
 
\
H
!

V
.

a

i
x
u
.
.
.

a
.

.
V.

.
3
3
2

.
1
1
.
5
.

_
.
.

‘
.
1
:

.

.

 
 

 
 

 

S
.

.
2
.

r
2

#
6

S
u
b
.
.
.
a

,
”
a
n
!
“

\
u
:

l
\
.
-

.
«
v
v

.
5 I
’
l
l
‘
.

.
1
.
.
5
5
3
.

.

v
i

,

v
‘
3
.

a
l
l
»

\
a
.

.
E
fl
.
1
5
:
3
4
.
1
.

r
5
1
1

.
4
.
.
.

i
g
n
d
z
f
.

u
u
‘
.
.
.
‘

.
v
\
.
i

0

.
G
V
J
I
R

"
s
a
w
.
.
.

I
.
H

..
L
i
'
s
:

3
.

:
5
.

r
1

2
.
.
3
:
1
:

.
4
4
.
2

4
.
.
.
.
.
.

“
e
r
r
-
.
1
:
1
5

.
4

1
.
3

v
.
1
.

J
{

:
v

 
v. a

a
t

6
.
.
.
.
.
.
»
H

.
1
4

k
a
4
2
6
!
?

 



,‘x , I

I ‘_l.

' ‘ rt?"

CHIGAN STATE UNIVERSITY LIBRARIES

Ill“ WWWWillmll‘lll mu
3 1293 01026 9862

 

l

       

This is to certify that the

dissertation entitled

NMR INVESTIGATIONS OF CHEMICAL SHIELDING,

STRUCTURE, AND MULTIPLE QUANTUM-DYNAMICS

OF APATITES

presented by

Gyunggoo Cho

has been accepted towards fulfillment

of the requirements for

Ph. D degree in Chemistry
 

 

Major professor /

Date &2‘%1923

MSU is an Affirmative Action/Equal Opportunity lnsn'tun'on
0-12771

 
 



 

 

LIBRARY

Michigan State

University
   

PLACE IN RETURN BOXto move thII checkout from y
our record.

TO AVOID FINES return on or baton data duo.

DATE DUE DATE DUE DATE DUE

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSU IoAn Atflnnutlvo ActlonlE
qunl Opportmlty InstItqun

   
 

—______Z—
—-———

 



NMR INVESTIGATIONS OF CHEMICAL

SHIELDING, STRUCTURE, AND MULTIPLE-

QUANTUM DYNAMICS OF APATITES

by

Gyunggoo Cho

A DISSERTATION

Submitted to Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1 993

 



ABSTRACT

NMR INVESTIGATIONS OF CHEMICAL SHIELDING, STRUCTURE,

AND MULTIPLE-QUANTUM DYNAMICS OF APATITES

by

Gyunggoo Cho

The 19F MAS-NMR spectra of a series of fluorapatites, M5F(PO4)3, where M

a Ca“, Sr2+ and Ba“, and solid solutions of Ca/Sr fluorapatite have been ob-

tained. The crystallographic symmetry about the fluoride ions requires that the

chemical shielding tensors be axially symmetric. The principal components of

' the 19F shielding tensor of M5F(PO4)3 are obtained from 19F MAS-NMR spectra

using the moments method and Herzfeld and Berger graphical method. The use-

fulness of these two methods is demonstrated by using the comparison between

experimental spectra and simulated spectra obtained from the chemical shield-

ing tensors. The measured chemical shielding tensors enable us to separate the

contributions to the Ramsey paramagnetic shielding term from the sigma- and pi-

bonding between the alkaline earth metal ions and the fluoride ions. The values

of sigma- and pi-bonding contributions to 19F shielding for M5F(PO4)3 (M - Ca2+,

Sr2+ and 8a“) are 81.7 ppm and 24.6 ppm, 97.6 ppm and 26.0 ppm, and 138.4

ppm and 32.1 ppm respectively with respect to free fluoride ion.

The preference of Sr“ ions for the Ca(2) site for fluorapatite have

been studied using 19F MAS-NMR spectra of a solid solution of composition



Cag,97$r1,03F2(PO4)6. The peak intensities obtained from the centerband and

sidebands as well as the deconvolution peak indicate that Sr2+ ions have a 23%

preference for the Ca(2) site, which is adjacent to the fluoride ion. The assignment

of the spectra of Ca3,978r1.03F2(PO4)5 is aided by the existence of spin diffusion

performed by the SPARTAN pulse sequence.

The dimensionality of the distribution of spins in solids influences their multiple-

quantum NMR dynamics. We have studied these dynamics for the quasi-

one-dimensional distribution of uniformly spaced proton spins in hydroxyapatite,

Ca5(OH)(PO4)3, and related compounds, using a phase-incremented even order

selective MQ pulse sequence. The increase in effective size N with prepara-

tion times for stoichiometric monoclinic hydroxyapatite is linear at early times, in

agreement with calculations based on the incremental shell model; however, the

experimental slope is three times greater than the predicted slope. An upward

curvature observed at longer preparation times is qualitatively ascribed to the in-

complete isolation of linear chains. A slight deficiency of hydroxyl groups in a

sample of hydroxyapatite in the commonly-occurring hexagonal crystal form leads

to a measurable decrease in the slope of the linear portion of the curve. The

1H multiple-quantum dynamics of a series of fluorohydroxyapatite solid solutions,

Ca5(OH)xF1-x(PO4)3, exhibit decreased slopes for lower hydroxyl levels (smaller

x), and requires consideration of the different lengths of spin “clusters” in order

to model the behavior. The defect densities of apatites (clusters) are estimated

by using 1-D cluster model.

We have also studied the 19F multiple-quantum NMR of a single crystal of

mineral fluorapatite at different orientations with respect to the external magnetic

field. The observed oscillatory behavior of the multiple-quantum dynamics is



interpreted in terms of 1-D clusters of fluoride ions in the defect-containing sample.
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I. INTRODUCTION TO APATITE STRUCTURE AND CHEMISTRY

Although the chemical reactions leading to mineral formation in biological

systems are not fully understood, it is believed that a nonstoichiometric ”defect"

form of calcium hydroxyapatite, Ca5(OH)(PO4)3, is the primary mineral phase of

bone, dentin and dental enamel.” Apatites' are also important in the production

of fertilizer, in the lighting industry as a phosphor in fluorescent lamps, and in

chromatography.‘ At the pH values typically found in biological systems, the

“stability of calcium phosphates increases and the solubility decreases as the molar

Ca/P ratio increases. Thus, in vivo dicalcium phosphate dihydrate CaHPO4-2H20

(DCPD, CalP=1.00) hydrolyzes into octacalcium phosphate Ca3H2(PO4)6-5H20

(OCP, Ca/P=1.33), which hydrolyzes into hydroxyapatite (HAP) (Ca/P=1.67).5

Although amorphous calcium phosphate (ACP) is not found in bone and teeth,

it can occur in vivo and is transformed into crystalline apatite via an octacalcium

phosphate-like phase.6

The substitution of numerous impurities in the apatite lattice changes the

properties of apatites. For example, the fluoride ion is effective in prevents

the dental caries, since it increases the rate of remineralization and lessens

the acid demineralization.“ The surface of HAP reacts with fluoride ions to

yield calcium difluoride (Can), fluorohydroxyapatite (Ca5(OH)1-xe(PO4)3), and

fluorapatite (Ca5F(PO4)3), depending upon conditions. Although the fluoridation

of hydroxyapatite is not completely understood, several mechanisms have been

suggested, including the ionic exchange of F' for OH‘ in the apatite structure,9

direct precipitation of fluorapatite mineral, and dissolution of hydroxyapatite and

recrystallization of fluorapatite in the presence of F'.‘° Carbonate ions can also

replace hydroxyl groups or phosphate groups in the apatite lattice. A carbonate ion

1



can substitute for two hydroxyl groups in hydroxyapatite, forming type A carbonate

apatite. This reaction takes place at high temperature,11 and results in an increase

of the a axis length.12 The substitution of phosphate groups by carbonate ions

decreases the a axis and increases the c axis.‘3'14 The product is referred to as

type B carbonate apatite.11 Calcium ions in apatites can be replaced by strontium

ions. The presence of strontium ions in bone and teeth increases susceptibility

to caries. The incorporation of strontium ions increases the a axis and c axis

length.15

From X-ray crystallographic analysis, hydroxyapatites have either a hexagonal

crystal system with the space group P63/m or, for very stoichiometric samples, a

monoclinic system with the space group P21/b. In the hexagonal crystal system,

there are two Ca5(OH)(PO4)3 groups in a unit cell of dimensions a (=b) = 942

pm and c = 688 pm.5 The structure of hexagonal hydroxyapatite is shown in

Figure 1 projected down the c axis. There are two types of calcium ions in the

structure, Ca(1) and Ca(2). Hydroxyl groups are surrounded by three Ca(2) ions

in an equilateral triangle. Infinite linear chains of protons have a uniform spacing

of 344 pm. The position of the hydroxyl protons is located about 130 pm from the

plane of the triangle of Ca(2) ions. The central column of hydroxyl groups has

six hexagonalIy-situated neighboring columns at distances 01942 pm. Statistical

disorder of the hydroxyl groups result, on average, in protons in three of these

six columns being located about 130 pm below the Ca(2) triangle, and about 130

pm above the Ca(2) triangle in the omer three columns. When viewed down

the (hexagonal) c axis, the Ca(2) ions form two displaced equilateral triangles of

Ca(2) ions which are rotated by 60°. The distance between the two triangles is

344 pm. Columns of Ca(1) ions are parallel to the c axis. Each Ca(1) column



is located at the middle of a large equilateral triangle of three hydroxyl groups.

The unit cell dimensions of monoclinic apatite are a = 942 pm, b = 2a, c = 688

pm, and 7 = 120°.‘6'17 The space group of monoclinic hydroxyapatite, P21/b,

indicates that the monoclinic form is regarded as twins occurring at 120° rotations

about the c axis.“5v17 In the monoclinic crystal form, the protons in four of the

six neighboring columns are located about 130 pm below the plane of the three

Ca(2) ions, and those in the other two columns are located about 130 pm above

the plane of the three Ca(2) ions. Fluorapatite, which has a structure similar to

that of hydroxyapatite, has the same unit cell dimensions except that a = 937 pm.

Fluoride ions are exactly in the middle of the plane of the three Ca(2) ions, which

forms a mirror plane.18

Apatites have been investigated using various methods such as X-ray crys-

tallography, IR, Raman, NMR, etc. The chemical environment of fluorine ions in

alkaline earth fluorapatites and the preference of Sr2+ ions for Ca(2) sites of Sr/Ca

fluorapatite solids solutions are studied using 19F MAS-NMR. The high level of

defects found in naturally-occurring apatites is of interest in its own right, since

they presumably reflect the conditions of formation of the mineral. Fluoride ions of

fluorapatite are interrupted by charge-coupled vacancies, or substitution of fluoride

ions by carbonate groups, hydroxyl groups, or chlorine ions. Hydroxyl chains in

hydroxyapatite also have vacancies, or hydroxyl group substitutions by carbonate

groups, fluorine ions, or chloride ions. Vacancies of hydroxyl groups in hydrox-

yapatite have been quantitatively determined by using IR and 1H MAS-NMR.20

However, these methods cannot reveal the presence of microscopic heterogene-

ity of various types of anions. The 1H and 19F multiple-quantum NMR experiments

in this thesis provide for the defect in the hydroxyl or fluorine chains and make



it possible to calculate the defect densities of apatites. Furthermore, the quasi-

one-dimensional spin distributions in apatites represent a valuable model system

in which to study the effects of dimensionality upon multiple-quantum NMR dy-

namics.



11ao 3:, 3,) a

Figure 1. Structure of hydroxyapatite. Calcium ions (large open circle), hy-

droxyl groups (dotted circle), and phosphorus group (small open circles connected

by a line). See text. Taken from Ref. 5.
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PART 1

19F MAS-NMR investigation or Alkaline Earth Fluorapatltes:

Measurement of Chemical Shielding Tensors and

Characterization of Sites in CalSr Fluorapatlte Solid Solutions



1. Introduction

The chemical shielding tensors of 19F in metal fluoride salts have been of

widespread experimental and theoretical interest."5 Line narrowing techniques

such as multipulse “dipolar decoupling,"2 magic-angle spinning (MAS),6'7 or the

combination of these two techniques (CRAMPS)8 have been employed to obtain

more accurate values for the isotropic chemical shift. However, knowledge of

the three components of an anisotropic chemical shielding tensor can provide a

more detailed understanding of the factors governing the chemical shielding, if the

structural environment of the fluorine atom is known. Although single-crystal NMR

studies are generally required to orient an arbitrary chemical shielding tensor in

the crystallographic axis system, if the shielding tensor is axially-symmetric, one

of its principal axes must necessarily be along the corresponding symmetry axis

of the crystal.

The fluoride ion in the alkaline earth fluorapatites (M5F(PO4)3, M = Ca, Sr, Ba)

resides on a crystallographic hexagonal screw axis,"'11 and therefore possesses

such an axially symmetric 19F chemical shielding tensor. The 19F chemical

shift anisotropy (CSA) for calcium fluorapatite has been determined from single-

crystal NMR measurements”:13 and an accurate isotropic chemical shift has

been obtained from 19F MAS-NMR studies (because of the special arrangement

of the fluoride ions in a linear chain, sharp spectra are obtained at modest spinning

speeds without using multiple-pulse techniques, as discussed in references 6

and 7). However, corresponding data for the strontium and barium analogues

have not been reported. We have therefore measured the 19F chemical shielding

tensors of these compounds, using three different methods that yield the CSA from

the spinning sideband patterns (spectral moments,” Herzfeld-Berger graphical
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analysis,15 and spectral simulation), and will discuss briefly the relative merits of

these methods.

Knowing both the chemical shielding tensor components and the absolute

chemical shielding scale relative to the free fluoride ion enables one to separate

contributions to the shielding from the sigma— and the pi-bonding between metal

and fluoride ion for the three different metals investigated. This approach enables

us to predict chemical shielding tensors in other systems, such as solid solutions

of calcium/strontium fluorapatite.

The broad linewidth typical of powder samples arising from dipolar interactions

and CSA obscures identification of individual peaks having different chemical

environments in many solids of interest. Since MAS-NMR averages out these

anisotropies, and results in sharp peaks at each isotropic chemical shift, it is

- extremely useful for the structural study of solids having many components. For

example, the site preference of solid solutions of a semiconductor alloy was

studied by using 31P MAS-NMR and peak deconvolution,16 and ”F MAS-NMR

has been also used to quantitatively studying fluoride ions perturbed by antimony

ions in antimony-doped fluorapatites.20 Since the chemical shift of fluorine is

very sensitive to its chemical bonding environment, we have used high speed

19F MAS-NMR for the study of solid solutions of calcium/strontium fluorapatite.

The 19F NMR parameters measured for the pure alkaline earth fluorapatites

(M5F(PO4)3, M = Ca, Sr, Ba) are used in the interpretation of the data from

the solid solutions. Since the 19F chemical shift difference between strontium and

calcium fluorapatites is 33.2 ppm, the isotropic chemical shifts of samples having

different ratios of calcium to strontium can be distinguished by using high field/high

speed 19F MAS-NMR. The integrated intensity of the non-overlapped peaks and
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the deconvolution of asymmetric broad peaks arising from the perturbation by

strontium substitution yield the ratios of each component. The results were used

to study the site preference of Sr2+ ion substitution in a solid solution having the

composition Cag,gysr1,o3F2(PO4)5.

2. Nuclear Spin Interactions in Solids

A typical nuclear spin Hamiltonian of a diamagnetic solid is given by

”H: H2+Hrf(t)+HCS+HD+HQ+HJ (M)

where the various Hamiltonians on the right represent respectively the Zeeman,

radiofrequency, chemical shift, dipolar, quadrupolar, and scalar interactions of the

nuclei. The first two terms are determined by external static magnetic and applied

rf fields. Thus, they describe “external” interactions of the spins. The other terms

depend on the fundamental characteristics of the nucleus and its environment. In

the solids that we have studied, the quadrupolar and scalar interaction are not

relevant, and will not be discussed.

A. Zeeman Interaction

The interaction between a nuclear magnetic moment, it, and an applied static

field, 130 is represented by the Zeeman Hamiltonian

H, = -§L;Zflt'fio= -Z'rih1;;'fio 0'2)

where h is Planck’s constant divided by’21r, 7,- is the magnetogyric ratio of nucleus

i, and 1‘; is the angular momentum spin operator for nucleus i. The eigenvalues

of this term alone are

Ez/h = 2:.7IhmiHo ("3)

where m,- is the magnetic quantum number.
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B. Radiofrequency Interaction

In NMR spectroscopy, transitions between energy levels are generally induced

by an applied rf field, which is applied perpendicular to the static field direction.

The Hamiltonian term for the radiofrequency (rf) field along the x direction is given

by

H,f(t) = 27rjl'3H1COS(2m/I) (l-4)

where ii, is the nuclear magnetic moment in the x direction, H1 is the magnitude

of the if field applied in the x direction, and u is the Larmor frequency.

C. Chemical Shielding Interaction

The screening of the nuclei from the external magnetic field by the surrounding

electrons slightly modifies the Zeeman interaction. The shielding generated at the

nuclei from the external magnetic field results in the Hamiltonian

”HOS .-. vilified, (l-5)

where 6 is the chemical shielding tensor, a dimensionless second rank tensor. In

solutions, the chemical shielding interactions are averaged out by rapid isotropic

tumbling. Thus, a single line in solution is observed at the isotropic average of

the shielding tensor (Tr{&}). In solids, since molecular motions are typically slow

or absent, a broad powder pattern is observed. The chemical shielding tensor 6

is symmetric in larger static magnetic field. In the principal axis system (PAS),

all off-diagonal elements of shielding tensor zero. The chemical shielding tensor

can ne described by the three principal values 011, 022, and 033, and three angles

which specify the orientation of the principal axis system. If ”as are the dominant

interactions, the three components of the chemical shielding tensor can be “read-

off' directly from the spectrum since a powder pattern is related the chemical

shielding. The theoretical powder patterns for a shielding tensor with different
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Figure l-1. Calculated chemical shielding powder patterns (a,- =- 64 ppm): (8)

axially symmetric shielding tensor (CSA = 84 ppm and i) a 0) ; (b) non-axially

symmetric shielding tensor (CSA = 84 ppm and n = 0.3). The dashed line denotes

the isotropic chemical shift An exponential apodization function corresponding

to a 500 Hz line broadening was applied to the calculated FID before Fourier

transformation.
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asymmetry parameters 77 are shown in Fig. H. The asymmetry parameter 7) is

defined as

n = FL“ (l-6)

Conventionally, the order of the principle values of the chemical shielding tensors

is 011 s 022 s 033. The chemical shift anisotropy is defined as

CSA = 833 - 1/2(011 + 022). (I-7)

The chemical shielding tensor is generally obtained from single crystal NMR

studies or as in the present work, from MAS-NMR spectra on polycrystalline

samples.

D. Dipolar Interaction

The dipolar interaction is the consequence of direct magnetic coupling of nuclei

through space. The dipolar Hamiltonian of two nuclear spins (spin 1 and spin 2)

is represented by

”D: (Vi/Thin? it 'iji M)

where r12 is distance between the nuclei and D12 is the dipolar coupling tensor.

In a Cartesian coordinate system x, y, 2 (see Fig. I-2),

(rfi - 3x2) —3xy -3xz .

D12 = 1/rf2 —3xy (1%? — 3y?) —3yz (l-9)

—3xz —3yz (rfi — 3Z2)

The trace of D12 is zero, and it is axially symmetric: D13 = 021, 023 = D32, and

0,3 = 03,. In the principal axis system, with r12 along the z axis, all off-diagonal

elements are zero. The dipolar tensor can then be rewritten as

. 1 0 0

D=1/ri’2 0 1 0 (1-10)

0 0 —-2

It is useful to transform from Cartesian coordinates to polar coordinates (Fig. I-2).
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The Cartesian coordinates x, y, and z are represented by the following

x = rsin 6 cos d)

y=rsin09in¢ (H1)

2 = r cos 6.

Eq. (l-8) can be rewritten in the polar coordinate system as

HD==7/rf,h(A-i-B+C+D+E+F) ("12)

A = (1 — 3CO529)IlzI2z

8:...)(1 _ 3cos 2a) [111; + 171;] = 3(1 — aces 29) (11.12. — f1 - f2)

= _gsin9cos9e-‘¢ [1,ng +IT122] (I-13)

D = —-:2isin9c090t=3'm5 [11.212 +ITI22]

E =—%sin268'2i¢ITI;

= —%sin29e+2‘¢I;I;

where I+ and I‘ are the ladder operators, I+ = f; + if; and I“ = I; — if,

I+|a) = 0, I+|fl) = Id), I'|a) = IB), and I‘lfl) = 0. The various ladder operators

can change the nuclear spin quantum numbers if), and mg in a characteristic way.

Term ’A' does not shift the nuclear spin quantum number; term '3’ alters both spins

by t 1, but ITI 3 and III *2" do not change the sum (1111 + mg); the others change

(m + mg) by :t 1 or :I: 2. Since, at high magnetic fields, the perturbations due to the

off-diagonal elements C, D, E, and F are negligible compared to the terms ’A' and

'8’, Eq. (I-13) can be rewritten as the truncated homonuclear dipolar Hamiltonian

in terms of the A and B terms
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Figure l-2. Cartesian axis system and polar coordinates for the dipolar coupling

of the two nuclei.
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H0 = (ii/242110 — 3cos 26001-11; — 311.12.). (144)

The truncated heteronuclear dipolar Hamiltonian remains only the term ’A' that is

replaced It and [2 by I and S.

3. Magic Angle Spinning (MAS)

In solids, anisotropic interactions such as the chemical shielding interaction,

dipolar couplings and electric quadrupole couplings can result in very broad NMR

spectra. These anisotropies can be efficiently removed by spinning the sample

about an axis making an angle of approximately 54.7° with respect to the external

magnetic field”19 (Fig. l-3) (see below). The rotation of the sample about an

angle 8 with respect to the external magnetic field makes the anisotropic terms

of the Hamiltonian time-dependent with the periodicity of the sample rotation

frequency car. The three anisotropic terms mentioned above are generally small

compared to a Zeeman term and are treated as perturbations. The Hamiltonian

is divided into two parts

H=H+Hh) am)

where 72 is the time-average of the Hamiltonian and ’H'(t) is time-dependent. In

this section, the effect of sample rotation on each of two anisotropic terms will

be discussed in turn.

Since the chemical shielding tensor is of small size relative to the Zeeman

term, it can be truncate it. We can rewrite Eq. (l-5) as

He, = 7hazzH0 (I-16)

where

0n = M21011+ A222022 + A3230” ("17)
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Figure l-3. Orientation of magnetic field Ho and spinning axis vectors for magic

angle spinning experiments.
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In these equation, the terms Uaa (a = 1, 2, 3) are the principal values of the

chemical shielding tensor and A30, are the direction cosines of the principal axes

with respect to the external magnetic field. The rotation of the sample makes the

direction cosines time-dependent

A, = cos 8 cos X, + sin 8 sin X, cos (wrt + 11,) (I-18)

where ,8 is the angle between the rotation axis and the external magnetic field, X,

is the angle between the rotation axis and the p-th principal axis of the chemical

shielding tensor, and 18,, is the azimuthal angle of the p-th principal axis at t=0.

By substituting Eq. (I-18) into Eq. (H7) and taking the time-average, we obtain

the following equation

as: = %Sin2fiTr{&} + %(3cos2i’3 — 1) 20,, cosxp. (I-19)

Only the isotropic chemical shift 0,- (=1/3Tr{6}) In Eq. (l-19) remains if [3 is 54.7°

[(3 cos28 — 1) = 0], the so-called “magic angle”.

Since the rotation of the solid sample makes cos 6 in the dipolar Hamiltonian

time-dependent, we can rewrite cos 6 as

cos 6(t) = cos 8 cos 8' + sin 8 sin 8’ cos (at + 8’) (l-20)

where 8' is the angle between the axis of rotation and F12, and this the azimuthal

angle of £12 at 1:0. The time average of cos2 0(t) is

2637? = cos28cos28’ + %sin2fisin2 8' = F§.(3cos2 8 — 1) (3cos2 8’ -— 1) + I, (l-21)

Substituting Eq. (I-21) into Eq. (l-14), we can write the average (time-independent)

dipolar Hamiltonian as

Hp = guzcos2 8 — 1) (3 cos2 8’ — 1) (i, . i; — 311,112,). (1-22)

The time-independent dipolar interaction is averaged out at the magic angle.

Under the MAS condition, the averaged time-independent Hamiltonian yields

only isotropic chemical shifts, but time-dependent Hamiltonians are modulated by
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the periodicity of the Spinning speed of a sample. From Eq. (H4) and (l-22), the

time-dependent part of the dipolar interaction is given by

710(1) = (as: 8.138(1) .11?) -— 31,12) [sin 28 sin 28’ cos (wrt + 18) + sin2 8 sin2 8’ cos2(cc,.t + ii»)

(l-23)

The time-dependent Hamiltonians of the other two interactions (chemical shift

and quadrupolar interactions) also show the same periodicity in w, and 28:, as

the time—dependent dipolar Hamiltonian. The modulations of w, and 2.2, in the

time-domain give rise to peaks in the frequency-domain, referred to as sidebands,

which appear at integral multiples of the spinning speed from a centerband. The

intensities of sidebands that are related to the CSA,“‘-15 and enable one to mea-

sure the chemical shielding tensors.

4. Methods for Measuring Chemical Shift Anisotropy (CSA) from

MAS-NMR Spectra

In this study, three methods were used to calculate the principal components

of the chemical shielding tensor: the moments method of Maricq and Waugh,14 a

graphical procedure developed by Herzfeld and Berger that is based on spectral

simulation,15 and a MAS-NMR spectral simulation program.

A. Moments Method

The I-th moment of an NMR spectrum“ is obtained using the following

definition (integral) and approximation (summation):

M, = f _°:°w’g(w)d.a 2 WrIENng(Nwr) "'24)

with w the frequency of an isochromat (with respect to the isotropic chemical shift

position), g(w) the intensity of the area normalized to one at frequency u), N the
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order of the N-th sideband (positive or negative integer, 0 for the centerband),

g(Nw,) the normalized area (or peak height) of the N-th sideband at frequency

Nw,; and w, the spinning frequency. For a reasonably “sharp” experimental MAS-

NMR spectrum, the summation in Eq. I-24 yields moments very close to the true

moments defined by the integral expression

The moments method yields the components of the chemical shielding tensor

by relating them to the measured second and third moments of the MAS-NMR

spectrum with the following equations:“

M2 = (62/15)(3 + n2) (I-25)

M3 = (253/35)(1 — 7,2) (l-26)

where M2 and M3 are the second and third moments respectively, and 6 and the

asymmetry parameter 1; (Eq. l-6) are related to the shielding tensor components.

' 6 and an isotropic chemical shift are represented by the following equations:

5 = 033 - 0,- (F27)

”i=%(011+022+033)- ("28)

Using experimentally determined values of the second and third moments, and of

the isotropic chemical shift (0,), we can determine the individual components of

the shielding tensor 011, 022, and 033. The chemical shift anisotropy (CSA) can

be calculated from Eq. l-7.

B. Herzfeld and Berger Graphical Method

The Herzfeld and Berger graphical method was used to obtain the chemical

shielding tensors by overlaying the various calculated contours corresponding to

the measured ratios Ig/lo, where l,, is the intensity of the i-i-th sideband and I0

is the intensity of the centerband. The region of overlap provides both values
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and error limits for the intermediate parameters 8 and p, which are then used to

calculate the chemical shift tensor from equations (I-29) and (I-30):15

it = (1H0) (033 - 011) / Wr ("29)

P=(011 +033-2022)/(033-011)- ("30)

5. Experimental

A. MAS-NMR Studies

Alkaline earth fluorapatites were synthesized and provided by Dr. Chung-

Nin Chau of GTE Chemicals, Towanda, PA. The 19F MAS-NMR spectra were

recorded at 376MHz on a 9.4T Varian Associates VXR-400 spectrometer at the

Max T. Rogers NMR Facility at Michigan State University. The fluorine radiofre-

quency was amplified by an AMT model 3137/3900-2 amplifier. A high speed 19F

MAS-NMR probe from Doty Scientific with 5 mm o.d. Si3N4 rotors with Vespel

caps was used. The spinning speed was measured with a fiber optic detector,

and was constant to within :10 Hz during acquisitions. The magic angle was set

by minimizing the linewidth of calcium fluorapatite, which also provided a sec-

ondary chemical shift reference (64.0 ppm with respect to hexafluorobenzene at

0.0 ppm).6 The 1r/2 pulse length was 4.0-4.2 8s, and spectral widths of 100 - 120

kHz were used. An exponential apodization corresponding to a line-broadening

of 37-80Hz was applied to the free-induction decay, which was the result of four

scans with a relaxation delay greater than five times the spin-lattice relaxation time

T1. The T1 values of centerbands were obtained by using an inversion-recovery

sequence, and are 85, 87, 88, 101, and 112 second for CasF(PO4)3, Sr5F(PO4)3,

385F(PO4)3, 083973133F2(PO4)3, and Ca58r5F3(PO4)3 respectively. The SPAR-
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TAN pulse sequence, shown in Fig. I-4, was employed for 19F MAS-NMR spectral

spin diffusion measurement.20 The centerband and assorted sidebands were se-

lectively inverted by a 180° DANTE pulse train21 consisting of twelve 15° (2 p8)

pulses given at the same point of each rotor cycle (rotor-gated synchronization).

DANTEPulses fit/2

lllllll—T’“
 

 

  
 

  
 

acquire

Figure I-4. SPARTAN pulse sequence for monitoring spectral spin diffusion.20

(see text)
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The power levels and pulse lengths of the pulses in the DANTE train were

adjusted to make the excitation profile suitably selective. After the mixing period,

a nonselective 90° read pulse (12 us) was given with alternated phases to cancel

out imperfections in the DANTE pulse trains22 that resulted in incomplete inversion

of the magnetization at a specific frequency.

The peak intensities used to calculate the moments at the different spinning

speeds were obtained both from integration and from deconvolution of the indi-

vidual peaks using VNMR 3.2 software, and the peak intensities from integration

rather than peak heights were used for the Herzfeld and Berger analysis, since

the half-height linewidths (Al/1,2) of the centerband and sidebands can be some-

what different. All 19F NMR spectra were baseline-corrected prior to integration

and deconvolution to remove a “dip" presumedly due to receiver overload. Since

there are impurity peaks that overlap the peaks of strontium fluorapatite and bar-

ium fluorapatite in the 19F NMR spectra, the CSA values determined by using the

deconvolution data are assumed to be more accurate than those obtained using

integrated intensities. A Lorentzian shape was assumed for the deconvolutions,

and the half-height linewidth and frequency of each peak was allowed to vary.

B. Simulation of 19F MAS Spectra of Fluorapatite Samples

Simulations of the 19F MAS-NMR spectra that take into account of the CSA

but not dipolar couplings were performed by using the MAS-NMR simulation

routine provided with the Varian VNMR 3.2 software. The input parameters are

the chemical shift anisotropy, the asymmetry parameter, the isotropic chemical

shift, the Lorentzian linewidth, and the spinning speed. The peak widths of

the simulated spectra were chesen to agree with the experimental ones, and

8K complex points and 8K zero-filling were used. Alternatively, the PC-based
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computer program ANTIOPE,23 which takes account for dipolar couplings, was

used to simulate the spectrum of five linear spins 3.44 Angstroms apart, with

a CSA tensor corresponding to that of Ca5F(PO4)3. The ANTIOPE simulation

was performed by observing magnetization of the middle spin (+3) of a 5 spin

system, since the homonuclear dipolar coupling pattern between the middle spin

and its neighbors better reflects the couplings of the infinite linear spin chains in

Ca5F(PO4)3. The 256 complex data points calculated were zero-filled to 8K to

avoid errors from inadequate digital resolution and apodized with a Iinebroadening

of 200Hz.

6. Results

A. Alkaline Earth Fluorapatites

Table 1 shows the measured 19F MAS-NMR spectral moments of Ca5F(PO4)3,

Sr5F(PO4)3 and Ba5F(PO4)3, and the calculated CSA and r) values at different

spinning speeds obtained from the moments method. The existence of imaginary

values of r), obviously lacking any physical significance, arises from experimental

errors in the moments measurements. From equations (l-7), (l-27), and (I-28), we

can rewrite the CSA in the following form;

CSA=-g(033 —0,.) :38 (I-31)

Therefore, we can calculate the value of a CSA without knowing the value of n.

Theoretically, the second and third moments are independent of the spinning

speed.14 The changes in the second and third moments with spinning speed seen

in Table 1 are the result of experimental error; therefore, we use the average value

of the moments over all the spinning speeds to calculate an average CSA and n.
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Table 1. 19F NMR chemical shift anisotropy and asymmetry parameter 1) of

M5F(PO4)3 (M = Ca, Sr, and Ba) calculated using the moments method, from

both integration and deconvolution. The numbers in parentheses are obtained

from the integration data.

 

 

 

 

 

 

 

 

 

 

  

      

u, M1 M2 M3 Measured Measured

(kHz) (ppm) ((ppm)2) ((1391703) 7) CSA (mm)

4.12 -0.25 660 10690 0.092 36-0

(0.20) (684) (1 1740) (0.2191) (374)

5.12 -0.09 662 1 1340 0.167i 86.7

(0.14) (663) (11950) (0.2481) (87.3)

6.12 -0.13 651 10980 0.150 85.9

(0.20) (653) (11830) (0.2661) (86.8)

7.12 -0.08 646 10610 0.0951 85.4

,2 (-0.12) (649) (10480) (0.073) (85.4)
V

g 8.12 -0.03 636 10310 0.0681 84.6

‘3’ (-0.06) (638) (10470) (0.1 10) (84.9)

o 9.12 -0.01 638 104T"—9—‘0081W.

(0.18) (634) (10800) (0.1951) (85.0)

10.18 0.01 643 10440 0.0081 85.1

(0.10) (643) (10290) (0.062) (84.9)

= :l f 3

average 0081 648 1 0680 0.095i 85.5

0.08 1:12 1340 (0.1791) :07

(0.0901: (649: (11080 (85.6

0.08) 1 1) i660) 1:1.0)

—

4.29 -0.48 20690 0.204 108.4

(0.05) (1°69) (22530) (0.08i) - (109.8)

5.63 021 921 17700 0.077 101.7

(0.45) (917) (17090) (0.158) (101.2)   
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8.28 -0.37 1054 20830 0.194 108.2

(-0.83) (1038) (19480) (0.243) (108.9)

7.00 -0.30 1077 23930 0.2011 1 10.8

(0.52) (1095) (24340) (0.1841) (1 1 1.8)

:2 8.20 -0.38 1038 19940 0.207 107.2

2' (-0.54) (1025) (18770) (0.288) (108.1)

a; 10.20 0.11 1033 21180 0.028 107.8

:7: (0.18) (1047) (22110) (0.1211) (108.2)

average -0.26 1030 20690 0.117 107.4

10.21 1:51 11820 (0.119) 12.8

(-0.18 (1032 (20720 (107.5

10.48) 1:56) 12480) 1:33)

_

8.23 0.10 2314 89840 0.110 181.8

(0.74) (2304) (73820) (0.1701) (181.0)

g 8.19 0.02 2209 58000 0.287 157.2

g (0.53) (2248) (81030) (0.295) (155.4)

“5 10.10 0.03 2227 83410 0.190 157.3

3 (0.90) (2288) (70380) (0.150) (159.0)

1087 0.39 2289 70220 0.050 180.5

(0.71) (2326) (70470) (0.110) (161.5)

=#

average 0.00 2270 88130 0.170 159.0

10.33 1:34 14000 (0.1 12) 1:18

(0.59 (2277 (88170 (159.4128)

1:034) 145) 1:8030)

# 
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The values for the CSA and moments in parentheses in Tablet are those deter-

mined from integration data, and the standard deviations are larger than those

obtained from the deconvolution data.

The CSA values can be also obtained by using the graphical procedure of

Herzfeld-Berger, which involves measurement of the sideband intensities. Fig.

l-5 shows the two graphical plots of Herzfeld-Berger for Ca5F(PO4)3 spinning at

6.12 and 10.18 kHz. The measured intensity ratios Iii/lo of Ca5F(PO4)3 spinning

at 6.12 kHz do not overlap at any region of the plot. At the higher spinning speed

of 10.18kHz, a region of overlap is observed, centered around p = 0.95 1: 0.05

and p = 3.19 :l: 0.19. Other plots using the Herzfeld and Berger graphical method

for Sr5F(PO4)3 spinning at 6.26 and 10.20 kHz are shown in Fig. I-6. From Fig.

l-6a, only four lines out of the ten lines overlap around p = 0.46 i 0.05 and p =

6.4 :t: 0.20, and the CSA and 17 value (92 i 4 and 0.47 t 5) are quite different

from those obtained at a 10.20 kHz spinning speed (see Table 2). However, the

overlap of the contour lines of Iii/lo for Sr5F(PO4)3 spinning at 10.20 kHz occurs

at around p = 0.96 :t 0.04 and p = 4.0 :t 0.19.

Fig. I-7 shows the Herzfeld and Berger plots of Ba5F(PO4)3 at two different

Spinning speeds (6.23 kHz and 10.18 kHz). Unlikely the other fluorapatite sam-

ples, all contours of Ba5F(PO4)3 at 6.23 kHz except for L3 intersect at one point

around p = 0.8 i 0.04 and p =- 10.4 1: 0.13, and those at a 10.18kHz spinning

speed intersect at around p = 0.78 :t 0.02 and p = 6.2 i 0.13. The p and ,1 values

of the intersection points are used to obtain the chemical shielding tensors (CSA

and n) from Eq. (l-29) and (I-30).
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1.0

b)

   
 

    
Figure l-5. Contour plots of Ca5F(PO4)3 spinning at 6.12 kHz (3) and 10.18 kHz

(b) using the Herzfeld and Berger graphical method.
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P 0.0 ‘

    
Figure l-6. Contour plots of Sr5F(PO4)3 spinning at 6.26 kHz (a) and 10.20 kHz

(b) using the Herzfeld and Berger graphical method.
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Figure I-6. Contour plots of Sr5F(PO4)3 spinning at 6.26 kHz (a) and 10.20 kHz

(b) using the Herzfeld and Berger graphical method.
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Frgure. l-7. Contour plots of Ba5F(PO4)3 spinning at 6.23 kHz (a) and 10.18 kHz

(b) using the Herzfeld and Berger graphical method.



Table 2. The 19F chemical shift anisotropy (CSA) and asymmetry parameter

r; of M5F(PO4)3 obtained using the Herzfeld and Berger graphical method and

integrated peak intensities.
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u,(kHz) Measured 77 Measured CSA

(ppm)

Ca5F(PO4)3 10.18 0.04 i 0.04 86 i 5

Sr5F(PO4)3 10.20 0.06 1: 0.04 107 1 7

6.23 0.16 :l: 0.03 164 i 4

Ba5F(PO4)3 8.19 0.23 1: 0.04 157 i 7

10.10 0.18:0.01 15814

10.87 0.201: 0.04 160 i 5 
 

Table 3. 19F chemical shielding tensors of M5F(PO4)3, calculated from the

moments method using peak intensities obtained from deconvolution. An average

value of the CSA at various spinning speeds was used, along with an assumed

17 value of zero, to obtain the principal components with respect to C6F6 and free

F' ion (parentheses).

 

 

 

 

   

011 (ppm) ( = 022) 033(ppm)

Ca5F(PO4)3 35.5 1 0.2 121.0 1 0.5

( 159.5 1 0.2 ) ( 245.0 1 0.5 )

Sr5F(PO4)3 81.4 1 1.1 188.8 1 1.9

(185.4:I:1.1) (292.8119)

Ba5F(PO4)3 131.8108 290.8 1 1.2

(255.9108) (414.9112)
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Table 2 shows the CSA and 17 values obtained by the graphical procedure of

Herzfeld-Berger. The standard deviations are determined by the intersection area

(box size in Fig. l-5, I-6 and l-7). The contours of the experimental ratios Iii/lo

for Ca5F(PO4)3 and Sr5F(PO4)3 fail to overlap at spinning speeds below 9kHz

but they overlap at 10.18 and 10.20kHz respectively. Therefore, the CSA values

of Ca5F(PO4)3 and Sr5F(PO4)3 are obtained at the high spinning speed. The

11,/lo contours of Ba5F(PO4)3 overlap within a small region, and the resultant CSA

values are close regardless of the spinning speed.

Even though the measured asymmetry parameters of M5F(PO4)3 are different

and non-zero at various spinning speeds, the chemical shift tensors of M5F(PO4)3

must be axially symmetric on the basis of the X-ray crystal structure."'11 Therefore,

we constrain 71 to be equal to 0 and use the average CSA determined using the

moments method to calculate the chemical shift tensors in Table 3. It is necessary

to know the chemical shift tensor values on an absolute chemical shielding scale

with respect to free fluoride ion in order to be able to calculate the contribution of

the sigma- and pi-bonding to the paramagnetic shielding. The isotropic chemical

shift of Cst has been calculated to be 124 ppm with respect to free fluoride ion.‘9

The chemical shift tensors of M5F(PO4)3 with respect to both Cst and free F'

(parentheses), obtained using the average CSA from the deconvolution data in

Table 1 and assuming 1) = 0, are shown in Table 3.

Experimental and simulated 19F MAS-NMR spectra of M5F(PO4)3 samples at

spinning speeds near 6kHz, using the chemical shift tensor components in Table

3, are shown in Fig. l-8. The isotropic chemical shifts of M5F(PO4)3 ( M = Ca,

Sr, and Ba) are 64.0, 97.2, and 184.8 ppm from hexafluorobenzene respectively.

The half-height linewidths of the centerbands of Ca5F(PO4)3, Sr5F(PO4)3, and
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Ba5F(PO4)3 without line-broadening are 164 Hz, 385 Hz and 438 Hz respectively.

Brunner et. al. have used average Hamiltonian theory to provide a general

expression for the MAS-NMR linewidths of spins with axially symmetric shielding

tensors.24 Their expression takes into account homo- and heteronuclear dipolar

interactions and CSA, and predicts a half-height linewidth (HHLW) that is inversely

proportional to the spinning speed. Figure I-9 shows a plot of the 19F MAS-NMR

centerband HHLW vs. spinning speed for M5F(PO4)3 (M = Ca, Sr, and Ba). The

HHLW of Ca5F(PO4)3 decreases monotonically with increasing spinning speed

within experimental error, but those of Sr5F(PO4)3 and Ba5F(PO4)3 do not. The

dependence of the linewidth of M5F(PO4)3 upon spinning speed indicates that

the linewidth is broadened homogeneously. The “plateau” value of the HHLW

increases as the CSA increase (from Ca to Sr to Ba); this may simply reflect

_ larger effects of crystal imperfections upon the isotropic shifts of Sr5F(PO4)3 and

Ba5F(PO4)3.

B. Solid Solutions of Ca/Sr Fluorapatite

The 19F MAS-NMR spectrum of Ca3,9-,Sr1_03F2(PO4)6 spinning at 8.23 kHz

is shown in Fig. I-10a. It is very difficult to unravel the isotropic chemical shifts

and their sidebands at a fixed spinning speed due to the overlap of the different

centerbands and sidebands. Since the sidebands are located at integral multiples

of the spinning speed from the centerband, we can differentiate between the

centerband of one peak and a sideband from another peak with a different isotropic

chemical shift simply by increasing the spinning speed. In this way, three isotropic

chemical shifts of the peaks in Ca3_97$r1,03F2(PO4)6 (Fig. l-10b) can be obtained,

at 64 ppm, 79.6 ppm, and 97 ppm. Overlap of centerband and sideband peaks

makes it difficult to obtain reliable integral intensities of individual peaks in the
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Frgure l-8. The experimental (lower) and simulated (upper) spectra of M5F(PO4)3.

a) Ba5F(PO4)3 at 6.23kHz; b) Sr5F(PO4)3 at 6.26kHz; c) Ca5F(PO4)3 at 6.12kHz.

' indicates the centerband (0;). Simulation were based on the chemical shift tensor

components in Table 3, and neglect dipolar coupling.
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Ba5F(PO4)3 (open square).



37

spectrum. From Fig. I-10b, only the integrated intensity of the centerband and

sidebands of the 79.6 ppm peak can be measured since the other centerbands

and sidebands overlap. The ratio of the integrated intensity of the centerband and

sidebands of the 79.6 ppm peak to the total integral intensity in Fig. l-10b is 29 %.

The deconvoluted spectra of the 64 ppm peak and also the peak near 51 ppm

due to the -1 sideband of the 79.6 ppm peak of Fig. I-10b are shown in Fig.

l-11. Three peaks can be deconvoluted from the asymmetric 64 ppm peak. The

gaussian fractions of peaks l and II are 0.88, and that of peak III is 0.68. The

half-height linewidths of deconvoluted peaks I, II, and III are 454, 536, and 758

Hz respectively. The percentages of the integral intensity of deconvoluted peaks

I, II and III are 45.4, 37.3 and 17.4 %

Fig. l-12 shows the 19F MAS-NMR spectrum of Cae_978r1,03F2(PO4)6 obtained

using the SPARTAN pulse sequence at 10.87 kHz.20 The transmitter offset of

this experiment was set to invert the 64 ppm peak, leaving the other peaks

unperturbed. Since the pulses in the DANTE train are repeated every rotor period,

the sidebands of the 64 ppm peak are also inverted. The mixing times are 0.1,

1, 3, 6, 9, 12, 15, 18, 21, 24, and 30 seconds. As the mixing time increases,

the intensities of adjacent peaks decrease while those of the centerband (and

sidebands, not shown) of the 64 ppm peak recover quickly compared to the spin-

lattice relaxation time of Ca8,978r1,03F2(P04)6 (T1 = 101 second).

H9. H3 show the 19F MAS-NMR spectra of Ca55r5F2(PO4)6 spinning at

8.25 kHz and 10.30 kHz. The centerbands are resolved by spinning at 10.30

kHz. The values of the isotropic chemical shifts in CaSSr5F2(PO4)6 are 69.7ppm,

86.8 ppm, and 104.5 ppm, which are about 6 ppm downfield compared to those

in Cag,97$r1,03F2(P04)5. The measurement of the integral intensity of peaks is
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Figure l-11. Deconvolution spectrum of 64 ppm peak in Fig. I-11b
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Figure l-12. 19F MAS-NMR spin diffusion experiment of Cae_97Sr1_03F2(PO4)6

using SPARTAN pulse sequence spinning at 10.87 kHz. Mixing times are 0.1, 1,

3, 6, 9, 12, 15, 18, 21, 24, and 30 seconds. (See text)
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Figure l-13. 19F MAS-NMR of Ca5$r5F2(PO4)6 spinning at 8.25 kHz (a) and at

10.30 kHz (b). ‘ indicates centerband.
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hindered by the overlap of the centerbands and sidebands.

7. Discussion

A. Measurement of the 19F Chemical Shift Anisotropies of M5F(PO4)3 Using

Different Methods

The values for M5F(PO4)3 are obtained by using two different methods, the

moments method and the Herzfeld and Berger graphical method. In the moments

method, the accurate measurement of the second and third moments of MAS-

NMR spectra is difficult in general because of the low signalrnoise ratio of the

weak higher order sidebands that contribute significantly to the moments.25 The

homo- and heteronuclear dipolar interactions also contribute to the experimental

second moment, making it difficult to separate their contribution to the second

moment from that of the CSA alone. We will discuss how the dipolar interaction

influences the measurement of the CSA using the moments analysis method.

MAS-NMR simulations using ANTIOPE (Fig. l-14a) show that the including

homonuclear dipolar interactions result in a higher intensity of the centerband

relative to that of the sidebands. The contribution of the homo- and heteronuclear

dipolar interactions and of the CSA to the second moment is not simply additive.“

The values of the CSA obtained from the simulated 19F MAS-NMR spectra

calculated using the CSA alone (VNMR 3.2) and using the CSA along with dipolar

interactions (ANTIOPE) differ by approximately 2 ppm at the spinning speed of

6.12 kHz. Since the low signalznoise ratio of the weak higher order sidebands

gives rise to measurement errors in the experimental and since considering the

dipolar interaction can slightly change the values of the CSA, we use the moments

measured from the intensities of the sidebands of the experimental spectra to
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obtain the values of the CSA in Table 1.

When we use the Herzfeld and Berger graphical method, the chemical shift

tensors are obtained from the coordinates of the overlapping contours of the

values of Iii/Io ratios. Intensities of all peaks (a centerband and sidebands) in

a MAS spectrum are used to obtain a CSA with the moments method, whereas

those of a limited number of peaks are used to obtain a CSA with the Herzfeld

and Berger graphical method (11,/lo ratios for up to :1: 5 sidebands).15 Thus, the

measurement error of the CSA obtained from the Herzfeld and Berger graphical

method should beless severe than that from the moments method owing to the

neglect of weak higher order sidebands. The Iii/Io ratios of the samples with

a larger CSA and small dipolar interactions have a smaller relative contribution

from the dipolar interactions. The dipolar interaction decreases on going from

Ca5F(PO4-)3 to Ba5F(PO4)3 as a result of the expansion of the lattice,911 whereas

the CSA values increase going from Ca5F(PO4)3 to Ba5F(PO4)3. Therefore, it

is not surprising that the contours of lfi/lo for Ba5F(PO4)3 overlap at one point

or over a small region at all spinning speeds. Likewise, the contours of lid/Io

for Ca5F(PO4)3 and Sr5F(PO4)3 fail to overlap below about 9kHz due to the

greater size ratio between the homonuclear dipolar interaction and the CSA. As

the spinning speed increases, the higher order sideband intensity contribution from

the dipolar interaction appear to decrease quickly. Thus, most of the intensity of

the higher order sidebands at high spinning speeds is due to the CSA. Figures

I5 and 6 show that the value of p of the +1 sideband is insensitive to a change

of the spinning speed. The values of p of the other sidebands move to the value

of p of the +1 sideband with an increasing in the spinning speed.

The integrated intensity of each peak in the experimental spectrum does not
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correspond to the peak height because of differences in the half-height linewidth of

the peaks. For example, the peak height of the centerband in GasF(PO4)3 is larger

than that of the -1 sideband; however, the integrated intensity of the centerband

in Ca5F(PO4)3 is less than that of the -1 sideband since the half-height linewidth

of the centerband (164 Hz) is smaller than that of the -1 sideband (217Hz) (Fig.

MO). The ratio of the integrated intensity of the centerband to that of the -1

sideband is 1.00:1.13 in Fig. l-10. Thus, when CSA is obtained by using MAS-

NMR, the integrated peak intensity must be used rather than a peak height to

obtain a more accurate CSA value.

Since the linewidth of the sidebands in the experimental spectra vary for a

given sample, it is convenient to represent these spectra as stick spectra for

comparison with simulated spectra Stick spectra (Figure I-14) normalized to

the -1 sideband of M5F(PO4)3 were obtained from simulation (ANTIOPE and

VNMR 3.2) with the parameters of Table 3. The intensities of the centerband

and sideband of the simulated stick spectra taking into account only chemical

shift anisotropy (VNMR simulation) are different from those of the experimental

spectrum in Fig. l-14a. The simulated spectrum obtained using ANTIOPE (CSA

and dipolar interaction among uniformly-spaced five fluorine spins) more closely

resemble the experimental spectrum in Fig. l-14a. Fig. I-14 shows that the

intensity differences between the centerband and sidebands of the simulated

and experimental stick spectra become smaller and smaller less going on from

Ca5F(PO4)3 to Ba5F(PO4)3.

B. Separation of Metal-Fluoride Sigma- and Pi-Bonding Contributions to the

19F Shielding Tensor

The chemical shielding of a nucleus can be separated according to Ramsey’s
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Figure I-14. Comparison of simulated and experimental 19F MAS-NMR stick

spectra of M5F(PO4)3 at the same spinning speed. The asymmetry parameter

1) is forced to be zero and the average CSA values of M5F(PO4)3 obtained from

the moments method are used, and all peaks are normalized to the -1 sideband.
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formulationz‘i27 into a diamagnetic term and a paramagnetic term. Lamb showed

that the diamagnetic contribution to shielding is proportional to the sum of in-

verse distances between the i-th electrons and the nucleus.28 The calculated

difference in the diamagnetic term for free fluoride ions in different ionic fluo-

rides is small since the distances of the i-th electrons to the nucleus for a free

F' ion are similar to those for different ionic fluorides.27 Therefore, differences

in the paramagnetic term are largely responsible for the fluorine chemical shift

changes observed in various ionic fluorides. The chemical shielding tensors of

the paramagnetic term, measured with respect to free fluoride ion are used to

separate metal-fluoride sigma— and pi-bonding contributions to the 19F shielding.

The paramagnetic contribution depends upon the electronic ground and excited

states. The paramagnetic contribution of electrons in s orbitals can be ignored,

since the angular momentum of s orbitals is zero. An asymmetric distribution of p

and d electrons near the nucleus, and low-lying excited states of these electrons,

can result in a large paramagnetic term.26127 A superposition of the ground and

excited states of sigma-bonding orbitals arises when an external magnetic field

is applied. The angle between a single sigma-bond and the extemal magnetic

field determines the mixing of the states. No perturbation of the symmetry of the

electron cloud occurs when the external magnetic field is along the sigma-bond.

The shielding constant arising from the paramagnetic term in linear compounds

depends on the angle between the external magnetic field and the direction of the

sigma-bond in the following way.25129

0(6) = aasinza (l-32)

where 0(6) is the paramagnetic shielding constant at angle 0 and a0 represents

the contribution of the a-bond to the paramagnetic shielding. Since the pi orbital
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is perpendicular to the bond direction, the shielding constant due to the pi-bond

is represented by

0(9) = awcoszo (l-33)

where a3 represents the contribution Of the pi-bond to the paramagnetic shielding,

and 0 is the angle between the bond and the external magnetic field. The

paramagnetic shielding term arising from both a sigma-bond and a pi-bond is

the sum of equations (I-32) and (l-33)

0(0) = aasin26 + awcosze = (2/3)aa+ (1/3)a7r+ (1/3)(a7r - ao)(3cos29-1). (l-34)

The isotropic portion of the shielding 8,-(9 = 54.7°) is represented by (2/3)aa +

(1/3)a7r. The total paramagnetic shielding a is assumed to be the sum of the

contributions from the individual bonds;

0 (a): 2 a,(0,-) (1-35)

' Gagarinski el.29 separated the paramagnetic shielding components (a0 and a)

of Ca5F(PO4)3 by using equations l—34 and l-35, and experimental values for the

CSA and the isotropic chemical shift. When 0'33 is parallel to the external magnetic

field, the angle between the external magnetic field and the three Ca - F bonds is

perpendicular. From the equations I-34 and I35, 033 (6 = 90°) and (Ii (0 = 54.7°)

can be represented by the following equations

033 = 3 [ 2/3 a, +1/3 a1r +1/3(a7r - a3) (3 cos290° - 1) 1 = sag (l-36);

ai = 2aa + a3. (I-37)

Table 4 shows the ac and a; values calculated with respect to free F‘ ion

at zero ppm (since the latter has no paramagnetic contribution to its shielding),

whose shift has been estimated theoretically in Ref. 29. We have assumed that

the Sr“ ions in Sr5F(PO4)3 form a plane containing the F. ion, since this is known
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Table 4.19F paramagnetic shielding parameters a; and an for M5F(PO4)3 calcu-

lated from the chemical shielding tensors (absolute chemical shift scale) in Table 3.

 

 

 

 

    

30(ppm) a1r(ppm)

Ca5F(PO4)3 81.7 i 0.1 24.6 :1: 0.3

Sr5F(PO4)3 97.6 i 0.6 26.0 :t 1.2

Ba5F(PO4)3 138.4 :1: 0.4 32.1 i 0.8
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to be the case for Ca and Ba fluorapatitef’v11 The increase in ad and an from

Ca5F(PO4)3 to Ba5F(PO4)3 indicates more contributions to the paramagnetic

shielding, but not “increased bonding” necessary. The a0— and a3 values for

Ca5F(PO4)3, Sr5F(PO4)3, and Ba5F(PO4)3 are plotted vs. the isotropic chemical

shift with respect to free F' ion in Fig. I-15. Fig. I-15 shows that the slope of a0

vs. the isotropic chemical shift is larger than that of a3 vs. the isotropic chemical

shift. This observation implies that the observed increase in the paramagnetic

shielding term as one goes from Ca to Sr to Ba in M5F(PO4)3 (M = Ca, Sr, Ba) is

due to primarily to an increase in the sigma-bonding parameter a0.

C. Study of Site-Preference of Sr2+ Ions in Ca/Sr Fluorapatite Solid Solutions

Using 19F MAS-NMR

The difference in the chemical bonds between a fluoride ion and either calcium

or strontium gives rise to the different 19F chemical shifts of fluoride ions. The flu-

oride ions of Ca3,37$r1,33F2(PO4)3 have the four different chemical environments

shown in Fig. l-16. Since the structures of A and D represent the local fluoride

ion environment in Ca5F(PO4)3 and Sr5F(PO4)3,9=‘° respectively, we assign the

isotropic chemical shifts of A and D in Fig. 3 to 64 and 97 ppm respectively. The

isotropic chemical shifts of B and C in Fig. l-16 are predicted using Eqs. l-34

and I-35, and are equal to the sum of the isotropic portions of the shielding of the

appropriate number of Ca - F and Sr — F bonds. The configurations B and C in

Fig. ~l-16 have two Ca - F bonds and one Sr - F bond, and one Ca - F bonds and

two Sr - F bond respectively, resulting in predicted isotropic chemical shifts of B

and C in Fig. l-16 of 75.1 ppm and 86.1 ppm respectively. The isotropic chemical

shift of either one is different from the isotropic chemical shift of the peak at 79.6

ppm in Fig. l-10b. There are no centerbands between the centerband at 64 ppm
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Figure l-16. Substitution of Sr2+ in the three nearest neighbor Ca(2) sites of

Ca/Sr fluorapatite solid solutions.
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and the centerband at 79.6 ppm, and the isotropic chemical shift at 79.6 ppm is the

second isotropic chemical shift in the downfield direction in Fig. l-10b. Therefore,

we assign the isotropic chemical shift of the configuration B (Sr1Ca2F) in Fig.

MS to the 79.6 ppm peak in Fig. I-11b. The fact that the experimental shift of

the configuration B is 4.5 ppm downfield of predicted value is reasonable, since

the Sr3F configuration in the Ca58r5F2(PO4)6 solids solution is also downfield (by

7ppm) of the shift in Sr5F(PO4)3, presumably due to lattice distortion effect. The

isotropic chemical shift due to C in Fig. MS may be between 79.6 ppm and 97

ppm, and may be concealed by overlap with the downfield sideband of the 64

ppm peak in Fig. l-10b.

The degree of possible preference of Sr2+ ions for a Ca(2) site for Ca/Sr

fluorapatite solid solutions can be studied by using both the resolved peaks

obtained from 19F MAS-NMR and from peak deconvolution of overlapping peaks.

There are two different types of calcium ions in Ca13F2(PO4)3. Since there

are 4 Ca(1) ions and 6 Ca(2) ions in two unit cells, we rewrite the formula of

Ca3,978r1,o3F2(PO4)6 as Ca(2)6xSr(2)5yCa(1)4x18r(1)4YIF2(PO4)6( 8x + 4x’ = 8.97

and 6y + 4y’ = 1.03, and x + y = x’ + y’ = 1). Since the fluorine ions are bonded to

Ca(2) and Sr(2) ions, the chemical shift of the fluorine depends on the numbers

of Ca(2) and Sr(2) ions to which it is bonded. The integrated areas of the peaks

at each chemical shift in Fig. l-16 are represented by the following equations

A = x3,

B = 3x2y, (l-38)

C = 3xy2,

D=y3
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where(A+B+C+D)=(x+y)3=1.0.

If the strontium ions randomly substitute for the calcium ions in Ca3.378r1_33F3(PO4)3,

the calculated integrated intensity of B from Eq. (l-40) would be 24 %. The ex-

perimental value is 29 %, which implies values for x and y of 0.873 and 0.127

respectively. Thus, the experimental integrated intensity of the B peak indicates

a 23 % [(0.127 - 0.103)/0.103] site preference of a 812+ ion for the Ca(2) site in

Ca3,97$r1,o3F2(PO4)6. Table 5 shows the calculated probabilities of the various

configurations for both random substitution and a 23% preference of the Sr2+ ions

for the Ca(2) site using Eq. (l-38).

The 19F MAS-NMR peaks in Fig. l-11b are asymmetric and broad, presumably

due to perturbations from strontium ions which are substituted in Ca(1) site, or

from strontium ions in the next-nearest Ca(2) sites. We now consider what types

of strontium ions (strontium ions in Ca(1) or Ca(2) sites) mainly perturb the fluorine

peak at 64 ppm. From the crystal structure of calcium fluorapatite, when a

single Sr2+ ion substitutes in a Ca(1) site, it potentially perturbs 6 fluorine ions

in an equivalent fashion, but a Sr“ ion substituting for a Ca(2) site perturbs 2

fluorine ions. Thus, the Sr2+ ions in Ca(1) sites perturbs a fluorine ions more than

that in Ca(2) sites. The perturbation of the chemical shift of the 64 ppm peak

should depend on the number of the strontium ions at the next-nearest Ca(2)

sites. The schematic arrangements of the metal cations neighboring a fluorine

atom resonating near 64 ppm are shown in Fig. l-17. Since the probability of

substitution of more than 2 Sr2+ ions in Ca(2) sites in Ca3,378r1,33F2(PO4)3 is low,

configuration III in Eq. (l-39) represents essentially the sum of the probabilities of

having 2 2 Sr2+ ions in Ca(2) sites. The integrated intensities of peaks arising from

the individual configurations in Fig. l-17 are then given by the following equations



57

C8 C8 C8

F F /r

' c;
 

 

 

 

 

 

CL .4 C1 I’

Cl C. Ca

/F\ F /F

C‘ .4 C‘ 9‘ Ca Ca

C! 0 Ca

/F\ F /,-

Ca .4 Ct ‘ C3 c3 5 .r 

 

 

Figure l-17. Possible configurations for single (I) and double (l) Sr“f substitution

in the six next-nearest neighbor Ca(2) sites of Ca/Sr solid solutions of fluorapatite.

The middle equilateral triangle in each configuration represents the observed Ca3F

group resonating around 64 ppm, and the triangles above and below it (along '

the c-axis), although parallel, are drawn tilted for clarity. One Sr“ ion in the.

configuration II is either in a top triangle (as shown) or in a bottom triangle. Two

Srzt ions are either in a top triangle or a bottom triangle, or in both triangles (as

shown).
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Table 5. Calculated probabilities of configurations AD in Ca3_37$r1_33F2(PO4)3

(Figure l-16) for both random substitution and a 23% preference of Sr2++ ions for

the Ca(2) sites, and comparison with measured integrated intensity of peak B.

 

 

 

 

 

    

Configuration Probability, Probability, Integrated

Random 23% Preference MAS-NMR Peak

substitution Ca(2) Site Intensity

A. 72.1 % 66.5% —

B. 24.9% 29.0% 29%

C. 2.9% 4.2% —

D. 0.1% 0.2% —

Total 1 00.0% 99.9% 1 00% 
 

 

Table 6. Calculated probabilities of configurations H" in Ca3.37$r1.33F2(PO4)3

(figure H?) for both random substitution and a 23% preference of Sr2++ ions

for the Ca(2) sites, and comparison with the experimental deconvolution data

obtained from the peak near 64 ppm.

 

 

 

 

  

Configuration Probability, Probability, Intensities of

Random 23% Preference Deconvoluted

substitution Ca(2) Site Peak at 64 ppm

I. 52.1 % 45.6% 45.4%

II. 35.9% 38.3% 37.3%

III. 12.0% 16.1% 17.4%

Total 100.0% 100.0% 100.1%   
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l = x6

II = 6x5y (l-39)

Ill = 1— l - II.

The comparison of the deconvoluted integrated intensities of the peaks near 64

ppm and the integrated intensities calculated for both random substitutions of Sr2+

ions and for a 23 % preference of strontium ions forth Ca(2) site is shown in Table

6. The predictions for a 23% site preference (x=0.877 and y=0.123) are closer to

the deconvolution data than those assuming random substitution.

The half-height linewidths of the deconvoluted peaks are broader than those

of calcium and strontium fluorapatite (130 Hz at 10.56 kHz, 365 Hz at 10.20 kHz

respectively). Since the perturbation effect of strontium ions substituted in the

Ca(1) sites on the peak near 64 ppm is small compared to that of strontium ions

substituted in the next-nearest Ca(2) sites on the same peak, we believe that the

main effect of strontium ions substituting in the Ca(1) site is a slight increase in

the half-linewidths of deconvoluted peaks.

To prove that the fluorine spins of the peaks at 64 and 79.6 ppm (see Fig.

I-10) are actually in the same phase and not in phase-segregated regions, a spin

diffusion experiment was carried out. Spin diffusion is the transfer of Zeeman

magnetization between two adjacent spins by means of a spin flip-flap?“31 Spin

diffusion requires both the existence of a dipole-dipole coupling between the

nuclear spins and the conservation of Zeeman energy. Spectral spin diffusion

between the peaks having different isotropic chemical shifts under magic-angle-

spinning can occur if the Zeeman energy level overlap during a rotor period,

the so—called “level-crossing”. The existence of level-crossing between two peaks

with different isotropic shifts can be demonstrated by calculating the instantaneous
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frequencies of the pair of spins in a given crystallite during each part of a rotor

cycle.22

A MAS Hamiltonian can be transformed from the chemical shift principal axis

system (PAS) of each crystallite to a reference frame fixed on the rotor.32'33 The

MAS Hamiltonian for the chemical shift principal axis system becomes periodic

(cosine wave), and the offset of the cosine wave depends on the asymmetry

parameter and the crystallite orientation. Not only is the amplitude of the cosine

wave proportional to the CSA but it also depends on the asymmetry parameter

and crystallite orientation.”33

Fig. l-12 shows the existence of spin diffusion between the peak at 64 ppm and

the peak at 79 ppm. The CSA and asymmetry parameter of the peak at 64 ppm

are known.12 Thus, we have to know the CSA and asymmetry parameter of the

peak at 79 ppm in order to predict the level-crossing of the two peaks theoretically.

We assume that the configuration ll of fig. l-16 is an equilateral triangle and that

the fluoride ion in the configuration II is in the middle of the equilateral triangle.

The largest chemical shielding tensor 033 is obtained when the external magnetic

field is perpendicular to the equilateral triangle in the configuration ll. Since the

shielding principal values 011, 022, 033 are orthogonal, 011 and 022 are on the

plane of the equilateral triangle. The smallest chemical shielding component 011

is obtained when the external magnetic field is parallel to a Sr - F bond. From

Eq. l-34 and 35, the chemical shielding tensor components 011, 022, 033 of

configuration II in fig. I-16 can be represented by

011 = 0(0°) (Sr) + 0(120°) (Ca) + 0(120°) (Ca)

= 3/2 aa (Ca) + 1/2 an (Ca) + a3 (Sr) (‘40)

032 = 0(90°) (Sr) + 0(30°) (Ca) + 0(30°) (Ca)
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= 1/2 a; (Ca) + 3/2 a (Ca) + a0 (Sr) (l-41)

033 = 0(90°) (Ca) + 0(90°) (Ca) + 0(90°) (Sr)

= 2 a0 (Ca) + a; (Sr). (I-42)

The values of the shielding tensor componentS011, 023, 033 for the peak at 79

ppm (configuration II in Fig. l-16) obtained using the ad and a3 values in Table

4 are equal to 160.9 ppm, 175.4 ppm and 261.0 ppm respectively. The CSA and

asymmetry parameter of the 79.6 ppm peak calculated using Eqs. l-8 and l-9 are

92.9 ppm and 0.23, and the CSA and asymmetry parameter of the 64 ppm peak

(calcium fluorapatite) are 84 ppm and 0.12 The calculated energy modulations

of the 64 ppm and 79.6 ppm peaks during one rotor cycle spinning for two

different crystallite orientations are shown in Fig. I-18. Fig. l-18a shows the

existence of an overlap of the energy levels between the peaks corresponding to

configurations l and II in Fig. l-16 during one rotor cycle, whereas the different

crystallite orientations of Fig. l-18b do not. From our calculations (not shown

here), most crystallite orientations of configurations l and II have an energy overlap

during one rotor cycle. Therefore, a powder sample of (Ca3,3-,Sr1,33F2(PO4)3) will

have most crystallites experiencing level-crossing under MAS, resulting in the

observed spin diffusion between the 79.6 ppm and 64 ppm peaks. This spin

diffusion takes place through the 19F homonuclear dipolar interaction. This spin

diffusion between the 79.6 ppm and 64 ppm peaks in Fig. l-12 indicates that the

corresponding fluoride ions are close to each other and have equivalent chemical

shifts during the rotor cycle.
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figure l-18. Variation in the instantaneous chemical shifts during a rotor cycle of

the 64 ppm and 79 ppm peaks of the Ca3,378r1,33F2(PO4)3 solid solution under

MAS for at the different crystallite orientations, a = 0° and fl = 60°(a), and a = 0°

and fl - 90° (b): 64 ppm peak (open triangles) and 79 ppm peak (open circles).

01 and 3 are Euler angles with respect to the principal axis system of tensors in

the rotor frame.
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8. Conclusions

We have obtained the values of the CSA for M5F(PO4)3 (M = Ca, Sr, and Ba)

using the different methods. Even though the measured asymmetry parameter

77 of Ca5F(PO4)3 obtained by using the moments method and the Herzfeld and

Berger graphical method is not equal to zero, the value of the CSA of Ca5F(PO4)3

obtained from 19F MAS-NMR spectra by the two methods is close to that obtained

from a 19F single crystal NMR study.12 The accuracy of measuring the CSA of

M5F(PO4)3 from the moments remains the same for different spinning speeds.

The simulations using ANTIOPE show that the change of the CSA of Ca5F(PO4)3

due to the dipolar interaction is small. The change in the intensity of the center-

band and sidebands when the dipolar interaction is considered causes a failure

of the Herzfeld-Berger contour plots of Ca5F(PO4)3 and Sr5F(PO4)3 to overlap

at spinning speed below 9kHz. However, since the CSA values obtained from

the contour plots using high spinning speed data are close to the CSA values

measured from the moments method, the two methods are complementary under

these conditions.

There are two reasons that the intensities of the simulated spectra of

M5F(PO4)3 (M a Ca, Sr, and Ba) do not correspond to those of the experimental

spectra One reason is that dipolar interaction is neglected in the VNMR 3.2 sim-

ulatiOns. The other reason is that the different half-height linewidths of the peaks

can give rise to a difference between real and simulated spectra. The stick spec-

tra obtained from the integrated intensities of peaks are therefore more useful for

comparing the simulated and experimental spectra.

The separation of the ad and a” parameters for from the chemical shift tensors

gives information about the contribution of the sigma- and pi-bonding components
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of the chemical bonding between alkaline-earth metal ions and fluoride ions to

the 19F shielding in apatite samples. The values of a0 and a7; obtained from

19F shielding tensors for apatite samples make it possible to predict the CSA and

asymmetry parameter 71 of configurations in the solid solutions of Ca/Sr fluorapatite

and the orientation of the shielding tensor in the molecular frame. This somewhat

novel approach to predicting the full shielding tensor in the molecular frame of solid

solution has proven valuable in studies of chemical-shift-selective MQ-NMR,34 and

may be useful in studying other solid solutions.

The shifts of the peaks in the 19F MAS-NMR spectrum of the solid solution

Ca3978r133F2(PO4)3 were interpreted in terms of proximity of the fluorine spins to

strontium ions. The fact that the peaks of this spectrum arose from fluorine spins in

the same phase was established by demonstrating the existence of spin diffusion

. between them with the SPARTAN pulse sequence. The preference of Sr2+ ions

for the Ca(2) sites in Ca3,9-,Sr1,33F2(PO4)6 was also studied. The observed 23 %

preference of Sr2+ ions for Ca(2) sites, using two different methods is in agreement

with an X-ray powder diffraction study of Ca/Sr hydroxyapatites, which determined

an approximately a 20 % site preference for Ca(2) site.35 A more recent EXAFS

study of Ca/Sr hydroxyapatite claimed a larger preference for the Ca(2) site, and

must be considered suspect.
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1. Introduction

Multiple-quantum NMR is a general term for experiments that observe nuclear

magnetic transitions forbidden by the standard selection rule Am = :1. Although

multiple quantum transitions can be observed by using high power continuous-

wave (CW) spectrometers,"14 difficulties of interpretation and inconvenient instru-

mental requirements have limited the use of CW-observation of multiple-quantum

transitions. The advent of time-domain Fourier transform techniques15 made it

possible to detect the forbidden transitions. In the mid 1970s, Hashi16 and Ernst17

independently adapted a two-dimensional Fourier transform NMR technique to in-

directly observe multiple quantum transitions.

Since that time, the multiple quantum NMR technique has been mostly applied

to the liquid state, where the size of the spin systems is relatively small.“3'28 An 8-

_ pulse sequence that creates an average-Hamiltonian operator for double quantum

NMR transitions of dipolar-coupled spin pairs, 29 combined with the use of a time-

reversal pulse sequence,30 increases the S:N ratio of multiple-quantum intensities

and has made the study of larger spin systems such as found in solids feasible.

1H MQ-NMR has been applied to the study of proton distributions in solids,3‘-32'36

imaging in solids,32"37 and adsorption of organic molecules in zeolites38'39. 1H

MO-NMR has been also used to study nematic liquid crystalsgai‘M3 19F MO-

NMR has been used to investigate fluorine distributions in polycrystalline“ and

photosensitive salts.45

The time-development of multiple-quantum coherences in the "infinite" dipolar-

coupled spin systems typical of many solids presents both a lure and a challenge.

The lure is the possibility of obtaining structural information about groups of cor-

related spins that would be otherwise unobtainable with conventional NMR spec-
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troscopic techniques. The challenge resides in the development of theoretical

models describing multiple-quantum dynamics that are both computationally prac-

tical and experimentally realistic. The explicit calculation of the density-operator

for spin systems, widely used to describe modern NMR experiments,“"5"'8 can-

not describe many actual spin systems due to computational limitations (up to

nine spins is the current limit)."’9‘51 The actual spin systems present in strongly

dipolar-coupled solids consist of about 1020 spins whose calculation time using

the density matrix is prohibitive. Therefore, simplifying approaches have been de-

veloped that make only statistical assumptions about the time-development of

the density operator, and neglect the detailed spin-dynamics arising from the

specific disposition of spins in space.“53 The earliest of these, the statistical

model,54 counts the combinatorial possibilities of having coherences of order n

("n-quantum coherences") in a spin system of ”effective size" N. For an "infinite”

Spin system, the effective size N increases monotonically with increasing prepa-

ration time allowed for creation of multiple-quantum coherences. The statistical

model predicts an approximately Gaussian distribution of intensities for the var-

ious ordersof multiple-quantum coherence. Although it tends to underestimate

the intensity of high order coherences, it does provide a measure of the effective

size of the spin system at a given preparation time.3"52'53v55-56 Since intermolec-

ular dipolar couplings of nematic liquid crystals are averaged to zero whereas

intramolecular dipolar couplings are not, “spin counting” by means of MO—NMR

experiments of the known number of spins in molecules of nematic liquid crys-

tals demonstrates the usefulness of the statistical model.“55 The directed walk

through Liouville space (“hopping”) model57 predicts the intensities of various or-

ders of higher order coherences, at different preparation times, by counting the
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combinatorial possibilities of allowed "transitions” or "hops” in Liouville space, and

assuming that any oscillatory behavior will be hidden by destructive interference

and resultant decay. Although the hopping model can successfully account for

features of the experimental data,57 Lacelle53 has pointed out aspects of the av-

eraging of multiplicative processes that, if properly taken into account, may lead

to significant differences from the predictions of the hopping model. Only very

recently has there been an attempt to develop a simplifying model, as opposed

to explicit density operator calculations?“51 that specifically considers the spa-

tial structure of the spin system (including its dimensionality). This "incremental

shell" model of Levy and Gleason36 describes multiple quantum dynamics dur-

ing the preparation period as a stepwise process: a given coherence can either

expand by incorporating one additional spin at the periphery of the spin cluster

involved in the coherence, or decrease in size by one spin. The rate of this

process is governed by the dipolar coupling between these neighboring spins and

by structure—dependent parameters. A set of differential equations for "average"

product operators of the density operator can then be solved numerically to yield

the effective size N vs. preparation time. Clear distinctions between the dynam-

ics of two- and three-dimensional spin systems are both predicted and observed

experimentally.36 A number of three-dimensional solids have been recently ob-

served to exhibit a universal growth behavior (when the time axis is scaled by the

strength of the square root of the second moments)36 that can be fit to theoretical

predictions of an ”incremental shell model; " the effective size increases as the

cube (or third power) of the preparation time. In case of a presumed surface film of

protons, the experimental results could be fit to the model with an approximately

quadratic dependence of the effective size upon preparation time, as predicted
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for a two-dimensional spin distribution.36 An infinite one-dimensional distribution

of uniformly-spaced spins would be expected to provide the simplest experimen-

tal test of the various models. We report here results for a close approximation

to such a spin system: the 1H nuclei of hydroxyapatite, Ca5(OH)(PO4)3. Since

the multiple-quantum coherences are created by homonuclear dipolar couplings,

we need only consider the hydroxyl protons (or fluoride ions) in the structure of

hydroxyapatite (or fluorapatite). Figure "-1 shows the basic idealized geometry

of the 1H spin system of hydroxyapatite: infinite linear chains of protons having

a uniform spacing of 344 pm, with each chain surrounded by six other chains

at a distance of 942 pm.“59 The largest intra-chain dipolar coupling is some 20

times greater than the largest inter-chain dipolar coupling, and should dominate

the multiple-quantum dynamics. The weak heteronuclear dipolar couplings to the

3‘P nuclei (<2 kHz) can safely be ignored.“4

In order to use apatites as a model for studying one-dimensional MO dynamics,

one must have knowledge about the occurrence of interruptions in the 1-D chain,

due to either vacancies or substitutions (collectively referred to here as "defects").

Such defects are commonly present at significant levels in both synthetic as well as

naturally-occuring apatites. The ability to obtain such information about defects

in apatites from MO NMR experiments would thus provide a useful method for

investigating such systems, in addition to better defining the degree of ideality of

one-dimensional spin systems in powders and single crystals.

In this study we present experimental results on proton MQ NMR dynamics

in a stoichiometric hydroxyapatite sample (HAP-M), a hydroxyapatite sample

containing defects (HAP-N), and a series of fluorohydroxyapatite solid solutions,

Ca5(OH)(1-x)Fx(PO4)3, with the fluoride ion (replacing a hydroxyl group) forming
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Figure "-1. Schematic idealized arrangement of linear columns of protons (black

circles) in calcium hydroxyapatite (Ca50H(PO4)3). The central column is sur-

rounded by six neighboring columns. The distance between columns is 942 pm

and the distance between intra-chain protons is 344pm. The position of protons

in four of the six neighboring columns is actually approximately 260pm below

the black circles in the monoclinic form, which exists only for very stoichiometric

samples. In the more commonly-occurring hexagonal form, the protons in three

of the six neighboring columns are located about 260pm below the black circles

due to statistical disorder. The geometry of the fluorine atoms in fluorapatite

(Ca5F(PO4)3) is similar to the arrangement of protons in hydroxyapatite, with a

distance between columns of 937pm and an identical intra-chain distance.
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a defect in the 1-D chain of spins. We model these results for a hydroxyapatite

sample with a slight hydroxyl deficiency in terms of a 1-D cluster model described

in the Discussion section. The 1-D cluster model considers randomly-distributed

defects~ in apatites as producing a distribution of 1-D clusters of varying lengths,

and uses the MO response of a stoichiometric hydroxyapatite sample as a ”cali-

bration". In addition, we report 19F MO NMR data on a single crystal of mineral

fluorapatite at several orientations in the magnetic field, thereby scaling the dipolar

interactions within the chains by a known amount. This approach, when applied

to a sample containing few defects, should eventually allow one to scale the rel-

ative contributions of one-dimensional and higher-dimensional MO growth, and

thus permit better isolation of the effects of differing dimensionality.

2. Multiple-Quantum NMR Dynamics

A. Density Operator Description of Multiple-Quantum NMR Dynamics

The description of NMR experiments can be started by first considering simple

two level systems. An isolated spin-1/2 particle in an external magnetic field has

the two eigenstates Ifi) and I—é), which represent the two allowed orientations

of its angular momentum.‘750 The state vector, a superposition of these basis

states, is given by a linear combination of these two states

' 110» = 8,2011%) +1020» — 1) (II-1)

where 01/2(t) and c_1/2(t) are the (in general) time-dependent complex coeffi-

cients. The state of the system can be described by the values of c1/2(t) and

c_1/2(t), which are solved by using the time-dependent Schroedinger equation

111(1)) = 4111111)). ("-2)

When the only Hamiltonian is the Zeeman Hamiltonian, the time-dependent coef-
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ficients are given by

Cl/2(t) = a-erp(ia)ea:p(—iw0t) (ll—3a)

c-0210 = b-exp(ifi)erp(iwot) (II-3b)

where a2 + 02 = 1, and a and [3 are real numbers representing phases.47 The ex-

pectation value of any observable can be calculated from |¢(t)). Expectation

values of the three components of magnetic moment are represented by

 

Mt) = (¢(t)lthIzlw(t)) ("'48)

(Mt) = (0(t)|7thI1/2(t)) ("'49)

Mt) = (¢(t)|7hIzlw(t)) (”'40)

which are solved by using the raising and lowering operators defined by

13 = fl(1+1) —m(m:i:1)|m:1:1). (ll-5)

The result is

p1,(t) = 7habcos (a — a + wot) (ii-8a)

1,,(1) = 7habsin(a — 11 + wot) (II-6b)

Mt) = 7h(02 — (12)/2. (ii-8c)

The expectation values of the magnetic moments of transverse components for an

individual spin precess about the external magnetic field with angular frequency 020

and phase a — 8. However, the expectation value of the magnetic moment of the 2

component is constant, and, (at equilibrium) is proportional to a population differ-

ence of the two spin levels, which in turn is proportional to the energy difference in

the “high temperature approximation” (Boltzmann distribution). Since the behavior

of a single spin or group of spins cannot in general describe a macroscopic sys-

tem, we introduce an ensemble of independent two-level subsystems. Figure "-2

shows the mixed and pure states of this ensemble. The transverse components

of the subsystems have the same frequency, but need not have the same
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figure "-2. Random phases (a) and correlated phases (b) in an ensemble of two

level systems. Taken from Ref. 61.
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phase for a the mixed state (Fig. "28). The average transverse components of

the subsystems over all values of the phase is equal to zero, and only the lon-

gitudinal component remains (see equation "-6). In a pure state (Fig. ll-2b), the

behavior of the macroscopic system is identical to that of each microscopic sub-

system, due to each subsystem having the same frequency and phase (phase

coherence)!“61 The term “coherence” is defined as the presence of some de-

gree of phase coherence between the basis states of the isolated subsystems

throughout the ensemble.61

An ensemble of spins can be described by the density operator, which is

represented by

p = Z p1l¢11<thl = 1211111. ("-7)

where p,- is the probability of each state 2/2, occurring in the superposition.62 The

equilibrium density operator can be represented by the M) (M,| basis whose

matrix formulation of Eq. "-2 is given by

p = iii/2C”? il/Qcil/Q . ("-8)

Ci/zc-W 6—1/20-1/2

With the probabilities from the Boltzmann factor

 

p(M = 1.1,) = e$p(-tho/kT)/Z, (II-9)

the equilibrium density operator is given by

PM = exp(—hw0Iz/kT)/Z ("'10)

after averaging over the phase differences. From the high temperature approx-

imation, the partition function Z is equal to 2I + 1. For the equilibrium density

operator of a spin 1/2 system, Eq. "-3 can be rewritten as

[p..]= 6$P(-hwo/2kT)/2 0

'1 0 exp(-hwo/2kT)/2 '

The random phase among spins of different subsystems in the ensemble averages

(ll-11)

the off-diagonal elements to zero, but an application of an appropriate rf pulse to
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the ensemble results in non-zero off-diagonal elements in the matrix. The exis-

tence of the non-zero off-diagonal elements from a single pulse is described as

single-quantum coherence. The order n of a coherence between states ir) and

Is) is defined as

n = AM = (M, - M,|, (ll-12)

where M, represent the total (summed) M, values of all the spins in the state |r).

The dimension of the density matrix increases as size of the coupled spin system

increases. The presence of phase coherences in large spin systems produced by

a proper pulse sequence results in non-zero off-diagonal elements that represent

the multiple quantum coherences between states.

B. Time Development of the Density Operator in the Rotating Frame

The density operator determines the‘ state of a system at any time. The de-

. velopment of the density operator p is governed by the Liouville-von Neumann

equation.

31,42 = 2110.71]. (II-13)

When the Hamiltonian H is time-independent, the formal solution of Eq. "-13 is

represented by

10(1) = exp{-(i/51Ht]p(0)eXP[(i/5)Ht]- (ll-14)

When p and H commute, no evolution of the density operator occurs

90) = p(0)expl-(i/htheXPIG/fimt] = p(0)- (ll-15)

If H depends explicitly on time, we may satisfy both the Schroedinger equation

and the Liouville-von Neumann equation by replacing the propagator that makes

the evolution of one state to other state by a unitary transformation in Eq. "-13 with

U(t) = Tezp {—1 {(110347} (ll-16)

where T is the Dyson “time-ordering operator”. Coherent averaging theory63'64 is
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used to solve Eq. 15. p(t) is always related to p(0) by a unitary transformation in

Liouville space so that the length of the vector representing the density operator

remains constant as the system evolves. Since the expectation value of any op-

erator can be calculated from p,47

<40» = 23 p.14..- = T111041 (II-17)

the prediction and control of thje time development of p are always central prob-

lems for time domain NMR in general and multiple-quantum NMR in particular.

It is often convenient to go to the rotating frame when a system is acted on by

alternating magnetic fields. The transformation to a frame rotating at or near the

Larmor frequency in order to remove the fast precession due to the Zeeman inter-

action makes the solution of the Liouville-von Neumann equation easier. Defining

an operator R as

R = exp(—1H,,,t) (II-18)

where Hm is the external Hamiltonian. We write the transformed density operator

as

pR = R'lpR; (ll-19)

and the transformed Hamiltonian as

HR = R‘1HR— 112-131,3 (ll-20)

The transformed Uouville-von Neumann equation can be rewritten as

131,3 = i[pR,HR] (II-21)

Since the Liouville-von Neumann equation is of the same form after the transfor-

mation, we will omit the superscript on p and H with the understanding that the

laboratory frame has been replaced by a suitable rotating frame in which external

Zeeman interactions are absent.
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C. Pulse Sequence for Multiple-Quantum NMR

Since multiple-quantum transitions are usually not directly observable with

an NMR coil, they must be detected indirectly by two-dimensional spectroscopic

methods. The general scheme of a two-dimensional multiple-quantum NMR ex-

periment is shown in Figure "-3. The pulse sequence creates a non-equilibrium

condition of multiple quantum coherence during a preparation period 1, allows the

coherence to respond during an evolution period 11 and then transfers the coher-

ence to z magnetization during a mixing time 7". The coherence is then detected

after a detection pulse during the detection period, which creates observable Iz

magnetization (corresponding to a single-quantum coherence).

The preparation period propagator

U(7') = exp(—1'Ht) (ll-22)

arises from a combination of pulses and proper delays. Under this propagator,

the density operator becomes

10(7) = U(T)p(0)U“(T) (ll-23)

by the end of the preparation period. The system is allowed to develop, freely

or otherwise, for an evolution period of length t1. During this time, the different

modes of coherence oscillate at the eigenfrequencies determined by the effective

Hamiltonian H1 (defining in Figure "-3). No signal is recorded during this interval.

After time development is halted at some time t1, the coherences are transferred

to detectable single-quantum modes during the mixing and detection periods and

the density operator becomes

p(T, t 17') = V (7’) exp(—1'H1 t1 )p(T)exp(iH1 t; )V-1 (1’) (ll—24)

where V(r') = exp (—iH'1-') is the mixing period propagator. Transverse com-

ponents of the total spin angular momentum I, and I, are obtained immediately
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Preparation Evolution Mixing Detection

 

 

Propagator U exp(-H1t1) V exp(-H2t2)

     

Time variable 1 t1 1' t2

Figure "-3. General form of the pulse sequence of MO NMR experiments. See

text.
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after the mixing period

5,, (1,1,5) = Tr[p(r,t1,r')Ia] a = 1:, y. (ll-25)

ln NMR experiments, a complex signal S = 5, +15, is detected with the combi-

nation of the transverse components in quadrature. From the high temperature

approximation, a reduced density matrix describing the initial equilibrium condition

of the spin system is represented by

p ~ I,. (ll-26)

Even though the initial condition I, is not measurable directly, it is related to I, and

I, by a simple 90° pulse. Thus we take I, as the observable operator. Defining

the coherence amplitude

z,,,, = (M,|Up(0)U-1|M,)(M,lv-II,V|M,) (ii-27)

we then express the trace as

S, (T, t1, 7”) = g Z,,3,exp (—iw,(.,1)t1) (ll-28)

where the oscillation frequency c059,: w, -w, occur at the energy level differences

during the evolution period Hamiltonian. The full response during the evolution

period is recorded point-by-point by repetition of the experiment over a series

of regularly incremented values of 11. The signal detected during t2 shows the

modulation of the single—quantum signal with respect to the t1 domain. Fourier

transformation of the interferogram of the t1 time-domain provides the multiple-

quantum spectrum. _

In general the amplitude and the phase of each frequency component at t2 =

0 depend on the combined effects of preparation and mixing through the complex

factor Z. When U is equal to or is only different from V‘1 by a phase factor ¢,

v-1 = exp(—i¢I,) Uexp(1er,) (II-29)

the signal in Eq. 27 becomes
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S,(1', t1) = 2; 5; (111,11,1.11,)‘lexp(in¢)exp(—1c£,’8,) (ll-30)

where all transitions within a given order n have the same phase, and all transitions

of two adjacent orders differ in phase by :l: as. The signal is detected by using

a simple 1r/2 pulse at 12 = 0. The-condition that the preparation and mixing

Hamiltonians be equal in magnitude but opposite in sign, results in time reversal

for the propagator. In solids, the time reversal sequences that refocus the

evolution due to dipolar coupling increase the signal to noise ratio by achieving a

constructive interference of the different transitions within an order.29

Multiple-quantum coherences can be created in dipolar-coupled solids under

the action of rf pulse sequences with an appropriate average Hamiltonian. Figure

"-4 shows a pulse sequence for multiple-quantum NMR experiments. Eight 90°

pulses of duration tp with spacings A’: 2A + 13 generate the average dipolar

. Hamiltonian

11,, = 11,, = —5 20,3131,” + I,-_I,,-) (ll-31)

where Iji = I], 1: 11,-y, and 11;), is the homonuclear dipolar coupling. The

average dipolar Hamiltonian, containing only the terms Ij+Ik+ and I1.1),” excites

only even order multiple-quantum coherences. Two methods, time proportional

phase incrementation (TPPI)29 and phase incrementation (PI)4°, can be used to

separate the different multiple-quantum orders. In TPPI, the overall phase 0 of

the preparation pulses is incremented in proportion to t,

M = AwAtl (ll-32)

where 45 is the phase of the rt pulses and Aw is a resonance offset frequency.

Substituting Eq. 31 into Eq. 29, we can rewrite Eq. 29 as

S,(1',t1) = z: z: (M,|I,|M,)2exp(inAwAt1 )exp(—1w£j ’11). (ll-33)
n r,s

Fourier Transformation of the signal with respect to t1 results in the separation of
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(Evenerder selective)

Figure "-4. Pulse sequence for multiple-quantum NMR in solids.”40 The time

reversal sequence is used in the mixing period. The transverse magnetization is

allowed to decay during the delay before detection, and spin locking (not shown)

is used after the detection pulse (final 90° pulse) to increase the S:N ratio. For

PI-MQ-NMR, the value of t1 is not stepped, but fixed at a short value, and the

phase «13 are incremented.



    J
0 1r 21r 31v 4r 51f 61f 71r 811* 91! 101r 111r 121r131r143151r161r

 

Phil.

figure "-5. Time-domain MO interferogram of hexamethylbenzene using TPPI

and the pulse sequence shown in fig. "-4.
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figure "-6. Frequency-domain 1H MO spectrum of hexamethylbenzene using the

TPPI and the pulse sequence shown in Fig. "-6. The experimental parameters

used are 90° pulse length a 3.8 ps, preparation time =- 504 ps (basic cycle time

=72ps), A11 . 200 ns and A<I> = 6°.
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different MO orders by multiples of the resonance offset frequency A02. The

spectral width of the MO spectrum is the inverse of the t1 increment. The number

of orders detected, nm,,, depends on the value of the phase increment A8

according to the relationship A8 = 27r/nma,. Figure "-5 shows the time-domain

MO signal of hexamethylbenzene generated by the TPPI method. Figure "-6

shows the frequency-domain MO spectrum of hexamethylbezene obtained using

the TPPI MO experiment. During the evolution time, the increase of t1 duration

results in a decay of the signal, which causes the frequency-domain peaks of the

MO spectrum to broaden for higher orders.

The phase-incremented MO experiment proceeds just as described above,

but since the phases of the preparation pulse are incremented by A45, with a fixed

evolution period, the t1 domain MO signal does not decay and shows periodicity

(shown fig. "-7). Fourier transformation of the time-domain MQ signal with

respect to 42 generates the series of 6-function peaks corresponding to the MO

order n. figure "-8 shows the frequency-domain MO signal of hexamethylbezene

obtained with the phase-incremented MO experiment.

Most MO NMR dynamics in solids are interpreted in terms of the effective

sizes that are measured from the integrated intensity of MO orders. The spectrum

from the phase-incremented method has a higher signal-to-noise ratio than that

from the TPPI method, which reduces the number of transients required. The

integrated intensity obtained by simply measuring the peak height also makes

the data analysis simpler. Since enough digital resolution can be obtained by

replicating the time-domain MO signal from the phase-incremented method, due

to the periodicity of the time-domain of MO signal, the number of time-domain

points required in the phase-incremented method is much less than that of the
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figure "-7. Time-domain MO interferogram of hexamethylbenzene using the

phase-incremented method and the pulse sequence shown in Fig. "-6. The

60 complex points (21r) in (a) were experimentally obtained, and were replicated

up to 480 complex points (161).
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figure "-8. Frequency-domain 1l-I MO spectrum of hexamethylbenzene using

the phase-incremented method and the pulse sequence shown in Fig. "-6. All

parameters are the same as in Fig. 8, except the fixed t1 intervalwas set to 200 ns.
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TPPI method. However, the 6—function peaks of the phase-incremented method do

not yield the spectral information about the different frequencies occurring within

each order.32 When only the information from the integrated intensity is needed,

the phase-incremented method is preferable due to the lower time required to

cOIlect the data.

The pulse programs for the MO pulse sequences used on the VXR 400

spectrometer were kindly provided by Dr. T. Barbara of Varian Associates. We

have modified the MO pulse sequences for our experiments, as shown in Appendix

A.

D. Statistical Model of MO Coherence Intensities

In MO NMR experiments, the intensity of each order in the MO spectrum

depends on the number of correlated spins (effective size). The dimension of

the density matrix is 2” for an N spin-1/2 systems. The number of spins in

a macroscopic sample is about 102°. It is impossible to calculate the density

matrix of such a macroscopic sample in solids. However, in the statistical

model31-52-53155'55, we assume that the intensity of each order in a MO spectrum

is proportional to the number of possible MQ transitions, and that the transition

probability of each order is the same. The effective size can be measured by

counting the number of such MQ transitions. I

In a strong Zeeman field, an N spin-1/2 system has 2N stationary states, which

can be classified according to the total magnetic quantum number M,, given by

M2 = 2; mg, (ll-34)

where mi, is the eigenvalue (mg, =I:t1/2) of the i-th spin in the system. The energy

eigenvalues of the Zeeman term are represented by (see Eq. l-3)

E, = —7hH0M:. (ll-35)
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The energy levels can be sorted by the number of spins in the la) or |+ {-5) state,

no, and in the [13) or | — é), n3 state, since we can rewrite Eq. "-34 as

M; = (no, — n3)/2. (ll-36)

The degeneracy S2 of states having a particular energy level E. is represented by

Q = NI/(nalng!) (ll-37)

Substituting Eq. "-36 and, using the fact that no, + 77.5 = N, we can rewrite Eq.

"-37 as

$2 = N!/[(N/2 + M,)!(N/2 — M,)!]. (ll-38)

The energy levels of the Zeeman term and the total magnetic quantum number Mz

are shown in Figure "-9. Degenerate in the Zeeman energy, the levels within a

manifold are shifted and split by the internal interactions, making possible a large

number of spectroscopic transitions or coherences. The dashed lines indicate the

MO transitions, in which several spins flip together subject to the general rule,

12 = |AM|. The number of all possible transitions as a function of their order, n,

can be calculated by combinatorial arguments. The number of n-quantum transi-

tions is represented by

2<1<>41:1.) ‘ «1391
where (3) = a!/[(a — b)!b!]. The number of zero quantum transitions between

pairs of states in the same Zeeman manifold is given by

-N/2+l

2° = Z (N127...) [(Mim) ‘ 1] = [(215) " ”I ("'39)
Mi=N/2-l

For nonzero orders, Eq. "-39 is well approximated by the Gaussian distribution

using Stilring's approximation

I(n,N) = 4N/\/—N-7r_*exp(—%:) (N 2 6). (II-40)

E. Simplified Models of Multiple-Quantum Dynamics

The time-dependent behavior of multiple quantum coherences can be
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Figure "-9. Schematic energy level diagram for an N (odd) spin-1/2 system in a

Zeeman field, and the degeneracy number for S2 of each state. Taken from Ref 53.
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Figure "-10. Symbolic representation of the spreading of multiple spin correlations

in a coupling network with increasing preparation time. The circle denote spins

and the lines indicate the link of MO coherences through dipolar couplings



95

calculated explicitly using the LiouviIIe-von Neuman equation applied to the den-

sity matrix. Since the multiple-quantum coherences in solids are created through

homonuclear dipolar coupling, we can rewrite Eq. "-14 as

p(t) = eXPl-(i/B)Hut]p(0>6Xp[(i/E)Hnt] (ll-41)

where Hg is defined in Eq.ll-31. For short times, an explicit form of the solution

of Eq. "-41 can be written as the power series

W) = p(0) + (i/h)t[p(0), ’Hn] + (i/h)2(t2/2!)[[p(0), HDLHD]

+(i/h)3(t3/3I)[[[P(0)1HD], 71011710] + '°°- ("'42)

The contribution of high order terms in Eq. "-42 becomes more and more impor-

tant with increasing time. Figure "-10 shows symbolically the development of

multiple-spin correlations by way of the homonuclear dipolar coupling. The num-

ber of correlated spins increases with increasing preparation time.

The explicit calculation of the MO dynamics using the Liouville-von Neuman

equation is limited to small spin systems (3 9 spins) because it is computationally

demanding. Reduction of the size of the operator space can increase the size of

the spin systems that can be treated. Since classes of coherences are detected

in an M0 experiment, as opposed to individual coherences, a simplified, albeit

inexact, calculation of MO dynamics is possible by use of an average operator.

The following sections will discuss two simplified calculations of the MO dynamics:

a directed walk through Liouville space (hopping model)57 and a incremental shell

model3‘3 making using of the concept of an average operator.

a. Hopping Model

The density operator can be represented by a vector in Liouville space,

11(1)) = 1:11éggmlmxnp) (II-43)

where gKnp(t) is the component of the Liouville states, K is the number of single-



96

spin operators involved in forming the product operator |Knp) of the Liouville state,

72 is the order of the coherence, p labels the different states having the same val-

ues of K and n. The symbol for Liouville states, |~-), is used to distinguish these

from the symbol Hilbert states, |---). The equation of motion in Liouville space is

represented by a vector equation

1311(1)) = -i7;?|p(t)) (II-44)

where ”H is the superoperator [H, ...]. Eq. "-43 can be expressed in terms of the

components 9K",

gigKnPU) : —i g: 2 Z QKnp;K’n’p’9K'n’P’(t) ("'45)
I n! pl

where

Kn

11...,(1) = Wag, (II-46)

and

Knp 'H K'n'p’

QKnp;1f"n’p’ = (KanKnp) ("'47)
 

The different oscillatory behaviors of the various components of the density op-

erator in Eq. "-44 are hidden by destructive interference and resultant decay,

which decrease the number of degrees of freedom. Since Eq. "-45 is a kind of

first order kinetic equation, Munowitz etc. assumed that the motion of the density

operator can be solved by using the following equation I

g; = By (ll-48)

This equation represents a generalized hopping model, in which the elements of

R give the rate of change from one component of g(t) to another. R is a matrix of

real numbers. For this model, we need to define the space over which the coher-

ences hop and to develop the rates and selection rules that govern the motion.

The size of the Liouville space can be reduced by grouping together modes
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Figure "-11. Projection of Liouville space onto a two-dimensional plane. Each

point corresponds to a family of K-spin/n-quantum operators. Taken from Ref. 57
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Figure "-12. Pathways of the growth of MO coherences in Liouville space for a

6-spin system under the 1-spin/2-quantum Hamiltonian. Taken from Ref. 57.
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of the quantum numbers K and n. In general, the components of the vector 9

are labeled as 9.0,. The projection of the Liouville space is shown in Fig. "-11.

Each point on a two-dimensional grid corresponds to a family of coherences (

IKn) operator basis). K runs from 1 through N and Inl runs from 0 through K.

With the assumption that the coherences are of equal magnitude, the number of

Operators ggndepends on K, n,and N.

The selection rules and hopping rates from one site to the other site through

Liouvlle space must derive from the Hamiltonian. The MO pulse sequences in

Fig. "-6 used in our experiments create the 1-spin/2—quantum dipolar Hamiltonian

which adds one (or subtracts) spins, and changes the order by 2 quanta at a

time to a multiple-spin mode. Under this Hamiltonian, the selection rules in the

Liouville space are

AK = i1, An = 3:2. (ll-49)

The detailed proof is in Appendix B. The pathways through the Liouville space

may be constructed on the basis of the selection rules in terms of the specified

starting point, that the reduced density operator p(0) at thermal equilibrium is

proportional to I, (K=1, n=0). For example, Fig. "-12 shows the allowed changes

of the Liouville states of a six-spin system under a 1-spin/2-quantum operator.

The time development of p an be solved by using the rate equation (Eq. ll-

48). With the assumption that all coherences have equal magnitudes, the hopping

rates depend on the degeneracies of the coupled states and the strength of the

dipolar interaction. Each element of the rate matrix is given by

RKn;K'n’ = WKn;Is”n’SI (”'50)

where WK”,K1,. is the generic hopping rate between 9m. and gK’n'. and S, is the

lattice parameter, which reflects the strength of the dipolar couplings. The general
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behavior represented by the statistical factors (the degeneracies of the Liouville

state) as well as the individual details represented by the structural factor (dipolar

couplings) are of interest in this model. As a first approximation, we will con-

centrate on the universal trends, leaving 5', as an adjustable parameter to fit the

behavior of arbitrary systems of N spins to specific experimental examples. The

lattice parameter, which depends on the structure of the material, may be given

by a lattice sum of the coupling constants

51 = 7%, z; |D.-,-|. (ll-51)

I<J

as an approximation, we may simply take 5; as proportional to the dipolar linewidth

or the square root of the second moment.

The matrix elements (hopping rates) are constructed from the degeneracies of

the Liouville states mm and |K’n’). Let C... be the number of raising operators, c-

the number of lowering operators, and co the number of zero-quantum operators

so that

c..—c_ = n (ll-52)

and

c... + c- + co = K (ll-53)

For a given choice of c+ and c.., the number of ways to choose c+ operators out

of K spins is given by the combinatorial coefficient

(if) = figm. (ll-54)

Similarly, the number of different ways of choosing c- spins out of the remaining

K - c+ is represented by

(If-f.) (ll-55)

Therefore, the total number of ways to choose c+ and c- is the product of the

binomial coefficients of Eqs. (ll-48) and (ll-49). The degeneracy of the Liouville
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state is obtained by summing over all admissible values of c+, beginning with

0+ = n, and multiplying the total combinatorial factor to account for the number of

ways that K spins can be selected from N. The result is

Am. = mom. (II-56)

where

an = 25;, (’5) (5.75.)- ("-5”)

The degeneracy of the Liouville state is used to calculate the hopping rates.

For 2-quantum/1-spin operator (Hyz), the forward rate in which K increases is

given by

WKn;K+1,n:l:2 = K8951” ' QK‘I’"+3,,K'I’"*1 ("‘53)

and the reverse rate in which K decreases is given by

WK+l,ui2;Kn = KIRK?) - 94"5}t3$“"*—‘. ("'59)

Given the rate matrix (Eq. ll-48) we can compute all the coherence amplitudes

gKn(t) by solving Eq. "-47. Then summing over all K gives the amplitudes of n-

quantum coherences

gn(t) = é: gKn(t)- ("'60)

Figure "-13 shows the theoretical development of the n-quantum intensities for

systems of both 6 and 20 spins evolving under H”. The matrix dimensions for 6

and 20 spin systems are 6 and 60 respectively. The effective sizes are obtained

from the theoretical calculation by fitting the orders n to a Gaussian distribution

(Eq. Il-40) for each preparation time. The effective size of the 20 spin system

increases with increasing preparation time, finally reaching an equilibrium at the

longer preparation time (see Fig. Il-14).

The hopping model makes it possible to understand the evolution of the MO

dynamics in systems too large or too complicated to be treated exactly. The
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replacement of the Liouville—von Neumann equation by a set of rate equations with

an exponential solution is based on the severe damping that accompanies the

superposition of a large number of different frequency components. The equation

in the hopping model can be solved straightfonNardly for groups of spins of various

sizes. However, it cannot directly incorporate the effects of dimensionality on

multiple quantum dynamics, and is limited to approximately 40 spins.

b. Incremental Shell Model

As mentioned above, the density operator needs to be simplified in order

to understand the MO dynamics in larger spin systems. In the incremental

shell model,36 it is assumed that the density operator can be approximated by

a weighted sum of time independent angular momentum operators, Pm, where

both an and a are vectors of dimension M

p(t) = E) g Cma(t)Pma- (ll-61)

Since the operator products Pm are time-independent, all information on the time-

evolution of MO coherences is contained in the coefficients cma(t). The angular

momentum operator products can be given by

Pma = :11 Imkak (ll-62)

where m), is the index of all M spins of the vector m, and a), is the angular

momentum operator ( + = 1, - = -1, and z=0) for spin k.

We rewrite Eq. "-31 for calculations using the incremental shell model as

11,. = i:g 0qu (II-63)

where Dfi is the dipolar coupling between the pair of nuclei i and j Q'U' is a

condensed notation for raising and lowering operators (Ii+I,-+ + I,_I,-_). From

Eqs. (ll-61) and (ll-62), the Liouville-von Neumann equation can be represented

in the form of a summation of operator products
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§ gdc t pm = 5;; E0; cm (2; gDij-[Pmm Q01) (II-64)

where the factor i is the square root of -1 (since there is an i representing nucleus

i). The MO coherence growth is contained in the time-dependent coefficients

(cm). In large spin systems, since the large number of terms in the summation

makes explicit calculation of Eq. "-58 impracticable, we need to simplify Eq. "-58

and find the selection rules resulting from the commutator [Pmeij]. In order

to simplify the Eq. "-58, we follow Levy and Gleason36 and assume that the

individual operators Pm can be replaced by an average operator PM, and set D,,-

to zero for all non-neighboring nuclear pairs. All combinations of individual product

operators having the same number of individual spin operators in their product are

represented by the one average operator. Figure "-16 shows an average 4 spin

operator schematically formed from a cOmbination of individual 4 spin operators

. of 9 spins in real space. We can rewrite Eq. "-61 with the average operator

pa) = ggcmartwm 5: §CM(t)PM (II-65)

where CM is the summation of the coefficients cm over all values of m and (1.

Then, Eq. "-64 can be rewritten as

g gf‘PM = iEICM (ZiZEZiDiijuflul) (ll-66)

The commutators [Pm Qij] can be evaluated according to the selection rules for

M0 evolution. Since the dipolar coupling is proportional to the inverse cube of

the distance, only adjacent i, j pairs are used to calculate the commutator. The

MO coherence growth depends on the position of spins. First, when both spins

i,j of the pair are outside of the existing multi-spin coherence,the coherences do

not grow since the commutator is zero. Secondly, when one spin is inside of the

existing coherence and the other is outside, PM and Qij do not commute since

.
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they will contain operators for the same spin. In this case, the commutator

increases the number of spins in the product operator by one (forward growth).

The third case involves a spin pair i,j inside the existing coherence. Non-zero

commutators then decrease the number of spins in the product operators by one

(reverse growth). The commutator averaging over all possible combinations of I,,

1+ and I. for spins i, j yields‘”5

[PM,Qij] = 0 i¢ M,j i M (ll-67a)

=2PM+1 i¢M,jeMori¢M,jeM (ll-67b)

= (2/3)PM_1 i e M,j e M. (ll-67c)

The selection rule for the growth of the average product operator is AM = il, in

agreement with that for the hopping model. Plugging Eq. "-67 into Eq. "-66, we

can rewrite Eq. "-66 as

2(a): ) 512042 E Z Dii(2PM+l)+ Z Z Dij(§PM-1)]
M M iEMjaM iEMjEM

¥§CM(W{H1PM+1+ Wj,_,PM_,) (ll-68)

where W{,H and led are the forward and reverse rate coefficients. The

orthogonal property of the term PM more simplifies the Eq. "-68 to :

ar=aiwt-.cu-t-rwr...cmt (..-69)

The forward rate coefficients, W3}, are defined as

Wj, = 4 z z: 19,-. (ll-70)

iedeM

Since the rate of increase of the effective size depends upon the number of spins

outside of the existing spin coherence that are on the periphery of the cluster, we

can rewrite Eq. "-70 as

'
.

 

‘
E
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Wj, .—_ 4012mm, (ll-71)

where n,, is the number of spins outside the coherence adjacent to a single spin in

the coherence and n, is the effective number of nuclei at the edge of a coherence.

As shown in Figure "-17, higher dimensional arrangements of spins have more

spins outside a given cluster available to enter the coherence. Therefore, lines

(1-D), squares (2-D), and cubes (3-D) have different forms for n, represented by

n, = 2 (ll-723)

n, = 4(M)1/2 (ll-72b)

n, = 6(M)2/3. (ll-72c)

The parameter nu, of the order of 1-3, has been used to fit the experimental data,

although we will treat it as fixed (=1) for our 1-D system.

The reverse rate coefficients Wj, are obtained by the fact that the norm of all

CM terms is conserved during the evolution time:

f} flags) = ‘3} (cm): + CM4%). (II-73)

Under the action of the dipolar Hamiltonian 773,, through the Liouville-von Neu-

mann equation, all coefficients CM with odd M are real numbers and the others

are imaginary numbers. Thus, the derivative of the norm of CM can be repre-

sented as

Cild—gf‘+CMi§§‘ = (Wt,_,chlch-ll + W£4+1|CMIICM+1|)><(-1)M_l- (II-74)

Since the derivative of the norm must be equal zero, the normalization condition

of Eq. "-74 can be given by:

;(W{;_1W}{4)|CMHCM—il = o (ll-75)

where W{,_l should be equal to W;,, since the time-dependent CM terms are

variable in the linear equation ( Eq. ll-75). Therefore, the reverse rate coefficient

can be calculated from forward rate coefficient given by Eq "-71.
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Cl is equal to 1 at t=0. The time-dependent CM terms for higher values of

M increase as the preparation time increases. Therefore, the center of mass of

CM moves to higher M values at longer preparation times. Levy and Gleason36

chose to approximate the effective size N by this center of mass:

2 M(C;,CM)

M

N =m . (ll-76)

M

Although the effective size from Eq. "-76 may not correspond exactly to that ob-

tained using the statistical model, it is useful for comparisons with experimental

data. Simulations of MO coherence growth in spin systems of different dimen-

sionalities (1D, ZD and 30) are shown in Figure "-18. These calculations were

performed with ns obtained from Eq. "-66, nn=1 and D12: 1.0 kHz. The curves

shown are approximately linear, quadratic, and cubic for the one, two and three

dimensional cases respectively, only slightly deviating from these forms at early

times. This program was kindly provided by Dr. K. K. Gleason of the Massachu-

setts Institute of Technology.

3. Experimental

A Multiple-Quantum NMR Studies

The 1H and 19F multiple-quantum experiments were carried out on a Varian

VXR-400$ spectrometer equipped with a 100 watt amplifier (400 and 376 MHz)

and a high power probe with a 5 mm o.d. solenoid coil for 1H and 7 mm o.d.

for 19F. The phase-incremented even-order selective multiple-quantum pulse se-

quence in Fig. "-5 that was used increases the S/N ratio and saves experimental

time compared to the TPPI method, at the expense of information about the
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individual line-widths of each order.“0 The 7r/2 pulse lengths are 3.8 us for 1H and

4.6 #8 for 19F, and the basic cycle times are 72 us and 78 #8 respectively. The

t1 value was fixed at 2 [18, and relaxation delays greater than five times T1 were

used. The highest coherence order, nmax, detected is governed by the digital

phase shift increment Acb : A<I>= x/nmax. A 2 ms delay after the mixing time is

used to allow the transverse magnetization to decay. The data are detected with

a 7r/2 pulse, followed by a 100 #8 spin locking pulse. A pseudo-10 spectrum

with 64 complex points in the "ti-domain" (phase-incremented) was obtained by

sampling a single complex point in the t2-domain 35 us after the last (spin-lock)

pulse. Unwanted odd order multiple-quantum coherences are eliminated by a 180°

phase shift of the detection pulse at every scan. Because of the periodic nature of

the data, increased digital resolution was obtained by replicating the "FID". The

number of correlated spins N (the effective size) was obtained by least-square

fitting of the orders of coherence (excluding 0 quantum coherence) to a Gaussian

function, according to the widely-employed statistical modelF“""5453-55-56 The MO

intensity distribution should be symmetric, I.1 = I.n theoretically from Eq. "-40.

Since the intensities of the positive MQ orders and the negative MQ orders are

slightly different experimentally, the sum of the positive and negative MQ orders

(In +l.n) was used in the fitting. The sum of all multiple-quantum intensitie [2(lo +

In + l...)] at a given preparation time was normalized to unity.

Since the chemical shift anisotropy of single crystal fluorapatite (hereafter

referred to as FAP) is known (84ppm),‘3‘5 the angles between the c axis of single

crystal FAP ( the a” direction) and the external magnetic field were calculated from

the observed chemical shifts. The PC-based computer program ANTIOPE66 was

used for explicit calculations of MO dynamics of single crystal fluorapatite (FAP)
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at different orientations. A basic cycle time of 30 us was used. Calculation of spin

dynamics of up to 5 spin-1/2 nuclei is possible with the ANTIOPE program.

B. Sample Preparation and Characterization

Hexamethylbenzene, 06(CH3)6, was obtained from Aldrich and used for the

multiple-quantum experiments. The sample of partially monoclinic hydroxyapatite

(hereafter referred to as HAP-M) was prepared,67 analyzed and provided by Dr.

Bruce Fowler of the National Institute of Standards and the National Institute of

Dental Research. Using the intensity of weak X-ray powder diffraction peaks char-

acteristic of monoclinic hydroxyapatite59 relative to that of a strong peak arising

from the hexagonal form”, along with theoretical calculated intensities for the

_ powdered monoclinic form, his analysis of HAP-M showed that roughly 70 % of

the sample is in the monoclinic form. lts hydroxyl content is therefore assumed

to be highly stoichiometric compared to most hydroxyapatite preparations, espe-

cially precipitated samples. Another sample of hydroxyapatite (hereafter referred

to as HAP-N) was prepared by aqueous precipitation and characterized by many

methods;58'7° a hydroxyl content in HAP-N was determined to be 92% by quanti-

tative 1H MAS-NMR, and 81% by IR.68 The solid solutions of fluorohydroxyapatite

(FOHAP) , Cas(OH)1.xe(PO4)3, with the different fluorine mole fraction (x = 0.24

and 0.41) were synthesized by aqueous precipitation at a boiling temperature.70

Their characterization has been previously reported.”71 A specimen of single

crystal fluorapatite was kindly loaned by Dr. Bruce Fowler. The color of this sam-

ple is pale yellow, with no obvious inclusions, and the diameter and length are

about 4mm and 7 mm respectively.
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4. RESULTS

A. 1H Multiple-Quantum NMR Study of Off-Resonance Effects

Hexamethylbenzene was used to check off-resonance effects in the MO NMR

experiments. The half-height linewidth of hexamethylbenzene in the static 1H

spectrum is about 11 kHz. The planar benzene rings of hexamethylbenzene in

the triclinic unit cell form a nearly perfect hexagonal net.72 Since fast reorientation

of each methyl group along its 0;, axis makes the three proton nuclei equivalent,

the CSA of hexamethylbenzene is negligible. The sixfold hopping of the hexam-

ethylbenzene about the C6 axis of the benzene ring lessens the intramolecular

dipolar coupling between ortho-, meta-, and para-methyl groups.73 Thus, breadth

of the peak arises mostly from the intermolecular dipolar coupling.

Figure "-18 shows multiple-quantum spectra of hexamethylbenzene with a

preparation time of 504 [18 obtained with different transmitter carrier frequencies.

The location of the transmitter was varied from the middle of the 1H static lineshape

to 4 kHz off-resonance in intervals of 1kHz. The 2 quantum peak on resonance

(Fig. Il-18a) is more intense than any other peak, but moving the transmitter

from the center of the spectrum diminishes the relative intensity of the 2 quantum

peak, eventually resulting in an inverted peak (Fig. ll-18b to e). The intensities

of the higher-order peaks, shown in Fig. "-18 with the same vertical scale, also

decrease with increasing resonance offset.

Static 1H spectra, normalized to the same peak height, of HAP-M, HAP-N,

FOHAP x=0.24 and FOHAP x=0.41 are shown in Figure "-19. The spectrum of

the low specific surface area (2.1 m2/g) HAP-M sample in Figure ll-19a does not

show evidence of a peak from surface adsorbed water (around 5.6 ppm)““9 but

instead only a 2 kHz broad peak, whose width is due to the CSA of the hydroxyl
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Figure "-18. 1H Pl-MQ—NMR spectra of hexamethylbenzene with different trans-

mitter carrier frequencies. See text.
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group, and homo— and heteronuclear dipolar couplings. The strong signal in HAP-

N around 5.6 ppm (Fig. ll-19b) has been assigned to mobile water at the surface.

The peak of hydroxyl groups in HAP-N is concealed by that of surface adsorbed

water (the specific surface area of HAP-N is 37m"’/g).68 The weak intensity of the

1H MAS-NMR spinning sidebands of the surface absorbed water groups indicates

that homonuclear dipolar couplings among these protons are negligible.69

Figure "-20 shows the 1H multiple-quantum spectrum of the highly stoichio-

metric HAP-M sample for a preparation time of 864 us, as well as the Gaussian fit

corresponding to an effective size of 12.3. The higher orders of multiple-quantum

coherences deviate from a Gaussian distribution,31 being more intense than pre-

dicted.

Figure "-21 displays the intensities of the multiple-quantum peaks for HAP-

M with a preparation time of 864 115 as a function of resonance offset. The

isotropic chemical shift of hydroxyapatite is 0.2 ppm, but the position of highest

intensity of HAP-M (2.8 ppm) is regarded as “on-resonance”, and the transmitter

offset is varied by up to :2 ppm (800 Hz at 9.4T). The change of the transmitter

offset position has only a slight influence on the intensities of the 2 quantum

and 4 quantum peaks, shown in fig. ll-21a with the same vertical scale. Since

the effective size is measured from the ratios of intensities of multiple-quantum

peaks, we can redraw Figure ll-21a with intensities normalized to the 2-quantum

peak. The resulting intensity profiles, shown in figure Il-21b are not changed

much by varying the transmitter offset by 12 ppm for a preparation time of 864

[18. figures ll-22a and b have the same parameters as Fig. 21 a and b except for

the preparation time (1872 jus). The intensities (with the same vertical scale) of

multiple-quantum coherences obtained on resonance are always stronger than



118

 

 

 

 

   

\

\

\
. 1

,5 .\

s l \

é " . \\

Ii \

c: \

‘ " \

 
n (number of quanta)

figure "-20. 1H MQ NMR spectrum of HAP-M using a preparation time of 864 ps.

The dashed line represents a Gaussian fit to the data with effective size N = 12.3.
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those obtained off resonance to the upfield side, but are stronger for the 2 and

4 quantum coherences, weaker for the 8 and 10 quantum coherences than those

obtained off resonance to the downfield side. It is difficult to obtain an effective size

fitted by using a Gaussian function from the intensity profile for an off-resonance

transmitter offset at longer preparation times. Thus, the effective sizes obtained

using Gaussian function with different resonance offsets are significantly different

from those obtained on-resonance, due to the distortions of the MO peaks. Such

resonance offset effects complicate the interpretation of MO dynamics.

B. 1H Multiple-Quantum NMR of Hydroxyapatite and Fluorohydroxyapatite

Samples

The normalized intensities of the various orders of MO coherence as a function

of preparation time 1' for the various apatite samples are plotted in Figures ll-23a,

b, c, and d. Figure ll-23a shows that the normalized intensity of the zero-quantum

coherence of HAP-M decreases, and that of the 2-quantum coherence increases

first and then decreases with increasing preparation time; the higher quantum

orders steadily grow within this experimental range of preparation times. The

normalized intensity of the zero-quantum coherence of HAP-N in Fig. Il-23b

shows a different behavior compared to that of HAP-M; it decreases slightly at

earlier preparation times and levels off at longer preparation times. Although the

normalized intensities of the high quantum orders of the HAP-N are less than those

of HAP-M, they present the same behavior with respect to increasing preparation

time as HAP-M. The normalized intensities of the zero-quantum coherence of

FOHAP x=0.24 and x=0.41 shown in Figure ll-23c and d show a slight variation,

and are higher than those of HAP-M and HAP-N.
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The effective size obtained from fitting MQ intensities to a Gaussian is useful

for studying MQ dynamics. Figure "-26 shows the experimental effective sizes N

vs. preparation time for HAP-M and theoretically calculated curves for 1-D and

2-D growth using the incremental shell model. The experimental plot is linear in

its early preparation time development, only deviating upward at longer prepara-

tion time (where one expects the weaker inter-chain dipolar couplings to become

more influential). The solid line represents the calculated curve for a one dimen-

sional chains of 1H spins in hydroxyapatite. The value of nn in the incremental

shell model was chosen to be 1, since there is only a single uncorrelated spin

adjacent to each spin at the coherence boundary. The value of no, (related to a

system's dimensionality) was set to 2, representing the total number of adjacent

spins outside of the coherence (the two “end Spins” in a linear chain). The dipolar

coupling D12 between a pair of nuclei is rewritten from Eq l-50 in the Part I as

D12 = (72h) (1 — 3cos2 012)/2ri32 (in HZ). (ll-77)

For two neighboring intra-chain protons 344 pm apart (the distance in

hydroxyapatite”) and parallel to the external field, D12 = 2.957 kHz, which is

1/3 of the Pake doublet splitting that would be obtained in a 1H spectrum. We

used in the simulation an average 012, 1.32 kHz, whose value is the root mean

square value of D12 over all powder orientations. Since the value of P2(c03912),

(1 — 3c082 912), is averaged out over all orientations but that of P2(c030)2 is not,

an average D12 is obtained from the square root of an average sz. This follows

the approach used by Levy and Gleason.36 For a 1-D system, a more reasonable

approach is to sum the powder-weighted responses foe each orientation of the

1-D chain. The experimental slope is three times larger than the predicted slope.

The dashed line shown in Fig. “-24 is the calculated curve for a two dimensional

  



125

 

   

50

I

40 1

‘ I

2
.. I

g 30

m 4 I

.3

‘87 20 . '

n‘i
‘ I

I

10 ' I

I ...«v

4 I ...v"

. ~G""‘

o ‘ "'1'"-' fl .

0 500 1000 1500 2000

Preparation time (vs)

Figure "-24. Effective size N versus MQ preparation time for HAP-M. The solid line

is a theoretical calculation using the incremental shell model for a one-dimensional

spin system with the appropriate dipolar coupling strength and bo adjustable

parameters (see text). The theoretical calculation of a two-dimensional system
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Figure "-25. In(N) vs. In(r/Tc) for all of the samples of hydroxyapatite and

fluorohydroxyapatite. Solid lines indicate the slopes of data points that are

obtained using least squares fitting. HAP-M (open circle), HAP-N (open triangle),

FOHAP x=0.24 (open square), and FOHAP x=0.41 (black circle).
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system assumed to consist of the Six nearest protons in adjoining columns in the

hydroxyapatite structure. The calculation was performed by using an inter-chain

nearest-neighbor powder-average dipolar coupling D12 of 64 Hz. The value of nn

was set to 6, the number of planar neighbors, and n5 was chosen to be 4M"?

The effective size N grows as some power of the preparation time 7' (N cx 7").

It is convenient to plot In(N) versus In(r/rc) to obtain the growth exponent a as

shown in Figure "-25 , where To is the basic cycle times3 The growth exponent for

effective size vs. preparation time is equal to the slope of this plot. The MO data

for HAP-M and HAP-N show bi-exponential characteristics. The slopes of HAP-M

and HAP-N for short preparation times (shorter than 864 us) are 0.98 (correlation

coefficient = 0.988) and 0.83 (correlation coefficient = 0.998), and those for long

preparation times (longer than 1008 us).are 1.78 and 1.82 respectively. FOHAP

=0.24 and FOHAP x=0.41 have single exponential characters. The slopes for

FOHAP x=0.24 and FOHAP x=0.41 are 0.54 (correlation coefficient = 0.963) and

0.50 (correlation coefficient = 0.936) respectively.

The decays of the absolute intensity of the sum of all multiple-quantum coher-

ences of the apatite samples are shown in Figure ll-26a as a function of prepa-

ration times. The decay function corresponding to irreversible relaxation can be

assumed to be exponential:

|(1') oc 6Xp(-r/Td). (ll-78)

The different relaxation times Td of the different MQ coherences can be distin-

guished by taking the logarithm of Eq. "-78. Figure ll-26b shbws a plot of ln(l(r))

vs. the preparation time 1'. Since the Td relaxation time is the inverse of the

slope in Figure Il-26b, we have offset the intercept in order to see the slope more

clearly. The Td relaxation times of HAP-M, HAP-N, FOHAP x=0.24, and FOHAP
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figure "-26. Decay of absolute MG coherence intensity of apatites. HAP-M (open

circle), HAP-N (open triangle), FOHAP x=0.24 (open square), and FOHAP x=0.41

(black circle). a) Intensity vs. Preparation time. b) In(intensity) vs. preparation

time, arbitrarily offset in the vertical direction.

 



129

 

    
 

   

1.0

a)

9 A

r A 00 .-

2 . T

0.8 “ O : . . g g!

A O 1

a r ‘ ' ‘.a .
1

8
:C: 0.7 v ! ' I ' f r - ..

E 0.3 E-

at o
< o

E b) A A 0
0.2 ‘ o a. o

8 O O o O

A 20

. A
0.1 A A A

A A

0.0 ~ . s r s v . . .

0 200 400 600 800 1000

Preparation time (us)

figure "-27. The normalized intensities of 00 and 20 coherences of a single

crystal mineral sample of FAP vs. preparation time at twoorientations with respect

to the external magnetic field. a) 00 at 90° (black circle) and 00 at 62° (black

triangle). b) 20 at 90° (cpen circle) and 20 at 62° (open triangle).



130

 

 

  
 

1'
!

l

9.0 ,

g ...r

.5

¢ .

§ 80

§ 0

G

g l

7.0 - . - . - . . , -

0 200 400 600 800 1000

Preparation time 0.13)

Figure "-28. In(absolute intensity of MO orders) vs. preparation time of single-

crystal fluorapatite at two different orientations. 90° orientation (open circle) and

62° orientation (open triangle).

 



131

x=0.41 are 742, 601, 615, and 610 113 respectively.

C. 19F Multiple-Quantum NMR of a Single Crystal of Fluorapatite

Figures lI-27a and b show the intensity of the zero-quantum and two-quantum

coherences of a single crystal FAP at two orientations ( c axis making the angles

62° and 90° with respect to the external magnetic field). Unlike a powder sample

(see fig. "23), an oscillatory behavior is observed for the zero and two quantum

intensities. The frequency of the oscillations of the MO coherences for single-

crystal FAP is proportional to the dipolar coupling. The dipolar coupling infra-chain

of single-crystal FAP at 90° is approximately 2.95 times larger than that at 62°.

The logarithm of the absolute total multiple-quantum intensity for the single-

crystal FAP sample at two orientations vs. preparation time 7' is shown in Figure

"-28. The Td relaxation times of this single-crystal mineral FAP are 694 ps and

645 #8 at 62° and 90° respectively.

5. DISCUSSION

A. Effect of Resonance Offsets in the Pl-MO NMR Pulse Sequence on the

Formation of Multiple-Quantum Coherence

Figures "-18, 21, and 22 show the effect of a resonance offset on multiple-

quantum coherences. We can give a possible explanation for this effect. In the

rotating frame, when only the static magnetic field is present, the effective field is

represented by the vector equation

in = 1% — an (II-79)

where Ho is the vector of the main static magnetic field and the magnitude of 63

is the angular frequency of rotation of the unit vector at rf carrier frequency. We

 ‘
F
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figure "-29. The effective magnetic field if,” in the rotating frame in the

presence of an applied rf field 171. The effective magnetic field is the vector

sum of the applied static field 170, the fictitious field c/v. and the rf field if].
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can express the effective field in the rotating frame in the presence of an rf

pulse as the vector sum of fig — LIE/7 and H1 (see Figure "29)

1?.” = (Bio 4277) Hair (ll-80)

where H1 is the radiofrequency field. The magnitude of the effective field is rep-

resented by

Herr = [(Ho —w/i)2 + H1211”

1/2

= (1M) [(7110 - w)2 + (71102] (II-81)

= (1/7) [wa - e)? +41 ”2

where wo — w is a resonance offset frequency and w, = —71H1 is the radiofre-

quency field strength. The Hamiltonian of the radiofrequency along the x direction

in a frame rotating at the carrier frequency can be represented by

11,, = —71H1I,. (ll-82)

A 90° pulse along the x direction flips the initial magnetization (M, = 7I,) into

the y direction (M, = 7Iy) on-resonance. However, the magnetization of off-

resonance peaks after a 90° pulse is not in the y direction. As mentioned in the

background section, the average dipolar Hamiltonian generated by the 8-pulse

cycle with the proper delays (Pl-MO pulse sequence shown in Fig. "-4) is a driv-

ing force for creating the multiple-quantum coherences. The effectiVeness of the

average Hamiltonian is determined by the preciseness of the 90° pulse length. An

increase of the resonance offset results in an increase of the difference between

1?,” and if; (an imperfect 90° pulse when an off-resonance).

The system evolves under the influence of the internal Hamiltonian alone after

the 90° pulse. The time development of the system in the absence of relaxation

is represented by

p(t) = expf-iH..tt)I.exp<iH.-mt>. (II-83)
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The average double-quantum Hamiltonian Hyx is used instead of the internal

Hamilonian H,,,, in MO NMR experiments. There is no resonance-offset cor-

rection to zero order for the average double-quantum Hamiltonian used in our

experiments,40 but higher order terms quickly contribute to the resonance-offset

effects. Even if the pulses are “hard” 6-pulses that perfectly rotate I, to I, for all

offsets, the existence of the off-resonance term AwI, changes the time develop-

ment of the density operator in Eq. "-83, due to the resonace-offset correction in

some order of the average double-quantum Hamiltonian as time increases.

The extent to which resonance-offset effects influence the MO spectrum is

sample dependent. The 1H CSA of hexamethylbenzene is nearly zero due to the

fast reorientation of the methyl groups, and that of hydroxyapatite is estimated to

be roughly 14 ppm.74 The placement of the transmitter carrier frequency away from

the isotropic chemical shift for hexamethylbenzene shows a severe destmctive

interference of the multiple-quantum coherences for a preparation time 01504 ps.

The 2-quantum order seems to be more influenced by resonance offset effects

than are the higher orders. As resonance offsets increase, the intensities of the 2-

Q coherence become weaker and more out-of-phase. To illustrate the magnitude

of off-resonance error in the 1H MO spectrum of powdered HAP-M, the MO spectra

of HAP-M was recorded with the transmitter positioned at 2ppm (800Hz) upfield,

and in a separate experiment 2 ppm downfield, of the highest position in the

pattern. For a preparation time of 862 [18, the MO spectra show no distortion, but

for a preparation time of 1872 ps the spectra were distorted due to the cumulative

effect of off-resonance terms.

B. Dimensionality Effects in the Multiple-Quantum NMR of Hydroxyapatite

Different samples show different growth curves of MO coherences with in-
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creasing preparation time. However, it has been demonstrated by Gleason et. al.

that when the preparation time is scaled by the square root of the second moments

of the individual samples, samples having the same dimensionality show universal

MO growth curves.36 Therefore, the growth of MO coherences is related to the

dimensionality.36 The study of dimensionality using MO NMR has been performed

with two- and three-dimensional spin systems. Hydroxyapatite is a good model

for studying one-dimensional spin systems since it has linear chains of uniformly-

spaced proton spins, fairly widely separated from each other. The growth of MO

coherences for HAP-M at preparation times up to 864 [IS in Fig. "-24 is linear

as is the calculated one-dimensional growth in the incremental shell model. In

qualitative agreement with the calculation for two dimensional growth, an upward

curvature in the experimental curve at longer preparation times may reflect growth

to other columns of spins. Lacelle53 has discussed the possible significance of

the different growth exponents observed for various spin systems. The growth

exponents of 1- and 2-dimensional spin systems obtained from the incremental

shell model prediction after the initial induction time are 1.00 and 2.05 respec-

tively. The bi-exponential character of the curve for HAP-M shown in Figure "-27

suggests a growth of MO coherences with a change in the dimensionality. The

growth exponents of HAP-M (0.98 for preparation times shorter than 864 ps and

1.78 for times longer than 1004 us), which are close to those predicted by the

incremental shell model for 1- and 2-dimensional growth, show a 1-dimensional

character at short preparation times arising from intra-chain dipolar couplings, and

a higher slope at longer preparation times arising from the more 2-dimensional

spin system corresponding to inter-chain dipolar couplings. Of course, the repre-

sentation of the inter-chain growth as 2—dimensional is inexact, since it has some
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three-dimensional character. Further more, when the intensities of the orders of

HAP-M are fit to an exponential, the fit is somewhat improved over a Gausian

fit, and the parameter characterizing the exponential fit is observed to increase

linearly at all preparation time. Thus, the effects of different dimensionalities will

require further study, possibly by using powdered fluorapatite samples.

C. One-Dimensional Cluster Model

Clustered samples give rise to a strong intensity of the zero quantum peak

compared to non-clustered samples.75 From figure "-23, the strong normalized

zero quantum intensities of HAP-N, FOHAP x=0.24 and FOHAP x=0.41 compared

to that of HAP-M qualitatively demonstrate the existence of vacancies and/or

fluorine ion substitutions that make clusters in a one-dimensional chain. The

growth exponent of an infinite 1-dimensional chain theoretically predicted by

. the incremental shell model is 1.00. The growth exponent of HAP-N at early

preparation times (0.83) clearly shows evidence for a hydroxyl deficiency. The

lesser slopes of FOHAP with increasing mole fraction of fluoride ion in fig. "-25

indicate that the FOHAP samples having higher mole fractions of fluorine contain

higher defect densities. Thus, MO NMR shows evidence of the interruption of

hydroxyl groups in apatite samples.

figure "-30 shows hydroxyl groups in an apatite chain segmented by vacan-

cies and/or fluorine ions. The run number of a group of hydroxyls is defined as

the number of contiguous hydroxyl groups between two “defects” on either side,

which can be either vacancies or fluoride ions. Since MO coherences are created

by the homonuclear dipolar interaction, the existence of vacancies and/or fluoride

ions between hydroxyl groups in an apatite chain hinders the propagation of MO

coherences. In order to compare experimental MO spectra with calculated MO
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spectra for given defect densities by the statistical model, we assume the follow-

ing:

1. defects are randomly distributed (ideal solid solution);

2. MO coherence growth occurs only along the linear chains;

3. MO coherence do not grow across vacancies or fluorine atom substitutions;

4. MO results for stoichiometric hydroxyapatite (HAP-M) yield effective size for

each preparation time 7'.

Since the sum of the intensity of all MO orders in the absence of decay of MO

coherences is the same regardless of preparation times, it can be normalized to

one. The intensities of MO orders, In(r), can be represented using the normalized

factor74 from Eq. "-39 as

In(r) = CZn/4N (ll-84)

where C is equal to 1 for a non-selective experiment and 2 for an even-selective

experiment. Since the intensity of each order of MO coherence depends on the run

number and the mole fraction of spins present in a given run number, the intensity

of each order of coherence for a defect-containing sample can be calculated by

summing over the contribution from each run number combined with a Gaussian

distribution, as given by the following equation

6 _
mm) = z; X,( 13,13“) (4M) 1+ for N, s 6

r=2

27 x,(N,1r)_l/26:cp(—n2/N,) for N, > 7. (II-85)

where x, is the mole fraction of spins in a run number, and N, is set equal to the

run number for run lengths up to the effective size. The value of N, is set equal

to the run number when the run number is less than effective size; otherwise, N,

is set equal to the effective size.
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figure "-30. Arrangement of hydroxyl groups separated by vacancies and/or

fluoride ion substitutions in apatite samples. The distance between hydroxyl

groups and fluoride ions has been obtained by NMR studies.75'77 The substitution

of fluoride ions gives three configurations (l-lll) along the crystallographic c axis

in FOHAP. The dotted lines denote hydrogen bonds.
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D. Estimation of Defect Densities Using the 1-D Cluster Model.

Even if the MO intensities of experimental data obey a Gaussian distribution

perfectly, the theoretical MQ intensities of defect-containing samples obtained

from Eq. "-85 may not be fitted very well by a Gaussian distribution due to the

summing of contributions by different run numbers. Therefore, the comparison

between theoretical and experimental 4Q/2Q intensities for a given preparation

time is more relevant than a comparison of effective sizes. Experimentally, since

MQ intensities do not correspond to a Gaussian distribution exactly due to strong

intensities of the higher order peaks, we recalculated the effective size of HAP-M

using the 4Q/20 intensity at each preparation time. Since the contribution of MO

intensities from a 2-D spin system complicates the calculation of defect density

at longer preparation times, we use MO data from the linear portion of the curve

corresponding to 1-dimensional growth in Fig. "-24. The mole fraction of the

run numbers in a 1dimensional chain can be calculated by percolation theory.78

Figure "—31 shows run number distributions for various defect densities. The

center of mass of a given run number distribution moves to a larger run number

value as the defect ratio decreases.

The result of calculations based on this 1-D cluster model and experimental

data is shown in figure "-32. The calculation program is given in Appendix 1C. The

HAP-N from MQ data are closer to the curve calculated for an 8% defect density

(that obtained from 1H MAS-NMR) than c that calculated for a 19% defect density

(that obtained from IR). The experimental curves for the FOHAP samples are

lower than the calculated curves. There are several possible explanations for the

deviation between the calculated and experimental curves for FOHAP samples.

First, hydroxyl vacancies exist in the one dimensional chains of precipitated

 
15:";
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apatites (compare the difference between HAP-M and HAP-N). These vacancies

in the hydroxyl chains can create additional defects in addition to those created by

fluoride substitutions, and could explain the discrepancy between the calculated

and experimental curves of FOHAP. The experimental curve of the FOHAP x=0.24

sample is close to the theoretical curve for a 41% defect density corresponding

to a 22% hydroxyl deficiency. Secondly, if fluoride ions substitute randomly for

hydroxyl groups, the molar ratio of the configuration III to configurations l or II

shown in Figure "-30 for FOHAP x=0.24 is 0.32. Yesinowski et. al. have

shown that the peak arising from the configuration III is not detected with 1H

MAS-NMR.69 If configurations I and II are more preferable than configuration

III, the decrease of the number of fluorine ions in a row increases the mole

fraction of small run number. Therefore, non-random substitutions of fluoride

ions in FOHAP can result in the lower experimental intensity compared to the

calculated one. Thirdly, the eight-pulse MO sequence for solids shown in Fig.

"-6 ideally eliminates heteronuclear dipolar couplings and J couplings of 1H and

19F.75 In these experiments, we have given applied the MO pulse sequence at

the proton frequency. The effectiveness of the decoupling is determined by the

basic cycle time, the time scale of mutual spin flips of the irradiated spin system

T2” and the strength of the heteronuclear dipolar coupling between 1H and 19F. A

heteronuclear dipolar coupling between two different spin 1/2 nuclei is represented

by

D15 = (7n,h)(1 — 3cos2 912)/3r?2- (II-86)

The 1H-‘9F dipole coupling in configuration I parallel to the external magnetic field

is equal to 7.27 kHz. The isotropic chemical shift of hydroxyl groups not adjacent

to a fluoride ion is 0.2 ppm and those of configurations l and II are 1.2 ppm and
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Run number

figure "-31. Run number distributions for various defect densities in .a one-

dimensional chain. The mole fraction of spins in a given run number is calculated

by percolation theory"; 8% (open circle), 24% (open square), and 41%( open

triangle).
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figure "-32. 1-D cluster model of MO growth for various defect densities in

apatite, compared to experimental data. Lines for the various defect densities are

calculated using Eq. "-84. From top to bottom, lines correspond to 8%, 19%,

24%, and 41% defect densities. HAP-M (open circle), HAP-N (open square),

FOHAP x=0.24 (open triangle), and FOHAP x=0.41 (crosses).
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144

1.5 ppm respectively.69 However, the proton adjacent to a fluorine atom will be

split into a Pake doublet. This splitting produces a resonance for these protons

of typically several kHz, sufficient to prevent them from effectively participating

in normal MO coherence growth. Thus, we assume that the protons adjacent

to a fluorine atoms do not participate in MO coherences. Figure "-33 shows

a recalculation of the 4Q/2Q intensities for 24 % and 41 % defect densities

using Eq. "-85, when terminal OHu-F groups in a run are excluded. The

experimental 40/2Q intensities of FOHAP x=0.24 and FOHAP x=0.41 in Fig.

"-33 are closer to the calculated 4Q/2O intensities than those in Fig. "-32,

suggesting that this resonance offset effect may be at least partially responsible

for the initial discrepancy. Finally, a different coherence in the decay time of

different run numbers of spins and/or the different MO order might result in a

. difference between calculated and experimental 4Q/2Q intensities. However, the

logarithmic plots in Figure Il-26b do not show two different slopes for a the decay

time within experimental limits, which means that different MO coherences do not

have different decay times.

D. 19F Multiple-Quantum NMR Dynamics of Single Crystal Fluorapatite.

The oscillatory behavior of MO dynamics in a liquid crystal has been previously

shown experimentally and theoretically for finite spin systems.5"56 Munowitz has

theoretically predicted such oscillations for small oriented linear arrays of uniformly

spaced spins under the Hamiltonian 71,, where

Hz: = 1/3 ngtUu-Ie + Iszzlc)- ("'87)

The theoretically predicted oscillations are periodic for two spins but are damped

for larger arrays (very small oscillations for arrays of 6 spins).5o The oscillatory

frequency of the intensities of 1 Q and 2G coherences for a 2 spin system under
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71,, is (1/3)D12.

Figure "-34 shows the simulated MQ dynamics for oriented chains of 2, 3,

4, and 5 spin systems under the Hamiltonian 71,, as a function of preparation

times using ANTIOPE.66 The distance between nuclei is 344 pm; the same as

that in fluorapatite, and a 62° orientation with respect to the external magnetic

field was chosen for simulations. The MO dynamics of the 2 spin system ( Fig.

ll-34a) are both oscillatory and periodic. The dipolar interaction between two

spins (d12 = 344pm) is 442.6 Hz, and the periodicity of the MO dynamics for two

spin system is 1129.6 #8 [1/(2'442.6 Hz)]. An increase in the size of the spin

system results in a apparent disappearance of periodicity in the MO dynamics.

This is likely due to the destructive interference of the many frequencies present

when there are a larger number of unequal dipolar couplings present in a spin

system: the actual periodicity may occur at time intervals too long to be revealed

by the simulation. The MO dynamics of a 5 spin system ( Fig. II-34d) shows the

oscillatory behavior, but no apparent periodicity.

The theoretical calculation of MO dynamics under even different Hamiltonians

(H,, and H,,) show the periodicity and oscillatory and periodic behavior for

both 2 and 3 spin systems. The oscillatory behavior of MO dynamics in single

crystal fluorapatite appears to be damped and periodic. We have no independent

measurements of the defect density in this particular crystal of mineral fluorapatite,

although mineral fluorapatite generally contain defects caused by substitutions

such as hydroxyl and chloride ions. We can attempt to model the observed MO

dynamics of this defect-containing sample somewhat along the lines of the 1-D

cluster model previously described. However, the intensities of the various orders

will be obtained in a different manner. For each run number, we will use the
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intensities of the individual orders of MO coherence calculated from the ANTIOPE

simulation. The overall intensities of a given order n at preparation time 7' i given

by following expression

101,7) = 22 err(n,T) (II-88)

where r refers to the spin system orf-size r. The obvious limitation of this approach

is that run lengths < 5, which are expected to yield high-damped oscillation, are

ignored, since no calculations are available. Figure "-35 shows the mole fraction

of spins in various run numbers from 1 to 5 and the sum of the mole fraction

with different defect densities obtained by using percolation theory.78 For defect

densities larger than 40%, the sum of the mole fraction of spins in runs 3 5 is

about 0.8. Therefore, the contribution of runs having more than 5 spins to the

MO dynamics for defect densities larger than 40% is small. However, for smaller

defect densities, the larger runs will dominate MQ dynamics. Nevertheless, since

these runs will exhibit more damped behavior, we can hope to reproduce the

essential features of the experimentally-observed oscillations.

Theoretical intensities of MO coherences for an oriented spin system are

calculated by using Eq. "-88. Figure ll-36a and b show a comparison between the

experimental 2O intensities of single crystal FAP, and calculated 20 intensities for

assumed 30% and 50% defect densities at two different orientations (62° and 90°

with respect to the external magnetic field) as a function of preparation time. The

calculated 20 intensifies for both 30% and 50% defect densities at the two different

orientations show similar oscillatory behaviors. Although the defect density of

single crystal mineral fluorapatite cannot be reliably estimated, the agreement

does not appear to improve as the defect density decreases from 50% to 30%,

especially in the positions of the maxima and minima in Figure ll-36a. A defect
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density less than 30%, which is quite reasonable, would appear to yield even

better agreement if the same trend occurs. 19F MO NMR spectra of single crystal

FAP (not shown here) at two orientations (62° and 90°) display 60 peaks at

shorter than 1ms. This indicates that a considerable mole fraction of larger than

6 spin systems is present in mineral single crystal FAP. Thus, since the sum of

the mole fraction of defect densities larger than 50% is greater than 90%, we

can presume that the defect density is less than 50%. The contribution of larger

than 6 spin systems to the MO dynamics hinders the reliable measurement of the

defect density from comparisons between calculated and experimental plots. In

spite of the existence of a variety of spin system in single crystal fluorapatite, the

oscillatory behavior of MO intensities of single crystal FAP in fig. "-27 indicates

that the fluorine atoms in chains are interrupted by defects.

6. Conclusions

We have shown that multiple-quantum dynamics in an essentially one-

dimensional distribution of spins leads to an initial linear dependence of effective

size N upon preparation time, in qualitative agreement with predictions of the in-

cremental shell model.“6 Further work is needed to determine whether the lack of

good quantitative agreement in this initial region arises from experimental consid-

erations, or instead from limitations of the theoretical model, and whether further

refinements of the model may improve its predictive accuracy. The MO growth

exponents also distinguish the different dimensionalities of spin systems and the

presence of clustering. The contribution of the two different dimensionalities to the

growth of the MO coherences is visually illustrated by the MO growth exponent

plot. Two growth exponents of HAP-M agree well reasonably with those of the
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figure "-35. Mole fraction of spins in various run numbers and sum of the mole

fraction with different defect densities using percolation theory." Run number =

1 ( open circle), run number =- 2 (open triangle), run number = 3 (open square),

run number a 4 (cross in open square), run number a 5 (cross), and sum of 1

- 5 spins (black circle).
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figure "-36. Comparison between experimental 20 intensities (open circle) of

single crystal FAP and calculated 20 intensifies for two assumed defect densities

[30% (open circle) and 50% (cpen square)] at two different orientations. a) 62°

orientation with respect to the external magnetic field; b) 90° orientation with

respect to the external magnetic field.
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incremental shell model. Linear behavior of the effective sizes vs. preparation

time has previously been observed generally only for finite clusters, but the slope

at longer preparation times in these cases is observed to level off,57 in contrast to

our results. It is interesting to note that the hopping model also predicts a linear

dependence for clusters of 21 spins, but it cannot treat infinite spin systems, and

has not predicted M0 dynamics for different dimensionalities.

It is feasible to model the one-dimensional chains due to their simple configu-

ration. 1H M0—NMR is sensitive to defects in one-dimensional apatite chains, and

the defect density can be estimated by using the one-dimensional cluster model.

The comparison of 40/20 intensities between HAP-M and HAP-N for given prepa-

ration times directly shows the presence of vacancies in the non-stoichiometric

hydroxyapatite sample. The defect density of HAP-N obtained using M0 NMR

is in good agreement with the 8% defect density obtained from 1H MAS-NMR;68

however, the calculated 40/20 intensities based on the defect densities of the

FOHAP samples deviate considerably from M0 experimental 40120 intensities.

This discrepancy may arise from three possible sources; additional defects in the

hydroxyl chains other than fluorine atoms (i. e. vacancies), non-random fluorine

substitutions, and/or off-resonance effects caused by dipolar coupling of the hy-

droxyl protons to 19F nuclei. Partially deuterated hydroxyapatite could be used

to test the 1-D cluster model wi’d'l knowledge of the hydroxyl content, since a

deuterium randomly substitutes for a proton and the dipolar interaction between

a deuterium and a proton is small. The first explanation could be tested by a

detailed chemical analysis of the hydroxyl content of the crystals, which is quite

difficult to perform.

Since the dipolar interaction in single crystal samples can be adjusted by

“
.
.
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field, we hope that 19F M0 NMR of single crystal fluorapatite could be used

to separate the M0 dynamics of different dimensionalities. For example, if the

orientation of intra-chain fluoride ions is fixed at 54.7° (magic angle), the non-zero

dipolar coupling of inter-chain fluoride ions would create M0 coherence in a 2-D

or fashion. Our 19F MQ-NMR results for a single crystal of mineral FAP show an

oscillatory behavior of the M0 peaks that does not permit measurement of the

effective size at each preparation time. A less deficient synthetic single crystal

sample might give information about dimensionality in more detail. Since the

orientation of individual crystallites can be selected by relating them to a position

in the CSA powder pattern, M0-NMR can be performed on a specific orientation

by selectively saturating all but a single frequency in the pattern.79 Selecting the

orientation in a powdered sample thus also permits the relative magnitude of the

. intra- and inter-chain dipolar couplings to be “tuned” at will.
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APPENDIX A

Pulse program for even-order selective phase-incremented or TPPI multiple-

quantum pulse sequence for solids for Varian VXR spectrometer. This program

is courtesy of T. Barbara of Varian Associate.

/*Pulse sequence: G_INMQ_LOCK*/

[*Pseudo l—D even order MQ generation with a detection using spin locking sequence.

Phase cycle to remove odd order quanta by alternating excitation phase between x and

-x and adding memory.*/

/* VARIABLES:

del: delay between 8 pulses us

delp: delay between 8 pulses, 2*del-l-pw ps

mloop: the number of loop (basic cycle time*mloop = preparation time)

shift: the angle phase incrementation (determine the maximum detectable MQ order)

tlinc: the time to increment the phase

d3: the time between mixing and detection period to eliminate the remaining transverse

magnetization

d4: the evolution time*/

#include <standard.h>

static int table 1[4] =

static int tab162[4] =

static int table3[4] =

static int table4[4] =

static int table5[4] =

static int tab1e6[4] =

static int table7[4] =

9 9

l9 9 C

9 9

{0220

{0022

{2002

{1,1,3,3

{3311

{0202

{1313

O l;

};

. , l;

}

l

9 9 9

9 9 9

pulse sequence()

{

double del, delp, ddel, ddelp, mloop, shift, d3, d4, tlinc:

char trig[MAXSTR];

extern double getvalO;

del = getval(“del”);

delp = getval(“dclp”);
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mloop = getval(“mloop”);

shift = getval(“shift”);

d3 = getval(“d3”);

d4 = getval(“d4”);

tlinc = getval(“tlinc”);

getstr(“ttig”,trig);

ddel = del - rofl - rof2;

ddelp = del - rofl - rof2;

settable(tl, 4, tablel);

settable(t2, 4, tableZ);

settable(t3, 4, table3);

settable(t4, 4, table4);

settable(tS, 4, tableS);

settable(t6, 4, tableé);

settable(t7, 4, table7);

setreceiver(t7);

stepsize(shift,TODEV);

initval(mloop.v 1);

initval( np/2.0,v7);

initdelay(tlinc.DELAY5);

assign(zero,v 10);

loop(v7,v9);

if(trig[0 =’y’)

{

xgate(l .0);

}

xmtrphase(v10);

delay(d1); delay(rofl);

incr(v10);

rcvroffO;

starthardloop(vl);

delay(ddel);

rgpulse(pw,tl,rofl,rof2); f" x -x -x x */

delay(ddelp);

rgpulse(pw,tl ,rofl ,rot‘Z);

delay(ddel);

rgpulse(pw,tl,rofl ,rof2);

delay(ddelp);

 



161

rgpulse(pw,tl,rof1,rof2);

delay(ddel);

rgpulse(pw,t3,rof1,rof2); /* -x x x -x */

delay(ddelp);

rgpulse(pw,t3,rofl ,rof2);

delay(ddel);

rgpulse(pw,t3,rof1,rof2);

delay(ddelp);

rgpulse(pw,t3.rofl.rof2);

endharleOPO;

xmtiphase(zero); /* reset small angle shift to zero */

delay(d4);

incdelay(v10,DELAY5); /* generate t1 delay If tlinc=0, TPPI*/

/*otherwise, phase incremented method*/

stanhardloop(v 1);

delay(ddel);

rgpulse(pw,t4,rofl,rof2); f“ y y -y -y */

delay(ddelp);

rgpulse(pw,t4,rofl ,rot‘Z);

delay(ddel);

rgpulse(pw,t4,rof1,rof2);

delaflddelp);

rgpulse(pw,t4,rof1,rof2);

delay(ddel);

rgpulse(pw,t5,rof1,rot?); /* -y -y y y */

delay(ddelp);

rgpulse(pw,t5,rof1,roa);

delay(ddel);

rgpulse(pw,15,rofl ,rof2);

delay(ddelp);

rgpulse(pw,t5,rof1,rof2);

endhardloopO;

rcvron();

delay(d3); /* delay to allow decay of transverse coherences */

rgpulse(pw, t6, rofl, rof2); I“ x -x x -x */

rgpulse(p1, t7, rofl, rof2); /* y -y y -y spin loclcing*/

delay(alfa);

acquire(2.0,l/sw);

endloop(v9);

}

 

FL"
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APPENDIX B

Selection rule of 1-spin/2-quanfum average Hamiltonian Hy, in hopping model

If the spin angular momentum operator I, is expressed for a spin with index

3,- by a ket ISjaj): the Liouville state that is formed is a product of K single-spin

operators that can be written by the abbreviated notation

'Knp)=lslal ............ 850k) ' ‘ (A-1)

where

n = Z or".
(A'2)

j=l,K

The scalar product between two Liouville state vectors is orthornormal and is de-

fined as

(AlB) = zit-{4+3} (A-3)

where A+ is the Hermitian adjoint of A. Since the superoperator 7:1 is defined by

710.4) = |[’H,A]), (A-4)

matrix elements involving the superoperator are given by

(A1913) -_- (Al [71,19]) -_- Tr{A+[H,B]}. (A-5)

The selection rules in the Liouville space from the Hamiltonian in Eq. lI-47 are

calculated using Eq. A-5 and the commutation relations

[I,,-, I,,] = M6,,- (A-Sa)

and

[1+r', I—j] = 21260 (A'Gb)

Since the selection rule of the average dipolar Hamiltonian from the pulse se-

quence in Fig. ll-4 can be evaluated using the numerator of Eq. ll-47, we can

rewrite Eq. A-5 as

(Keplfiplx’n’p’) = (1(an [90,K’n'p’]). (A-7)

After K' = 1 and n' = 0 (11,) is chosen as an initial condition, the square bracket
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part of Eq. A-7 can be written using only the spin operators

[[+1I+2 + Lil—2, [12] = [[+1I+2, Iiz] + [1—11-2, 1'12] (A-8)

using a commutator algebra

[A, B + C] = (A, B] + [A, C]. (A-9)

Since 1+2 and 1.2 commute with [1,, we can rewrite Eq. A-8 using the commuta-

tion relations in Eq. A-6 as

= I+2[I+lsIlz]+I—2[I—lallz] = -I+2I+i-I—2I—1 (Pl-10)

[.4. BC] = [A, B]C + B[A, C]. (A-11)

The values of K and n of the first term in Eq. A-IO are 2 and 2, and those of the

second term in Eq. A-10 are 2 and -2 respectively. Therefore, the solution of Eq.

A-7 is .

= (Knpl - 1+2I+i - I-2I—t) = (Knpl2, 2119’) + (Knplz -2,p'>- (A42)

' Since the scalar product of the Liouville state is orthonormal, Eq. A-12 is non-

zero at K-2, n=2 and K-2, n--2.

When It" a 2 and n' =2 ( from the 14,21“ term), [HD,K'n'p'] can be also

written using the spin operators

[1+1I+2 + 1.11-2,I+2I+1] = [1+1I+2,I+2I+1] + [I—iI—z, 1+2I+1] (A-13)

Since the first term [I+II+2,I+2I+1] commutes, we solve for the second term

[I_1I_2,I+2I+1] using Eq. A-11

= I+2[I_1I_2, [+1] + [1-11—2. I+2ll+1 = -I+1I—1122 + 1121—21” (A44)

Therefore, only when K=3 and n=0 is (Knpl’Hnlz, 2, p) non-zero. The detailed

calculation of the selection rule for K' = 2 and n' =- -2 is omitted since it is similar

to the calculation of the selection rule for K' = 2 and n' = 2. Only when K = 3

and n = 0 is (Knpl’le2,—2, p) non-zero too.
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We will calculate the general solution of the selection rule using Eq. A-7. The

square bracket in Eq. A-7 can be represented by

[Hal K'n'P'] = [.2 (1+il'+j + I_,-I_,-), K'nlp'] ("1'1 5)
1)]

We can rewrite Eq. A-15 using Eq. A-9 and A-11 as

= 2 1+,- [I+j,K'n'p'] + Z [1+11K'nlp']l+j

i>j i>j

+ XI..- [I_,-,K'n'p’] + 2 [I_,,K’n'p']I_,. (A-16)

The solutions of): [A], K'n'p'] and :2: [I+,-, K'n'p'] do not change the value of

K' but change 12' t0 n' + 1 due to the coinmutation relations (Eq. A-6a and A-6b).

The lowering operators in the square brackets of Eq. (A-16) do not change the

value of K' but decrease n' to n' — 1. Since the operators outside the square

brackets in Eq. A-16 increase K' to K' + 1, and change n' to n' :t 1 according to

(Knplflle'n'p'> is non-zero when K is equal to K' + 1 and n is equal to n' j: 2.

When we solve the Eq. A-7 as(Knp|HD|K'n'p') = ([Knp,HD]jK'n'p'), the

non-zero condition of (Knpjf-lij'n'p'> is that K is equal to K' — 1 and n is

equal to n' :l: 2.

Therefore, the selection rule of the average Hamiltonian Hg, in the Liouville

spaceisK=K'i1andn=n'i2.
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APPENDIX C

C programs for calculation of the ratio of 40/20 intensities for a 1-D chain

with different defect densities.

These programs calculate the ratio of the 40/20 intensities of defect containing

1D chains for various preparation times using the statistical model, combined with

percolation theory expressions that provide the mole fraction of spins in a run

number.

/* Calculation of 4Q/2Q intensity using the statistical model and the percolation theory*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

double x,y;

double eXIX).sql'to,eXI>2().pow();

mainO

{

int i,j,n,l,m,p;

float k,s,h,sum2,pp,sump2,sum2p,sum4,sump4,sum4p,rat2,rat4;

char filename[20];

FILE *fp;

printf("Enter filename: \n");

scanf("%s",filename);

fp=fopen(filename."wr");

printf("What is the ratio of the defect’?\n");

fprintf(fp,"What is the ratio of the defect. ");

scanf("%f",&k);

fprintf(fp,"%f\n", k);

printf("What is the maximum run number. ");

fprintf(fp,"What is the maximum run number?\n");

scanf("%d",&l);
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fprintf(fp,"%d\n", 1);

printf("What is the efi'ective size?\n");

fprintf(fp,"What is the effective size?\n");

scanf("%f",&h);

fprintf(fp,"%f\n". h);

s=1.0-k;

sum2=0.0;

sum4=0.0;

sum2p=0.0;

sum4p=0.0;

[*The first part of Eq. 11-82 for 2-Q intensity. The decimal number (efiective size from

Gaussian function) cannot be used to calculate a factorial so that the round up values are

used.*/

if(h<=6.0)

{ for(i=2;i<=l;i++)

{ x=(doub1e)i;

if(x<=h)

{s}um2+=x*pow(k,2.0)*pow(s,x)*fac(2*i)/(fac(i-2)*fac(i+2))/pow(4.0,x);

else

{

P=round(h);

PP=(float)p;

sum2 +=x*pow(k,2.0)*pow(s,x)*fac(2*p)/(fac(p-2)*fac(p+2))/pow(4.0,pp);

}

l

[*The first part of Eq. II-82 for 4-Q intensity. The decimal number (efi‘ective size from

Gaussian function) cannot be used to calculate a factorial so that the round up values are

used.*/

for(ifl;i<=l;i++)

{
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x=(double)i;

if(x<=h)

l

sum4 +=x*pow(k,2.0)*pow(s,x)*fac(2*i)/(fac(i-4)*fac(i+4))/pow(4.0,x);

}

else

1

p=round(h);

pp=(float)p;

sum4 +=x*pow(k,2.0)*pow(s,x)*fac(2*p)/(fac(p-4)*fac(p+4))/pow(4.0,pp);

}

}

l

/*The second part of Eq. II-82 for 2Q and 4Q intensity. */

else

I

for(i=2;i<=6;i++)

{

x=(double)i;

sum2p +=x*pow(k,2.0)*pow(s.x)*fac(2*i)/(fac(i-2)*fac(i+2))/pow(4.0,x);

}

for(i=4;i<=6;i-H-)

{

x=(double)i;

sum4p +=x*pow(k,2.0)*pow(s,x)*fac(2*i)/(fac(i-4)*fac(i+4))/pow(4.0,x);

}
.

for(i=7;i<=l;i-l-l-)

{

x=(double)i;

if (x<=h)

{

sum2p +=x*pow(k,2.0)*pow(s,x)l(sqrt(x)*1.77)*exp(-4.0/x);

sum4p +=x*pow(k,2.0)*pow(s,x)/(sqtt(x)* 1 .77)*exp(- 16.0/x);

}

else

{

sum2p +=x*pow(k,2.0)*pow(s,x)/(sqrt(h)* 1 .77)*exp(-4.0/h);
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sum4p +=x*pow(k.2.0)*p0W(S,X)/(Sq1't(h)* 1 -77)*6XP(' 16W“);

}

l

}

printf("The ratio of each multiple quantum signal\n");

fprintf(fp,"The ratio of each multiple quantum signal\n");

sump2=(sum2+sum2p)/(sum2+sum2p);

sump4=(sum4—l-sum4p)/(sum2+sum2p);

printf("2quantum => %f, 4quantum => %f\n",sump2,sump4);

fprintf(fp,"2quantum ==> %f, 4quantum => %t\n",sump2,sump4);

fclose(fp);

}

[*Calculation of factorial*/

fac(m)

int m;

{

int i, fac;

fac=l;

for(i=1;i<=m;i-H~)

fac=fac*i;

rettn'n(fac);

}

/* Calculation of round up*/

round(x) '

float x;

1

int ix;

float fx, gx;

8X=Xi

ix=(int)gX;

fx=(float)ix;

gx-=fx;

if(gx>=05) ix+=1;

returnfiX):

}
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