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ABSTRACT

ANALYSIS OF THE USE OF LOW-PASS FILTERS WITH HIGH-GAIN

OBSERVERS

By

Stephanie Priess

High-gain observers are an important technique for state estimation in nonlinear systems.

This technique utilizes a high gain in order to achieve fast reconstruction of the system

states. While the high gain enables fast recovery of the states and good disturbance rejection

properties, it can also act to amplify measurement noise. The trade-off between robustness

to measurement noise and fast recovery of states is an important and well known problem

within the study of high-gain observers.

One method to attenuate the effects of measurement noise is to use a low-pass filter in

conjunction with the high-gain observer. The focus of this work will be an analysis of this

technique. Four different configurations will be considered. The first three configurations

place the filter before the observer and study the outcome of making the filter order lower

than that of the plant, the same as that of the plant, or higher than that of the plant. The

fourth configuration places the filter after the observer. Simulations of all four configurations

and comparisons between them will be presented. The low-pass filter is shown to be a simple

and effective means of reducing the effects of measurement noise on systems that utilize high-

gain observers.
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Chapter 1

Introduction

Derivative estimation is an important part of the control of physical systems. This is because,

due to various constraints such as convenience and cost, it is often best not to measure all

states. Instead, some states are measured and then used to estimate the remaining states.

This is typical in many electromechanical systems where position is measured, and velocity

is estimated. One such system is control of an inverted pendulum, where the angle of the

pendulum is measured but its velocity is not. Another such system is a magnetic suspension

system where the control task is to levitate a magnetic ball using an electromagnet. In this

case, ball position may be measured and the ball’s velocity and the electromagnet’s current

can be estimated.

Due to the strong need for derivative estimation, many techniques have been developed

for this purpose. Among these methods are differentiation via a sliding mode technique [11],

algebraic derivative estimation techniques which rely on a Taylor series expansion [6] [14] [17],

derivative estimation based on an inverse Taylor series method [12], and high-gain observers

[8]. In particular, the algebraic derivative estimation technique has gained attention in recent

years including applications to DC motor control [15] and a MATLAB derivative estimation

toolbox [20].

Due to the fact that measurements are often noisy, any derivative estimation technique

must take the effects of measurement noise into account. The effects of measurement noise

on the sliding mode technique, the algebraic derivative estimation technique, the inverse
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Taylor series technique, and high-gain observers are considered in [11], [17], [12], and [2]

respectively. As is shown in [2], high-gain observers are not robust to measurement noise.

To understand why this is the case, consider the nonlinear system

ż = ψ(z, x, d, u) (1.1)

ẋ = Ax+Bφ(z, x, d, u) (1.2)

y = Cx+ v (1.3)

where u ∈ R is the control input, z ∈ R
l and x ∈ R

r are states, y ∈ R is the measured

output, and v(t) ∈ R represents measurement noise. The vector d(t) ∈ R
p is used to represent

exogenous signals which may contain both disturbance and reference signals, however the

control relies only upon the reference signals. A, B, and C, are given by

A =




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


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









0

0

...

1























(1.4)

C =

[

1 0 . . . 0

]

(1.5)

Systems that fit this form include nonlinear systems in the normal form and any system that

can be described by a chain of integrators, such as the aforementioned inverted pendulum
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and magnetic suspension systems. The state feedback for this system is designed as

ϑ̇ = Γ(ϑ, x, d) (1.6)

u = γ(ϑ, x, d) (1.7)

The high-gain observer is given by

˙̂x = Ax̂+Bφ0 (x̂, d, u) +H (y − x̂1) (1.8)

where the observer gain H is given by

H =
[α1
ε
,
α2
ε2
, . . . ,

αr
εr

]T
(1.9)

Here, ε is a small positive parameter, and the roots of

sr + α1s
r−1 + · · ·+ αr−1s+ αr = 0 (1.10)

have negative real parts. The function φ0 is a nominal model of φ. At this point it is

clear why measurement noise is a problem when using a high-gain observer, namely that the

measurement noise in (1.8) is multiplied by the high gain of the observer. Multiple techniques

have been developed to reduce this noise amplification problem. In the next section we will

discuss some of them, however the focus of this work is the low-pass filter method. In this

method we use a low-pass filter to reduce the effects of measurement noise amplification

by the high-gain observer. While this method has been used frequently as a source of

comparison for other methods as in [4], a deeper analysis of the stability properties of the
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use of a low-pass filter in conjunction with a high-gain observer has not been considered.

There have been similar analyses in the past, but each is slightly different than what

is presented here. In [1], the measurement noise is assumed to be the output of a known

transfer function, and the analysis of stability is carried out from there. Similarly, in this

work, we will consider measurement noise that is passed through a low-pass filter. In both

cases, the resulting input to the observer is some sort of filtered measurement noise. The

difference is that in this work, a low-pass filter is applied, while in [1], a band-pass filter was

applied.

Another similar analysis is presented in [3]. In [3], a multirate discrete time high-gain

observer system is presented. The idea is to sample the sensor to obtain measured data at

one rate, and then to pass the measurement and corresponding estimates to the control at

another, slower rate. Although this system is clearly different in that it is a discrete time

system, and we only consider continuous time systems in this work, there are still some

similarities. In the case of [3], the slower sample rate used for the control signal operates

in a manner similar to that of a low-pass filter. In this sense, the analysis presented in [3]

would be similar to a discrete time analysis of what is presented here.

We will begin our analysis in Chapter 2 by considering systems where the low-pass filter

is placed before the observer. We will start with the special case when the filter is of the

same order as the observer. The results of this analysis will be demonstrated via simulation.

Additionally, simulation will be used to compare the efficacy of using a low-pass filter to

another technique for reducing the effects of measurement noise on high-gain observers, a

nonlinear-gain observer.

In Chapter 3 we will extend the analysis of Chapter 2 to filters of higher and lower orders.

Simulation will again be used to illustrate the analytic results. Additionally, a comparison
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of different filter orders will be presented. We will conclude our analysis in Chapter 4

by examining the case where the low-pass filter is placed after the observer. Analytic and

simulation results will be presented, and we will finish the chapter with a comparison between

placing the filter before the observer versus placing the filter after the observer.
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Chapter 2

Analysis of Low-Pass Filters of the

Same Order as the Nonlinear System

2.1 Introduction

The use of high-gain observers is a well-known and effective method for state estimation

and output feedback control of nonlinear systems. One problem associated with high-gain

observers is the trade-off that exists between the fast convergence of state estimates and

robustness to measurement noise. A number of techniques have been proposed to attenuate

the effects of measurement noise on systems utilizing a high-gain observer.

One such approach is the switched-gain technique proposed in [2]. In this approach, a high-

gain is used during the transient period to ensure quick convergence of state estimates. Once

the system reaches steady-state, the observer switches to a low-gain, so as not to amplify

measurement noise. While this approach is effective, there are design issues associated with

choosing a switching time and a delay time to ensure that switching happens only once.

In [5] and [18], an adaptive gain is used to solve the problem of measurement noise. In [5],

the adaptive gain parameter is applied to an extended Kalman filter, allowing the extended

Kalman filter to vary between acting as a high-gain observer when the estimation error is

large, and a standard Kalman filter when the estimation error is small. In [18], the adaptive

high-gain observer is extended to systems with poorly known dynamics which may not have
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locally Lipschitz functions. The authors of [16] consider a nonlinear-gain observer. The

nonlinear-gain is a piece-wise linear function, that varies between applying a high-gain when

the estimation error is large and a low-gain when the estimation error is small. Similar to

the switching method of [2], an additional design parameter is required to determine when

the high-gain is applied and when the low-gain is applied.

Another method of reducing the effects of measurement noise, and the method that will be

discussed in detail in this thesis, is to use a low-pass filter in conjunction with the high-gain

observer. While this technique has been used in the past, in papers such as [19], and it is

common in experimental applications of high-gain observers, there is no previous analysis

of this method. This method is especially effective for systems that may be corrupted by

high-frequency, high-amplitude noise, as will be demonstrated in the simulation results.

2.2 System Description

We consider the nonlinear system

ż = ψ(z, x, d, u) (2.1)

ẋ = Ax+Bφ(z, x, d, u) (2.2)

y = Cx+ v (2.3)

where u ∈ R is the control input, z ∈ R
l and x ∈ R

r are states, y ∈ R is the measured

output, and v(t) ∈ R represents measurement noise. The vector d(t) ∈ R
p is used to represent

exogenous signals which may contain both disturbance and reference signals, however the

7



control relies only upon the reference signals. A, B, and C, are given by

A =




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(2.4)

C =

[

1 0 . . . 0

]

(2.5)

Possible sources for this model include the normal form of input-output linearizable sys-

tems as shown in [7]. Additional sources include electro-mechanical systems where position

is measured but velocity and acceleration are not. While this model does not include addi-

tional measured outputs that are not included in the nonlinear system output y, this analysis

can be extended to include those measured outputs as in [2] and [16].

Assumption 1. 1. d(t) is continuously differentiable and bounded. d(t) ∈ D, which is a

compact subset of Rp.

2. ψ and φ are locally Lipschitz in their arguments, uniformly in d, over the domain of

interest; that is, for each compact subset of (z, x, u) in the domain of interest, ψ and

φ satisfy the Lipschitz inequality with a Lipschitz constant independent of d for all

d ∈ D.

3. Measurement noise v(t) is a measureable function of t and is bounded, i.e. |v(t)| ≤ µ.
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The state feedback control is designed as

ϑ̇ = Γ(ϑ, x, d) (2.6)

u = γ(ϑ, x, d) (2.7)

The closed loop system under (2.6)-(2.7) meets the following assumption.

Assumption 2. 1. Γ and γ are locally Lipschitz in their arguments, uniformly in d, over

the domain of interest.

2. Γ and γ are globally bounded in x.

3. φ is zero in A, uniformly in d.

4. The closed loop system under state feedback is globally uniformly asymptotically stable

with respect to a compact positively invariant set A, uniformly in d.

For the purposes of generality the problem is framed around a positively invariant and

asymptotically attractive set as opposed to an equilibrium point. This allows us to address

problems where we are attempting to stabilize to an equilibrium point, in which case the set

A would simply be A = 0, or problems where we are attempting to regulate the output of

a system to zero or to track a reference trajectory. In these cases the set A would be the

zero-order manifold. For further generality, the analysis of this chapter can be extended to

systems that have a finite region of attraction, similar to the analysis shown in [2].
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2.3 Filter and Observer Design

The nonlinear system output y is passed through a low-pass filter of the form

τẇ = Afw +By (2.8)

w1 = Cw (2.9)

where τ is the filter time constant, w ∈ R
r is the filter state, and the Hurwitz matrix Af is

given by

Af =








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
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
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
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0 1 . . . . . . 0
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...
...

...

0 0 . . . . . . 1

−β1 −β2 . . . . . . −βr


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
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

















(2.10)

where the βi’s are chosen such that the roots of

sr + βrs
r−1 + · · ·+ β2s+ β1 = 0 (2.11)

have negative real parts, with β1 = 1. We require β1 = 1 to ensure that the filter has a unity

DC gain, a need that will be shown later. The high-gain observer is given by

˙̂x = Ax̂+Bφ0 (x̂, d, u) +H (w1 − x̂1) (2.12)
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where the observer gain H is given by

H =
[α1
ε
,
α2
ε2
, . . . ,

αr
εr

]T
(2.13)

Here, ε is a small positive parameter, and the roots of

sr + α1s
r−1 + · · ·+ αr−1s+ αr = 0 (2.14)

have negative real parts. The function φ0 is a nominal model of φ.

Assumption 3. 1. φ0 is locally Lipschitz in its arguments, uniformly in d, over the

domain of interest.

2. φ0 is globally bounded in x̂ and zero in A.

The output feedback controller is obtained by replacing x with x̂ in the state feedback

controller (2.6)-(2.7).

2.4 Closed Loop System Analysis

For the analysis of the closed loop system, we apply the change of variables

ηi =

1
τi−1wi − x̂i

εr−i
(2.15)

for i = 1, . . . , r. The closed loop system under output feedback control can be written as
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χ̇ = f(χ, d,D(ε)η) where χ = [z, x, w, ϑ]T ∈ R
M and

χ̇ =























ψ
(

z, x, d, γ
(

ϑ,E−1(τ)w −D(ε)η, d
))

Ax+Bφ
(

z, x, d, γ
(

ϑ,E−1(τ)w −D(ε)η, d
))

1
τ

(

Afw +B(x1 + v)
)

Γ
(

ϑ,E−1(τ)w −D(ε)η, d
)























(2.16)

εη̇ = A0η + εBg (χ, d,D(ε)η) +
ε

τr
Bv (2.17)

where

A0 =
























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



−α1 1 . . . . . . 0

−α2 0 1 . . . 0

...
...

...

−αr−1 0 . . . . . . 1

−αr 0 . . . . . . 0


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










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

(2.18)

g (χ, d,D(ε)η) =
1

τr
(−β1w1 − . . .− βrwr + x1)

−φ0

(

D(ε)η, d, γ
(

ϑ,E−1(τ)w −D(ε)η, d
))

(2.19)

D(ε) = diag
[

εr−1, . . . , ε, 1
]

(2.20)

E(τ) = diag
[

1, τ, . . . , τr−1
]

(2.21)

The matrix A0 is Hurwitz by design, and (2.16)-(2.17) is a standard singularly perturbed

system. When ε = 0, the unique solution of (2.17) is η = 0. With η = 0, (2.16)-(2.17) reduce

to the closed loop system under (2.6)-(2.7) with x in (2.6)-(2.7) replaced by E−1(τ)w, written
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as χ̇ = f (χ, d, 0) = fr (χ, d),

fr (χ, d) =























ψ
(

z, x, d, γ
(

ϑ,E−1(τ)w, d
))

Ax+Bφ
(

z, x, d, γ
(

ϑ,E−1(τ)w, d,
))

1
τ

(

Afw +B(x1 + v)
)

Γ
(

ϑ,E−1(τ)w, d
)























(2.22)

Assumption 4. 1. The reduced order system (2.22) is globally uniformly asymptotically

stable with respect to A, uniformly in d.

With this assumption, by a converse Lyapunov theorem in [13], there exists a smooth

Lyapunov function V (χ) and three positive definite functions U1(χ), U2(χ), and U3(χ), such

that

V (χ) = 0 ⇔ χ ∈ A (2.23)

U1(χ) ≤ V (χ) ≤ U2(χ) (2.24)

lim
|χ|→∞

U1(χ) = ∞ (2.25)

∂V

∂χ
f(χ, d, 0) ≤ −U3(χ) ∀ d ∈ D (2.26)

In assumption 4, we assume that the filter time constant τ is chosen small enough that the

closed loop system where x in (2.6)-(2.7) has been replaced by E−1(τ)w maintains stability.

To see that it is possible to choose τ small enough to maintain stability in the reduced system

(2.22) we place the system into standard singularly perturbed form. In order to do this, we
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begin by applying the change of variables

w(i) = w(i−1) + τ i−1(A−1
f )iBxi (2.27)

for i = 1, . . . , r − 1, where w(0) = w. Then,

τẇ(i) = Afw
(i) +Bv + τ i(A−1

f )iBxi+1 (2.28)

for i = 1, . . . , r − 1. Next, we apply the scaling

ζ =
1

τr−1
w(r−1) (2.29)

substituting into E−1(τ)w gives

E−1(τ)w = E(τ)ζ +
1

β1
x+ τG(τ)x (2.30)

where G(τ) is a polynomial in τ . Then, the reduced system is transformed into

ż = ψ(z, x, d, γ(ϑ,E(τ)ζ +
1

β1
x+ τG(τ)x, d)) (2.31)

ẋ = Ax+Bφ(z, x, d, γ(ϑ,E(τ)ζ +
1

β1
x+ τG(τ)x, d)) (2.32)

ϑ̇ = Γ(ϑ,E(τ)ζ +
1

β1
x+ τG(τ)x, d) (2.33)

τ ζ̇ = Af ζ +
1

τr−1
Bv + (A−1

f )r−1Bxr (2.34)

which is in the standard singularly perturbed form. Consider (2.30) with measurement noise
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excluded (v = 0) and let τ = 0. Then, E−1(τ)w becomes

E−1(τ)w =
1

β1
x (2.35)

In order for the singularly perturbed system (2.31)-(2.34) to reduce to the closed loop sys-

tem under (2.6)-(2.7), we must have β1 = 1, which corresponds to a unity DC gain for the

low-pass filter.

Proving that the system (2.31)-(2.34) is globally uniformly asymptotically stable for suffi-

ciently small τ is similar to [9]. Although τ is chosen small enough to maintain stability, it

should not be chosen arbitrarily small, because smaller values of τ will not be as effective at

filtering measurement noise. This trade-off is similar to what is discussed in [2] and [16].

Theorem 1. Let Assumptions 1-4 hold and consider the closed-loop system (2.16)-(2.17).

Let S be any compact subset of RM such that χ(t0) ∈ S and let Q be any compact subset of

R
r such that x̂(t0) ∈ Q. Then, given any ξ > 0, there exists ε∗ > 0, and T ∗ > 0, dependent

on ξ, such that for every 0 < ε ≤ ε∗, the trajectories (χ, x̂) of the closed-loop system starting

in S × Q are bounded for all t ≥ t0 and satisfy

‖χ(t, ε)‖ ≤ ξ and ‖x̂(t, ε)‖ ≤ ξ ∀ t ≥ T ∗ (2.36)

‖χ(t)− χr(t)‖ ≤ ξ ∀ t ≥ t0 (2.37)

where χr is the solution of (2.22) with χr(t0) = χ(t0).

Remark 1. Theorem 1 shows boundedness of trajectories, ultimate boundedness of trajecto-

ries as they approach the set A, and closeness of the trajectories under output feedback to

those of the reduced system.
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Proof. Let c > maxχ∈S V (χ), then S is in the interior of Ω = {χ : V (χ) ≤ c} ⊂ R
M . The set

Ω is compact for any choice of c. Due to the global boundedness of g in D(ε)η, there exists a

constant kg, independent of ε, such that ‖g(χ, d,D(ε)η)‖ ≤ kg for all χ ∈ Ω and η ∈ R
r. Let

W (η) = ηTP0η, where P0 is the positive definite symmetric solution of P0A0+AT
0 P0 = −I.

P0 is guaranteed to exist because A0 is Hurwitz by design. It can be shown that

Ẇ (η) ≤
−1

ε
‖η‖2 + 2kg‖BP0‖‖η‖+

2µ

τr
‖BP0‖‖η‖ (2.38)

and for W ≥ σ21
(

kg +
µ
τr
)2
ε2 where σ1 = 4‖BP0‖

√

‖P0‖, we have

Ẇ (η) ≤
−1

2ε‖P0‖
W (η) (2.39)

So, the set Σ = {W ≤ σ21
(

kg +
µ
τr
)2
ε2} is positively invariant. If η(t0) is not in Σ, we have

W (η(t)) ≤W (η(t0)) exp

(

−σ2(t− t0)

ε

)

(2.40)

where σ2 = 1
2‖P0‖

. For bounded w(0) and x̂(0), we have ‖η(t0)‖ ≤
k0

εr−1 for some constant

k0, which gives

W (η(t0)) ≤
σ23

ε2(r−1)
(2.41)

where σ3 = k0
√

‖P0‖. So, η will reach Σ in the interval [t0, t0 + T (ε)], where

T (ε) ≤
2ε

σ2
ln

(

σ3
σ1(kg +

µ
τr )ε

r

)

(2.42)

and, inside Σ, ‖η‖ is bounded by ‖η‖ ≤ σ1
(

kg +
µ
τr
)

ε
√

1
λmin(P0)

. Since f is globally

bounded in D(ε)η, there exists kf > 0, independent of ε, such that ‖f(χ, d,D(ε)η)‖ ≤ kf .
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Moreover, for any 0 < ε̃ < 1, there is L1, independent of ε, such that

‖f(χ, d,D(ε)η)− f(χ, d, 0)‖ ≤ L1‖η‖ (2.43)

for all (χ, η) ∈ Ω× Σ. Let L2 be an upper bound on ‖∂V∂χ ‖, and set L = L1L2, then

V̇ ≤ −U3(χ) + k1

(

kg +
µ

τr

)

ε (2.44)

where k1 = Lσ1
√

1
λmin(P0)

. Now, let β = minχ∈∂ΩU3(χ) and ε
∗
1 = β/

(

k1(kg +
µ
τr )
)

, then

for 0 < ε ≤ ε∗1 we have V̇ ≤ 0 for all (χ, η) ∈ ∂Ω × Σ, and from the forgoing analysis, we

have Ẇ ≤ 0 for all (χ, η) ∈ Ω × ∂Σ, so the set Ω × Σ is positively invariant. Furthermore,

because χ(t0) is in the interior of Ω, we have

‖χ(t)− χ(t0)‖ ≤ k2(t− t0) (2.45)

for some constant k2 > 0, independent of ε, as long as χ(t) ∈ Ω. So, there exists finite

T1 independent of ε, such that χ(t) ∈ Ω for all t ∈ [t0, t0 + T1]. Since η enters Σ in the

interval [t0, t0 + T (ε)], where T (ε) → 0 as ε → 0, there exists ε∗2 such that 0 < ε ≤ ε∗2 gives

T (ε) ≤ T1. Taking ε1 = min(ε̃, ε∗1, ε
∗
2) guarantees that the trajectory (χ, η) enters Ω× Σ in

the interval [t0, t0 + T (ε)] and stays there for all t ≥ T (ε). Inside the interval [t0, t0 + T (ε)],

η and χ are bounded by (2.41) and (2.45) respectively, so the closed loop trajectories are

bounded.

From the forgoing analysis, for every 0 < ε ≤ ε1, the trajectory of the closed loop system

is inside the set Ω× Σ for t ≥ t0 + T (ε), where Ω× Σ is O
(µε
τr
)

in the direction of η. Since
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‖x̂‖ ≤ ‖D(ε)η‖ ≤ ‖η‖, there exists ε∗3 = ε∗3(ξ) ≤ ε1 such that for every 0 < ε ≤ ε∗3 we have

‖x̂‖ ≤ ξ ∀ t ≥ T (ε∗3) := Ta(ξ) (2.46)

and from the previous analysis we have V̇ ≤ −U3(χ) + k1
(

kg +
µ
τr
)

ε, so

V̇ ≤ −
1

2
U3(χ) for χ /∈ {U3(χ) ≤ 2k1

(

kg +
µ

τr

)

ε := θ(ε)} (2.47)

Since U3(χ) is positive definite and continuous, the set {U3(χ) ≤ θ(ε)} is compact for small

enough ε. Let c0(ε) = maxU3(χ)≤θ(ε){V (χ)}, c0(ε) is nondecreasing and limε→0 c0(ε) = 0.

The set {V (χ) ≤ c0(ε)} is compact and {U3(χ) ≤ θ(ε)} ⊂ {V (χ) ≤ c0(ε)}. Now, choose

ε∗4 = ε∗4(ξ) ≤ ε1 such that {U3(χ) ≤ θ(ε)} is compact, {V (χ) ≤ c0(ε)} is in the interior of

Ω, and

{V (χ) ≤ c0(ε)} ⊂ {‖χ‖ ≤ ξ} (2.48)

then, {V (χ) ≤ c0(ε)} × Σ is positively invariant and every trajectory starting in Ω × Σ

reaches {V (χ) ≤ c0(ε)} × Σ in finite time. So, there exists a time Tb = Tb(ξ) such that for

every 0 < ε ≤ ε∗4

‖χ‖ ≤ ξ ∀ t ≥ Tb (2.49)

take ε2 = min(ε∗3, ε
∗
4) and T

∗(ξ) = max(Ta, Tb) to obtain (2.36).

From earlier analysis we have ‖χ(t)− χ(t0)‖ ≤ k2(t− t0) ∀ t ∈ [t0, t0 + T (ε)]. Similarly,

it can be shown that ‖χr(t)− χ(t0)‖ ≤ k2(t− t0) ∀ t ∈ [t0, t0 + T (ε)]. Hence,

‖χ(t)− χr(t)‖ ≤ 2k2T (ε) ∀ t ∈ [t0, t0 + T (ε)] (2.50)
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and, since T (ε) → 0 as ε → 0, there exists 0 < ε∗5 ≤ ε2 such that for every 0 < ε ≤ ε∗5, we

have

‖χ(t)− χr(t)‖ ≤ ξ ∀ t ∈ [t0, t0 + T (ε)] (2.51)

Next, we consider the interval [t0+T (ε), T2], for T2 to be defined later. Over this interval, χ(t)

satisfies (2.16) which can be viewed as a perturbation of (2.22) in both the inital condition and

the parameters. Then, by the continuous dependence of solutions of differential equations

on their parameters and initial conditions over compact time intervals [7], we have

‖χ(t)− χr(t)‖ ≤ 2c1k2T (ε) + c2k1

(

kg +
µ

τr

)

ε (2.52)

for some constants c1 ≥ 1 and c2 > 0. Since T (ε) → 0 as ε → 0, there exists 0 < ε∗6 ≤ ε2

such that for every 0 < ε ≤ ε∗6, we have

‖χ(t)− χr(t)‖ ≤ ξ ∀ t ∈ [t0 + T (ε), T2] (2.53)

Finally, from previous analysis and the uniform asymptotic stability of (2.22), we know that

for some ξ > 0 there exists T2 = T2(ξ) ≥ T (ε) and 0 < ε∗7 ≤ ε2 such that for 0 < ε ≤ ε∗7

‖χ(t)‖ ≤ ξ/2, ‖χr(t)‖ ≤ ξ/2 (2.54)

so, ‖χ(t) − χr(t)‖ ≤ ξ ∀ t ≥ T2. Choose ε3 = min(ε∗5, ε
∗
6, ε

∗
7), then, for each 0 < ε ≤ ε3 we

have ‖χ(t)− χr(t)‖ ≤ ξ, ∀ t ≥ t0.

To conclude the proof take ε∗ = min(ε1, ε2, ε3).
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2.5 Simulation Results

To illustrate the efficacy of the low-pass filter in conjunction with the high-gain observer, we

simulate the nonlinear system shown in [16] so as to compare to the nonlinear-gain method

presented there. Consider the nonlinear system

ẋ1 = x2 (2.55)

ẋ2 = −x31 + u (2.56)

y = x1 + v (2.57)

where the xi’s are the states, y is the output, and v is the bounded measurement noise. The

system (2.55)-(2.57) is passed through the low-pass filter

τẇ1 = w2 (2.58)

τẇ2 = −w1 − 2w2 + y (2.59)

where τ is the filter time constant and wi’s are the filter states. The filter time constant

is set at τ = 0.03, and the output from the filter is w1. The system is stabilized with the

controller u = −x2. As in [16] the control is saturated outside of [−10, 10]. The observer

parameters are chosen to be α1 = 2, α2 = 1, and the initial conditions are x1(0) = 2

and x2(0) = w1(0) = w2(0) = x̂1(0) = x̂2(0) = 0. The output is corrupted with low-

amplitude additive white noise generated using the Simulink ”Uniform Random Number”

block with limits of ±0.001 and a sampling time of 0.0008 seconds. Figure 2.1 shows that

the steady-state trajectories of the filtered output feedback system become closer to those

of the reduced system as epsilon decreases. The transient trajectories are not shown here as
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all three trajectories are too close to distinguish.

x
1

x
2

Time (sec)
25 30

25 30

−0.021

−0.016

−3.8

−3.5

Figure 2.1: Steady-state trajectories for the reduced system (solid blue), filtered output
feedback with ε = 0.004 (dotted green), and filtered output feedback with ε = 0.001 (dashed
red).

To compare between the filter and the nonlinear-gain system, we choose the observer

parameters for the nonlinear-gain system as α1 = 11, α2 = 10, ε1 = 0.0005, ε2 = 0.9, and

d = 0.15. The values for α1 and α2 are chosen such that one observer pole is significantly

faster than the other, which is a requirement of [16]. The remaining values, ε1, ε2, and d are

chosen following the procedure outlined in [16]. In addition to the filter and the nonlinear-

gain systems, a combination of the two was also simulated. For this simulation the output of

the nonlinear system was passed through the previously described low-pass filter, and then
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the output of the low-pass filter was input into the nonlinear high-gain observer. The initial

conditions for all systems are the same as those listed previously for the filter system.

In addition to the case when the output is corrupted by low-amplitude additive white

noise we also consider the case when the output is corrupted by high-frequency, high-

amplitude noise. This noise is generated by passing white noise from the Simulink ”Uniform

Random Number” block through a high-pass filter. The bounds on the high-frequency, high-

amplitude noise are ±0.1.

Figure 2.2 shows the trajectory x2 for each system when the output is corrupted by

the low-amplitude white noise. Although there is very little difference between the three

systems, the filter and combination systems have a slightly larger overshoot. A larger dif-

ference between the systems can be seen in the control signal, u, shown in Figures 2.3 and

2.4. These figures show that both the filter and combination systems have a slower control

response, and the filter system control signal is noisier. So, while the performance of the

three systems is very similar when their output is corrupted by low-amplitude white noise,

the nonlinear-gain observer does perform slightly better.
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Figure 2.2: Trajectory x2 for all systems when the output is corrupted by low-amplitude
additive white noise
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Figure 2.3: Control signal u for all systems during the transient period when the output is
corrupted by low-amplitude additive white noise
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Figure 2.4: Close up of control signal u for all systems during the steady-state period when
the output is corrupted by low-amplitude additive white noise
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Figures 2.5 and 2.6 respectively show the transient and steady-state response of the x2 tra-

jectory of all three systems when the output is corrupted by high-frequency, high-amplitude

noise. The nonlinear-gain system has a noisy and undesirable transient, but provides good

noise reduction at steady-state. In contrast, the filter and combination systems have nice

transient behavior, but the filter steady-state response is delayed and somewhat noisy. As

with the low-amplitude white noise, a larger difference between the systems can be seen

when comparing their control signals, u, as shown in Figure 2.7. In this case, the nonlinear-

gain observer transient control signal demonstrates extremely undesirable behavior. Both

the filter system and combined system have a good response time, however the filter system

control signal is fairly noisy. Figure 2.8 shows a close-up of the steady-state response of the

nonlinear-gain and combined systems. The filter system is not included in this compari-

son because it is too noisy. Although the combined system is slightly slower it has far less

measurement noise in its steady-state response than the nonlinear-gain system.
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Figure 2.5: Trajectory x2 for all systems during the transient period when the output is
corrupted by high-frequency, high-amplitude noise
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Figure 2.6: Close up of the trajectory x2 for all systems during the steady-state period when
the output is corrupted by high-frequency, high-amplitude noise
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Figure 2.7: Control signal u for all systems during the transient period when the output is
corrupted by high-frequency, high-amplitude noise
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Figure 2.8: Close up of control signal u for the nonlinear-gain and combination systems dur-
ing the steady-state period when the output is corrupted by high-frequency, high-amplitude
noise

These simulations show that the filter system gives a good transient response when the

output is corrupted by either low-amplitude white noise or high-frequency, high-amplitude

noise, however the steady-state performance of the nonlinear-gain system is generally bet-

ter. Overall, the best performance is provided by the combination nonlinear-gain and filter

system, however this system increases the design complexity, a factor which should be con-

sidered when choosing a method.

2.6 Conclusions

We have presented analysis of the use of a low-pass filter in conjunction with a high-gain

observer as a means to attenuate the effects of measurement noise on high-gain observer

systems. It was shown that the filtered output feedback system recovers the performance

of the reduced order system. The low-pass filter was effective at minimizing the effects of
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both additive white noise and high-frequency, high-amplitude noise. In addition, it was

compared with the performance of a nonlinear-gain observer, and a nonlinear-gain observer

combined with a low-pass filter. The low-pass filter and the combination system performed

better than the nonlinear-gain system when exposed to high-frequency, high-amplitude noise.

When exposed to additive white noise, the three systems all performed similarly.
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Chapter 3

Filters of Higher or Lower Order

3.1 Introduction

In Chapter 2 the analysis was limited to filters of the same order as the system. While this

was convenient for the purposes of analysis, filters are not chosen based on the order of the

system they are filtering. For this reason, it is natural to extend the analysis of the previous

chapter to filters that have either a higher or lower order than the nonlinear system. We

will continue to consider low-pass filters whose transfer function is that of an all pole plant.

This form includes many common low-pass filters such as Butterworth, Chebyshev Type I,

and Elliptic filters [10].
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3.2 Higher Order Filters

3.2.1 Formulation

In this section we will consider filters whose order is higher than that of the system. Returning

to the nonlinear system of Chapter 2

ż = ψ(z, x, d, u) (3.1)

ẋ = Ax+Bφ(z, x, d, u) (3.2)

y = Cx+ v (3.3)

where u ∈ R is the control input, z ∈ R
l and x ∈ R

r are states, y ∈ R is the measured

output, d(t) ∈ R
p is a vector of exogenous signals, and v(t) ∈ R represents measurement

noise. The matrices A, B, and C are the same as (2.4)-(2.5). The state feedback control for

this system is given by

ϑ̇ = Γ(ϑ, x, d) (3.4)

u = γ(ϑ, x, d) (3.5)

The nonlinear system and the closed loop system under state feedback meet Assumptions 1

and 2. We then design the low-pass filter as

τẇ = Afw +Bfy (3.6)

w1 = Cfw (3.7)
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where τ is the filter time constant, w ∈ R
m is the filter state, and m > r since we are

considering higher order filters. The matrix Af is the same as (2.10). The m× 1 matrix Bf

and the 1×m matrix Cf have the same form as (2.4) and (2.5), but have larger dimensions

due to the extra filter states. The high-gain observer is

˙̂x = Ax̂+Bφ0 (x̂, d, u) +H (w1 − x̂1) (3.8)

where x̂ ∈ R
r are state estimates, and H is the same as (2.13). The function φ0 meets

Assumption 3.

3.2.2 Closed Loop System Analysis

We begin the analysis of the closed loop system by applying the change of variables from

Chapter 2

ηi =

1
τi−1wi − x̂i

εr−i
(3.9)

for i = 1, . . . , r. With this change of variables, and defining χ = [z, x, w, ϑ]T ∈ R
M , the

closed loop system under output feedback control becomes χ̇ = f(χ, d,D(ε)η).

χ̇ =























ψ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄ −D(ε)η, d
))

Ax+Bφ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄ −D(ε)η, d
))

1
τ

(

Afw +B(x1 + v)
)

Γ
(

ϑ,E−1(τ)w̄ −D(ε)η, d
)























(3.10)

εη̇ = A0η + εBg (χ, d,D(ε)η) (3.11)

where A0 and D(ε) are the same as (2.18) and (2.20) respectively. E(τ) in this case remains
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the same as (2.21) despite the fact that the filter state vector w is larger than the system

state vector x. This is due to the fact that E(τ) comes from the scaled estimation error

η = D−1(ε)(E(τ)w̄ − x̂) (3.12)

Since η ∈ R
r, E(τ) is an r × r matrix. For clarity as to the dimension of E(τ), we have

defined w̄ = [w1, . . . , wr].

Due to the higher order of the filter, the function g (χ, d,D(ε)η) is given by

g (χ, d,D(ε)η) =
1

τr
wr+1 − φ0(E

−1(τ)w̄ −D(ε)η, d, γ(ϑ,E−1(τ)w̄ −D(ε)η, d)) (3.13)

which is different from (2.19). A further difference between this closed loop system and the

closed loop system from Chapter 2, are the fast equations (2.17) and (3.11). For the closed

loop system where the filter is the same order as the system, the noise appeared in (2.17)

with a coefficient of ε
τr . In (3.11), the noise does not appear at all due to the higher order

of the filter. The reason for this can be seen by briefly considering the rth derivative of the

filter output w1 for both cases. In the case where the system and filter are of the same order

we have

ẇ1
(r) =

1

τr
(−β1w1 − · · · − βrwr + x1 + v) (3.14)

while in the case where the order of the filter is higher than that of the system, we have

ẇ1
(r) =

1

τr
wr+1 (3.15)

When the change of variables (3.9) is applied, the rth derivative of the filter output appears
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in the fast equation (2.17), where it is multiplied by ε. This means the noise term appears

in the fast equation only when the order of the filter is the same as the order of the system.

As in the analysis in Chapter 2, the closed loop system (3.10)-(3.11) is a standard singularly

perturbed system. Setting ε = 0 in (3.11) results in the reduced system f(χ, d, 0) = fr(χ, d),

where

fr (χ, d) =























ψ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄, d
))

Ax+Bφ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄, d,
))

1
τ

(

Afw +Bf (x1 + v)
)

Γ
(

ϑ,E−1(τ)w̄, d
)























(3.16)

This system is the same as the closed loop system under (3.4)-(3.5) with x in (3.4)-(3.5)

replaced with E−1(τ)w̄. The reduced system (3.16) meets Assumption 4. As stated in

Chapter 2, Assumption 4 assumes that τ is chosen small enough that the reduced system

(3.16) maintains stability. In Chapter 2, in order to see that it is possible to choose such a

τ , the system was placed in standard singularly perturbed form. We will repeat the same

process of transforming the reduced system (3.16) into standard singularly perturbed form

in order to illustrate where the reduced system for the case of a higher order filter differs

from the reduced system when the filter order is the same as the system order. To begin we

apply the change of variables

w(i) = w(i−1) + τ i−1(A−1
f )iBfxi (3.17)

for i = 1, · · · , r, where w(0) = w. Then we apply the scaling

ζ =
1

τr−1
w(r−1) (3.18)
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to get

τ ζ̇ = Afζ +
1

τr−1
Bfv + (A−1

f )r−1Bfxr (3.19)

As when the filter and system have the same order, we apply the change of variables for

i = 1, · · · , r, however at each step w(i) ∈ R
m. Thus, the steps in both cases are the

same, but the dimensions are different. For the sake of clarity in dimensions, we define

ζ̄ = [ζ1, · · · , ζr]
T . We then substitute ζ̄ = 1

τr−1 w̄
(r−1) into E−1(τ)w̄ to get

E−1(τ)w̄ = E(τ)ζ̄ +
1

β1
x+ τG(τ)x (3.20)

where G(τ) is a polynomial in τ . Now, the reduced system in standard singularly perturbed

form is

ż = ψ(z, x, d, γ(ϑ,E(τ)ζ̄ +
1

β1
x+ τG(τ)x, d)) (3.21)

ẋ = Ax+Bφ(z, x, d, γ(ϑ,E(τ)ζ̄ +
1

β1
x+ τG(τ)x, d)) (3.22)

ϑ̇ = Γ(ϑ,E(τ)ζ̄ +
1

β1
x+ τG(τ)x, d) (3.23)

τ ζ̇ = Af ζ +
1

τr−1
Bfv + (A−1

f )r−1Bfxr (3.24)

In summary the only differences between the closed loop systems (2.16)-(2.17) and (3.10)-

(3.11) are the absence of the noise term in (3.11), the slight modification to g (χ, d,D(ε)η),

and the dimensions of the filter. Additionally, the only difference between the reduced

systems (2.31)-(2.34) and (3.21)-(3.24) is the dimension of (3.24), which corresponds to the

dimension of the filter. Given these similarities and the fact that Assumptions 1-4 are met

for the case where the order of the filter is higher than the order of the system, the results
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from Chapter 2 hold for this case. The proof of this would be identical to the proof of

Theorem 1 with the noise term dropped from the fast equation (2.17).

3.2.3 Simulation

To verify the results of this chapter, we present a simulation of the nonlinear magnetic

suspension system shown in [7]. The system is comprised of a steel ball that is levitated

via an electromagnet. The position of the ball is measured using an optical sensor, while

the velocity and current are estimated by a high-gain observer. The state equations for this

system are

ẋ1 = x2 (3.25)

ẋ2 = g −
k

m
x2 −

L0ax
2
3

2m(a + x1)2
(3.26)

ẋ3 =
a+ x1

L0a + L1a+ L1x1

(

−Rx3 +
L0ax2x3
(a+ x1)2

+ u(x)

)

(3.27)

y = x1 + v (3.28)

where x1 is the ball position, x2 is the ball velocity, x3 is the current applied to the electro-

magnetic, and u is the control voltage. The constant parameters are: R, the circuit series

resistance, k, a viscous friction coefficient, and m, the mass of the ball. Additionally, L0,

L1, and a are positive parameters used in calculating the inductance of the electromagnet.
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In order to design the control, we apply the following change of variables

z1 = x1 (3.29)

z2 = x2 (3.30)

z3 = g −
k

m
x2 −

L0ax
2
3

2m(a + x1)2
(3.31)

which transforms the system into

ż1 = z2 (3.32)

ż2 = z3 (3.33)

ż3 = f(x) + g(x)u (3.34)

where

f(x) =
L0ax3(L1x2 +Ra+Rx1)

m(a+ x1)2(L0a+ L1a + L1x1)
−
k

m

(

g −
k

m
x2 −

L0ax
2
3

2m(a + x1)2

)

(3.35)

g(x) =
L0ax3

−m(a + x1)(L0a+ L1a + L1x1)
(3.36)

Here, f(x) and g(x) have been left in terms of x for the sake of convenience in designing a

state feedback control. Using feedback linearization, the control is designed as

u(x) =
1

g(x)
(v − f(x)) (3.37)

where

v = −k1z1 − k2z2 − k3z3 (3.38)
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and, in terms of x

v = −k1x1 − k2x2 − k3

(

g −
k

m
x2 −

L0ax
2
3

2m(a+ x1)2

)

(3.39)

The fifth order low-pass filter is designed as

τẇ1 = w2 (3.40)

τẇ2 = w3 (3.41)

τẇ3 = w4 (3.42)

τẇ4 = w5 (3.43)

τẇ5 = −w1 − 5w2 − 10w3 − 10w4 − 5w5 + y (3.44)

The linear high-gain observer is given by

˙̂z1 = ẑ2 +
α1
ε
(w1 − ẑ1) (3.45)

˙̂z1 = ẑ3 +
α2
ε2

(w1 − ẑ1) (3.46)

˙̂z1 =
α3
ε3

(w1 − ẑ1) (3.47)

The observer is designed and implemented in the z coordinates because Theorem 1 applies

only to systems in a chain of integrators form. Since the high-gain observer is robust to

uncertainties in φ0, this term can be neglected for convenience, giving the linear high-gain

observer in (3.45)-(3.47). The parameter values used are given in Table 3.1. The measure-

ment noise is white noise given by v ∼ U(−1 × 10−6, 1 × 10−6). The initial conditions are

x1(0) = 0.1, x̂1(0) = 0.05, and all other states start at 0. The control is saturated outside
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Table 3.1: Parameter Values Used for Simulation of Magnetic Suspension System

Parameter Value Parameter Value
R 1Ω k1 82
L0 0.01 H k2 161
L1 0.02 H k3 80
k 0.001 α1 3
m 0.1 kg α2 3

g 9.81 m/s2 α3 1
a 0.05 m τ 0.001

the set [−20, 20]. The control task is to keep the ball suspended at y = 0.05m. As shown

in Figure 3.1, decreasing ε causes the trajectories of the closed loop system under output

feedback to approach those of the reduced system.
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Figure 3.1: Trajectories for the reduced system (solid blue), filtered output feedback with
ε = 8× 10−4 (dotted red) and ε = 1× 10−4 (dashed green) when using a higher order filter.

3.3 Lower Order Filters

3.3.1 Formulation

We now move on to consideration of the case where the order of the filter is lower than the

order of the plant. We continue to consider the nonlinear system (2.1)-(2.3), and the state

feedback control (3.4)-(3.5). The lower order filter is given by

τẇ = Afw +Bfy (3.48)

w1 = Cfw (3.49)
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where w ∈ R
m and m < r. The matrix Af is the same as (2.10). The m × 1 matrix Bf

and the 1 × m matrix Cf are of the same form as (2.4) and (2.5), however with a smaller

dimension due to the lower number of filter states. The observer is the same as (3.8).

3.3.2 Closed Loop System Analysis

If we attempt to apply the same change of variables we have used previously, namely

ηi =

1
τi−1wi − x̂i

εr−i
(3.50)

we quickly come across a problem. When we attempt to find ηm+1, we have

ηm+1 =
1
τmwm+1 − x̂m

εr−(m+1)
(3.51)

However, wm+1 does not exist. If we try to circumvent this problem by instead applying the

scaling

ηi =
w
(i)
1 − x̂i

εr−i
(3.52)

where w
(i)
1 is the i derivative of the filter output w1, we again find a problem. At i = m+ 1

we have

ηm+1 =
1
τm (−β1w1 − · · · − βmwm + x1 + v − x̂1)

εr−(m+1)
(3.53)

and

εη̇m+1 =
1
τm (−β1ẇ1 − · · · − βmẇm + ẋ1 + v̇ − ˙̂xm+1)

εr−m (3.54)

Hence, in order to put the closed loop system under output feedback in standard singularly

perturbed form, we would have to be able to differentiate the measurement noise, which is
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an unreasonable assumption to make for a general system.

If we consider the special case where measurement noise is differentiable, we can complete

the analysis. Using the change of variables given in (3.52), the closed loop system under

output feedback is given by

χ̇ =























ψ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄ −D(ε)η, d
))

Ax+Bφ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄ −D(ε)η, d
))

1
τ

(

Afw +Bf (x1 + v)
)

Γ
(

ϑ,E−1(τ)w̄ −D(ε)η, d
)























(3.55)

εη̇ = A0η + εBg (χ, d,D(ε)η) (3.56)

where χ ∈ R
M , the r × 1 vector w̄, and the r × r block diagonal matrix E(τ) are given by

χ = [z, x, w, ϑ]T (3.57)

w̄ = [w1, . . . , wm, w
(m)
1 , . . . , w

(r)
1 ]T (3.58)

E(τ) =









H(τ) 0

0 I









(3.59)

where H(τ) = diag(1, τ, . . . , τr−m). We define the right hand side of (3.55) as f(χ, d,D(ε)η).

For this case,

g (χ, d,D(ε)η) = w
(r+1)
1 − φ(E−1(τ)w̄ −D(ε)η, d, γ(ϑ,E−1(τ)w̄ −D(ε)η, d)) (3.60)
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where

w
(r+1)
1 =

1

τr−m

(

−β1w
(r−m)
1 − · · · − βmw

(r−m)
m + φ(z, x, d, γ(ϑ, w̄ −D(ε)η, d)) + v(r−m)

)

(3.61)

Setting ε = 0 again results in η = 0, giving the following reduced system.

fr (χ, d) =























ψ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄, d
))

Ax+Bφ
(

z, x, d, γ
(

ϑ,E−1(τ)w̄, d,
))

1
τ

(

Afw +Bf (x1 + v)
)

Γ
(

ϑ,E−1(τ)w̄, d
)























(3.62)

The reduced system (3.62) is not in the standard singularly perturbed form, due to the

negative powers of τ . In order to transform (3.62) into standard singularly perturbed form,

we begin with the same change of variables we have used previously

w(i) = w(i−1) + τ i−1(A−1
f )iBfxi (3.63)

for i = 1, · · · , r, where w(0) = w. Then we apply the scaling

ζ =
1

τr−1
w(r−1) (3.64)

to get

τ ζ̇ = Afζ +
1

τr−1
Bfv + (A−1

f )r−1Bfxr (3.65)

As in the case of a higher order filter, it is important to highlight the dimensions of the

quantities above. In this case, each w(i) equation will have the same order as the filter,
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which will be less than the nonlinear system. Similarly, ζ will have the same order as the

filter. We will, however, have r − 1 different w(i) equations. In standard form, the reduced

system is given by

fr (χ, d) =























ψ (z, x, d, γ (ϑ, P (ζ, x), d))

Ax+Bφ (z, x, d, γ (ϑ, P (ζ, x), d, ))

Γ (ϑ, P (ζ, x), d)

τ ζ̇ = Af ζ +
1

τr−1Bfv +G(τ)























(3.66)

where G(τ) is a polynomial in τ and the r × 1 vector P (ζ, x) is given by

P (ζ, x) =







H(τ)ζ + 1
β1
x̄+ τG(τ)x̄

1
β1
x̃+M−1(τ)v̄






(3.67)

Here, x̄, x̃, v̄, and M(τ) are given by

x̄ = [x1, . . . , xm]T (3.68)

x̃ = [xm+1, . . . , xr]
T (3.69)

v̄ = [v, v̇, . . . , v(m−r)]T (3.70)

M(τ) =































τ 0 · · · 0 0

−1 τ · · · 0 0

...
. . .

. . .
...

...

0 · · · −1 τ 0

0 0 · · · −1 τ































(3.71)

From this point forward, as long as the additional assumption that measurement noise is
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differentiable is met, the analysis is the same as Chapter 2.

3.3.3 Simulation

We return to the magnetic suspension example, however we now use a first order low-pass

filter given by

τẇ1 = −w1 + y (3.72)

The measurement noise used for this simulation is not uniform white noise, because we

assumed differentiable measurement noise. Instead, following the procedure outlined in [1],

we use wide-band noise that is generated by passing the output of the Simulink “Uniform

Random Number” block through the transfer function

H(s) =
.0052

.0052s2 + .01s+ 3
(3.73)

The output signal from this transfer function is differentiable noise that can be used to

simulate the reduced system (3.62). The limits on the the Simulink “Uniform Random

Number” block are ±0.3, which, after being passed through the transfer function (3.73),

corresponds to differentiable wide-band noise that is O(10−6). This differentiable wide-

band noise allows us to compare the trajectories under output feedback with those of the

reduced system. The differentiable measurement noise was used in simulating both the

reduced system and the system under output feedback so that the comparison is under the

same conditions. Figure 3.2 shows that as ε decreases, the trajectories of the closed loop

system under output feedback approach the trajectories of the reduced system. This serves

to confirm the extension of the analytic result from Chapter 2 to the case of a lower order
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filter with differentiable measurement noise.
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Figure 3.2: Trajectories for the reduced system (solid blue), filtered output feedback with
ε = 8× 10−4 (dotted red) and ε = 5× 10−4 (dashed green) with a lower order filter.

Finally, it is useful to do a comparison between the three different filter possibilities.

For this comparison, the lower order filter was simulated with the same uniform white noise

as the other two cases. Although the analytic result requires differentiable noise, it is still

possible for the system to be simulated with nondifferentiable noise. There is no guarantee

in this case that the system would be stable, however we can see from the simulation that

we still have stability.

Figure 3.3 shows the trajectories for the magnetic suspension system with a filter that is

the same order as the plant, one that is a higher order, and one that is a lower order. Although
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there is little difference between the three filters when we compare the full trajectories,

looking at the steady-state response shown in Figure 3.4 shows a slight advantage to using

a filter that is the same order or higher than that of the plant. The trajectories when using

a filter that is the same order or higher than the nonlinear system have a less oscillatory

response than when the lower order filter is used.
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Figure 3.3: Trajectories for the system under state feedback (blue ”x” marks), and output
feedback with a lower order filter (solid green), a filter the same order as the plant (dashed
red), and a higher order filter (dotted turquoise).
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Figure 3.4: Steady-state x2 trajectories for the system under output feedback with a lower
order filter (solid blue), a filter the same order as the plant (dashed green), and a higher
order filter (dotted red).
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Chapter 4

Filters After the Observer

4.1 Introduction

Until now, we have been considering systems where filter is placed before the observer, as

shown in Figure 4.1. It is also possible for the filter to be placed after the observer, as shown

in Figure 4.2.

When the filter is placed after the observer, it filters the control signal rather than the

system output with noise. This configuration makes a good deal of sense if one thinks of

replacing the observer with a sensor that measures states instead of estimating them. To

filter a measured state, the filter is placed after the measurement is taken. It would be

nonsensical to place the filter before the measurement it was filtering. In the same way, if

the observer is thought of as a soft sensor, it makes sense to place the filter after the observer.
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Figure 4.1: Block Diagram of System with Filter Before Observer

Figure 4.2: Block Diagram of System with Filter After Observer
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4.2 Formulation

In this section and the next, we will show that we can extend the results of [2] to this case.

We will again consider the nonlinear system of Chapter 2

ż = ψ(z, x, d, u) (4.1)

ẋ = Ax+Bφ(z, x, d, u) (4.2)

y = Cx+ v (4.3)

where u ∈ R is the control input, z ∈ R
l and x ∈ R

r are states, y ∈ R is the measured

output, d(t) ∈ R
p is a vector of exogenous signals, and v(t) ∈ R represents measurement

noise. The nonlinear system meets Assumption 1 of Chapter 2. The state feedback control

is once again designed as

ϑ̇ = Γ(ϑ, x, d) (4.4)

u = γ(ϑ, x, d) (4.5)

We will modify our assumptions of the previous chapters in order to apply the results of [2],

which does not require global uniform asymptotic stability. Although we could continue to

require global uniform asymptotic stability and still apply the results of [2], there is no good

reason to do so, as golabl uniform asymptotic stability is a more strict assumption.

Assumption 5.

The closed loop system under (4.4)-(4.5) is uniformly asymptotically stable with respect to

a compact positively invariant set A, uniformly in d.
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The filter takes a similar form to the filter used in Chapters 2 and 3

τẇ = Afw +Bfu (4.6)

w1 = Cfw (4.7)

where τ is the filter time constant, w ∈ R
m are filter states, and w1 is the filter output. In

this case, the dimension of the filter m, is not constrained in any way, as it won’t effect the

analysis. The m×m matrix Af has the same structure as (2.10), the m× 1 matrix Bf , and

the 1 ×m matrix Cf have the same structure as (2.4)-(2.5). The other difference between

this filter and the previously examined filter is that the input to this filter is u, while the

input to the previous filter was y. The output feedback takes the form

˙̂x = Ax̂+Bφ0 (x̂, d, u) +H (y − x̂1) (4.8)

where φ0 is a nominal model of φ and meets Assumption 3 of Chapter 2. This observer is

slightly different from the observer of the previous chapters in that the high gain is multiplied

by the error between the nonlinear system output y and the estimate x̂1. In previous chapters,

the high gain was multiplied by the error between the filter output w1 and the estimate x̂1.

The difference here is due to the fact that the signal coming into the observer is now the

nonlinear system output instead of the filter output.
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4.3 Closed Loop System Analysis

In this section, we begin by applying the same change of variables as was used in [2]

ηi = εi−1 (xi − x̂i) (4.9)

This change of variables is clearly different from the change of variables used to transform

the system into standard singularly perturbed form in previous chapters. This difference is

due to the fact that the input to the observer is now the nonlinear system output. We define

χ = [z, x, w, ϑ]T ∈ R
M , and then the closed loop system under output feedback becomes

χ̇ = f(χ, d, x−D−1(ε)η) =























ψ
(

z, x, d, γ
(

ϑ, x−D−1(ε)η, d
))

Ax+Bφ
(

z, x, d, γ
(

ϑ, x−D−1(ε)η, d
))

1
τ

(

Afw +Bfγ
(

ϑ, x−D−1(ε)η, d
))

Γ
(

ϑ, x−D−1(ε)η, d
)























(4.10)

εη̇ = A0η + εrBg
(

χ, d, x−D−1(ε)η
)

+B0v (4.11)

where A0 has the same form as (2.18), B0 = [−α1, · · · ,−αr]
T , and

g
(

χ, d, x−D−1(ε)η
)

=φ
(

z, x, d, γ
(

ϑ, x−D−1(ε)η, d
))

− φ0

(

x−D−1(ε)η, d, γ
(

ϑ, x−D−1(ε)η, d
))

(4.12)
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In order to make the analysis easier, we recognize that the filter can be considered part of

the dynamic control Γ(ϑ, x, d). The new combined control can be written as

ϑ̇ = Γ
(

ϑ, x−D−1(ε)η, d
)

(4.13)

τẇ = Afw +Bfγ
(

ϑ, x−D−1(ε)η, d
)

(4.14)

u0 = Cfw (4.15)

or in a more compact form

ϑ̇0 = Γ0

(

ϑ, x−D−1(ε)η, d, w
)

(4.16)

u0 = Cfw (4.17)

Items 1 and 2 of Assumption 2, which apply to the original state feedback control (4.4)-(4.5),

are assumed to apply to the new combined control as well. The closed loop system under

output feedback can now be written as

χ̇ = f(χ, d,D−1(ε)η) =















ψ
(

z, x, d, Cfw
)

Ax+Bφ
(

z, x, d, Cfw
)

Γ0
(

ϑ, x−D−1(ε)η, d, w
)















(4.18)

εη̇ = A0η + εrBg0

(

χ, d, x−D−1η, Cfw
)

+B0v (4.19)

where

g0

(

χ, d, x−D−1(ε)η, Cfw
)

= φ
(

z, x, d, Cfw
)

− φ0

(

x−D−1(ε)η, d, Cfw
)

(4.20)
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With the exception of the negative powers of ε, (4.18)-(4.19) are in the standard singularly

perturbed form. As observed in [2], due to the global boundedness of the functions f and g

in D−1(ε)η, we can extend the behavior of standard singularly perturbed systems to (4.18)-

(4.19). The reduced system can be found by setting η = 0 to get

f(χ, d, 0) = fr(χ, d) =















ψ
(

z, x, d, Cfw
)

Ax+Bφ
(

z, x, d, Cfw
)

Γ0 (ϑ, x, d, w)















(4.21)

The reduced system is the same as the closed loop system under (4.4)-(4.5) with u in (4.1)-

(4.2) replaced by u0. As with our state feedback control, rather than require global uniform

asymptotic stability, we will instead require the following assumption to be met.

Assumption 6.

The reduced order system (4.21) is uniformly asymptotically stable with respect to A, uni-

formly in d.

As before, this assumes that τ is chosen small enough that the reduced system maintains

the stability of the closed loop system under state feedback. We can see that this is possible

simply by recognizing that, in this case, the reduced system is already in standard singularly

perturbed form. This is clear if we consider an expanded from of (4.21).

ż = ψ
(

z, x, d, Cfw
)

(4.22)

ẋ = Ax+Bφ
(

z, x, d, Cfw
)

(4.23)

ϑ̇ = Γ (ϑ, x, d) (4.24)

τẇ = Afw +Bγ (ϑ, x, d) (4.25)
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In this system, if τ = 0, we will have Cfw = γ (ϑ, x, d), which will give the closed loop

system under state feedback.

From this point forward, the analysis will be identical to the analysis of [2], with the

additional assumption that τ is made small enough that the reduced system maintains

stability. The other difference between this system and that of [2] is that the reduced

system here will contain the filter with the dynamic control. For convenience, we will repeat

here the result of [2].

Theorem 2. Let Assumptions 1, 2.1 - 2.3, 3, and 5-6 hold and consider the closed-loop

system (4.18)-(4.19). Let M be any compact set in the interior of R and N be any compact

subset of Rr, and suppose that χ(t0) ∈ M and x̂(t0) ∈ N . Then:

• There exist positive constants ca and µ∗ such that for each µ < µ∗ there is a constant

εa = εa(µ) > caµ
1/r , with limµ→0 εa(µ) = ε∗a > 0, such that for each ε ∈ (caµ

1/r, εa]

the trajectories of the closed-loop system are bounded for all t ≥ t0.

• There exist µ∗1 > 0 and a class K function ρ1 such that for every µ < µ∗1 and every

ξ1 > ρ1(µ) there are constants T1 = T1(ξ1) ≥ t0 and εb = εb(µ, ξ1) > caµ
1/r, with

limµ→0 εb(µ, ξ1) = ε∗b(ξ1) > 0, such that for each ε ∈ (caµ
1/r, εb], we have

max{|χ(t)|A, ‖x(t)− x̂(t)‖} ≤ ξ1, ∀t ≥ T1. (4.26)

• There exist µ∗2 > 0 and a class K function ρ2 such that for every µ < µ∗2 and every ξ2 >

ρ2(µ) there is a constant εc = εc(µ, ξ2) > caµ
1/r, with limµ→0 εc(µ, ξ2) = ε∗c(ξ2) > 0,
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such that for each ε ∈ (caµ
1/r, εc] we have

‖χ(t)− χr(t)‖ ≤ ξ2, ∀t ≥ t0 (4.27)

where χr(t) is the solution of (4.21) with χr(t0) = χ(t0).

The three bullet points of Theorem 2 respectively state boundedness of the trajectories under

output feedback, ultimate boundedness of the trajectories under output feedback where they

come close to A as time progresses, and closeness of the trajectories under output feedback to

those of the reduced system. This result is somewhat different than the result of Theorem 1.

While Theorem 1 puts no restrictions on the relationship between the bound on measurement

noise µ and the small parameter ε, here, we are requiring µ
ε to be small. Additionally, in

Theorem 1, there was no lower bound placed on the value of ε, while here ε is restricted to

being greater than some constant that is a function of µ. Finally, in this case, the trajectories

under output feedback cannot be made arbitrarily close to the trajectories of the reduced

system and the ultimate bound cannot be made arbitrarily small. Instead, in both cases,

there is a lower bound that is dependent on µ that prevents arbitrary closeness or arbitrarily

small ultimate bound.

4.4 Simulation

In this section we continue to use the magnetic suspension system of the previous chapter.

All parameters are the same as the previous chapter, however, in this case we have used a
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third order filter of the form

τẇ1 = w2 (4.28)

τẇ2 = w3 (4.29)

τẇ2 = −w1 − 3w2 − 3w3 + u (4.30)

To compare simulation results, we will also consider the configuration where the filter is

before the observer. For this case, the filter is given by

τẇ1 = w2 (4.31)

τẇ2 = w3 (4.32)

τẇ2 = −w1 − 3w2 − 3w3 + y (4.33)

In both cases we have used the same parameters as the previous chapter and chosen ε =

8× 10−4. The noise is given by v ∼ U(−1× 10−6, 1× 10−6). Figure 4.3 shows a comparison

of the trajectories for both systems. Clearly, there is little difference as far as the transient

response is concerned. Considering the steady-state response of the x2 trajectory in Figure

4.4 shows a slight advantage to placing the filter before the observer. In this case, the

x2 trajectory when placing the filter before the observer has a less oscillatory steady-state

response than when the filter is placed after the observer.
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Figure 4.3: Trajectories for the configuration where the filter is placed before the observer
(solid blue) and after the observer (dashed green)
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Figure 4.4: Steady-state x2 trajectories for the configuration where the filter is placed before
the observer (solid blue) and after the observer (dashed green)
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For another comparison, consider the example system of Chapter 2. For convenience, it

is repeated here

ẋ1 = x2 (4.34)

ẋ2 = −x31 + u (4.35)

y = x1 + v (4.36)

where the xi’s are the states, y is the output, and v is the bounded measurement noise. The

parameters are again kept the same as Chapter 2 with ε = 5×10−4. For this simulation, the

amplitude of the measurement noise was increased, so that v ∼ U(−0.01, 0.01). The filter

after the observer is

τẇ1 = w2 (4.37)

τẇ2 = −w1 − 2w2 + u (4.38)

and the filter before the observer is given by

τẇ1 = w2 (4.39)

τẇ2 = −w1 − 2w2 + y (4.40)

Figure 4.5 shows the trajectories of both configurations as well as the trajectories of the

system under state feedback. In this case, it is clear that placing the filter after the observer

results in a response that is closer to the system under state feedback. However, Figure

4.6 clearly shows that the steady-state x2 trajectory of the configuration where the filter is
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placed after the observer is noisier than when the filter is placed before the observer. For this

reason, the application should always be considered when choosing which configuration to

use. In an application where a closer response is more important, or there is less measurement

noise within the system, the filter should be placed after the observer. When sensitivity to

measurement noise is a larger factor, the filter should be placed before the observer.

Time (sec)

x
1

Time (sec)

x
2

0 100 10
−4

0

1

−4

0

2

Figure 4.5: Trajectories for the system under state feedback (solid blue) and the system
under output feedback with the configuration where the filter is placed before the observer
(dotted red) and after the observer (dashed green)
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Figure 4.6: Steady-state x2 trajectories for the system under state feedback (solid blue) and
the system under output feedback with the configuration where the filter is placed before
the observer (dotted red) and after the observer (dashed green)
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Chapter 5

Conclusion

In this work we have presented an analysis of the use of low-pass filters in conjunction with

high-gain observers as a method to attenuate the effects of measurement noise. Specifically,

we have looked at four different combinations of low-pass filter and high-gain observer. The

first case considered was the case where the low-pass filter is placed before the observer and

is of the same order as the nonlinear system. For this case we were able to analytically

prove that the trajectories of the closed loop system under output feedback were bounded,

ultimately bounded, and close to the trajectories of the reduced system. Through simu-

lation, we compared this method with a nonlinear-gain observer. It was shown that for

low-amplitude white noise, the nonlinear-gain observer performed slightly better than the

high-gain observer with low-pass filter system. For a high-amplitude, high-frequency noise

condition, it was found that the nonlinear-gain observer yielded an unacceptable response,

while the low-pass filter with high-gain observer performed adequately, and the low-pass

filter with nonlinear-gain observer performed best.

Continuing the analysis of filters placed before the observer, we extended the results of

the case where the filter is the same order as the nonlinear system to a higher order filter.

We also considered the case of a lower order filter. We were able to extend the analytic

results only for the special case where measurement noise was differentiable. A magnetic

suspension system was simulated in order to confirm the analytic results in each case and

also to draw a comparison between the different filter orders. It was shown that a filter that
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was of the same order or a higher order than the nonlinear system performed better than

the case where the filter was of a lower order than the nonlinear system.

To complete our study, we considered the case where the filter is placed after the observer.

This placement was justified by considering the high-gain observer as a soft sensor. We

showed that by considering the filter to be part of the dynamic control, the results of [2] could

be extended to this system. Through simulation, it was shown that placing the filter after the

observer resulted in trajectories under output feedback that were closer to the trajectories

under state feedback than when the filter was placed before the observer. Additionally, the

simulations demonstrated that the filter before the observer configuration was more adept

than the filter after the observer configuration at reducing the effects of measurement noise.
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