RELATHONSHP OF LEAF AREA TO TOTAL WEIGHT AND AVERAGE WEIGHI OF FRUT AN BLUEEERRIES

FHESIS FOR THE DEGREA OP M. S.
Duncan A. Byrd
1930

Relationship of Leaf Area to Total Weight and Average Weight of Fruit in Blueberries.

Thesis

Presented to the faculty of the Michigan State College of Agriculture and Applied Science as partial fulfillment of
the requirements for the degree of
Master of Science
by
Duncan A. Byrd.
1930
-...

Realization of the full importance of leaves to fruit bearing plants has come but slowly. Since earliest times gardeners and botanists have been aware that plants draw moisture and nutrients from the soil. Transpiration was recognized as a leaf function comparatively early, but understanding of other functions of the leares almost entirely depended on the development of the cheristry of the air and of the plants. Even when the intake of carbon was demonstrated by plant physiologists, gardeners were slow to recognize the significance of the leaves and, with few exceptions, pruning was still practised on the basic conception of economising on nutrients taken from the soil. Defoliation, as occasioned by fungi and insects, was recognized as injurious, but up to the appearance of the work by Krans and Kraybilifon the relationship of nitrogen and carbohydrates to fruitfulness, the significance of leaves was regerded lightly by horticulturists in general.

It is generally known that the leaf area of a plant bears a certain relation to the degree alant is fruitful. Pruning trees, bushes, and thinning of fruit has been practised for years, but it was not until recently that data were presented to show that a certain definite
leaf area is necessary in order to allow for the proper development of a given quantity of fruit. By thinning of fruit, gardeners and horticulturists know that the size and quality of the fruit is improved. However, just whet ratio should exist between the leaf area and the number Pruits has not been known. Without this ratio. in mind the grower cannot thin fruit to the best commercial advantage. Neither wes it known, until recently, to what extent the fruit is dependent upon the closely adjoining leaf area, or whether for its development it may drav upon foods which are elaborated at considereble distances. Definite information about these matters is fundamental to studies of growth and chemical compositions of fruit, and the general productivity of a plant.

In 1924 Haller and Magness started certain experiments in order to throw some light on these problems. During 1924 these workers used Finesap, Ben Davis, Delicious, and Rome Beauty varieties. Twigs were ringed to prevent translocation of food materials. The results in 1924 were variable but clearly indicated a relationship between the leaf area and size of fruit.

During 1925, the varieties used were Delicious, Ben Davis, and Grimes. The leaf area was increased for each fruit. The results of this work show there was a marked correlation between the leaf area and the increase in volume of fruit, up to a certain point, beyond which a further increase in the leaf area did not result in a corresponding increase in volume. For the Grimes and Ben Davis it was found that thirty to forty medium sized leaves per fruit were necessary to obtain apples of good size and quality.

Data gethered in these experiments seem to indicate that apples are able to draw upon leaves which are as much as one hundred centimeters away, and upon leaves which are adjacent to the fruit with almost equal facility.

A high percentage of dry weight, sugars and acids, is associated with apples grown with large leaf area as compared with apples of the same variety grown with small leaf area?

In 1926 Magness conducted an experiment in the state of Washington similar to the earlier work in Virginia, working with Delicious, Winesap, and Jonathan varieties. Detailed tests were made on the Delicious with limited observations on Winesap and Jonathan.

The procedure was similar to the work previously carried on in Virginia. Magness states that unless forty to fifty leaves per fruit are available on Delicious, best market sizes and quality fruit cannot be produced. However, the total efficiency of the foliage at Wenatchee, Washington, seemed to be greater. This is accounted for by the more intense and continuous sunshine, and the greater daily insolation.

Johnston of the South Haven Experiment Station, South Haven, Michigan, in the work on the winter pruning of black raspberries found that the highest total gields of berries were found on the shoots with the most foliage and likewise the average weight per berry was proportionatelly larger.

- Object of Experiment -

Abstract

As has been shown in the review of literatua, there has been little work carried on to show just what relationship exists between the leaf area and fruitfulness. These investigations were restricted to the apple and raspberry. The purpose of this investigation was to study the relationship betpieen the leaf area and the total weight and average weight of fruit of the blueberry plant on selected individual shoots. Very little work has been done in respect to pruning of tie blueberry bush and a knowledge of this relationship is fundamental in order to prune intelligently.

This work was started July lst, 1929. The plants used in connection with this experiment were groving on one of the experimertal plots at the South Haven experiment station, South Haven, Michigan. These plants were groving in a Saugatuck loamy fine sand, and the soil apparently vas uniform and possessed the requirements for good blueberry growth. Seven varieties were used in gath ring the data presented in this peper.

Name_	No. Shoots.
Adams	28
Cabot	24
Katherine	58
Pioneer	28
Sam	27
Fubel	43
Harding	27

The plants selected were average plants growing on the plot. Shoots were selected from different portions of the plant and were tagged with a paper tag bearing a number. A caye constructed of nosquito netting was placed
about each selected bush, this serving to prevent destruction of the berries by outside agencies.

The berries were harvested once a week after
ripening had commenced and were picked only on dry deys.
After all data had been assembled the coefficsent of correlation was worked out for each variety.

Figure \#1.
A portion of tie blueberry
plants used in the investigation.

Fecords Taken

The following records were taken:

1. Total weight of the berries, at each picking.
2. Total number of berries.
3. Leaf area on shoot upon which the berries fere borne.

The berries were weighed upon balence scales which registered in sixteenths of ounces. After all the berries were harvested from the tagged shoots the leaves were collected and measured by the use of a planimeter.

The data collected is recorded in tables one to seven inclusive.

Twig iva.	No. Berries	Total Weight	Average Right	Leaf Area in Sq. Inches
22	10	.20	.020	12.98
23	21	.68	.032	24.15
24	23	.85	.036	14.28
25	7	.26	.037	20.58
26	15	.44	.029	16.81
27	13	.53	.040	7.27

The coefficient of correlation for this variety is found to be as follows:

$$
\begin{aligned}
& \text { Total weight } r=.379 \mp .108 \\
& \text { Av rage weight } r=.114 \mp .125
\end{aligned}
$$

- CABOT VAFIETY -

Comparison of leaf areas, total veignts and averaide rieights of fruit.
(weight in ounces)

Shoot \%o.	No. Berries	$\begin{aligned} & \text { Total } \\ & \text { Feight } \end{aligned}$	Average i.eight	Leaf frea in Sq. Inches
1	27	. 91	. 034	32.72
2	20	. 72	. 036	11.62
3	15	. 62	. 041	3.62
4	17	. 71	. 041	22.82
5	30	1.68	. 056	19.35
6	19	. 64	.023	13.20
7	45	1.09	. 024	10.1:
8	5	. 15	. 030	15.37
9	44	1.62	. 036	20.96
10	39	1.60	. 041	67.32
11	24	. 68	. 028	6.90
12	18	. 65	. 036	. 85
13	13	. 46	. 027	1.20
14	46	1.42	. 030	82.41
15	26	. 78	. 029	40.12
16	24	. 71	. 028	1.03
17	58	2.	. 034	32.52
18	57	1.79	.0ミ1	26.25
19	32	. 85	. 026	18.
20	23	. 91	. 039	36.10
21	34	1.34	. $0 \leq 9$	966
22	16	. 88	. 042	17.90

Shoot No. No. Bervies	Total ineight	iverage i.eight	Leaf Area in So. Inches	
23	24	.78	.032	14.50
24	28	.86	.030	12.80
25	23	.92	.040	3.35

$$
\begin{aligned}
& \text { Total i.eght } r=.374 \mathrm{~F} .118 \\
& \text { Aver ge i.eight } r=-.011 \bar{f} .204
\end{aligned}
$$

Table tis

- Kathdilig VAifity -

Comparison of leaf areas, total weights and

$$
\begin{aligned}
& \text { average veights of fruit. } \\
& \text { (weight in ounces) }
\end{aligned}
$$

Shoot No.	No. Berrios	```Total Veight```	$\begin{aligned} & \text { Averaje } \\ & \text { reijit } \end{aligned}$	$\begin{aligned} & \text { Leallea } \\ & \text { in S. Inches } \end{aligned}$
1	19	. 34	. 033	16.18
2	26	. 8 ¢	.032	17.91
3	32	1.26	. 039	10.22
4	14	. 79	. 056	2.
5	13	. 53	. 240	27.95
6	18	. 68	. 037	-. 57
7	6	. 30	. 05	20.83
8	9	. 2.2	. 02.4	17.01
9	11	. 42	. 038	12.17
10	18	. 54	. 03	22.11
11	24	. 94	. 039	7.22
12	17	. 71	. 041	10.01
13	17	. 65	. 038	5.12
14	14	. 52	. 037	25.18
15	6	. 21	. 037	9.57
16	13	. 53	. 040	3.22
17	6	. 30	. 05	13.27
18	10	. 36	. 036	10.61
19	21	. 78	. 0.67	17.65
20	33	1.36	. 041	34.59

```
Table 3
    Pare 2
```


Shoot io. ivo. Berries

```
Totsl {verage
                        i.eight ieight
```

Leaf limea
in du. Inches

21	31	1.12	. 035	3.42
22	12	. 54	. 045	11.60
23	26	1.09	. 042	1.68
24	18	. 84	. 046	12.06
25	17	. 56	. 032	8.63
26	20	1.06	. 040	19.85
27	10	. 54	. 033	2.92
28	40	1.46	.031	. 82
29	15	. 46	. 030	1.89
30	13	. 32	.0ミ4	3.47
31	20	. 71	. 035	4.35
32	32	. 84	. 026	4.16
33	19	. 53	. 027	. 84
34	15	. 54	. 036	11.69
35	45	1.64	. 036	9.67
36	14	. 42	. 030	14.23
37	26	1.15	. 044	10.54
38	2	. 00	. 03	15.72
39	39	1.53	. 049	26.56
40	14		. 044	2.30

Shoot i:o.	\therefore - Berries	Total	avernge	Lexs irca
		i.eight	こeidht	in

41	11	. 46	. 041	9.07
42	11	- ≤ 2	. 035	17.93
43	20	. 62	. 031	6.01
44	14	. 38	. 027	10.65
45	E	. 40	. 051	14.34
46	44	1.32	. 030	15.22
47	13	. 40	.0. 5	11.80
43	45	1.80	. 040	12.51
49	45	1.06	. 0223	2.45
50	37	1.62	. 341	17.65
51	22	. 91	. 041	21.59
52	31	. 80	. 02.5	1. ® 3
53	37	1.09	. 029	1.82
54	14	. 46	. 052	12.56
55	51	1.53	. 026	9.33
53	26	. 34	. 035	13.95
57	40	1.28	.032	1.09

$$
\begin{aligned}
& \text { Total ieight } r=.129 \mp .036 \\
& \text { Avere eeight } r=.030 \overline{\mathrm{~F}} .088
\end{aligned}
$$

$$
\text { Ta:le } t 4
$$

- PIONEEF VAFIzTY -

> Comparison of leaf areas, totel weights and ave: age weights of fruit.

Shoot No. No. Berries
rotal
i.eight \quad nerage

Lea』Arca in Sq. .̈nches
.24
.034
.41

2

3

4
5
11
.92
.036
26.95

31
1.46
.0 .35
6.11

4
.33
.041
1.58

6
13
.48
.043
1.22

7
8
9
10
53
.50
.038
32.02
. 48
.032
13.61

40
1.40
.035
. 86
14
. 42
.030
6.49
1.96
.036
16.10

11
27
.91
.033
10.81

12
13
14
52
1.06
.020
1.11

31
. 88
.028
12.12

15
21
.79
.037
16.92

84
1.78
.021
6.72

16
55
1.06
.018
8.48

17
22
1.09
$.04 \theta$
37.08

18
19
20
21
34
.88
$.0 ミ 5$
.72
.029
18.54

13
.38
.0£5
9.09
.030
12.41

Table $i=4$ Рабе 4

Shoot lio.	No. Berries	$\begin{aligned} & \text { Total } \\ & \text { height } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { wei } \end{aligned}$	Leaf hrea in iq. Inches
22	45	1.07	. 023	3.24
23	55	1.53	. 027	16.91
24	61	1.91	. 031	20.39
25	40	1.28	. 033	9.50
26	61	1.86	. $0: 0$	13.96
27	34	1.15	. 030	17.05
28	24	. 78	. 032	4.14
	Total i.eight $\mathrm{r}=.88$		$\mp .028$	
	Eve age	ght $r=-.02$	5 7	

$$
\text { Table í } 5
$$

- SAM VAFIBTY -

> Comparison of leaf areas, total wei fhts and average weights of fruit.

Shoot No.	io. Berries	$\begin{aligned} & \text { Total } \\ & \text { i.eight } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { weight } \end{aligned}$	Leaf Area in $\dot{\text { uq. Inchos }}$
1	36	1.2 .8	. 055	15.59
2	45	1.36	. 030	44.47
3	30	1.09	. 030	21.24
4	39	1.33	.034	26.13
5	43	1.40	. 032	30.55
6	22	. 78	. 055	11.17
7	40	1.42	.085	21.12
8	37	. 92	. 022	38.49
9	19	. 46	. 024	1.88
10	6	. 09	. 015	26.56
11	20	. 53	. 026	8.63
12	15	. 30	. 02	4.57
13	20	. 53	. 026	7.44
14	22	. 64	. 029	3.80
15	14	.33	.023	1.76
16	17	. 50	. 029	10.38
17	8	. 16	. 02	2.07
18	23	1.09	.033	15.83
19	31	. 70	. 022	30.88
20	27	. 78	. 028	32.93

- SAM VARIETY -

Shoot No. No. Berries	Total Weight	Average Weight	Leaf area Sq. Inche	
21	40	.86	.021	45.99
22	29	.48	.015	20.02
23	12	.30	.025	12.81
24	15	.44	.029	5.41
25	50	1.15	.023	8.47
26	7	.18	.025	3.26
27	32	.60	.018	19.26

Total Weight $r=.390$ † . 079 Average Weight $5=.253 \mp .004$

Table \#

- KUBEL VAFIETY -

$$
\begin{gathered}
\text { Comparison of leaf arees, total weiohts and } \\
\text { average weights of iruit. }
\end{gathered}
$$

Shoot so.	No. Berries	Total	Averase	Leef A ea
		ireight	neight	in So. Inches

1	7	. 14	. 020	2.32
2	21	. 26	. 012	11.92
3	8	. 18	. 022	15.17
4	8	- 2.4	. 030	44.49
5	27	. 59	. 021	10.54
6	33	. 65	. 019	อ. 79
7	11	. 46	. 041	3.73
8	10	. 33	. 033	15.78
9	28	. 62	. 056	15.31
10	13	. 24	. 018	7.08
11	36	1.09	. 030	. 76
12	19	. 52	. 0287	2.09
13	46	1.42	. 030	53.47
14	14	. 32	. 022	25.40
15	8	. 24	. $0<0$	5.87
16	9	. 28	. 031	4.76
17	5	. 12	. 024	2.47
18	18	. 40	. 022	18.70
19	5	. 09	. 018	9.11
20	26	. 84	. 032	15.40

Table 6 Pa氏e 2

- EUBEL VAFIETY -

Shoot No.	Vo. Berries	$\begin{aligned} & \text { Total } \\ & \text { iveight } \end{aligned}$	Average neight	Leaf hea in Sq. Inches
21	12	. 33	. 027	28.47
22	9	. 29	. 032	2.93
23	22	. 48	. 021	5.59
24	18	. 36	. 020	. 58
25	15	. 29	. 019	7.29
26	27	. 82	. 035	89.31
27	17	. 46	. 027	17.20
28	15	. 50	. 033	14.29
$\ddot{¿ 9}$	4	. 12	. 030	3.28
30	80	. 67	. 033	37.91
31	9	. 28	. 031	9.51
32	15	. 4	. 028	31.44
33	20	. 5	. 085	21.82
34	11	. 23	. 020	20.03
35	c	. 4	. 044	7.04
36	7	. 27	. 038	3.03
37	5	.15	. 030	8.95
38	22	. 62	. 028	38.24
39	9	. 34	. 037	10.13
40	25	. 65	. 026	46.94
41	36	. 96	. 023	13.89
42	20	. 59	. 028	32.99
43	21	. 70	. 033	44.37

Table 6
Pace 3

- fubel vafiety -

Shoot No. No. Berries	Total height	Ave age i.eight	Lea: Area in Sq. Inches	
44	17	.62	.035	1.03
45	31	.93	.030	43.79

$$
\begin{aligned}
& \text { Total height } r=.189 \mp .007 \\
& \text { Average weight } r=.429 \mp .102
\end{aligned}
$$

	Table 77			
	Comparison of leaf areas, total wciohts and			
Shoot Ro.	Ho. Berries	Total .eight	Average neicht	Leaf Area in © q . Inches
1	44	1.50	. 034	45.03
2	34	. 86	. $0 \% 5$	12.70
3	39	1.68	. 043	16.96
4	27	. 74	. 031	5.20
5	11	. 24	. 025	33.08
6	28	1.09	. 039	7.37
7	49	1.30	. 026	7.95
8	24	. 59	. 024	11.42
9	27	. 86	. 031	20.65
10	27	. 74	. 024	8.95
11	56	1.74	. 031	14.33
12	53	1.40	. 026	7.91
13	18	. 59	.032	25.28
14	49	1.53	. 031	. 40
15	13	. 53	. 040	8.41
16	21	. 65	. 030	37.10
17	40	1.40	. $0 \div 5$	23.97
18	16	. 59	. 036	2.88

Trale 7
page 2

- hafDIig VabIety -

Shoot No. No. Berries Total hei:ht Average Leaf Area neight in íg. In hes

19	38	1.09	.028	25.92
20	14	.40	.028	21.65
21	16	.46	.028	65.41
22	14	.84	.027	7.07
24	10	.24	.017	9.15
25	20	.26	.026	41.28
26	7	.06	.026	58.28
28	28	.74	.031	7.81
27	26	.026	10.13	

$$
\begin{aligned}
& \text { Total height } r=-.152 \mp .188 \\
& \text { Average .eight } r=.729 \mp .060
\end{aligned}
$$

Table $\# 8$

Summary of the Coefficient of Correlntion for the verieties used．

Variety	Correlation	
	Total ${ }^{\text {a }}$ ei	Average ineig
Adams	． 379 干． 108	.114 干．125
Cabot	.374 ¢．118	－．011 ¢． 204
Katheline	．129 $\ddagger .086$	．030 $\mp .088$
Pioneer	$.88 \mp .028$	－．025. .186
Sam	$.390 \mp .079$	－．253 $\ddagger .004$
Fubel	.189 ¢．007	.429 干．102
Harding	－．152. .188	． $7: 9$ ¢．060

No positive correlations were found in this work except in the following two cases:

1. For the Pioneer Variety, the correletion was. 88 F.028 for the total weight.
2. For the Harding Variety, the correlation was . $72 \boldsymbol{\mp} .000$ for the average veight. Negative correlations were found in the folloring cases:
3. Harding -. 15 耳. 188 for total weigit

4. Pioneer $=.025$ F. 186 for average veight
5. Sam -. 253 . 004 for average reight

The data presented plainly shows that the reletionship between the leaf area and the total weight and the average veight of the fruit on a given shoot is small. The results show that there are great variations in the weights and leaf areas.

Certain shoots bore a very small leaf area and produced a lare total weizht and average veight of the fruit. Other cases are seen where a large leaf area is accompanied by a small total veight and average veight of fruit.

The bushes used in connection with this investigation had been pruned quite heavily for several years in an effort to secure a supply of propagating stock. This may have upset some of the metabolic functions of the plant to some degree. It is also believed that tine berries of a particular shoot are not depencent on the adjecent leaf area for elaborated food, but it may rely on more distant leaves as a source of elaborated food.

The explanation for the increase in total weight and average weight of the fruit of one shoot over that of another is not explainahle by the increase or decrease of leaf area. The cause is evidently due to other factors.

Acknowledgments

The writer is greatly indebted to Professor V. R. Gardner, Professor F. C. Bradford and Mr. Stanley Johnston for their assistance throughout the work, from the original planning of the experiment to the completion of the manusoript.

1. Kraus, E. J., and Kraybill, H. R. - WVegetation and Reproduction with Special Reference to the Tomato* - Oregon Agricultural Experiment Station Bulletin, No. 149 - 1918.
2. M. H. Haller and J. R. Magness - "Relation of Leaf Area to the Growth and Composition of Apples" - Report of American Society for Hortioultural Science 1925.
3. Mangess, J. Re - "Relation of Leaf Area to Size and Quality in the Apple" - Report of American Society for Horticultural Science 1928.
4. Johnson, Stanley - Winter Pruning of Black Raspberry" - Michigan Agricultural Experiment Station Special Bulletin, No. 143-1925.

Rutht use und

