values for estimating nutrient trends for various kinds of fruit	21

INTRODUCTION

Leaf analysis has been used for many years as a means of determining current nutritional needs of fruit trees. A program designed so that Michigan fruit growers could use leaf analysis routinely as a guide to fertilizer programs was started in 1953 (3). Such programs have been established in many other states.

Leaf analysis has been used in several instances to make a survey of current nutritional status of orchards in a given area (state or region) (1, 2, 5, 6, 7). However, such studies were usually for a one- or twoyear period and occasionally for a five-year period. There has been no study in which leaf analysis over a longer period of time was used as a basis for establishing trends in nutrient status and forecasting when applications of specific nutrients may be needed. Results of such a study of Michigan orchards are presented herein.

METHODS

The analysis of leaf samples which had been submitted by Michigan fruit growers to the Plant Analysis Laboratory, Michigan State University, between 1956 and 1968 were selected for study. Ten counties (see Table 1) were selected and data for leaf samples analyzed for nine elements were used. The data were placed on punched cards and each sample identified as to year, kind of fruit and county. To permit pooling of different kinds of fruit, the data were entered as nutrient balance chart indices (C.I.) (4).

The data were analyzed to determine trends of yearly means on the basis of state, county, and kind of fruit. The significance of linear regression with years was determined by use of MSU, AES, Computer Programs, STAT Series, Program Description No. 13 - one-way analysis of variance with unequal number of duplicates (UNEQ 1).

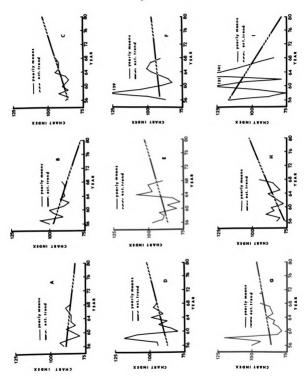
To estimate when a specific nutrient might become critically low, balance chart indices were used as follows: 80 for N; 70 for K, Ca, Mg; 50 for P, Mn, Fe, B, and Zn (a chart index of 100 would equal standard diagnostic values).

RESULTS

The distribution of the 2,465 leaf samples by county and kind of fruit is shown in Table 1. The number of samples for each year in the different counties is given in Appendix Table 1. and for different kinds of fruit in Appendix Table 2.

County	No. of samples	Kind of fruit No.	of samples
Van Buren	448	Apple (all varieties	s) 110 9
Berrien	445	Jonathan	406
Grand Traverse	332	McIntosh	313
Kent	265	Red Delicious	204
Benzie	262	Peach	90
Oceana	249	Sour Cherry	675
Allegan	185	Sweet Cherry	194
Leelanau	142	Pear	212
Oakland	71	Plum	53
Mason	65	Grape	97
		Blueberry	35*

Table 1. Number of leaf samples submitted by Michigan fruit growers for complete analysis.


*Samples submitted through Michigan Blueberry Growers Association not included.

Trends for each nutrient, including all kinds of fruit and for the various counties, are shown in Figure 1. Regression analysis of the leaf analyses showed that N, K, and Zn had a decreasing trend while P, Ca, Mg, Mn, Fe and B had an increasing trend. From the regression equation a general shortage of N by 1994, K by 1990, and Zn by 1998 could be forecast. The rate of increase shown for the other elements does not suggest a reason for concern regarding possible toxicity levels for any element.

Nutritional trends in Michigan orchards. (All crops included.) Figure 1.

- A. Nitrogen (Est. N = 102.5 0.24 * year*
- B. Potassium (Est. K = 145.7 0.84 * year
- C. Phosphorus (Est. P = 46.3 + 0.71 * year
- D. Calcium (Est. Ca = 56.0 + 0.58 * year
- E. Magnesium (Est. Mg = 46.4 + 0.64 * year
- F. Manganese (Est. Mn = 79.1 + 0.23 * year
- G. Iron (Est. Fe = 72.2 + 0.26 * year
- H. Boron (Est. B = 17.3 + 1.08 * year
- I. Zinc (Est. Zn = 203.9 1.57 * year

*Year used in regression as last 2 digits (i.e. as for 70, 71, etc.).

Estimated nutritional trends for orchards in each of the 10 counties are shown in Table 2. Statistics for the regression equation for each element in each county are presented in Appendix Table 3.

Nitrogen appeared to be decreasing in fruit plantings of all counties except Oceana and Mason while potassium appeared to be increasing in Grand Traverse, Benzie, and Mason. Phosphorus, calcium and magnesium were increasing in all counties. Manganese and iron were increasing in all counties except Kent and Allegan. Oakland was the only county showing a decrease for boron. Zinc appeared to be increasing for Allegan, Leelanau and Oakland counties, and decreasing for Van Buren, Berrien, Grand Traverse, Kent, Benzie, Oceana and Mason counties. Not all of these trends, however, were statistically significant.

The nutritional trends for kinds of fruit from orchards in the 10 counties are given in Table 3. Statistics for the regression equation for each element for each kind of fruit are presented in Appendix Table 4. Statistical significance of the trends was not found in most instances. However, nitrogen appeared to be decreasing for Delicious, Jonathan, sour cherry, peach, sweet cherry, grape, and blueberry, but increasing for McIntosh, Golden Delicious, miscellaneous apple varieties, pear and plum. The increase indicated for McIntosh and Golden Delicious may have association with the fact that the standard value for these two varieties was lowered from 2.3 to 2.0% in 1960.

		N		K		P
County	1956	1980	1956	1980	1956	1980
Van Buren	91	77(-)	105	74(-)	87	107(+)*
Berrien	88	77(-)	106	78(-)	87	114(+)*
Grand Traverse	91	85(-)*	85	90(+)	81	94(+)*
Kent	90	82(-)*	102	73(-)	8 9	123(+)*
Benzie	77	75(-)*	77	106(+)	84	90(+)*
Oceana	85	95(+)*	91	91	78	98(+)
Allegan	8 9	73(-)	96	81(-)	87	99(+)
Leelanau	96	78(-)*	88	78(-)	77	109(+)*
Oakland	93	54(-)*	109	74(-)	97	124(+)
Mason	74	124(+)	73	121(+)	80	109(+)
	(Ca	Ν	lg	1	Vín
	1956	1980	1956	1980	1956	1980
Van Buren	88	96(+)*	92	102(+)*	97	107(+)*
Berrien	85	109(+)*	77	117(+)*	102	103(+)
Grand Traverse	83	99(+)	82	94(+)	76	116(+)
Kent	92	104(+)	80	98(+)*	96	69(-)
Benzie	81	93(+)*	83	88(+)	72	131(+)
Oceana	75	117(+)*	72	108(+)	84	105(+)*
Allegan	92	105(+)*	83	90(+)	110	76(-)*
Leelanau	88	115(+)*	84	95(+)	73	95(+)
Oakland	111	112(+)*	93	93	100	198(+)*
Mason	80	102(+)*	78	93(+)	80	96(+)*
	F	e	E	3		Zn
	1956	1980	1956	1980	1956	1980
Van Buren	86	107(+)*	82	112(+)*	121	92(-)
Berrien	93	103(+)*	81	110(+)*	105	105
Grand Traverse	84	116(+)*	70	93(+)*	105	77(-)
Kent	101	69(-)	8 0	111(+)*	137	26(-) ·
Benzie	69	131(+)*	71	95(+)	109	77(-)
Oceana	34	105(+)	70	109(+)	100	75(-)
Allegan	81	76(-)*	76	126(+)	130	155(+)*
Leelanau	73	95(+)*	65	109(+)	125	138(+)
Oakland	116	198(+)	92	72(-)*	106	126(+)
Mason	74	96(+)	69	104(+)	100	75(-)

Table 2. Estimated nutrient trends for orchards in various counties.¹

Balance chart indices calculated from regression equation.
* Regression significant. See Appendix Table 3 for statistics.

		N		K		P
Kind of fruit	1956	1980	1956	1980	1956	1980
McIntosh	88	108(+)*	106	59(-)*	88	98(+)
Golden Delicious	82	115(+)	123	75(-)	113	70(-)
Delicious	9 8	84(-)	109	71(-)*	88	115(+)*
Jonathan	87	84(-)	101	77(-)*	24	33(+)
Sour cherry	91	68(-)*	88	78(-)*	85	92(+)*
Apples (misc. varieties)	85	96(+)	45	15(-)*	90	108(+)
Peach	85	81(-)	137	68(-)*	87	109(+)*
Sweet cherry	86	78(-)	85	77(-)	80	77(-)
Pear	84	95(+)	99	64(-)*	81	91(+)
Plum	78	101(+)*	152	108(-)	90	99(+)
Grapes	98	91(-)	101	139(+)	101	157(+)
Blueberry	108	56(-)	169	26(-)*	156	249(+)*
	C	a	M	g	the second se	Mn
	1956	1980	1956	19 80	1956	1980
McIntosh	97	133(+)*	71	96(+)*	64	59(-)
Golden Delicious	92	109(+)	105	74(-)	19	² 78(+)
Delicious	78	108(+)*	8 3	106(+)*	113	86 (-)
Jonathan	79	115(+)*	8 2	90(+)*	108	68(-)*
Sour cherry	90	108(+) *	85	100(+)*	41	33(-)*
Apples (misc. varieties)	106	75(-)	79	77(-)	115	93(-)
Peach	100	78(-)	18	7(-)	65	97(+)
Sweet cherry	87	86(-)	88	87(-)	41	67(+)
Pear	97	114(+)	80	77(-)	5 9	91(+)
Plum	123	70(-)*	76	9 8(+)	73	109(+)
Grapes	88	105(+)	132	122(-)	110	99(-)
Blueberry	45	134(+)*	12	29(+)	73	63(-)
-	F		<u> </u>		the second se	n
	1956	1980	1956	1980	1956	1980
McIntosh	84	79(-)	84	83(-)	154	4(-)*
Golden Delicious	84 87	83(-) 72(-)*	73 95	70(-)	206 137	19(-) 22(-)*
Delicious Jonathan	87 90	72(-)* 89(-)	95 84	94(-) 104(+)*	137	33(-)* 26(-)*
Sour cherry	61	57(-)	71	104(+)*	94	20(*) 93(-)
Apples (misc. varieties)	117	35(-)*	85	75(-)	118	71(-)
Peach	101	91(-)	83	99(+)*	80	122(+)
Sweet cherry	90	86(-)	78	84(+)	60	54(-)
Pear	58	80(-) 87(+)*	78 78	84(+) 80(+)	102	149(+)*
Plum	107	87(+) 77(-)	78 84	101(+)	102	149(+) 142(+)
Grapes	30	5(-)	100	101(+) 134(+)*	57	142(+) 225(+)*
Blueberry	35	167(+)*	32	194(+)*		- 11(-)

Table 3. Nutritional trends for orchards of various kinds of fruit.¹

¹Balance chart indices calculated from regression equation.

*Regression significant. See Appendix Table 4 for statistics.

Potassium showed a decrease for all crops except grape. Phosphorus appeared to be on the increase for all crops except Golden Delicious and sweet cherry. Calcium showed an increase for all crops except the miscellaneous apple varieties, peach, sweet cherry, and plum. McIntosh, Delicious, Jonathan, sour cherry, plum and blueberry showed an increase in magnesium, while Golden Delicious, miscellaneous apple varieties, peach, sweet cherry, pear and grape appeared to be decreasing. Manganese showed a decrease for McIntosh, Delicious, Jonathan, sour cherry, miscellaneous apple varieties, for grape and blueberry, and an increase for Golden Delicious, peach, sweet cherry, pear, and plum. Iron appeared to be decreasing for all crops except pear and blueberry. Boron showed an increase for Jonathan, sour cherry, peach, sweet cherry, pear, plum, grape, and blueberry, and a decrease for McIntosh, Golden Delicious, Red Delicious, and miscellaneous apple varieties. Zinc appeared to be decreasing for McIntosh, Golden Delicious, Delicious, Jonathan, sour cherry, miscellaneous apple varieties, sweet cherry, and blueberry, and increasing for peach, pear, plum, and grape.

DISCUSSION

Throughout the past 10 to 20 years Michigan fruit growers have made intensive applications of mixed fertilizers to their fruit plantings. In recent years the trend has been to reduce fertilizer applications and to apply fertilizers as single elements according to need. Within this same period of time, large amounts of dolomitic lime was applied to adjust pH levels for correcting Mn excess, and to alleviate Ca and Mg shortages; hence, the increased availability of Ca and Mg may be related to the general use of dolomitic lime.

A decrease in N may be attributed to growers not making repeat applications often enough or reducing amounts applied to obtain higher quality fruit. K deficiency which has been found in all fruit crops except apple could be attributed to fertilizer applications of N only or inadequate K contained in complete fertilizers. The increase in P availability may be the result of the large amounts of mixed fertilizers applied 10 to 20 years ago. The increase in B availability is somewhat difficult to explain. However, B has been recommended by various agencies to individual growers. Over the years orchard soils have shown a slight increase in pH which may have an effect on the downward trend for Zn.

It should be pointed out that the leaf samples for this study did not always come from the better growers or from the well fertilized orchards.

Growers, in general, do not send in leaf samples to establish a fertilizer program, but from orchards, vineyards, or plantings that were not performing well or where a problem existed. Also, a given grower may not have leaf samples analyzed each year. Therefore, the results were usually from different growers each year, and represent many soil types and age of plantings. The data indicate that the recurrence of below normal values should become less for all elements except N, K, and Zn. However, the frequency of below normal values for N, K, and Zn should increase unless there is a general change in current fertilizer programs.

SUMMARY

The leaf analysis program was initiated in the state of Michigan in 1953. An analysis of the existing program had never been conducted. There were no existing reports in the literature covering more than five or more years.

A study covering twelve-years data for ten selected Michigan counties was undertaken. This was to determine whether any nutrient element might become deficient or in excess by the year 1980. A total of 2,465 leaf samples were analyzed.

A review of the charts and figures shows some nutrients increasing and some decreasing. Fruit crops reveal nutrient increases and similarly estimated deficiencies or shortages. Likewise, on a state basis, fruits show a projected decrease for N, K and Zn, and a projected increase for P, Ca, Mg, Mn, Fe, and B.

Zn appeared to be the element most likely to show the most prevalent deficiency in fruit crops by 1980. It would appear that most apple cultivars and blueberries are most likely to exhibit Zn shortage. Of the counties, fruit crops in Kent county are estimated to be the first to experience Zn deficiency. The literature reviewed reported Zn deficiency in the Eastern United States, and it could possibly become limiting in Michigan by 1980.

LITERATURE CITED

- 1. Cline, R. A. and J. A. Archibald. 1965. The effect of potassium and phosphorus fertilizer on yield and quality of Montmorency cherry. Ontario Hort. Exp. Sta. and Products Lab. Report.
- Hull, J., Jr. and A. L. Kenworthy. 1964. Nutritional survey of Indiana apple orchards utilizing foliar analysis as the diagnostic tool. Purdue Agr. Exp. Sta. J. Paper No. 2242.
- Kenworthy, A. L. 1953. Nutritional conditions of Michigan orchards. A survey of soil analyses and leaf composition. Mich. Agr. Exp. Sta. Tech. Bul. 237.
- 4. Kenworthy, A. L. 1967. Plant analysis and interpretation of analysis for Horticulture crops. Soil Sci. Soc. Amer., Spec. Pub. No. 2, Part II, pp. 59-75.
- 5. Smith, Cyril B. 1965. A five-year nutritional survey of Pennsylvania apple, peach, and sour cherry orchards. Agr. Exp. Sta. Bul. 717, Penn. State Univ.
- 6. Stiles, W. C. 1968. Fertilizer practices in Maine orchards. Proc. 78th Ann. Mtg. Conn. Pomological Soc.
- 7. Yu, Kyung Sang. 1967. Some factors affecting apple leaf nutrient concentrations. M.S. Thesis, Univ. Minn. unpublished.

APPENDIX TABLES

IX TAI	APPENDIX TABLE 1.	Number of leaf data missing)		mples an	samples analyzed for nine elements	or nine e	elements	in ten counties,		1956-1968. (1966
Berrien	ien	Grand Traverse	Kent	Allegan	Benzie	Oceana	Mason	Leelanau	Oakland	Total
10		13	9	9	0	2	ß	6	6	109
32		10	4	13	15	1	0	S	0	107
ന		1	ς	4	0	0	0	3	ß	28
7.		I	0	I	0	0	0	1	3	17
38	80	ß	32	17	4	11	9	8	3	176
87	7	60	38	16	18	25	6	33	4	322
51	1	25	21	27	8	35	13	ß	2	209
5	24	14	14	17	24	23	4	7	2	152
21	г	26	26	23	28	16	8	17	12	242
~	75	70	27	14	75	40	6	14	29	418
Η	17	41	14	3	33	8	8	17	0	154
83	ŝ	66	80	44	57	88	8	30	7	530
445	ß	332	265	185	262	249	65	142	71	2465

APPENI	APPENDIX TABLE 2.		Number of leaf samples analyzed for nine elements in ten counties.	eaf san	ıples ana	lyzed fo	r nine el	ements i	n ten count		Kinds of fruit.
Kind of fruit	Van Buren	Berrien	Grand Traverse	Kent	Allegan	Benzie	Oceana Mason	Mason	Leelanau Oakland	Oakland	Total
Apple	208	215	55	213	66	128	96	34	7	52	1109
Peach	22	29	I	3	7	20	19	S	Ч	ß	06
Sour Cherry	98	86	175	24	21	75	81	16	67	7	675
Sweet Cherry	11	12	67	8	5	37	20	4	32	П	194
Pear	41	37	26	15	41	15	20	9	Ч	10	212
Plum	7	10	8	3	П	7	11	2	4	1	53
Grape	44	46	0	Ч	4	0	3	0	0	0	67
Blue berry	17	10	0	0	œ	0	0	0	0	0	35
Total	448	445	332	265	185	262	249	65	142	71	2465

APPENDIX TABLE 3. Mean chart index (C.I.), significance of correlation coefficient, and regression equation values for estimating nutrient trends in each of ten counties in Michigan.

County	Element	Mean C.I.	$R^{/1}$	Constant	Coefficient
Van Buren	Ν	88.8	NS	87.40	0.23
	К	96.5	NS	93.19	0.55
	Р	92. 8	* * *	83 . 89	1.47
	Ca	90.6	* *	85.28	0.88
	Mg	90. 8	* * *	77.72	2.15
	Mn	99. 8	* *	88 . 59	1.85
	Fe	94.6	* * *	68.03	4.37
	В	90.1	*	86 . 82	0.53
	Zn	113.6	NS	120. 74	-1.17
Berrien	N	84.6	NS	83.95	0,11
	K	97.7	NS	101. 78	-0, 69
	Р	95.0	* * *	8 7.9 7	1.20
	Ca	92.8	* * *	84.30	1.45
	Mg	88 .9	* * *	70.83	3.07
	Mn	93.7	NS	88 . 53	0.87
	Fe	94.9	* * *	72.99	3.73
	В	90.4	* * *	82.26	1.38
	Zn	105.5	NS	103.31	0.37
Grand Traverse	N	88 . 6	* * *	101.77	-1.94
	K	87.1	NS	79.47	1.12
	Р	85.8	* *	92. 80	-1.02
	Ca	95.3	NS	91, 12	0.63
	Mg	85 .9	NS	87.14	-0.17
	Mn	89 . 1	NS	95.68	-0.98
	Fe	85.2	* *	77.05	1.21
	В	78 . 9	*	84.53	-0.83
	Zn	95.7	NS	84 . 96	1.59
Kent	N	87.4	* *	93.21	-1.53
	K	92.4	NS	94.31	-0.49
	P	100.1	*	104.10	-1.04
	Ca	97.4	NS	89.07	2.19
	Mg	85.9	**	81.26	1.23
	Mn	87.1	N S	86.81	0.08
	Fe	85.4	NS	79.50	1.55
	B	90.3	*	93.59	-0.86
	Zn	100.4	NS	99. 50	0.23

County	Element	Mean C.I.	$R^{/1}$	Constant	Coefficient
Benzie	N	90.7	* * *	100, 93	-1.87
	К	87.8	NS	92.30	-0.83
	Р	86 . 9	* * *	92.61	-1.03
	Ca	86.1	* *	78.61	1.37
	Mg	84.8	NS	82.28	0.46
	Mn	92. 8	NS	94.44	-0.30
	Fe	77.4	*	73.47	0, 73
	В	8 0. 6	NS	79.45	0.21
	Zn	97.8	NS	90.47	1.34
Oceana	N	90,3	**	97.56	-1.26
	К	91.5	NS	88.26	-0.56
	Р	86.2	NS	84 . 09	0.37
	Ca	90.2	* *	82.00	1.42
	Mg	85.5	NS	85.86	-0,06
	Min	91.6	* * *	104.57	-2.25
	Fe	94.0	NS	96.29	-0.39
	В	85.0	NS	83.11	0.33
	Zn	91.3	NS	85.37	1.02
Allegan	N	84.2	NS	86.92	-0.49
	K	91. 8	NS	95 . 52	-0.67
	Р	90.1	NS	90. 94	-0.16
	Ca	96.3	* *	86 . 92	1.69
	Mg	85.8	NS	82.36	0.62
	Mn	9 9.5	* *	112.67	-2. 39
	Fe	87.9	* *	79.79	1.48
	В	91.1	NS	90.13	0.17
	Zn	137.9	* *	1 79. 68	-7.57
Leelanau	N	83.8	* * *	116.15	-4.49
	K	84 . 2	NS	59.23	3.47
	Р	87.1	* * *	128.6 8	-5.77
	Ca	97.1	*	132.74	-4.95
	Mg	87.2	NS	95.07	-1.08
	Mn	8 0. 8	NS	75.09	0.79
	Fe	79.5	* *	48.99	4.23
	В	79. 8	NS	89.29	-1.32
	Zn	91.0	NS	104.92	-1.93

APPENDIX TABLE 3. (Continued)

County	Element	Mean C.I.	$R^{/1}$	Constant	Coefficient
Oakland	N	82.7	*	88.37	-1.29
	К	98. 8	NS	96. 84	0.45
	Р	103.8	NS	107.75	-0.88
	Ca	105.3	* * *	90. 54	3.40
	Mg	93. 0	NS	90. 87	0.49
	Mn	126.4	*	106. 08	4.66
	Fe	96.9	NS	106.79	-2.27
	В	86.2	*	90.26	-0, 93
	Zn	111.8	NS	99. 58	2.82
Mason	N	89.6	NS	95.26	-1.17
	К	88.5	NS	92.51	-0.83
	Р	8 9. 7	NS	8 9. 66	0.01
	Ca	87.2	* * *	73 . 9 3	2.76
	Mg	83 . 0	NS	88.11	0.39
	Mn	90 . 9	*	102.19	-2.34
	Fe	81.1	NS	79.1 3	0.40
	В	83.3	NS	79.06	0.88
	Zn	98.9	NS	90.98	1.66

APPENDIX TABLE 3. (Continued)

- $\frac{1}{2}$ R correlation coefficient
 - NS not significant
 - * significant at 5% level
 - ** significant at 1% level
 - *** significance greater than 1%

Kind of fruit	Element	Mean C.I.	R	Constant	Coefficient
McIntosh	N	93.0	**	42.43	0.82
(313 samples)	К	94.3	* * *	214.78	-1.95
	Р	90.9	NS	64.59	0.42
	Ca	82.3	* * *	11.99	1.52
	Mg	77.6	* * *	11.81	1.06
	Mn	91.6	NS	77.33	0.23
	Fe	81.9	NS	95. 87	-0.22
	В	84.3	NS	86.10	-0.03
	Zn	117.2	***	505.03	-6.27
Golden Delicious	N	94.2	NS	-1,79	1.47
(33 samples)	К	104.7	NS	236.66	-2.02
	Р	96.3	NS	212.93	-1.79
	Ca	99.1	NS	51.90	0.72
	Mg	93.7	NS	178.33	-1.30
	Mn	98.4	NS	18.88	1.22
	Fe	86 . 2	NS	84.83	0.02
	В	90.2	NS	80.91	0.14
	Zn	121.1	NS	742.15	-9.51
Delicious	N	92.8	NS	130, 15	-0.58
(204 samples)	К	98.7	* *	185.58	-1.36
	Р	97.7	* *	27.26	1.10
	Ca	88 .9	* *	13.00	1.19
	Mg	91.2	*	30,06	0.96
	Mn	104.9	NS	175.62	-1.11
	Fe	81.7	*	122.93	-0.64
	В	93.6	NS	97.60	-0.06
	Zn	102.4	* *	377. 59	-4.30
Jonathan	N	85.6	NS	95,00	-0.14
(406 samples)	К	90 . 9	* *	155.91	-0.99
	Р	93.4	NS	68.64	0.38
	Ca	94.12	* * *	-3.06	1.48
	Mg	85 .6	*	63.37	0.34
	Mn	95 . 9	* * *	223.90	-1.95
	Fe	89 .6	NS	94.69	-0.08
	В	91.5	* * *	36.55	0.84
	Zn	100.82	* * *	350, 58	-3.81

APPENDIX TABLE 4. Mean chart index (C.I.), significance of correlation coefficient and regression equation values for estimating nutrient trends for various kinds of fruit.

Kind of fruit	Element	Mean C.I.	R	Constant	Coefficient
Apples (misc. var.)	N	88.6	NS	58.62	0.47
(154 samples)	K	96.3	* *	117.31	-1.28
	Р	95.1	NS	46.01	0.78
	Ca	96.3	NS	179. 78	-1.32
	Mg	87.6	NS	8 2.90	0.07
	Mn	108.1	NS	165 . 95	-0.91
	Fe	92.9	*	308.62	-3.41
	В	8 2.9	NS	109.33	-0.42
	Zn	103.5	NS	227.82	-1.97
Peach	N	84.6	NS	96.43	-0. 19
(90 samples)	К	117.7	* * *	298.0 8	-2. 88
· •	Р	92.9	* * *	37.30	0.89
	Ca	94.0	NS	150.0	-0.90
	Mg	84.8	NS	50.59	0.55
	Mn	94.6	NS	10.55	1.34
	Fe	98.5	NS	124.75	-0.42
	B	86.7	**	40.36	0.74
	Zn	123.8	NS	15.49	1.73
Sweet Cherry	N	82.9	NS	103.08	-0.31
(193 samples)	K	82.3	NS	104.08	-0.34
	Р	87.4	NS	82.93	0.07
	Ca	87.5	NS	90.88	-0.05
	Mg	86.8	NS	88.03	-0.01
	Mn	86.6	NS	17.61	1.07
	Fe	89.3	NS	100.74	-0.18
	B	84.1	NS	37.88	0.71
	Zn	87.4	NS	71.84	0.23
Pear	N	86.4	NS	68.50	0.28
(213 samples)	K	88.3	* * *	181.75	-1.48
	Р	84.1	NS	58.12	0.41
	Ca	101.9	NS	58.54	0.69
	Mg	79.5	NS	88.15	-0.14
	Mn	100.7	NS	16.14	1.34
	Fe	86.8	**	9.75	1.22
	В	80.3	NS	57.91	0.35
	Zn	116.2	**	-6.56	1.94

APPENDIX TABLE 4. (Continued)

Kind of fruit	Element	Mean C.I.	$R^{/1}$	Constant	Coefficient
Sour cherry (673 samples)	N	84.7	***	143.40	-0.94
	K	84 .6	*	110.77	-0.42
	Р	87.1	*	68 . 66	0.29
	Ca	95.4	**	50.33	0.72
	Mg	89.3	* *	49.90	0.63
	Mn	81.7	*	60.11	0.34
	Fe	82.1	NS	71.03	0.18
	В	80.1	* * *	-3.42	1.33
	Zn	96.1	NS	104.94	-0.14
Plum	N	85.2	*	25, 15	0.95
(53 samples)	K	138.1	NS	253.24	-1.81
· •	Р	93.2	NS	68 . 95	0.38
	Ca	105.7	*	243.97	-2.17
	Mg	84 . 1	NS	27.20	0. 89
	Mn	107.4	NS	11.17	1.51
	Fe	97.7	NS	176.96	-1.25
	В	90.1	NS	44. 1 8	0.72
	Zn	127.3	NS	67.48	0.94
Grapes (97 samples)	Ν	96.6	NS	115.75	-0.30
	K	97.3	NS	-8 .91	1.63
	Р	122.4	NS	-28.32	2.32
	Ca	93.8	NS	48.48	0.70
	Mg	128.2	NS	154.29	-0.40
	Mn	106.7	NS	136.34	-0.46
	Fe	153.6	NS	8 7.23	1.03
	В	113.0	*	21.22	1.42
	Zn	118.7	***	-334.91	7.00
Blueberries (36 samples)	N	86.4	NS	227.27	-2.14
	К	110.8	*	501.53	-5.94
	Р	80.5	*	-47.73	1.95
	Ca	81.6	* * *	-162.88	3.72
	Mg	73.7	NS	27.24	0.71
	Min	116.7	NS	92.57	0.37
	Fe	89.5	* *	-273.75	5. 52
	В	98.3	* *	-344.08	6.73
	Zn	88.8	NS	545.63	-6.95

APPENDIX TABLE 4. (Continued)

/1 R - correlation coefficient

NS - not significant

* - significant at 5% level

** - significant at 1% level

*** - significance greater than 1%

