- JN'I'I ‘- (‘5’ , . :fi“ ‘1' x" '9‘ “I" Z {Vi-Qfiirx.‘ "l’ in. 1 J {:J‘w '90. F4 . .v ‘7:- 1 .51.: :‘f‘v. .‘c..-' Pi" i-1l- a m-J‘i'x v: .41" - ".2 ” ¢ 43.“. .u . «yd-Av. ’5}:- . "REL-5": ’31-“.9‘ T ThSS'b llllllllllllllllllllllllllllll”llllllflllllllllllll 31293 01022 2671 This is to certify that the thesis entitled USE OF A KINETIC MODEL To UN DEQSTAND THE EFFecT 0?- IQUNCII) AND BICAQBONATE on THE OZONATIDN 0?: (,2'DIC’HLOROBEMZENE presented by MW. mgr CHIAN'Q has been accepted towards fulfillment of the requirements for 4/4575? degree in EN’WK’ONMEN TAL Ewen/ea: aw Mm / aimroeSSPf Date WW% 4 /7V§[ 0-7639 MSU is an Affi ttttt ‘ ve Action/Equal Opp oooooo ‘ ty Institution LIBRARY Michigan State University PLACE IN RETURN BOX to roman this checkout how your rooord. TO AVOID FINES roturn on or baton doto duo. DATE DUE DATE DUE DATE DUE _l l. :l l LJCZ MSU It An Afflnnotivo Action/Equal Opportunity Institution W ulna-pd USE OF A KINETIC MODEL TO UNDERSTAND THE EFFECT OF IRON(II) AND BICARBONATE ON THE OZONATION OF 1,2-DICHLOROBENZENE By Ming-Kuei Chiang A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Civil and Environmental Engineering 1993 ABSTRACT USE OF A KINETIC MODEL TO UNDERSTAND THE EFFECT OF IRON(II) AND BICARBONATE ON TEH OZONATION OF 1,2-DICHLOROBENZENE BY Ming-Kuei Chiang This study was conducted to investigate the effects of bicarbonate and ferrous iron on 1,2-dichlorobenzene oxidation using ozonation processes. A.kinetic model was also developed to simulate experiments. In the oxidation processes, the 1,2-dichlorobenzene removal efficiency was decreased and the ozone consumption was increased when the concentration of bicarbonate was increased from 0.002 M to 0.005 M. Thus, the effect of bicarbonate cannot be explained only the scavenging of the hydroxyl radicals which should decrease both 1,2-dichlorobenzene removal and ozone consumption. However, an additional explanation for the effect bicarbonate is the reaction of°C05 radical with ozone which consumes excess ozone. The role of Fe“’acting as an initiator or a scavenger in ozonation treatment systems depends (n1 the ozonation condition. At neutral pH, the reaction of Fe2+ initiating ozone decomposition is a dominant in ozone treatment, but the reaction of Fe“’scavenging hydroxyl radicals is the dominant reaction in O3/UV and O3/H202 treatments. A model developed by using acuchem program shows a good agreement with the experimental results for O3, O3/UV, and O3/H202 treatment systems at the pH range S~8. ACKNOWLEDGMENTS I would like to extend my appreciation to Dr. Susan J. Masten and Dr. Simon Davies for their professional guidance and advice. I also wish to thank C. C. David Yao for supplying Acuchem computer program. iv TABLE OF CONTENTS LIST OF TABLES ....... ............. ............... . ...... Vii LIST OF FIGURES ..... . ..... . ................. .... ........ 1X 0 CHAPTER 1 INTRODUCTION G EN ERAL O O I O O O ..... O O O O O I O O O O O O i O O O O O O O O I O ..... O O O O O O 1 OBJECTIVES . .................... . ..... . ...... ....... 3 BACKGROUND 0 ..... O O O O O O O 00000000000000 O ........ O O O O O 3 CHAPTER 2 MATERIALS AND METHODS SYSTEM CONFIGURATION .............. ................. 11 REAGENTS ......................... ................. . l4 ANALYTICAL METHODS ......................... ........ 15 EXPERIMENTAL PROCEDURE ............................. 16 CHAPTER 3 KINETIC MODEL THEMODELMECI'IANISMS 00......CCOCOOOOOOCOOOOOOOOOOOO 20 MODEL MODIFICATION FOR CONTINUOUS FLOW SYSTEM ...... 26 CHAPTER 4 RESULTS AND DISCUSSIONS .... ..... ............. 29 CHAPTER 5 CONCLUSIONS CONCLUSIONS 0 O O I O O O O O O O O O O 000000000000 O O ...... O O O O O O 44 FUTURE REstCH O O O O O ...... O O ..... O C 0000000000000 C O O 46 REFERENCES ......... ..... ....... . ..................... ... 47 APPENDICES APPENDIX A The Kinetic Model of Ozonation Processes for ACUCHEM Computer Program ........... 51 APPENDIX B The Results of Kinetic Model Simulation O......OOOOOOOOOOOOO......OOOOOOOIOOOOOO 55 APPENDIX c Ozone, DCB, 3202, and Fe“ Sampling Summary for Each Experiment .................... 61 vi Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 1.1 2.1 2.2 2.3 3.1 3.2 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 8.1 LIST OF TABLES Oxidation-Reduction Potentials of Water Treatment Agents ..................... ........ The List of Experimental Apparatus .. ....... .. The List of Experiments in This Study ........ The.0peration.Condition for Equipments in each system OO.........OOOOOOOOCOOOOOOO00.0.0000... A List of Reactions and Rate Constants Used in the KinetiCMOdel 0..........OOOOOOOOOOOOOOOOO The Estimation of Rate Constants for Reactions R3 and R5 ....00.0.0.........OOOOOOOOOOOOOOOOO Degradation Rate of DCB, O3, and Fe“ in Ozone Treatment ...................... ....... . Degradation Rate of DCB, 03, and Fe“ in Ozone/UV Treatment ........................... Degradation Rate of DCB, 03, H202, and Fe2+ in Ozone/th Treatment .......................... The Effect of HCO; on DCB Removal Efficiency.. The Effect of HCOg on 03 Degradation Rate .... The Effect of Fe2+ on DCB and 03 Degradation Rate at pH6......C.........OOOCOOOOOOCOOCOOO The Estimation of the Rate Constant for FeiW/O3 Reaction .0.........C...................000... The % Difference Between Model Simulations and Experimental Results at Neutral pH ........... The Input/Output Data of Kinetic Model for Ozone Treatment System ....................... vii 1 13 17 18 21 25 30 31 32 35 37 41. 42 55 Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 4.8 B01 LIST OF TABLES Oxidation-Reduction Potentials of Water Treatment Agents ...................... ....... The List of Experimental Apparatus .. ......... The List of Experiments in This Study ........ The Operation Condition for Equipments in each system O......OOIOOOOOOO0.0.0.000... ........ O. A.List of Reactions and.Rate Constants Used in the Kinetic Model ............................ The Estimation of Rate Constants for Reactions R3 andRS I.........IOOOOOCOOOOOOOO0.0.0.0.... Degradation Rate of DCB, O3, and Fe2+ in ozone Treatment ......C....................... Degradation Rate of DCB, O3, and Fe2+ in ozone/WTreatment ...-......C................ Degradation Rate of DCB, O3, H202, and Fe2+ in Ozone/Hg» Treatment .......................... The Effect of HCO; on DCB Removal Efficiency.. The Effect of HCO; on O3 Degradation Rate .... The Effect of Fe2+ on DCB and O3 Degradation Rate at pH60.0.0..........OCOOCCCCCOOOCOCOOO The Estimation of the Rate Constant for Fe“/O3 Reaction .........OOOOOOOOOOOOO...00.0.0000... The % Difference Between Model Simulations and Experimental Results at Neutral pH ........... The Input/Output Data of Kinetic Model for Ozone Treatment System ....................... vii 1 13 17 18 21 25 30 31 32 35 37 41. 42 55 Table 8.2 The Input/Output Data of Kinetic Model for Ozone/UV Treatment System .................... 57 Table 3.3 The Input/Output Data of Kinetic Model for Ozone/H45 Treatment System ................... 59 viii Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure LIST OF FIGURES 1.1 The Decomposition of Ozone in Pure Water .... 4 1.2 The Decomposition of Ozone Containing Reactant Species ............................ 7 2.1 The Experimental Configuration of Ozonation system 0....0.0.0..........OOOOOOOOOOOOOOOOOO 12 4.1 Effect of Bicarbonate Concentration on DCB Removal Efficiency in Ozone Treatment System ..................OOOOOOCCOOOOCOOO0.0.0.0.... 33 4.2 Effect of Bicarbonate Concentration on DCB Removal Efficiency in Ozone/UV Treatment System ......OOOOOO......O...00.00.00.000...00...... 33 4.3 Effect of Bicarbonate Concentration on DCB Removal Efficiency in Ozone/H55 Treatment System 0.000.000.0000.0............OOOOOOOOOOOOOOOOO 33 4.4 Effect of Bicarbonate Concentration on Ozone Consumption in Ozone Treatment System ....... 34 4.5 Effect of Bicarbonate Concentration on Ozone Consumption in Ozone/UV Treatment System .... 34 4.6 Effect of Bicarbonate Concentration on Ozone Consumption in Ozone/H45 Treatment System ... 34 4.7 Effect of Fe(II) on DCB Removal Efficiency in Ozone Treatment System ...................... 38 4.8 Effect of Fe(II) on DCB Removal Efficiency in Ozone/UV Treatment System ................... 38 4.9 Effect of Fe(II) on DCB Removal Efficiency in Ozone/H45 Treatment System .................. 38 4.10 Effect of Fe(II) on Ozone Consumption in Ozone Treatment System ...................... 39 ix Figure 4.11 Effect of Fe(II) on Ozone Consumption in Ozone/UV Treatment System ................... 39 Figure 4.12 Effect of Fe(II) on Ozone Consumption in ozone/H202 Treatment system a o o o o o o o o o o o o ooooo 39 CHAPTER 1 INTRODUCTION GENERAL Ozone is a very powerful oxidant (E0 = 2.07 volts in alkaline solution), which is capable of reacting with numerous organic chemicals. It is more powerful than most of other oxidants currently used in water treatment (see Table 1.1). However, many organic matters (e.g., aliphatic amines) only react slowly with molecular ozone. For these matters, the processes involving the 'OH radical generation may provide more Table 1.1 Oxidation-Reduction Potentials of Water Treatment Agents Reactions Potential in Volts (EU) at 25 uC F, + 2e‘ = 2F‘ 2.87 o, + 211* + 2e’ = 02 + H20 2.07 H202 + 2H” + 2e‘ = 21120 (acid) 1.76 mm; + an + 3e’ = 1411102 + 2320 1.68 Hc102 + 311* + 4e‘ = or + 211,0 1.57 HOCl + H” + 2e' = C1’ + H20 1.49 c12 + 2e‘ = 2c1' 1.36 HOBr + H+ + 2e’ = Br‘ + H20 1-33 Brz + 2e' = ZBr' 1-07 c102,“, + e' = C10; 0-95 11,02 + 2H3O+ + 2e' = 411,0 (base) 0-87 * Ozone Treatment of Industrial Wastewater, 1981. Noyes Data Corporation, New Jersey, p 17. ' effective treatment. The OR radical is an extremely strong and non-selective oxidant (E0 = 3.06 volts). The processes resulting in the formation of 'OH radicals in sufficient quantity to affect water treatment are referred to as advanced oxidation processes (AOPs) . These processes include ozone in combination with UV irradiation, ozone with added hydrogen peroxide, hydrogen peroxide in combination with Fe(II), hydrogen peroxide with UV irradiation, etc.. The processes of ozone in combination with UV irradiation (O3/UV) and ozone with added hydrogen peroxide (O3/H202) were the two AOPs studied in this work. The application of ozone for the disinfection in water treatment began in Nice, France in 1907. By the 1960's, ozone was also used for odor control in wastewater treatment. Although the ozonation has been widely used in water and wastewater treatment facilities and more and more successful applications have been reported, these remain a lack of knowledgement of the mechanisms by which ozone decomposes. The lack of understanding the complex reactions of natural organic matter in aqueous ozone systems will become a major obstacle for further ozone applications. In recent years, many possible reaction sequences in aqueous ozone solution were published (e.g., Btihler et al. 1984, Holcman et al. 1982, Gary et al. 1988, Sehested et al. 1982, 1984, 1991, Staehelin et al. 1982, 1984, 1985 ...). The mechanisms for ozone decomposition developed by Staehelin, 3 Bfihler and Hoigné (SBH) are widely accepted although some of reactions are in dispute (e.g., the existence of 1H»). This mechanism is considered the most reliable system for ozone decomposition in pure water. OBJECTIVES In previous investigations, 1,3,5-trichlorobenzene and 1,2-dichlorobenzene have been studied in aqueous systems by using ozone, ozone/UV, and ozone/H55 treatments at various pH and portions of these studies have been published (Masten et al., 1993). Based upon the results of these series of investigations, the ‘major’ objectives of ‘this study ‘were formulated to be (1) to investigate the effect of ferrous ion or/and bicarbonate ion on the efficiency of treatment of 1,2-DCB with advanced oxidative processes and (2) to develop a numerical model to describe the kinetics of oxidation and the efficiency of treatment processes. BACKGROUND The pathways of the ozonation for organic matters are: (1) direct attack by molecular ozone via cycle-addition or electrophilic reaction, and (ii) indirect attack by free radicals (primarily 'OH) produced by the decomposition of ozone. In aromatic compounds, the ozonation of the compounds substituted with electron-donating groups (e.g., -OH or -NHQ is faster than it of the compounds substituted.with electron- withdrawing groups (e.g.,-duh, -Cl, -COOH). Hoigné and Bader H4- 03 ) ()H' ' KC()2. z H02 ()2 {030m 02 Figure 1.1 The decomposition of ozone in pure water (Adapted from Staehelin and Hoigne. 1985) 5 (1983) determined the rate constants of the reaction of ozone with substituted benzenes, phenol > toluene > benzene > chlorobenzene > nitrobenzene. Generally, the more chlorinated compound is more difficult to be oxidized. Ozone decomposition is a complex succession of reactions. It has been extensively studied (e.g., Sehested et al. 1982, 1984, 1991, Staehelin et al. 1982, 1984, 1985). Staehelin et al. have proposed a series of mechanisms that are widely accepted as a basic model for ozone decomposition in pure water (see Figure 1.1). The elementary steps of ozone decomposition are listed as follows : Initiation : 03 +03 --v'02‘+°H02 (1) ( °H02 «--—» 02' + H“ ) Propagation : -o,- + 03 --—wo,' + 02 ..... (2) ‘03’+H+ ...—.1103 .. ..... (3) 1103 -—. 01-14-02 ............ (4) (”1+03 ...... 1.104 ............ (5) 1.104 -... 1102+ 02 (6) 'H02 ......02-+H+ (7) The decomposition of ozone in pure water is initiated by reaction (1) . Ozone (03) reacts with hydroxide ion (OH‘) to produce superoxide anion ('02') and hydroperoxyl radical ('HOZ) . The chain propagation reactions: the transfer of an electron from '02‘ to 03 forms the ozonide ion ('03') with the release of 6 O2 (reaction 2); the protonation of '03‘ to form 110, followed by the decomposition of THE to produce a hydroxyl radical (OH) with the release another 02 molecule (reaction 3,4); the reaction of 'OH and 03 forms a charge-transfer complex (110,) which decays into 'HO, and O2 (reaction 5,6); the decomposition of 'H02 forms '02' and H+ (reaction 7). The “02' enters the first step of the cyclic reactions shown in Figure 1.1. In the propagation step, '02' and '01! are both chain carriers which promote the cyclic reactions. Although some mechanisms of this model are still in dispute (ex. the existence of TE»). It is the most reliable mechanism for ozone decomposition in pure water. "Real" water systems contain many organic solutes or other impurities such as humic acid, carbonate species, iron, aromatic compounds, etc.. The ‘mechanisms by ‘which ‘these solutes are involved in ozone decomposition are much more complex than that of which occurs in pure water. The solutes may act as initiators, promoters, or inhibitors in ozone decomposition or consume ozone only because of the direct reaction of the molecule with ozone (see Figure 1.2). Initiators react with ozone and form 'O,’ via an electron transfer reaction. Promoters are capable of regenerating 15’ by free radical reactions. Inhibitors scavenge free radicals such as on radicals resulting the decrease of°Oi formation. Ferrous ion (Fe“) is a common metal ion that exists in ground water at concentration greater than 0.3 mg/L. In aqueous ozone systems, it has been proposed that ferrous ion Figure 1.2 The decomposition of ozone containing reactant species. M is a pollutant which reacts with ozone directly I is an initiator which reacts with ozone to initiate the chain reaction P is a promoter which reacts with “OH to form a radical species S is a scavenger which reacts with 'OH to terminate the chain reaction 8 reacts with ozone by an electron-transfer reaction and forms an ozonide ion (Hart et al., 1983), i.e. Fe2+ acts as an initiator. Protonation of ‘03' results the formation of the hydroxyl radical. Thus, the net reaction is: Fe2++ 03+ H+-->Fe3++ 02+ on . . . . . . . . . . . . (8) If there is excess Fe“) the OH radical would oxidize a second Fe“'(reaction 9). Fe2+ + on --» Fe3+ + on' (9) Nowell and Hoigné (1987) suggested an alternative pathway by which an oxygen atom is transferred from O3 to Fe“ resulting in the formation of Fe“ (reaction 10). The Fe“ can oxidize with Fe2+ to Fe3+ (reaction 11) . Fe2+ + 03 -... (FeO)2+ + 02 ..... (10) (Fem2+ + Fe“ ...... 2Fe3+ (11) By this proposed pathway, no additional'OH radicals would be formed. On the other hand, according to this mechanism Fe“' does not act as an initiator of ozone decomposition. Carbonate species (H2CO3*/HCO3'/CO32') , which are commonly found in natural water, are known to inhibit ozone decomposition, thus stabilizing ozone. HCO;/COf' do not directly react with ozone (Hoigné al et., 1985) but react rapidly with OK radicals to form 'CO,‘ radical, a selective electrophilic reagent. The 'CO,’ radical also shows a wide range of reactivities with aromatic compounds however the rate constants for the reactions of these compounds and 'CO3' radical are much less than that observed for the reaction of the'same 9 compounds with hydroxyl radicals. Hydrogen peroxide and UV light are two initiators of ozone decomposition. Ozone/H55 is a cost effective technique of advanced oxidation processes. In water, H55 and H0; are in an acid-base equilibrium of pK.==11.65 (reaction 12). The Hog ion acts as an initiator of ozone decomposition resulting in the production of the superoxide ion (reaction 13) . The superoxide ion may react with an additional ozone molecule to form the high reactive 'OH radical. At pH <12 when [H202] >10'7M, HO; has a greater effect on the ozone decomposition rate than does the OH ion (Staehelin and Hoigné, 1982). H202 «-~ 1102‘ + 11* ............ (12) no; + 03 -- on + o,- + 02 ............ (13) As mentioned above, the higher concentration of hydrogen peroxide may produce more-OH radicals. But at relatively high concentrations of hydrogen peroxide, Hg» itself may scavenge the on radical and inhibit the effect of the on radical on the oxidation of the target chemical. It was found that with oxalic and 1,1,2-trichloroethane the rates of oxidation were fastest with a pH 7.5 and an initial hydrogen peroxide concentration of 60 to 70 [m (Paillard et al. 1988). The optimal H55 concentration for removing TCB in OB/Hfih system was found to be 60 um (Masten et al., 1993). Ultraviolet light is another common initiator applied to decompose aqueous ozone in water treatment. In aqueous O3/UV systems, UV light decomposes ozone and leads to the formation of hydrogen peroxide (reaction 14) at a rate closely matching 10 the mass transfer rate of ozone into solution (Peyton and Glaze, 1988). 03 + H20 + UV -- 11,02 + 02 (14) Hydrogen peroxide then reacts with ozone to produce the highly reactive OH radical as mentioned above (reaction 12, 13). At lower pH or higher UV intensities, hydrogen peroxide produces the hydroxyl radical directly by photolysis (reaction 15) before it has a chance to react with residual ozone. H,o,+hv -- 2-0H (15) The reactions, both hydrogen peroxide undergoes direct photolysis and.its conjugate base reacts with ozone, result in the formation of OH radicals that increase system's oxidation potential. In short, The impurities existing in real water might affect the treatment efficiency of ozonation processes by acting as an initiator, promotor or scavenger. Therefore, in ozone application, the main chemical characteristics of an ozonation process should always be reviewed before planning and performing experiments to optimize an application. CHAPTER 2 METHODS AND MATERIALS SYSTEM CONFIGURATION A continuous flow system was chosen to avoid the volatilization loss of target compounds and constant the mass transfer of ozone into solution. The system configuration was showed in Figure 2.1 and. the experimental apparatus ‘was summarized on Table 2 . 1. Basically, the continuous flow system can be partitioned into three parts, production of aqueous ozone, chemical pumping system, and continuously stirred f low- through reactor. 1) Production of Aqueous Ozone A Polymetrics ozone generator (Model T-408, San Jose, CA) was used to generate ozone gas (approximately 3% v/v ozone in oxygen) by feeding dried.high.purity oxygen. The dielectric of the ozone generator was cooled by 10°C water supplied by a refrigerated circulator (Model 9500, Fisher Scientific) for the purpose of preventing the dielectric from overheating and stabilizing the rate at which the ozone gas was generated. Aqueous ozone solutions were prepared by continuously bubbling ozone gas into the ozone contactor, a three liter spherical flask, containing pH 2 water. In order to maintain a constant 11 REFRIGERATEI) CIRCULATOR DCB SOLUTION BOTTLE IE 7— DCB SOLUTION FEEDING PUMP NaOH Hco; PUMP H303 PUMP ...—... ...- OZONE GENERATOR —> MAIN STREAM LINES SUB-STREAM LINES GAS LINES VENT II -\ O O ()ZONE CONTAL'TOR LT; PH :2 w‘ AQUEOUS OZONE FEEDING PUMP STIRRER MOTOR WASTE ...—...... Figure 2.1 The Experimental Configuration of Ozonation system S( )LL'TION PH 2 SOLUTION FEEDING PUMP SAMPLING PUMP 13 water level in the contactor, a peristaltic pump (Model 7520- 25, Cole-Parmer Instruments, Inc.) was used to continuously pump in pH 2 water and a piston pump ( Model RHSY, Fluid Metering, Inc.) was used to continuously pump out aqueous ozone solution; both of the pumps were set at the same flowrate (~12.5 ml/min). In the ozone contactor, a stir bar was stirred by a magnetic stirrer to mix the aqueous ozone. A UV spectrophotometer (Model UV-1201, Shimadzu, Columbia, MD) was used to monitor aqueous ozone concentration continuously to ensure the system was stable. 2) Chemical Pumping System DCB solution, Fe2+ solution, HCO,‘ solution, and H202 solution were respectively pumped by a piston pump (Model RHSY, Fluid Metering, Inc.) , a syringe pump (Model A..E, Razel Scientific Instruments, Inc.) , a syringe pump (Model A-99. .ER, Table 2.1 The List of Experimental Apparatus ozone generator T-408 Polymetric Refrigerated Circulator 9500 Fisher Scientific H 2 water Peristaltic Pump 7520-25 Cole-Parmer Instruments Ozone Solution Piston Pump RHSY Fluid Metering DCB Solution Piston Pump RHSY Fluid Metering HOO,‘ Solution Syringe Pump A-99..ER Razel Scientific Instruments Feu'Solution Syringe Pump A..E Razel Scientific Instruments H55 Solution Syringe Pump A..E Razel Scientific Instruments NaOH Solution Piston Pump NSI-33R Milton Roy Photochemical Reactor 7868 Ace Glass UV Spectrophotometer UV-lZOl Shimadzu I E l4 Razel Scientific Instruments, Inc.) , and a syringe pump (Model A..E, Razel Scientific Instruments, Inc.). These chemicals were individually discharged to reactor. The flowrate for each pump was 12.5 mL/min, 1.0 mL/min, 0.6 mL/min, and 0.1 mL/min, respectively. 3) Continuously Stirred Flow-Through Reactor (CSFTR) An impeller-stirred photochemical reactor (Model 7868, Ace Glass, Inc., Vineland, NJ) was used in all experiments. There are two chambers in the reactor and the total working volume is 250 mL. A stirred impeller installed in the smaller chamber provides a adequate mixing in the reactor by continuously circulating the solution between the two chambers. The impeller was driven by a stirrer motor, connected to the impeller by a flexible shaft. All of input lines were 3positioned below' the impeller blades to 'mix influent streams rapidly. Trace studies have been done by Michael J. Galbraith (1993) and it proved that the reactor could be adequately described by a CFSTR model. REAGENTS 1) pH 2 water : Deionized water was acidified with 36% hydrochloric acid to pH 2. 2) DCB solution : A six liter glass flask was filled with 6 L deionized water. 25 uL of 1,2-dichlorobenzene (99%, Aldrich Chemical Co., WI) was added in the flask then the flask was tightly sealed immediately. The solutions were stirred with magnetic stirrer for three days. The concentration of 1,2- 15 dichlorobenzene solutions resulting from this procedure was about 4ppm. 3) Fe2+ solution : 20 mL conc H280, was slowly added to 50 mL deionized water and 0.351 g Fe(NH4)2(SO,)2°6H20 was dissolved into the acid solution. By diluting it with deionized water to 1 L, a 50 mg/L Fe2+ solution was prepared and stored in a dark bottle. 4) H202 solution : 85 pL of 30% H202 (Baker analyzed, Sigma, MO) was added into 50 mL deionized water to form 0.015 M H202 and it was standardized via direct UV absorption (6240 = 40 M‘1 cm_1) . It was prepared every time before used. 5) Indigo blue solution : 6 grams indigo blue was dissolved in 1 L deionized water and stored in a dark bottle as a stock solution. Proper amount of stock solution was diluted with deionized water to an absorbance of ~1.0000 at 600 nm every time before used. ANALYTICAL METHODS The inlet ozone concentration was determined by using direct UV-absorption method at 258 nm. Inlet aqueous solution was continuously pumped through a 2 mm quartz flow cell and was monitored by a UV spectrophotometer (Model UV-1201, Shimadzu Scientific Instruments, Inc., Columbia, MD). An extinction coefficient of 3000 M‘1cm'l was used to convert jabsorbance into mole concentration. The ozone concentration in the reactor was determined by using the indigo method (Bader and Hoigné, 1982) . While steady 16 state condition was reached for each experiment, the effluent solution was directly sampled from the reactor outlet port with a 150 mL flask containing 100 mL indigo blue solution. The absorbances of the solution were measured at 600 nm before and after sampling. 1,2-Dichlorobenzene concentration ‘was measured ‘using head-space gas chromatograph (Autosystem, Perkin Elmer, Norwalk, CT) equipped with a flame ionization detector and a silica glass capillary column (PE624, Perkin Elmer, Norwalk, CT). The residual ozone was quenched by using sodium nitrite solution. Internal standard, 0.5 ppm 1,3,5-Trichlorobenzene, was used in DCB analysis. The hydrogen peroxide concentration in the reactor was determined using the peroxidase N,N-diethy-p-phenylenediamine method with flow injection analysis technique (Galbraith, 1993). Samples were collected at reactor outlet port and were purged with nitrogen gas during sampling to remove residual ozone before analysis. The ferrous ion concentration in reactor was determined by‘ Phenanthroline ‘method. Samples were also jpurged. with nitrogen gas during sample collecting for 5 minutes to remove residual ozone. A standard curve was done for each set of experiments. EXPERIMENTAL PROCEDURE The experiments of this study were listed in Table 2.2. Each experiment was designed at the same pH including ozone, 17 ozone/UV, and ozone/11,02 system with the same condition. Exp.1~ Exp.6 were designed to investigate the effect of bicarbonate using 0,, 0,/UV, and O,/H,O2 treatments at vary pH. Additional Fe“'was added in Exp.7~Exp.10 for investigating the effect of Feu'when compare with Exp.4~Exp.6. The experiments were started with pumping DCB solution and un-ozonated pH 2 water into the reactor. One hour later, the samples were taken for initial DCB concentration. NaOH piston pump was turned on to adjust pH in reactor when necessary. The ozone.generator was turned on and.ozone gas was bubbled into the contactor. The concentration of aqueous ozone in the contactor was monitored by UV spectrophotometer continuously and was controlled at 12 mg/L. HCO; syringe pump and Fe2+ syringe pump were turned on, if necessary, after aqueous ozone concentration in the contactor was stable. All TABLE 2.2 The List of Experiments in This Study series pH [HCOg] added [FeHJ added Process Exp. 1 5.40 0.002 M --- 0,, 0,/Uv, 0,/H,02 Exp. 2 6.10 0.002 M --- 0,, 0,/Uv, 0,/H,02 Exp. 3 7.28 0.002 M --- 0,, 0,/Uv, 0,/H,02 Exp. 4 5.33 0.005 M --- 0,, 0,/Uv, 0,/H,02 Exp. 5 6.01 0.005 M --- 0,, 0,/Uv, 0,,/11,02 Exp. 6 7.35 0.005 M --- 0,, 0,/Uv, 0,/H,02 Exp. 7 2.24 0.005 M 2.0 mg/L 0,, 0,/Uv, 0,/H,02 Exp. 8 4.13 0.005 M 2.0 mg/L 0,, 0,/Uv, o,/H,02 Exp. 9 5.79 0.005 M 2.0 mg/L 0,, 0,/Uv, 0,/H,02 Exp.10 6.29 0.005 M 2.0 mg/L 0,, 0,/Uv, 0,/H,02 18 necessary samples (e.g., remaining DCB, ozone, and Fe“) for the study of ozone system were taken from effluent stream after reactor had reached steady-state (one hour after all necessary pumps were turned on). After sampling, the UV light was turned on and all other equipments were kept at the same condition. When system reached steady state, effluent stream were sampled again for ozone/UV study. The UV light was turned off and H55 syringe pump was turned on. The system was again allowed to reach steady state before the effluent stream was sampled for ozone/Hg» study. Whatever the system was changed, it is necessary to wait for one hour before steady state was reached. Table 2.3 summaries the experimental condition of all equipments. Table 2.3 The Operation Condition for Equipments in Each System Equipment Initial Ozone Ozone/UV Ozone/H45 Condition system system system Ozone Generator off on on on Ozone Pump on on on on DCB Pump on on on on HCO, Pump off on on on UV Light off off on off H202 Pump off off off on NaOH Pump off onm onm onm Note: (1) The NaOH pump was turned off in Exp. 7. (2) The Fe“'Pump was turned off in Exp. 1~Exp. 6 and was turned on in Exp. 7~Exp. 10. 19 The effect of bicarbonate on DCB degradation was studied with [HCOg] = 2 mM and 5 mM at pH 5, 6, and 7. The desired bicarbonate concentration in reactor was obtained by pumping proper concentration of sodium bicarbonate solution into the reactor with a fixed speed syringe pump. CHAPTER 3 KINETIC MODEL THE MODEL MECHANISMS Based on basic mechanisms of ozone decomposition reported by Staehelin, Biihler, and Hoigné (has been discussed in chapter 1), an model to describe ozone decomposition along with contaminant degradation was developed using 72 reactions for O3, O,/UV,and 0,,/H202 systems. The reactions used in this model are listed in Table 3.1. It is generally accepted that O, decomposition is initiated by OH‘ (R1) and H0, (R2). The ozone decomposition rate predicted by these two reactions is much slower than that observed in acid solution. Thus an additional initiation reaction, the thermal dissociation reaction of 03 forming O and 02 (R3) in acidic solution (Sehested et al., 1991), was incorporated into the kinetics model as well as the initiation reaction of 03 with OH“ and H023 Contrary to the kf value for R3 that was reported by Sehested et a1. (1991) , 1073". Using this model, we estimated the kf value to be 6.5*10“s“. The quantum yield for the production 0 from H202 was also included in this model. In the presence of UV light, the reactions for the photolysis of aqueous ozone to produce H202 (R44) and 20 TABLE 3.1 A List of Reactions and Rate Constants 21 Used in the Kinetic Model enemas-rs PRODUCTS nus co Harm“) not 1‘: IE; 1 0, + 0a 110, + 02- 1.4E+02 33 2 0, + HO,‘ 110 + -0,- + 02 2.8E+06 33 3 o, 0 + 02 6.5E-01‘b’ 1.0E+09 31 4 trip, 0 + 14,0 2.6E-04 2.2E+02<") 28 5 0 + H20 'HO + 'H0 8.0E+01<‘” 31 6 0' + H” H0, 2.0E+10 3.2E+05 38 7 02° + 0, -o,- + 02 1.6E+09 6 8 0,; + 11* no, 5.2E+10 3.3E+02 6 9 110, on + 02 1.1E+05 6 10 'OH + 0, M0, 2.0E+09 1.0E+04 34 11 110, so, + 02 2.8E+04 34 12 0' + 02 -0,' 3.0E+09 3.3E+03 14 13 0' + -0,- 20,’ 7.0E+08 5 14 0 + on 1110,- 2.0E+10 30 15 0' + no, 0,‘ + orr 4.0E+08 29 16 0' + 11,02 -0,- + H20 5.0E+08 5 17 0M 0' + 11* 6.3E-02 5.0E+10 38 18 'OH + OH‘ 0' + H20 1.2E+10 1.8E+06 5 19 'OH + -0,- so, + 02- 6.0E+09 3o 20 'OH + no, 0,- + H20 7.5E+09 5 21 on + H20, 110, + [120 2.7E+07 24 22 0' + 0, + H20 ZOH’ + 02 6.0E+08 5 23 02' + 'OH OH + 02 1.0E+10 34 24 02° + 2110, [11,02 + 202 9.7E+07 38 25 02' + so, [011' + 202 1.0E+10 34 _26_0,- + 110, Iorr + 02 + 0, 1.0E+10 _3_4_ 22 TABLE 3.1 (Cont’d) Renown-rs Deanne-rs nus co NBTANT“) no: *4 It; 27 0, + 044 OH' + o, 2.5E+09 30 28 “OH + on ,0, 5.0E+09 34 29 014 + 440, ,0 + 0, 6.6E+09 5 30 014 + 440, 14,0, + 0, 5.0E+09 34 31 014 + 410, hip, + 0, 5.0E+09 34 32 440, + 410, [3,0, + 0, 8.7E+05 38 33 440, + 440, ,0, + 20, 5.0E+09 34 34 'HO, + 440, 14,0, + 0, + 0, 5.0E+09 34 35 440, + 440, 14,0, + 20, 5.0E+09 34 36 ,0, + 0, ,0 + 20, 6.5E-03 38 37 1440, + 44* [14,0, 5.0E+10 1.0E-01 38 38 [14,0 [14+ + OH‘ 1.0E-03 1.0E+11 7 39 [14,1304 [14,90; + 14* 3.2E+08 5.0E+10 38 4o hypo,- Iupof + 14* 3.2E+03 5.0E+10 38 41 [14903 I903 + 14* 2.2E-o1 5.0E+11 38 42 [14,00, Inco, + 14* 2.1E+04 4.7E+10 38 43 co, I00,” + 44* 2.2E+00 4.7E+10 38 44 0, + 14,0 + hv I14,0, + 0, 1.5E-02“) 24 45 84,0, + hv 0H + 'OH 1.5E-03<" 38 46 Fe3+ + orr + hv Fe2+ + 014 5.0E+03 10 .4 47 ,po4 + on 44,130, + 41,0 2.7E+06 5 48 Iago,- + 'OH 41,130, + orr 2.0E+04 5 49 hypo; + -0,- lHPOf’ + 440, 9.1E+07 9.1E+06 50 ll-[POX‘ + 014 I'HPO,‘ + orr 5. 9E+05 17 51 [141303 + '0' lUN'KNOWN 3.5E+06 5 52 I90," + “OH I-po,2-+ orr 7 . 0E+06 17 , 53 Eco, + 'OH [4400, + 44,0 1.0E+05 {.3— 23 and MJsJ. (b) (C) (d) Value estimulated from model simulation. This reactions are proposed in this work. Value estimated from structure-reactivity relationships. TABLE 3.1 (Cont’d) No . nuc'rms pnonuc'rs RATE 00 118nm") Ref 1:. x. 54 00,- + 014 00,- + 14,0 1.5E+07 5 55 00,2- + 014 00,- + 014 4.2E+08 5 I) 56 003' + 0' 00,- + 02- 5. 0E+05 14 57 00,- + 0, OWN 1.0E+05 38 58 00,- + -0,- 00,2- 4» o, 7 . 5E+08 14 59 00, + 0, 00,2- + o, 6.0E+07 14 60 00, + 011 OWN 5.0E+09 38 61 00,- + 140,‘ [1100,- + 0,’ 5. 684-07 17 62 00,- + 11,0, [1100, + 140, 8 . 0E+05 17 63 Fe2+ + 03 Fe“ + 0,‘ 1.7E+03“’) 12 64 Fe2+ + 14,0, Fe3+ + 014 + 011 76.5 37 65 Fe“ + 011 Fe“ + 08 4.3E+08 5 66 Fe“ + 0' + 11,0 Fe3+ + 208 3.8E+09 5 67 CB + 0, PRODUCT 2.5E+00 (d) 68 [008 + 110 008 + 11,0 4.0E+09 10 J 69“” IDCB + 00,- 008 + 1100,- 1.0E+05 (d) 70“) 008 + 0, 'OODCB 1.0E+09 (d) 71“) 00008 + 0, 00008 + 014 1.0E+Ol (d) 72“) 00008 + 110 PRODUCT 4.OE+09 (d) mummmafiu 24 decomposition of H,O, to form hydroxyl radicals (R45) are considered. Reactions R6~R11 describe the radical chain reaction of ozone decomposition as published by Staehelin, Bflhler, and Hoigné (1984) . Superoxide anion ('O,') and hydroxyl radical (OH) are two radical chain reaction carriers which promote ozone decomposition. The additional reactions reported by other authors (R12~R21) were also considered in the model including the reactions of oxygen anion radical (01 although 'O'is formed only at significant concentrations at high pH. A hypothetical radical-forming reaction, R5, (Sehested et al. 1991) that would be in direct competition with the reverse reaction.of R3 was also included in the model. A rate constant of 8.01|'110‘s'1 was estimated for this reaction (R5) by fitting the data of Exp.1 to the model (as shown in Table 3.2). Termination reactions are those reactions which consume free radicals and shorten the chain length of ozone decomposition. R22~R36 describe the radical termination reactions which were included in the model. R37~R43 describe the proton transfer reactions. These reactions were considered to be fast equilibrium. processes. Since. they' were also involved in very fast propagation reactions, they may be in steady state but not equilibrium. Carbonate and phosphate species are hydroxyl radical scavengers which inhibit the radical chain reactions. R47~R62 describe the relative reactions of carbonate and phosphate species with free radicals. However, the intermediate'CO; 25 Table 3.2 The Estimation of Rate Constants for Reactions R3 and R5 RateConstant OzoneConc. (M) DCBConc. (M) km kn: [031.3, [031% [WELL [DCBJmM_ 1 . 02:10'7 8 . 0x10" 4 . 99x10‘5 1 . 19x10“ 5 . 05x1043 1 . 26x10’5 1 . 0x10’7 8 . 0x10° 4 . 99x10’5 1 . 1911104 5 . 05x1045 1 . 26x10" 1 . 0x10'7 8 . 0x101 4 . 99x10'5 1 . 19x10“ 5 . 05x10*5 1 . 26x10'5 1 . 0x10” 8 . 0x102 4 . 99x10‘5 1 . 19x104 5 . 05x1045 1 . 26x10'5 6 . 5x10° 8 . 0x10" 4 . 99x10” 3 . 09x10‘5 5 . 05x1045 1 . 05x10" 6 . 5x10° 8 . 0x10° 4 . 99x10’5 2 . 81x10" 5 . 05x10*3 7 . 97x10‘5 6 . 5x10° 8 . 0x101 4 . 99x10’5 1 . 27x10‘5 5 . 05x1045 1 . 87x10“ 6 . 5x10° 8 . 0x102 4 . 99x10’5 2 . 91x10‘5 5 . 05x1045 3 . 74x10‘7 6 . 5x10“ 8 . 0x10" 4 . 99x10‘5 8 . 51x105 5 . 05111045 1 . 11x10'5 6 . 5x10" 8 . 0x10° 4 . 99x10'5 7 . 95x10’5 5 . 05x10‘5 1 . 01x10" 65x10‘ 8 0x101 4.99me 534101 50541016174101 6 . 5x10" 8 . 0x102 4 . 99x10" 1 . 50x10" 5 . 05x10“ 1 . 60x10“ 6 . 5x10'2 8 . 0x10" 4 . 99x10’5 1 . 14x10" 5 . 05x10“ 1 . 24x10" 6 . 5x102 8 . 0x10° 4 . 99x10'5 1 . 13x10“ 5 . 05x10*5 1 . 22x10°5 6 . 5x102 8 . 0x101 4 . 99x10’5 1 . 00x104 5 . 05x1045 1 . 06x10" 6 . 5x10‘2 8 . 0x102 4 . 99x10’5 5 . 96x10" 5 . 0511104 6 . 051410“s acts as a promoter in its reaction with H,O,/HO,’ (R61 and R62) . Fe2+ initiates ozone decomposition by an electron transfer reaction (R63, R64) . In the meantime, Fe2+ also scavenges free radicals ('OH and '0') and shortens the chain reaction (R65,R66) . In the presence of UV light, Fe3+ is converted to Fe2+ by accepting an electron from OH‘ and forming the 'OH radical (R46) . 26 Relatively little is known about the mechanism of the reaction of ozone with DCB. One of the possible reaction.of'OH radical with organic pollutants suggested by Hoigné (1988) is H-abstration (R68). The resulting radicals then add to the oxygen molecule rapidly forming peroxy radicals (R70). The peroxy radical scavenges another OH forming an unknow’product (72). R71 is a possible reaction adepted from the model developed by Yao et al. (1992). MODEL MODIFICATION FOR CONTINUOUS FLOW SYSTEM A continuously stirred flow-through reactor was used in all experiments. Equation 16 shows the differential equation obtained from.the mass balance of species X in continuous flow system. The species X could be 0, 0r DCB or '0H etc. . Any one of them should be expressed by its own differential equation. dIX] _ 1 _ ” dt '3 ( [X10 [X] ) +§ (19* [reactants] ,) (15) where [X] is the steady state concentration of species X in the reactor, tXL,is the initial concentration of species X in influent stream. 6 is the hydraulic retention time of the reactor. There are n reactions involving species X. kiis the rate constant of reaction i. The concentrations of reactants in the reaction are given by [reactantsjr If the resction is second order overall (first order in each of the reactant) then there would be two reactants in the equation, e.g. , k,*[reactant,],*[reactant,],. If the reaction is first order 27 then there would only be one reactant term in the equation and if the reaction is zero order then integer "1" replaces the [reactant]i term in the equation. The last term of equation 16 summarizes the reaction rates of all reactions involving species X. If the reaction produces species X, the value of k,1‘b[reactants]i is a positive. On the contrary, the reaction consumes species X, the value of k,*[reactants], is a negative. For each experiment, [X]0 and 9 are constants. Substituting k'=[X]o/9 and k"=1/9 into equation 16, yields: dLXI= /_ u n _ 17 dt k k [X] +2; (k1*[reactants],) ( I In equation 17, the first term (k') describes a zero order reaction forming species X (the reactant is replaced by integer "1" then the reaction rate is k'*1), and the second term (k") describes the kinetics of first order reaction involving species X (the reactant is X and reaction rate is k"*[X]). Then they can be summarized into the third term by adding two extra reactions (as shown in equation 18). 1102 d[X] - dt -; (k1*[reactants],) (18) Where the kn+1= k', [reactants]n+1= "1" and k,+2= 'k": [reactants]n+,=[X]. Equation 18 is the simplest form of using differential equation to describe a homogeneous reaction system, e.g. , the 'HO, generation rate in pure water system (see page 5) is: 28 dI'H021/dt k1[03] [03'] + k6['Ho4] + an'Hoz] ’ kn['°2'1[H+] = -E(k§[reactants]g The reactions that occur in the CFCMR system used in this study can be modeled with using Acuchem program (Braun et al. , 1988). The additional reactions for each species are added to replace the mass flux in/out the reactor. unknown 1 --—> X , ’=[X]o/6, flux in equation X --» unknown 2 , k"=1/6 , flux out equation where 6 = 600 sec. for all experiments, thus, k'= [XLJ600 M s‘l and k"= 1.671110‘3 54. The model used in Acuchem program is attached in APPENDIX A. CHAPTER 4 RESULTS AND DISCUSSIONS The degradation rates of ozone and DCB in 0,, O,/UV, and O,/H,O, treatment systems are summarized in Tables 4.1 to 4.3. Staehelin and Hoigné (1985) and Peyton and Glaze (1988) reported that bicarbonate and carbonate are hydroxyl radical scavengers which result in the loss of treatment efficiency of processes involving '01! radical. The experimental results of this study agree with those of Staehelin and Hoigné (1985) and Peyton and Glaze. DCB removal efficiency decreases in 0,, O,/UV, and O,/H,O, treatments (pH 5~7) when the bicarbonate concentration of the solution was increased from 0.002 M to 0.005 M (as shown in Table 4.4 and Figures 4.1 to 4.3). It was also reported that bicarbonate ions do not react with ozone (Hoigné et al., 1985) but react with hydroxyl radicals and inhibit ozone decomposition by acting as a hydroxyl radical scavenger and interrupting the chain reaction. In other words, ozone is more stable in solutions containing higher concentration of bicarbonate (Hoigné, 1988) . The hypothesis mentioned above is contrary to the results of this study as shown in Figures 4.4 to 4.6. It was found that the degradation rate of ozone increases in 0,, O,/UV, and O,/H,O, treatments 29 .Emm m.H mw.:0m no cowumuucoosoo .amm hm.m 0H no no sowumuucoocoo .smm em.H 0H moo no coaumuucoosou .cowufipcoo oumum #00090 as vacuum 00 coflumuucoocoo Assam 059 ma 0 .uouommu :H afioomu mo cowumuucmucou Hmfiuficw 0:» MM 60 when; Haauaea Ape Huaufiea .oc HafiuficH .nc 3O . eO\AOisuv u >ocwfiufluum Hm>050m Aug 0902 Ho~.o«mom.o H~.H«mv.es omo.o«ooe.o mm.o«ne.om Heo.o«emm.o ~m.e«nm.om moo.o mu.u ouo.o«~m~.o om.~«~m.ne Hmo.o«emm.o om.o«mm.om HHo.o«n-.o H¢.H«vn.eo moo.o me.m moo.o«ovm.o em.o«mo.oe mvo.o«oflo.a mq.o«mm.oo mmo.o«vm~.o Hm.v«cn.~h moo.o nH.v mn~.o«ame.o su.n«am.mm voo.o«¢oa.o ue.o«oo.ao «Ho.oHEHo.o en.mflua.va moo.o v~.~ m~o.o«ovn.o mm.H«on.Hh mno.o«ewo.o m.nn«mm.ov moo.o mn.e eno.o«emm.o mm.H«mm.me moo.o«mofi.o en.u«mm.am moo.o Ho.o mHo.o«m~n.o on.H«mo.on oHo.o«ooH.o mm.~«mm.om moo.o mm.m moo.o«vma.o om.H«mm.oo nHo.o«¢oH.o ov.n«no.om Noo.o mu.e nmo.o«mam.o wo.aaee.me mHo.o«~vH.o mo.n«mo.mm moo.o ofi.o moo.o«mva.o mm.auam.mm mmo.o«ema.o vn.v«mv.vo moo.o ov.m Aecas. .io. Areas. ..u. Aeeas. .Aa. ovum >ucouoauum 000m >0cowuwuuu oumm husoaowmum newususumoo Hs>OEom cowumusuooa as>oemm nodususuoon He>060m AS. 340.» 56 .emoa :02: an unusumoua 0:0Mo cfi.§0m 0cm :0 .moa uo ovum coflumpmumoo H.v manna .Emm m.H ufi.:0m no cofiusuusoosou .fimm no.0 uwno Ho :ofiusuusoocoo .smm vo.a ma non uo sawumuusoocoo .cowufipcoo ousuu apmuum us mfiommm no sawusuusuosou Hmcwu on» me O .Mouosuu a“ owuomm mo cofiumuusoocoo HewufiSH on» ”woo muons HufiuficH Ape HmfiufieH Aoc HmHuHcH An. 31 . °0\.0130C u sonoflufiuum Hm>080m Ace 0002 eoo.o«eev.o mfi.o«om.om mfl.m«mo.oa ne.o«mm.me owo.oamve.o mo.nuuh.om moo.o m~.p wuo.oae~v.o mfi.Hamo.om mm.n«me.~a oa.oama.mm meo.owomm.o on.a«~e.em moo.o me.m poo.oflmfiv.o m~.oama.mh Ne.~«mm.~n mo.o«ho.am mmfl.o«mom.o we.H«oH.mm moo.o nH.v HHo.o«ooe.o om.o«mm.me emo.H«oHe.p m~.o«om.mm awo.o«ee~.o mn.v«mm.mw moo.o em.” pm~.H«mHm.m on.owom.mm meo.o«mvv.o fie.N«om.Hm moo.o mn.e mam.a«oom.m 6H.o«om.mm «mo.o«ove.o we.o«mm.em moo.o fio.o Nom.~«~mfl.m mn.oflpe.mm moo.o«oflm.e mm.o«om.mm moo.o mn.m Nnn.o«8hu.n om.oeao.em mmo.o«fiem.o Hm.Haom.¢m Noo.o mu.e mma.~«emo.ofl H~.oamm.mm Heo.oamme.o oe.o«ao.oo Noo.o oH.o mom.o«n~n.m mv.oamo.em Hoa.oflnee.fl he.o«np.¢m moo.o oe.m Aeeae. .18. Leeds. .1». lessee .Aav 006m soceaoauum «use socouueuuu 008m soeouuauuu scaumcuummo Hm>oeuz sowuapuummo a0>0§0m ceauupsumoo Hs>oewm Axe 942 5,0 lemon 2005 me unususoua >D\0:0uo :08 new :0 .mon 06 006m eofiumpuumma «.4 manna 32 .0: 00 3 N0,0 06 063300808 333H $0 .509 0;” m« 30.0 no soaumuucmusoo HafiuficH A00 659 00.0 ma nO no coflumuucmocoo H0335” A00 .Emm 00.H 0w mun mo cowumuucmocoo HafiufisH An. .COfluw0soo mumum >000um um 030090 no cowumuucmocoo Hanan 0:» ma 0 .uouummu 03 03093 no cofiusuucoucou anaufisw on» ma 60 0.353 . 60201600 u hocmflofimum H0>oamm A3 " ouoz 03.30006 «0.33.0» 000.3306 3.3863 03.3330 3.33.3 03.3306 3.300.00 0006 3.0 306336 3.33.2. 30.30006 30430.3 03.30004 3.33.3 0006336 3630.00 0006 05.0 3063006 00630.: 0863006 3.33.2. 3.33.3 00630.00 03.30006 3.300.00 0006 3.0 30.3036 30.3060 30.3306 00330.3 30632.6 3.33.00 03.03006 00.03030 0006 3.0 03.32.06 3.33.2. 03633.0 03.30300 0.363006 3.30060 0006 00.5. 00063036 3630.30 03633.0 00.33.00 30.30006 3.33.00 0006 3.0 30.30006 3.35.00 30633.0 00630.00 3063006 3.33.00 0006 3.0 000.3036 3.63330 300.0334 3.33.3 30.3036 5.30030 0006 0mg. 3063006 3.33.00 03.3033 2.6.30.3 0006336 3633.03 0006 3.0 306336 3.33.3 30.3306 3.33.2. 306336 00.33.00 306 3.0 .438. .3; :38. .2: :38. .2; $.38. .25 33 06633000 03 3033000 03 39.3033 33 0063633 cowummuumoa H0>060m cowumosummo H0>Oemm caduuosuuoo Hs>080m sawusoeummo H0>080m .20 5300 86:. 56 3000 Zoom. 00 0005003 N03:16:83 3 :00 can :06 :0 .000 no 360 063003000 as, 033. 33 65 0.0021111 HC03- - - 50 0.005M HC03- f 5033 i. 35 DCB Removal Efficiency l%l 4 5 6 7 8 pH Figure 4.1 Effect of Bicarbonate Concentration on DCB Removal Efficiency in Ozone Treatment System g 0.002M HC03- ‘ 90 ,. 0.0051111 HC03- ..Qxx.“‘is . . t 89.9 “ 80 1’- 75 1 7O ’ A - ‘ : A - ‘ : ‘ ‘ 1 ‘ r ‘ ‘ ‘ L—: 4 5 6 7 8 DH ; lCo-C)/Co DCB Removal Efficiency l%l Figure 4.2 Effect of Bicarbonate Concentration on DCB Removal Efficiency in Ozone/UV Treatment System CD 01 90.19 ' 36.21 - 89.21 = 3-5 '5 ' i .L oo 01 on O > F JL ___f_--._0.-l____.__ _“_J (Co-CilCo DCB Removal Efficiency (9%) {D o f S ’5' 4A A A A A A A - A I A A A A 6 7 8 pH 4b 01 Figure 4.3 Effect of Bicarbonate Concentration on DCB Removal Efficiency in Ozone/H202 Treatment System 34 (Co-CHCo Ozone Consumption i%i 80 i: v 60 ‘- vv '11 l 50’ z .I ., H \u . . .............................. 7O ‘LW... 75.?7 ‘\ T U' ’ V r : H 0.002M HC03- ‘ pH Figure 4.4 Effect of Bicarbonate Concentration on Ozone Consumption in Ozone Treatment System (Co-CHCo Ozone Consumption (9’0) 97 .E 96 {- 95 99 T" ogoosM'H‘C'oer“"'“;: 100 if""" ...-98.76 9836 // “ \ " ,/ 98.99 “ /1 K‘ - 1 \\ “...... V .. 3971.05 . WW ‘\_\...\.>Z:97.01 Z 0.002M HC03- " pH Figure 4.5 Effect of Bicarbonate Concentration on Ozone Consumption in Ozone/UV Treatment System W.---__~.AW-- --- ... (Co-C)/Co Ozone Consumption (%) 90 70‘ 4 100 1W 95 .. ..... A vifivrvv vv' ! 85 igw 80 75 -- 0.002M HC03-WW. 98.91 0.005M HCO3- V’MSBJS «u -I_ 5 6 7 pH 2 95.65 _ 93.57 Figure 4.6 Effect of Bicarbonate Concentration on Ozone Consumption in Ozone/H202 Treatment System 35 (pH S~7) when the bicarbonate concentration was increased from 0.002 N to 0.005 M (as shown in Table 4.5). Therefore, the effect of bicarbonate/carbonate ion cannot be explained simply by the scavenging of the hydroxyl radical by bicarbonate/ carbonate (Chelkowska, 1992) . However, previous work has shown 'C03‘, which is formed when bicarbonate ions react with “CH radicals, could scavenge ozone (Nata et al., 1988). An increase in the bicarbonate ion concentration would result in a proportional increase in the consumption of hydroxyl radicals. This would reduce the possibility of the organic compound reacting with hydroxyl radicals and thus decrease Table 4.4 The Effect of HCO,‘ on DCB Removal Efficiency 0.002 14‘ 0.005 14‘ 0.002 14‘ 0.005 14‘ 0.002 14’ 0.005 MI I 5.4 64.5% 50.8% 94.6% 89.9% 88.2% 89.1% I I 6.1 58.1% 51.4% 88.6% 87.8% 90.2% 89.2% I 7.3 50.7% 47.0% 85.0% 82.0% 89.1% 88.5% I * the bicarbonate concentration Table 4.5 The Effect of HCO,’ on 03 Degradation Rate i — PH 03 03/ UV 03/ I{202 0.002 14‘ 0.005 14‘ 0.002 14' 0.005 11‘ 0.002 14' 0.005 14‘ 59.5% 76.0% 97.0% 98.8% 77.3% 96.8% 60.4% 93.6% 96.2%__ 5 4 6.1 75.8% 75.9% 99.0% 99.0% 95.6% 98.9% 7 3 * 36 removal efficiency of the organic compound. Simultaneously, as more bicarbonate ions react with hydroxyl radicals producing more 'CO,‘ this depletes additional ozone. This provides a reasonable explanation as to why bicarbonate ions would decrease the treatment efficiency of DCB and increase degradation rate of ozone. In addition to these reactions, ‘CO,’ could also react with excess H202/H02' to form 1102/02“. These products would initiate the ozone decomposition chain reaction thus accelerating ozone degradation and increasing the concentration of hydroxyl radicals. Therefore, the reaction of 8202/30; and 'CO; could lower the loss of hydroxyl radicals consumed by bicarbonate ions. This means the excess 8202/302‘ would not only initiate ozone decomposition but would also reduce the effect that bicarbonate would have on the removal efficiency of DCB. In this study, higher I-Izoz/HO; concentrations were present in the 03/11202 treatment system than the other two treatments. As expected from this explanation, the results show that bicarbonate ion has less effect on DCB removal in ozone/111202 treatment than it in ozone and ozone/UV treatments (as shown in Table 4.4). Fe2+ initiates ozone decomposition and results in the formation of the ozonide ion, which can then decompose to from the hydroxyl radical (Hoigné et al. , 1985) . As such, F'e2+ acts as an initiator. On the other hand, excess Fe2+ also consumes hydroxyl radicals and terminates the radical chain reaction. As such, Fe2+ can also act as a scavenger. For the ozone 37 treatment process, the concentration of ozone in the reactor was ~30 um before Fe2+ was added. Under these conditions, Fe2+ could react with ozone and accelerate ozone decomposition to form more hydroxyl radicals. Thus, both DCB removal efficiency and ozone consumption are increased. In our system, we observed an increases about 16.9% and 12.6% in the DCB removal and O3 consumption, respectively, by the addition of Fe2+ at pH 6 (as shown in Table 4.6 and Figure 4.7 8 4.10). In ozone/UV and ozone/11202 treatments, the concentration of ozone remaining (less than 2 1414 in ozone/UV and less than 4 pH in ozone/H202) before Fe“ were added was very small. Fe2+ has to compete with other initiators for the small amount ozone present. Only a small portion of the Fe2+ added would compete with other initiators to react with ozone and the excess Fe2+ would scavenge the hydroxyl radical and thus inhibit the extent to which the the hydroxyl radical oxidizes DCB. Hence, the Table 4.6 The Effect of Fe2+ on DCB and 03 Degradation Rate at pH 6 Oa/UV 03/3102 EDGE} [0:] EDGE} [031 [DCB] [03] I Exp.5m 51.4% 76.0% 87.8% 99.0% 89.2% 98.9% Exp.9“’ 67.7% 90.4% 84.7% 99.2% 87.0% 97.7% lExp.10‘” 68.9% 86.7% 80.7% 99.0% 85.7% 98.0% Diff.“ 16.9% 12.6% -5.1% 0.1% -2.9% -1.1% Note: (1) The experimental conditions are shown in Table 2.2 (2) Diff. = [(Exp.9 + Exp.10) / 2] - Exp.5 38 80 1 70 1:.-.” 60 1:...... 50 ‘ 4O 1%.“.-- (9%) 30 {- (Co-C)/Co DCB Removal Efficiency 10% ..... ‘wm-w-(_ Wm- .wss vWde.WMM m-“39 ........................ a ................... ..... w wxo Fem» , _ l 20 4E-.~.T .. ,1 A 14.12 100 90 80 (96) 70 (Co-Cl/Co DCB Removal Efficiency 60 50- \Mme W,.;;@ Figure 4.8 Effect of Fe(II) on DCB Removal Efficiency in Ozone/UV Treatment System 100 1 90% 80 13-....- 70% 89.21 wMFflmmemmw (96) 60% (Co-C)!Co DCB Removal Efficiency 50 _............ , w/ Fe(II) ; ........ 4O ‘Emm /,- : .. -... ...... : ‘ 34.05 i - 1 30 ‘E g- ................. . ; ... 20 ' r r * 1 ~ 1 1 4 A ¢ - - - e - Afi- Figure 4.9 Effect of Fe(II) on DCB Removal Efficiency in Ozone/H202 Treatment System 41 39 (Co-Cl/Co’ ‘ Ozone Consumption (%l 90 ' ... . ,_ 90.29 80 ‘1 A A A A A A A A A A A A A A4 A AA! A A A A A A A v I v V 7 (Co-Cl/C Ozone Consumption (%l 98.51:- ----- r" 97 -- -.--.-_._..-.-..-. _.__.._...... .-- Figure 4.11 Effect of Fe(II) 0n Ozone Consumption in Ozone/UV Treatment System lC0-CllC0 Ozone Consumption (%l 98.91- .................... . ...... - w/o Fe(II) W," "98.98 I 97 - ' 94 1% . h . . ; - ’ _,, . {/II . n . . : . I 88 3-...X.. 88.46 . ...;.. .. .. ...... .g - p - - ~ - . A 4A A A A A A 4 4 A A A A _A I A L A A A A A A A A A A A A V V I I 1' Figure 4.12 Effect of Fe(II) on Ozone Consumption in Ozone/H202 Treatment System 4O residual ozone concentration in O3/UV and 03/1120, treatment systems would not be expected to change significantly. At pH 6, the observations of less than 1% difference in the ozone consumption and the less than 6% and 3% decrease in DCB removal efficiency in 03/UV and 03/11202 treatment systems respectively (as shown in Table 4.6 and figure 4.8, 4.9, 4.11, 4.12) are consistent with the hypothesis mentioned above. As such, the role of F'e2+ as initiator or scavenger will depend on the competitive ability of Fe2+ with other initiators for ozone. The rate constant of the lieu/03 reaction was modified by using kinetic model simulation to get a better data fitting. When the value 5*105 H‘s" (Hoigné,1985) was used in model, the model predicted that greater than 80% of ozone would have reacted with Fe2+ immediately and the extent of DCB removal was overpredicted. However, a smaller rate constant for 1='e”'/O3 reaction (137*th3 H‘s“) was estimated using the model and used in this study (as shown in Table 4.7). The results obtained from using the kinetic model to simulate the observations made in all experiments in this study are summarized in Appendix B. Comparing the model simulations for ozone consumption and DCB removal efficiency with those obtained experimentally, one observes that the best results for the model simulation are obtained for ozone/UV treatment followed by for ozone treatment and lastly for ozone/th treatment. The percentage difference between model simulations and experimental results for ozone consumption and 41 Table 4.7 The Estimation of the Rate Constant for Fe”/O3 Reaction Rate ConStant i31.7x10‘ 5.0x10’i 03 [0,] 2 . 69x10~’ 198x104 1. 83x10" 1. 82x10" system [DCB] 4.34x10“l§.44x10‘l 3.98x10“ 311x10‘292xlO‘IZ91x10“ we“) 7.48x10‘Iz-00x10"| 83310“ 51.575381?1.76:10’7l6-08x10" 0,,/UV [03] 1.26x10‘ls.46x10‘ 5.72x10‘ 406x10‘327x10‘ 3.12x10‘ system [DCB] 2.69x10‘lm59xlo‘I 2.45x10* 192x10‘1.46x10* 1.37:10‘ [pefl] 5,42x10411.73x10-5I 1.43:104 60:31:10“ l.lelO“|3.76xlO" [o3] 2.43x10“ll.98x10"[1.39xlO" 597x10‘2.17x10" 1.86x10" 03/11202 [DCB] 2.00XlO"lZ.84xlO‘] 2.38x10“ 169210‘1.24x10‘|1.13x10‘ system we“) 7.80x1041.22x10-’]8.33::10‘ 393x10‘144x10q596x10" [14,02] Leona-12.40am] 2.64x10" 145x1470xlO“ 2.992.104 * The unit for rate constant and concentration are It's" and M, respectively. DCB removal efficiency, respectively, at neutral pH are < 15% and < 16% for ozone treatment, < 4% and < 6% for ozone/UV treatment, and < 21% and < 14% for ozone/H202 treatment (see Table 4.8). As stated previously, 'CO,‘ might consume the excess ozone and react with other species. In the ozone/UV process, ozone is decomposed by UV light at a much faster rate than that observed for O3 in the other two treatment processes. As such, CD,“ would be expected to deplete very little ozone in ozone/UV treatment system while the reaction of 'CO,‘ and ozone might have only a very slight affect on the efficiency of DCB removal by the ozone/UV process. In contrast, the 'CO3°/O3 42 Table 4.8 The % Difference Between Model Simulations and Experimental Results at Neutral pH Ozone Degradation Removal DCB Removal Efficiencyl Model Experi. Diff._'_ Model Experi. Diff.‘ I Exp.2 61.1% 75.8% -14.7% FIG-0;! 58.1% 2.4% 03 I Exp.3 68.8% 60.4% 8.4% 65.5% 50.7% 14.8% Systeml Exp.5 61.0% 76.0% '15.0% 59.7% 51.4% 8.3% Exp.6 66.1% 71.4% '5.3% 59.3% 47.0% 12.3% Exp.9 86.9% 90.3% -3.4% 83.8% 67.8% 16.0% _ Exp.10 83.2% 86.7% -3.5% 77.6% 68.9% 8.7% Exp.2 95.2% 99.0% '3.8% 89.8% 88.6% 1.2% O3/UV Exp.3 95.3% 97.0% -1.7% 85.0% 85.0% 0.0% System: Exp.5 95.2% 99.0% -3.8% 86.5% 87.8% -1.3% Exp.6 95.1% 98.4% “-3.3% 77.3% 82.0% -4.7% Exp.9 96.7% 99.2% -2.5% 89.8% 84.7% 5.1% I 1__ 99 . 0% *2.4_ 6.2% 80. 7%. 5% * Diff. is equal to Model(%) 95.7% -18.4% 77.3% 90.2% -12.9% O3/H202I Exp.3 92.5% 93.6% -1.1% 87.3% 89.1% -1.8% System] Exp.5 78.1% 98.9% -20.8% 76.3% 89.2% -13.0% Exp.6 90.9% 96.2% -5.3% 80.6% 88.5% -7.9% Exp.9 94.9% 97.7% -2.8% 91.2% 87.0% 4.2% Iii-3:13.10 95.0% J8.0% -3.0% 87.8% 85.7% 2.1% ‘ - Experi.(%). reaction would be expected to affect the efficiency of the ozone, and ozone/H4» treatment systems more than observed in the ozone/UV process. However, in the model, the rate constant used for the reaction of 'CO,‘ and O3 is small (10’ dm3 mol" s") (Holcman et al. , 1982) . 43 As a result of the use of this rate constant, the model predicts that 'CO; would not influence the ozone consumption in either ozone/UV, ozone, ozone/H55 systems. However, only for the ozone/UV system is this prediction verified experimentally. As such, the model simulation and experimental results are comparable only for the ozone/UV system. However, the rate of the -CO,'/O, reaction needs to be verified in a future study. For the model simulation, the reactor was assumed to be a complete mixed system. However, the reactor would be more like a system between complete mixing and plug flow because all of the influent streams were installed in one location. The differences between complete mixed and plug flow systems would result some simulation error by using this model. CHAPTER 5 CONCLUSIONS CONCLUSIONS The effect of bicarbonate on ozonation processes cannot be simply explained only by the scavenging of the 'OH radical by bicarbonate. The competition of the intermediate “CO3' with other chemicals for ozone is an other important mechanism which should be considered when studying the influence of bicarbonate on ozonation processes. Thus, in 03, O3/UV, and 03/H202 systems, the removal efficiency of DCB decreases and the consumption of ozone increases in the presence of bicarbonate. Furthermore, the reaction in which 'CO,‘ reacts with HZOZ/HOZ' to form 'HOzl'Oz’, thus initiating the ozone decomposition chain reaction to form 'OH radicals would minimize the effect of bicarbonate on DCB removal efficiency. The 0,,/11202 system has a higher H202 concentration than 03 and O3/UV systems do. Thus the bicarbonate has less effect on DCB removal efficiency in O3/H202 system than it does in 03 and O3/UV systems. The ferrous ion acts as of both an initiator and a 'OH radical scavenger in ozonation processes. In the 0, system, 44 45 Fe“ acts as an initiator of ozone decomposition, resulting in the formation of additional OH radicals, thus increasing DCB removal. On the contrary, in O3/UV and O3/H202 systems, Fe“ is unable to compete with UV and H45 as an initiator of ozone decomposition. Instead, Fe“ acts as an OH radical scavenger, hence the DCB removal efficiency decreases. As such, the role of Fe“ as an initiator or scavenger will depend on the competitive ability of Fe“'with other initiators for ozone. A rate constant of Fe“/O3 reaction, 1.7x103 M‘s“, was estimated by model fitting in this study. It is two order of magnitude lower than that reported by Hoigné et a1. (1985). It may be caused by the difference of the water quality. Because the impurities existing in the water may react with Fe“y thus Fe“ was consumed more than it should be on Fe“/O, reaction rate estimation. However, this rate constant needs to be confirmed in the future study. Good agreement between data from experimental results and the kinetic model is observed for DCB and ozone degradation data in the pH range S~8. This is especially true for the 03/UV system, where there are < 4% and < 6% differences between experiments and kinetics model for DCB and ozone degradation, respectively. In water treatment, using ozonation processes is a good choice to remove lower concentrations of organic chemicals from water. For process engineers who want to apply ozone most effectively, the kinetic model can give a general idea of the target compound’s treatment efficiency. However, due to lack 46 of knowledge of the specifics of ozone chemistry, the kinetic model does not accurately predict the ozone decomposition rate or the extent of DCB removal for all conditions. As such, without such a model, it is always necessary to perform bench scale studies prior to design and implementation of the plan. FUTURE RESEARCH (1) (2) In the study of O3/H202 system, we found in the presence of Fe“, the remained H20, concentration increases when pH was increased. Lack of the knowledgement of the Fe“/H202 interaction, thus more mechanistic research is necessary to identify the effect of Fe“ in Gall-1202 system. The rate constant of Fe“/O3 reaction obtained by model fitting in this study is lower than the one reported by Hoigné et al. (1985) . Thus it is necessary to identify the rate constant of Fe“ /O, reaction in future research. ( 3) The model was only applied in neutral pH in this study. At (4) pH >10, the OH is predicted to be the dominate initiator. However, it is necessary to compare the experimental results and the kinetic model simulations at high pH when the OH‘ ion becomes the dominate initiator. The reactions R67~R72 (see Table 3.1) are the proposed mechanisms of DCB oxidation. Thus the results of the model prediction might be changed if different mechanisms of DCB oxidation were proposed in the model. Thus identifying the mechanisms of DCB oxidation is necessary in future research. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) LIST OF REFERENCES Abukhudair, M.Y., S. Farooq, and M.S. Hussain. 1989. Kinetics of Ozonation of Iron(II) and Manganese(II) in a Pure Water System. J. Environ. Sci. Health, A24(4):389— 407. Abukhudair, M.Y., S. Farooq, and M.S. Hussain. 1989. Kinetics of Ozonation of Iron(II) in the Presence of Organic Compounds. J. Environ. Sci. Health, A24(4):409- 427. Bailey, P080 0 1982. . . . . . Academic Press, Inc., New York. Chapter III. Bielski, B.H.J., D.E. Cabelli, R.L. Arudi. 1985. Reactivity of HOz/Oz' in Aqueous Solution. J. Phys. Chem. Ref. Data, 14:1041-1100. Buxton, G.V., C.I.. Greenstock, W.P. Helman, and A.B. Ross. 1988. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms, and.Hydroxyl Radicals (OHf0-) in Aqueous Solution. J. Phys. Chem. Ref. Data, 17(2):Sl3-886. Bfihler, R.E., J. Staehelin, and J. Hoigné. 1984. Ozone Decomposition in Water Studied by Pulse Radiolysis. 1. H02/Oz‘ and HO3/O3' as Intermediates. J. Phys. Chem. 88( 12): 2560-2564. Chelkowska, K., D. Grasso, I. Fabian, and G. Gordon. 1992. Numerical Simulations of Aqueous Ozone Decomposition. Wagering 14:33-49- Draper, W.M. and D.G. Crosby. 1983. The Photochemical Generation of Hydrogen Peroxide in Natural Waters. Arch. Environ. Contam. Toxicol. 12:121-126. Gurol, M.D. and P.C. Singer. 1982. Kinetics of Decomposition: A Dynamic Approach. Environ. Sci. Technol. , 16(7):377-383. Haag, W. R. and C. C. D. Yao. 1992. Rate Constants for Reaction of Hydroxyl Radicals with Several Drinking Water Contaminants. Environ. Sci. Technol., 26(5), 1005-1013. 47 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 48 Hoigné, J. and H. Bader. 1983. Rate.Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water -I. Water Res., 17:173-183. Hoigné, J., H. Bader, W.R. Haag, and J. Staehelin. 1985. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water - III. Water Res. 19(8):993- 1004. Hoigné, J. , 1988. The Chemistry of Ozone in Water. 2m Ts2hn9l9sis§_fgr_fl_tsr_1rsatmsn§. Plenum Publishing Corporation. pp. 121-143. Holcman, J., K. Sehested, E. Bjergbakke, and E.J. Hart. 1982. Formation of Ozone in the Reaction Between the Ozonide Radical Ion, O5, and the Carbonate Radical Ion, CO3“, in Aqueous Alkaline Solutions. J. Phys. Chem. 86(11): 2069-2072. Holcman, J., K. Sehested, E. Bjergbakke, and E. J. Hart. 1984. The O3 Radical Reactions in Neutral and Alkaline Solutions. Qzx9sn_BsQisals_in_§hssi§£rx_ans_niglssx- Walter de Gruyter & Co., Berlin New York. pp.43-48. Klaning, U.K., K. Sehested, and T. Wolff. 1984. Ozone Formation in Laser Flash Photolysis of Oxoacids and Oxoanions of Chlorine And Bromine. J. Chem. Soc., Faraday Trans. 1, 80:2969-2979. Kochany, J. and E. Lipczynska-Kochany. 1992. Application of the Epr Spin-Trapping Technique for the Investigation of the Reactions of Carbonate, Bicarbonate, and Phosphate Anions with.Hydroxyl Radicals Generated by the Photolysis of H45. Chemosphere, 25(12):1769-1782. Lamb, J.J., L.T. Mollna, C.A. Smith, and M.Ju Mollna. 1983 Rate Constant of the OH + H202 -- HO2 + H20 Reaction. J. Phys. Chem. 87(22):4467-4470. Masten, S.J. and J. Hoigné. 1992. Comparison of Ozone and Hydroxyl Radical Induced Oxidation of Chlorinated Hydrocarbons in Water- Qz9ne.§cisnss_§_finsinssrins- 14:197-214. Masten, S.J. and S.H.R. Davies. 1992. Use of Ozone and Other Strong Oxidants for Hazardous Waste Management. Ad_ansss_in_En2ir2nmsntal_Scisnsss_and_lsshnslesxl Qxidants_in_ths_znxirgnmsnt. John Wiley 8 Sons Pub1-. New York Masten, S.J., M.J. Galbraith, and S.H.R. Davies. 1993. Oxidation of Trichlorobenzene using Advanced Oxidation Processes. Proceedings of the 11th Ozone World Congress 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 33) 49 Neta, P., R.E. Huie, and A.B. Ross. 1988. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data, 17:1027-1284. Nowell, L.H. and J. Hoigné. 1987. Interaction of Iron(II) and.Other Transition Metals with.Aqueous Ozone. 8th Ozone Would Congress, September 15-18. Peyton, G.R. and W.H. Glaze. 1988. Destruction of Pollutants in Water with Ozone in Combination with Ultraviolet Radiation. 3. Photolysis of Aqueous Ozone. Environ. Sci. Technol. 22(7):761-767. Razumovskii, S.D. and G.E. Zaikov. 1984. ngng_gn§_1;§ Bsasti2n5.xith_9rsanis_gcsssundso Elsevier Science Publishing Company, Inc., New York, NY. Chapter 5. Rice R.G. and M.E. Browning. 1981. ngng_11gatmgnt_gfi W. Noyes Data Corporation, New Jersey. Section 6. Roth, J.A., W.L. Moench, Jr., and K.A. Debalak. 1982. Kinetic Modeling of the Ozonation of Phenol in Water. Journal WPCF, 54(2):135-139. Sauer, M.C., Jr., w.c. Brown, and E.J. Hart. 1984. 0(fin Atom Formation by the Photolysis of Hydrogen Peroxide in Alkaline Aqueous Solutions. J. Phys. Chem. 88(7):1398- 1400. Sehested, K., J. Holcman, E. Bjergbakke, and E.J. Hart. 1982. Ultraviolet Spectrum and Decay of the Ozonide Ion Radical, 0;, in Strong Alkaline Solution. J. Phys. Chem. 86(11):2066-2069. Sehested, K., J. Holcman, E. Bjergbakke, and E.J. Hart. 1984. Formation of Ozone in the Reaction of OH with O; and the Decay of the Ozonide Ion Radical at pH 10-13. J. Phys. Chem. 88(2):269-273. Sehested, K., H. Corfitzen, J. Holcman, C.H. Fischer, and E.J. Hart. 1991. The Primary Reaction in The Decomposition of Ozone in Acidic Aqueous Solutions. Environ. Sic. Technol., 25(9):1589-1596. Sotelo, J.L., E.J. Beltran, and M. Gonzalez. 1989. Effect of High Salt Concentrations on Ozone Decomposition in Water. J. Environ. Sci. Health, A24(7):823-842. Staehelin, J. and J. Hoigné. 1982. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and ' Hydrogen Peroxide”. Environ. Sci. Technol. 16(10) :676-681. 34) 35) 36) 37) 38) 50 Staehelin, J., R.E. Bfihler, and J. Hoigné. 1984. Ozone Decomposition in Water Studied by Pulse Radiolysis. 2. OH/HO, as Chain Intermediates". J. Phys. Chem. 88(24): 5999-6004. Staehelin, J. and J. Hoigné. 1985. Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. Environ. Sci. Technol. 19(12):1206-1213. Takayuki Morioka, Nobuyuki Motoyama, and Hiroshi Hoshikawa 1993. Numerical Analysis on the Mechanism of the Promotive Effect of Humic Substances on the Decomposition of the Odorous compounds by Ozonation. Proceedings of the 11th Ozone World Congress. WW Treatment, 2:3-20-72-vs-20-86. Waite, T.D. and F.M.M. Morel. 1984. Photoreductive Dissolution of Colloidal Iron Oxides in Natural Waters. Environ Sci. Technol. 18(11):860-868. Yao, C.C.D., W.R. Haag, and T. Mill. 1992. Kinetic Features of Advanced Oxidation Processes for Treating Aqueous Chemical Mixtures. Chemical Oxidation Technology for the Nineties, Second International Symposium. February 19-21, 1992. APPENDIX A The Kinetic Model of Ozonation Processes for ACUCHEM Computer Program 51 ;This is a kinetic model of ozonation processes for ACUCHEM ;Ozone/Fe(II)/UV System at pH 6.3 1111 ; ----- The Mechanisms ----- ; ----- Initiation Reactions ----- 03 + OH- = .OHZ + .02- , 1.4E2 03 + HOZ- = .HO + .02- , 2.8E6 03 = 0 + 02 , 6.5E-1 0 + 02 = 03 , 1.0E9 H202 = 0 H20 , 2.6E-4 0 = H202 , 2.2E2 --- Propagation Reactions ----- , 0 = .HO .HO 8.0E1 , .02- + H = .H02 2.0E10 , .H02 = .02- H 3.2E5 , .02- + 03 = .03- 02 1.6E9 , .03- + H = .H03 5.2E10 , .H03 = .03- H 3.3E2 , .H03 = .OH 02 1.1E5 , .OH + 03 = .H04 2.0E9 , .H04 = .OH 03 1.0E4 , .H04 = .H02 02 2.8E4 , .0- + 02 = .03- 3.0E9 , .03- = .0- 02 3.3E3 , .0- + .03- = .02- .02- 7.0E8 , .0- + .OH = H02- 2.0E10 , .0- + HOZ- = .02- + OH- 4.0E8 , .0- + H202 = .02- + H20 5.0E8 , .OH = .0- + H 6.3E-2 , .0- + H = .OH 5.0E10 , .OH + OH- = .0- + H20 1.2E10 , .0- = .OH + OH- 1.8E6 , .OH + .03- = .H02 + .02- 6.0E9 , .OH + HOZ- = .02- + H20 7.5E9 , .OH + H202 = .H02 + H20 2.7E7 ----- Termination Reactions ----- , .o- + .02- = OH- + 02 , 6.0E8 , .02- + .OH = OH- + 02 , 1.0E10 , .02- + .H02 = H202 + 04 , 9.7E7 , .02- + .H03 = OH- + 04 , 1.0E10 , .02- + .H04 = OH- + 05 , 1.0E10 , .03- + .OH = OH- + 03 , 2.5E9 , .OH + .OH = H202 , 5.0E9 , .OH + .H02 = H20 + 02 , 6.6E9 , .OH + .H03 = H202 + 02 , 5.0E9 , .OH + .H04 = H202 + 03 , 5.0E9 , .H02 + .H02 = H202 + 02 , 8.7E5 , .H03 + .H03 = H202 + 04 , 5.0E9 , .H03 + .H04 = H202 + 05 , 5.0E9 , .H04 + .H04 = H202 + 06 , 5.0E9 , H202 + 03 = H20 + 04 , 6.5E-3 , 04 = 02 + 02 , 1.0E20 , 05 = 03 + 02 , 1.0E20 I I I “~““““‘~‘ “““‘~\‘ I I I I “““~ 52 I ‘\§““““\“ ““ “““ I 1.0E20 1.0E-3 1.0E11 1.0E-1 5.0E10 3.2E8 5.0E10 3.2E3 5.0E10 2.2E-1 5.0E11 2.1E4 4.7E10 2.2 4.7E10 1.5E-2 1.5E-3 5.0E3 4.0E9 06 = 03 + 03 Proton Transfer Equilibrium ----- = OH- + H OH- + H = H202 = H02- + H H02- + H = H202 H3PO4 = H2P04- + H H2P04- + H = H3P04 H2PO4- = HPO4-2 + H HP04-2 + H = H2P04- HP04-2 = P04-3 + H PO4-3 + H = HPO4-2 H2C03 = HCO3- + H HCO3- + H = H2CO3 HCO3- = C03-2 + H CO3-2 + H = HCO3- ----- Effect of UV Light ----- 03 = H202 + 02 H202 = .OH + .OH Fe(III)+ on- = Fe(II) + .OH - Effect of Phosphate Species H3P04 + .OH = .H2P04 + H20 H2PO4- + .OH = .H2PO4 + 0H- H2P04- + .03- = HP04-2 + .H03 HP04-2 + .H03 = H2PO4- + .03- HPO4-2 + .OH = .HP04- + 0H- HP04-2 + .0- = UNKNOWNl P04-3 + .OH = .PO4-2 + 0H- - Effect of Carbonate Species H2CO3 + .OH = .HCO3 + H20 HC03- + .OH = .C03- + H20 CO3-2 + .OH = .CO3- + 0H- CO3-2 + .O- = .C03- + 0-2 .C03- + 03 = UNKNOWNZ .CO3- + .02- = CO3-2 + 02 .C03- + .03- = CO3-2 + 03 .C03- + .OH = UNKNOWN3 .C03- + H02- = HC03- + .02- .C03- + H202 = HC03- + .H02 Effect of Iron ----- Fe(II) + 03 = Fe(III)+ .O3- Fe(II) + H202 = Fe(III)+ .OH Fe(II) + .OH = Fe(III)+ OH- Fe(II) + .O- = Fe(III)+ OH- ----- DCB Degradation ----- DCB + 03 = DCB DCB + 03 = PRODUCTl DCB + .OH = .DCB DCB + .C03- = .DCB .DCB + 02 = .OODCB .OODCB + 03 = .OODCB + .OH .OODCB + .OH = PRODUCTZ ----- Modification for Continuous Flow ----- I “““‘““‘““““““““‘~“‘“\““‘§““~“ 8 08- 03 02 0 .0- .02- .03- .08 .H02 .803 .804 H202 H02- H3PO4 H2P04- HPO4-2 904-3 .HPO4- .PO4-2 82003 8003- 003-2 .HC03 .003- Fe(II) Fe(III) DCB .DCB .OODCB UNKNOWNl UNKNOWNZ UNKNOWN3 PRODUCTl PRODUCTZ H OH- 03 02 DCB H202 Fe(II) H2CO3 HCO3- CO3-2 H3PO4 H2P04- HPO4-2 PO4-3 I I I I I I I I I I I I I I “““~““~‘\““\‘V“““‘\“““ 53 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 1.67E-3 . ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘Q ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out Out 9.58E-6 2.90E-15 2.08E-7 3.33E-7 1.95E-8 0.00 5.70E-8 8.00E-6 ‘. ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘. 6.88E-10; 7.43E-18; 0.00 0.00 0.00 0.00 ‘0 ‘0 ‘0 ‘0 I Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux Flux END of Reaction Mechanism Statement: Initial Concentrations of Species , 5.75E-3 I H In In In In In In In In In In In 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 1/600 Hydraulic Detention Time is 600 Seconds ----- s-1 l Hlflthi‘P‘thh‘Hi-F‘HidF‘Hi-P‘H 1.: s-1 s-l [H]/600 [OH-]/600 [031/600 [021/600 [DCB]/600 [82021/600 [Fe(II)]/600 [820031/600 [8003-1/600 [003-21/600 [H3PO4J/600 In [H2PO4-]/600 In [HPO4-2]/600 In (M) [PO4-3]/600 M*s-l M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 M*s-1 54 OH- , 1.74E-12 o3 , 1.25E-4 02 , 2.00E-4 DCB , 1.17E-5 Fe(II) , 3.42E-5 8202 , 0.00 H2CO3 , 4.80E-3 8003- , 4.13E-7 C03-2 , 4.46E-15 H3P04 , 0.00 H2PO4- , 0.00 904-3 , 0.00 END of Species Concentration Sequence: ;--- Integration Tolerance --- 1.0E-8 ;--- Reaction Time (sec) --- 6.0E2 APPENDIX B The Results of Kinetic Model Simulation 55 Table B.1 The Input/Output Data of Kinetic Model for Ozone Treatment System Exp. No.‘” Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 pH 5.40 6.10 7.28 5.33 6.01 [8*] 3.98E—6 7.94E—7 5.25E-8 4.68E-6 9.77E-7 [OH‘] 2.51E—9 1.26E—8 1.91E-7 2.14E-9 1.02E-8 INPUT [031 1.23E-4 1.20E-4 1.23E-4 1.25E-4 1.22E-4 DATA [0210) 2.00E-4 2.00E-4 2.00E-4 2.00E-4 2.00E-4 [DCB] 1.42E-5 1.21E-5 1.21E-5 1.33E-5 9.69E-6 [Fe“] ------------------------- [H2C03] 1.88E-3 1.32E-3 2.12E-4 4.53E-3 3.35E-3 [HCO3’] 2.21E—4 7.78E-4 1.89E—3 4.65E-4 1.65E-3 __ [0032-1 3__3E-9 5.34E-8 1ws.4.88 [031 5.34E-5 4.67E—5 3.84E-5 5.37E-5 4.76E-5 [DCB] 6.17E-6 4.78E-6 4.18E-6 5.73E-6 3.9OE-6 [Fe“] ------------------------- MODEL [8,0,1 1.19E-5 8.66E-6 2.17E-6 1.15E-5 7.70E-6 OUTPUT [802-1 6.21E-12 2.28E-11 8.27E-11 5.26E-12 1.69E—11 08 5.64E-13 6.52E-13 6.88E-13 5.67E—13 6.03E-13 802 2.73E-13 1.88E-13 1.46E-13 3.02E-13 1.98E-13 ~80, 4.20E-13 4.52E-13 2.77E—13 4.35E-13 4.60E-13 80, 1.59E-12 1.60E-12 1.39E-12 160E-121.51E-12 EXP. [031001; 4.99E-5 2.9OE-5 4.89E-5 3.00E-5 2.94E-5 RESULT [DCBJOut 5.05E-6 5.09E-6 5.96E-6 6.54E-6 4.71E-6 [Fe“]Out ------------------------- __ __ 56 Table B.1 (Cont'd) Exp. NO m Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.10 pH 7.35 2.24 4.13 5.79 6.29 [H+] 4.47E-8 5.75E-3 7.41E-5 1.62E-6 5.14E-7 [OH'] 2.24E-7 1.74E-12 1.35E-10 6.17E-9 1.95E-8 INPUT [0,] 1.31E-4 1.26E-4 1.15E-4 1.21E-4 1.18E-4 DATA [02]“) 2.00E-4 2.00E-4 2.00E-4 2.00E-4 2.00E-4 [DCB] 1.29E-5 1.17E-5 1.17E-5 1.35E-5 1.39E-5 [13'8“] ----- 3.42E-5 3.42E-5 3.51E-5 3.32E-5 H2003 4.25E-5 4.8OE-3 4.77E-3 3.67E-3 2.48E-3 H003 4.57E-3 4.13E-7 3.08E-5 1.13E-3 2.32E-3 C032’ 6.01E-6 4.46E-15 2.44E_ 4.28E-8 2.65E-7 [011 4.44E-5 8.31E-6 8.25E-6 1.59E-5 1.98E-5 [DCB] 5.25E-6 7.54E-7 8.54E-7 2.19E-6 3.11E-6 [862+] ----- 3.08E-6 3.16E-6 1.98E-6 1.54E-6 MODEL [H202] 1.90E-6 1.18E-6 1.13E-6 5.70E-7 7.31E-7 IOUTPUT [H02'] 8.63E-11 4.13E-16 4.26E-14 8.07E-13 3. 123-12 '01! 4.65E-13 6.04E-12 5.28E-12 1.82E-12 1.1lE-12 'H02 1.26E-13 1.99E-9 1.64E-113.21E-131.64E-l3 'HO, 2.34E-13 1.07E-12 9.91E-13 9.03E-13 7.70E-13I 1.09E-12 2.64E-12 2.29E-12 1.52E-12 1.16E-12 EXP. [031001; 3.74E-5 4.86E-5 1.12E-5 1.17E-5 1.56E—5 [D08100t 6.83E-6 1.0oE-5 3.22E-6 4.35E—6 4.34E-6 [86“1001: ----- 3.93E-6 8.18E-6 9.36E-6 7.48E-6 Note: (1) The experimental numbers are listed in Table 2.2 (2) The oxygen concentration is an estimated value in this work. 57 Table B.2 The Input/Output Data of Kinetic Model for Ozone/UV Treatment System Exp. 86.“) Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 p8 5.40 6.1 7.28 5.33 6.01 I [8*] 3.98E-6 7.948—7 5.258—8 4.68E-6 9.77E-7l [OH'] 2.51E-9 1.26E-8 1.918-7 2.148-9 1.02E-8l INPUT [O3] 1.268-4 1.208-4 1.23E-4 1.26E-4 1.248-4 DATA [0210’ 2.00E-4 2.00E-4 2.00E-4 2.008-4 2.00E-4 [DCB] 1.42E-S 1.21E-5 1.218-5 1.338-5 9.698-6 [Fe“] ------------------------- 8,003 1.88E-3 1.32E-3 2.128—4 4.53E-3 3.35E-3 8001- 2.218-4 7.788-4 1.898-3 4.658-4 1.65E-3 0032- 3.03E-9 5.34E-816.9E-6 5.848-9 9.8988 [03] 6.14E-6 5.88E-6 5.788-6 6.308-6 6.05E-6 [DCB] 1.108-6 1.298-6 1.82E-6 1.248—6 1.338-6 [Fe“] ------------------------- MODEL [11202] 1.318-5 1.20E-5 7.998-6 1.198-5 9.768-6 OUTPUT [802'] 6.86E-12 3.17E-11 3.17E-10 5.468—12 2.15E-1 . -08 4.90E-12 3.59E-12 2.138—12 3.938-12 2.518-12 ~80, 1.7lE-12 5.83E-13 2.578-13 1.988-12 7.188-13 803 5.62E-13 6.20E-13 4.088-13 5.908-13 6.97E-l3 h _ -8_, * 1.588—12 1.118-12 6.48E-13.30E-12 [O,1Out 3.17E-6 1.218-6 3.698-6 1.568-6 1.288-6 RESULT [D081Out 7.608-7 1.38E-6 1.828-6 1.34E-6 1.188-6 [Fe“]Out 58 Table B.2 (Cont'd) Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.10 7.35 2.24 4.13 5.79 6.29 4.47E-8 5.7SE-3 7.41E-5 1.623-6 5.14E-7 2.24E-7 1.74E-12 1.3SE-IO 6.17E-9 1.95E-8l 1.3lE-4 1.252-4 1.158-4 1.21E-4 1.19E-4 2.00E-4 2.00E-4 2.00E-4 2.00E-4 2.00E-4 1.29E-5 1.17E-5 1.17E-5 1.358-5 1.39E-5 ----- 3.42E-5 3.42E-5 3.518-5 3.328-5 IIZCO3 4.25E-5 4.808-3 4.77E-3 3.67E-3 2.48E-3 HCO,’ 4.57E-3 4.13E-7 3.088-5 1.13E-3 2.323-3 6.013-6 4.468-15 2.44E-11 4.28E-8 2.653-7 [03] 6.41E-6 3.35E-6 3.27E-6 4.05E-6 4.062-6 [DCB] 2.93E-6 3.7OE-7 4.27E-7 1.38E-6 1.92E-6 [Fe2*] ----- 4.12E-6 4.44E-6 5.79E-6 6.03E-6 MODEL [8202] 7.21E-6 1.27E-5 1.14E-5 3.98E-6 2.58E-6I OUTPUT [802'] 3.443-10 4.45E-15 4.18E-13 5.62E-12 1.10E-1]] OR 1.11E-12 1.283-11 1.10E-11 3.32E-12 1.98E-12 'HO, 2.66E-13 4.468-9 «LOSE-11 1.133-124.94E-13 'HO, 3.988-13 8.23E-13 7.86E-13 9.47E-13 8.89E-13l r_ _ 'I-IO4 3.76E-13 2.25E-12 21.89-12.078-13 4.23E13 EXP. [O3]Out 2.14E-6 1.88E-6 3.9OE-7 9.9OE-7 1.26E-6 RESULT [DCB]Out 2.323-6 4.27E-6 1.38E-6 2.06E-6 2.69E-6 _--IFm°-- 6.392-611.86U1 Note: 1 T e exper men a numbers are sted n Tab e 2.2. (2) The oxygen concentration is an estimated value in this work. 59 Table 8.3 The Input/Output Data of Kinetic Model for Ozone/11202 Treatment System Exp. No.0) Exp. 1 Exp. 2 Exp. 3 Exp. 4 pH 5.40 6.1 7.28 5.33 6. 01 xp:l [11+] 3.98E-6 7.94E-7 5.25E-8 4.68E-6 9. 77E-7 [OH‘] 2.51E-9 1.26E-8 1.91E-7 2.14E-9 1. .02E-1 INPUT [03] 1.25E-4 1.20E-4 1.22E-4 1.25E-4 1. 24E-4 DATA [02]“) 2.00E—4 2.00E-4 2.00E—4 2.00E-4 2.00E-il [DCB] 1.42E-5 1.21E-5 1.21E-5 1.33E-5 9.69E-6 [Fe2+] ------------------------- J [H202] 6.38E-5 6.23E-5 6.45E-5 6.92E-5 6.35E-5 H2CO3 1.88E-3 1.32E-3 2.12E-4 4.53E-3 3.35E-3l HCO,‘ 2.21E-4 7.78E-4 1.89E-3 4.65E-4 1.65E-3 __ L L 9°" 3 FLE'9 5-P‘LEL 1. -9_____ 5L {K939 F [03] 4.77E-5 2.73E-5 9.17E-6 4.71E-5 2.70E-5 [DC81 5.083-6 2.74E-6 1 54E-6 4.69E-6 2.29E-6l , [893+] ------------------------- MODEL [H202] 6.51E-5 5.07E-5 1.65E-5 6.88E-5 4.65E-5 OUTPUT [HOZ'] 3.42E-11 1.34E-10 6.50E-10 3.16E-11 1.02E-1 'OH 7.79E-13 1.43E-12 2.64E-12 7.91E-13 1.32E-12l 'HO2 3.80E-13 3.27E-13 3.64E-13 4.31E-13 Lam-fl “H03 5.68E-13 7.35E-13 6.47E-13 5.92E-13 8.06E-13 k H04 1.95E-12 2.058-12 1.28E-12 1.96E-12 1.88E12 [O,JOut 2.85E-5 5.22E-6 7.85E-6 3.95E-6 1.35E-6 EXP. [DCBJOut 1.68E-6 1.19E-6 1.32E-6 1.45E-6 1.05E-6 RESULT [Fe2*]0ut ------------------------- [8,0,]Out 5.18E-5 2.95E-5 4.48E-5 2.60E-5 60 Table 8.3 (Cont'd) Exp. No.m Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp.10 pH 7.35 2.24 4.13 5.79 6.29 I [11*] 4.47E-8 5.75E-3 7.4lE-5 1.62E-6 5. 14E-7l [OI-f] 2.24E-7 1.74E-12 1.35E-10 6.17E-9 1.95E-d INPUT [O3] 1.29E-4 1.23E-4 1. l6E-4 1. 19E-4 1.20E-4l DATA [02] 2 . 00E-4 2 . 00E-4 2 . 00E-4 2 . ODE-4 2 . 00E-4 I [DCB]m 1.29E-5 1.17E-5 1.17E-5 1.35E-5 1.39E-5l [Fe2+] ----- 3.42E-5 3.42E-5 3.51E-5 3.328-5] [H202] 7.28E-5 6.25E-5 5.90E-5 6.66E-5 6.34E-Sl H2CO3 4 . 25E-5 4 . 80E-3 4 . TIE-3 3 . 678-3 2 . 48E-3 HCO, 4 . 57E-3 4 . 13E-7 3 . 08E-5 l . 13E-3 2 . 32E-3 6.0- 4.46E-15 2.44E_1__8_.2" [03] 1.17E-5 7.71E-6 6.89E-6 6.07E-6 5.97E-6 . [DCB] 2 . 50E-6 6 . 65E-7 6 . 61E-7 1 . 19E-6 1 . 69E-6l [Fez+] ----- 2.64E-6 2.87E-6 3.67E-6 3.93E-6 MODEL [H202] 1 . 17E-5 4 . 96E-5 4 . 48E-5 2 . 68E-5 1 . 45E-5 IOUTPUT‘ [1102’] 5.56E-10 1.74E-14 1.62E-12 3.80E-11 6.20E-1 'OH 1.4SE-12 6.9OE-12 6.94E-12 4.218-12 2.788-12 'HOz 3.75E-13 2.54E-9 2.68E-11 1.37E-12 7.28E-13 'HO3 6.29E-13 1.11E-12 1.088-12 1.33E-12 1.33E-12 'HO4 8.928-13 2.808-12 2.528-12 1.3SE-12 8.4E-31 [O3]Out 4.96E-6 1.42E-5 1.183-6 2.72E-6 2.43E-6 EXP . LDCB] Out 1 . 488-6 ‘7 . 698-6 1 . 918-6 1 . 768-6 2 . DOE-6 RESULT [Fe“]0ut ----- 6.63E—6 8.93E-6 8.87E-6 7.80E-6 [820,] Out 3 . 728-5 2 . 033-5 1 . 4512-5 3 . 66E-5 3 . 80E-5 No e: 1 T e experimenta m (2) The oxygen concentration is an estimated value in this work. APPENDIX C Ozone, DCB, H202, and Fe2+ Sampling Summary for Each Experiment 61 EXP. 1 (1/21 11 pH = 5.40 21 [HCO3-l: 0.0021 mole/L 31 Pump Flownu : Ozone = 12.301 mL/min. DCB = 12.340 mL/min. NaOH = 0.000 mL/min. NeHC03 = 0.628 lemin. H202 = 0.106 mL/min. 4) Hyckullc Retention Time = 9.89 min ( w/o H202 1 9.85 mm ( wl H202 ) 51 Volune of The Reactor = 250 mL Raw Reactor Wt.1 Wt.2 Initial k' Sk' O . #REF! #REF! #REF! #REFI “EH 2 0.152 123.32 205.11 230.56 49.93 2.37 0.149 0.009 03 226.69 229.59 3 0.155 125.76 206.00 230.54 . . . 3.323 0.509 03! UV 230.37 226.96 4 0.155 1 25.23 205.85 230.36 . 1 .42 O3! ‘ H202 201 .97 225.80 Note : ' weight of beaker only ' ' weight of beaker + indigo blue 62 EXP. 1 (2121 006 Standard Cellaretion CII'VO Std. DCB TCB Useful DIT Calibration Curve : Y = 0.05 + 3.11 X r = 0.9999 1 1 where : X is the DCB/T CB ratio Y is the DCB concentration 1 ppb 1 Effluent DCB concentration Exp. DCB TCB Useful DIT DCB Ave. 95% It' Sk' No. a‘res area Smle uM t! 0.1. (In—514 l 95% 0.1. 1 51008 10897 5 4.6809 14.58 14.23 0.98 0.000 ”W 41773 8941 4.6721 14.56 48325 10122 4.7743 14.87 73637 17833 4.1293 12.87 61111 13339 4.5814 14.28 2 14701 8275 5 1.7766 5.56 5.05 0.51 0.184 0.029 03 28731 19640 1.4629 4.59 25292 15909 1 .5898 4.98 16950 9872 1.7170 5.38 27122 17903 1.5149 4.75 3 4059 19100 5 0.2125 0.71 0.76 0.04 1 .782 0.161 03! 1870 7845 0.2384 0.79 2456 10345 0.2374 0.78 1233 5266 0.2341 0.77 £26 9989 0.2329 0.77 4 5990 10641 5 0.5629 1.79 1 .68 0.16 0.759 0.094 03/ 6395 11419 0.5600 1.79 H202 8488 15793 0.5375 1.72 8545 17112 0.4994 1.60 8853 18954 0.4671 1.50 Calibration Curve Y = -1 2.62 + 162.06 X r = 0.9996 where: "X" is the UV absorption at 551 nm 'Y" is the concentration of H202 in uM "r" is the correlation coefficient H202 Sample Exp. lnfluent Effluent k' Sk' Abs. ueraw) uMinitial Ave. 5% CJ Abs. uM Ave. 95% C.|. ( min.-1 1 min.-1 4 0.610 15250 63.70 63.75 0.07 0.396 51.56 51.76 0.26 0.024 0.001 0.610 15250 63.70 0.397 51.72 0.611 15275 63.81 0.396 51.56 0.610 15250 63.70 0.398 51.88 0.611 15275 63.81 0.399 52.05 63 EXP. 2 l1/21 1) pH = 6.30 21 (11003-1: 0.0021 mole/L 31 Punp flowrate: Ozone = 12.301 mL/min. DCB = 12.340 mL/min. NaOH = 0.278 mL/min. NaHCO3 = 0.628 mL/min. H202 = 0.106 mL/min. 41 Hydraulic Retention Time 9.79 minlwio H202) 9.75 min(w/H202) 51 Volume of The Reactor = 250 mL Ozone Concentration INFLUENT EFFLUENT Exp. Raw Reactor Wt.1 Wt.2 Initial Final Ozone Concontration(mgM k' Sk' Abs. uM fl)” lg)” Abs. Abs. Data ub«Ave Ave. 95%C.I min.-1 min.-1 1 0 0.00 --- -- --- ##IHM ##### ##### ##### ##### ##### m ##1## -.- ##1## --- --- --- --- ##MM ##### m ##1## --- ##### --- -- «- --- ##### ##### --- ##### --- ”##4## 2 0.149 119.57 205.33 231.58 1.008 0.658 28.43 28.56 28.98 1.98 0.319 0.023 03 0.657 28.63 0.657 28.63 201.41 227.13 1.008 0.664 28.47 28.47 0.664 28.47 0.664 28.47 201.83 228.03 1.008 0.651 29.97 29.90 0.652 29.76 0.651 29.97 3 0.15 120.38 204.94 231.38 1.008 0.791 1.25 1.25 1.21 0.26 10.057 2.195 03! 0.791 1.25 UV 0.791 1.25 202.86 230.56 1.008 0.784 1.03 1.09 0.783 1.22 0.784 1.03 . 204.65 230.50 1.008 0.795 1.22- 1.29 0.794 1.43 0.795 1.22 4 0.15 119.88 205.58 231.57 1.008 0.774 5.33 5.26 5.22 0.87 2.255 0.376 03] 0.774 5.33 H202 0.775 5.13 201.25 227.29 1.008 0.776 4.85 4.85 0.776 4.85 0.776 4.85 206.01 232.22 1.008 0.772 5.41 5.54 0.771 5.61 0.771 5.61 Note : ' weight of beaker only weight of beaker + indigo blue 008 Standard Cellaretion Cave DCB Std. 0.00 Effluent 008 concentration 0 1 TCB 17893 1 1005 7 97 11 11 Useful D 0.00 64 EXP. 2 (2l21 Calibration Curve : Y I .- 0.11 0.9987 + where : X is the DCB/TCB ratio 3.15 Y is the DCB concentration ( ppb ) X Exp. DCB TCB Useful DIT DCB Ave. 95% k' Sk' No. area area Sajmgle uM fl C.l. (min-1 1 95% 0.1.J 1 33689 8339 4 4.04 12.85 12.14 0.79 0.000 #DIVIOI 37205 9802 3.80 12.08 44590 11915 3.74 11.91 29938 7075 4.23 13.46 44866 12198 3.68 11.71 2 17379 11121 4 1.56 5.04 5.09 0.29 0.142 0.019 03 17510 11346 1.54 4.98 19555 12674 1.54 4.98 15316 9216 1.66 5.35 9064 4645 1.95 _6._27 3 3319 7983 4 0.42 1.42 1 .38 0.07 0.795 0.071 03/ 3044 7685 0.40 1.36 UV 4593 11886 0.39 1.33 3953 9584 0.41 1 .41 2647 5819 0.45 1 .55 4 2055 5462 4 0.38 1 .30 1.19 0.07 0.943 0.088 03/ 3165 9326 0.34 1.18 H202 2688 7570 0.36 1.23 3089 8855 0.35 1.21 3397 10500 0.32 1.13 Calibration Curve Y = -11.87 + 170.05 X r = 0.9995 where ; "X" is the UV absorption at 551 nm "Y' is the concentration of H202 in uM "r" is the correlation coefficient H202 Semw Exp. lnfluent Effluent k' Sk' Abs. uMiraw) uMinitia Ave. 5% OJ Abs. u_M_ Ave. 95% C.l. (m_i_n.-1 1 min.-1 4 0.603 15075 62.29 62.29 0.00 0.296 38.46 38.53 0.12 0.063 0.000 0.603 15075 62.29 0.297 38.63 0.603 15075 62.29 0.296 38.46 0.603 15075 62.29 0.296 38.46 0.603 15075 642.23 (L297 38.63 65 EXP. 3 l1l21 11 PH = 7.28 21 [HOO3-l= 0.0021 mole/L 31 Punp flowrate : Ozone = 12.301 mL/min. DCB = 12.340 lemin. NaOH - 0.000 mL/min. NaHCO3 = 0.628 mL/min. H202 = 0.106 mL/min. 41 Hydraulic Retention Time 9.89 min i wlo H202 1 9.85 min ( w/ H202 1 51 Volune of The Reactor = 250 mL Ozone Concentration Exp. Raw Reactor Wt.1 Wt.2 Initial k' I. 1 0 . #### ##### ##### ##### ##### # 2 0.152 123.32 203.04 03 3 0.152 123.32 202.62 . 3.86 3.69 0.37 3.277 0.333 03! UV 0.31 1 .477 0.059 230.71 Note : ’ weight of beaker only ' ' weight of beaker + indigo blue 66 EXP. 3 (2/21 Useful DIT Calibration Curve : Y = 0.25 + 3.20 X r = 0.9990 where : X is the DCBIT CB ratio Y is the DCB concentration ( ppb 1 Effluent DCB concentration —E‘xp. DCB TCB Useful DIT oca Average 95% k' Sk' No. area area Smle uM I! 0.1. ( min-1 1 95% 0.1. 1 72324 20067 4 3.60 1 1.80 12.09 0.69 0.000 #DlV/Ol 73233 20530 3.57 1 1.68 55144 13544 4.07 13.30 65701 17527 3.75 12.26 59308 15355 3.86 12.63 2 31805 20660 4 1.54 5.18 5.96 0.23 0.104 0.013 03 22859 12463 1 .83 6.13 26563 15369 1.73 5.79 23703 13379 1.77 5.93 M3 1 1569 1.80 6.02 3 8980 19392 4 0.46 1.73 1.82 0.12 0.571 0.055 03! 8223 17267 0.48 1 .78 UV 7187 14032 0.51 1.89 6035 10893 0.55 2.02 8227 1_6209 0.51 1 .88 4 5765 20193 4 0.29 1.16 1.32 0.12 0.828 0.095 03/ 3687 10782 0.34 1.35 H202 5742 19233 0.30 1.21 3123 8854 0.35 1.38 4270 L241 7 0.34 1.35 Calibration Curve Y a -10.33 + 165.32 X r = 0.9994 where ; "X' is the UV absorption at 551 nm 'Y" is the concentration of H202 in uM "r' is the correlation coefficient H202 Semge Exp. lnfluent Effluent k' Sk‘ _A£s. quaw uMinitia Ave. 5% C.l Abs. l._l_M Ave. 95% 0.1. ( min.-1 1 min.-1 4 0.616 15400 64.33 64.46 0.14 0.242 29.67 29.54 0.47 0.120 0.003 0.617 15425 64.44 0.238 29.01 0.617 15425 64.44 0.244 30.00 0.617 15425 64.44 0.240 29.34 0.619 15475 64.64 0.242 __29.67 11 pH = 5.40 21 [11003-1 = 31 Punp flowrate : 41 Hydraulic Retention Time 51 Volume of The Reactor = Ozone Concenuation Ozone NaOl-l Fa(|l1 H202 = 0.0048 mole/L DCB 9.78 min ( w/o H202 1 67 EXP. 4 (1/21 12.301 12.340 0.930 0.000 0.106 250 mL mL/min. mL/min. mL/min. mL/min. mL/min. 9.74 min ( w/ H202 1 Exp. lNFLUENT EFFLUENT Raw Abs. Reactor uM Initial Abs. Final Abs. Ozone Concr intration i uM 1 Data ub-Ave Ave. 95%C.I kl min.-1 Sk' min.-1 1 0 0.00 ##### ##### ##### ##### ##1## ##1##)? ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### 03 0.156 1 25.07 205.44 234.71 0.995 29.54 29.36 29.54 29.48 202.70 228.74 0.995 30.70 30.70 30.70 30.70 201.93 235.82 0.995 29.66 29.66 29.66 29.66 29.95 1.63 0.325 0.01 9 03/ UV 0.157 1 25 .88 205.99 231.75 1.001 .44 .23 .44 1.37 1 .56 201.29 227 .22 1.001 .62 .82 32‘ 1.75 201.71 227.38 1.001 .56 d—b-l—D—A—h-J-L .56 _.e .56 1.56 0.48 8.152 2.502 03/ H202 0.157 1 25.36 204.98 232.82 0.999 4.09 3.71 3.90 3.90 3.“ 205.48 231.11 0.999 3.98 3.98 3.98 3.98 202.18 227.82 0.999 3.97 3.97 3.97 3.97 0.10 3.157 0.081 Note : ’ weight of beaker only weight of beaker + indigo blue 68 EXP. 4 l2/21 Std. DCB TCB Useful DIT Calibration Curve : Y - -0.12 + 3.51 X r a 0.9999 7 where : X is the DCB/T CB ratio 70 10003 18741 Y is the DCB concentration ( ppb 1 4 1 1 5 13 7065 1 7 71 Effluent DCB concentration Exp. DCB TCB Useful DIT DCB Ave. 95% k' Sk' No. a_rea area Sample uM 1L4 C._l. ( min-1 95% 0.1.1 1 91354 23201 4 3.9375 13.68 13.30 0.45 0.000 #DlVlOl 91234 23796 3.8340 13.32 85706 20571 4.1664 14.49 100834 26926 3.7449 13.01 103% 27196 3.7962 13.19 2 50801 2601 1 5 1.9531 6.73 6.54 0.28 0.106 0.010 03 53864 28185 1.9111 6.58 52372 28590 1.8318 6.30 43194 21906 1.9718 6.79 51340 27984 1.8346 6.31 3 10870 25737 4 0.4223 1.36 1 .34 0.08 0.910 0.063 03] 10007 22929 0.4364 1.41 UV 8724 19670 0.4435 1.43 9883 24329 0.4062 1 .30 10850 26479 0.4098 1.31 4 10084 22286 4 0.4525 1.46 1 .45 0.15 0.839 0.094 03/ 1 1662 27299 0.4272 1 .37 H202 12188 28339 0.4301 1 .38 5070 9157 0.5537 1 .82 8908 18318 0.4863 1.58 Calibration Curve Y = -11.43 + 197.87 X r - 0.9998 where ; "X" is the UV absorption at 551 nm 'Y' is the concentration of H202 in uM 'r" is the correlation coefficient H202 Sample Exp. lnfluent Effluent k' Sk' Alba. ueraw) uMinitia! AverageES% C.l __A_l_)s. uM Average 95% 0.1. “rim-1 1 min.-1 4 0.669 16725 69.04 69.17 0.11 0.281 44.17 44.84 0.51 0.056 0.001 0.670 16750 69.15 0.285 44.96 0.671 16775 69.25 0.286 45.16 0.671 16775 69.25 0.284 44.76 0.670 16750 69.15 0.286 45.16 69 EXP. 5 l1/21 11 pH = 6.01 21 [HCO3-1= 0.0048 mole/L 31 Punp Flowrate: Ozone = 12.301 mL/min. DCB = 12.340 mL/min. NaOH = 1.205 mL/min. Fe(II) = 0.000 mL/min. H202 = 0.106 mL/min. 41 Hyfiadic Retention Time 9.67 min ( w/o H202 ) 9.63 min ( wl H202 1 51 Volune of The Reactor = 250 mL Ozone Concentration INFLUENT IEFFLUENT Exp. Raw Reactor Wt. 1 Wt. 2 initial Final Ozone Concentration ( uM) k' Sk' Abs. uM (91’ (91” Abs. Abs. Data ub-Ave Ave. 5% C.l min.-1 min.-1 1 0 0.00 --- --- --- --- ##1##! ##### ##### ##### ##### ##### -~- ##### --- ##### -- --- -- --- ##### ##### --- ##1## --- ##### --- --- --- ##### ##### --- ##### --- ##### 2 0.154 122.16 201.58 227.56 1.000 0.655 28.39 28.46 29.37 2.30 0.327 0.027 03 0.654 28.59 0.655 28.39 205.88 232.08 1.000 0.648 29.29 29.36 0.648 29.29 0.647 29.49 205.69 231.75 1.000 0.644 30.44 30.31 0.645 30.24 0.645 30.24 3 0.156 123.74 201.62 228.77 1.000 0.780 1.27 1.27 1.28 0.20 9.869 1.513 03/ 0.780 1.27 UV 0.780 1.27 206.26 232.37 1.000 0.787 1.21— 1.21 0.787 1.21 0.787 1.21_ 203.32 230.08 1.000‘ 0.782 1.37 1.37' 0.782 1.37 0.782 1.37 4 0.157 124.03 204.79 228.36 1.000 0.803 1.41 1.41 1.35 0.47 9.434 3.310 03] 0.803 1.41 H202 0.803 1.41 202.19 224.33 1.000 0.814 1.14 1.14 0.814 1.14 0.814 1.14 204.87 229.81 1.000 0.793 1.57 1.50 0.793 1.57 0.794 1.36 Note: ’ weight of beaker only weight of beaker + indigo blue 70 EXP. 5 (ZIZl Useful DIT Calibration Curve : Y = -0.01 + 3.13 X r = 0.9984 where : X is the DCB/'1' CB ratio Y is the DCB concentration ( ppb 1 Effluent DCB concentration Exp. DCB TCB Useful DIT DCB Ave. 95% lt' Sk' No. _area area $a_rr_igle uM it“ 0.1. mh-1 95% C.l.1 1 - - 4 ###### ##### 9.69 0.33 0.000 #DlV/Ol 44265 14541 3.0442 9.50 44448 13941 3.1883 9.95 45373 14826 3.0604 9.55 43567 13951 3.1229 9.75 2 18946 12359 5 1.5330 4.78 4.71 0.16 0.109 0.009 03 19138 12477 1.5339 4.78 18631 12708 1.4661 4.57 19661 13411 1.4660 4.57 17609 11325 1.5549 4.85 3 5350 14067 5 0.3803 1.18 1.18 0.02 0.746 0.032 03! 5208 13700 0.3801 1 .18 UV 5095 13522 0.3768 1 .17 4684 11976 0.3911 1.21 5125 13567 0.3778 1.17 4 4700 14181 4 0.3314 1 .02 1 .05 0.03 0.858 0.042 03! 4760 13743 0.3464 1 .07 H202 4461 13072 0.3413 1 .05 4692 15053 0.31 17 0.96 4081 12176 0.3352 1.04 Calibration Curve Y a -12.79 4» 168.56 X r = 0.9998 where ; 'X' is the UV absorption at 551 nm "Y" is the concentration of H202 in uM 'r" is the correlation coefficient H202 Sam Exp. lnfluent Effluent k' Sk' Abs. uMiraw) uMinitia Ave. 5% C.l Abs. _gM Ave. 95% 0.1. ninsl min.-1 4 0.622 15550 63.51 63.51 0.00 0.227 25.47 26.01 0.58 0.150 0.004 0.622 15550 63.51 0.229 25.81 0.622 15550 63.51 0.229 25.81 0.622 15550 63.51 0.232 26.31 0.622 15550 63.51 0.234 26.65 11 pH = 7.35 21 (11003-1 = 31 Pump Flowrate : Ozone 41 Hydratlic Retention Time NaOl-l H202 0.0050 mole/L DCB Fe(II) 10.15 min ( wlo H2021 71 EXP. 6 (1/21 12.301 12.340 0.000 0.000 0.106 mL/min. mL/min. mL/min. mL/min. mL/min. 10.10 min ( w/ H2021 51 VoltaneofTtheactor: 250 mL Ozone Concentration INFLUENT EFFLUEN‘iF Exp. Raw Reactor Wt.1 VVt.2 Initial Final Ozone ConcuntrationiuM) k' Sk' Abs. UN! (91' fl)" Abs. Abs. Data ub—Avew Ave. 5% 0.1 min.-1 min.-1 5 0 0.00 —-- -- --- --- ##1## ##### ##### ##### ##### ##### --- ##### --- ##### --- -- ~-- -- ##### ##### m ##1##! m ##1##! --- --- --- --- ##1##” ##### --- ##### --- ##### 2 0.157 130.63 202.28 227.22 0.993 0.614 38.52 38.52 37.41 2.52 0.246 0.018 03 0.614 38.52 0.614 38.52 204.54 229.41 0.993 0.621 37.23 37.16 0.622 37.02 0.621 37.23 205.19 230.13 0.993 0.623 36.61 36.53 0.624 36.39 0.623 36.61 3 0.157 130.63 205.63 230.36 0.992 0.786 2.00 1.93 2.14 0.45 5.913 1.256 03] 0.787 1.79 UV 0.786 2.00 201.28 225.97 0.993 0.786 2&1 2.23 0.786 Lg. 0.786 2.23 204.93 229.63 0.992 0.785 2.26 2.26 0.785 2.26— 0.785 2.26 4 0.156 129.24 204.77 229.63 0.992 0.771 5.1; 5.02 4.96 0.23 2.479 0.115 03! 0.771 522_ H202 0.771 5.02 204.99 230.04 0.992 0.769 5.15 5.01 0.770 4.94 0.770 4.94 205.84 230.99 0.992 0.769 5.00 4.86 0.770 4.79 0.770 4.79 Note : ‘ weight of beaker only 00 weight of beaker + indigo blue 72 EXP. 6 (2/21 Useful DIT Calibration Curve : 20.41 27.21 Effluent DCB concentration 0 1 611 1 64 65246984 108918464 1 1 1 5 12855284 16399562 1 0 0.8383 1 .6963 5.0755 6.641 Y- f = -0.12 0.9997 + 4.07 where : X is the DCB/T CB ratio Y is the DCB concentration ( ppb 1 X Exp. DCB TCB Useful DIT DCB Ave. 95% k' Sk' No. area area Sample uM tfl 0.1. ( mh-1 1 95% 0.11 5 42310060 13319260 3 3.1766 12.80 12.88 1 .62 0.000 #DlVlOl 35035196 10408399 3.3661 13.57 32171084 9067013 3.5481 14.31 50737080 16653456 3.0466 12.27 26554630 7467993 3.5558 14.34 2 25871216 7000310 3 3.6957 14.91 6.83 1 .58 0.087 0.038 03 7794684 3598859 2.1659 8.69 18995326 10096146 1.8814 7.53 25777322 16350205 1.5766 6.29 22220724 13320606 1.6681 6.66 3 9278464 16309450 5 0.5689 2.19 2.32 0.1 9 0.449 0.079 03/ 8017264 12561038 0.6383 2.47 UV 9193751 15429505 0.5959 2.30 8865530 15819229 0.5604 2.16 6791351 10600781 0.6406 2.48 _ 4 5895520 1651 6268 4 0.3570 1 .33 1 .48 0.33 0.765 0.203 03/ 481 1330 10282525 0.4679 1.78 H202 6521023 16987228 0.3839 1 .44 4 6082735 16640806 0.3655 1.36 3091237 103559 29.8500 121.34 H202 CaIbration Crave Std. Calibration Curve Y = -10.94 + 180.02 X r = 0.9998 where ; ”X" is the UV absorption at 551 nm ”Y" is the concentration of H202 in uM 'r" is the correlation coefficient H202 Sam Exp. _ lnfluent Effluent k' Sk' _Abs. uM(raw1 uMinitia . Abs. uM Ave. 95% C.l. Lmin.-1 1 min.-1 4 0.677 16925 72.50 0.28 0.174 20.39 19.16 1 .02 0.277 0.016 0.682 17050 73.03 0.162 18.23 0.680 17000 72.82 0.166 18.95 0.678 16950 72.60 0.169 19.49 0.681 17025 72.92 0.165 18.77 73 EXP. 7 (1/31 11 pH = 2.24 21 (11003-1: 0.0048 mole/L 31 Pump flowrate : Ozone = 12.301 mL/min. DCB = 12.340 rnL/min. NeOH = 0.000 mL/rnin. Fe(ll) = 0.984 mL/min. H202 = 0.106 mL/min. 41 Hydredic Retention Time 9.76 min ( wlo H202 1 9.72 min ( w/ H202 1 51 Volume of The Reactor = 250 mL Ozone concentration 1 INFLUENT EFFLUENT Exp. Raw Reactor Wt. 1 Wt. 2 Initial Final Ozone Concentration ( uM 1 k' Sk' Abs. uM (91' (g 1" Abs. Abs. Data ub-Ave Ave. 5%C.l min.-1 min.-1 1 0 0.00 --- --- -- --- ##### ##### ##### ##### ##### ##### «- ##### --- ##1## --- --— -- -- ##### ##### -- ##### --- ##### -- -- -- -- ##### ##### «- ##### -- ##### 2 0.158 126.41 205.51 230.57 1.037 0.601 48.40 48.33 48.55 0.91 0.164 0.004 03 0.602 48.18 0.601 48.40 205.64 230.55 1.037 0.601 48.90 48.97 0.601 48.90 0.600 49.1 1 202.47 234.66 1.037 0.491 48.45 48.34 0.492 48.29 0.492 48.29 3 0.156 124.81 201.69 227.52 1.030 0.810 1.76 1.76 1.88 0.29 6.710 1.027 03! 0.810 1.76 UV 0.810 1.76 205.86 231.43 1.030 0.811 1.92 1.99 0.81 1 1 .92 0.810 2.13 202.39 228.43 1.030 0.808 1.88 1.88 0.808 1.88 0.808 1.88 4 0.154 122.70 201.09 226.89 1.039 0.758 13.99 13.99 14.16 0.39 0.789 0.022 03! 0.758 13.99 H202 0.758 13.99 201.77 227.84 1.039 0.754 14.30 14.30 0.754 14.30 0.754 14.30 201.75 228.71 1.039 0.747 14.07 14.20 0.746 14.27 0.746 14.27 Note : ' weight of beaker only 00 weight of beaker + indigo blue 74 EXP. 7 (2I31 008 8w Calliration Ora-vs Std. DCB TCB Useful DIT Ave. uM area area Sample 1 ppb 1 0.00 0 10994926 1 0.0000 0.68 2709133 15521120 3 0.1745 0.1703 2822517 16987612 0.1662 2745956 16142584 0.1701 1.70 6871543 16668120 3 0.4123 0.4096 6875499 16747235 0.4105 6690765 16485668 0.4059 3.40 13057246 15762961 3 0.8283 0.8130 13367006 16621329 0.8042 12637938 15671754 0.8064 5.10 19683484 16073414 3 1.2246 1 .2240 18523668 15070709 1 .2291 19661632 16137345 1.2184 6.80 21615140 14528687 3 1.4878 1.4871 . 22855978 15308210 1.4931 2431 3048 1 6422267 1 .4805 13.61 51689228 15674178 3 3.2977 3.2538 51457456 15652338 3.2875 52288980 16463539 ‘ 3.1760 Calibration Curv Y = 0.03 + 4.22 X r 0.9989 where : X is the DCB/TCB ratio Y is the DCB concentration ( ppb 1 Effluent 008 concentration Exp. DCB TCB Useful 071" DCB Ave. 95% k' Sk' No. area area Sample uM 1" OJ. (mm-1 1 95% 0.1. 1 46946456 18051014 5 2.6009 11.01 11.66 1.00 0.000 #DIVIOI 44066540 17263168 2.5538 10.81 42161780 15532214 2.7145 11.49 33547360 11236201 2.9856 12.63 34653944 11895535 2.9132 12.33 2 29263926 11315878 5 2.5879 10.96 10.01 0.67 0.017 0.012 03 41260608 18137916 2.2748 9.63 37601592 16059582 2.3414 9.92 42656566 18578544 2.2960 9.72 41933352 18087354 2.3184 9.62 3 12474441 12833113 3 0.9721 4.14 4.27 0.35 0.177 0.029 03/ 1 1479692 1 1060421 1.0379 4.41 uv 12059614 12036641 1.0019 4.26 9626623 91 17885 1.0560 4.49 10364590 9726083 1 .0656 4.53 4 25355524 13672650 3 1.8545 7.66 7.69 0.41 0.053 0.015 03/ 29374664 16242061 1 .6066 7.67 H202 19809200 9844410 2.0122 8.53 16262672 8638766 2.0665 8.76 32074566 18055012 1 .7765 7.53 75 EXP. 7 (3/31 Effluent Foill1 Exp. Sample Measured with 10 cm cell Fe(II) conc. ( uM 1 k' Sk' No. Abeorbance Ave. Effluent Ave. 95% C.l. (min-1 1 (min-1 1 1 1 1.9736 1.9745 1.9704 1.9728 34.02 34.21 0.40 0.000 #DlV/Ol 2 1.9936 1.9895 1.9846 1.9892 34.31 3 1.9879 1.9879 1.9902 1.9887 34.30 2 1 0.2215 0.2212 0.2216 0.2215 3.71 3.93 1.11 0.789 0.225 03 2 0.2192 0.2175 0.2156 0.2174 3.64 3 0.2636 0.2645 0.2637 0.2640 4.45 3 1 0.4024 0.4018 0.4017 0.4020 6.83 6.89 0.15 0.406 0.011 03IUV 2 0.4108 0.4079 0.4081 0.4089 6.96 3 0.4045 0.4051 0.4066 0.4054 6.89 4 1 0.3888 0.3900 0.3906 0.3898 6.62 6.63 0.03 0.428 0.007 03/H202 2 0.3910 0.3900 0.3891 0.3900 6.63 3 0.3907 0.3911 0.3918 0.3912 6.65 Calibration Curve : Y = 6.88 + 969.27 X r = 0.9998 "X" is the value of Absorbance 'Y" is the Fe(II) concentration ( ppb 1 "r' is the correlation coefficient H202 Calibration Cave Std. Measruements uM test 1 test 2 test 3 test 4 test 5 Ave. 95% C.l. 0 0.072 0.074 0.065 0.068 0.067 0.069 0.0046 10 0.100 0.099 0.111 0.098 0.119 0.105 0.0115 25 0.177 0.164 0.165 0.165 0.173 0.169 0.0073 50 0.287 0.300 0.287 0.303 0.293 0.294 0.0091 75 0.417 0.429 0.427 0.421 0.427 0.424 0.0062 100 0.544 0.554 0.547 0.542 0.551 0.548 0.0061 Calibration Curve : Y - -11.81 + 205.62 X r - 0.9991 where ; 'X" is the UV absorption at 551 nm 'Y' is the concentration of H202 in uM ”r' is the correlation coefficient H202 Sample Exp. lnfluent Effluent k' Sk' 1 Abs. uM (raw) M (initia Ave. 95% 0.1. Abs. uM Ave. 95% 0.1. ( min.-1 ( min.-1 1 4 0.606 15150 62.41 62.51 0.13 0.149 18.82 20.26 1.65 0.215 0.019 0.608 15200 62.62 0.165 22.11 0.608 15200 62.62 0.152 19.44 0.607 15175 62.51 0.160 21.08 0.606 15150 62.41 0.154 19.85 76 EXP. 8 ”/31 11 pH = 4.52 21 [HCO3-l= 0.0045 mole/L 31 Punp Flowrete : Ozone = 12.301 mL/min. DCB = 12.340 mL/min. NaOH = 1.529 mL/min. Fe(II) = 0.984 mL/min. H202 = 0.106 mL/min. 41 Hyckedic Retention Time 9.21 min ( w/o H202 1 9.17 min ( w/ H202 1 51 Volune ofThe Reactor = 250 mL Ozone Concenvetion INFLUENT EFFLUENT Exp. Raw Reactor Wt. 1 Wt. 2 Initial Final Ozone Concentration ( uM 1 k' Sk' Abs. uM (g)' (g 1” Abs. Abs. Data ub-Ave Ave. 195%C.l min.-1 min.-1 1 0 0.00 --- --- --- -- ##### ##### ##### ##### ##### ##### --- ##### -—- ##1## --~ -- -.. --. ##### ##### ..- ##### --- ##### «- -.. -- -- ##### ##### -- ##### --- ##### 2 0.152 114.76 205.56 232.94 1.038 0.757 11.24 11.11 11.15 0.52 1.010 0.048 03 0.758 1 1 .04 0.758 11.04 200.95 228.46 1.038 0.757 11.02 10.96 0.758 10.83 0.757 11.02 204.89 232.07 1.038 0.758 11.37 11.37 0.758 1 1 .37 0.758 11.37 3 0.153 115.52 205.11 230.80 1.038 0.824 0.38 0.38 0.39 0.03 32.351 2.716 03/ 0.824 0.38 UV 0.824 0.38 204.07 232.90 1.038 0.804 0.32 0.38 0.803 0.50 0.804 0.32 201.97 228.86 1.038 0.816 0.40 0.40 0.816 0.40 0.816 0.40 4 0.154 115.82 200.93 228.36 1.039 0.810 1.04 1.04 1.18 0.33 10.565 2.938 03/ 0.810 1.04 H202 0.810 1.04 202.59 230.18 1.039 0.808 1.22 1.22 0.808 1.22 0.808 1.22 202.94 230.12 1.039 0.811 1.16 1.29 0.810 1.36 0.810 1.36 Note : ' weight of beaker only weight of beaker + indigo blue 77 EXP. 8 (2/31 008 Standard Calibration Owe Std. 008 TCB Useful DIT Ave. uM area area Sample 0.00 0 10994926 1 0.0000 0.68 2709133 15521120 3 0.1745 0.1’70_3 2822517 16987612 0.1662 2745956 16142584 0.1701 1.70 6871543 16668120 3 0.4123 0.4096 6875499 16747235 0.4105 6690765 16485668 0.4059 3.40 13057246 15762961 3 0.8283 0.8130 13367006 16621329 0.8042 12637938 15671754 0.8064 5.10 19683484 16073414 3 1.2246 1.2240 18523668 15070709 1 .2291 19661632 16137345 1.2184 6.80 21615140 14528687 3 1.4878 1 .4871 22855978 15308210 1.4931 24313048 1 6422267 1 .4805 13.61 51689228 15674178 3 3.2977 3.2538 51457456 15652338 3.2875 52288980 16463539 3.1760 Calibrat Y a + 4.22 X r = 0.9989 where : X is the DCB/TCB ratio Y is the DCB concentration 1 ppb 1 Effluent DCB concentration 4 Exp. DCB TCB Useful DIT DCB Ave. 95% k' Sk' No. area area Sample uM i“ 0.1. l mh—1 l 95% 0.1. 1 46948456 18051014 5 2.6009 1 1.01 1 1 .66 1 .00 0.000 #DIVIOl 44086540 17263168 2.5538 10.81 42161780 15532214 2.7145 11.49 33547360 11236201 2.9856 12.63 34653944 11895535 2.9132 12.33 2 10695460 14018641 3 0.7629 3.25 3.22 0.50 0.284 0.058 03 8598244 10757099 0.7993 3.41 12720079 18039950 0.7051 3.01 6632140 8077623 0.821 1 3.50 6355219 7226741 0.8794 3.75 3 3203340 9532392 3 0.3360 1 .45 1 .38 0.17 0.808 0.128 03/ 4496051 14806956 0.3036 1 .32 UV 2885068 8505703 0.3392 1 .47 3107331 8633446 0.3599 1.55 4323156 13636830 0.3170 1.37 4 6938908 161 13692 4 0.4306 1 .85 1 .91 0.16 0.566 0.075 03/ 6798474 15514129 0.4382 1 .88 H202 4986220 10354560 0.4815 2.07 6581 630 1 5290490 0.4304 1 .85 3991012 7607872 0.5246 2.25 78 EXP. 8 (3/31 Effluent Fell" Exp. Sample Measured with 10 cm cell Fe(ll) conc. ( uM 1 k' Sk' Number Absorbance Ave. Effluent Ave. 95% C.l. (min-1 1 (min-1 1 1 1 1.9736 1.9745 1.9704 1.9728 34.02 34.21 0.40 0.000 #DIVIOI 2 1.9936 1.9895 1.9846 1.9892 34.31 3 1.9879 1.9879 1.9902 1.9887 34.30 2 1 0.4858 0.4836 0.4832 0.4842 8.26 8.18 0.17 0.346 0.009 03 2 0.4771 0.4769 0.4768 0.4769 8.13 3 0.4779 0.4786 0.4768 0.4778 8.15 3 1 0.4227 0.4210 0.4195 0.4211 7.17 7.14 0.05 0.411 0.007 03/UV 2 0.4196 0.4198 0.4201 0.4199 7.14 3 0.4184 0.4187 0.4188 0.4186 7.12 4 1 0.5221 0.5213 0.5208 0.5214 8.90 8.89 0.11 0.310 0.006 03/H202 2 0.5181 0.5179 0.5183 0.5181 8.84 3 0.5230 0.5233 0.5234 0.5232 8.93 Calibration Curve : Y = -6.88 + 969.27 X r = 0.9998 'X' is the value of Absorbance 'Y' is the Fe(II) concentration ( ppb 1 "r' is the correlation coefficient H202 Calibration Cuve Std. Measruements uM test 1 test 2 test 3 test 4 test 5 Ave. 95% C.l. 0 0.072 0.074 0.065 0.068 0.067 0.069 0.0046 10 0.100 0.099 0.111 0.098 0.119 0.105 0.0115 25 0.177 0.164 0.165 0.165 "0.173 0.169 0.0073 50 0.287 0.300 0.287 0.303 0.293 0.294 0.0091 75 0.417 0.429 0.427 0.421 0.427 0.424 0.0062 100 0.544 0.554 0.547 0.542 0.551 0.548 0.0061 Calibration Curve : Y = -11.81 + 205.62 X r -= 0.9991 where ; "X" is the UV absorption at 551 nm "Y' is the concentration of H202 in uM "r" is the correlation coefficient H202 Sample Exp. lnfluent Effluent k' Sk' ] Abs. uM (raw) M (initial Ave. 95% C.I. Abs. uM Ave. 95% C.l. ( min.-1 ( min.-1 1 4 0.606 15150 58.91 59.01 0.12 0.129 14.71 14.51 0.68 0.335 0.016 0.608 15200 59.10 0.125 13.89 0.608 15200 59.10 0.127 14.30 0.607 15175 59.01 0.127 14.30 0.606 15150 58.91 0.132 15.33 79 EXP. 9 (1/31 11 pH = 5.79 21 [11003.]: 0.0047 mole/L 31 Pump Flowretae: Ozone = 12.301 mL/min. DCB = 12.340 mL/min. NaOH = 0.890 mL/min. Fe(II) = 0.990 mL/min. H202 = 0.106 mL/min. 41 Hyhtdic Retention'l'ime 9.43 minlwlo H2021 9.39 minlw/H2021 51 Volune ofThe Reactor = 250 mL Ozone Concentration INFLUENT EFFLUENT Exp. Raw Reactor Wt.1 Wt.2 Initial Final Ozone ConcentrationluM) k' Sk' Abs. uM (91* lg)” Abs. Abs. Data ub-Ave Ave. 5%C.l min.-1 min.-1 1 0 0.00 -- -- --- --- ##### ##### ##### ##### ##### ##### --- ##### --- ##### --- --- --- --- ##1## ##### -—- ##### -- ##### --- --- --- -.. ##### ##### --- ##1## -— ##1## 2 0.157 121.37 204.47 231.17 0.999 0.729 11.84 11.84 11.67 0.36 0.997 0.031 03 0.729 11.84 0.729 11.84 205.05 231.89 0.999 0.729 11.60 11.60 0.729 11.60 0.729 11.60 202.48 229.50 0.999 0.727 11.70 11.57— 0.728 11.50 0.728 11.50 3 0.156 120.69 202.01 228.69 0.999 0.784 0.92 0.85 0.99 0.31 12.763 3.990 03! 0.784 0.92 UV 0.785 0.72 205.14 232.18 0.999 0.781 1.05 1.05 0.781 1.05 0.781 1.05 205.58 232.29 0.999 0.783 1.08 1.08 0.783 1.08 0.783 1.08 4 0.155 119.34 201.35 228.65 0.997 0.769 2.76 776 2.72 0.13 4.666 0.224 03! 0.769 2.76 H202 0.769 2.76 205.20 231.98 0.997 0.773 2.66 2.66 0.773 2.66 0.773 2.66 202.45 229.27 0.997 0.772 2.80 2.74 0.773 2.61 0.772 2.80 Note : ' weight of beaker only weight of beaker + indigo blue 80 EXP. 9 (2I31 008 Standard Callaration Cleve Std. oce 708 Useful on— Ave. uM area area Sample 1 PPP 1 0.00 0 9551421 1 0.0000 3.40 10036036 1 1407443 2 0.8798 0.8650 8895539 9228770 0.9639 14282330 16798820 0.8502 6.80 13173816 6448658 2 2.0429 1.7416 20498668 1 1226094 1.8260 25515856 15395904 1 .6573 13.61 20705164 5122005 3 4.0424 4.0592 21243764 4984935 4.2616 27279174 7042437 3.8735 20.41 50480372 9043517 3 5.5819 5.5102 48600912 8567202 5.6729 62546984 1 1855284 5.2759 27.21 102418464 16399562 2 6.2452 6.7071 32029644 4050721 7.9071 77318960 10785319 7.1689 Calibration Curv Y - -0.12 + - 4.07 X r - 1 .0000 where : X is the DCB/T CB ratio Y is the OCR concentration ( ppb 1 Effluent 008 concentration Exp. DCB TCB Useful DIT DCB Ave. 95% k' Sk' No. area area Sample uM 1M C.l. ( mh-1 l 95% 0.1. 1 41 524576 1 2620246 3 3.2903 1 3.267 1 3.48 0.54 0.000 #DlVlOl 39617216 1 1660055 3.3977 13.704 43614064 630162 69.2109 281.6 19532540 5073315 3.8501 15.545 44010712 13177716 3.3398 13.469 2 10319936 9593831 3 1.07537 4.26 4.35 0.19 0.223 0.017 03 7386303 6291530 1 .1740 4.66 8777255 7897060 1.1 1 15 4.40 8022378 6932605 1.1572 4.59 7939163 7182796 1.1053 4.38 3 5105688 8798553 3 0.5803 2.24 2.06 0.1 7 0.689 0.057 03! 6212633 1 1551221 0.5378 2.07 UV 7108574 13740457 0.5173 1.99 3974543 6777215 0.5865 2.27 5974654 10849108 0.5507 2.12 4 5978974 12990972 3 0.4602 1 .75 1 .76 0.07 0.710 0.044 03! 5820559 12788305 0.4551 1 .73 H202 4056563 8031797 0.5051 1 .94 4164827 8251756 0.5047 1 .93 4827953 10288323 0.4693 1 .79 81 EXP. 9 l3l31 Effluent Fellll Exp. Sample Measured with 10 cm cell Fe(II) conc. ( uM 1 k' Sk' Number Absorbance Ave. Effluent Ave. 95% C.|. (min-1 1 (min-1 1 1 1 2.0349 2.0216 2.0247 2.0270 34.96 35.06 0.22 0.000 #DlV/Ol 2 2.0359 2.0349 2.0324 2.0344 35.09 3 2.0351 2.0383 2.0376 2.0370 35.13 2 1 0.5436 0.5432 0.5414 0.5427 9.27 9.36 0.77 0.292 0.026 03 2 0.5328 0.5331 0.5322 0.5327 9.10 3 0.5664 0.5677 0.5680 0.5674 9.70 3 1 0.4193 0.4203 0.421 1 0.4202 7.15 6.99 0.41 0.426 0.026 03IUV 2 0.4111 0.4123 0.4111 0.4115 7.00 3 0.3980 0.4010 0.4050 0.4013 6.82 4 1 0.5133 0.5146 0.5145 0.5142 8.78 8.87 0.32 0.315 0.012 03/H202 2 0.5155 0.5159 0.5161 0.5158 8.81 3 0.5279 0.5276 0.5285 0.5280 9.02 Calibration Curve : Y = -6.88 4» 969.27 X r = 0.9998 "X" is the value of Absorbance "Y" is the F601) concentration 1 ppb 1 "r' is the correlation coefficient H202 Calllration Cave Std. Measruements uM test 1 test 2 test 3 test 4 test 5 Ave. 95% OJ. 0 0.067 0.066 0.067 0.066 0.064 0.066 0.0015 10 0.122 0.116 0.121 0.119 0.120 0.120 0.0029 25 0.194 0.195 0.204 0.198 0.199 0.198 0.0049 50 0.324 0.321 0.325 0.324 0.323 0.323 0.0019 75 0.451 0.450 0.460 0.453 0.454 0.454 0.0049 100 0.593 0.595 0.596 0.595 0.594 0.595 0.0014 Calibration Curve : Y = -12.47 + 190.77 X r = 0.9998 where ; 'X" is the UV absorption at 551 nm 'Y" is the concentration of H202 in uM "r" is the correlation coefficient H202 Sample Exp. lnfluent Effluent k' Sk'j Abs. uM (raw1 M (initia Ave. 95% C.l. Abs. uM Ave. 95% 0.1. ( min.-1 ( min.-1 1 4 0.669 16725 66.58 66.64 0.07 0.251 35.41 36.59 1.09 0.087 0.004 0.670 16750 66.68 0.263 37.70 0.670 16750 66.68 0.257 36.55 0.669 16725 66.58 0.255 36.17 0.670 16750 66.68 0.260 37.13 82 EXP. 10 (1/31 1) pH = 6.29 21 [HCO3-1= 0.0046 mole/L 31 Punp flowrate : Ozone = 12.301 mL/min. DCB = 12.340 mL/min. NaOH = 1.153 mL/min. Fe(lll = 0.984 mL/min. H202 = 0.106 mL/min. 41 Hyfialllc Retention Tine 9.34 min ( w/o H202 1 9.30 min ( w/ H202 1 51 Volume of The Reactor = 250 mL Ozone Concentration INFLUENT Raw Reactor EFFLUENT Final Exp. Wt. 2 Initial Ozone Concentration ( uM 1 k' Sk' Abs. uM (9).. Abs. Abs. Data ub-Ave Ave. 5%C.l min.-1 min.-1 1 0 0.00 ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### ##### 03 0.154 117.90 206.19 232.75 1 .004 15.47 15.47 15.47 15.47 205.16 232.18 1 .004 16.02 16.02 15.82 15.95 202.54 230.06 1 .004 15.51 15.51 15.51 15.51 15.64 0.56 0.700 0.030 03/ UV 0.156 119.44 205.03 232.32 1.001 0.86 1 .05 1 .05 0.99 201.30 228 .08 1.001 1.50 1.50 1.50 1.50 204.26 231.21 1.001 1.28 1.28 1.28 1 .28 1 .26 0.64 1 0.082 03/ H202 0.157 1 19.73 205.53 232.50 1 .002 2.40 2.40 2.40 2.40 205.24 232.28 1 .002 2.31 2.31 2.31 2.31 205.14 232.72 1 .002 2.58 2.58 2.58 2.58 2.43 5.197 Note: ' 00 weight of beaker only weight of beaker + indigo blue '” Ozone concentration in experiments 1 & 6 are zero. 83 Effluent 068 concentration where : X is the DCB/T CB ratio Y is the DCB concentration ( ppb 1 EXP. 1 0 (2/31 008 Stand“ Calllration Cave Std. 008 'T'ca Useful orr Ave. ‘ UM area area Sample 0.00 0 10994926 1 0.0000 0.68 2709133 15521120 3 0.1745 0.1703 2822517 16987612 0.1662 2745956 16142584 0.1701 1.70 6871543 16668120 3 0.4123 0.4096 6875499 16747235 0.4105 6690765 1 6485668 0.4059 3.40 13057246 15762961 3 0.8283 0.8130 13367006 16621329 0.8042 12637938 15671754 0.8064 5.10 19683484 16073414 3 1 .2246 1 .2240 1 8523668 1 5070709 1 .2291 19661632 16137345 1.2184 6.80 21615140 14528687 3 1.4878 1.4871 22855978 15308210 1.4931 2431 3048 1 6422267 1 .4805 13.61 51689228 15674178 3 3.2977 3.2538 51457456 15652338 3.2875 52288980 16463539 3.1760 Calibration Curv Y 0.03 + 4.22 r = 0.9989 Exp. oce i‘ca Useful an ace Ave. 95% k' Sk' No. area area Sample U! 111 0.1. ( mh-1 1 95% CJ. 1 42656516 14153676 4 3.0138 12.75 1 3.94 2.05 0.000 #DIVIOl 18558520 5249862 3.5350 14.95 19319944 5392414 3.5828 15.15 33437948 10963676 3.0499 12.91 37823840 756961 49.9680 210.91 2 7123910 14034804 4 0.5076 2.18 4.34 0.83 0.237 0.071 03 8548897 7130518 1.1989 5.09 12037572 12035801 1 .0001 4.26 13621071 14772329 0.9221 3.93 13190443 13739242 0.9601 4.09 3 4790381 7464607 4 0.6417 2.74 2.69 0.16 0.449 0.086 03! 12867412 15317227 0.8401 3.58 UV 7449666 1 1821526 0.6302 2.69 6262754 10545058 0.5939 2.54 4713175 7264267 0.6488 2.77 4 3121084 6379119 5 0.4893 2.10 2.00 0.17 0.643 0.124 03/ 4522149 10953430 0.4129 1 .78 H202 3844538 8085955 0.4755 2.04 3919295 8608885 0.4553 1.96 . 3241634 6595005 0.4915 2.11 84 EXP. 1 0 l3/31 Effluent Fell” Exp. Sample Measured with 10 cm cell Fe(ll) conc. l ppb 1 k' Sk' Number Absorbance Ave. Effluent Ave. 95% C.l. (min-1 1 (min-1 1 1 1 1.9287 1.9218 1.9204 1.9236 33.17 33.19 0.06 0.000 #DIVIOl 2 1.9253 1.9243 1.9290 1.9262 33.22 3 1.9233 1.9272 1.9209 1.9238 33.17 2 1 0.4352 0.4336 0.4322 0.4337 7.38 7.48 0.40 0.368 0.021 03 2 0.4514 0.4498 0.4495 0.4502 7.67 3 0.4350 0.4342 0.4336 0.4342 7.39 3 1 0.3789 0.3788 0.3788 0.3788 6.43 6.42 0.05 0.447 0.004 O3/UV 2 0.3770 0.3765 0.3763 0.3766 6.40 3 0.3764 0.3797 0.3796 0.3786 6.43 4 1 0.4509 0.4520 0.4527 0.4518 7.70 7.80 0.34 0.350 0.016 03/H202 2 0.4681 0.4663 0.4649 0.4665 7.95 3 0.4541 0.4546 0.4544 0.4544 7.74 Calibration Curve : Y = -6.88 + 969.27 X r = 0.9998 "X" is the value of Absorbance ”Y" is the Fe(lll concentration ( ppb 1 "r' is the correlation coefficient H202 CaIHIration CII'V. Std. Measruements UM test 1 test 2 test 3 test 4 test 5 Ave. 95% CJ. 0 0.064 0.069 0.063 0.066 0.063 0.065 0.0032 10 0.104 0.102 0.099 0.095 0.099 0.100 0.0043 25 0.177 0.178 0.177 0.173 0.177 0.176 0.0024 50 0.313 0.312 0.318 0.315 0.313 0.314 0.0030 75 0.451 0.447 0.448 0.459 0.448 0.451 0.0061 100 0.587 0.583 0.588 0.585 0.582 0.585 0.0032 Calibration Curve : Y = -9.85 + 188.69 X r = 0.9993 where ; "X" is the UV absorption at 551 nm "Y" is the concentration of H202 in uM 'r" is the correlation coefficient H202 Sample Exp. lnfluent Effluent k' Skfi Abs. uM (raw1 M (initial Average 95% C.|. Abs. UM Average 95% 0.1. ( min.-1 ( min.-1 1 4 0.643 16075 63.38 63.42 0.07 0.260 39.21 38.04 0.90 0.072 0.003 0.644 16100 63.48 0.255 38.27 0.643 16075 63.38 0.251 37.52 0.643 16075 63.38 0.251 37.52 0.644 16100 63.48 0.252 37.70