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ABSTRACT

APPLICATIONS or GEOSTATISTICS To SETTLEMENT PROBLEMS

By

Mostafa Kamal Ashoor

This research investigates improved techniques for estimating and modeling the

settlement and differential settlement of shallow foundations on noncohesive soils using

standard penetration test (SPT) values.

Two geostatistical methods (trend surfaces and Kriging) are employed to model

the spatial variability of the soil standard penetration resistance values (commonly known

as N values) in a three-dimensional field.

Lack of homogeneity in the N-value data in the vertical direction:

1. is analyzed geotechnically considering such factors as the soil’s relative density,

overburden pressure, stiffness. . .etc, and;

2. is accounted for by a nonconstant—mean assumption, and;

3. is tested by statistical multiple comparison techniques.

‘ Aside from the difficulties of measurement bias; which is accounted for by the

above-mentioned modeling, the N values vary from point to point, and the question

remains as to how to combine the varying measurements of N values within the depth

0f influence under the foundation footing into one design N value to be used for the

deterministic models for settlement estimation.

This question is tackled in this research by using the two geostatistical methods

to generate a two—point estimate for the design N value. The two point estimates are in
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tum weighted to obtain a single value. It is hoped that this proposed estimate will be

favoured by foundation designers on the grounds of simplicity.

Moreover, this two-point estimate is shown to be:

Comparable to the current procedures of estimating the design N value in the1.

sense that the N values at different depths are given similar weights in both

methods.

2. Easy to be used by the spatial models in a way that can help in transforming the

spatial N(x,y,z) models into a planar N(x, y) or S(x, y) model. This latter model

enables one to do such things as contouring analysis or planar settlement compari—

sons and such like.

The developed method is verified using simulated data of an assumed field. The

practical reliability is then tested by conducting the modeling on available case histories.

The modeling of N values and settlements proposed herein provides a capability

to study the practicality of obtaining more N data in order to take advantage of the

resulting lower degree of uncertainty.
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BACKGROUND , OBJECTIVES , AND SCOPE

INTRODUCTION

Soil deformations under the action Of external loads are a major consideration

he design of structure foundations. Nevertheless, economic feasibility dictates that

astimation of such deformations must be made on little and widely scattered test data

may have considerable variability. In this study an investigation is made as to how

information can be best "mathematically" represented, and whether improved

irmance predictions can be made using such representation.

The loads that can be safely applied to a foundation soil should fulfill two

.tions:

The shear stresses deve10ped in the soil mass should not exceed some

tolerable fraction of the shear strength.

The settlement and differential settlements of foundations should not exceed

certain tolerable values.

hesive soils, both of these criteria require careful evaluation. Cohesionless soils,

other hand, have good bearing capacity in most cases and settlement usually

5 the design of shallow foundations. Except for relatively narrow shallow footings

se materials where the water table is high, the allowable pressure which may

'ed to a cohesionless foundation will be governed by settlement considerations

 

 



 

 

ther than shear strength. In other words, for dimensioning shallow foundations

upOI‘ted by a sandy soil, the failure parameter for verifying stability with respect

shear failure is less critical and the design of this type of foundations will be dictated

the deformation parameter for estimating the settlements, (See ,e. g. , Jeyapalan,

.6; Moussa, 1982; Simons and Menzies, 1976). Meyerhof (1956) and D’Appolonia

I-rissette (1968) quantify these recommendations noting that, except in cases where

footing width is less than about 3 ft or 4 ft, the allowable footing settlement is

ally exceeded before bearing capacity considerations become important.

The state-of-the-practice for shallow foundation design is that penetration

stance measurements, commonly called "N values", are obtained from the standard

etration test (SPT) and used to estimate settlements , either directly or as predictors

lastic parameters.

The focus of this study is to develop a statistically rational approach for

loying the SPT N values to estimate the settlements and differential settlements

thallow foundations on sandy soils. The approach would be of particular benefit

re the number of footings to be designed is greater than the number of borings.

lIS dissertation the SPT test results will be referred to as N values, and the

ion which represents the N value as a function of the testing location will be

ed to as the N function.

Although the current procedures of estimating the settlements in sands have

ent views regarding the depth of influence Of a footing (e.g. Meyerhof 1965,

rtmann 1970, Burland 1985) or the correction of the N values (e.g. Skempton

Liao 1986, Seed et al. 1976, Peck et al. 1974, Bazaraa 1967), most of them adOpt

 

 

 



 

1
b



 

 

er a simple average or a weighted average of the N values. In contrast, the

lication Of geostatistics to the N data - as suggested by this research - will employ

available data to formulate a model for the N values.

Two modeling techniques are proposed to model an N function on the assumption

the N values which are obtained from a limited number of borings are

Lidered as a sample and thatthe N function has estimated parameters and associated

:rtainty. The function developed from this sample will be used to estimate the

penetration resistance function of the whole site, and in particular to generate "two-

t estimates" under footing locations.

It is stated (DeGroot and Baecher, 1993) that , stronger inferences are

ble by dealing with "data statistically than by relying solely on intuitive data

)retation. Geostatistical spatial models are a relatively recent addition to the

tics literature and their applications are being used with increasing frequency.

ie, (1991) stated that, any discipline that works with data collected from different

1 locations needs to develop models that indicate when there is dependence

en measurements at different locations. These models are used to summarize

bserved data or to predict unobserved ones. The strength of geostatistics

ron, 1963) over more classical approaches is that it recognizes spatial variability

h the large scale and the small scale, or in statistical notation it models

atial trends and spatial correlation.

This research considered two applications of geostatistics, namely the "trend

analysis" and the"interpolation modeling techniques" such as Kriging, to

te the spatial trends or to model the spatial correlation of the N values.

  

 



 

 

4

Modeling the N data using a geostatistical approach will make it possible to

ssign a degree of uncertainty to the resulting model. This concept is used to

lustrate a technique for assessing the trade off between the estimation precision and

1e SPT samng costs. Such a technique will help the engineer designer decide on a

anng plan which is reasonable for any foundation exploration scheme.

 

The planar (x, y) settlement function obtained from the methods developed

:rmits one to draw contours of the settlements, which can be used to help the

signer to adjust sizes as necessary to minimize expected settlement or differential

ttlement over the site. Such contours could be used also to predict the expected

ape of the settlement surface under buildings with many similarly - located

)tings over broad areas such as warehouses and parking ramps.

The accuracy of the proposed models is tested two ways. First they are verified

 
ng simulated data Of an assumed field. Second, their practical reliability is checked

conducting the suggested modeling on a number of available case histories.

:omparison is made between the predicted settlements using these approaches and the

res which were reported by the previous investigators.



 

 

THEFRAMEWORKOF SETTLEMENT PREDICTION FROMNVALUES

The estimation of the correlation between a series of a scattered N values

been studied by a number of investigators, for example (Vanmarcke, 1977),

ikula, 1983). However, none of them developed a model to help in selecting a design

1e from scattered data for settlement prediction.

Most of the current procedures for predicting footing settlements in sands from

SPT test adopt either a simple average or a weighted average of the N values. The

of an average N value implies the prediction of the average settlement. It also

lies some statistical relationship between the data. A prudent designer would desire

:r an accurate prediction or at least a likely maximum predicted value for the

ement.

The problem is how to develop an accurate settlement prediction as data are

m to be scattered and variable. The settlement problem is best posed in a statistical

ework. The problem lends itself to subdivision in the following way:

The SPT data occur in the form of a number of N values which are measured

.' each boring at suitable vertical spacings. The boring locations are represented by

° ates in the (x,y) plane, so the N values are collected from different Spatial

ns and can be represented by a set of discrete functions as:

N(z)(xi : yi)

z : is the testing depth.

(thi) : are the horizontal coordinates of the boring i.
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such functions is illustrated in Figure 1.1.

N(z) (X11 1 Ya)
_

 

 
N(z) (X1 I Y1)

fi— N(z) (XOIYO)

; N(z)(X21Y2)

fi-

 

 

 
 

 21,

Figure 1.1 : Typical N(z) functions.

ring the N values may Show considerable scatter.

sidering the three coordinates x, y & 2, it can be said that the N values are

(three-dimensional field. It is required tO estimate the N values at different

16311] the location (xo,yo), where no data were available, which can be

by the function:

N(z)(xo : Yo)

, it iS required to compute the confidence interval on the estimate to some

nfidence to be used for evaluating the quality of prediction.

 



 

As was noted earlier in the introductory section, many researchers have related

settlement to the N-value. It was mentioned that these procedures employed the N

6 either explicitly or implicitly as predictors of elastic parameters. Therefore, it is

ired to use. the estimated N function N(2) (x0 , yo) to formulate a design N value to

sed for the deterministic models of settlement estimations. Here also, it is required

aluate the quality of the settlement prediction.

RESEARCH OBJECTIVES

This research is proposed to add a useful contribution regarding how to treat

:r of N value data by modeling it as a spatial'function , and to use points on this

ion to estimate the settlements and differential settlements.

patial data analysis and modeling will be done by the use of suitable geostatistical

iques (specifically trend surface analysis and interpolation modeling).

recise research objectives are as follows:

Setting forward guidelines for employing the geostatistical modeling for obtaining

better settlement predictions.

Proposing geostatistical methods to treat the data scatter of N values to provide

a rational estimate of N value at locations where no data are available.

 

  

 



 

 

 

Assessing how to use the resulting N functions in conjunction with selected

existing settlement functions to predict the settlements and differential settlements.

Testing the two prOposed geostatistical methods in combination with a settlement

prediction method on a number of previously—published case histories and

comparing the results with the measured values to assess the accuracy of the

proposed model.

RESEARCH SCOPE

To accomplish the required objectives, the research chapters are organized

ows:

Chapter 2 reviews the SPT test procedure as well as the techniques used for

ing settlements of shallow foundations. These are followed by reviewing the

procedures for predicting settlements in sands using the SPT test results directly

using SPT results to estimate deformation parameters to be used with elastic

chapter 3, the variability of N values is analyzed in a geotechnical framework

' g such factors as the soil relative density, overburden pressure,

,etc. The sources Of the variability of N values are also reviewed. Special

5 is made on the tendency for the N value to increase with depth and its

11 for overburden pressure.

tical modeling methods from the published literature are reviewed, emphasizing

  

 



 

 

- adaptability of the geostatistical approaches which are suitable for characterizing the

tter of the soil properties. These include the random field theory, the trend surface

: ysis theory, and interpolation schemes such as triangulation and Kriging techniques.

In chapter 4, a two-point estimate technique is deve10ped to combine the

ing measurements of N values within the depth of influence under the footing into

design N value to be used in deterministic models of settlement estimation. This is

o wed by development of the suggested approaches for the application of both the

(1 surface analysis theory and the Kriging technique to obtain the SPT function and

nately the two point estimate. Recommendations are made as to the class of problems

which each is preferred.

lications of the models to practice are also discussed. These include the evaluation

1e quality of prediction versus the quantity Of the data and their monetary costs and

the contours of the expected settlements.

In chapter 5, the two suggested methods for settlement prediction, trend surface

Isis and Kriging, are each tested two different ways. First they are verified using

lated data of an assumed field. These are followed by the verification of the

Oped "two-point" settlement estimate by using the assumed field and an assumed

g. Second, the reliability of the proposed methods for practical applications is

ed by conducting the suggested modeling on a number of the available .case

'es. Results are compared with the measured values. Based on these studies,

'sons are made to find out the advantages and disadvantages of using each of the

didate procedures for estimating N(x,y,z).
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In the final chapter, summary, critical discussion, conclusions and recommenda-

ns are presented.

 

  

 
 





 

CHAPTERZ,

CURRENT PRACTICE IN SETTLEMENT PREDICTION

USING THE SPT TEST

GENERAL

The standard penetration test continues to be widely pOpular among foundation

ers because it is economical and easy to perform. It has been studied and discussed

rge number of investigators and its correlations with basic soil parameters are well

shed.

A considerable number of methods for the estimation of settlements in

onless soils rely on SPT data. These include: (Terzaghi and Peck, 1950;

hof, 1956; Peck and Bazaraa, 1967; Alpan, 1964; Schmertmann, 1970; and

1971). The published methods may be divided in two main groups

poulos, 1992):

Those which give a direct estimation of settlement from , the results of in—

situ tests.

Those based on elastic theory which depend on estimated material deformation

parameters from the interpretation Of in-situ test results.

The next four sections will summarize the current practice in the SPT test

re, the measurement of settlements , and prediction methods related to groups

two respectively.
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SPT TEST

The standard penetration test is currently the most popular and economical

s to obtain subsurface information regarding cohesiOnless soils. The test has been

ardized by ASTM D 1586 as "Standard Method for Penetration Test and Split —

:1 Sampling of Soils". ‘

This test involves using a 140 lb (63.5 kg) driving maSs falling free from a

t of 30 in (0.76 m) to drive the standard split-barrel samwer which has an inside

:ter of 1.5 in, an outside diameter of 2 in and a length of 18 in. The sampler is

n a distance of 18 in (0.45 m) into the soil at the bottom of the boring. -

ampler is first driven a distance of 6 in (0.15 In) to seat it on undisturbed soil and

Imber of blows recorded. The sum of the blow counts for each of the next two six

icrements is taken as the penetration resistance (N value) in blows per foot unless

Ist increment cannot be completed (either from encountering rock or because the

count exceeds 100). In this case the blow count for the last 12 in (0.3 m) is

ted and taken as the N value.

The ASTM standard (ASTM D 1586, 84) - states that the boring is advanced

entally to permit intermittent or continous sampling. Typically the test intervals

:d are 5 ft (1.5 m) or less in homogeneous strata with test and sampling locations

y change of strata.

According to many investigators (see e.g. Gibbs & Holtz, 1957 ; Seed et.al.,

Peck et.al., 1974 ; Bazaraa, 1967 ; Liao, 1986 ; Skempton, 1986), the N value

ular soils is affected by the effective overburden pressure. For that reason, the

: Obtained from field exploration under different effective overburden pressures
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:hould be changed to correspond to a standard value of overburden pressure when used

0 estimate the relative density (D,).

.2.1 SPT TEST PRECISION AND BIAS

The SPT test has been studied and reported by many investigators. These include

[eyerhof (1957), Gibbs and Holtz (1957), D’Appolonia (1968), Peck and Bazaraa

967), Schmertmann (1970), and Kovacs and Salomone (1982).

The studies by Schmertmann, De Mello, and Bazaraa as summarized by Bowles

988), noted that the SPT test is difficult to reproduce. Some of the factors which affect

e reproducibility include variations and interference in the free fall of the drive weight,

3 use of worn or damaged drive shoe, failure to properly seat the sampler in the bottom

the boring, the inadequate cleaning of loosened material from the bottom of the

ring, failure to maintain sufficient hydrostatic pressure in the borehole so that the test

e becomes "quick", and driving a stone ahead of the sampler.

In another field measurement study, Kovacs and Salomone concluded that the

rgy delivered to the drill stern varies with the number of turns of rope around the

ead, the fall height, drill rig type, hammer type, and operator characteristics.

The ASTM standard (D 1586, 84) noted that variations in N values of 100 % or

e have been observed when using different standard penetration test apparatus and

lers for adjacent borings in the same soil formation. When using the same apparatus

driller, the current opinion (ASTM D 1586, 84) indicates that N values in the same

at the same overburden stress can be reproduced with a coefficient of variation of

t 10%. It is noted also (D 1586, 84) that the use of faulty equipment can
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rificantly contribute to differences in N values obtained between Operator — drill rig

BIDS.

2 PRACTICAL ADVANTAGES OF THE SPT TEST

It is stated by the ASTM standard (D 1586, 84) that the SPT test is used

Jsively in a great variety of geotechnical explOration projects. . Many local

:Iations and widely published correlations which relate SPT blow counts, or N value,

:he engineering behavior of earthworks and foundations are available.

Regardless of the variability of the SPT test results, the SPT is not likely to be

ioned for several reasons. Bowles (1988) cites the following: I

The test is too economical in terms of cost per unit information.

If performed every 2.5 ft of depth a tube recovery length of 18 in, including

seating length, produces a visual profile of around 60% of the visually

examined.

The test results in recovery Of very disturbed samples, but they can still be

tested for index properties, and with appropriate conservatism, tested for

strength properties.

Long service life Of the enormous amount of equipment in use.

The accumulation of a large SPT data baselwhich is continually expanding.

The fact that other methods can be readily used to supplement the SPT when 
the borings indicate more refinement in sample/data collection.
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1.3 MEASURING SETTLEMENTS

As the focus of this research involves prediction of settlements, which are verified

y field measurements, it is relevant to briefly review the methods of measuring the

:ttlements.

It has been stated (Sze’chy and Varga, 1978) that the measuring of settlements

m not really require any sophisticated apparatus or theoretical training, only

me organized thinking and accuracy. The measurement techniques used rely mainly on

mventional surveying. Hanna (1973) stated that in most projects simplicity is

sential because of the pressures of finance and time limitations. For the great majority

foundations, most if not all of the required measurements can be obtained by simple

rveying techniques. The most commonly obtained information is the determination of

:vation and change in elevation by offset measurement from a line of sight.

For determination of absolute movement, it is essential that the datum benchmark

located well away from the zone of ground movement; otherwise it may also be

ected by the ground movements, ( a distance of 60 In from the building is usually

ugh to be clear of any effects of settlements of the building ). A permanent

chmark is used if available. Where this is not available, a benchmark or a number

enchmarks, depending on the size of the project, are constructed, (Burland et. al.,

2).

The reference points on the foundations are either rigidly attached to the structure

olting or welding, or special demountable points are employed. The reference pin

socket commonly used for survey of foundation settlements is comprised of a steel

rass socket grouted into a hole in the side of the foundation. The reference pin
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rews into the socket. When not in use the socket is protected with a cover plate. The

elling staff is placed on top of the reference pin. On steel structures such as oil tanks,

3 may be welded to the outside of the tank about 1 ft above ground level. Each lug,

ich has a protective cover, has a steel ball bearing about 1 in diameter welded to it

ich forms the reference mark for the survey, (Hanna, 1973).

Settlements of strata lying deep under a building can be measured by a simple

suring rod bored or driven down to the layer in question with an enlarged tip at the

om of the rod. The bored rod is usually protected against corrosion by asphalt

ting over the full length of the rod and cloth wrapping impregnated with oil.

iriven, the rod should be protected by a casing which is slightly retracted in the end,

:e’chy and Varga, 1978).

Sze’chy and Varga (1978) state that even if the observed data have some

:ertainty, they still can be used for settlement evaluation and noted that, it is always

:er to know that settlements between the limits of, say, 5 cm to 15 cm are to be

cipated than to be in doubt whether settlements will be of a few millimeters only or

le to reach magnitudes of tens of centimeters. In other words, even with some

rtainty a reasonable estimate of the magnitude is important.

SETTLEMENT PREDICTION METHODS (GROUP 1)

Some of the published methods related to the first group which employ N values

tly for settlement prediction - as. cited by many authors including Jeyapalan, 1986;

nS and Menzies, 1976 ; Oweis, 1979 ; Haji, 1990 ; and Bowles, 1988 - are as

S:

 

  

 





 

Meyerhof (1965): recommended predicting the settlement as the ratio of the net

 
undation pressure q to an empirically determined pressure q’ which is expected to

ult in a settlement of one inch:

(2.1)

S=q/q’

ere

S = settlement in inches.

q = net foundation pressure, in (ton/ftz)

q’== (N/3) [(B+l)/2B]2 ; for B > 4 ft.

= N/8 ; for B < 4 ft.

B = footing width in feet.

Peck and Bazaraa (1969): developed a refinement of Meyerhof’s

:edure by introducing correction terms and give the settlement as:

S=(2/3) (q/q’) (pd/pw). (2.2)

q’= (N’/3) [(B+1)/2B]2.

N’ = N value corrected for overburden pressure.

pd: effective overburden pressure at a depth B/2 below the base of the footing

for the dry condition.

pw= pressure at the same level (B/2 below the base) with water table present.

== pd, if there is no water table present.
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Parry (1971): proposed an empirical equation giving the settlement as:

S=(l/N) (ZOOqB) CD. CW.CT. (2.3)

are

= settlement in (mm).

N = weighted average N value using the weights of (3,2 &l) for N values 
between the depths of (0 to 2B/3) , 1(2B/3 to 4B/3) and (4B/3 to 2B) respectively.

q = applied pressure in (MN/m2).

B = footing width in (In).

CD,CW,CT= factors for the influence of excavation, water table and the

thickness of the compressible layer.

V’s equation was developed by assuming that the settlement is a function of the width

e loaded area, the magnitude of the bearing pressure and the deformation modulus

3 soil, which is implied by the weighted N values. It is of note that the weighting

rs permit incorporation of the spatial trend of the N values. This method could

.bly be included in Group 2 (Section 2.5), but it is included here because it does not

y the modulus E explicitly.

Alpan (1964): recommended predicting the settlement as:

S=(O.14q/25) (N’) '1°8[ZB/(B+l)12 (2.4)

S = settlement in inches.

q = applied pressure (t/ftz).
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N’ = N corrected for overburden pressure.

B = footing width in feet.

pan’s equation was based on predicting the settlement of a plate one square foot at

undation level using measured N values corrected for effective overburden pressure and

an extrapolating this predicted settlement up to the settlement of the full scale structure

ing the Terzaghi and Peck correlation. This correlation formulates the relationship

tween the settlement of a footing of width B and the settlement of a one square foot

t plate loaded to the same loading intensity as:

s,,/S,=(ZB/(B+:L))2 (2.5)

Schultze and Sherif(1973): estimated the settlement by :

s=q,Bf/[1.71N0-87(B/B,)°-5(i+o.4D/B)] (2.6)

ere

S = settlement in (cm).

qt = total foundation pressure (kg/emf).

B = footing width (cm)

B1 = 1 cm.

f = parameter depending on width to length ratio and thickness of compressible

stratum.

D = depth of embedment (cm).

1126 & Sherif’s equation was based on a statistical correlation using linear elastic

ry as a model.
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neral Cements On The Methods Of "Group 1"

To summarize the inherent assumptions of the methods of "Group 1" it can be

lthat the Meyerhof’s method is an analytical expression of Terzaghi and Peck’ s

I known settlement design chart that allows estimating allowable foundation

ssure such that settlements would not exceed 1 inch. In this method, the

ition of the water table is ignored.

Peck and Bazaraa’s method is a refinement of Meyerhof’s method. They

Immended that the predicted settlements based on the Terzaghi and Peck design

It be reduced by one-third but still proposed that the settlement estimate is to be

eased when the depth to water table below the foundation base is less than B/2.

as recommended also that the N values are to be corrected for the effect of the

rburden pressure.

The results of a study by Schmertmann (1970) suggested that the Terzaghi and

r design Chart is quite unconservative for large foundations and it may be in error.

rther recommended that the Meyerhof method in its present form Should be

ded. Schmertmann’s approach is described in the next section.

Parry’s methodiassumes that the settlement is a function of both the footing width

he bearing pressure and inversely proportional to the N value. This is formulated

ilding an empirical model using measured settlements.

Alpan’s method is based on predicting the settlement of a one square. foot plate

Indation level using measured N values corrected for effective overburden pressure

'rren extrapolating this predicted settlement up to the settlement at full scale footing .

the Terzaghi and Peck correlation.
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Schultze and Sherif’ 3 method is based on statistical correlation using linear

astic theory as a model. Several coefficients were employed to ensure a high degree

7" correlation.

,5 SETTLEMENT PREDICTION METHODS (GROUP 2)

The second group of methods are those which estimate the deformation

meters, in particular the modulus E, from the interpretation of in situ tests or

boratory tests, then apply elastic theory to estimate strains, and then integrate vertical

rains to obtain settlements.

It has been stated (Bazaraa 1982) that the use of the theory of

asticity for estimating stresses or settlements for foundations in sand is not

eoretically correct. However, with reasonable correlation of E with standard

netration N value ( for a certain depth under the footing), this method can be

nsidered as a reasonable empirical method for estimating the settlement (Bazaraa,

£2, pp. 68).

me of the published methods related to this group — as cited by many authors including

apalan, 1986 ; Oweis, 1979 ; Schmertmann, 1970 ; Webb, 1969 ; are as follows:

 

Schmertmann (1970): gives the following equation for calculating the

1 settlement:

ZB

s=Cl.C2.pE [(Izi/E) .dzi]. (2.7)

z=0 .
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p = increase in effective overburden pressure at foundation level.

C1 is a depth embedment factor.

C2 is an empirical creep factor.

I2 is the strain influence factor.

B is the deformation modulus = 4N for silts or slightly cohesive silt - sand

to 12N for sandy gravel and gravel.

Webb (1969): estimated the settlement by:

S=2 [(pzi/E)dz,-]. (2-8)

i=1 ,

p2, = vertical stress in soil layer 1 produced by footing load.

dzi = thickness of layer 1.

ral Comment On The Methods Of "Group 2"

To summarize the methods of "Group 2", it can be said that the methods by

rtmann and Webb are quasi-elastic (Oweis, 1979). Both methods predict settlem-

roportional to the width of foundation (B) and the foundation pressure (p)

nversely proportional to the modulus of deformation (E). In both methods the

.us (E) depends solely on the N value irrespective Of foundation width and

re, but the modulus is implicitly weighted in Schmertmann’s method.
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Webb’s method implies that maximum strains occur immediately beneath the

use of the footing where vertical stresses are at maximum values. This is contrary

0 results from tests on small plates that indicate maximum Strains occur at depths

f 0.5 B to 0.75 B below the base of footing (Oweis, 1979).

Schmertmann recognized this by assuming a maximum strain at a depth of

1.5 B. The Schmertmann’s method accounts for the observed rapid attenuation of

ettlements with depth by considering only a thickness of compressible layer equal to

B when estimating settlements.

Although the models of "'Group 1" assume a single value of "N", the models

if "Group 2" assume precise information regarding "N", i.e. each layer is represented-

~y different N and E values. or N = N(z) and E = E(z).

Schmertmann made the point that the distribution of vertical strain under the

enter of a footing on a uniform sand is not qualitatively similar to the distribution of the

Icrease in vertical stress; rather the greatest strain occurs at a depth of about B/2. He

reposed an influence factor whose value increases with the depth "z" according to the

inction:

Iz=[0.l+(z/B)]
(2.9)

aching a maximum value at the depth of (B/2) then decreasing according to the

nction:

Iz=(0.4/B) (219—2) (2.10)

til it reaches a value of (0.0) at the depth of (2B).
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The conclusion here is that the N value is. a main input in most settlement

xiiction methods. In chapter 3, the approaches of treating the data scatter of N values

: reviewed. For the prediction of settlements at many points in the (x, y) plane, it is

tired to deveIOp a method which has the simplicity of single N value techniques but

:serves the information regarding the spatial structure of the N values. This will be

lressed in chapter 4 by developing a method employing the variability of N values as

,,(x,y) together With a selected settlement prediction method.

 

 





 

 
VARIABILITY OF SOIL DATA AND SUMlVIARY OF

GEOSTATISTICAL MODELING lVlETHODS

.l VARIABILITY OF N VALUES

 Although the use of SPT data to estimate design parameters is well established in

literature, little guidance is given on how to treat data scatter (Wolff, 1989).

rrelations provide estimates of soil properties as a function of a single N value, and

rious designers may enter correlation equations with values anywhere from the average

lue down to values below the minimum measured. Wolff (1989) showed that the

signer’s assumptions and judgements may significantly influence the final design

:ommendations. Haji (1990) noted that the interpretation of the soil boring data and the

ection of a representative N value depends to a great extent on the experience and the

)wledge of the foundation engineer rather than on a Specific procedure or method.

The design N value is used to estimate the angle of internal friction, which in.

will be used to assess the soil bearing capacity; consequently the decision whether

se shallow foundations or deep foundations is dictated by the design N value.

hermore, if shallow footings are selected the dimensioning of the footings and the

'cted settlement will all be a function of this N value.
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1.1 Sources Of Variability Of N Values

Soil by its nature has an inherent variability. This variability may result from

ilot & El-Ramli, 1982):

The variation of soil layer thicknesses.

The heterogeneities within the soil layers in terms of different relative densities,

different moisture contents, different overburden pressures, and different

stress histories.

From the viewpoint of mathematical modeling , Baecher (1978) attributed the 
'ation of soil properties to 3 sources:

Drift in average properties.

Random fluctuations about the average.

Inhomogeneities.

The modeling problem is to represent mathematically the spatial variation

ch is attributed to the first and second sources. The variation due to inhomogeneities

not. be tackled by mathematical modeling; however, it is suggested herein that

ndom field of the soil properties can be divided into a number of subfields, each

vhich satisfies the homogeneity condition. Thus, a soil field could be modeled

a set of mathematical functions. This concept will be developed further in section

The above-mentioned inherent variability, combined with the variability resulting

the testing repeatability or reproducability errors, commonly leads to considerable

r in SPT values over a construction site.

 

 





 

 

.1.2 N-Value Depth Effect And Correction For Overburden Pressure

For "consistent" materials (i.e. a thick deposit of soil having uniform composition

d relative density) the variation of N in the vertical direction is

minated by the soil stiffness which increases with depth due to the overburden

essure and the corresponding increase in confining pressure. But the question of how

soil modulus E, a measure of stiffness, would increase with depth in such a material

3 been the subject of different and varying opinions:

The earliest literature on stiffness of a semi-infinite mass started with

Boussinesq (1885) who developed solutions for stress and strain in an elastic

homogeneous half space, but did not take any account of the systematic

increase of stiffness with depth.

Feda (1963) presented a model of an elastic half-space whose modulus increased

parabolically with depth.

Gibson (1967) considered the soil as an elastic half-space whose modulus

increases linearly with depth.

Many authors (e.g. Skempton, 1986; Liao and Whitman, 1986; Seed et al.,

6; Peck et al., 1974; Bazaraa 1967) recommended that field N values should be

ected for the vertical effective overburden pressure before using them for

acterizing the sand. The justification for such correction is explained as follows:

In sand, the settlement (under a given stress change) is strongly correlated to its

relative density.

The N value reflects both the relative density (D,) and the effective stress.

This correction makes it possible for the N value to be correlated directly to the

 

 

 





 

 

relative density; consequently this corrected N value can replace the relative

density in the correlation which was mentioned in (1) above. That will lead to

a more accurate prediction of settlement from N value.

Regarding item 1 above, D’Appolonia et al.. (1968) confirmed the correlation

tween settlement and relative density by noting that the principle variables

ntrolling settlement for a particular granular soil under a given static loading

nfiguration are the initial density and the initial state of stress in the deposit.

erefore, analytical and empirical methods of estimating settlement of footings on sand

uire a direct or indirect measurement of in situ density and stress state.

Regarding item 2 above, D’Appolonia (1968) presented a relationship between

the relative density and the effective stress, similar to that shown in Figure 3.1.

seen in the figure, the N value cannot uniquely define both relative density and

ass; there are an infinite number of combinations of stress level and relative density

t will result in the same measured N value, (D’Appolonia 1968).

Regarding item 3 above, the correction of N value was suggested to make it

sible for an adjusted value N’ to reflect only the effect of the relative density while

ng the effective stress value. D’Appolonia (1968) reported that "Empirical

tionships have been developed to correct the blow- count for in situ vertical

tive stress. Thus, the SPT can be correlated to relative density". He also added

"When the SPT resistance was corrected for overburden pressure, Meyerhof’s

0d accurately predicts the measured settlements".

Based on the above considerations, the N values will be corrected, using the Liao

Whitman correction method, before incorporating them into the proposed models.
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Figure 3.1 : N Value Versus Relative Density "Dr" And Vertical

Effective Stress "Pv’", (After D’Appolonia).
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5.2 . SUlVIMARY OF GEOSTATISTICAL MODELING METHODS

Having described the inherent variability of N value data, it is desired to represent

.uch data with one or more functions that capture overall trend and variability around

hat trend. Sections 3.2.1 through 3.2.3 below summarize some geostatistical methods

vhich are suitable for characterizing the scatter of soil properties:

i.2.1 The Random Field Theory

This theory was employed by Vanmarcke (1977) to study the implications of

.tochastic variability of soil properties. He quantified the variability of the soil

>rofile using the "variance function". The variance function was defined as the ratio

>f the variance of the moving average function to the variance of the random

'unction of the soil property, before smoothing, related to one spatial coordinate "z",

s illustrated in Figure 3.2.

As a smoothing procedure, the moving average implies the removal of local

laxima and minima of the random variable function resulting in reducing the data

ariability and decreasing the variance. For the SPT data, the random variable is the N

alue, consequently the variance of the moving average over an area is smaller than the

niance of the N values, which can be expressed as:

02[1_\-7] <ozuv] ‘3'“

If the "averaging interval" is defined as the distance within which the values of

8 random variable are replaced by their average to form one point on the movmg

erage function, then the decay of the variance function as the averagmg interval
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Figure 3.2 : Parameters Of Homogeneous Randomly Varying Soil

Properties.
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Figure 3.3 : Parameters Of Homogeneous RandOmly Varying Soil

Properties In 3- Dimensions.
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Figure 3.4 : The Decay Of The "Variance Function." As The

Averaging Interval Increases.



 

34

acreases is used to estimate the " correlation distance" or the " scale of fluctuation"

if the variable values, as illustrated in Figures (3.2, 3 & 4). The " scale of fluctuation"

3 obtained by multiplying the asymptotic value of the variance function by the

tveraging distance corresponding to this value Figure 3.3.

Physically the "scale of fluctuation" is a measure of the distance within which

:he soil property shows relatively strong correlation from point to point or the

iistance over which the soil can be treated as statistically homogeneous. What is often

needed within this "statistically homogeneous" soil mass is (Vanmarcke , 1977) the

probability density function of some " spatially averaged " soil property. Consequently,

:he expected value and the variance of the soil property within this soil mass are

)btained in conformity with the distributional characteristics of the observed

zalues.

However , Vanmarcke (1978) later made the comment that the scarcity of

.ubsurface data makes it difficult to validate complex stochastic models. For

:xample , it is seldom possible to distinguish between competing functional forms

1f the correlation function. At best, the data permit one to estimate the decay

arameter (such as the correlation distance) of any chosen functional form for the

)rrelation or variance function. Therefore, in this research, the random field theory is

)t recommended for the development of the proposed models.
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3.2.2 Trend Surface Analysis

The trend surface analysis technique was suggested by Krumbein and Graybill

(1965), summarized by Davis (1973 and 1986) and extended by Baecher, (1978). In

this procedure, a trend surface describing a soil property N = N (x,y,z) is estimated

from data by taking a least squares fit. Precisely, the trend surface analysis is an

adaptation of the statistical field of multiple regression, and the techniques have been

borrowed directly from the discipline. In some cases (Davis, 1986) one can even

use the powerful tests of hypotheses of multiple regression on geologic problems.

Fhus, one approach for consideration in a Spatial approach to the settlement prediction

problem is to estimate a trend surface from data by taking a least squares fit with

confidence limits determined as in regression analysis.

Lancaster and Salkauskas (1986) noted that, if there is a sizeable error that

enters into the data in a random way that should be smoothed out, then judgement

must be exercised in assessing the degree of smoothing to be applied and the choice

if smoothing procedure. In this instance smoothing is referred to in the statistical

ense which implies the removal of extraneous local maxima and minima and the

ientification of the underlying trend. Here, several different least squares fitting _

:chniques may be considered.

There are several items which must be considered in attempting to fit a surface

rough the data scatter of N values. These are:

The trend surface geologic definition.

The trend surface operational definition.

The functional forms of the trend surface.
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Regarding the first item, Cressie (1991) reported that geostatistics recognizes

atial variability as being the sum of two components, the large scale component or

atial trend and the small scale component or spatial deviation. Trend surface analysis

nsiders only large scale variation, assuming independent errors. However , what

considered to be "large scale" and "small scale" is largely subjective.

The question then, is how to objectively separate the data into two components

the distinction between the components is entirely subjective. To remedy this

estion, Davis (1986) suggested that this be done using an operational definition which

ecifies the way in which the data are to be treated instead of a geologic definition of

nd and deviation.

In accordance with the second item, the operational definition, a trend may be

med as a function of the coordinates of a set of observations so constructed that

: squared deviations about it are minimized. The expansion of this definition will yield

t:

The trend is a function of the coordinates, meaning that an observation is

considered to be in part a function of the location (x , y , z) of the observation.

This function has the form of an equation whose terms are added together.

Each term is the product of a coefficient and some combination of the coordi-

nates.

The sum of the squared deviations from the mean defines the variance of the

sample. So, it can be seen that the trend can be regarded as a function having

the smallest variance about it.

 

 

 





   

  

  

  

  
  

   

 

' Regarding the third item, the functional form of the trend of the N function

(x,y,z), one seldom would have any prior knowledge about what the functional form

the trend should be. Instead, one does the next best thing, and approximates the

r c own function with one of arbitrary nature. Commonly , a polynomial expansion

used which uses the powers and cross-products of the coordinates. Polynomials

: extremely flexible, and if expanded to sufficiently high orders , can conform

very complex surfaces. There is however, some mathematical basis to using the

plest (lowest order) model in the abscence of information to justify a more complex

del. It is noted also that the 2 term should be different than the x and y terms, due

a epth effect.

It is important to note that polynomial functions are used for trend analysis

arily as a matter of convenience. For polynomials, the equations necessary to find

coefficients of the trend may easily be established and solved by computer programs

vis, 1986, pp. 411). The use of polynomials does not mean that the N functions are

'nomial functions; their unknown nature is only approximated by a polynomial

nsion. Other approximations may be more appropriate in specific instances, but in

ral are less convenient.

The trend surface can be fit to different models (Box, Hunter and Hunter, 1978,

13-521; Davis, 1986, pp. 430). These models are initially considered. These are:

The first degree polynomial model.

The second degree polynomial model.

The four-dimensional trend surface.

  

 

 



  
ese models are mentioned just for setting the stage. The fitted model to any particular

se should be based on the variation of the data and prior knowledge, historical data,

d theory.

These models are discussed in sections (3.2.2.1) through (3.2.2.3).

 

.2.1 The First Degree Polynomial Model

The first degree polynomial model is expressed as:

N=bo+b1X+b2Z+e (3 . 2)

b’s are the model constants, and;

 
e is the. error term.

This model:

Allows the design to be efficiently fitted. This is done by estimating the model

constants by using the least squares fit.

Allows checks to .be made to determine whether this planer model is

representationally adequate. This is done by conducting the interaction checks.

The planar model implies that the effects of the variables are additive. Interaction

between the variables X , Z would be measured by the coefficient b12 of an

added cross-product term X Z in the model. If the value of the b12 is not

significant, then the planer model is adequate.

Provides some estimate of experimental error by estimating the error

variance of the replicated observations.

 





 

2.2.2 The Second Degree Polynomial Model

The second degree polynomial model is expressed as:

N=b0+le+b2Z+bllX2+b22Z2+b12XZ+e (3 . 3)

 To check the adequacy of the second degree model, the combinations of

d-order terms have to be checked. For example the coefficients b111 and b122 are

tfficients of X3 and of XZz, respectively, in a third-degree polynomial. Both of these

3 coefficients would be zero if the surface were described by a second-degree model,

M & Hunter, 1978).

.2.3 The Four-Dimensional Trend Surface

A logical extension of polynomial trend surface analysis is the inclusion of

three dimensions X, Y and Z (and if significant, their powers) as independent

ables (Davis, 1986). The use of a four-dimensional model is preferable when the data

more erratic because it is more general than the other models.

In this technique, the dependent variable is regressed upon X, Y and Z. In the

. of N more emphasis is put on the inclusion of the Z term. Its inclusion is not only

:al but necessary as it is known that the depth effect is the main factor in the

 
bility of the N values.

In three dimensions contour lines become contour envelopes. A completed

sis can be represented as a solid containing nested contour envelopes. The

 
 

 





 

 

lume between two successive contour envelopes is occupied by points which have

- same range of predicted value of dependent variable. The dependent variables in

- case histories reported by previous geostatistical investigators commonly were

asures such as the percentage composition of some constituent or mineral. In this

earch, the dependent variable is taken as the N value.

.2.4 Measuring Goodness-of-fit Of A Trend Surface

Higher values for the coefficient of determination R2 should be expected in a four

ensional model. The R2 value is frequently used empirically as a measure of the

ree to which the trend fits the data (Lancaster and Salkauskas, 1986).

R2=SSR/SST
' (3 . 4)

:re

SSR = regression sum of squares.

=Zfi2_(2fi)2/n (3.5)

SST = sum of squared deviations from mean.

=ZN2-(2NV/n ”-9

 The value of the R2 lies in the range of (O — 1). When R=1, all of the data

n the fitted trend and there is no residual or deviation; when R=O, the observed

3 failed to show any trend.

 

  

 





 

Values of R2 between 0.8 and l are often considered to indicate a significant

nd in the data, and values of R2 between 0 and 0.2 suggest that the trend is not

ll established (Lancaster and Salkauskas, 1986). In practice, R2 is not likely to

at the limits of the range (0 - 0.2) or (0.8 -l), but rather somewhere in between these

its. The closer it is to one, the greater is said to be the degree of association

. een the dependent and the independent variables (Neter and Wasserman, 1974).

For a model to be accepted, it should pass a test of significance; to select among

els which are known to fit with significance, R2 and sometimes the standard error

.stimate are used as criteria.

The significance of a trend surface may be tested statistically, by comparing the

.ance due to deviations from the mean to the variance due to deviations from the

d. This comparison is conducted by using the F test, which is valid only if the

. satisfy the following conditions (Davis, 1986):

The population of data is normally distributed about the regression.

The population has a constant variance and does not change with changes in the

independent variable (i.e. the variance is constant for all x, y & 2 locations).

The samples are drawn without bias from this population.

One does not really know if these conditions are true or not, but, in the abscence

idence to the contrary, it is assumed so in order to go forward. The significance

e trend may then be tested by performing the F test as follows:

otal variation of N is divided into two components: the trend and the deviations.

the F ratio is calculated:

 

  

 





(3.7)

  
MSR = regression mean square.

= (regression sum of squares) / degrees of freedom.

MSD = (sum of squared deviations from the mean -

sum of squared deviations from the trend) / d.f.  
z (33, - ssR) / (d.fT - d.fR).

 

d.fT = total degrees of freedom.

—- number of data points - 1

d.fR = trend degrees of freedom.

= number of coefficients (b’s) in trend surface not counting b0.

resulting F value is then compared to the critical value of F probability distribution

 3 selected level of significance. A significance level of 5 % is commonly used.

 





 

The critical F value is a measure of the variation that might be expected solely

ue to randomness in sampling the data and the les‘ser the calculated P value the better

he data are fitted to the trend and the lesser the chance that the fit is a coincidence.

e F- test result is a test of the hypothesis (Davis, 1986):

H02B1=B2=..=Bm=0 (3.8)

B’s are the true population regression coefficients.

Lis null hypothesis implies that there is no trend.

Section (3.2.3) summarizes the interpolation schemes including the Kriging

:hnique, which is an alternative technique for spatial modeling. In chapter (5),

:emative models from both techniques ( the trend surface and the Kriging) will be used

make settlement estimates for the same case histories. Based on the comparison

.ween the estimates by each of them, an evaluation of the aptness of each will be

.de.
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3.2.3 _ Interpolation Schemes For .N Value Modeling

It could be argued that the N value at a given point should not influence the

ature of the fitted surface at distant points. If this is the case, then no constraint is

mposed on the choice of any local modeling technique. On the other hand, (Lancaster

d Salkauskas, 1986), if there is sufficient confidence in the data to demand that

he fitted surface must contain every data point - in the influence zone — then

e interpolation modeling techniques may be considered. In other words, regression

mphasizes trend over local fit; if one wishes to emphasize local fit over trend, then the

terpolation modeling techniques are preferred.

Interpolation modeling techniques take one of two forms. The first is the simple

oint estimation scheme for interpolating two—dimensional data, such as the geometric

chnique known as "triangulation". The second is the estimation method that is designed

» give the best estimate for one of the statistical criteria. This latter technique is

lown as "Kriging", after its developer, D. G. Krige, a South African mining engineer

rd pioneer in the application of statistical techniques to mine evaluation.

2.3.1 Triangulation

Triangulation is a method of interpolating a value f(x,y) and is done by fitting a

me through three samples that surround the point being estimated (Isaaks and

.vastava, 1989). X & Y are not necessarily situated at the ground surface but rather,

:y are situated in the plane of the three data points which can take any orientation.

e points need not be regularly spaced, but they have to surround the point being

imated "nicely" (i.e. in relatively different directions and at nearly equal distances).
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e equation of a plane can be expressed generally as:

z=ax+by+c (3 . 9)

the SPT data, where it is desired to estimate N values using coordinate

rmation, z is the N value.

Given the coordinates and the N values of three nearby samples N1 , N2

N3 that nicely surround the point being estimated "0" as shown in Figure 3.5 , one

calculate the coefficients a , b and c by solving the following system of equations:

Nl=axl+byl+c (3.10)

N2=axz+by2+c (3.1.1)

N3=ax3+by3+c (3.12)

N1 N2

+ (Xrayo + (X205)

+ 0

N3

+ (Kai/3)

Figure 3.5 : Three Nearby Samples Nl,Nz And N3 Surrounding

‘ The Point In Question "0".

  

 





 

If the three points are located in a straight line — i.e. not surrounding the point

'0" nicely - then the three equations cannot be solved for all given values of N1 , N2

(1 N3.

This method of estimation depends on which three nearby samples are used

define the plane. There are several ways one could choose to triangulate the

ple data set.

Triangulation is typically not recommended for extrapolation purposes. In fact

ris violates the "surrounding" requirement. If the point "0" at which an estimate is

quired is contained within the triangle 123. , one can directly calculate the triangula-

m estimate at "0" without simultaneous equations as:

lvo= (l/A123) (A023N1+A013N2 +A012N3) ' (3 ' 13)

The A’s represent the areas of the triangles given in their subscripts. The

anulation estimate, therefore, is a weighted linear combination in which each value

weighted according to the area of the opposite triangle (Isaaks and Srivastava,

89, pp. Equation 11.6).

Other interpolation schemes involving four or more points or higher order

 faces have been developed and are commonly applied in finite element analysis;

ever, they do not have the statistical advantages of Kriging as discussed in section

.3.2.

 

 
 

 





 

 

.3.2 Kriging

Kriging is a probabilistic method used for fitting a surface to irregularly scattered

'nts in space, (Krige, 1966). This technique has found increased application in recent

s,(Lancaster and Salkauskas, 1986), for example by Spikula, (1983) and Baecher,

81). What distinguishes Kriging from the regression or trend surface technique is

t attempts are made to localize the computation by excluding distant points

the calculations of the interpolant at any fixed point. What distinguishes Kriging

simple polynomial interpolation such as triangulation is that attempts are made to

the best estimate for one statistical criteria. Triangulation, on the other hand, gives

estimated value based on an entirely geometric criteria.

Isaaks and Srivastava (1989) note that Kriging is often associated with the

)nym "BLUE" for "best linear unbiased estimator":

Kriging ,is "linear" because its estimates are weighted linear combinations of

the available data.

  

  

  

  

  

   

  

It is "unbiased" since it attempts to set the mean error equal to zero.

It is "best" because it aims at minimizing the variance of the errors. This is the

main distinguishing feature of the Kriging method.

An important aspect of Kriging is that one never knows the mean error and

 fore cannot guarantee that it is exactly zero. Nor does one know the variance of the

s; it cannot be minimized. The best one can do is to build a model of the data being

and work with the average error and the error variance for the model.

In Kriging a probability model (a random function model) is used in which

ias and the error variance can both be calculated and weights chosen for the

 

  

 



 

earby samples that ensure that the average error for the model is exactly zero and

at the modeled error variance is minimized.

.2.3.2.1 Underlying Concepts

It is assumed (Lancaster and Salkauskas, 1986) that the data is a samme from

random function v(p), which is the sum of a " slowly" varying random polynomial

 \
V

of degree m, called the drift, and a "rapidly" varying random component r(p) ,

'ch is assumed to have ‘ zero mean or expected value E [r] = 0 and which is

sponsible for the noise-like nature of v(p), Figure 3.6.

ms

v(p) = d(p) + r(p) , E [r] = 0 -( 3.14)

It is assumed further that the covariance structure of r(p) can be obtained and that   
: covariance between values of r(p) at points p and q depends only on the distance

tWeen p and q.

en

Cov [r(p) , r(q)] = f(distance between p & q) ( 3.15 )

Now it is desired to estimate the unknown true value v(po) at a point po

 
re no sample is available by a linear combination of the available samples:

v(po) =2 w,v(p,) . (3.16)

i=1

  

re wi is the weight associated with the random variable at the location (i).

 



 

I
t
.



 

 
v(p) A P1 Pn

random . ---._.-._.-.---...._
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function  r(P) 2"Rapidly” varying
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J”Slowly” varying

d(p) random polynomial.

\

Spatial distance.

 

 

   

 

  

  
Figure 3.6 : Components Of Random Function In'Kriging Model.
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This set of weights is allowed to change as unknown values are estimated at

‘ferent locations, in such a way that the variance of the error "r" is minimized. This

'or is given by:

r(po) =2 WiV(pl-) —Vtrue(po) . (3 .17)
i=1

The probabilistic solution to this problem assumes that for any point at which

3 desired to estimate the unknown value, the model is a stationary random

:tion that consists of several random variables, one for the value at each of the

(ple locations, V(p1), . . , V(p,,), in the subset used to predict V(po), and one for the

nown value at the point where the estimate is desired V(po). Each of these random

iables has the same probability law at all locations; the expected value of the

lom variable is E[V], (Isaaks and Srivastava, 1989).

This means that all the random variables V(p,),. . V(p,,) and V(po) in the subset

‘aken to have the same expected value EM and the same variance. For the SPT

this means that E[N(x,y,z)] and Var[N(x,y,z)] are the same everywhere in any

at and the measured values are deviations from E[N].

Thus the estimation error R at the point po is also a random variable and

Men by:

Error = Estimated value— True value

R(po) =2 WiV(pl-) -Vtrue(po) (3.18)

i=1
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r the unbiasedness condition states that E [ R(po) ] = O

:efore:

E[R(po)]=0=E[V]ZWi—E[V] (3.19)

i=1

sequently:

Z wi=1 (3 .20)

i=1

Now to get the best estimate of V(po) it is desired to minimize the error

ane Var [ R(po)] , (Isaaks and Srivastava, 1989, pp. 278). The error variance

)btained as the variance of the difference of the estimated value and the true

3 of the variable which is given by:

0122:02[I7(P0)-V(P0)]
(3.21)

Lnding and manipulating some terms leads to:

9V[I7(Po) , v(po) ] -COV[I7(Po) ,V(PO) ] -COV[V(PO) ,l7(Po)]

DV[V(P ), V(P )]
O O

>V[l7'(Po) , 17(Po)] —2C0V[I7’(PO) , V(Po) ] +COV[V(P0) , V<Po)]

[171230)] emf: w,V,.Vo] -2E[Z WrVi] .E[VO] +02 [V(Po)]

i=1 i=1
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12
II

n

=02 [2 wit/,1 -2Z wiE[Vl.Vol —2Z nil-E[Vi] E[VO] +02 [V(PO)]
i=1 i=1

i=1

rally; the error variance becomes:

II n

0123:): Z: WinCij"22 WiCio+02 (3 -22)

BIC

:ij = COV [Vi Vj]'

— variance of random variables which is constant for all variables.

In this research the variance of the random variables is unknown because the

‘test is a "one-shot" test (replicate tests cannot be made at the samepoint), therefore

pooled variance, which is calculated from the N values that are considered for

ring, is used instead.

. The minimization of this error variance is accomplished by setting the

31 first derivatives with respect to the unknown weights to 0 , with some

iderations to include the unbiasedness condition that was given in equation (3.20) as

‘

,Wr=1)-

l

minimization is explained in sections (3.2.3.2.2 and 3).

.2.2 The Lagrange Parameter

The unbiasedness condition will add one more equation without adding any more

mm. This leaves it with a system of (n+1) equations and only n unknowns, the

 

 



 

 

solution of which requires that one additional assumption be made. To remedy this

problem, a new unknown variable is introduced. This new variable is called "u", the

Lagrange parameter, and is introduced into equation (3.22) to become:

n I] D n

2_
_

This additional term does not upset the equality because its value is 0 due to

e unbiasedness condition. The error variance is now a function of (n+ 1) variables.

y setting the (n+ 1) partial first derivatives to 0 with respect to each of these

ariables a system of (n+1) equations is obtained.

 3.2.3.2.3 The Ordinary Kriging System

These (n+1) equations, often referred to as the ordinary Kriging system,

nd can be written — after suming up—as follows:

12

Z WjCij-Cio+u:o;i=ll ' - -n
(3.24)

7:1

H

wal
(3.25)

L=l

rese equations imply:

For every data point, the sum of (the weighted covariances between that

point and other data points) minus (the covariance between that point and the

estimated point) plus (the Lagrange term) equals zero.
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The sum of weighting factors contributing to any point is one.

The solution of these equations produce the set of weights that minimizes the

or variance as well as the value of the Lagrange parameter u that is useful for

culating the resulting minimized error variance.

In matrix notation, these equations take the form:

ovariance matrix ] * [ weight matrix ] = [ vector of the covariances between

      

mated point and the measured ones] ( 3.26 )

C . W = D

F T F' 1 " '1

C11 . . . . Cln 1 W1 C10

Cnl . . . . Cnn 1 Wn Cno

l . . . l O u 1

_ . t l l l

(n+l)*(n+l) (n+1)*1 (n+1)*1

refore the weights are given by:

W=C‘1.D (3.27)

:he minimized error variance is given by:

n

inf-(E wiCio+u) (3.28)

i=1
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.3.2.4 The Covariance Matrix

It is stated (Lancaster and Salkauskas, 1986) that the main thrust of

'ging is to choose the covariances in a way that is consistent with the data. As many

(n+1)n/2 covariances have to be chosen to describe the spatial continuity in the

dom function model. Davis (1986) noted that, in principle, the experimental

 ariance values could be used directly to provide values for the estimation procedures.

wever, the covariance is known only at discrete points representing the sampled

ations. In. practice, covariances may be required for any distance. For this reason, the

rete experimental covariances may be modeled by a continuous function that can be

uated for any desired distance. If a modeled covariance function C(h) is used, then

of the required covariances are calculated from this function. Once the (n+1)n/2

'ariances have been obtained, the matrices C and D can be determined; consequently  
set of weights w’s as well as the minimized error variance can be calculated

g the above-mentioned equations.

In the published literature, many forms have been assumed for the covariance

:tion. Five are summarized below (Isaaks and Srivastava, 1989; Davis, 1986):

spherical model: implies that correlation decreases at a nearly linear rate at small 5

ration distances, but flatter out at larger distances and is given by the equation:

Cij=02[1-1.5(h/a) +0.5(h/a)3] ,hia (3.29)
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= distance between the points p, and p,-.

a = the range or the distance beyond which the covariance value remains

essentially constant.

The exponential model: implies that correlation decays exponentially with distance and

is given by the equation:

Cij=oze(‘3h/a) (3.30) 
e Gaussian model: is a variation of the exponential form with the distinguishing

eature of having a parabolic behavior at small separation distances. Its equation is:

Cij=02_l+e("3h2/az) (3031)

The linear model: assumes the correlation decreases linearly. It is equation is:

Cij=02-a|hl (3032)

here

05 is a constant depending on the data set.

he squared exponential model: assumes the correlation decreases according to the

nation:

C(h) =ozei-h2/h2) (3.33)

(ere

 





 

h0 = autocovariance distance.

= the distance at which C(h) decays to (l/e) C(O), in which e is the base of the

natural logarithms.

The more common covariance functions used in practice according to

Groot and Baecher, (1993): are the exponential model, the spherical model, and a

'ation of the exponential model, the squared exponential model. They used the

ared exponential model to describe the autocovariance structure of residuals about

soil spatial trends. Similarly Soulie’ et. al. (1990) report that in practical problems

(er an exponential or a spherical model is commonly used to describe the spatial

iability of soil parameters. Journel and Huijbregts (1978) report that the spherical

lel is more commonly used in mining geostatistics.

Accordingly, the squared exponential model is further considered in chapter (4)

e used if a covariance function is required to describe the spatial variability of N

CS.

 





CHAPTER 4

MODELING THE N-FUNCTION FOR SETTLEIWENT PREDICTION

4.1 GENERAL

It is impossible (or at least impractical) to test and take sufficient measurements

.0 characterize the entire inherent variability of the site. In practice, SPT tests are

:onducted at some interval within each of a number of borings which are presumed to

)e representative of the whole site. The results of these tests form a statistical sample and

he findings from this sample must be used to estimate an appropriate or the true

renetration resistance function or constant value for the whole site.

As such, many statistical modeling and prediction techniques could be employed

3 quantify a representative N function for the scattered data . The statistical significance

r confidence associated with the function could also be quantified.

Two techniques, trend surface and Kriging, were described in the previous

lapter. In this chapter, the details of using these methods with N value data will be

)nsidered. These techniques will provide an estimate of N(x,y,z) at any desired point.

For the calculation of predicted settlement using methods (e. g. Meyerhof, 1965)

at are based on a single N value, information regarding the function N(z),y at a specific

oting location is preserved by the introduction of a "two-point" estimate procedure,

:veloped by this research. This procedure, consisting of weighting two specific values

N(Z)“, is introduced in the next subsection. This is followed by discussing the details

fitting N values using the two considered approaches.

58
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THE "TWO - POINT" ESTMATE FOR SETTLEIVIENT PREDICTION

Agreement is obvious among several researchers that a depth of influence of twice

footing width (2B) is a reasonable assumption under a shallow footing with width

Burland, 1985 ; Bazaraa, 1982 ; Schultze and Sherif, 1973 ; Parry, 1971 ; and

rmertmann, 1970). So, it is reasonable to make the following assumptions:

Two N value estimates, obtained at the depths of B/2 and 3B/2 could convey

information regarding both the average of N values within the zone of influence

as well as the rate of increase with depth.

To provide consistency with observed strain distributions below footings, these

two values Nam) and New) have to be averaged by using some suitable weight

for each.

ry’s (1978) proposed using three N values with averaging weights as shown in

 

 

 

 

     

ure 4.1.

“ 2/3 B,‘N1,wt.=3 N:(B/2)

depth ———‘, B wt . =2

0f 2B 2/3 B, N2,Wt.=2 ,.

rfluence ——1"————- N1 (33/2)

2/3 B, N3,wt.=l Bv wt.=1

'igure 4.1: Weights used by Parry. Figure 4.2: The weights suggested

by this research.

It can be seen that the weights associated with the upper part of the depth of

rence or B is equal to (3 + 2/2) i 4 and that of the lower part equal to

- 2/2) = 2. This is equivalent to using weights of 2 and 1 for the upper and lower

; of the depth of influence respectively as shown in Figure 4.2.
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Further support regarding this suggested "two-point" estimate of the design N

1e can be obtained by considering Schmertmann’s (1970) strain influence factor

wn in Figure 4.3. Schmertmann’s factor provides a generalized weighting method that

be applied to any number of N values.

 

Bel"; “ ~—
33/2  

 

  
 

Figure 4.3 : Schmertmann’s strain influence factor vs. depth.

re diagram is divided into upper and lower halves, the strain factor associated with

upper point estimate NB,2 is the area of the diagram from the footing base level to a

:h of "B" = (O.35)(B/2)+(0.5)(B/2)= 0.425 B

ilarly the strain factor associated with the lower point estimate is the area of the

ram from the depth of "B" to a depth of "2B" = 0.2 B

.e design N value is taken as these two estimates weighted by their corresponding

3 in the strain influence factor diagram, then:

design N value: (0.425/0.625) NB,2 + (0.2/0.625) NW2

= 0.680 NB,2 + 0.320 N3B/2

seen that this corresponds closely with the somewhat simpler estimate

NB/2 + (1/3) N313,2 suggested by this research.

 

 



 

.3 APPLICATION OF "TREND SURFACE" THEORY TO OBTAIN THE

"TWO-POINT" ESTIMATE AND SETTLEMENT PREDICTION

To start the analysis, the parameters which are believed to explain the data

atter have to be identified using appropriate previous experience. The significance

these parameters is later tested by suitable statistical techniques.

Those explaining parameters are assumed to be the three geometric co‘

inates (x,y & z) related to any arbitrarily chosen origin within the site, Figure 4.4.

   Figure 4.4 : The 3 geometric co—ordinates (x, y & z).

These three parameters are necessarily independent. The terms and coefficients

rciated with the "z"- parameter reflect the variability resulting from the different

rs and layer thicknesses, the heterogeneities within the soil layers, and the

Jurden effect. By making the overburden pressure correction to the N values in

tage it is possible for these values to predict only the relative density. The Liao and

nan (1986) overburden correction factor is considered herein because it was

ped by fitting the forms of the correction factors proposed by others including Seed

, Peck et. al. (1974) and Bazaraa (1967). In this method, the N value is corrected

sing the equation N1 = C1 * N.
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’ is the effective overburden pressure (tsf) = depth in ft * unit weight (lb/ft3)/2OOO.

H H II II

The terms and coefficients associated with the parameters x and y reflect the

'ability resulting from the depositional variability of the soil in the horizontal direction

well as variability due to the difference in stress history over the site, if any.

If the N(z) function components from the different boring logs are not

nificantly different, then the two parameters x and y should be excluded from the

del. This would imply that all the soil data of the site are identical. One must be

ptical about this assumption. So, it is preferable to test this assumption by including

d y in the model, then the test result can be used to assess their significance.

The "trend surface analysis " is intended for statistically homogeneous profiles,

:cher (1978), and cannot help determine an appropriate N function for stratified or

ared soil. Thus it is suggested by this research tointroduce an addition to the "trend

'ace analysis" to fit the reality of soil stratification more closely.

The suggested method for modeling the N functions including the above-

:ioned addition is summarized as follows:

The subsurface soil is stratified into layers, each of which is sufficiently

homogeneous with regard to relative density to be treated as a unit.

A "one-way ANOVA analysis" is conducted to test the significance of the

differences between the means of N values in the different layers.

The difference between the means of pairs of layers is tested (if the suggested

stratification was justified by the previous step).
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4. If more than one layer is justified, a separate three-dimensional model for the N«

values as N = f(x,y,z) is constructed for each layer as shown in Figure 4.5.

Regarding item "1" above, the relative density Dr values are estimated by using

the correlation between the relative density and the N values. Terzaghi and Peck

(1948) gave the first classification of relative density in terms of the N values.

Values of Dr were assigned to this classification by Gibbs and Holtz (1957). The

combined results are shown in Table 4.1.

Table 4.1 : Classification Of Relative Density In Terms Of N values.

 

 

    

Dr N Relative density

0.15 0 - 4 very loose

0.15 - 0.35 I 4 - 10 loose

0.35 — 0.65 10 — 30 medium

0.65 — 0.85 30 — 50 dense

0.85+ 50+! I very dense

 

As far as the layer depth is concerned, Vanmarcke’s (1977, pp. 1229) noted that

e layer depth in a real profile may vary more or less erratically as a function of the

)rizontal dimension; the type of modeling he proposed is meant to supplement , not to

bstitute for the conventional soil profile and the concept of "local homogeneity" is

tended to cover not only averages, but the nature and the overall appearance of the

.ctuations as well. As such, it suffices for this research to stratify the soil into layers
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y using geotechnical judgment which considers the average of N values as well as the

ture and the overall appearance of the fluctuations.

Regarding item "2" above, the "one-way ANOVA analysis" will provide a

tistical measure that the stratification is reflecting real different layers with

erent relative densities and thus verify the judgmental stratification. The measured

ues of N within each layer are considered as one treatment, so the number of

trnents in the ANOVA analysis will be the same as the number of layers adOpted.

's kind of analysis is suggested because it distinguishes the amount of variation within

between treatments. So in order to test the dependence of the N-mean values on

depth, the difference between the layer means has to be large compared with the

'ations within layers. In other words, to test the null hypothesis that the

ferent layers means are equal, the F ratio - which is the quotient of the "between

ers mean square" by the "within layers mean square" - is compared to the F

(babilty distribution value at the desired significance level (Davis, 1986; Box, Hunter

.Hunter, 1978, pp. 187)“.

If the difference between the layers means is proven to be significant, then the

gested stratification is accepted; otherwise no stratification is justified and the whole

:urface soil is considered as one layer, (e.g., although differences may exist

to depth effects, the differences in average properties are not significant enough to

cut representing the whole subsurface soil by a single spatial model).

Regarding item "3" above, the difference between any two consecutive layers has

3 significant, otherwise they should be combined into one layer. This may then

:ase layer variance, but the estimation uncertainty of the model will be reduced
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because one will have the advantage of estimating the parameters of only one model

instead of two by using the same amount of data. Therefore a trade-off is being made

between estimation uncertainty and random spatial variation. Baecher (1978) stated

that exploration data have a finite number of degrees of freedom : the more

parameters estimated, the more uncertainty in each. To reduce overall predictive

uncertainty requires both more data and a more spatially disaggregate stochastic

model. The comparison between layers has to be made by using a suitable multiple

comparison technique. The difference between the multiple comparison test and the

ANOVA test is explained as follows:

The ANOVA test’s objective is to test whether the stratification is justified

irrespective of which number of layers was used to conduct the test.

The multiple comparison test’s objective is testing whether the suggested number

of layers is aCcepted; otherwise a lesser number - by combining some of them

together — is considered.

here are many. multiple comparison tests available in the literature, (Levine, 1991;

mm, 1961; Dunnett, 1964 and Tukey, 1949). Three such tests will be used herein; they

6 briefly summarized below.

D (Least Significant Difference) Test:

This test (levine, 1991) is done to test the significance of the differences between

airs of means. It is simply a convenient form of the t test. It allows the use of

ifferent alpha levels for different comparisons. The LSD test is not done if every

ossible paired comparison is to be tested. This test involves computing a single value
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r "criterion value" against which each desired paired comparison is tested, i.e. this

riterion value is compared to each difference between means that is to be tested for

tistical significance or to check whether the corre8ponding'true difference is not likely

be zero.

key HSD (Honestly Significant Difference) Test:

This test (Tukey, 1949) provides a convenient way of computing a single

ue against which all of the possible differences between pairs of means can be

mpared for statistical significance. It also uses some confidence limits for

ting the significance of the differences between pairs of means, but it is used

hen the intention is to maintain one "family-wise" Type I (alpha) error level to

:used for all comparisons. For "n" layers, there are n(n-1)/2 possible pairs of layers.

118 test compares every one of these possible n(n-1)/2 difference between means to

3 criterion value to test it for statistical significance.

Inn Test:

Whereas the Tukey test runs all of the possible pairs of comparisons among

:means, the Dunn test (Dunn, 1961) is used when the intention is to test only some

ected number of pairs. At the same time this test maintains an overall "family-wise"

e I error probability that does not change with the number of comparisons to be

e. The Dunn test is the alternative to the Tukey when the decision has been made

nly test a subset of all possible paired comparisons. Consequently, this test is not

mmended unless the number of layers is relatively large.
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Regarding item "4" above, a three-dimensional model for the N values as

N =f(x,y,z) is built for the entire foundation or for each layer separately. Some

considerations about the building of this model are as follows:

1. The model for each layer is built by conducting a multiple regression analysis on

the relevant N values. The resulting regression surfaces can be used to predict the soil

N value at any depth beneath any location on site. The three parameters x, y and z are

necessarily independent; consequently their effects are additive and no interactions should

be expected between any of them. This leads to the exclusion of all the cross—product

terms , of any order, from the model. As a result, the general form of the model

becomes:

N(X, y, z) =bo+blx+b2y+b3z+b4xz+b5y2+b622+. . . (4 . 1)

The degree of the model and the terms that have to be included are assessed for six case

histories in chapter five. However, certain relevant information are given herein to be

rtilized to develop guidelines prior to such analyses.

The most important term that should be included is the constant term b0, because

t is the basis from which the N value varies in the x , y and 2 directions. Philosophi-

ally satisfactory model would have a b, value that is also a reasonable value for N.

The variability of the N value in the z direction will be controlled by the

oil stiffness which increases with depth due to overburden pressure. The correlation

etween N and E as a measure of stiffness is well established (Bowles, 1988; Webb,

969 ; Anagnostopoulos,1990), but no consensus is evident among the researchers as

> how "B" would increase with depth. As a result of this uncertainty, the orders of the
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:rms is an issue to be examined using the regression analysis by examining the

rlting values of their coefficients.

The F test approach can be used to test the aptness of this model. If it is not

epted, a different case of this general form of the model should be employed and

ed again. The predictive power or "goodness of fit" of the resulting model can be

ntified by calculating the R2 value, which represents the percent of total variation in

:xplained by the formulated model.

The geometric location of the footing in addition to the determined foundation

:1 will identify the three coordinates of the footing as well as the depth of influence

.er its loading, consequently the resulting model can be used to determine the design

'alue for this footing. *

>se design N value(s) are used in the next stage which is the estimation of

lements and differential settlements.

1 USING THE "TREND SURFACE" N FUNCTION TO PREDICT THE

SETTLEMENTS AND DIFFERENTIAL SETTLEMENTS

lredict the settlement under a specific footing of breadth "B" as shown in Figure

l the following N functions are formulated using corrected N values:

N1=f(x,y,z); z<zl.

N2=f(x,y,z); zl<z<z2.

N3=f(X,y,Z); ZQ<Z<Z3°
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B

I, \l

l‘ 1

Vertical

stress I

l

' Layer

\ N function 1
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Figure 4.6 : The Different N Functions For The Different Subsoil Layers.
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Then one or more "two-point" estimates (one for each footing). are drawn from these

spatial models as a step in transforming them into a planar N(x,y) model. This latter

model enables one to do such things as contouring analysis or settlement comparisons and

the like. This is explained as follows:

1. The predicted N values at depths BIZ and 3B/2 are obtained from the

appr0priate N function. For example, if the depth of B/2 is located within layer 2 and

the depth of 3B/2 is located within layer 3, then one substitutes the value of B/2

for z in the N2 function and similarly the value of 3B/2 in the N3 function. This will

give the two values of N at these two depths as:

N2 = f(X , y , 13/2); & N3 = f(X , y ,3B/2).. (402)

2. As illustrated in section 4.2, the design N value at the location (x , y) is given by:

N = (1/3) [2 N(B,2)+ New] . ( 4-3 )

where

NCB/Z) = f(x 3 y 2 B)-

N(3B/2)= f (X 2 y a B)

\fter suming, this relationship will take the form:

 

Ehe depth of influence is located entirely in the upper layer then the 2 representative

N values would be: _

N1 = f(x , y , 13/2); & N1 = f(x , y , 313/2)
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N=f (X. y. B)

for different size footings,

N,=f(x.y,B,) ' (4.4)

This N function is used in a suitable model which gives an estimate of the

tlement as a function of N , footing pressure p, and the width B, will eventually

ult in modeling the settlement of the footing as:

S=f(p,B,X.y) (4.5)

r instance , the Bazaraa method estimates the settlement "S" as:

S=(1/N’) [2q*(ZB/B+1)2] (Pd/PW) (4.6)

l the terms have been previously defined in Section 2.4.

like some earlier methods, the Bazaraa method uses the N value after correcting it

the overburden pressure, which is consistent with the suggested technique

ich employs a corrected N also. Furthermore, the concept of a simple equation

= f (N, p, B) is retained because the emphasis herein is to utilize a "simple" model

1 variable parameter values over a large region of space or " field" , rather than a

lPlexv, rigorous model which might require more certainty in parameters.

Now, substituting the N function instead of the N value, will yield the

)wing model:

S=[l/f(X,Y,B)]*[2q*(ZB/B+1)2(Pd/Pw)]
‘4-7’
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.3 model will enable one to predict the amount of the settlement under a footing

th some quantified confidence) at a point not sampled at all. Once N(x,y,z) is obtained

one needs to know are the co-ordinates of this point x and y in addition to the

ting width and the net pressure. Similarly, the contours of the estimated settlement can

plotted by using this model.

Alternatively, one could use the N function with a method which uses the

dulus "E". Consider, for example Schmertmann’s method:

23

S=C1.C2.p2 [(Izi/E) .dzi] (4-8)

2:0

ce E is estimated from the correlation with N, i.e. E= f(N), then substituting

N function will yield: E = f(x , y). The "z" parameter does not appear in this

ression because its value in the N function will take a numerical value equals to

depth of the midpoint of the layer i, consequently the model becomes:

23

S=C'1.C2.p2 [(Izi/Ei) .dzi] (4-9)

2:0

re

(4.10)
Ei=f(N(X,y, 2))

re 2 is the midpoint of layer i.
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is important to note that this permits one to perform a Schmertmann analysis with

tional and consistent input at an (x,y) location not drilled and sampled.

The differential settlement between any two independent footings in the site

11 be estimated by substituting the numerical values of the parameters describing

ch footing - (e.g.p1,B1,x1,y1...and p2,B2,x2,y2...)-in the above mentioned model.

3 such, a numerical value is obtained for estimation of the differential settlement.
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.2 CONSTRUCTING THE PREDICTION CONFIDENCE INTERVALS FOR

A GIVEN DATA SET

The identified modeling technique using trend surface analysis should enable the

.ndation designer to find out how certain or uncertain are the predicted settlements

using this technique. Before attempting to interpret the fitted model, it is

:essary to consider whether or not it is estimated with sufficient precision (Box,

nter and Hunter, 1978, pp. 524).

suming that the resulting model which estimates the N value is developed from trend

face analysis and is given by the equation:

Nesc.=bl+bzx+b3y+. . . .+bpz. (4.11)

n the average variance of the fitted value NCSL at the design points, no matter what the

dc], is given by:

Givewest) = (U12) )3 [o2 (Nest) 1.] _ (4.12)

i=1

= (l/n) [P * error variance].

are

P = number of parameters fitted.

n = number of N observations.

ive (N,,,,,)i = variance of the ith fitted value of N.

The error variance is obtained from the replicate observations at the same testing

it. Such replicate observations are not feasible with SPT results because it rs a

ructive test. Consequently the pooled estimate of variance is used instead.
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n, the corresponding standard error of Nest, is given by (Box, Hunter and Hunter,

3, Equation 15.26; Berry and Lindgren, 1990):

(St. Err. )aveof(Nest) = [03,, (Nest) 1 0-5 (4.13)

=[(P/n)* error variance 0'5

sequently, the confidence limits of the N value are given by:

' =Nestit(d.fIa/2) * [ (P/n) *err. variance] 0-5 (4 .14)

,,,— the N value estimated using the fitted N model.

’ = number of parameters (b’s) in the model.

= number of N observations included to fit the model.

l-fr “/2) is the t statistic for a confidence level of (1— or) and the involved

degrees of freedom.

Now, it is required to determine the confidence limits of the estimated

nent. This is done as follows:

ring that the settlement is determined from Bazaraa’s equation as:

s=(C/N/) (4'15)

C = [2C1 * '( 2B/ B+1)2 * (Pd/P0]

N’ = N value corrected for overburden pressure.

uting the N,,, for the N value, yields:
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Sesc_=(C/N ) (4.16)
est:

(1 the confidence limits of S“, are then given by:

Sest=C/ [Nestrqif'a/z, * [ (P/n) *err.variance]°-5] (4.17)

e above equation shows that the confidence interval of 8“, could be narrowed by

reasing the number of the fitted parameters "P" or by increasing the number of N

servations "n". This in turn is increased by increasing the number of borings and

creasing the spacing between N observations. As such, there is a trade off between

e estimation precision and the number of borings or the sampling costs.

It is also important to note that, for the modeling of N values to be representatio—

lly accurate, the boring locations have to be selected randomly over the site. In

rlity, boring locations are seldom or never random, but are laid out on a grid or some

ier geometry related to the structure. They are, however often laid out such that the

:ulting variability is equivalent to that expected from a uniformly distributed sample.

e model which is built using the technique proposed herein is not the true

pulation model but it is just a sample model. To be able to regard the bi’s coefficients

1nd by the model as estimates of the true pOpulation regression coefficients Bi’s

1 test hypotheses about their nature one has to test a sample which represents

true population. This is achieved by selecting the sample members randomly. The

re the sample selection is done randomly the more representationally accurate the

ession surface will be.
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APPLICATION OF THE KRIGING TECHNIQUE TO SPT DATA

To obtain a settlement estimate using Kriged N values, first consider that the SPT

ccurs in the form of N values which are measured along each boring at suitable

cal spacings. The borings are located in the (x,y) plane - for example - at the points

), (x2,y2),. . . .(x,I ,yn), as shown in Figure 4.7.

(X2 I Y2)

(X1 I Y1) +

+ boring(2) b% , YJ

boring(l) +

boring(n)

(X. , y.)
+

the point where an

estimate is desired

+

boring . . +

boring .

Figure 4.7 : The Boring Locations In The (x,y) Plane.

value data are necessarily located in a three-dimensional field. It is required to

e the unknown N function at the point (x(, , yo) — where no data were available -

can be represented by the function: N(z,(xo,yo).

For the selection of the data which will be used for estimation, reference

a to the statement by Davis (1986) that the observations selected to estimate the
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(1 value at some location are chosen from within the range of zone of

nce around that location.

Preparation Of N Data Before Modeling:

Kriging entails that in the local region where Kriging is performed each of the

ues used to obtain the Kriged estimate should have the same probability law at all

ons, which is not the case for N values due to the depth effect. To remedy this .

lty, as well as recognize the fact that the desired results are in the x,y plane, it is

:sted to represent the N values of each boring by a linear regression function of the

N=a+bz (4.18)

led that the soil homogeneity condition is satisfied. The parameters "a" and "b"

provide a pair of x,y functions which jointly contain the N value information and

> Kriged in two dimensions.

This form is suggested by this research based on a study by Gibson (1967) which

.ered the subsurface soil as an elastic half-space whose modulus E increases

y with depth. The relationship between the soil modulus E in turn and the N

is realized by the examination of the deterministic equations for settlement

tion which were developed by Meyerhof, Peck, Bazaraa and Parry and were

irized earlier in Section 2.4. The inclusion of the N values in the denominators

e strain determination equations implies the assumption that there is a linear

ship between N and E. Consequently , the representation of the N values by
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r regression functions in the depth Z is considered as reasonable. Thus the above

ioned borings will be represented as shown in Figure 4.8.

N2: 8.2+ bzz

   
1%: ar+lmz +

+ boring(Z) Nu: an+ bnz

boring(l) +

' boring(n)

No: ao+ boz

+

the point where an

estimate is desired

boring

+ boring .

+

igure 4.8 : Representing The N Values By A Linear Regression Function.  
Kriging The N Regression Coefficients:

The following procedure is suggested to estimate the N function at any point

an estimation for it is desired:

The horizontal distance (h) between every pair of locations is calculated including

ring locations and the locations where estimation is required. As such, the number

tlues will equal to (n+1)n/2 for each "unknown" location.

The covariances which describe the. spatial continuity of the data are calculated.

ion 3.2.3.2.4 reference was made to Davis (1986) who noted that in principle, the

nental covariance values could be used directly to provide values for the estimation

are. Consequently, if the available data were enough to calculate the covariance
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between every pair of locations, then these values could be used directly to build

variance matrix required for Kriging. However, the covariance is known only at

te points representing the sampled locations. In practice, covariance may be

ed for any distance. For this reason, the discrete experimental covariances may be

ed by a continuous function that can be evaluated for any desired distance. In this

e employed covariance model should be chosen in a way that is consistent with

. Based on the discussion in Section 3.2.3.2.4, there is an agreement between

er et. al. (1993) and Soulie’ et al.(1990) on the suitability of the squared

:ntial model for describing the variability of soil properties. This model is given

C(h) :oze(-h2/h:) - (4.19)

the distance between two points for which the covariance is desired.

autocovariance distance.

the distance at which C(h) decays to (l/e) C(O), where e is the base of the

natural logarithms.

ing the value of the autocovariance distance (ho), reference is made to Baecher

ho noted that considerable empirical work has verified the theoretical contention

properties are spatially correlated, and he suggested a distance of 50 m - 100 m

finite correlation. Then the covariance of every pair of locations is calculated

this model. This will total to (n+1)n/2 covariances.
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Calculating the weight matrix from:

WeC"1hD (4.20)

 ere
C = (n+1) * (n+1) matrix

D = (n+1) * 1 vector

and the matrix elements are as given earlier.

Kriging the N values - whiCh are now represented as functions in z -

order to estimate the unknown N value at the point (xo , y) as follows:

I)

fi(xo,yo) =2 wiN(x,-,y,-> (4.21)

i=1

quivalently:

ao+boz=2 W1 (are-z) (4 .22)
i=1

:2 Wrai+2 Wibiz
(4 .23)

i=1 i=1

sequently:

n

620:2 wia, (4 .24)

i=1

 
(4.25)
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Then, the estimated value N(xo , y,) is equal to (a0 + boz), which is a

function in 2.

Using The Estimated N Function To Predict The Settlements And Differential

Settlements 
Having obtained the N value as a function in z, the "two-point" estimate — which

uggested in Section 4.2— can be used to estimate the design N value as follows:

The N values at the depths of B/2 & 3B/2 are given by:

n(B/,,=ao+bO<B/2) . (4.26)

N(3B/2)=ao+bo(3B/2) . (4.27)

The design N value at this location (xo , yo) is then given by the weighted

average:

N=(l/3) [2fi(B/2)+fi(BB/2)] (4'28)

ent prediction will be same as what was done in the trend surface analysis in

4.3.1.
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4 Constructing The Prediction Confidence Intervals For A Given Data Set:

The minimized error variance - or as is sometimes called "the Kriging (or

iction) variance", (Cressie, 1991, pp. 122) — is given by:

I1

012?:i Z: WinCij—ZZ WiCio+02 (4.29)

3rds this equation states that the prediction variance is equal to (the weighted sum

1 covariances between the various data points pairs) minus (twice the weighted

of the covariances between the data points and the value being estimated) plus

variance of the measured data).

that:

2

is taken as the pooled variance of the measured data and w’s are the weights

obtained by Kriging the data.

This minimized error variance can be used to construct the "prediction

al" for the N values as follows:

ower and upper confidence limits of the prediction interval are given by the

ted value minus or plus the multiplication of the square root of the prediction

C6 by the t statistic. In mathematical notations, the prediction interval is given by:

A A 2 1/2
WXOJO) —t(d,,.,,/,,*<0;>1/2,N<x0,y,) +t(d_f,,/2,*<0R) 1,..r4.30)
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A = (l- or) % prediction interval for the estimated N value.

0' Yo) = the estimated N value at the point (x0, yo).

f . a/2) = the t statistic for a confidence limit of (l- a) and the involved

degrees of freedom.

d.f. = degrees of freedom which equal to (n—l).

r the assumption that the estimated N value at the point (x0, y.) is Gaussian, this

:tion interval satisfies the following (Cressie, 1991):

PrlL.C.L.<I\7’(XO,yo)<U.C.L.]=(l-oc)% (4.31)

probability calculation is made over the joint distribution of

3 N(pl) , . . N(pn)] , (Cressie, 1991).

It is obvious that the "prediction interval" is tightened as the error variance

ses, and this in turn should decrease:

As the number of borings increases, or

As the covariance values decrease. This occures if the boring locations were far

apart. This means that different sampling configurations will produce estimates

of different reliabilities.
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The dependence of the prediction variance on these factors is explained as follows

rks and Srivastava, 1989). Looking at the three terms of the expression of the

liction variance (Equation 4.29), it is noted that:

In the first term, the covariance behaves as an inverse distance in that it

teases as the distance between data points increases. If the data points are far apart,

1 the first term will be relatively small. As they get closer together, the average

ance between them decreases and the average covariance increases. This term

refore accounts for the clustering by increasing the uncertainty if the considered data

nts are too close together.

The second term accounts for the proximity of the point being estimated to the

ilable data points. As the average distance to these data points decreases , the average

ariance increases and, due to its negative sign, this term decreases the prediction

iance.

The third term represents the variance of the measured data and accounts, in part,

the erraticness of the variable under study (Nvalue in this research). As the variable

mes more erratic, this term increases in magnitude, thus giving a higher degree of

rtainty.
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CHAPTERS

VERIFICATION OF THE DEVELOPED MODELS

In this chapter, the two proposed models for settlement prediction, trend surface

sis and Kriging, are each tested two different ways. First they are verified using

ated data of an assumed field. This consists of simulating some "observed" N values

zen data, simulating some "true unobserved" N values at locations presumed not to

data available in an assumed field, and investigating whether similar values could

ttained using the proposed techniques. These are followed by the verification of the

oped "two-point" settlement estimate by using the assumed trend of N and an

red footing. Second, the reliability of the proposed models for practical applications

acked by conducting the suggested modeling on six available case histories. These

'stories were selected based on the criteria that N values were available as

,2) and the measured settlement after the structure has been completed was also

ble. Based on these studies, comparisons are made to find out the advantages and

antages of using each of the two candidate procedures for estimating N(x,y,z) and

tmendations are made to enable one to select among both of them.

'ERIFICATION USING SIlVIULATED DATA OF AN ASSUlVIED FIELD

The mathematical verification of both the trend surface analysis method and

iging technique is achieved by assuming a reasonable functional form for the

m of N(x , y , z), sampling from that function, developing a model to fit the

87
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ampled data, and predicting the N values at group of unsampled points. A oneway

alysis of variance is conducted to compare the simulated "true unobserved" N values

ith the predicted ones.

.1.1 VERIFICATION OF THE DEVELOPED MODELS BY THE TREND

SURFACE ANALYSIS

The verification is decomposed into four steps. The first is the generation of the

ulated "true unobserved" and "observed" N values. The generated " observed" N

ues are then used to model the N function. This function is used for prediction of the

estimated unobserved" N values. The last step is the comparison between the simulated

:rue unobserved" N values and the predicted ones using variance analysis.

  1.1.1 Generating The Simulated "True unobserved" And "Observed" N Values:

The generation of the "true unobserved" N values and "observed" N values was

:rformed by assuming a field specified by a hypothetical N function in the form:

N=ao+allX|+aZIY|+a3Z°'5+e (5.1)

e rationale for this function is that it yields N values with a basic value of a0 , an

owance is made for a linear variation in both the X and Y directions, and it allows a

dratic variation with increasing depth. The random term "e" is then added to account

the random error of N value. The rate of the variation in each direction is controlled

the values of the coefficients a] , 32 and a3. The coefficients were set at the following

ues:

ao=10 , a1=—O . 01, a2=-O . 02., a3=2

 



 

 

to give the equation:

N=10—0.01|X]—0.02|Yl+2z°-5+e (5.2)

This equation yields N values which at a given depth have a triangular distribution with

the highest value at the origin as shown in Figure 5.1.

Figure 5.1 : The Assumed Triangular Distribution Of N Value. 
I'he subsoil is considered as a one layer extending within the limits of (-500 to 500) ft,

1400 to 400) ft and (O to 50) ft in the X , Y & Z directions respectively. The

:esulting "true N" function then assumes nominal values (without the random term) of

[.47 to 27.47 atadepth of5 ft, 7 to 33 atZ = 25ft,and 11.14 to 37.14 at 50   
't, which are judged typical of a loose to medium sandy soil.

Generating The Simulated "True Unobserved" N values:

Eight N values are generated and considered as "true" N values. Each of these

ight values is obtained from the above hypothetical N function by substituting random

'alues for the X , Y & Z coordinates. These values are obtained as follows;

X = - 500 + R.N.(1000) , Y = - 400 + R.N.(800) , Z = R.N.(50)

here: R.N. is a random number generated by a uniformly distributed function in the

ge of (0 - l).

e random error term "6" is taken as a normally distributed random number with an
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issumed zero mean and a standard deviation of 1.5. This term was generated based on

1 commonly used normal distribution generation algorithm previously used and tested by

Wolff (1993) and others. In this algorithm 12 uniformly distributed random numbers

RN) are generated. These were then used to generate one value: "Norm" from a

:tandard normally distributed random variable (mean = 0, standard deviation = 1.0) as:

12

NORM=£ (R.N,.-o .5)

i=1

{ORM in turn was used to generate a random value for one of the error terms by

multiplying it by the assumed standard deviation. Thus the random term is given by:

12

$1.52 (R.N-0.5)

i=1

Fhe generated "true unobserved" N values as well as their coordinates are in Table 5.1

Table 5.1 : The Simulated "True Unobserved" N Values For Trend Surface.

 

 

“cation X (ft) Y (ft) 2 (ft) N*

1 -211.13 333.20 6.53 7.35

2 -391.66 49.49 9 16.22 14.16

3 42.56 -212.81 27.03 16.73

4 320.14 -200.77 28.48 14.47

5 17.32 -296.12 . 9.57 12.10

6 165.55 215.18 46.01 18.62

7 -306.47 302.83 1.56 4.39

8 -308.67 253.64 45.36 16.32
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Generating The Simulated "Observed" N Values:

The hypothetical N function was used to generate twenty additional N values.

ese values were considered as data which can be used for the suggested modeling.

.e generated "observed" N values as well as their locations are shown in Table 5 .2.

e generated N values in this table have a mean value of 12.9 , a standard deviation

4.32 and a coefficient of variation of 34% which indicates a moderately high degree

uncertainty.

Table 5.2 : The Simulated "Observed" N Values For Trend Surface.

 

 

Data X Y Z N

(N0)

1 - 50.58 -258.34 6.70 8.60

2 -316.49 350.56 13.77 7.60

3 389.00 —299.80 32.79 12.34

4 267.88 388.77 12.29 8.13

5 —472.71 — 71.51 16.29 13.60

6 -160.91 - 91.19 12.53 14.31

7 375.27 - 72.30 10.10 10.66

8 90.10 210.80 21.94 12.89

9 280.53 53.70 44.55 20.41

10 -497.41 -141.50 19.47 9.47

11 233.88 188.37 46.69 17.04

12 -148.30 369.87 14.62 9.19

13 489.58 158.37 12.29 10.55

14 80.64 64.48 28.82 19.43
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Table 5.2 : Continued.

 

 

15 218.09 209.95 15.24 11.42

12 - 7.55 44.38 21.76 18.30

17 - 50.89 -289.41 13.91 10.95

18 200.14 14.30 36.73 21 42

19 -178.60 -259.98 43.84 14.91

20 -364.23 376.98 20.17 6.78
 

1.1.2 Using The Trend Surface Analysis To Predict The N Values:

The program "SPSS", (SPSS/PC+, 1990), was used to fit a trend surface

[uation to the simulated "observed" N values given in Table 5.2. SPSS is a widely

red, general purpose program. Two different forms were assumed for the trend surface

hich is fitted to the given data. Two forms are considered as enough here because the

athematical form of the trend is known already. However, in the general case, all the  tssible combinations of X, Y and Z terms should be tried. The form which was used

the first trial is given by the equation:

N=bo+b1X+b2Y+b3Z°-5+b,,Z+b5Z2 (5.3)

[E SUGGESTED N FUNCTION (lst. Model) IS:

N = b0+b1*X+b2*Y+b3*Z**0.5 +b4*Z +b5*Z**2.

_

 

ource DF Sum of Squares Mean Square

.egression 6 3543.64720 590.60787

.esidual 14 158.16500 11.29750

lncorrected Total 20 3701 . 81220

Zorrected Total) 19 373 .61220

¥

Eure 5.2 : Trend Surface Results For First Model.
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|____

R squared = 1 - Residual SS / Corrected SS = .57666

arameter Estimates:

Asymptotic 95 %

 

 

 
 

 

 

 

.Asymptotic Confidence Interval

arameter Estimate Std. Error Lower Upper

3 10.547193428 41.086681848 -77.57497485 98.669361705

L .002949240 .002882468 -.003233040 .009131520

2 —.002952220 .003921056 -.011362050 .005457609

3 -3.911975982 24.556522288 -56.58047809 48.756526122

1 1.224350091 3.982261584 -7.316751541 9.765451723

5 -.010895178 .027859179 -.O70647175 .048856818

rymptotic Correlation matrix of the Parameter Estimates:

B0 B1 B2 B3 B4 BS

B0 1.0000 -.2838 .4954 .9952 .9825 -.9459

B1 -.2838 1.0000 .2102 .2706 -.2524 .2097

B2 .4954 -.2102 .0000 .4937 .4820 -.4494

B3 -.9952 .2706 .4937 .0000 -.9959 .9718

B4 .9825 -.2524 .4820 .9959 1.0000 -.9888

B5 -.9459 .2097 .4494 .9718 -.9888 1.0000

.gure 5.3 : Trend Surface Results For First Model, Continued.

118 form permits detection of planar trend in X and Y and permits determining the

ture of the Z trend. The computer output is in Figures 5.2 and 5.3. The selected form

f the equation describes a parabolic variation of N value about the N horizontal axis

shown in Figure 5.4.
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Figure 5.4 : The Variation Of N Value At A Given X

Value As Described By The First Model.
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Figure 5.5 : The Variation Of N Value At A Given Z

Value As Described By The Second Model.

 



95

[he suggested form was defined to the computer program. The computer program then

rdjusted the model coefficients to fit the data. This equation rot-tn includes the 2 terms

)f the 0.5 order, the first order and the second order with the expectation that the

:omputer can adjust the coefficients of these terms to provide flexibility of fitting in the

5 direction. The variabilities in the other two directions (X & Y) were given less

.ttention by this model and were assumed to be linear. The results from this model will

re compared with the results from the model of the second trial which allowed more

lexbility in the other directions (X & Y). It is observed in the computer output in

Figure 5.3 that the confidence intervals of the model coefficients look so large as to

educe the predictive power of the model. It is noted also that the R2 value was only

aund to be 0.577. Physically the b0 coefficient should reflect the basic value (associated

rith the adopted reference axes) for prediction and the other terms serve as correction

:rms to reflect the variability in the different directions. These results show the

ecessity of trying a different model.

The high (i) correlations between b0 and b3, b4 and b5 (Figure 5.3) suggest

atting rid of two of the three terms (Z05, Z and 22) and keeping only one. The trial and

.ror 'in running the SPSS program suggested keeping the term 205. It was also

asonable to introduce the X2 and Y2 terms for the reasons explained in section 5.1.1.5.

herefore, the form which was used for the second trial is given by the equation:

N=bo+b1X+b2 r+153x2 +154 Y2+b5Z°'5 (s . 4)

he computer output for the second trial is in Figures 5.6 and 5.7. This model describes

parabolic variation of N value about the N vertical axis as shown in Figure 5.5. The
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BE SUGGEst N FUNCTION (2nd Model) IS:

N = bo+bl*X+b2*Y+b3*X**2+b4*Y**2+b5*Z**O.5.

Fonlinear Regression Summary Statistics, Dependent Variable N:

I;

 

  

Source DF Sum of Squares Mean Square

Regression 6 3668 75590 611.45932

Residual 14 33.05630 2.36116

Uncorrected Total 20 3701.81220

(Corrected Total) 19 373.61220

,R squared = 1 - Residual SS / Corrected SS = .91152

arameter Estimates:

 
Asymptotic 95 %

 

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

BO 8.634706252 1.615607491 5.169572814 12.099839691

B1 .000746539 .001254226 -.001943508 .003436587

32 .001616347 .001693614 —.002016094 .005248787

B3 -.000016551 4.409336E-06 -.000026008 -7.09383E-06

0

B4 -.000053946 4.409336E-06 -.OOOO70814 -.000037077

BS 1.839559093 .294958644 1.206935719 2.472182466

 

.gure 5.6 : Trend Surface Results For Second.Mode1.
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ymptotic Correlation Matrix of the Parameter Estimates:

 

B0 B1 B2 B3 B4 BS

B0 1.0000 .0088 .0606 -.3713 -.4466 -.9148

B1 .0088 1.0000 -.1227 .1142 .1934 -.1113

82 .0606 -.1227 1.0000 --0274 -.4201 .0071

B3 -.3713 .1142 -.0274 1.0000 .1383 .1362

B4 -.4466 .1934 -.4201 .1383 1.0000 .2122

BS -.9148 -.1113 .0071 .1362 .2122 1.0000

I;

gure 5.7 : Trend Surface Results For Second Model, Continued.  
rfidence intervals of the model coefficients, as shown in Figure 5.6, look more

.sonable and the R2 value of 0.9115 reflects a reliable goodness of fit (as would be

 
)ected given the form of the original data). Consequently this model is accepted for

:cribing the variability of N values for the given data set. The reason for obtaining

retter goodness of fit, after taking out the Z and Z2 terms from the first model and

lacing them by X2 and Y2 in the second model — will be explained in section (5.1.1.5)

:r using both models for the prediction of N values and comparing the results.

a N function is therefore given by:

Model:

= 10 . 547 +0 . 0029X-O . 0029 Y—3 .9119Z0'5+1.224Z-0 . 0108Z2, (5 . 5)

. Model:

= 8.64+0 . OOO7X+O . 0016Y—0 . 000016X2-O . 00005Y2+1.84Z°'5, (5.6)
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Predicting The N Values At The Eight Given Locations:5.1.1.3

The X , Y & Z coordinates of the eight locations are substituted into the modeled

.\I function. The resulting N values together with the true N values are shown in Table

5.3. For practical problems, N values are reported as and treated as integers. However,

hey were retained here to do the statistical modeling and testing. The rounded integer

values are shown between brackets in Table 5 .3. It is noted that the N values predicted

)y the second trial yielded values which can generally match within less than i 1.

 

 

l‘able 5.3 : The "Estimated Unobserved" N Values By The Trend Surface Vs. The

"True Unobserved" N Values.

X Y Z N* N (predicted) N (predicted)

ccation (ft) (ft) (ft) (true) "lst Model" "2nd Model"

1 -211.13 333.20 6.53 7.35 (7) 7.72 (8) 7.32 (7)

2 -391.66 49.49 16.22 14.16 (14) 12.79 (13) 13.82 (14)

3 42.56 -212.81 27.03 16.73 (17) 14.91 (15) 16.09 (16)

4 320.14 —200.77 28.48 14.47 (15) 16.11 (16) 15.19 (15)

5 17.32 -296.12 9.57 12.10 (12) 18.36 (18) 10.06 (10)

6 165.55 -215.18 46.01 18.62 (19) 17.32 (17) 18.64 (19)

7 -306.47 302.83 1.56 4.39 (4) 7.55 (8) 5.19 (5)

8 -308.67 253.64 45.36 16.32 (16) 17.65 (18) 16.66 (17)
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..1.4 Analysis Of Variance:

A oneway analysis of variance is made using the program "SPSS" to compare the

e N values with the predicted ones. The model assumptions for the F~test do not hold

this application so the results are taken as descriptive measures only. The results are:

For the N function (1st Model), the difference is insignificant with an F ratio

of 0.2008 and an F probability of 0.6609 as shown in Figure 5.8.

For the N function (2nd Model), the difference is insignificant with an F ratio of

0.0036 and an F probability of 0.9527 as shown in Figure 5.9.

.3 indicates that the model of the second trial is better fitted to the "true unobserved"

ralues and can substitute them for the design purposes.

 

fee of Sum of Degrees of Mean F F

ation Squares Freedom Squares Ratio Prob.

E Samples 4.27 1 4.27

.2008 .6609

Lin Replications 298.01 14 21.29

1 Variation ‘ 302.28 15

,_

are 5.8 : Analysis Of Variance Of The N Values Predicted

In The First Trial Vs. The "True Unobserved" N Values.

 

 

Qof Sum of Degrees of Mean F F

ttion Squares Freedom Squares Ratio Prob.

Q—Samples 0.09 1 0.09

.0036 .9527

n Replications 328.88 14 23.49

Variation 328.97 15

.¥

:re 5.9 : Analysis Of Variance Of The N Values Predicted

In The Second Trial Vs. The "True Unobserved" N Values.
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5.1.1.5 Comments On The Prediction Using The Trend Surface Analysis:

The following points can be made regarding the two resulting N functions:

1. For the N function for the lst trial, the addition of the first order and second

order depth (Z) terms does not help improve the goodness of fit. This is to be expected

when modeling N values sampled from a mathematically defined trend. The "R squared "

value was only found to be about 0.58. The reason is that the tried model is parabolic

about the horizontal N axis , as shown in Figure 5.4, which cannot approximate the

triangular trend in the (X , Y) plane.

2. For the N function for 2nd trial , the knowledge that the data are following a

:riangular trend in the X and Y directions allowed them to be represented by a model

with a parabolic variation about the vertical N axis, as shown in Figure 5.5, which can

lpproximate a triangular trend in the (X , Y) plane. The value of the model constants

vere then adjusted by the computer so that the parabolic variation could approximate

he triangular distribution as closely as possible. This is reflected by getting an

'R squared" value as high as about 0.91.

., The two previous remarks allow one to realize the importance of investigating the

'ariability of the data carefully, then trying out a model that conforms with this variation.

.‘he variability of the real N values in the practical application to a real site may not be

s ideal as the triangular distribution of the example presented herein. Fortunately the

ariability of N values, in most of the six tried case histories, was found to be

:presentable by equations whose X , Y and Z terms are not exceeding the second order.

onsequently it is easy to try out all the possible combinations and select the model with

Le highest R2 value.
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..2 VERIFICATION OF THE DEVELOPED MODELS BY THE KRIGING

TECHNIQUE

The verification is decomposed into three steps. These start with the generation

the simulated "observed" and the simulated "true" N values. Then the Kriging

hnique is conducted on the simulated "observed" N values to predict the N values at

locations of the simulated "true" N values. The last step is the comparison between

simulated "true" N values and the predicted ones using the variance analysis.

.2.1 Generating The N Values:

In the verification of the developed models by the trend surface analysis which

; covered in section (5.1.1) the motivation was to check whether the analysis can

roduce the same trend from which the data are coming. However, in the verification

he Kriging technique, it is known already that the technique will not reproduce any

tds. Hence, the motivation is different and aims to check the quality of prediction if

ring is conducted on data taken from some trend. The simulated "true unobserved"

alues and the simulated "observed" N values were generated from the same assumed

d which was given in section 5 . 1.1.1 as:

N=10—O.01|X|-0.02|Y|+2Z°°5+e (5.7)

simulation will be explained in the next paragraph.
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:nerating The Simulated "True Unobserved" N values:

As Kriging is more mathematically intensive, the "true unobserved" N values will

taken along a single boring. The N values along a hypothetical boring are generated

1 considered as "true unobserved" N values. The location of this boring in the (X , Y)

ne is obtained from the above-mentioned hypothetical field by substituting random

ues for the X & Y coordinates. These random values are obtained using generated

formly distributed random numbers as explained earlier in section 5.1.1. 1. The

trdinates of the generated boring location are shown in Table 5.4.

Table 5.4 : The Coordinates Of The Location Of The Simulated

"True Unobserved" Boring For Kriging.

 

 

X Y

Location -500 + R.N(lOOO) —400 + R.N(800)

"0" 288.83 88.19

 

assumed hypothetical N function including the random error term is then used to

in the simulated N values along this boring by substituting the above—mentioned X

Y coordinates as well as the Z values at every 5 ft increment. The N values along

simulated "true unobserved" boring are shown in, Table 5 .5. The rounded integer

as are shown between brackets.
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Table 5.5 : The N Values or The Simulated

"True Unobserved" Boring "o".

 

 

Z(ft) N

5 10.28 (10)

10 12.67 (13)

15 12.54 (13)

20 12.53 (13)

25 15.00 (15)

30 16.64 (17)

35 16.94 (17)

40 16.43 (16)

45 19.03 (19)

50 18.75 (19)

 

:nerating The Simulated "Observed" N Values:

The hypothetical N function is used likewise to generate three additional borings.

ese borings are considered as data which can be used for the suggested modeling in

ter to predict the N values of the boring at the location "0". To ensure that the

ations satisfy the "nicely surrounded" requirement, the coordinates of the locations of

three simulated "observed" borings are obtained by simulating successive X and Y
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.ues and accepting the location if it satisfies the surrounding requirement; otherwise

’. simulation is repeated until three acceptable locations are obtained. The simulated

acessive locations are shown in Table 5 . 6.

Table 5.6 : The Simulated "Observed" Boring

 

 

Locations For Kriging.

Location No. X Y

1 —441.02 -238.68

2 93.33 266.61

3 356.10 389.25

4 103.67 67.78

5 406.86 -313.30

6 - 96.47 - 47.06

7 -289.07 237.51

8 374.14 214.15

9 -237.85 -301.76

10 -358.97 102.62

11 242.86 286.70

12 191.63 - 36.63

13 59.91 24.65

14 372.15 - 78.11
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The points are numbered conforming with the data in

Tables 5.4 and 5.6.

The simulated "true" boring is at the location "0".

The locations which satisfy the surrounding require-

ment are : 4 , 8 and 14.  H

Figure 5.10 : Top View Of The Locations Of The Simulated "Observed"

Borings And The Location In Question "0".
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he top view of the locations of the simulated "observed" borings as well as the location

here a prediction is required are shown in Figure 5 . 10. From the results of Tables 5.4

1d 5.6 and Figure 5.10, it is shown that the locations which surround the boring "o"

.cer are the locations 4, 8 and 14.

he N values of the simulated "observed" borings at every 5 ft increment are shown in  
able 5.7. The rounded integer values are shown between brackets.

Table 5.7 : The N Values Of The Simulated "Observed" Borings. '

 

 
 

Z (ft) Boring (4) Boring (8) Boring (14)

5 11.26 (11) 9.43 (9) 9.52 (10)

10 14.75 (15) 8.95 (9) 11.56 (12)

15 14.16 (14) 10.03 (10) 13.64 (14)

20 16.26 (16) 12.03 (12) 12.79 (13)

25 18.39 (18) 11.66 (12) 13.77 (14)

30 20.06 (20) 13.29 (13) 14.76 (15)

35 20.60 (21) 15.02 (15) 17.40 (17)

40 20.99 (21) 15.42 (15) 18.23 (18)

45 21.89 (22) 16.70 (17) I 20.29 (20)

50 23.22 (23) 17.84 (18) 19.12 (19)
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5.1.2.2 Using The Kriging Technique To Predict The N Values:

Consider that an estimate of N values is required along the hypothetical boring

at o . The estimation by Kriging is carried out according to the following steps:

1. The N values are represented by linear regression functions:

The N values of each simulated "observed" boring at the locations 4 , 8 and 14

are represented by a linear regression function. This function is assumed to be in the

form: N = a,- + biz. This form is used by this research based on a study by Gibson

(1967), which considered the subsurface soil as an elastic half-space whose modulus E

increases linearly with depth, and on the linearity of the relationship between the soil

modulus E and the N values. The rationale of this linear regression function was

explained in details in section (4.4.1).

The results of these linear regressions representing the three borings are as follows:

0.92 (5.8)
Boring(4) :N = 11.27 +0.25Z, Standard Err.

0.59 (5.9)
Boring(8) :N = 7 .45+0.203Z, Standard Err.

Boring(14):N = 8.93+0.224Z,Standard EII.=O.94 (5.10)

l’he numerical N values which were used to formulate these equations were given 1n
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able 5.7 and the graphical representation of these points together with the regression

res representing the borings 4 , 8 and 14 are shown in Figures 5.11,12 & 13

spectively.

The distances between every pair of locations are calculated:  
This is easily done using a spread sheet such as "SuperCalc 5". The resulting

stances between every pair of boring locations in feet are given in the following

 

stance matrix:

h44= 0 h43= 307.53 hm= 305.56

hu= 307.53 kiss: 0 h814= 292.27

tnM= 305.56 tnw= 292.56 hMM= 0

le vector of distances between the location "0" and the boring locations is as follows:

h4o= 186.28

h30= 152.13

h14°= 186.01

The covariances which describe the spatial continuity of the data are

calculated:

The squared exponential model - which is used herein based on a recommend-

an by Baecher, 1981 - is given by the equation:

' _ 2 5.11C(h) =c§e (hZ/ho) ( )

61'C
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Slope: 0.25025

‘
0

Intercept: 11.27600

R Squared: 0.94984

‘
0

Correlation: 0.97460

S.E. of Est: 0.9233

 

 
 

Figure 5.11 : The Linear Regression Function Of Boring (4).
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figure 5.12 : The Linear Regression Function Of Boring (8).
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Figure 5.13 : The Linear Regression Function Of Boring (14).
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C(h) : covariance of two locations separated by a distance of "h" ft.

012v : the variance of the thirty N values: 15.591

ho : the autocovariance distance.

The value of the autocovariance distance is set to 350 ft (as recommended by Baecher,

1981), therefore the model will become:

C(h) = 15 .59le-th/3502) = 15 _ 591e-8.2E-6 (112) (5,12)

Consequently, the covariance matrix is calculated using the Equation (5.12) and the

spread sheet "SuperCalc 5". The results are as follows:

The covariance matrix of the simulated "observed" data is given by:

F15.59 7.20 7.27 1

7.20 15.59 7.76 1

C = 7.27 7.76 15.59 1

1.0 1.0 1.0 OJ

  

nd the vector of the covariances between the point (0) and the data locations is as

allows:

F11.74

12.91

D = 11.75

1.0

J  
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The weight matrix is calculated:

The matrix was calculated using the computer statistical program which was

ublished by Davis (1986). The results are as follows:

he weight matrix = (the inverse of the covariance matrix) *

(covariance vector of the estimated point).

W= C'1.D (5.13)

P -

0. 30132

0.42475

= 0.27393

1.99249

  

The predicted N function at the locations "0" is formulated:

The predicted N function is given by:

No= ao+boz (5- 14)

here: the a0 and b0 regression coefficients at point "0" are obtained by Kriging the a

d b coefficients from borings 4 , 8 , and 14:

30:2 Wrai=0'3013 (11.27) +0.4247 (7 .45) +0.2739 (8.93) = 9 .006

b(Sibel-19503013(0.25
0)+0.4247 (0.203)+0.2739 (0.224)= 0.223

bstituting in Equation (5.14) to become: N = 9.006 + 0.223 Z.
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herefore, the resulting N values - as calculated using the Spread sheet and Equation

14 — together with the simulated "true unobserved" N values which were given in

able 5 .5 are shown in Table 5 . 8. When rounded to integer values, the predicted values

'e in good agreement with the simulated "true unobserved" N values (five are the same,

10 are are "—1", two are "+1" and one is "-2"). The graphical representation of the  
riged line over these simulated "true unobserved" N values and their regression line is

own in Figure 5.14. It is observed that:

ao/a1- = 1.10 and bo/bi = 0.84

Table 5.8 : The N Values Predicted By Kriging Vs. The

Simulated "True Unobserved" N Values.

 

 

Z (ft) (true uniserved) (predated)

5 10.28 (10) 10.12 (10)

10 12.67 (13) 11.23 (11)

15 12.54 (13) 12.35 (12)

20 12.53 (13) 13.47 (13)

25 15.00 (15) 14.58 (15)

30 16.64 (17) 15.70 (16)

35 16.94 (17) 7 16.81 (17)

40 16.43 (17) 17.93 (18)

45 19.03 (19) 19.04 (19)

50 18.75 (19) 20.16 (20)

 

 



 

 

 
Fig
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Slope: 0.18796

‘
0Intercept: 9.91200

R Squared: 0.92713

‘
0Correlation: 0.96288

S.E. of Est: 0.8461

The Kriged Regression Line Is Given By:

N = 9.006 + 0.223 Z   
 

gure 5.14: The Linear Regression Of The Simulated "True Unobserved" N Values

And The Predicted N Function By Kriging At The Location "0".
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5.1.2.3 Analysis Of Variance:

A oneway analysis of variance is conducted using the program "SPSS" to

compare the true N values with the predicted values. The results of this analysis which

are shown in Figure 5.15 Show that the difference is insignificant with an F ratio

3f 0.0017 and an F probability of 0.9679. which indicates that the predicted N values

:an generally match the "true unobserved" N values adequately and can substitute them

hr the design purposes.

malysis Of Variance Output

h;

 

 

ource of Sum of Degrees of Mean

F F

'ariation Squares Freedom Squares Ratio Prob.

meg Samples 0.0168 1 0.0168

0.0017 0.9679

'ithin Replications 181.2678 18 10.0704

)tal Variation 181.2846 19

.—

lgure 5.15 : Analysis Of Variance Of The N Values Predicted By Kriging

‘ Vs. The Simulated "True Unobserved" N Values.

1.2.4 Comments On The Prediction By Kriging:

An examination of the Kriged N values in Table 5.8 indicates that the difference

tween the predicted N values and the simulated "true unobserved" ones appears to be

lignificant. As was mentioned in section (5 .1.1.3), N values are taken as integers in

ictice. Thus if the N values in Table 5.8 rounded to integer values, they are virtually

ntical. The average deviation is less than :1; 1.5. This result is confirmed by the

Lrnination of the graphical representation of both values as shown in Figure 5.14.
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i this context one can make the following remark regarding the geostatistical

iodeling:

The basic assumption of Kriging is that all the data in the subset used to predict

value as well as the predicted value itself have the same probability law and the same

rpected value (i.e. no trend). However, if the data follow a trend then the interpolation

lodeling can still be used to find a point on the trend provided that the employed data

relocated in the vicinity of that point in order to justify ignoring the trend.
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5.1.3 VERIFICATION OF THE DEVELOPED "TWO - POINT" ESTIlVIATE

The verification of the suggested "two - point estimate" is achieved by using

in assumed footing and the hypothetical trend of N which was assumed in section

5.1.1.1) as:

N=1O-O.01|X|-0.02|Y|+2Z°'5+e (5.15)

The settlement is computed numerically using the full variation of N. In order to do this

at "eight- point estimate" will be employed in which the weights are taken from

he corresponding fractional areas of Schmertmann’s strain influence diagram. Then

ty using the "two — point estimate", the settlement is estimated again. The results are

:ompared. ‘

:chm'ertmann (1970) gives the following equation for calculating the settlement:

ZB

S=c1.c,.pz [(Izi/E) .dzi]. (545)

Z=0

'here

p = increase in effective overburden pressure at foundation level.

C1 is a depth embedment factor.

C2 is an empirical creep factor.

B is the deformation modulus = 4N for silts or slightly cohesive silt-sand t0 12N

for sandy gravel and gravel, (E is in tsf).

I2 is the strain influence factor.
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The hypothetical footing is assumed as (8 ft * 8 ft) and the center of its base is

assumed to be at the location (X = 250 , Y = 200 , Z = 5) and assuming that

:he footing pressure at the foundation level is 1.5 tsf.

[he parameters are therefore given as follows:

E: the footing width = 8ft.

Depth of influence = 2B = 16 ft.

p = 1.5 (2000) - 5 * 125 = 2375 1b/S.f.

C,= 1 - 0.5 (5 * 125 / 2375) = 0.868

C2: 1 (assuming no creep).

E = 8 N (tsf), assuming coarse sand.

L : takes different values depending on the depth of the subarea according to the

following strain influence diagram.

 

 

 

0.1

B/ZL t 1
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Figure 5.16 : Schmertmann’s Strain Influence Factor VS. Depth.
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5.1.3.1 The "eight- point estimate" design:

The depth of influence (Figure 5.16) is divided into 8 subareas each of which has

a depth of 2 ft.

The modulus (E) is taken as (8N). The N value is calculated by substituting the midpoint

depth of each subarea into the hypothetical N function. The value of the influence

factor (I) is calculated from the diagram Shown in Figure 5.16 according to the depth

of the center of each subarea. The calculations are tabulated in Table 5.9.

 

 
 

Table 5.9 : The "Eight-Point Estimate" Calculations.

FDepth of Depth from

center of ground

'subarea surface. (I) (N) E=8N (I/E)6z

(ft) (ft) . (tsf)

1 6 0.225 9.42 75.36 0°°°59713.

3 8 0.475 10.24 81.92 0.1159670

5 10 0.55 10.58 84.64 0.0129962

7 I 12 . 0.45 10.64 85.12 0.0105733

9 14 0.35 12.55 100.40 0.0069721

11 16 0.25 12.84 102.72 0.0048676

13 18 0.75 13.43 107.44 0.0139613

15 20 0.05 ’ 14.51 116.08 0.0008615

 

Total=0.0678
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Therefore the settlement is. predicted as:

23

S=C1.Cz.p2 [(Izi/E) .dzi] .

z=0

= 0.868 * 1 * (2375/2000)(0.0678)

= 0.069 ft

= 0.07 ft, approximately.

5.1.3.2 The "two - point estimate" design:

Considering alternatively that the depth of influence is divided into only two

:ubareas each of which has a depth of B=8 ft, the center of the upper subarea is

herefore at a depth of (B/2 =4ft) under the footing and the center of the lower subarea

s at a depth of (3B/2=12ft).

e settlement is given by:

28

S=C1.C2.pz [(Izi/E) .dzi] .

z=0

= C1.C2.p[(Il.dz)/E1 + (1,.dz)/E,1

   
   

lonsidering that:

Epdz) = area of the influence diagram associated with the upper subarea

= (0.35)(B/2)+(0.5)(B/2)= 0.425 B

= 0.425 * 8

2.02) = area associated with the lower subarea = 0.2 B

= 0.2*8 
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It is noted here that Schmertmann implies using the ratio of (2.125: 1) as the

relative weights of the two subareas, whereas in this research this ratio is suggested

as (2 : 1) which is within 6% of Schmertmann’s.

Therefore

S = C1.C2.p [(0.425*8)/8*N(5+4) + (0.2*8)/8*N(5+12)]

= C1.C2.p [(0.425/9.19) + (0.2/11.95)]

= 0.868 * 1 * (2375/2000) [ 0.0629823 ]

= 0.065 ft

= 0.07 ft, approximately.

It is obvious that, for settlement calculations at "unsampled" locations, where an

N function is synthesized by methods herein, the settlement of 0.065 ft as calculated by

the "two-point estimate", and the settlement of 0.069 ft as calculated using the "eight

point estimate" could — for all practical purposes - be substituted for each other. The

agreement was as good or better at the other locations.
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5.2 VERIFICATION USING CASE HISTORIES

The practical reliability of the deve10ped models is checked by conducting the

suggested modeling on six available case histories. The resulting settlement predictions

are compared with the measured settlements in order to test the capability of the models.

To avoid the monotony of repetitions it is preferred to provide a complete analysis of

only one case history. The remaining five case histories will be summarized and provided

within appendix C.

5.2.1 APPLYING THE TREND SURFACE ANALYSIS TO CASE HISTORY No.1

For the actual case histories, the best fit of trend surface analysis model cannot

be as easily judged as in the assumed field, hence 5 to 15 models were tried for each

case. In general the "best" model was determined for each case by comparing the R2

values and comparing the standard error of estimates. The numerical value of each term

in the model within the limits of the site is then judged and all the results of the computer

output are investigated. Details are further explained in Sections 5.2.1,4 and 5.2.3.

5.2.1.1 PROJECT DESCRIPTION

The case history selected is a split-level building, whose settlement predictions

were previously made by Trigon Eng. Consultants, Inc., Greensboro, North Carolina

(Borden and Lien, 1988).

The project consists of a Split-level office building with four stories in the front

(1 five stories in the rear of a core area. A single story section wraps around this taller

ore area. According to Guinnin-Cambell, the structural engineers (as quoted by Borden
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and Lien, 1988), the maximum column loads occur at four column locations in the

building core area. Total design column loads within this core area range from 180 kips

to a maximum of 730 kips. The total design column loads outside the core area, around

the single story section, range from 10 to 20 kips. With these differences, differential

settlement was an obvious concern. A general plan view with the boring locations is

shown in Figure 5.18.

5.2.1.2 . FOOTING DETAILS

The most heavily loaded column is located at boring (B-103). This column was

chosen for the settlement prediction study. The as-built footing dimensions were:

Width "B" = 11.5 ft, Length = 22.5 ft, Depth = 3.5 ft.

The net loading to the base of the footing - as reported by the structural engineer;

Guinnin Campbell - was 650 lcips, Figure 5.17.   
5.2.1.3 SPT LOCATIONS

Standard penetration tests (SPT) were performed in a number of borings. The

boring locations and plan view of the building are shown in Figure 5.18. The soil test
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B=11.5’

= 650 kips 

   Figure 5.17 : The chosen footing for the settlement prediction study.
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Figure 5.18 : Plan View Of The Boring Locations For Case History No. 1

(After Borden and Lien, 1988).
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Figure 5.19 : Generalized Subsurface Profile For Case History No. 1

(After Borden and Lien, 1988).
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borings were performed to depths ranging from 15 ft. to approximately 75 ft. below

the ground surface. A generalized soil profile is shown in Figure 5 . 19.

5.2.1.4 APPLYING THE TREND SURFACE ANALYSIS PROCEDURE

The procedure was applied by conducting the following steps :

1. The Stratification Of The Subsurface Soil:

The subsurface soil was initially stratified into 3 layers; layer 1 being on the top.

Although the N values could be transferred into relative densities and the stratification

could be done with regard to Dr , it was decided to test the stratification used by the

previous investigator to see how much difference aries by applying the proposed

technique. The soil stratification is shown in Figure 5.19.

2. One-way ANOVA Analysis:

A "one—way ANOVA analysis" is conducted to compare the means of N values

in the 3 layers. The N values which are used here have to be corrected first for the

overburden pressure. The N values were corrected for the overburden pressure based on

the correction equation recommended by Liao (1986) as described in Appendix A. The

correction results are shown in Tables A.1 to A6.

This analysis appears in Appendix A Figure A.1. The number of treatments in

this analysis was taken as 3 (i.e.the measured values of N within each layer is considered

as one treatment). The separation of the variance into "within" and "between" treatments

appears on Figure A. 1. The F ratio was as high as (30.8483). The critical F value was
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3.91 (at the 0.05 level). The F ratio is then much greater than the critical F value

meaning that the hypothesis that the three layers are the same is rejected. Consequently

the differences between the layer means is statistically significant, which ascertains that

the designer’s original soil stratification is justified. It is to be noted also that it does not

prove that it is the "correct" or "only " stratification, just that one can justify multiple

strata. The number of layers will be checked in the next paragraph.

3. Testing The Differences Between Pairs Of Layers:

In the previous step, it was proven that the subsurface soil should be considered

stratifed. But, to ascertain that the soil should be stratified into 3 layers or only 2 layers,

the difference between pairs of layers has to be tested. To do so, the Tukey test of

multiple comparison technique is conducted. The result of this test which appears on

Figure A.1 shows that both layers 1 & 2 are significantly different from layer 3 at the

).05 level, but layers 1 and 2 themselves are not significantly different from each other.

This indicates that no significant difference can be Shown and subdivision is not justified.

This. result shows that the stratification of the previous investigator is not

tatistically justified. It is to be noted that it was likely geologically justified, but one is

ble to combine the layers in a trend surface analysis. Consequently the rest of the

nalysis of this procedure will consider that the soil is Stratified into 2 layers. layers 1

; 2 will be combined together and named layer 1 and layer 3 will become layer 2. This

imbination of layers increases the layer variance, but the estimation uncertainty of the

odel which will be built for this layer will be reduced, because it will have the
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advantage of estimating the parameters of only two models instead of three while using

the same amount of data.

4. Modeling The N Function For The Subsurface Soil:

Layer—1.1

Modeling the N function for the upper layer (1) is conducted by solving for the

trend surface of the observed N values within layer 1 using the 3 coordinates of each

observation related to an arbitrarily chosen origin at the northern corner of the site at

the reference level which was used by the previous investigator. The program "SPSS"

was used to fit the models.

Candidate functions, essentially representing all the possible polynomial

combinations of the coordinates X , Y and Z to the powers of 0.5 , l and 2 were tried

to fit the given N data. The coordinates with powers of greater than 2 were found to add

nil Contributions to the N value and were not critical to the model. In other words the

product of the coordinate to a high power and its coefficient was found to be nil and

neither to affect the N value nor lead to any increase in the R2 value. Physically, this

means that the high order "wavy" trends are not being looked for. As a result, the

number of the needed trials and the time required by the computer were reduced

considerably. The criteria which is uSed to rate the goodness of fit of the different

functions is maximizing the R2 value. This value represents the percent of total

variation which is explained by the formulated function.

Considering the guidelines which were provided in section 4.3 regarding the

odel building, the following two models were found to be the best:
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Model : 1) N1 =Bo+le+BzX2 +3, we, Y2 +BSZ° . 5+BGZ+B7Z2 (5 . 47)

which yielded an R2 value of 0.511.

Model: 2) N1 = DO+D1X°'5+D2Y°°5+ 13320-5 + D4X+ DSY

+Dfiz+n722 (543)

which yielded an R2 value of 0.528.

Model 1 assumes that the N value has a basic value of B, at the origin, then it

varies parabolically in each of the three directions X, Y and Z. The values of the model

coefficients were given by the computer output (Appendix B, Figure B. 1) as follows:

B,= - 2,721,918.4 , B1= 0.251 , B2: - 0.001 , B3= 2.586 , B4: - 0.012 ,

B5= 248,358.4 , B6: - 6372.3 , B7: 1.242.

The resulting standard errors were relatively large for the coefficients of big values and

l were reasonable otherwise. It is to be noted that the values of these coefficients are

functions in both the trend of N values and the three reference axes X , Y and Z. For

example, changing the location and/or the orientation of the adopted axes will yield

different values for the model coefficients. Consequently the evaluation of each model

should consider only the relative values of these coefficients and not the absolute values.

Model 2 assumes that the N value has a basic value of D0 at the origin, then it

varies quadratically in the X and Y directions and varies parabolically in the Z direction.

The model coefficients were given by the computer output (Figure B. 1) as follows:

D°= - 3,008,929.7 , D1: 10.058 , D2: 78.135 , D3,= 274,208.9 , D4= - 0.612 ,

Ds= - 3.794, D6: - 7027.8 , D7: 1.367.
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Here also, the resulting standard errors were relatively large for the coefficients of large

values and were reasonable otherwise. It is to be noted that a slightly larger R2 value in

the second decimal place does not make any real difference between the two models from

the view point of the percent of total variation which is explained by the model.

After the examination of the two models it can be seen that the coefficients of

205, Z and Z2 in both models are comparable. Consequently it can be deduced that the

N value increases parabolically in the Z direction but this deduction is not supported

statistically since the R2 value is low. It was indicated earlier in section 3.2.2.3 that an

R2 value of 0.8 is the limit that indicates a significant trend in the data and that an R2

value of greater than 0. 2 could indicate that a trend exists. To check that the trend exists,

the F test was conducted. For the first model, to test the null hypothesis that: B0: B1:

. . = B7: 0, the F value was obtained from the computer output Figure B.1 as 45.12.

The critical F value was 2.48 (at the 0.05 level). And since the F value is much greater

than 2.48, then the null hypothesis was rejected which means that the trend was found

to exist. For the second model, the F value was obtained as 46.8 which is much greater

than 2.48 leading also to the rejection of the null hypothesis and the confirmation of the

trend existance. The second model is then selected for the formulation of the N function

for the upper layer. The details of the model building & analysis appear in Appendix B,

Figure B. 1.

The function N(z) at boring (B-103) can be obtained by the substitution of the

coordinates of its location (104.2 , 92.7) in the selected model. This yields the

following function:
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N1 = 274208 . 9Z0'5-7027 . BZ+1 .367Z2-3008490

where Z is measured from the MSL upwards. When related to an origin on the ground

/—\

surface with 2’“ values increasing downwards, this function becomes:

N1 = 274208.53 (—Z*+891.5)°'5-7027.873(-Z*+891.5)

+1 . 367 (—Z*+891 . 5) 2*3008490

=1.367Z*2+4590 .BZ*+274208 .9 (-Z*+891.5)°'5-8187289 .2, (5.19)

where Z‘ is the depth from the ground surface in feet at the location of Boring (B-103).

The substituting of different depths in this function yields the following N values:

Z*(ft). N Z'(ft) N Z*(ft) N

0 42.10 10 33.43 20 36.24

2 39.24 12 33.22 22 37.78

4 36.97 14.25, (B/2) 33.48 24 39.57

6 35.27 16 34.02 25.75, (3B/2) 41.30

8 34.10 18 34.97 28 43.72

These predicted N values compares well with the measured valus in Boring (B403). 

layer 2:

Layer 2 was treated likewise. The two best models were found to be:

Model:1)N2=FO+F1Z+F2Z°'5+F3Z2 (5.20)

which yielded an R2 value of 0.443.
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Model : 2 ) 1x72=co+clx+c2 Y+G3Z+G4X°'5+G5Y°'5+G6Z°'5+G7Z2; (5 .21)

which yielded an R2 value of 0.449.

Model 1 assumes that the N value has a basic value of F0 at the origin, then it

varies parabolically with increasing depth and assumes that no variability of the N value

in the horizontal direction. The values of the model coefficients were given by the

computer output (Appendix B, Figure B.2) as follows:

0: - 348694006 , F1: - 83881.9 , F2: 3225018 , F3: 16.8.

The standard errors were so large as to deprive the model from its prediction power.

Model 2 yielded an R2 value of 0.449 which makes no difference from the first

model as far as the explained percent of the total variation of N value is concerned. This

model assumes that the N value has a basic value of G0 at the origin, then it varies

t quadratically in the X and Y directions and varies parabolically with increasing depth.

The model coefficients were given by the computer output (Figure B.2) as follows:

Go: - 16362554 , G1: 1283.8 , G2: ~35144.3 , G3: — 30682 , G4= — 20816.7,

G5: 7380119 , G6: 1172299 , G7: 6.22.

The standard errors were all very large and deprived the model from any precise

prediction power. However, the surface of the layer is located at a depth of more than

30 ft below the ground surface and the width of the footing in question is 11.5 ft , i.e.

this layer is outside the zone of influence of this footing — as will be shown in the next

Paragraph— and will not be used for modeling its settlement. As such, there is no need

to test the existance of a trend by using the F test or to calculate the NZ) for this layer.

The model coefficients as well as the analysis details appear in appendix B, Figure B.2.
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5 Using The N Function To Model The Settlement:

Determining of Now, and New) , see Figure 5.20:

The footing location is at the boring (B-103), so the X & Y coordinates of the footing

center are as follows :

Xb = 104.2 ft, Yb = 92.7 ft.

The footing base level (Z) = Ground level at the footing location -Depth of embedment.

= 891.5’ - 8.5’ = 883 ft.

B = 11.5 ft.

The depth of influence = 2B = 23 ft. .

The level of the underside of layer 1 = 860 ft.

The level of the lower point of the depth of influence: Zb — 2B 2 883 - 23 = 860 ft.

Therefore the depth of influence is located entirely within the upper layer, then the two

representative N values are obtained by substituting the levels of (B/2) and (3B/2) in the

N1 model. These levels are given by:

Zoe/2) = Z1, — B/2 = 883’ - 11.5/2 = 877.25’ , (Z* = 14.25).

& Zola/2): Zb - 3B/2 = 883’ - 34.5/2 = 865.75’ , (2* = 25.75).

The N1 (3,2) is then obtained by substituting the co-ordinates :( Xb= 104.17 , Yb = 92.7,

2*(B/z)= 14.25 ) in the N1 model which is given'by Equation 5 .18.

Therefore Nam) = 33.5 , which compares to the measured values of (18, 17, 64) in the

general vicinity in Boring (B—103).

Similarly N1(3B,2) is obtained by the substitution of :

(X8 = 104.17 , Yb = 92.7 , Z*(3B,2)= 25.75) in the same model to yield:

N(3B/2)= 41.3, which compares to the measured values of (18, 17, 64) in the boring.
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B=11.5’
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of

influence ——fif—

= . (BB/2), N = 41.299 , wt.‘= 1

11.5’

Layer (1)
r r

(860!)

Layer (2)

Figure 5.20 : Subsoil Stratification And The Representative N Values.

The design N value is obtained by calculating the weighted average of NM, & N(33,2)

Therefore ; the design N value = (1/3) [ 2 N(B,2)+ Non/2)],

= (1/3)[2(33.5)+(41.3)] = 36.1

The estimated settlement "S" is obtained as follows (Peck & Bazaraa, 1969):

s: (2/N) [q* (ZB/B+1) 2]

where

q = net foundation pressure in (tsf).

= 650 kips / (2000 * 11.5’ * 22.5’) = 1.256 (tsf).

Therefore

8 = (2/36.1) [1.256 * (2*11.5/ 11.5+1)2] = 0.24 in.

The measured settlement as reported by the previous investigator = 0.3 in.

Therefore the predicted settlement of 0.24 (in) is in good agreement with the

measured value of 0.3 (in).
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6. The Confidence Limits Of N And S:

The confidence limits of the N value are as follows (Box, Hunter and Hunter,

1978, p 524, Equation 15.26):

N = Ndesigni td_f”a* [ (P/n) *Err. variance] 0'5 (5.22)
est.

where

P = The number of the parameters in the N model = 8

n = The number of the N observations included to fit the model = 55

d.f.=n-P=55-8 =47

97.0.05 = 1.67945

Err. variance = 91.10036 (as shown in Figure B.1)

Therefore ; the confidence limits are given by :

Nesto=36 .1a1.67945* [ (8/55) *91.10036] **0.5=36.1:t6 .1

= 30 and 42.2 ; (at the level of 0.10).

and

Nest.=36 .1a0.6803* [ (8/55) *91.10036] **O.5=36 .112 .5

= 33.6 and 38.6 ; (at the level of 0.50).

The confidence limits of the estimated settlement "S" are given by:

S6,,= (C / Nest)

where

C = [2q * (2B / B+1)2] = [2 * 1.256 * (23 / 12.5)2]= 8.5

Therefore the 90% confidence limits of "S" are given by:

Sest=8.5/(36.1:6.1).

= (0.20 and 0.28) in.
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and the 50% confidence limits of "S" are given by:

sgfl=8.5/(36.1a2.5).

= (0.22 and 0.25) in.

Thus, the 90% confidence interval of "S" = 0.28 - 0.20 = 0.08 (in).

However, from a practical viewpoint, all of them are tolerable settlements.

The 90% confidence interval of 0.08 is relatively big for an Sest of 0.24 (in) , but this

confidence interval could be reduced by minimizing the standard error of estimate :

[(P/n)* error variance]**0.5 , this in turn is minimized by:

i. Reducing the number of the parameters in the N model : "P".

ii. Increasing the number of n observations included to fit the model,which means

increasing the number of borings and increasing the sampling costs.

iii. Finding a "better" fitting model.

' As such, a trade off is being made between the estimation precision and the number of

borings or the sampling costs. The confidence band of the estimated N value is

proportional to (1/11)"'5 , thus if the number of the N observations was doubled to become

110 instead of 55, then the N,,,, at the level of 0.10, would become:

36.1a(6.1/295)=36.1a4.3

and if the upper confidence limit was considered for the foundation design, as will be

SUggested later in chapter 6 among the conclusions, then this trade off could become a

rational basis for producing less conservative foundation design for a reduced cost.
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7. The Contours Of The N Values:

The selected N1 model given by Equation 5.18 can be easily used to plot the N

contours at any desired depth. This is achieved by substituting the desired depth (e.g.B/2

or 3B/2) for the Z value in the model.

This substitution will yield a two-dimensional N function as : N = f(X , Y).

For example, the substitution of the depth of Z030)== 877.25 yields the function:

N(B/2,=10.0582X0-5+78.1354Y0-5-0.6117X—3 .7941Y-406 .039; (5.23)

and the substitution of the depth of 293,2) = 865 .75 yields the function:

NOB/”=10.05.82X0'5+78.1354Y0'5-0.6117X-3.7941Y—398.218;(5.24)

The computer program "EXCEL" was used to plot these two N functions in

three-dimensional plots. Figures 5.21 and 5.22 show the plotting of N functions given

by Equations 5.23 and 5.24 respectively. The N values at the measured points, at the

same depths, are also plotted on the same Figures to show how well they were fitted.
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Figure 5.21: Plotting Of The N Function Given By Equation 5.23 Together

With The N Values Of The Six Borings At The Depth Of B/2:

' Z = 877.25 ft.
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Figure 5.22: Plotting Of The N Function Given By Equation 5.24 Together

With The N Values Of The Six Borings At The D8pth Of 315/2:

Z = 865.75 ft.
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8. The Contours Of The Predicted Settlement:

The estimated settlement in inches is given by:

S,,,= 8.5 / N

where

N: (1/3) [2 Nam) + Nos/2)]

substituting Nam) & Now) as functions in (X & Y) as given by Equations (5 .23 & 24)

yields:

N=10.058236699 X°'5+ 78.135462538 Y°'5- 0.611711073 X-3.794113405 Y—403.432

which could be simplified as:

N=10.058X0-5+78.135Y0-5-0.611X—3.794Y-403.432 (5-25)

Therefore:

Sest=8.5/(10.058X0'5+78.135Y0'5-0.611X-3.794Y-403.432) ,- (5.26)

This function is used to calculate the predicted settlements at points in the (X , Y)

plane Spaced at intervals of say 20 ft each. These values are then used to establish

the contours of the predicted settlements.

The predicted settlements are tabulated in Table 5.10 and the contour plot is shown in

Figure 5.23. It is to be noted that these settlement contours are not for the predicted

settlements of actual footings at the building; these are the predicted settlements for

replicate footings of the one analyzed located at the different locations of the site.
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Table 5.10 : The Predicted Settlements At Points Spaced

At 20 ft For Case History No. 1

 

 

X (ft) Y(ft) Settlement (inch)

40 60 0.639

60 60 0.553

80 60 0.560

100 60 0.627

120 60 0.777

20 80 0.345

40 80 0.274

60 80 0.257

80 80 0.258

100 80 0.271

120 80 0.296

140 80 0.336

160 80 0.399

20 100 0.272

40 100 0.226

60 100 0.214

80 100 0.215

100 100 0.224

120 100 0.241
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Table 5.10 : Continued.

 

 

X (ft) Y(ft) Settlement (inch)

140 100 0.267

160 100 0.305

20 120 0.284

40 120 0.234

60 120 0.221

80 120 0.222

100 120 0.232

120 120 I 0.250

140 120 0.278

160 . 120 0.320

20 140 0.375

40 140 0.293

60 140 0.273

80 140 0.275

100 140 0.290

120 140 0.319

140 140 0.365

160 140 0.441
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The settlement bounds are defined as follows (in inch):

1: (0.214- 0.270) 2: (0.270- 0.327) 3: (0.327- 0.383)

4: (0.383- 0.439) 5 (0.439- 0.496) 6: (0.496- 0.552)

7: (0.552- 0.608) 8: (0.608— 0.665) 9: (0.665- 0.721)

10: (0.721- 0.777).

 

Figure 5.23 : The settlement Contours.
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5.2.2 APPLYING THE KRIGING TECHNIQUE TO CASE HISTORY No. 1

In this section the settlement will be predicted by Kriging for the same footing of

case history No. 1 for which the settlement was predicted using the trend surface analysis.

The procedure is conducted as shown in the following paragraphs.

5.2.2.1 APPLYING THE KRIGING TECHNIQUE TO THE N VALUES

Consider that an estimate of N value is required at the center point "0" of the

selected footing as shown in Figure 5 .17. The coordinates of "o" are: (104.2 , 92.7)

as shown in Figure 5.18. Kriging is applied by conducting the following steps:

1. Representing the N values by a linear regression function:

The N values were corrected for the overburden pressure as described in

Appendix A (Tables A.1 to A6). The corrected N values of each boring were

represented by a linear regression function. This function takes the form:

N = ai + bi z ; (i= boring number). (5.27)

The rationale of formulating this function was explained earlier in section (5.1.2.2). As

far as borings "B—102 & B-105" are concerned their depths are not considered entirely

because they both reach a firmer strata; so in order to satisfy the homogeneity condition

it is decided to consider only the top 30 ft of both of them. In this case history the

strata which was believed to violate the homogeneity requirement was well below the

depth of influence of 2B (23 ft) under the footing, so it was decided easily to exclude it

from the analysis. If the suspected strata is located within the depth of influence, then the
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decision of excluding it Should be based on the analysis of variance.

The selection of the data which will be used for the estimation will be

controlled by the general requirements of the interpolation techniques which recommend

that the data should surround the point "0" nicely. Therefore the borings which will be

considered are borings (B—102 , B-105 , B-106 , B—109). For convenience these borings

will be abbreviated here as borings (2 , 5 , 6 ,9) respectively.

It is decided to execlude both boring (B-103) and (B-2) because the first is located right

under point "0" and the second is located in the close vicinity of it, so it was decided to

take them out to test the effect of not having drilled them. The other four borings which

were considered are surrounding the point "0" nicely , i.e. have more or less equal

distances from the point "0".

The results of the linear regressions representing these four borings are as follows:

boring (B-102): N = 21.7682 - 0.2913 Z , Standard Error: 2.28 ; (5.28)

boring (B—105): N = 32.0538 - 1.216 Z , " " = 5.517 ; (5.29)

boring (B-106): N = 22.5733 - 0.3906 2 , " " = 1.57 ; (5.30)

boring (B-109): N = 23.7274 — 0.5455 Z , " " = 3.15 ; (5.31)

These four functions are plotted over data as Shown in Figures 5.24 to 5.27.

To illustrate the effect of not having restricted the boring depths, Figure 5 .28 shows the

regression line of boring (B-102) plotted over 1 data without restricting the depth. The

comparison between Figures 5.24 and 5.28 Shows that the data that appears to be non—

linear over a large depth range can be assumed to be linear if the depth range is 
restricted to that of interest.
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Figure 5.24 : The Linear Regression Function Of Boring (B-102).
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Figure 5.25 : The Linear Regression Function Of Boring (B-105).
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Figure 5.26 : The Linear Regression Function Of Boring (B-106).
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    3.
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Intercept: 23.72737 ; Slope: - 0.54551

Correlation: - 0.87064 ; R Squared: 0.75801

S.E. of Est: 3.14634

 
 

Figure 5.27 : The Linear Regression Function Of Boring (B-109).
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Figure 5.28 : The Linear Regression Function Of Boring (B-102) Plotted

Over Data Without Restricting The Boring Depth.
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2. Calculating the horizontal distance (h) between every pair of locations:

The distances between every pair of locations were measured from the site

plan.

These locations include the borings (2, 5, 6 & 9) as well as the center point "0" of the

selected footing.

The distances in feet are given in the following distance matrix:

hfl= 0.0 hfi= 190.08 h%= 52.79 h”: 189.84

ha: 190.08 hfi= 0.0 hfi= 191.28 h$= 57.79

h”: 52.79 hw= 191 28 hg= 0.0 hw= 175.00

h”: 189.84 h%= 57.79 h%= 175.00 h”: 0.0

The distance vector between the point "0" and the boring locations are as follows:

h%= 102.36

hg= 109.06

h®= 85.42

h90= 9 O . 3 9

3. Calculating the covariances which describe the spatial continuity of the data:

The covariances of N values at every pair of borings were calculated. These

borings include the four bon'ngs (2, 5, 6 and 9) which were used for the Kriging as well

as the boring at the location in question "0". The covariances were calculated usmg the

equation:
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Cij=(l/n)z (Ni—E) (Nj-lV—j) (5.32)
1 .

where

Ci]. : covariance of N values at the two borings "i" and "j".

i : N value at boring "i".

N- : N value at boring "j".

n : number of N pairs.

The covariances were calculated using the computer program of Davis (1986).

The resulting covariances are as follows:

Distance between the two borings (ft). Ci)-

' 0 133.27

1126: 52.79 2529

1159: 57.79 44-51

1160 : 85.42 49.11

1190: 90.39 61-48

1120: 102.36 1334

1150; 109.06 38-82

h... : 175.00 363”

h29 : 189.84 1004

1125 : 190.08 2192

1156 : 191.28 82-09
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Consequently, the covariance matrix is as follows:

133.27 21.92 25.29 10.04 1

21.92 133.27 82.09 44.51 1

C = 25.29 82.09 133.27 36.37 1

10.04 44.51 36.37 133.27 1

1.0 1.0 1.0 1.0 O  

and the vector of the covariances between the point "0" and the boring locations is as

  

follows:

13.34

38.82

D = 49.11

61.48

1.0

4. Calculating the weight matrix:

The weights are given by the vector:

W2

W5

W9

  

where

u = the LaGrange parameter.

The weight matrix is calculated as follows:

The weight matrix = (the inverse of the covariance matrix) * (covariance vector of

the estimated point).
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Or:

W%C”1MD
(5.33)

Or:

I ' I ‘ '1 " ‘W2 133.29 21.92 25.29 10.04 1 13.34

W5 21.92 133.27 82.09 44.51 1 38.82

W6 = 25.29 82.09 133.27 36.37 1 * 49.11

W9 10.04 44.51 36.37 133.27 1 61.48

u j 1.0 1.0 1.0 1.0 OJ 1.0 J      

F

0.00570 -0.00155 -0.00223 -0.00193

  

0.34967

-0.00155 0.01229 -0.00764 -0.00311 0.16082

= -0.00223 -0.00764 0.01175 -0.00188 0.18606 *

-0.00193 -0.00311 -0.00188 0.00693 0.30346

0.34967 0.16082 0.18606 0.30346 -57.87732 J

533' l '. 4 0.13774

38.82 0.05108

49.11 0.32102

61.48 0.49016

1.0 J . -19.17596

_ _ 1    

The physical ~significance 0f the resulting weights can be realized after examining the

boring locations in relation to the point "0". The point "0" is almost located on the

straight line joining the borings (6 and 9), and the borings (2 and 5) are outside this line.

As a result the weights of borings (2 and 5) are much smaller than the weights of borings

(6 and 9).
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5. The estimated N function:

The estimated N function at the point "0" is given by:

.Néao+boz (5.34)

where

510:2 Wi ' ai ; (over the 4 borings: 2, 5, 6 & 9).

= 0.1377 (21.7682) + 0.0511 (32.0538)

+ 0.321 (22.5733) + 0.4902 (23.7274) = 23.51

and

120:: nil-.191.

= - 0.1377 (0.2913) + 0.0511 (— 1.216))

+ 0.321 (- 0.3906) + 0.4902 (- 0.5455) = — 0.495

The estimated N function at the point in question is therefore:

NE23.51-0.4952 (5.35)

The negative coefficient on Z indicates a tendency for decreasing relative density or

stiffness with depth. This alerts one to disproportionality of larger settlements with

increased footing sizes.

The predicted N function given by Equation 5.35 is plotted over the regression

line of the observed N values of boring (B-103) as shown in Figure 5.28. The higher N

values which appear in the boring log below the depth of about 25 ft are excluded from

the regression because they are below the depth of influence of the footing.
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Figure 5.29 : The Predicted N Function Vs. The Regression Line Of The

Observed N Values Of Boring (B-103).

 



 

 

 

It is 01

averag

5.2.2.2

follow

TheN

and

2
>

Thed

Which

B01111;

Thed

5.2.2.

Where



157

It is observed in the Figure that the two lines differ, but they are reflective of the " local

average" versus a single location average.

5.2.2.2 USING THE ESTIMATED N FUNCTION TO OBTAIN THE DESIGN

N VALUE

The "two-point" estimate can now be used to estimate the design N value as

follows:

The N values at the depths of (B/2 = 5.75 ft) and (3B/2 = 17.25 ft) are given by:

1703/2)=a0+bo(B/2+embedment) =23.51—0.495 (5.75+8.5) =16 .46

and

Kim/2) =ao+bo(3B/2+embedment) =23 . 51—0.495 (17 .25+8 . 5) =10 .76

The design N value at this location "0" is then given by the weighted average:

N=(l/3) [217(3/2,+1§‘I(3B/2)] =(1/3) [2(16.46)+(10.76)]=14.56

which compare to the measured values of (18, 17, 67, 64) in this general vicinity in

Boring (B-103).

The design N value obtained by the trend surface analysis was 36.1.

5.2.2.3 USING THE DESIGN N VALUE FOR SETTLEMENT PREDICTION:

The predicted settlement "S" in inch is given by:

S = (2/N) [q * (2B / B+1)2] ; (Peck and Bazaraa, 1969).

where
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B = width of footing = 11.5 ft.

q = net foundation pressure in (tsf).

= 650 Kips / (2000 * 11.5’ * 22.5’) = 1.256 (tsf).

Therefore

S = (2/ 14.56) [1.256 * (2 *11.5/ 11.5 +1)2]

= 0.58 inch.

The settlement predicted by the trend surface analysis was 0.24 inch.

The previous investigators give a predicted settlement as 0.53 inch using the one-

dimensional compression laboratory test and a predicted settlement as 0.12 inch using the

pressuremeter test.

The measured settlement as reported by the previous investigator = 0.3 inch.

Therefore the predicted settlement (by Kriging) of 0.58 in is greater than the measured

settlement by approximately 93 % and the predicted settlement (by trend surface) of

0.24 in is less than the measured value by approximately 20 %.
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5.2.2.4 CONSTRUCTING THE PREDICTION INTERVALS FOR THE

ESTIlVIATED VALUES OF BOTH N AND S

The prediction variance is given by:

n n n

2 2

OR=E:Z:Wl"m'7j'C1'j_22I'VJL'C.1'0+0N (5-35)

i=1 j=l i=1

From the previous results of the weight and covariances matrices the terms of this

prediction variance are calculated as follows:

II II

Term(1) =2 2 w, . wj. Cij=18 . 89

1=1 ]=1

n

Term(2) =22 Wi. Cio

i=1

= 2 (w2 C2° + w5 C50 +w6 C6o + w9 C90) = 99.44

rerm(3)=o§=133.27

Therefore, the prediction variance is given by:

o§=52.7

The prediction variance can be used to construct the prediction interval on the

estimate to any desired degree of confidence. Thus, the 90 % prediction interval for the

N value is given by:

Nat(M1U,,Om¢o§=(14.5642.353¢52.7)=14.56417.1
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However, in practice, the 90 % confidence interval is pretty broad. For the

standard penetration test, the confidence interval is not intended to be a criteria for

accepting or rejecting an N observation. The experience of the driller plays an important

role in the acceptance of an observation. Furthermore, the upper confidence limit could

be used — as recommended by some researchers e.g. Baecher,]981 - as a design value.

For these reasons, the 50 % confidence interval is considered reasonable for the SPT

testing.

In this regard, the 50% prediction interval for the N value is given by:

A

N:t((4_1) film/oi: (14 . 5650 .765752 .7") =14 . 56:5 . 55

This says the 50 % confidence limits are: (9.01 and 20.11), which is a relatively broad

confidence interval for the predicted N value, obviously because of the high value of the  
variance of the N values. For comparison, the 50 % confidence limits from the trend

surface analysis were (32.8 and 39.4).

After the examination of these results, it is observed that the predicted design N

value by Kriging was 14.56 which is lower than the predicted design N value of 36.1 by

trend surface. On the other hand, the 50% confidence interval by Kriging was 11.1

which is larger than the 50% confidence interval of 6.6 by trend surface. This reflects

the effect of testing a "hard spot" at the location of Boring (B-103) and the exclusion of

the data of this boring from the prediction by Kriging while including them in the

prediction by trend surface.
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The 50 % confidence limits of the settlement prediction (by Kriging) are as

follows:

S=(2/(1\7¥t((4_1),0.25)\/0E)) tq*(2B/B+1>ZI

= (2/2011) [1.256 * (2*11.5/11.5+1)2] and

(2/9.01)[1.256*(2*11.5/11.5+1)2]

= (0.41 and 0.95) in.

The 50 % confidence limits of the settlement prediction (by the trend surface analysis)

were: ( 0.22 and 0.26) in.

Here again, the effect of including the data of the tough spot, at the location of

Boring (B-103), in the prediction by trend surface resulted in a predicted settlement of

0.24 in. On the other hand, the predicted settlement by Kriging was 0.58 in, which

reflects the effect of using the local average instead of the N value at the " hard spot". ‘

  

 



 

 

 

 

5.2.3 SUM]

SIX(

Fiver

Carolina - we

and the settle

six case histo

1. Split]

2. A twe

3« Large

4. . A loa<

5' A gen

6. A III:

5.2.3.1 The

These

histories. Tm

Well defined

meant that eaI

1' Every

boring

2‘ The f0

3' The 10

4' The ac



“. r.<:-V'.'_ “"71-‘n
 

162

5.2.3 SUMTVIARY AND ANALYSIS OF THE PREDICTED SETTLEMENTS FOR

SIX CASE HISTORIES

Five more case histories - in addition to the split level office building in North

Carolina - were analyzed using both the trend surface analysis and the Kriging technique

and the settlements are predicted for each of them using both techniques. A list of the  six case histories together with the references are as follows:

1. Split level office building in North Carolina ; (Borden and Lien,l988).

2. A twenty - story block in Nigeria ; (Grimes and Cantly, 1965).

3. Large tanks in Kansas City ; (Davisson and Salley, 1972).

4. .A load test in northern Spain ; (Picomell and Del-Monte, 1988).

5. A generator in Pennsylvania ; (Fischer et. a1. , 1972).  6. A lift bridge in Delaware ; (Seymour et. al. , 1972).

5.2.3.1 The Case Histories Selection Criteria And Summary:

These six case histories were selected from among tens of published case

histories. The selection was controlled by the criteria of accepting the case only if it has

well defined data from the viewpoint of the spatial and geotechnical modeling. This

meant that each case history should satisfy the following requirements:

1. Every N value should have a defined location as N(x,y,z). This means that the

boring locations in the (X , Y) plane and the depth of each N value are reported.

2. The footing dimensions and locations are available:

3. The loading to the base of the footing is available.

4. The actual settlement is measured and reported.
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The selected six case histories satisfied these four requirements. Case histories which

were found to violate one or more of these requirements were not selected.

The analysis of these case histories - except for the first one which was analyzed

in details earlier in this chapter - is summarized in Appendix "C". However, the results

of this analysis are presented together here for the sake of comparison. These results are

summarized as follows:

The trend surface analyses yielded the following results:

1. Reference is made to what was mentioned in Section 5.2 that, for the actual case

histories, the best fit of trend surface models cannot be easily judged as in the assumed

field, hence 5 to 15 models were tried for each case. The best model was determined

for each case according to the criteria explained in Section 5.2. The models which were

selected as providing the best fit to the data of the different case histories were:

Case history No.1:

N=-3008929 .7+10.058Xo'5+78.1351/0'5+2'74208.9Z0'5

-0.612X—3.794Y—7027.8Z+1.36722 (5.37)

R2: 0.528

Substituting the coordinates (104.17, 92.7) of the predicted location in this model yields

the N(z)funtion at this location as follows:

N = 1.367 22 + 4590.3 Z + 2742089 (-Z + 891.5)” — 81872892

Case history No.2:

N=35.66-16 .7X0'5+1.38X+0 . 0019X2+4 . 56Y0'5-0 . 37Y

+1.73Zo'5-0.107Z--0.001Z
2 (5.38)
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R2: 0.458

The Na, function at the predicted location, (115.8, 58.42), is given by:

N = -0.001 22 — 0.107 Z + 1.73 205 + 54.47

Case history No.3:

1\I'=—1254—0.0082X+1476z°-5-624Z+114.321-5

—7.68Z2 (5.39)

R2: 0.65

The NZ) function at the predicted location, (315, 178.38), is given by:

N = -7.68 Z2 + 114.3 Z15 — 624 Z + 1476 20'5 — 1256.58

Case history No.4:

N=—15.26+0.216X+5.67zo-5—0.417Z+0.001Z2

+7.9ZZ3 (5.40)

R2= 0.62

The N(Z, function at the predicted location, (32.5, 25), is given by:

N = 7.92 E—7 Z3+ 0.001 22 — 0.417 Z + 5.67 20‘5 — 8.24

Case history No.5 :

N=15197—o.02X—4302ZO-5+36oz—0.74z2 (5.41)

R2: 0.53

The N(2) function at the predicted location, (260.6, 0.0), is given by:

N = —0.7442 22 + 360.89 Z — 4302.4 Z0'5+ 15191.79
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Case history No.6:

1\7=27836—1.62X—807220-5+675.2'—1.622 (5.42)

R2: 0.503

The N(z) function at the predicted location, (760, 0.0), is given by:

N = -1.6 Z2 + 675 Z - 8072 Z05 + 26604.8

2. The design N values were as shown in Table 5.11. The rounded integer values

are ‘shown between brackets.

Table 5.11 : The Design N Vaues For The Six Case Histories.

 

 

Case History No. Design N Value

1 36.1 (36)

2 6.91 (7 )

3 3.16 (3 )

4 12.29 (12)

5 . 65.6 (66)

6 39.18 (39)

 

The prediction by Kriging yielded the following results:

The estimated N functions and the design N values for the six case histories are

summarized in Table 5.12.
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Table 5.12 : The Estimated N Function And The Design N Values For The Six

 

 

 

Case Histories.

Case History No. . The Estimated N Function. The Design N Value.

1 N = 23.51 - 0.495 Z 14.56 (15)

2 N = 10.745 - 0.019 Z 10.18 (10)

3 N = 7.5 + 0.368 Z 4.13 (4)

4 N = 6.572 + 0.139 Z 12.38 (12)

5 N = 0.747 + 33.593 Z 74.6 (75)

6 N = - 123.5 + 0.97 Z 37.23 (37)

 

Table 5.13 : Summary Of The Predicted Settlements Versus The Measured Values

For The Six Case Histories.  
 

 

 

 

Settlement (inch)

Case

- Predicted By Measured

History ‘ -

The Designer Trend Kriging

No. (method ref.) Surface

1 0.12 0.24 0.58 0.3

2 1.5 . 2.5 2.29 0.97

3 2.1: (Peck et. al.)

3.9: (Schmertmann) 4.03 3.1 3.3

4 1.4: (Peck et. al.)

1.2: (Meyerhof) 1.93 1.92 1.56

5 1.3: (Terzaghi & Peck)

0.76: (Meyerhof) 0.48 0.43 0.5

6 0.3 0.36 0.38 0.4       
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The predicted settlements by both methods are summarized as follows:

Table 5 . 13 shows the predicted settlements versus the measured values for the six case

histories. Table 5 . 14 shows the ratios of the predicted settlements to the measured values.

Table 5.14 : Settlement Ratios For The Six Case Histories.

 

 

 

Case Settlement Ratio: (Predicted / Measured)

History

No. By Designer Using Trend Surface By Kriging

1 0.4 0.8 1.93

2 1.55 2.57 2.36

3 0.64 , 1.18 1.22 0.94

4 0.9 , 0.77 1.24 1.23

5 2.6 , 1.52 0.96 0.86

6 0.75 0.9 0.95      
  
5.2.3.2 Analyzing The Results:

The predicted settlements which appear in Table 5.13 were compared to the

measured values. Investigation of the predicted settlements by both techniques as well as

by designers gives an impression that both designer and statistical methods significantly

overpredicted the settlement of the second case history suggesting that it could be a

potential outlier that can be dropped out from the comparison. The comparison was

made by running a simple t—test of zero mean on the paired differences. The hypothesis

to be tested is that the difference between the predicted settlement (8,) and the measured

settlement (Sm) is zero. The t—statistic is computed as:
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t(nl+nz-2) , (oz/2) = [ (Eh—Em) — 01/ USS/.711) +(Sj/n2) 10's (5 '43)

where

Sp = standard deviation of the predicted settlements.

S.m = standard deviation of the measured settlements.

n = number of cases in each group.

The first t-test was conducted using the computer program "SPSS" to test the differences

between the settlement predictions by the trend surface analysis and the measured values.

The computer output of this test appears in Figure 5 .30.

 

Number of Cases Mean Standard Deviation Standard Error

Group 1 5 1.4080 1.618 .724

Group 2 5 1.2120 1.273 .569

Pooled Variance Estimate Separate Variance Estimate

F 2 -Tail 1: Degrees of 2 -Tail t Degrees of 2 ~Tail

Value Prob . Value Freedom Prob . Value Freedom Prob .

1.62 .653 .21 8 .837 .21 7.58 .837

 

Figure 5.30 : t-Test For The Paired Difference Between The

Settlements Predicted By The Trend Surface

Analysis And The Measured Values.

The second t—test was conducted to test the differences between the settlement predictions

by Kriging and the measured values. The output of this test appears in Figure 5.31.

From the results of the t-test: the predictions by the trend surface yielded a t value

of 0.21. The critical t value is 2.306 (at the level of 0.05 and the degrees of freedom of

8) Since 0.21 is well below 2.306 then, the null hypothesis that the differences are

insignificant is accepted.
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Number of Cases 'Mean Standard.Deviation Standard Error

Group 1 5 1.2820 1.198 .536

Group 2 5 1.2120 1.273 .569

Pooled variance Estimate Separate Variance Estimate

F 2—Tail t Degrees of 2-Tai1 t Degrees of 2-Tail

Value Prob. Value Freedom Prob. Value Freedom Prob.

1.13 .910 .09 8 .931 .09 7.97 .931

 

Figure 5.31 : t—Test For The Paired Difference Between The Settlements

Predicted By Kriging And The Measured Values.

The predictions by Kriging yielded a t value of 0.09. Since 0.09 is well below

2.306, then the predictions by Kriging are also consistent with the null hypothesis. The

conclusion here is that the differences - either between the settlement predicted by the

trend surface analysis and the measured settlements or between the settlements predicted

by Kriging and the measured settlements — are insignificant. Although both of them

yielded acceptable settlement predictions at the level of 0.05, the predictions by Kriging

did better. This is reflected by the t value of 0.09 in the Kriging case being less than the

t value of 0.21 in the trend analysis case.

The general conclusion here is that the trend surface analysis is preferred to

Kriging as long as the trend is fitted with an R2 value of at least 0.8, otherwise the

Kriging is recommended. Kriging more strongly reflects "local" effects which also

strongly affect indvidual footing settlement.

The designer’s predictions were also compared to the measured settlements. The

computer output of the t—test appears in Figure 5.32. The results show that the difference

is insignificant with a t value of 0.25 which is less than the critical value.
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Number of Cases Mean Standard Deviation Standard Error

Group 1 8 1.3850 1.198 .424

Group 2 5 1.2120 1.273 .569

Pooled variance Estimate Separate variance Estimate

F 2-Tail t Degrees of 2-Tai1 t Degrees of 2-Tai1

Value Prob. value Freedom Prob. Value Freedom Prob.

1.13 .831 .25 11 .809 .24 8.22 .813

 

Figure 5.32 : t—Test For The Paired Difference Between The Settlements

Predicted By The Designers And The Measured Values.

The examination of the results of the t—test between the designers predictions and

the measured values shows that the t value was 0.25 which is more than the t values

from both the trend surface and Kriging. These values were 0.21 and 0.09 respectively.

This result shows the capability of the techniques proposed herein of yielding settlement

predictions which are (on the average) more accurate. The conclusion here is that the

proposed techniques have the following advantages over the current procedures:

1. They yield (on the average) more accurate results due to consistency in selecting

the data and determining the design N value as the weighted average of the two

N value estimates, obtained at the depths of B/2 and 3B/2 under the footing. This

conveys information regarding both the average of N values within the zone of

influence as well as the rate of increase with depth. This is tested in this section.

2. They are stronger in the sense that they provide confidence limits at the desired

level of significance. This can help the foundation designer make stronger

decisions about the structures supported by these foundations.

3. The upper limits of the estimated N values produced by these techniques can be

used as design values to produce less conservative designs with lower costs and

yet based on a rationalized criteria.

 

 





 

 
 

CHAPTER6

SUlVIlVIARY AND CONCLUSIONS

6.1 SUMlWARY

Cohesionless soils generally provide good bearing capacity, and settlement

usually controls the design of shallow foundations. The state-of-the-practice for design

of shallow foundations on cohesionless soils is that N values obtained from the standard

penetration test (SPT) are used to estimate settlements, either directly or as predictors of

elastic parameters such as the soil modulus "E". A difficulty of working with N values

is their inherent Spatial variability. It is therefore important to be able to select an

appropiate design N value that can be used with confidence with these settlement

equations and parameter correlations.

Regardless of the variability of the results, the standard penetration test is not

likely to be abandoned because it has remained the most convenient and economical

means to obtain subsurface information in cohesionless soils. The availability of

computers and software increasingly permits application of relatively sophisticated

analysis tools to practical problems; accordingly it is important to develop a technique

to treat the data scatter accurately and consistently. It was undertaken by this research

to investigate the use of geostatistical techniques for spatial data analysis and modeling

of continuous N-value functions. Geostatistical modeling was chosen because it can

account for spatial variability at both the large scale (spatial trend) and the small scale

(spatial correlation). Two geostatistical techniques were considered, namely trend

surface analysis and Kriging. Trend surface analysis, a geostatistical version of nonlinear
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regression, fits data only to large scale variations, whereas the Kriging technique ignores

the trend and fits data to more localized small scale variations only.

Based on a review of factors which affect the N value (soil relative density,

overburden pressure, stiffness. . etc.) as well as the intended use of the model (settlement

analysis) it was determined that a correction of the N values for the overburden pressure

should be made before applying the suggested modeling techniques. In keeping with

current practice, the N values were accordingly corrected based on the [correction

equation recommended by Liao and Whitman (1986).

Some of the geostatistical approaches potentially suitable for characterizing the

scatter of the soil properties were summarized and two were selected for modeling the

N value function. The considered two approaches were presented and their adaptability

to the modeling of the soil properties was discussed. As a single N value would still

ultimately need to be extracted from such a function, the "two—point" estimate approxima-

tion was developed. This technique combines the N values within the depth of influence

under the footing into one design N value based on the weighted average of two N value

estimates obtained at depths B/2 and 3B/2. The results were shown to be comparable to

the current procedures of estimating the design N value. The weighted combination

derived from the "two-point" estimate permits transforming the spatial N(x,y,z) models

into a planar N(x,y) model. This latter model form was used in the analysis of the case

histories to do contouring analysis and the planar settlement comparisons.

In the context of the adaptability of the trend surface analysis, it was suggested

by this research to introduce an addition to it to fit the reality of soil stratification more

closely. This addition was the multiple layers concept. Lack of homogeneity in the N
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data in the vertical direction was accounted for by a nonconstant—mean assumption, and

this was tested (later in the analysis of the case histories) by statistical multiple

comparison techniques. The functional forms of the trend surfaces were approximated-

with polynomial expansions which use the powers of the coordinates. Five to fifteen

candidate polynomial forms were tried for each case history. The polynomial providing

the best fit was then determined by comparing both the (R2) coefficients values and the

standard errors of estimate and by judging the numerical value of each term in the model

within the limits of the site. The polynomial approximation was suggested to take

advantage of its flexibility which can conform to very complex surfaces if expanded to

sufficiently high orders; however, in most case histories, simpler lower orders

polynomials were found to provide the best fit for the N values.

In the context of adapting the Kriging technique to the prediction of N values, it

was decided to represent the N values of each boring by a linear regression function and

perform the Kriging on the regression coefficients rather than on the N values

themselves. This remedies the inconvenience that results from the lack of homogeneity

in the vertical direction and transforms a 3-dimensional Kriging problem into a more

manageable 2-dimensional one. The weights obtained from Kriging the regression

coefficients were used to predict the regression coefficients at the point in question and

ultimately the N value. The different forms of the covariance functions which describe

the spatial continuity of the data were reviewed. The squared exponential model was

used later in the analysis of the case histories to build the covariance matrix which was

used for Kriging.
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The determination of the model precision was discussed and an evaluation of the

quality of prediction versus the quantity of the data and their monetary costs were consid-

ered. This was achieved by considering the trade off between the number and location

of data points and the confidence intervals of the resulting model. It was Shown that the

confidence band of the estimated N value is proportional to (1/n)":5 in which "n" is the

number of N values.

Finally, the developed models for settlement prediction were evaluated two ways.

The first evaluation was made using simulated data of an assumed field. Given an

assumed N function, the models were used to fit some data sampled from this function

and to estimate the N values at group of unsampled points. The "estimated unobserved"

values were then compared to the "true unobserved" ones. The results of this evaluation

were consistent and showed that the developed methods can be used systematically with

confidence conforming with the quality of the available data. Remaining in question was

the effect of real and scattered data of a real site. These results ascertained also what

was assumed initially regarding the superiority of using the trend surface analysis method

when the data follow an underlying trend. The power of using the Kriging technique to

handle the data with high degrees of randomness was also ascertained. The second

method of evaluation was to test the practical reliability of the developed models by

conducting the suggested modeling on a set of actual case histories. The variability of the

real N values in the practical application to a real site may not be as ideal as that of a

theoritical field. However, the variability of N values of the six tried case histories was

found to be representable by equations whose X, Y and Z terms are not exceeding the

second order. Consequently, it was easy to try out all the possible combinations and to
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reach an acceptable goodness of fit. The resulting settlement predictions were compared

with the measured settlements using t-test of zero mean on the paired differences. The

results of these verifications confirmed the reliability of the developed techniques. The

outputs included stronger inferences regarding the settlement predictions in the sense that

they estimate the settlements and provide confidence limits at the desired level of

confidence. This can help the foundation designer make stronger decisions about the

structures supported by these foundations.

6.2 DETAILED SUMNIARY OF RECOMMENDED PROCEDURES

Two statistical methods were developed for settlement predictions from results of

standard penetration test, one using the trend surface analysis and the other using the

Kriging technique. A summary outline of these methods follows:

The outline of the trend surface analysis method:

1. Correct N values for overburden pressure.

2. Stratify soil into layers reflecting the homogeneity (or lack thereof) in N in the

vertical direction.

3. Test the stratification by statistical multiple comparison techniques (LSD, Tukey,

and Dunn tests).

4. Define a coordinate system.

5. Propose a number of candidate nonlinear three dimensional models to the N

values within each layer. Evaluate their (R2) and standard error values to ascertain
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that the models have acceptable prediction capabilities. Investigate the physical

shape to ensure acceptable representation.

Use the "two—point" estimate to transform the selected N(x,y,z) model into a

planar N(x,y) model for the design N value, and assess the confidence limits of

this model using a (50%) confidence level.

Use the model N(x,y) in conjunction with Bazaraa’s settlement equation to

produce a planar S(x,y) model.

Use the S(x,y) model for contouring expected settlements of replicate foundations

in (x,y) as well as for assessing the quality of prediction.

The above procedure is summarized in Figure 6.1.
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Figure 6.1: Flowchart Of The Trend Surface Method.
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The outline of the Kriging method:

Correct N values for overburden pressure.

Stratify soil into layers. The Kriging method is only recommend for single strata.

Fit N values of each boring to a linear equation as (N = a+ bz) using regression.

Compute the covariance matrix (C) describing the spatial continuity of the data

using either direct calculations (if enough data are available) or a squared

exponential model as :

cm) :oze ”‘Z/hil

Compute the covariance vector (D).

Calculate the weight matrix (W) as (W = C'1.D).

Determine the estimated N function at the point in question as a linear regression

function with parameters obtained as the weighted sum of the regression

parameters of the considered borings.

Use the "two-point" estimate with‘the N (2),,y to predict N (x,y).

Use the predicted design N value in conjunction with Bazaraa’s model to estimate

the settlement.

Assess the quality of prediction by constructing the confidence interval to the

level of (50 %) using the t—statistic and the prediction variance which is given by:

11 n n

2-2 Z _ 2 2

' i=1

The above procedure is summarized in Figure 6.2.
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Figure 6.2: Flowchart Of The Kriging Method.
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6.3 CONCLUSIONS

The following Conclusions can be made concerning the findings in this study:

1. Applicability Of Geostatistics:

A general conclusion can be drawn from this research that geostatistics can be a

powerful tool to extract a representative function from among spatially scattered

N values and to provide a rational estimate of N value where no measurements

were taken.

2. Use Of Trend Surface:

The trend surface analysis does not create a trend by itself and its use can be

justified only if a large scale trend in the N data is in fact present. In this case

the trend surface analysis is employed to smooth out the random variation that

enters into the data and to identify the underlying trend in order to use it for

prediction. A fitted surface to a data scatter with an (R2) value of less than 0.2

would lead only to misleading results. A value of > 0.8 would imply confidence

in the fitted model. For practical problems, however, it was possible to obtain R2

values of about 0.5 — 0.6.

3. Candidate Models For Trend Surface:

Where the trend surface analysis is justified (e. g., R2 > 0.2), then it is important

to investigate the variability of the data carefully, by trying out some preliminary

 models, and select a model which can adequately represent this variability.
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Use Of Kriging:

The Kriging technique was found to be superior to the trend surface analysis if

a certain degree of randomness is present. In this case, the N value at a given

location is assumed to have no influence on the N values at distant locations. If

the data follow a trend, then Kriging can still be used to find a point on the trend

provided that the employed data are located in the vicinity of that point in order

to justify ignoring the trend.

Quality Of Data:

The precision of the settlement prediction depends on both the predicting model

qualifications and the data qualifications. If the data qualifications are inferior

(e.g. a subsoil investigation based on data from a single boring), then neither the

trend surface nor the Kriging technique can produce reliable predictions. The

inferior quality of data could also result from using an unreliable drilling

equipments or inexperienced crew.

Prediction Confidence Intervals:

In constructing the prediction confidence intervals for practical design problems,

it might be considered reasonable to adopt a degree of confidence of 50 % rather

than the conventional levels used in statistical inference of 90 or 95 %. The level

of 50% inference is more practical with the N value data due to the higher

variability encountered. Where 90% or greater is used, the variance of N values

resulted in a relatively broad confidence intervals even though the predicted
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values were close to the measured values. This suggests that the construction of

broad confidence intervals is meaningless.

Deviation Of The Predicted Settlements From The Measured Values:

Using trend surface analysis, the average of the ratio of predicted to measured

settlements of the considered six case histories was found to be 1.28. Using the

Kriging technique, this ratio was found to be 1.37. This deviation is believed to

result from employing Bazaraa’s settlement equation in conjunction with the

estimated N values to predict the settlements. Bazaraa’ 5 equation (1969) is a

refinement of Meyerhof’s equation (1965) and this in turn is an analytical

expression of Terzaghi and Peck’s well—known settlement design chart. These

settlement equations have an empirical nature and hence have the common

disadvantage of all empirical models of being applicable ideally only to the

conditions where they were developed from. These conditions include the sand

gradation and top size, the particle shapes and angularities, the relative densities

. . etc. In any other case, it is unlikely to have these conditions of soil properties

identical to the properties of the soils used to develop these settlement functions

in the first place, the thing which result in. these deviations upon the use of these

settlement equations. One more reason for the deviation of the predicted

settlement from the measured value is that the design loads are often not realized.
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8. The Depth Of Influence Under A Footing:

Investigating the results of the case histories has also raised an important

issue regarding the depth of influence within which the settlements are computed

and below which the soil compression is left out of consideration. If the subsoil

is in the form of a shallow loose layer laying on a much firmer thick deposit, and

if the footing width is relatively large, then the assumption that the depth of

influence is (2B) may give unjustifiedly low settlement predictions because the

upper layer which contributes most of the compressibility will not be given a

realistic weight during the settlement computations. Using the Schmertmann’ 5

method, the strain influence factor implies the weights that are given to the N

values at different depths. The distribution of the strain influence factor with

depth was based on a theoretical work assuming that the modulus E is constant

with depth. Consequently, the depth of influence of 2B as well as the values of

the strain influence factor at different depths will all be confused if the modulus

E increased rapidly in the vertical direction. In other foundation cases where a

large number of footings are closely located, they will have some additional

"overlap" effect extending the depth of influence to greater than (2B).

9. Summary Table Of The Two Methods:

The advantages, disadvantages and uses of the two considered methods are

summarized in Table 6.1.
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Table 6.1: Summary Table Of The Two Considered Methods.

Method Trend Surface Analysis. Kriging.

Advanta- 1. Most useful if a sign- 1. Used where the data

ges ificant trend is pres— are erratic with a

ent in the data. Certain degree of

2. It is a geostatistical randomness.

version of the nonlin- 2. Applicable to almost

ear regression which any N value data.

has been studied thor- 3. Predicted better than

oughly and its theori- trend surface when

tical background is modeling the N value

well established in data to predict sett-

the literature. lements.

Disadv- 1. The process of select- 1. Computational effort

antages

ing the model provid— is relatively lengthy.

ing the best fit is 2. Constructing the

time consuming. covariances between

2.May lead in the absence the different locat-

of a significant trend ions is laborious.

'to misleading results.

Required 1. Where large scale var- 1. If there is enough co-

iations occur with an nfidence in data to

underlying trend. wish to emphasize

2. Where it is desired to local fit over trend.

emphasize the trend 2. For fitting data to over local fit.
 

small scale variations
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RECONIMENDATIONS

In improving the settlement prediction techniques many aspects are involved.

This research has considered the treatment of the scatter of N data and assessing the

quality of prediction. As far as a comprehensive improved settlement prediction

technique is concerned, it is important to consider the following recommendations:

1. There is no point in using sophisticated statistical modeling for settlement

' prediction while employing data of inferior quality. Therefore, it is recommended

to base the settlement analysis on the results of at least four borings. Additionally,

unreliable drilling equipment and inexperienced crew are obviously to be avoided.

The data base regarding the covariance functions representing the variability of

N values, which are used for Kriging, is not yet well established. Improvement

is therefore required regarding the suitable functional forms of covariance

functions to be used for cohesionless soils with varying prOperties. This can be

done by testing different soils and establishing correlations including the N

values, the distances between the tested locations and the best fits of the

covariance functions.

In preparation of N data before Kriging, the N values could, in some cases, be

representable by a nonlinear regression function. In these cases, it is recommend-

ed to represent the N values of each boring by a regression function of the form:

N=a,+a,Z°-5+a,z+a,zz+...

The same functional form is used for all borings. The parameters a0, a1, a2 . . are

then Kriged in two dimensions. The estimated N function at the point in question

is then obtained as a nonlinear regression function in the same form with
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parameters obtained as the weighted sum of the regression parameters of the

considered borings.

Only by comparing the observed settlements with predicted values and by

evaluating measurements can a development of new settlement functions and

refinement of their accuracy be achieved. It is, therefore, urged to set up a

settlement-recording program right from the begining for any structure of major

importance or having unusual foundation conditions.

Using trend surface analysis, the average of the ratio of predicted to measured

settlements of the considered six case histories was found to be 1.28. Using the

Kriging, this ratio was found to be 1.37. The reasons of this deviation were

analyzed in Section 6. 3. These two ratios imply the overestimation of the

predicted settlements in both cases. To make up for this overestimation, the

following recommendation is suggested. If a level of confidence of 50% is

adopted, then it is considered reasonable to use the upper confidence limit of the

N value as a design value if need be. Using the upper confidence limit of N value

means adopting higher bearing capacity and greater allowable pressures. This

leads to smaller footing sizes with reduced costs. In other words, less conserva—

tive designs are produced for lower costs and yet based on a rationalized criteria.

Taking the depth of influence as (2B) under a footing of width (B) could be

incorrect (e.g. where the subsoil is in the form of shallow loose layer laying on

a much firmer thick deposit and the footing width is relatively big). The depth of

influence of (2B) should therefore be questioned if need be to include only the

layer that contributes most of the compressibility.
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APPENDIX A

A. SUBSURFACE SOIL STRATIFICATION OF CASE HISTORY No.1

A.1 Correction of N values for the overburden pressure:

The corrected N value is given by:

Nl =01 *N

Where

C1 = (l/Pv’)"'5 ; (Liao, 1986).

pv’ = effective overburden pressure (tsf) = depth in (ft) * unit weight (lb/ft3)/2000

The correction results for the different borings are shown in Tables A.1 to A6.

Table A.1 : Correction Of N Values Of Boring No. (B-102) For Overburden

Pressure.

 

Depth Unit wt. Effective Correction

 

(ft) (lb/cf) Pressure factor N N1=C1*N

(lb/sf) (C1)

2.0 125.0 250.0 2.828 8 22.627

4.0 125.0 500.0 . 2.000 11 22.000

7.5 125.0 937.5 1.460 13 18.987

10.0 125.0 1250.0 1.264 13 16.443

17.0 125.0 2125.0 0.970 17 16.492

21.0 125.0 2625.0 0.872 15 13.093

26.0 125.0 3250.0 0.784 22 17.258

31.0 125.0 3875.0 0.718 35 25.144
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Table A.1 : Continued.

36.0 62.6 4187.8 0.691 47 32.480

41.0 62.6 4500.8 0.666 79 52.661

 

Table A.2 : Correction Of N Values Of Boring No. (B-105) For Overburden

Pnsmne.

 

 

Depth Unit wt. Effective Correction

(ft) (lb/cf) Pressure factor N' N1=C1*N

(lb/sf) (Cl)

2.5 125.0 312.5 2.529 13 32.887

5.0 125.0 625.0 1.788 17 30.410

8.0 125.0 1000.0 1.414 18 25.455

10.0 125.0 1250.0 1.264 13 16.443

15.0 125.0 1875.0 1.032 7 7.229

20.0 125.0 2500.0 0.894 5 4.472

25.0 125.0 3125.0 0.800 7 5.600

30.0 125.0 3750.0 0.730 6 4.381

35.0 62.6 4250.2 0.685 7 4.801

40.0 62.6 4563.2 0.662 32 21.185

45.0 62.6 4876.2 0.640 48 30.740

50.0 62.6 5189.2 0.620 37 22.970

 

 

 

 



  

189

Table A.3 : Correction Of N Values Of Boring No. 03-106) For Overburden

Pnrmue.

 

Depth Unit wt. Effective Correction

  
(ft) (lb/cf) Pressure factor N N1=C1*N

(lb/sf) (C1)

2.0 125.0 250.0 2.828 8 22.627

5.0 125.0 625.0 1.788 29 51.876

8.0 125.0 1000.0 1.414 32 45.254

10:0 125.0 1250.0 1.264 14 17.708

15.0 125.0 1875.0 1.032 15 15.491

19.5 125.0 2437.5 0.905 18 16.304

25.0 62.6 3000.2 0.816 42 34.291

30.0 62.6 3313.2 0.776 38 29.523  
 

Table A.4 : Correction Of N Values Of Boring No. (B-109) For Overburden

Premuna ,

 

Depth Unit wt. Effective Correction

 

(ft) (lb/cf) Pressure factor N N1=C1*N

(lb/sf) (C1)

3.0 125.0 375.0 2.309 10 23.094

4.0 125.0 500.0 2.000 13 26.000

6.5 125.0 812.5 ‘ 1.568 12 18.827

9.0 125.0 1125.0 1.333 12 16.000

14.0 125.0 1750.0 1.069 13 13.897

19.0 125.0 2375.0 0.917 14 12.847
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Table A.4 : Continued.

 

23.5 125.0 2937.5 0.825 10 8.251

28.5 62.6 3406.5 0.766 16 12.259

33.0 62.6 3688.2 0.736 38 27.982

 

 
Table A.5 : Correction Of N Values Of Boring No. (B-2) For Overburden

inmne.

 

Depth Unit wt. Effective Correction

 

 

 

(ft) (lb/cf) Pressure factor N N1=C1*N

(lb/sf) (C1)

2.0 125.0 250.0 2.828 8 18.475

5.0 125.0 625.0 1.788 11 19.677

8.0 125.0 1000.0 1.414 12 16.971

10.0 125.0 1250.0 1.264 15 18.974

15.0 125.0 1875.0 1.032 12 12.829

19.5 125.0 2437.5 0.905 14 12.522

25.0 62.6 3000.2 0.816 20 16.330

30.0 62.6 3313.2 0.776 25 19.424
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Correction Of N Values Of Boring No. (B-103) For Overburden

Pnsmue.

 

 

Depth Unit wt. Effective Correction

(ft) (lb/cf) Pressure factor N N1=C1*N

(lb/sf) (C1)

2. 125.0 250. 2.828 15 42.426

5. 125.0 625. 1.788 18 32.199

8. 125.0 1000. 1.414 17 24.042

10. 125.0 1375. 1.206 18 21.709

15. 125.0 1875. 1.032 17 17.558

20. 125.0 2500. 0.894 67 15.198

25. 125.0 3250. 0.784 64 50-206

30. 62.6 3563. 0.749 69 51.696

35. 62.6 3844. 0.721 150 108.187

40. 62.6 4189. 0.691 100 69.097

45. 62.6 4439. 0.671 150 100.680

50. 62.6 4752. 0.648 52 33.734

55. 62.6 5034. 0.630 100 63.031

60. 62.6 5409. 0.608 400 243.214

65. 62.6 5691. 0.593 120 71.136

70. 62.6 6004. 0.577 600 346.283

75. 62.6 6192. 0.568 300 170.496
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A.2 Oneway ANOVA For The Corrected N Values:

Table A.7 :The N data with the spatial locations For Case History No.1.

 

 

LAYER CORRECTED N x Y z

1 22.627 11.66 136.52 897

1 22.000 11.66 136.52 895

1 18.987 11.66 136.52 891.5

1 22.627 19.17 84.27 888

1 51.877 19.17 84.27 885

1 42.426 104.17 92.7 891

2 16.444 11.66 136.52 889

2 16.492 11.66 136.52 882

2 13.093 11.66 136.52 878

2 17.258 11.66 136.52 873

2 25.145 11.66 136.52 868

2 32.480 11.66 136.52 863

2 52.662 11.66 136.52 858

2 45.255 19.17 84.27 882

2 17.709 19.17 84.27 880

2 15.492 19.17 84.27 875

2 16.305 19.17 84.27 870.

2 34.292 19.17 84.27 865

2 29.524 19.17 84.27 860

2 32.199 104.17 92.7 888

2 24.042 104.17 92.7 885
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21.709

17.558

59.927

50.206

51.696

18.475

19.677

16.971

18.974

12.829

12.522

16.330

19.424

23.094

26.000

18.827

16.000

13.898

12.847

8.251

12.260

27.983

32.888

30.411

25.456

104.17

104.17

104.17

104.17

104.17

149.16

149.16

149.16

149.16

149.16

149.16

149.16

149.16

194.17

194.17

194.17

194.17

194.17

194.17

194.17

194.17

194.17

201.67

201.67

201.67

92.7

92.

92.

92.

92.

69

69

69

69.

69

69

69.

69

84

84

84.

84.

84

84

84.

84.

84.

141.

141.

141.

.94

.94

.94

94

.94

.94

94

.94

.27

.27

27

27

.27

.27

27

27

27

57

57

57

882

878

873

867

862

888

886

883

881

877

871

867

862

893

892

889.

887

882

877

872.

867.

863

897.

895

892
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2 16.444

7.230

4.472

5.600

4.382

4.802

21.185

30.741

22.970

73.721

75.412

60.987

143.075

108.187

69.097

100.680

33.734

63.031

243.214

71.136

346.283

170.496

59.950

117.607

57.128

201.67

201.67

201.67

201.67

201.67

201.67

201.67

201.67

201.67

11.66

11.66

11.66

11.66

104.17

104.17

104.17

104.17

104.17

104.17

104.17

104.17

104.17

201.67

201.67

201.67

141.57

141.57

141.57

141.57

141.57

141.57

141.57

141.57

141.57

136.52

136.52

136.52

136.52

92.7

92.7

92.7

92.7

92.7

92.7

92.7

92.7

92.7

141.57

141.57

141.57

890

885

880

875

870

865

860

855

850

853.

849

844

840

857.

852

848

843

838.

832.

828

823

820

844

840.

835
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ONEWAY ANOVA FOR THE CORRECTED N VALUES

----------0NEWAY----------

variable N By variable LAYER

Analysis of variance

Sum of MEan F F

Source D.F. Squares Squares Ratio Prob.

Between Groups 2 98504.0575 49252.0287 30.8483 .0000

Within Groups 68 108567.8161 1596.5855

Totalt 70 207071-8735

ONEWAY ANOVA FOR THE CORRECTED N VALUES

----------ONEWAY-----—----

Standard Standard

Group Count mean Deviation Error 95 Pct Conf Int for Mean

Grp 1 6 30.0907 13.6159 5.5587 15.8018 To 44.3795

Grp 2 49 22.2537 12.7585 1.8226 18.5890 To 25.9183

Grp 3 16 112.1086 81.5792 20.3948 68.6381 To 155.5791

Total 71 43.1650 54.3891 6.4548 30.2913 To 56.0387

Fixed Effects Mbdel 39.9573 4.7421 33.7023 To 52.6276

Random Effects Model 39.5239 -126.8945 To 213.2245

Random Effects Mbdel - Estimate of Between Component variance 2882.0583

------—--———--——-——-—-————-----———-——---——————-—--—--———-——--———-—

ONEWAY ANOVA FOR THE CORRECTED N VALUES

Group Minimum Maximum

Grp 1 18.9870 51.8770

Grp 2 4.3820 59.9270

Grp 3 33.7340 346.2830

Total 4-3820 346.2830

Figure.A.1 - Oneway ANOVA Analysis For Case History No.1
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Tests for Homogeneity of variances

Cochrans C = Max. Variance/Sum(Variances) = .9503, P _ .000 (Approx.)

Bartlett-Box F =
49.704 , P = .000

Maximum variance / Minimum variance 40.885

ONEWAY ANOVA FOR THE CORRECTED N VALUES

- - - - - - - - - - O N E W A Y - - - - - - — - - -

variable N

By variable LAYER

MUltiple Range Test

Tukey-HSD Procedure

Ranges for the .050 level -

3.39 3.39

The ranges above are table ranges.

The value actually compared with Nean(J)-Mean(I) is..

28.2541 * Range * Sqrt(1/N(I) + 1/N(J))

(*) Denotes pairs of groups significantly different at the .050 level

N
T
J
H
<
D

H
T
J
H
t
D

w
t
r
s
z
n

Mean Group

22.2537 Grp 2

30.0907 Grp 1

112.1086 Grp 3 * *

Figure A.1 : Continued.
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APPENDIX B

B. MODELING THE N FUNCTIONS FOR THE SUBSURFACE SOIL

OF CASE HISTORY No. 1

B.1 Modeling The N Function For The Upper Layer:

Table B.1 : The N Data With The Spatial Locations For The

Upper Layer.

 

 

DAYER CORRECTED N X Y Z

1 22.627 11.66 136.52 897

1 22.000 11.66 136.52 895

1 18.987 11.66 136.52 891.5

1 22.627 19.17 84.27 888

1 51.877 19.17 84.27 885

1 42.426 104.17 92.7 891

1 16.444 11.66 136.52 889

1 16.492 11.66 136.52 882

1 13.093 11.66 136.52 878

1 17.258 11.66 136.52 873

1 25.145 11.66 136.52 868

1 32.480 11.66 136.52 863

1 52.662 11.66 136.52 858

1 45.255 19.17 84.27 882

1 17.709 19.17 84.27 880

1 15.492 19.17 84.27 875

1 16.305 19.17 84.27 870.5
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Table B.1 : Continued.
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34.292

29.524

32.199

24.042

21.709

17.558

59.927

50.206

51.696,

18.475

19.677

16.971

18.974

12.829

12.522

16.330

19.424

23.094

26.000

18.827

16.000

13.898

12.847

8.251

12.260

19

19

104.

104

104

104.

104.

104.

104.

149.

149.

149.

149

149.

149.

149.

149.

194.

194.

194.

194.

194.

194.

194.

194

.17

.17

17

.17

.17

17

17

17

17

16

16

16

.16

16

16

16

16

17

17

17

17

17

17

17

.17

84

84

92.

92.

92.

92.

92.

92.

92.

69.

69

69

69

69

69

69

69

84

84.

84.

84.

84.

84.

84.

84

.27

.27

94

.94

.94

.94

.94

.94

.94

.94

.27

27

27

27

27

27

27

.27

865

860

888

885

882

878

873

867

862

888

886

883

881

877

871

867

862

893

892

889.5

887

882

877

872.5

867.5
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Table B.1 : Continued.

 

1 27.983 194.17 84.27 863

1 32.888 201.67 141.57 897.5

1 30.411 201.67 141.57 895

1 25.456 201.67 141.57 892

~1 16.444 201.67 141.57 890

1 7.230 201.67 141.57 885

1 4.472 201.67 141.57 880

5.600 201.67 141.57 875

4.382 201.67 141.57 870

4.802 201.67 141.57 865

21.185 201.67 141.57 860

30.741 201.67 141.57 855

22.970 201.67 141.57 850

 

THE SUGGESTED MODEL (first trial):

Nl=BO+Bl*X+B2*X**2+B3*Y+B4*Y**2+B5*Z**0.5+B6*Z+B7*Z**2.

There are 55 cases. There is enough memory for them all.

Run stopped after 29 model evaluations and 6 derivative evaluations.

Iterations have been stopped because the relative difference between

successive parameter estimates is at most PCON = 1.000E-08

Figure B.1 :.Mode1ing The N Function For The Upper Layer.
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N1=F(X,Y,Z),LAYERS 1&2 COMBINED & NAMED LAYER 1

Nonlinear Regression Summary Statistics Dependent variable N

Source DF Sum of Squares Mean Square

Regression 8 34011.07127 4251.38391

‘Residual 47 4428.05297 94.21389

Uncorrected Total 55 38439.12423

(Corrected Total) 54 9068.62513

R squared = l - Residual SS / Corrected SS = .51172

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

BO -2721918.469 2689165.0167 -8131820.682 2687983.7428

Bl .251442953 .104017109 .042187520 .460698385

B2 -.001392536 .000486554 -.002371357 -.000413715

B3 2.585913803 .807608044 -961215982 4.210611623

B4 -.011986634 .003700403 -.019430884 -.004542384

B5 248358.47467 242470.24257 -239428.7357 736145.68502

BS ~6372.381661 6148.6757108 -18741.92169 5997.1583723

B7 1.242247307 1.171447790 -1.114401671 3.598896286

Asymptotic Correlation Matrix of the Parameter Estimates

B0 B1 B2 B3 B4 B5

B0 1.0000 —.0540 .0378_ .0047 - 0015 -1 0000

B1 -.0540 1.0000 -.9848 .0342 .0109 .0542

B2 .0378 -.9848 1.0000 .0258 —.0709 -.0380

B3 .0047 f .0342 .0258 1.0000 -.9970 -.0047

B4 -.0015 .0109 -.0709 -.9970 1.0000 .0015

B5 -1 0000 0542 - 0380 - 0047 0015 1 0000

B6 1 0000 - 0543 0382 0048 - 0014 -1 0000

B7 - 9999 0545 - 0385 - 0048 0013 1 0000

-—----———_————_—--——--——.———_ -———————.——_—-——---——__—_-a-—-——_——_—_————— .—

Figure B.1 : Continued.
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B6 B7

B0 1.0000 -.9999

B1 -.0543 .0545

B2 .0382 -.0385

B3 .0048 -.0048

B4 -.0014 .0013

B5 -1.0000 1.0000

B6 1.0000 -1.0000

B7 -1 0000 1 0000

N1=F(X,Y,Z),LAYERS 1&2 COMBINED & NAMED LAYER 1

THE SUGGESTED MODEL (second trial):

N1 = D0+D1*X**O.5+D2*Y**0.5+D3*Z**0.5+D4*X+D5*Y+D6*Z+D7*Z**2.

All the derivatives will be calculated numerically.

There are 55 cases. There is enough memory for them all.

Run stopped after 37 model evaluations and 9 derivative evaluations.

Iterations have been stopped because the relative difference between

successive parameter estimates is at most PCON = 1.000E-08

Nonlinear Regression Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 8 34157.40722 4269 67590

Residual 47 4281.71702 91.10036

Uncorrected Total 55 38439.12423

(Corrected Total) 54 9068.62513

R Squared = 1 - Residual SS / Corrected SS =

Figure B.1 : Continued.
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Parameter

D0

D1

D2

D3

D4

D5

D6

D7

Estimate

-3008929.737

10.058236699

78.135462538

274208.99710

-.611711073

-3.794113405

-7027.873386

1.367121166

Asymptotic Correlation

D0

D1

D2

D3

D4

D5

Figure B.1

D0

1.0000

-.0653

.0145

.0000

.0565

Asymptotic

Std. Error

2635240.2660

3.091411051

28.376247798

237614.56822

.175138521

1.381756722

6025.7049579

1.148081239

Asymptotic 95 %

Confidence Interval

Lower

-8310349.344

3.839119844

21.049815215

-203809.8564

-.964044330

-6.573849382

-19150.028l7

-.942520374

Upper

2292489.8693

16.277353554

135.22110986

752227.85065

-.259377815

-1.014377427

5094.2814020

3.676762707

Matrix of the Parameter Estimates

D1 D2 D3

.0653 .0145 -l.0000

.0000 -.1918 .0655

.1918 1.0000 -.0145

.0655 -.0145 1.0000

.9950 .2205 -.0567

.2177 -.9990 .0133

0656 .0145 -1.0000

0660 -.0145 1.0000

: Continued.

D4

.0565

-.9950

.2205

-.0567

1.0000

-.2459

.0569

-.0573

D5

.0133

.2177

.9990

.0133

.2459

.0000

.0133

.0132
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D6 D7

D0 1.0000 -.9999

D1 -.0656 .0660

D2 .0145 -.0145

D3 -1.0000 1.0000

D4 .0569 -.0573

D5 -.0133 .0132

D6 1.0000 -l.0000

D7 -1.0000 1.0000

Figure B.1 : Continued.
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8.2 Modeling The N Function For The Lower Layer:

Table 3.2 : The N Data With The Spatial Locations For The

Lower Layer . .

 

 

LAYER CORRECTED N X Y Z

2 73.721 11.66 136.52 853.

2 75.412 11.66 136.52 849

2 60.987 11.66 136.52 844

2 143.075 11.66 136.52 840

2 108.187 104.17 92.7 857.

2 69.097 104.17 92.7 852

2 100.680 104.17 92.7 848

2 33.734 104.17 92.7 843

2 63.031 104.17 92.7 838.

2 243.214 104.17 92.7 832.

2 71.136 104.17 92.7 828

2 346.283 104.17 92.7 823

2 170.496 104.17 92.7 820

2 59.950 201.67 141.57 844

2 117.607 201.67 141.57 840.

2 57.128 201.67 141.57 835
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THE SUGGESTED MODEL (first trial):

N2 = F0+F1*Z+F2*Z**0.5+F3*Z**2.

There are 16 cases. There is enough memory for them all.

Run stopped after 33 model evaluations and 13 derivative evaluations.

Iterations have been stopped. because the relative reduction between

successive residual sums of squares is at most SSCON = 1.000E-08

N2=F(X,Y,Z) , LAYER 3 HAS BECOME LAYER 2

Nonlinear Regression Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 4 245341.00673 61335.25168

Residual 12 55579.99287 4631.66607

Uncorrected Total 16 300920.99960

(Corrected Total) 15 99827.49881

R squared = l - Residual SS / Corrected SS = .44324

O

.Asymptotic 95 6

.Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

F0 -34869400.63 53984448.891 -152491410.5 82752609.216

F1 -83881.92163 128724.81215 -364349.1938 196585.35057

F2 3225018.0453 4970781.1506 -7605383.699 14055419.790

F3 16.808960824 25.575919332 -38.91618035 72.534101995

Figure B.2 : Modeling The N Function For The Lower Layer.



.‘H. .__... . _.... ._.___. ._—

206

.Asymptotic Correlation Matrix of the Parameter Estimates

F0 F1 F2 F3

F0 1.0000 1.0000 -1.0000 -1.0000

F1 1.0000 1.0000 -1.0000 -1.0000

F2 -1.0000 -1.0000 1.0000 1.0000

F3 -l.0000 -1.0000 1.0000 1.0000

N2=F(X,Y,Z) , LAYER 3 HAS BECOME LAYER 2

THE SUGGESTED MODEL (second trial):

N2 = G0+G1*X+G2*Y+G3*Z+G4*X**O.5+G5*Y**O.5+G6*Z**0.5+G7*Z**2.

There are 16 cases. There is enough memory for them all.

Run stopped after 48 model evaluations and 16 derivative evaluations.

Iterations Ihave been stopped. because the relative reduction..between

successive residual sums of squares is at most SSCON = 1.000E-08

N2=F(X,Y,Z) , LAYER 3 HAS BECOME LAYER 2

Nonlinear Regression Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 8 246013.43315 30751.67914

Residual 8 54907.56645 6863.44581

Uncorrected Total 16 300920.99960

(Corrected Total) 15 99827.49881

R squared = 1 - Residual ss / Corrected 88 = 44998

Figure B.2 : Continued.
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Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

G0 -16362554.23 281179591.73 -664763855.5 632038747.03

G1 1283.8757228 100937.77506 -231479.0510 234046.80242

G2 ~35144.33067 2595298.3673 -6019913.098 5949624L4364

G3 -30682.78158 162779.19984 -406052.2895 344686.72638‘

G4 -20816.74l64 l681355.0630 -3898028.470 3856394.9863

G5 738011.92472 54840773.108 -125725037.6 127201061.49

G6 1172299.8932 6284867.6756 -13320630.96 15665230.?42

G7 6.222602875 32.351726910 -68.38061316 80.825818911

_ Asymptotic Correlation Matrix of the Parameter Estimates

G0 G1 G2 G3 G4 G5

G0 1.0000 -.6549 .9722 .0824 .6194 —.9720

G1 —.6549 1.0000 -.6731 -.0588 -.9988 .6605

G2 .9722 —.6731 1.0000 -.1482 -.6366 -.9999

G3 .0824 -.0588 -.1482_ 1.0000 .0710 .1518

G4 .6194 —.9988 .6366 .0710 1.0000 —.6235

G5 -.9720 .6605 _-.9999 .1518 - 6235 1.0000

G6 -.0821 .0582 .1485' -1.0000 - 0704 -.1521

G7 -.0830 .0600 .1475 -1 0000 - 0722 -.1511

Figure B.2 : Continued.
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G6 G7

GO -.0821 -.0830

G1 .0582 .0600

G2 .1485 .1475

G3 -1.0000 -1.0000

G4 -.0704 -.0722

G5 -.1521 -.1511

G6 ' 1.0000 1.0000

G7 1.0000 1.0000

._---——-———.——--—-———--——--—-—-————-—-——————_——————-———-—-——————————

Figure B.2 : Continued.
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APPENDIX C

C. THE SETTLEMENT PREDICTIONS FOR THE CASE HISTORIES

C.1 THE SETTLEMENT PREDICTION OF CASE HISTORY No. 2 A

C.1.1 PROJECT GENERAL DESCRIPTION

This case history consists of a tall office building at Lagos in Nigeria, whose

settlement predictions were previously investigated by the designers Grimes, A.S. and

Cantlay, W.G. of "Oscar Faber & Partners, Consulting Engineers".

The building consists of three blocks of approximately equal size, the two

outer blocks, A and C, having nineteen storys and the center block, B, having twenty

storys. A general top view and the positions of the blocks relative to one another as well

as the boring locations are shown in Figure C. 1. The foundations take the form of three

rafts with an overall thickness of 7 ft.

C.1.2 SUBSOIL INVESTIGATION

A site investigation was carried out using six borings of 6 in diameter. Standard

penetration tests were made in the different depths. One of the borings was sunk to a

depth of 151 ft 6 in, three were sunk to about 86 ft and two to about 65 ft. The results

of the borings are shown in Tables C.2 to C .4. Although they vary somewhat they

indicate that the ground can be divided broadly into four fairly distinct bands in

sequence from the top as follows:

1. An upper sandy band of about 40 ft thickness, variable ingrading, which are very

loose in the upper 20 ft, the density increasing with depth.
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Figure C.1 : Site Plan And Boring Locations For Case History No. 2
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Table C.1 : The Correction Factors For Overburden Pressure

Of N Values Of Case History No. 2

Depth(ft) Unit wt. Effective Correction

lb/cf. Pressure factor

(1b/sf) (C1)

5 125.0 625.0 1.788854

10 62.6 1062.8 1.371795

15 62.6 1375.8 1.205695

20 62.6 1688.8 1.088243

25 62.6 2001.8 0.999550

30 62.6 2314.8 0.929519

35 62.6 2627. 8 0.872406

40 62.6 2940.8 0.824673

45 62.6 3253.8 0.784006

50 62.6 3566.8 0.748816

55 62.6 3879.8 0.717976

60 62.6 4192.8 0.690657

65 62.6 4505.8 0.666237

70 62.6 4818.8 0.644236

75 62.6 5131.8 0.624281

80 62.6 5444.8 0.606071

85 62.6 5757.8 0.589368
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Table C.2 : The Correction Of N Values Of Borings No.(l) And No.(2).

 

 

Depth Boring No.(l) Boring No.(2)

(ft) N N1=C1*N - N N1 =C1*N

5 4 7.155 4 7.155

10 4 5.487 5 6.858

15 4 4.822 11 13.262

20 8 8.705 11 11.970

25 11 10.995 20 19.991

30 6 5.577 25 23.237

35 9 7.851 14 12.213

40 13 10.720 11 9.071

45 13 10.192

50 15 11.232 19 14.227
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Table C.3 : The Correction Of N Values Of Borings No.(3) And No.(4).

 

 

 

Depth Boring No.(3) Boring No.(4)

'(ft) N N1=C1*N N N1=C1*N

5 7 12.521 7 12.521

10 6 8.230 5 6.858

15 12 14.468 10 12.056

20 11 11.970 11 11.970

25 22 21.990 10 9.995

30 22 20.449 24 22.308

35 11 9.596 22 19.192

40 41 33.811

45 26 I 20.384 7 5.488

50 37 27.706 7 5.241

55 27 19.385

65 11 7.328 7 4.663

80 10 6.060

85 8 4.714
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Table C.4 : The Correction Of N Values Of Borings No.(5) And No.(6).

 

 

Depth Boring No.(5) Boring No.(6)

(ft) N Nl.=C1*N N N1 =C1*N

5 6 10.733 5 8.944

10 3 4.115 6 8.230

15 7 8.439 6 7.234

20 8 8.705 8 8.705

25 9 8.995 8 7.996

30 7 6.506 8 7.436

35 4 3.489 9 7.851

40 8 6.597 3 2.474

45 4 3.136

50 4 2.995 8 5.990

55 16 11.487

60 4 2.762

65 5 3.331

70

75

80 28 16.970
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2. A sand and clay band of about 20 ft mean thickness, consisting of alternate

layers of sand and clay. The thickness of the layers of sand and clay seem to

vary considerably from boring to boring, and their consistency varies from

loose to compact for the sands, and from soft to stiff for the clays.

3. A clay band of 20 ft mean thickness consisting of firm to stiff clays.

4. A lower band below 80 ft from the surface, consisting entirely of sands and

gravels of medium density, although at 140 ft they begin to be more compact.

Boring 6, however, was the only one sunk deep enough to give information for

this band.

The correction factors of N values for overburden pressure are shown in Table C. 1. The

N values from borings 1 to 6 together with their correction for the overburden pressure

are shown in Tables C.2 to C.4.

C.1.3 FOUNDATIONS AND SETTLEMENT MEASUREMENTS

The provided plan shows the relative positions of the foundation rafts of the three

blocks A, B & C. The heaviest loaded one is the raft of the centre block B. This

raft is chosen for settlement prediction study. The as built raft dimensions were:

Width "B" = 42.67 ft. , Length = 90 ft. , Depth: 7 ft.

The ground water table is at an average depth of 7 ft. from the ground surface.

According to the designers, there are a fairly uniform pressure on the ground of .

1.8 ton/ft2 and there would be about 1.5 in. of the total forecast settlement due to

consolidation of the sands. Settlement readings were taken throughout the progress of

the work through sixteen points established on the three blocks.
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C.1.4 SETTLEMENT PREDICTION BY KRIGING

Considering that a settlement prediction is required at the center point of

block B. The Kriging results are summarized as follows:

1. The calculated covariance function is given by the equation:

C(h) =39 _286e-4.444E-5h2 (C.1)

2. The estimated N function is given by:

NE10.74499—0.019503z (C.2)

3. The "two — point" estimate of N values are:

N(B/2)=10.41,N(3B/2)=9.71 (C.3)

4. The design N value is given by the weighted average:

N= (1/3) [2N(B/2,+1’v(,B/2)] =10.18 (C.4)

5. The predicted settlement is 2 . 29 in.

Therefore the predicted settlement of 2.29 in is higher than the measured value

of 1.5 in by about 50%

6. The 90 % confidence limits of the settlement prediction are:

( 1.97 and 2.73) in.

The 50% confidence limits are: (2.18 and 2.42)in.
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C.1.5 ' SETTLEMENT PREDICTION BY TREND SURFACE ANALYSIS

The trend surface analysis results are summarized as follows:

1. The model which is fitted to the data is given by:

N=35 . 66-16 .7X0-5+1.38X+0 . 0019X2+4.56Y°'5-0 . 37y

+1.73z°-5—0.107z-0.00122,(122:0.458) (C-5)

2. The "two-point" estimate of N values are as follows:

3. The design N value is as follows:

N=(1/3) [2N(B/,,+r’i(3B/2,] =6.91 (C.6)

4. The predicted settlement is 2.5 in.

Therefore the predicted settlement of 2.5 in is higher than the measured value

of 1.5 in by about 66%

5. The 90% confidence limits of the settlement prediction are: (1.72 and 4.57) in.

The 50 % confidence limits of the settlement prediction are: (2.11 and 3.06) in.

6. The areal distribution of settlement in inches is given by the equation:

.5\'=15.504/(35.66--16.708X0‘5+1.386X—0.002.51"2

+4.569Y0-5-0.376Y+3.63)
(C.7)

The computer output is shown in Figure C.2.
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LAYER N1 X Y Z

1 12.52198 13.13 60.50 5

1 8.23077 13.13 60.50 10

1 14.46834 13.13 60.50 15

1 11.97067 13.13 60.50 20

1 21.99011 13.13 60.50 25

1 20.44942 13.13 60.50 30

1 9.59647 13.13 60.50 35

1 33.81163 13.13 60.50 40

1 20.38416 13.13 60.50 45

1 27.70622 13.13 60.50 50

1 19.38537 13.13 60.50 55

1 12.52198 125.45 9.33 5

1 6.85897 125.45 9.33 10

1 12.05695 125.45 9.33 15

1 11.97067 125.45 9.33 20

1 9.99550 125.45 9.33 25

1 22.30846 125.45 9.33 30

1 19.19294 125.45 9.33 35

2 7.15542 205.47 108.93 5

2 5.48718 205.47 108.93 10

2 4.82278 205.47 108.93 15

2 8.70594 205.47 108.93 20

2 10.99505 205 .47 108.93 25

2 5.57711 205.47 108.93 30

2 7.85166 205.47 108.93 35

Figure C.2 : The Computer Output Of 'Case History No. 2
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8.70594 125.00 70.45 20

7.99640 125.00 70.45 25

7.43615 125.00 70.45 30

7.85166 125.00 70.45 35

2.47402 125.00 70.45 40

5.99054 125.00 70.45 50

11.48763 125.00 70.45 55

3.33119 125.00 70.45 65

4.71495 13.13 60.50 85

3 .48963 279.45 51 .28 35

6.59739 279.45 51 .28 40

3 . 13603 279.45 51 .28 45

2.99527 279 .45 51 .28 50

2.76263 279.45 51 .28 60

SUBSOIL STRATIFICATION

---------- ONEWAY-----—----

Variable N

By Variable LAYER

Analysis of Variance

Sum of Mean F F

Source D.F. Squares Squares Ratio Prob.

Between Groups 2 1018.8349 509.4174 20.5792 .0000

Within Groups 62 1534.7507 24.7540

Total 64 2553.5856

 

Figure C.2 : Continued.
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SUBSOIL STRATIFICATION

---------- ONEWAY----------

Standard Standard

Group Count Mean Deviation Error 95 Pct Conf Int for Mean

 
Grp 1 18 16.4123 7.2075 1.6988 12.8280 To 19.9965

Grp2 41 8.6998 4.0026 .6251 7.4364 To 9.9632

Grp 3 6 3.9493 1.4690 .5997 2.4077 To 5.4909

Total 65 10.3971 6.3166 .7835 8.8319 To 11.9622

Fixed Effects Model 4.9753 .6171 9.1635 To 11.6306

Random Effects Model 3.7838 -5.8835 To 26.6776

Random Effects Model - Estimate of Between Component Variance 28.8490

 

SUBSOIL STRATIFICATION  
Group Minimum Maximum

Grpl 6.8590 33.8116

Grp 2 2.4740 23.2380

Grp 3 2.7626 6.5974

Total 2.4740 33.8116

Tests for Homogeneity of Variances

Cochrans C = Max. Variance/SumCVariances) = .7408, P = .000 (Approx.)

Bartlett-Box F = 8.196 , P = .000

Maximum Variance / Minimum Variance 24.073

Figure C.2 : Continued.
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SUBSOIL STRATIFICATION

---------- ONEWAY----------

Variable N

By Variable LAYER

Multiple Range Test

Tukey-HSD Procedure

Ranges for the .050 level -

3.39 3.39

The ranges above are table ranges.

The value actually compared with Mean(J)-Mean(l) is..

3.5181 * Range * Sqrt(l/N(l) + 1/N(J))

(*) Denotes pairs of groups significantly different at the .050 level

GGG

rrr

PPP

Mean Group 3 2 1

3.9493 Grp 3

8.6998 Grp2

16.4123 Grpl **

Figure C.2 : Continued.
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LAYER N1 X Y Z

2 7.15542 205.47 108.93 5

2 5.48718 205.47 108.93 10

2 4.82278 205.47 108.93 15

2 8.70594 205.47 108 .93 20

2 10.99505 205.47 108.93 25

2 5.57711 205.47 108.93 30

2 7.85166 205.47 108.93 35

2 10.72076 205.47 108.93 40

2 10.19208 205.47 108.93 45

2 11.23225 205.47 108.93 50

2 7.15542 197.20 73.68 5

2 6.85898 197.20 73.68 10

2 13.26264 197.20 73.68 15

2 11.97067 197.20 73.68 20

2 19.99101 197.20 73.68 25

2 23.23797 197.20 73.68 30

2 12.21369 197.20 73.68 35

2 9.07141 197.20 73.68 40

2 14.22752 197.20 73.68 50

2 7.32861 13.13 60.50 65

2 6.06072 13.13 60.50 80

2 5.48804 125 .45 9 .33 45

2 5.24172 125.45 9.33 50

2 4.66366 125.45 9.33 65

Figure C.2 : Continued.
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N2=F(X,Y,Z),LAYERS 2&3 CONIBINED & NAMED LAYER 2

THE FITTED MODEL:

N=D0+D1*X**O.5+D2*X+D3*X**2+D4*Y**0.5+D5*Y+D6*Z**O.5+D7*Z+D8*Z**2.

All the derivatives will be calculated numerically.

 

There are 47 cases. There is enough memory for them all.

Run stopped after 5 model evaluations and 3 derivative evaluations.

Iterations have been stopped because the magnitude of the largest correlation

between the residuals and any derivative column is at most RCON = 1.000E-08

 

N2=F(X,Y,Z),LAYERS 2&3 COMBINED & NAMED LAYER 2

Nonlinear Regression. Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 9 3431.41795 381.26866

Residual 38 416.94573 10.97226

Uncorrected Total 47 3 848.36368

(Corrected Total) 46 769.74908

R squared = 1 - Residual SS / Corrected SS = .45834

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

D0 35.661381270 17.240568745 .759674519 70.563088020

 
'Dl -16.70819947 3.996932525 -24.79956635 ~8.616832596

D2 1.386085906 .317411920 .743519068 2.028652745

D3 -.001993047 .000441309 -.002886430 -.001099664

D4 4.568505574 1.641274926 1.245918192 7.891092957

D5 -.375674112 .122035926 -.622722928 -.l28625295

D6 1.737697232 4.613403969 -7.601650840 11.077045303

D7 -.107177359 .680007779 -1.483781138 1.269426420

D8 -.001129414 .003774031 -.008769541 .006510713

Figure C.2 : Continued.
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Asymptotic Correlation Matrix of the Parameter Estimates

D0 D1 D2

D0 1 .0000 -.7280 .6490

D1 -.7280 1.0000 —.9884

D2 .6490 -.9884 1.0000

D3 -.5675 .9581 -.9898

[)4 -.1693 -a2737 .3294

D5 .0541 .4099 44677

D6 -.6369 .1772 -.1281

I37 .6551 -n2041 .1451

D8 -.6933 .2518 -.l704

D3

-.5675

.9581

-.9898

1.0000

-.3832

.5208

.0863

-.0953

.1032

226

D4

41693

a2737

.3294

43832

1.0000

49732

n0733

.0734

«0403

 

D6 D7 D8

D0 -.6369 .6551 -.6933

D1 .1772 -.2041 .2518

D2 -.1281 .1451 -.1704

D3 .0863 -.0953 .1032

D4 -.o733 .0734 -.0403

D5 .0606 -.0616 .0375

D6 1.0000 -.9889 .9198

D7 -.9889 1.0000 -.9650

D8 .9198 -.9650 1.0000

D5

.0541

.4099

a4677

.5208

a9732

1.0000

.0606

40616

.0375

 

Figure C.2 : Continued.
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C.2 THE SETTLEMENT PREDICTION OF CASE HISTORY No. 3

C.2.1 PROJECT GENERAL DESCRIPTION

Settlement histories are described for four steel grain storage tanks. The

settlements of this project were previously studied and reported by Davisson, M.T. et.

al.(l972). The site is located on a nearly level flood plain in Kansas City, Missouri,

approximately one— quarter mile south of the Missouri River. 9

The history of the site is relatively simple. An old farmhouse was located in the

area now occupied by tank D as shown in Figure C.3 and it is assumed that the

remainder of the site was used for farming purposes. Approximately ’5 ft of the flood

plain deposit covers the site and is mixed intermittently with miscellaneous fill. Tank

B is selected for settlement analysis because it was not preconsolidated by the

existance of a previous building like tank D and is not located outside the available

boring locations like tank A.

Tank B is 110 ft in diameter and has a wall height of 45 ft. The roof is cone-

shaped and has a slope of 27 degrees from horizontal, therefore the total height of the

structure to the tip of the cone is 73 ft.

C.2.2 SUBSOIL INVESTIGATION

The subsoil investigation consists of three borings (Bl , B2 & B3) the depths were

51 ft , 50 ft and 80 ft , respectively. Standard penetration test N values have been

reported. The correction factors of N values for the overburden pressure are calculated

as explained in section A.1 and are shown in Table C5. The corrected N values for each

boring are shown in Tables C6 to C8.
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Figure C.3 : Site Plan And Boring Locations Of Case History No. 3
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Table C.5 : The Correction Factors For Overburden Pressure

Of N Values Of Case History No. 3

Depth(ft) Unit wt. Effective Correction

lb/cf. Pressure factor

(lb/sf) (C1)

5 125.0 625.0 1.788854

10 125.0 1250.0 1.264911

15 125.0 1875.0 1.032796

20 125.0 2500.0 0.8944272

25 62.6 2937.8 0.8250949

30 62.6 ' 3250.8 0.7843680

35 62.6 3563.8 0.7491320

40 62.6 3876.8 0.7182544

45 62.6 4189.8 0.6909050

50 62.6 4502.8 0.6664594

55 62.6 4815.8 0.6444375

60 62.6 5128.8 0.6244636

65 62.6 5441.8 0.6062388

70 62.6 5754.8 0.5895218

75 62.6 6067.8 0.5741156

80 62.6 6380.8 0.5598574
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Table C.6 : The Correction Of N Values Of Boring B1.

 

Depth Boring (B1)

(ft) N N1=C1*N

 

5 6 10.733130

10 14 17.708750

15 12 12.393550

20 14 12.521980

25 11 9.076044

30 20 15.687360

35 17 12.735240

4O 21 15.083340

45 28 19.345340

50 100 66.645940
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Table C.7 : The Correction Of N Values Of Boring B2.

 

Depth Boring (B2)

 

(ft) N N1=C1*N

5 5 8.944272

10 11 13.914020

15 15 15.491930

20 18 16.099690

25 22 18.152090

30 16 12.549890

35 34 25.470490

40‘ 28 20.111120

45 67 46.290640

50 120 79.975120

 

 

 

 

 





 

 

 

232

Table C.8 : The Correction or N Values or Boring 133.

 

Depth Boring (B3)

 

(ft) N N1 =C1*N

5 4 7.155418

10 14 17.708750

15 4 4.131182

20 24 21.466250

25 36 29.703420

30 17 13.334260

35 32 23.972220

40 100 71.825440

45 14 9.672670

50 16 10.663350

55 21 13.533190

60 120 74.935630

65 60 36.374330

70 75 44.214140

75 24 13.778780

80 33 18.475290
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In general, the soil profile is fine to medium sand of low to medium relative

density in the upper 40 ft, and dense to very dense sand at depths greater than 40 ft.

The N values in the upper 20 ft are particularly 10w, ranging from 4 to 24. At a depth

of approximately 40 ft to 50 ft dense to very dense sands are encountered that have N

values exceeding 50. In boring B3 the N values indicate that a layer of medium sand

may be encountered at a depth of approximately 75 ft.

Clay layers 2 in. to 3 in. thick were encountered in borings B1 and B3 at depths

ranging from 30 ft to 40 ft and 50 ft to 60 ft, respectively. These clays had an

estimated unconfined compression strength exceeding 1 tsf. It is not believed that

presence of the clays in very small amounts at relatively large depths alteres significantly

the compressibility of an otherwise purely granular soil deposit.

C.2.3 FOUNDATIONS AND SETTLEMENT MEASUREMENTS

The foundation consists of a waterbound macadam raft 2 ft thick. A steel plate

with a thickness of 3/16 in. covers the entire floor area of the tank. The roof is

supported, theoretically , by both the walls and several interior columns. Tank B

imposes an average load of 1.48 tsf on its foundation. This figure was obtained by

considering the entire volume of the tank to be filled with soybeans and then

adding an allowance for compaction.

Settlement observations were made on the interior of the tank after it had been

subjected to several load - unload cycles. The observations were made close to the

columns supporting the roof, but not close enough to be influenced by local column
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settlements. The settlements of tank B vary from 3 in. to 4 in. over most of the tank

area except for the extreme west side where the observed settlement was only 1.7 in.

The average settlement over the tank area was 3.3 in.

C.2.4 APPLYING THE KRIGING TECHNIQUE

Considering that a settlement prediction is required at the center point of the

foundation of tank "B". The Kriging results are summarized as follows:

1. The calculated covariance function is given by the equation:

C(h) =371.954-‘1-44-‘3-5 ”12> (C. 8)

2. The estimated N function is given by:

N=7.504835+0.3681199Z (c.9)

3. The "two—point" estimate of N values are:

N(B/2)=27 .75,N(3B/2)=68.24 (c.10)

4. The design N value is given by the weighted average:

N=(l/3) [247(3/2)+1V<33/2)] =41.24 (c.11)

5. The predicted settlement is 3.3 in.

L___¥
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Therefore the predicted settlement of 3.1 in is within about 6% of the measured

value of 3.3 in.

6. The 90 % confidence limits 0f the settlement prediction are:

(2.2 and 5.13) in.

The 50% confidence limits are:

(2.76 and 3.48) in.

C.2.5 APPLYING THE TREND SURFACE ANALYSIS TECHNIQUE

The trend surface analysis results are summarized as follows:

1. The model which is fitted to the data is given by:

N=—1254-0.0082X+1476Z°'5—624Z+114.3Z1'5—7.68Z2 (C.12)

(R2: 0.65).

2. ~ The design N value is N: 3.16.

3. The predicted settlement is 4.03 in. Therefore the predicted settlement of 4.03 in

is within about 22% of the measured value of 3.3 in.

4. The 90% confidence limits of the settlement prediction are: (0.77 and 7.29) in.

The 50% confidence limits are: (1.52 and 6.54) in.

5. The areal distribution of settlement in inches is given by the equation:

S=12.744/(1.63-0.0082X) ((3.13)

The computer Output is shown in Figure C.4.

I;
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SUBSURFACE SOIL STRATIFICATION

 

 

LAYER N1 X(ft) Y(ft) Z(ft)

1 10.73313 252 159 5

1 17.70875 252 159 10

1 12.39355 252 159 15

1 12.52198 252 159 20

1 9.07604 252 159 25

2 15.68736 252 159 30

2 12.73524 252 159 35

2 15.08334 252 159 40

2 19.34534 252 159 45

1 8.94427 378 163 5

1 13.91402 378 163 10

1 15.49193 378 163 15

1 16.09969 378 163 20

2 18.15209 378 163 25

2 12.54989 378 163 30

1 7.15542 690 206 5

1 17.70875 690 206 10

1 4.13118 690 206 15

2 21.46625 690 206 20

2 29.70342 690 206 25

2 13 .33426 690 206 30

3 66.64594 252 159 50

3 25.47049 378 163 35

3 20.11112 378 163 40

3 46.29064 378 163 45

Figure C.4 : The Computer Output Of Case History No. 3
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3 79.97512 378 163 50

3 23.97222 690 206 35

3 71 .82544 690 206 40

3 9 .67267 690 206 45

3 10.66335 690 206 50

3 13.53319 690 206 55

3 74.93563 690 206 60

3 36.37433 690 206 65

3 44.21414 690 206 70

3 13 .77878 690 206 75

3 18.47529 690 206 80

 

LARGE TANKS FOUNDED ON A SANDY SITE IN KANSAS CITY

---------- ONEWAY----------

Variable N

By Variable LAYER

Analysis of Variance

Sum of Mean F F

Source D.F. Squares Squares Ratio Prob.

Between Groups 2 4615.2291 2307.6145 8.0817 .0014

Within Groups 33 9422.7228 285.5371

Total 35 14037.9519

 

Figure C.4 : Continued.
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Standard Standard

Group Count Mean Deviation Error 95 Pct Conf Int for Mean _

Grp 1 12 12.1566 4.2944 1.2397 9.4280 To 14.8851

Grp2 9 17.5619 5.5016 1.8339 13.3330 To 21.7908

Grp3 15 37.0626 25.3232 6.5384 23.0390 To 51.0861

Total 36 23.8854 20.0271 3.3378 17.1092 To 30.6616

Fixed Effects Model 16.8978 2.8163 18.1556 To 29.6152

Random Effects Model 8.2271 -11.5135 To 59.2843

Random Effects Model - Estimate of Between Component Variance 172.0917

 

Group Minimum Maximum

Grp 1 4.1312 17.7087

Grp 2 12.5499 29.7034

Grp 3 9.6727 79.9751

Total 4.1312 79.9751

Tests for Homogeneity of Variances

Cochrans C = Max. Variance/Sum(Variances) = .9294, P = .000 (Approx.)

 

Bartlett-Box F = 17.901 , P = .000

Maximum Variance / Minimum Variance 34.773

---------- ONEWAY------—---

Variable N

By Variable LAYER

Multiple Range Test

Tukey-HSD Procedure

Ranges for the .050 level -

3 .46 3.46

The ranges above are table ranges. .

The value actually compared with MeanO)—Mean(1) is..

11.9486 * Range * Sqrt(1/N(I) + 1/N(J))

Figure C.4 : Continued.
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(*) Denotes pairs of groups significantly different at the .050 level

Mean

12.1566

17.5619

37.0626

Group

Grpl

Grp2

prs

GGG

PPP

123

**

 

MODELING THE N FUNCTIONS FOR THE SUBSURFACE SOIL

 

 

LAYER N1 X(ft) Y(ft) Z(ft)

1 10.73313 252 159 5

l 17.70875 252 159 10

1 12.39355 252 159 15

1 12.52198 252 159 20

1 9.07604 252 159 25

2 15.68736 252 159 30

2 12.73524 252 159 35

2 15.08334 252 159 40

2 19.34534 252 159 45

1 8.94427 378 163 5

1 13.91402 378 163 10

1 15.49193 378 163 15

l 16.09969 378 163 20

2 18.15209 378 163 25

2 12.54989 378 163 30

1 7.15542 690 206 5

Figure C.4 : Continued.
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l 17.70875 690 206 10

1 4.13118 690 206 15

2 21.46625 690 206 20

2 29.70342 690 206 25

2 13.33426 690 206 30

THE FITTED MODEL:

N = BO+B1*X+B2*Z**05+B3*Z+B4*Z**15+B5*Z**2.

All the derivatives will be calculated numerically.

 

 

Run stopped after 6 model evaluations and 3 derivative evaluations.

Iterations have been stopped because the relative reduction between successive

residual sums of squares is at most SSCON = 1.000E-08

 

Nonlinear Regression Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 6 1906.13828 317.68971

Residual 6 70. 10254 1 1 .68376

Uncorrected Total 12 1976.24081

(Corrected Total) 11 202.85765

R squared = l - Residual SS / Corrected SS = .65442

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

BO -1254.598035 608.99558842 -2744.756558 235.56048759

B1 -.008244547 .006109621 -.023194251 .006705158

B2 1476.5232332 72555692499 -298.8506053 3251.8970716

B3 -624.0239724 314.13350566 -1392.680970 144.63302546

B4 114.28725122 58.781601694 —29.54614660 258.12064903

B5 -7.683474492 4.023853769 -17.52948997 2.162540983

 

Figure C.4 : Continued.
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Asymptotic Correlation Matrix of the Parameter Estimates

B0 B1 B2 B3 B4 B5

B0 1.0000 -.1133 -.9995 .9979 -.9953 .9916

B1 -.1133 1.0000 .1102 -.1111 .1113 -.1104

B2 -.9995 .1102 1.0000 -.9995 .9978 -.9951

B3 .9979 -.1111 -.9995 1.0000 -.9994 .9978

3B4 -.9953 .1113 .9978 ..9994 1.0000 -.9995

B5 .9916 -.1104 -.9951 .9978 -.9995 1.0000

 

Figure C.4 : Continued.
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C.3 THE SETTLEMENT PREDICTION OF CASE HISTORY No.4

C.3.1 PROJECT GENERAL DESCRIPTION

The site investigation for a steel mill factory expansion in Lesaka, Spain ,

revealed the presence of a loose to medium dense silty sand stratum. The

settlements estimated for this stratum were large, and were thought to be critical for

the normal operation of the equipment. This justified the implementation of a

field load test to verify the expected settlements.

The settlements of this load test were previously studied and reported by

Picomell, M. et. al. (1988). The load teSt was implemented by stockpiling steel sheet

coils over an area of 65 feet by 50 feet , this led to an average contact pressure of

3.1 st (1.55 tsf). The load test was terminated when the settlement plates had

stopped settling.

C.3.2 SUBSOIL INVESTIGATION

The reported subsoil investigation included 2 borings , (D5 & D8). These

borings were drilled to depths of about 125 ft each. The boring locations are shown

in Figure C5. The subsurface soil can be discribed as follows:

The subsurface soils , at this site , are predominantly 'granular and can be grouped

into two main strata. The surficial stratum consist of greenish gray silty gravel with

some sand, and frequent boulders. At the site of the load test, this stratum is about 23

ft thick. In other areas of the expansion, irregular lenses of medium stiff to stiff silty

clay have been encountered embedded in this stratum. The deeper silt— sand stratum has
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Figure C.5 : Site Plan And Boring Locations Of Case History No. 4
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Table C.9 : The Correction Of N Values Of Boring (D-S).

 

Boring (D-5)

Depth Correction N N1 =C1*N

(ft) factor(C1)

 

5 2.527 65 164.307

10 1.787 93 166.230 '

15 1.459 105 153.239

20 1.263 98 123.862

40 0.893 105 93.839

46 0.833 56 46.669

57 0.748 44 32.941

62 0.717 30 21.535

82 0.624 34 21.222

85 0.613 54 33.106

89 0.599 60 , 35.948

94 0.582 58 33.813
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Table C.10 : The Correction Of N Values Of Boring (D-8).

 

 

Boring (D-8)

Depth Correction -N N1 =C1*N

(ft) factor (Cl)

6.0 2.307 36 83.072

12.0 1.631 22 35.897

16.0 1.413 14 19.783

18.0 1.332 17 22.648

23.8 1.158 10 11.586

26.2 1.104 9 9.938

31.2 1.011 9 9.107

36.1 0.940 14 13.170

41.3 0.879 7 6.156

45.9 0.834 17 14.183

50.8 0.793 10 7.930

55.8 0.756 23 17.403

69.0 0.680. 18 12.248

81.0 0.628 34 21.353

89.0 0.599 53 31.754

117.0 0.522 25 13.063

130.0 0.495 25.77852
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a characteristic maroon color and consists of successive layers of silty sand and sandy

silt with variable amounts of gravel, occasionally, the gravel size particles

predominate. This stratum contains what appears to be large boulders of limestone

10 ft or more in thickness. The density of this stratum ranges from loose to medium

dense. The thickness of this stratum is eXtremely variable throughout the site, and at

the location of the field load test exceeds the 100 ft investigated. This silt-sand stratum

rests on limestone bedrock. The corrected N values for the overburden pressure are

shown in Tables C.9 and C.10.

C.3.3 FOUNDATIONS AND SETTLEMENT MEASUREMENTS

The load test was implemented to verify the compressibility of the silty sand

layer. For this purpose, the load test was located in the area where this layer appeared

closer to the ground surface.

The load was applied on the soil by stockpiling steel sheet coils directly on the

ground surface. During the installation of the load, a record was kept of the individual

weights of the coils and an attempt was made to distribute them in such a manner

as to achieve a nearly uniform load throughout the loaded area. The dimensions of

the loaded area were 65 ft by 50 ft and the average load amounted to, 3.1 st (1.55 tsf).

The settlements were monitored with twelve settlement plates installed throughout the

loaded area and in its immediate vicinity. The locations of the settlement plates are

shown in Figure C5. The settlement plates consisted of a riser welded to a one square

foot plate. The plates were installed in an excavation at a depth of 2 ft. The settlements

were monitored by surveying the elevation of the t0p of the risers. The load was left
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in place for ten days and the settlement plates were surveyed on a daily basis. The

average settlement was 1.56 in. From the settlement record it was obvious that the

settlement occured rapidly coinciding with the application of the load.

C.3.4 APPLYING THE KRIGING TECHNIQUE

Considering that a settlement prediction is required at the center point of the

loading area foundation. The Kriging results are summarized as follows:

1. The calculated covariance function is given by the equation:

C(h) =128.6339‘4'44E’5(h2) ((3.14)

2. The estimated N function is given by:

8E6.571761+0.13946832 (c.15)

3. The "two-point" estimate of N values are:

N(B/Z) le'OS'N(BB/2)=l7'03 (C.1-6)

4. The design N value is given by the weighted average:

N=(1/3) [2N(B/2)+1’\‘7(3B/2,] =12.38 (c.17)

5. The predicted settlement is 1.92 in.
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Therefore the predicted settlement of 1.92 in is within about 20 % of the

measured value of 1.56 in.

The 90% confidence limits of the settlement prediction are: (1.16 and 5.75) in.

The 50% confidence limits are: (1.74 and 2.15) in.

APPLYING THE TREND SURFACE ANALYSIS TECHNIQUE

The trend surface analysis results are summarized as follows:

The model which is fitted to the data is as follows:

N=~15.26+0.216X+5.67Z°'5-0.417Z+0.001Z2

+7.92z3, (R2=0.62) (c.18)

The "two-point" estimate of N values are:

N(B/2)=10.39,N(3B/2)=16.09 (c.19)

The design N value is:

N=(1/3) [2N(B/2)+N(3B/2)] =12.29 (c.20)

The predicted settlement is 1.93 in.

Therefore the predicted settlement of 1.93 in is within about 20 % of the

measured value of 1.56 in.
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5. The 90 % confidence limits of the settlement prediction are: (1.1 and 13.3) in.

The 50% confidence limits are: (1.45 and 2.91) in.

6. The areal distribution of settlement in inches is given by the equation:

S=23.84/(0.216X¥5.267) (C.21)

The computer output is shown in Figure C.6.

 





SUBSURFACE SOIL STRATIFICATION

 

 

LAYER N1 X(ft) Y(ft) 2(8)

1 83.0720 33.15 9.78 6.0

1 35.8971 33.15 9.78 12.0

1 19.7831 33.15 9.78 16.0

1 22.6485 33.15 9.78 18.0

1 165.3070 107.39 25.75 5.0

1 166.2305 107.39 25.75 10.0

1 153.2398 107.39 25.75 15.0

1 123.8622 107.39 25.75 20.0

1 93.8398 107.39 25.75 40.0

2 11.5861 33.15 9.78 23.8

2 9.9384 33.15 9.78 26.2

2 9.1073 33.15 9.78 31.2

2 13.1705 33.15 9.78 36.1

2 6.1567 33.15 9.78 41.3

2 14.1831 33.15 9.78 45.9

2 719304 33.15 9.78 50.8

2 17.4036 33.15 9.78 55.8

2 12.2483 33.15 9.78 69.0

2 21.3532 33.15 9.78 81.0

2 46.6699 107.39 25.75 46.0

2 32.9415 107.39 25.75 57.0

2 21.5354 107.39 25.75 62.0

2 21.2227 107.39 25.75 82.0

2 33.1064 107.39 25.75 85.0

3 31.7547 33.15 9.78 89.0

Figure C.6 : The Computer Output Of Case History No. 4

 





 

 

2 5 1

3 13.0639 33.15 9.78 117.0

3 25.7786 33.15 9.78 130.0

3 35.9487 107.39 25.75 89.0

3 33.8136 107.39 25.75 94.0

---------- ONEWAY--——------

Analysis of Variance

Sum of Mean F F

Source D.F. Squares Squares Ratio Prob.

Between Groups 2 352905477 17645.2739 14.8462 .0001

Within Groups 26 30902.0337 11885398

Total 28 661925814

---------- ONEWAY----—-—---

Standard Standard

Group Count Mean Deviation Error 95 Pct Conf Int for Mean

Grp l 9 95.9867 59.9605 19.9868 49.8970 To 142.0763

Grp 2 15 18.5702 11.3417 2.9284 12.2894 To 24.8510

Grp 3 5 28.0719 9.2070 4.1175 16.6401 To 39.5037

Total 29 44.2342 48.6212 9.0287 25.7397 To 62.7288

Fixed Effects Model 34.4752 6.4019 31.0750 To 57.3935

Random Effects Model 27.8852 -75.7476 To 164.2161

18715502
Random Effects Model - Estimate of Between Component Variance

 

Figure C.6 : Continued.





2 5 2

Group Minimum Maximum

Grp 1 19.7831 166.2305

Grp 2 6.1567 46.6699

Grp 3 13.0639 35.9487

Total 6.1567 166.2305

Tests for Homogeneity of Variances

Cochrans C = Max. Variance/SumCVariances) = .9440, P = .000 (Approx.)

Bartlett-Box F = 15.904 , P = .000

Maximum Variance / Minimum Variance 42.413

Multiple Range Test

Tukey-HSD Procedure

Ranges for the .050 level -

3.51 3.51

The ranges above are table ranges.

The value actually compared with Mean(J)-Mean(l) is..

24.3777 * Range * Sqrt(1/N(I) + 1/N(J))

(*) Denotes pairs of groups significantly different at the .050 level

GGG

rrr

PPP

Mean Group 2 3 1

18.5702 Grp 2

28.0719 Grp3

95.9867 Grpl **

Figure C.6 : Continued.
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LAYER N1 X(ft) Y(ft) 2(8)

2 11.5861 33.15 9.78 23.8

2 9.9384 33.15 9.78 26.2

2 9.1073 1 33.15 9.78 31.2

2 13.1705 33.15 9.78 36.1

2 6.1567 33.15 9.78 41.3

2 14.1831 33.15 9.78 45.9

2 7.9304 33.15 9.78 50.8

2 17.4036 33.15 9.78 55.8

2 12.2483 33.15 9.78 69.0

2 21.3532 33.15 9.78 81.0

2 46.6699 107.39 25.75 46.0

2 32.9415 107.39 25.75 57.0

2 21.5354 107.39 25.75 62.0

2 21.2227 107.39 25.75 82.0

2 33.1064 107.39 25.75 85.0

3 31.7547 33.15 9.78 89.0

3 13.0639 33.15 9.78 117.0

3 25.7786 33.15 9.78 130.0

3 35.9487 107.39 25.75 89.0

3 33.8136 107.39 25.75 94.0

 

THE FITTED MODEL:

 

N = B0+B1*X+B2*Z**05+B3*Z +B4*Z**2+B5*Z**3 .

20 cases are written to the compressed active file.

 

Figure C.6 : Continued.
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All the derivatives will be calculated numerically.

 

Run stopped alter 6 model evaluations and 3 derivative evaluations.

Iterations have been stopped because the relative reduction between successive

residual sums of squares is at most SSCON = 1.000E-08

 

Nonlinear Regression Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 6 10315.18500 1719.19750

Residual 14 937.71472 66.97962

Uncorrected Total 20 11252.89972

(Corrected Total) 19 2478.49464

R squared = 1 - Residual SS / Corrected SS = .62166

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

B0 4526345780 413.72188570 -902.6086507 872.08173514

B1 .216191623 .060909113 .085554569 .346828678

B2 5.673904168 177.22526971 3744364951 385.78430340

B3 -.417516829 21.645162943 46.84177417 46.006740509

B4 .001097525 .113220251 -.241735761 .243930811

B5 7.927580E-07 .000323570 -.000693195 .000694781

Asymptotic Correlation Matrix of the Parameter Estimates

B0 B1 B2 B3 B4 B5

B0 1 .0000 -.0805 ~.9985 .9943 -.9810 .9639

B1 -.0805 1 .0000 .0801 —.0822 . 0725 -.0528

B2 -.9985 .0801 1.0000 -.9987 .9899 -.9762

B3 .9943 -.0822 -.9987 1 .0000 -.9958 .9855

B4 -.9810 .0725 .9899 -.9958 1.0000 -.9968

B5 .9639 -.0528 -.9762 .9855 -.9968 1.0000

 

Figure C.6 : Continued.

 
 

 





 

255

C.4 THE SETTLEMENT PREDICTION OF CASE HISTORY No. 5

C.4.1 PROJECT GENERAL DESCRIPTION

This project consists of a 30 ft thick mat which supports several nuclear,

electrical and associated facilities with loads ranging from 8,000 to 10,000 Kips/sf.

The mat is founded upon the partially cemented silty sands of the Vincentown Formation.

The settlements of this project were previously studied and reported by the

investigators of "Dames and Moore, Granford, New Jersey" , (1972).

Suitable foundation soils are some 70 ft below grade. The site was backfilled to

foundation grade with a lean concrete up to 30 ft in thickness.

C.4.2 SUBSOH. INVESTIGATION

The site was investigated by drilling 35 borings to varying depths in the

generating station area. The locations of the borings, with respect to the proposed

structures, are shown in Figure C.7. Most of the borings were terminated at depths on

the order of 100 feet below ground surface.

The borings at the site indicate the top 25 to 35 feet consist of interbedded

mixtures of clay , silt and sand , generally hydraulic fill or loose alluvium. The soils

are generally soft in consistency and occasionally contain some organic material.

Below these upper soils, the Kirkwood Formation was encountered to depths varying

from 65 to 70 ft below the ground surface. This Formation consists of moderately firm

to firm clayey soils. The Vincetown Formation of Miocene Age underlies the

Kirkwood and consists of sand and silty sand layers, some well cemented.
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Figure C.7 : Site Plan And Boring Locations Of Case History No. 5 ‘

  

 

 

 





         

Table C.11 : The Correction Of N Values Of Boring (9).
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Boring (9)

Depth Correction N N1 =C1*N

(ft) factor (C1)

2 3.162 2.14 6.767

5 2.000 4.28 8.560

31 0.803 94.30 75 .743

36 0.744 23.60 17.578

41 0.695 19.30 13.430

46 0.655 27.90 18.287

51 0.621 34.30 21.312

54 0.603 19.30 11.643

56 0.592 79.30 46.952

58 0.581 25.70 14.944

61 0.566 23.60 13.371

67 0.538 30.00 16.151

71 0.519 32.14 16.708

76 0.499 51.45 25.684

81 0.480 77.14 37.092

87 0.461 64.30 29.659

91 0.449 90.00 40.452

 





Table C.12 : The Correction Of N Values Of Boring (34).
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Boring (34)

Depth Correction N N1 =C1*N

(ft) factor (C1)

3 2.582 3 7.746

7 1.690 4 6.761

21 0.975 2 1.951

27 0.860 3 2.582

31 0.803 27 21.687

36 0.744 6 4.469

41 0.695 9 6.263

47 0.648 19 12.315

51 0.621 15 9.320

53 0.609 16 9.746

57 0.586 10 5.867

58 0.581 23 13.374

61 0.566 30 16.997

67 0.538 44 23.688

71 0.519 37 19.235

77 0.495 26 12.879

81 0.480 28 13.463
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Table C.12 : Continued.

 

86 0.464 94 43.650

91 0.449 52 23.372

96 0.435 62 27.026

100 0.425 44 18.740

 

At about 135 ft below the ground surface the cementation grades out. Sandy and silty

sand soil continue to the depths penetrated by the borings. Bedrock in the area is in

excess of 1800 ft below the ground surface and therefore will have no appreciable influ-

ence on the foundation settlement of the proposed facilities. The corrected N

values for the overburden pressure are shown in Tables CH and C. 12.

C.4.3 FOUNDATIONS AND SETTLEMENT MEASUREMENTS

The 30 ft thick mat supports several facilities including unit 2 which is

selected for settlement anlysis. The diameter of the mat equals to 150 ft and the load

which is carried by this mat has an ultimate pressure of 8 kips/sf (4 tsf).

The settlements of the mat were monitored at regular intervals from the initial

placement onwards. The average settlement which was reported by the previous

investigator was 0.5 in.

 





2 6 0

C.4.4 APPLYING THE KRIGING TECHNIQUE

Considering that a settlement prediction is required at the center point of unit 2.

The Kriging results are summarized as follows:

1. The calculated covariance function is given by the equation:

C(h) =107.056e‘4-44E-s(h2) (C.22)

2. The estimated N function is given by:

NE0.7466782—33.59394 (0.23)

3. The design N value is: N = 74.6

4. The predicted settlement is 0.43 in.

Therefore the predicted settlement of 0.43 in is within about 14 % of the

measured value of 0.5 in.

5. The 90% confidence limits of the settlement prediction are: (0.35 and 0.55) in.

The 50% confidence limits are: (0.41 and 0.44) in.

C.4.5 APPLYING THE TREND SURFACE ANALYSIS TECHNIQUE

The trend surface analysis results are summarized as follows:

1. The model which is fitted to the data is as follows:

Ne15197—0.02X>4302205+3602—o.7422,(R2=0.53).
(C-24)

2. The design N value = 65 .6
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3. The predicted settlement is 0.48 in.

Therefore the predicted settlement of 0:48 in is within about 4 % of the

measured value of 0.5 in.

4. The 90 % confidence limits of the settlement prediction are: (0.41 and 0.60) in.

The 50% confidence limits are; (0.45 and 0.53) in.

5. The areal distribution of settlement in inches is given by the equation:

S=32/(72.11-0.025X) (c.25)

The computer output is shown in Figure C.8.
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MODELING THE N FUNCTIONS FOR THE SUBSURFACE SOIL

 

 

LAYER N1 X(ft) Y(ft) Z(ft)

1 16.7088 130.3 78.78 71

1 25.6849 130.3 78.78 76

1 37.0925 130.3 78.78 81

1 29.6594 130.3 78.78 87

1 40.4520 130.3 78.78 91

1 19.2354 421.21 230.3 71

1 12.8798 421.21 230.3 77

1 13.4637 421.21 230.3 81

1 43.6502 421.21 230.3 86

1 23.3723 421.21 230.3 91

1 27.0269 421.21 230.3 96

1 18.7404 421 .21 230.3 100

 

THE FITTED MODEL:

N = B0+B1*X+B2*Z**0.5 +B3*Z+B4*Z**2.

12 cases are written to the compressed active file.

Run stopped after 7 model evaluations and 4 derivative evaluations.

Iterations have been stOpped because the magnitude of the largest correlation

between the residuals and any derivative column is at most RCON = 1.000E-08

 

Nonlinear Regression Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 5 8530.63765 1706. 12753

Residual 7 550.57966 78.65424

Uncorrected Total 12 9081 .21732

(Corrected Total) 1 l 1 177.61382

R squared = l - Residual SS / Corrected SS = .53246

 

Figure C.8 : The Computer Output Of Case History No. 5
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Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

BO 15197.58 15018.059720 -21106.82770 49917.308755

B1 -.024978 1 83 .019002146 -.06991 1 1 1 8 .019954752

B2 4302.410445 4372.3288091 -14641.32518 6036.5042933

B3 360.89524397 357.43892798 4843135136 1206.1040015

B4 -.744228194 .704496432 -2.410097543 .921641155

Asymptotic Correlation Matrix of the Parameter Estimates

B0 B1 B2 B3 B4

B0 1 .0000 . 1051 -.9999 .9995 -.9980

B1 .1051 1.0000 -.1082 .1112 -.1177

B2 -.9999 -. 1082 1.0000 -.9999 .9989

B3 .9995 .1112 -.9999 1.0000 -.9995

B4 -.9980 -.1177 .9989 -.9995 1.0000

 

Figure C.8 : Continued.
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C.5 THE SETTLEMENT PREDICTION OF CASE HISTORY No. 6

C.5.1 PROJECT GENERAL DESCRIPTION

Settlement studies were made in conjunction with the design for a relatively large

railroad lift bridge over the Chesapeake and Delaware Canal near Summit, Delaware.

The bridge design and plans were prepared by the firm of Howard, Needles, Tammen

& Bergendoff for the US Army Corps of Engineers.

Because of the size of the structure and the critical problems that could result

from differential movements it was recommended that settlement measurements be made.

The bridge foundations included two tower piers each of which is supported by a footing

of 60 ft'width. The footings were founded on piles to minimize any tilting which could

be critical to the operation of the bridge lift span and to minimize settlements.

C.5.2 SUBSOH. INVESTIGATION

The reported subsoil investigation included 2 borings , one at each tower pier.

The N values corrected for the overburden pressure are shown in Tables C. 13 and C. 14

The boring locations with respect to the tower piers are shown in Figure C.9. These

borings were to determine the soil types as well as the relative density of the granular

soils using the standard penetration test.

The site consists of sedimentary deposits of approximately 3000 ft thickness

overlaying a pre—Cambrian crystalline bedrock. The sedimentary deposits range from

Pleistocene down to Cretaceous. The geological profile is relatively consistent at the

bridge site. These foundation soils are highly over - consolidated , having been

subjected to loads considerably greater than the present overburden pressure.
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Figure C.9 : Site Plan And Boring Locations Of Case History No. 6
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Table C.13 : The Correction Of N Values Of Boring (416).

 

Boring (416)

Depth Correction N N1 =C1*N

(ft) factor (C1)

 

182 0.296 242 71.752

187 0.292 135 39.488

191 0.289 240 69.463

196 0.285 202 57.714

200 0.282 120 33.941

204 0.280 240 67.213

208 0.277 188 52.141

212 0.274 137 37.636

216 0.272 606 164.932

218 0.270 600 162.548

222 0.268 400 107.384

228 0.264' 400 105.962

232 0.262 400 105.045

238 0.259 400 103.712

242 0.257 240 61.711
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Table C.14 : The Correction Of N Values Of Boring (417).

 

 

Boring (417)

Depth Correction N N1 =C1*N

(ft) factor (C1)

62 0.5080 154 78.2321

66 0.492 78 38.404

70 0.478 67 32.032

73 0.468 400 187.265

78 0.452 600 271.746

82 0.441 600 265.035

84 0.436 167 72.884

90 0.421 300 126.491

93 0.414 300 124.434

98 0.404 64 25.859
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C5.3 FOUNDATIONS AND SETTLEMENT MEASUREIVIENTS

The bottom of the pier footing seals were placed at an elevation of 42 ft below

ground surface. The estimated pile tip elevation were elevation of 115 ft below ground

surface. Therefore the depth of the compressible layer which caused the settlement

is (180 -115 = 65 ft).

Measurements of the vertical movement of the tower piers were made at the

four corners of the pier and were taken over a period of about 70 months. These

measurements showed a little heaving during the first 400 days and was followed by

a small settlement below the original level and then further heave. It is believed that the

heave resulted from the release of overburden “pressure by excavation through a highly

over — consolidated soil and the following settlement was the result of the compression

of the compressible sands due to the construction of the bridge foundations and

superstructure. So the movement which is attributable to the sand settlement below pile

tips is 0.4 inch. The pressure due to the construction at the elevation of 115 ft

amounted to 0.9 tsf.

C.5.4 APPLYING THE KRIGING TECHNIQUE

Considering that a settlement prediction is required at the center point of the south

tower pier foundation.

The Kriging results are summarized as follows:

1. The calculated covariance function is given by the equation:
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C(h)=29l.66e‘4-°E‘5(h2) (C.26)

The estimated N function is given by:

fi=0.97z—123.5 (c.27)

The "two-point" estimate of N values are:

N(B/2)=l7.73,N(3B/2)=76.21 ((2.28)

The design N value is given by the weighted average:

N= (1/3) [2fi(B/2,+1§‘7(3B/2)] =37 .23 (c.29)

The predicted settlement is 0.38 in.

Therefore the predicted settlement of 0.38 in is within about 5 % of the

measured value of 0.4 in.

The 90% confidence limits of the settlement prediction are: (0.33 and 0.64) in.

The 50% confidence limits are: (0.37 and 0.39) in.
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C.5.5 APPLYING THE TREND SURFACE ANALYSIS TECHNIQUE

The trend surface analysis results are summarized as follows:

1. The model which is fitted to the data is as follows:

N=27836-1.62X—807220-5+6752—1.622, (122:0.503). (C.30)

 

2. The "two—point" estimate of N values: .

N(B/2)=4.55,N(33/2)=108.44 (c.31)

3. The design N value is given by:

N=(l/3) [2N(B/2)+N(3B/2)] =39.18 (c.32)

4. The predicted settlement is 0. 36 in.

Therefore the predicted settlement of 0. 36 in is within about 9 % of the measured

value. of 0.4 in.

5. The 90 % confidence limits of the settlement prediction are: (0.22 and 1.04) in.

The 50% confidence limits are: (0.29 and 0.48) in.

6. . The areal distribution of settlement in inches is given by the equation:

5:14.34/(1275.758-l.627X)
(C.33)

The computer output is shown in Figure C. 10.
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LAYER N1 X(ft) Y(ft) Z(ft)

1 71.7529 760 20.2 182

1 39.4887 760 20.2 187

1 69.4632 760 20.2 191

1 57.7143 760 20.2 196

1 33.9411 760 20.2 200

1 67.2134 760 20.2 204

1 52.1418 760 20.2 208

1 37.6368 760 20.2 212

1 ' 78.2321 220 22.5 62

1 38.4045 220 22.5 66

1 32.0321 220 22.5 70

2 164.9323 760 20.2 216

2 162.5485 760 20.2 218

2 107.3849 760 20.2 222

2 105.9626 760 20.2 228

2 105.0451 760 20.2 232

2 103.7126 760 20.2 238

2 61.7111 760 20.2 242

2 187.2658 220 22.5 73

2 271.7465 220 22.5 I 78

2 265.0357 220 22.5 82

2 72.8848 220 22.5 84

2 126.4911 220 22.5 90

2 124.4342 220 22.5 93

2 25.8599 220 22.5 98

 

Figure C.10 : The Computer Output Of Case History No. 6
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---------- ONEWAY----------

VariableN

By Variable LAYER

Analysis of Variance

Sum of Mean F F

Source D.F. Squares Squares Ratio Prob.

Between Groups 1 41517.4676 41517.4676 14.1013 .0010 '

Within Groups 23 67717.4130 2944.2353

Total 24 109234.8806

 

T-TEST/VARIABLE N.

Independent samples of LAYER

 

Group 1: LAYER EQ 1.00 Group 2: LAYER EQ 2.00

t-test for: N

Number Standard Standard

of Cases Mean Deviation Error

Group 1 11 52.5474 17.078 5.149

Group 2 l4 134.6439 70.602 18.869

Pooled variance Estimate Separate variance Estimate

' - ' Degrees of 2-TailF 2-Tail t Degrees of 2 Tail t

Value Prob. value Freedom Prob. value Freedom Prob.

17.09 000 -3.76 23 001 -4.20 14.90---- .001 

Figure C.10 : Continued.
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MODELING THE N FUNCTIONS FOR THE SUBSURFACE SOIL

 

 

 

LAYER N1 X(ft) Y(ft) Z(ft)

1 71.7529 760 20.2 182

1 39.4887 760 20.2 187

1 69.4632 760 20.2 191

1 57.7143 760 20.2 196

1 33.9411 760 20.2 200

1 67.2134 760 20.2 204

l 52. 1418 760 20.2 208

1 37.6368 760 20.2 212

1 78.2321 220 22.5 62

1 38.4045 220 22.5 66

1 32.0321 220 22.5 70   

THE FITTED MODEL:

N = B0+B1*X+B2*Z**0.5 +B3*Z+B4*Z**2+B5*Z**3.

There are 11 cases. There is enough memory for them all.

Run st0pped after 11 model evaluations and 4 derivative evaluations.

Iterations have been stopped because the relative reduction between successive

residual sums of squares is at most SSCON = 1.000E—08

 

Nonlinear Regression Summary Statistics Dependent Variable N

Source DF Sum of Squares Mean Square

Regression 6 31841.69154 5306.94859

Residual 5 1448.37907 289.67581

Uncorrected Total 11 33290.07062

(Corrected Total) 10 2916.60145

R squared = 1 — Residual SS / Corrected SS = .50340

 

Figure C.10 : Continued.
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Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

B0

B 1

B2

B3

B4

B5

27836.718891 52453.781314 «107060.0186 162613.45635

-1.627071610 4.198324875 -12.41920927 9.165066053

«8072968442 15557.148607 48063.89207 31917.955181

675.68407215 1328.4194959 -2739.126954 4090.4950985

-1.603972812 3.233142627 -9.915030521 6707084896

.002087879 .004293028 -.008947700 .013123458

Asymptotic Correlation Matrix of the Parameter Estimates

B0

B1

B2

B3

B4

B5

B0 B1 B2 B3 B4 B5

1 .0000 «9833 -.9999 .9997 -.9983 .9952

-.9833 1.0000 .9817 -.9800 .9732 -.9634

-.9999 .9817 1 .0000 -.9999 .9989 -.9963

.9997 - .9800 -.9999 1 .0000 -.9994 .9972

-.9983 .9732 .9989 -.9994 1.0000 -.9992

.9952 -.9634 -.9963 .9972 -.9992 l .0000

 

Figure C.10 : Continued.
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