THE AROMATIC 3-AZA-COPE REARRANGEMENT AND AZA-ANNULATION REACTION AS SYNTHETIC TOOLS FOR THE CONSTRUCTION OF NITROGEN HETEROCYCLES

By
Lars Guenter Beholz

A DISSERTATION

> Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

College of Natural Science
Department of Chemistry

ABSTRACT
 THE AROMATIC 3-AZA-COPE REARRANGEMENT AND AZA-ANNULATION REACTION AS SYNTHETIC TOOLS FOR THE CONSTRUCTION OF NITROGEN HETEROCYCLES

By

Lars Guenter Beholz

Conditions for the aromatic 3-aza-Cope rearrangement were developed for which the reaction occurred at a reasonable rate, at practical temperatures and with adequate reproducibility and regiospecifity. The catalyst systems $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ in toluene, ZnCl_{2} in xylenes, and AlCl_{3} in xylenes efficiently accelerated the 3-aza-Cope rearrangement of N allylaniline substrates accessing a convenient method for $\mathrm{C}-\mathrm{C}$ bond formation between N alkyl substituents and an o-aromatic ring carbon. This versatile rearrangement yielded products which could potentially act as precursors to a variety of indole alkaloids substituted in the indole 6-membered ring portion.

Stereochemically complex hydroxylated piperidine alkaloids were efficiently accessed through use of the aza-annulation. The C-4 and C-5 substituent pattern was determined through initial substrate preparation. After aza-annulation, the stereochemistry at these positions could then be controlled through choice of reduction conditions. Trans stereochemistry at C-4 relative to C-5 was efficiently incorporated to an extent of >98:2 through use of the Baeyer-Villiger oxidation. Stereospecific cis hydroxylation at the C-2 and C-3 positions was then accessed through selenation followed by oxidation with OsO_{4}. D-mannonolactam and deoxymannojirimycin were prepared from propargyl alcohol using this methodology.

The aza-annulation was then shown to constitute a quick and efficient method of building up highly functionalized 6-membered nitrogen heterocycles for potential use in the preparation of peptide mimics. DDQ oxidation of these functionalized heterocycles provided the corresponding functionalized pyridone ring systems. This methodology thus may provide a rapid and efficient route into the formation of peptide mimics with functionalization possible at the $\mathrm{C}-2, \mathrm{C}-4$, and $\mathrm{C}-5$ positions.

To my parents Joan and Guenter

ACKNOWLEDGEMENTS

I would like to express my great appreciation to Dr. Stille for his dedication to the field of chemistry and for all he has taught me throughout my graduate career. I would also like to thank those on my graduate committee, Drs. Reusch, Allison, and Dunbar. Furthermore, I would like to extend my appreciation to all those individuals without whom my graduate career would have incomprehensibly more difficult: the NMR staff - Drs. Long and Jackson, Kermit, Dennis, Bev at the Mass Spec Facility, Lisa, Beth, Cathie, and Katherine, Tom from electronics, and all those in the glass shop. I would also like to thank Dr. Goetz for his wisdom, and companionship.

I would like to extend my deepest thanks to Elizabeth, for her spiritual as well as financial support, her love, understanding and sacrifice. I would also like to thank my parents, family, and close friends: Andy and Niki, Tim and Michelle, and Dud and Loma.

I would especially like to thank those members of my group for their friendship and comradeship. I will especially miss Petr and Subramani. I have already said farewell to the California crowd: Art, Greg, and Paul.

Finally, I would like to thank all those outside my family who have touched and changed my life in the most significant ways, and whom I think of daily: Mr. and Mrs. Calkins, Opa, all my friends over sea and Dr. O'Keeffe.

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF SCHEMES viii
CHAPTER I. REFINEMENT OF THE LEWIS ACID-PROMOTED 3-AZA- COPE REARRANGEMENT OF \boldsymbol{N}-ALKYL- \boldsymbol{N} - allylanilines: a Versatile route toward the PREPARATION OF INDOLES SUBSTITUTED IN THE BENZENE RING PORTION.
Introduction 1
Aromatic-3-aza-Cope-Rearrangement 4
Aza-annulation of N-Allylindoles. 8
Results and Discussion 10
Conclusion 26
Experimental 27
References 41
CHAPTER II. AZA-ANNULATION AS A ROUTE TO HYDROXYLATED ALKALOIDS: THE TOTAL SYNTHESIS OF D- MANNONOLACTAM AND DEOXYMANNOJIRIMYCIN.
Introduction 43
Results and Discussion 45
Conclusion 56
Experimental 59
References. 71
CHAPTER III. AZA-ANNULATION AS A ROUTE TOWARD THE PREPARATION OF PEPTIDE MIMICS.
Introduction 73
Results and Discussion 76
Conclusion 85
Experimental 86
References 94
REPRINTS OF PUBLICATIONS

LIST OF TABLES

Table I-1 Study of Acid Catalyzed Rearrangements of I-31 6
Table I-2 Effect of Varying ZnCl_{2} Molarities on Maximum \% I-77 in the Reaction Mixture in the Rearrangement of I-49. 13
Table I-3 Results of the Acid Catalyzed Rearrangement of I-49 13
Table I-4 Effect of Solvent Reflux Temperature on the Rearrangement of I-49. 14
Table I-5 Effect of Varying Equivalents of AlCl_{3} on the Rearrangement of I-49 17
Table I-6 Optimized Yields for the Rearrangement of I-49. 18
Table I-7 Results of the Acid Catalyzed Rearrangement of I-53 18
Table I-8 Results of the Acid Catalyzed Rearrangement of I-50 to I-87. 18
Table I-9 Results of the Acid Catalyzed Rearrangement of I-55 19
Table I-10 Results of the Acid Catalyzed Rearrangement of I-57. 19
Table I-11 AlCl_{3} Catalyzed Rearrangements of Various Nitrogen and Aromatic Substituted Anilines. 21
Table I-12 $\quad \mathrm{ZnCl}_{2}$ Catalyzed Rearrangement of Various Nitrogen and Aromatic Substituted Anilines. 22
Table I-13 $\quad \mathrm{BF}_{3}$-etherate Catalyzed Rearrangement of Various Nitrogen and Aromatic Substituted Anilines. 22
Table I-14 o-Allyl Regioisomer Product Ratios for the N-Substituted m - Methoxy Substrates Under Conditions of Various Acid Catalysts 23
Table I-15 Competitive Lewis Acid-Promoted 3-Aza-Cope Rearrangement of I-49 and I-67 24
Table II-1 Baeyer-Villiger Oxidation Studies on cis II-13 47
Table II-2 Baeyer-Villiger Oxidation Studies on trans II-13 48
Table II-3 Various Conditions Used in the Palladium Mediated Reduction of II-12 to II-13 49
Table II-4 Continued Baeyer-Villiger Oxidation Studies on II-13 49

LIST OF FIGURES

Figure I-1 Transition State of N-Allylindole (I-59) Rearrangement 9
Figure I-2 Substrates Prepared for Acid Catalyzed Rearrangement 11
Figure I-3 N-Substituted- p-methoxy Substrates 11
Figure I-4 N-Substituted-m-methoxy Substrates 11
Figure II-1 Hydroxylated Piperidine Alkaloids and Stereochemically Similar Sugars 44
Figure II-2 Alkaloid Precursor Target. 45
Figure II-3 Epimerization of Model Compound II-13 50
Figure II-4 DQ-COSY Spectra of II-6 57
Figure II-5 DQ-COSY Spectra of II-7 58
Figure III-1 Several Important Peptide Mimics 73
Figure III-2 Example of Peptide Surrogate Design 74
Figure III-3 $\quad \boldsymbol{\beta}$-Turn Mimic 75
Figure III-4 Piperidone Peptide Mimic 75
Figure III-5 Aza-annulation β-Amino Acid Analogs. 77

LIST OF SCHEMES

Scheme I-1 Retrosynthetic Analysis of Substituted Indole Preparation from Substituted Anilines 4
Scheme I-2 Possible Transition State Conformations for o-Substituted- N-allylanilines 5
Scheme I-3 Preparation of N-Benzyl- N-allyl-m-methoxyaniline. 12
Scheme I-4 Possible Mechanism for the Formation of I-78 from I-49. 15
Scheme I-5 Ring Closure of $\mathbf{1 - 7 7}$ 20
Scheme I-6 Synthesis of N-Methyl-p-allylaniline 26
Scheme II-1 Preparation of II-6 and II-7 from Sugar Analogs 45
Scheme II-2 Preparation of Initial Precursor Analog II-15 46
Scheme II-3 Oxidation of Achiral Substrate Surrogate 50
Scheme II-4 Preparation of Alkaloid Precursor II-24 51
Scheme II-5 Preparation of Alkaloid Precursor II-31 52
Scheme II-6 Alternate Route to Alkaloid Precursor Preparation. 53
Scheme II-7 Use of Alternate Route to Introduce Chiral Center. 54
Scheme II-8 Preparation of II-6 and II-7 from Alkaloid Precursor. 55
Scheme III-1 General Strategy for Functionalized Pyridone Formation. 76
Scheme III-2 Aza-annulation of β-Ketoester III-25 78
Scheme III-3 Aza-annulation of β-Enaminoester III-29 78
Scheme III-4 Preparation of β-Ketoamide Substrates 79
Scheme III-5 Aza-annulation of β-Ketoamide III-33 80
Scheme III-6 Aza-annulation of β-Ketoamide III-34. 81
Scheme III-7 Aza-annulation of Acetylenic Ester III-43 82
Scheme III-8 Aza-annulation of Acetylenic Ester II-45. 83
Scheme III-9 Aza-annulation of Acetylenic Ester III-48. 83
Scheme III-10 Hydrolysis of III-28 and III-31. 84

LIST OF ABBREVIATIONS

Ac	Acetyl
Bn	Benzyl
BuLi (n-BuLi)	n-Butyllithium
C $_{6} \mathrm{H}_{6}$	Benzene
DBU	1,8 -Diazabicyclo[5.4.0]undec-7-ene
DDQ	2,3 -Dichloro-5,6-dicyano-1,4-benzoquinone
DMSO	Dimethylsulfoxide
Et	Ethyl
G. C.	Gas Chromatography
hr (s)	Hour (s)
LHMDS	Lithium Bis(trimethylsilyl)amide
LDA	Lithium Disopropylamide
M	Molar
m	Meta
Me	Methyl
m-CPBA (MCPBA)	m-Chloroperoxybenzoic Acid
ML	Generalized Lewis Acid
NBS	N-Bromosuccinimide
NOE	Nuclear Overhauser Effect
o	Ortho
P	Generalized Protecting Group
p	Para
PCC	Pyridinium Chlorochromate
Ph	Phenyl
RT	Room Temperate
THF	Tetrahydrofuran
TMS	Trimethylsilyl
TLC	Thin Layer Chromatography
Ts (Tos)	p-Toluenesulfonyl
$p-$ TsOH	p-Toluenesulfonic Acid

CHAPTER L.

REFINEMENT OF THE LEWIS ACID-PROMOTED 3-AZA-COPE REARRANGEMENT OF \boldsymbol{N}-ALKYL- N-ALLYLANILINES: A VERSATILE ROUTE TOWARD THE PREPARATION OF INDOLES SUBSTITUTED IN THE BENZENE RING PORTION.

Introduction.

Indoles substituted in the benzene ring portion occupy an important role in indole alkaloid synthesis. Examples of these alkaloids are serotonin (I-1) and oxypertine (I-2).

Serotonin
(a neurotransmitter)
I-1

Oxypertine
(a tranquilizer)
I-2

Preparation of these types of indoles have been executed by a variety of methods. ${ }^{1}$ Many of these methods began with various o-substituted anilines (eqs. 1-3). 2-4 Preparation of these o-substituted anilines was also approached via a wide variety of methodologies (eqs. 4 and 5).5,6

I-3
I-4
I-5

(15\%)

The major disadvantages of these methods are either low overall yields from aniline to indole or lack of aniline substituent availability. A compromise between the benzene portion substituent pattern of the indole and overall yield of reaction is particularly evident in the synthesis outlined in equation $6 .{ }^{7}$ Yields for this synthesis range from 40% to 45% not including the formation of the endo-peroxide pyrrole (I-17).

I-18

I-19 R

I-20

I-21

In order to ascertain a more efficient route toward the formation of substituted indole frameworks, the aromatic 3-aza-Cope rearrangement (aromatic-amino-Claisen rearrangement) for the o-allylation of anilines has been examined. Specifically, it was hoped that conditions for the 3 -aza-Cope reaction could be developed so that the reaction would occur at a reasonable rate, at practical temperatures and with adequate reproducibility and regiospecifity. These improved conditions would allow for the convenient and versatile preparation of indoles substituted in the benzene ring portion as illustrated retrosynthetically in Scheme I-1.

Scheme I-1. Retrosynthetic Analysis of Substituted Indole Preparation from Substituted Anilines

\mathbf{R} represents any appropriate N-protecting group and \mathbf{R}_{1} represents any desired substituent.

Aromatic 3-aza-Cope rearrangement.

The aromatic 3-aza-Cope rearrangement, a [3,3]-sigmatropic rearrangement of N -allyl- N-arylamines, has received less attention than its counterpart, the aromatic-Claisen rearrangement, probably because of the drastic conditions required and the tendency toward side reactions. ${ }^{8}$ Thermal rearrangements of N-allylaniline occur at 200-350 ${ }^{\circ} \mathrm{C}$ with cleavage to arylamines sometimes being the dominant reaction. 9 Analogous rearrangements of the oxygen counterparts occur in the temperature range of 150 $225^{\circ} \mathrm{C} .{ }^{8}$
The nature of the rearrangement was examined extensively by Jolidon and Hanson and found to be similar to the aromatic oxy-Claisen rearrangement. ${ }^{9}$ Futhermore, in rearrangements using mixtures of deuterated and non-deuterated reactants (one reactant with the aromatic ring deuterated at the m-positions and the other with the terminal allyl positions deuterated), the formation of cross products was not observed. Also in this study, the $[3,3]$ nature of the reaction was examined through steric interactions arising in the rearrangement of o-substituted- N-allylanilines. Scheme I-2 gives the possible transition state conformations of a [3,3]-type process. As substituents of increased bulk were used, steric interaction between them and the crotyl methyl group increased in the cis-chair transition state conformation (top). A corresponding decrease in the amount of I-29 resulted. Evidence that the Lewis acid catalyzed rearrangement follows the same mechanism is available. ${ }^{11}$ Extensive studies of Lewis acid catalyzed rearrangements were executed by Abdrakhmanov, et al.. ${ }^{12,13}$ In one study, the rearrangement of N - $(\alpha$ methylcrotyl)aniline (I-31, eq. 7) was monitored by Gas Chromatography (G. C.) relative to an internal standard. The results of this study are shown in Table I-1.

Scheme I-2. Possible Transition State Conformations for o-Substituted- N-allylanilines

Table I-1. Study of Acid Catalyzed Rearrangements of I-31 ${ }^{12}$

Entry	Acid Catalyst / Equivalents	Solvent $\left(130^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Time (min.) } \\ & 90 \% \text { conv. } \end{aligned}$	$\begin{gathered} \text { \% I- } \\ 32^{a} \end{gathered}$	$\begin{aligned} & \text { \% I- } \\ & \mathbf{3 3}^{a} \end{aligned}$	$\begin{aligned} & \text { \% I- } \\ & 34^{a} \end{aligned}$	$\begin{aligned} & \text { \% I- } \\ & 35^{a} \end{aligned}$
1	Aniline- $\mathrm{HCl} / 1: 1$	Aniline	360	87	11	0	NA
2	Aniline- $\mathrm{HCl} / 1: 1$	1-Octanol	200	74	3	12	NA
3	Aniline- $\mathrm{HCl} / 1: 1$	DMSO	180	40	6	6	NA
4	Aniline- $\mathrm{HCl} / 1: 1$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	180	62	4	8	20
5	Aniline- $\mathrm{HCl} / 1: 2$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	260	68	4	11	15
6	Aniline- $\mathrm{HCl} / 1: 3$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	380	72	3	12	12
7	$\mathrm{ZnCl}_{2} / 1: 10$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	60	90	7	0	1
8	$\mathrm{AlCl}_{3} / 1: 10$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	25	68	3	18	5
9	$\mathrm{CoCl}_{2} / 1: 10$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	30	55	6	13	15
10	$\mathrm{SnCl}_{4} / 1: 10$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	10	62	12	0	10
11	$\mathrm{TiCl}_{4} / 1: 10$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	60	48	4	0	17
12	BF_{3}-etherate / 1:10	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$	20	68	10	0	9
13	ZnCl $/ 1: 1$	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Cl}$	20	75	5	0	10
14	$\mathrm{ZnCl}_{2} / 1: 1$	xylene	60	65	7	0	10

${ }^{a}$ Values represent G.C. yields relative to an internal standard.

Inconsistencies exist between the results of Abdrakhmanov and those reported by Jolidon and Hansen. In particular, the recovery of I-34 and I-35 by Abdrakhmanov indicated bond cleavage prior to bond making, a less [3,3]-like process. Furthermore, explanation as to how more I-34 than I-35 could be formed in some cases was difficult since the second substituent on I-34 had to have come from I-31, I-32, or I-33. Decomposition mechanisms have been postulated. ${ }^{14}$ One sequence is shown in equation 8.

Substituent effects on the aromatic portion of the substrate have also been examined in some depth. For the rearrangement of o - and m-substituted anilines, the amount of resulting p-product (similar to I-33) was found to be significantly higher. ${ }^{15}$ For example, in m-toluidines (m-methylanilines), the ratio of o - to p-rearrangement products was found to be $2.5: 1$ as opposed to $7: 1$ in the unsubstituted case. For 0 chloroaniline, the ratio was $3: 1$. The only exception to this trend was m-anisidine (m methoxyaniline) which yielded the o-product only. Reaction rates for all substituted anilines were reported slower. Rates of reaction of p-substituted- N-allylanilines in $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $60^{\circ} \mathrm{C}$ were as follows: $p-\mathrm{H}\left(\mathrm{k}_{\mathrm{rel}}=1\right), p-\mathrm{CH}_{3}\left(\mathrm{k}_{\mathrm{rel}}=0.5\right), p-\mathrm{Cl}\left(\mathrm{k}_{\mathrm{rel}}=0.5\right), p$ $\mathrm{OCH}_{3}\left(\mathrm{k}_{\mathrm{rel}}=0.2\right)$. With the $p-\mathrm{CN}$ substituent, cleavage was the principle reaction. Krowicki, et al., also studied the effects of substituents on the aromatic ring. ${ }^{16}$ For the rearrangement of N-methyl- N-(α-methylallyl)aniline under conditions of refluxing ethanol / water with an HCl catalyst for 8 hours the following isolated yields were obtained: $p-\mathrm{H}$ (95\%), $p-\mathrm{CH}_{3}$ (95\%), $p-\mathrm{OCH}_{3}$ (92\%), $m-\mathrm{CH}_{3}$ (45\%), $m-\mathrm{OCH}_{3}$ (24\%). Under conditions of $180-230^{\circ} \mathrm{C}$ in concentrated HCl, N-allylanisidines simply decomposed. ${ }^{17}$
N-Substitution has been reported to give increased yields and faster rates of rearrangement under milder conditions. ${ }^{15}$ Rates of reaction for both the thermal and acid catalyzed rearrangements increased in the order of $N-\mathrm{H}<\mathrm{N}-\mathrm{CH}_{3}, N-t$-butyl. ${ }^{9}$
Rearrangement yields vary greatly depending on the reaction conditions and substituent pattern of the migrating group. The most favorable conditions were reported by Krowicki et al. ${ }^{1}$ and Abdrakhmanov ${ }^{12,13}$ although yields reported by Abdrakhmanov were by G. C. only. The fact that the yields given were by G. C. only was significant in that isolated yields have sometimes been found to be far less than G. C. yields (for example: 70\% yield by G. C. vs. 29% isolated for the Bronsted catalyzed rearrangement of N-methyl- N (α-methylallyl)aniline and 88% G. C. vs. 57% isolated for a similar rearrangement of N allylaniline). ${ }^{9}$ To exemplify the variety of yields obtained in seemingly similar reactions, the following illustrations have been included. Reported yields for ZnCl_{2} catalyzed rearrangements range from 42% isolated for N-allylaniline in refluxing xylenes for 3

hours with 0.7 equivalents of catalyst to 23% isolated for $\mathbf{I}-32$ under conditions of 1 equivalent of ZnCl_{2} in refluxing xylenes. ${ }^{18}$ For the rearrangement of $\mathbf{I}-31$ to $\mathbf{I}-32$ the yields range from 65% under conditions of 1.1 equivalent of ZnCl_{2} in xylenes at $130^{\circ} \mathrm{C}$ for 1 hour by G. C. ${ }^{13}$ to 97% with 1.1 equivalents of ZnCl_{2} at $130^{\circ} \mathrm{C}$ in nitrobenzene by G. C. The highest overall yield found for an acid catalyzed rearrangement was for the reaction shown in equation 9.19 This reaction, which was run with a "large excess" of aniline, was reported to have provided a 100% isolated yield of I-42 after 4 hours at $120^{\circ} \mathrm{C}$ or 3 hours at $184^{\circ} \mathrm{C}$. The authors attributed the high yield to the catalytic activity of aniline- HCl , checking their hypothesis by running the reaction without excess aniline (no reaction) and then adding aniline -HCl which gave 100% isolated yield. For analogous reactions run without excess aniline and under conditions of thermal and acid catalysis, the authors obtained $20-40 \%$ yields.

Aza-annelation of \boldsymbol{N}-Allylindoles.

The [3,3]-rearrangement of N-allylindoles is far less studied than the [3,3]rearrangement of N-allylanilines. This is probably due to the higher energy required to overcome the strained transition state and the variety of other methods available to achieve the same transformation (eqs 10-12). 20-22

I-45

I-46

on
ind
Ri_{i}
aro
COn
pris
Sy'st

Thermal rearrangements of N-allylindole (I-59) to 3-allylindole (I-44) occur at elevated temperatures $\left(405-470^{\circ} \mathrm{C}\right) .2^{23}$ The requirement for higher temperature is consistent with the greater strain the transition state (I-48) must endure (Figure I-1). Under conditions of 1 equivalent of AlCl_{3} in refluxing benzene for 2 hours, $\mathbf{I}-59$ rearranged to $\mathrm{I}-44$ in 58% isolated yield while the crotyl analog rearranged in 43% isolated yield. ${ }^{24}$

Figure I-1. Transition State I-48

I-48

There exists support for use of the aromatic 3-aza-Cope rearrangement as an efficient synthetic tool in the preparation of o-substituted anilines. This same [3,3]process may then be used in the 3 -allylation of indoles from I-59. In the former case, once the o-allylaniline is formed, ring closure may be executed to form the corresponding indole oxidatively via aldehyde formation followed by acid catalyzed ring closure. ${ }^{25}$ Ring closure may also be affected directly using $\mathrm{Hg}(\mathrm{OAc}){ }_{2}{ }^{26}$ or light ${ }^{16}$ followed by aromatization with $\mathrm{Mn}(\mathrm{II})^{27}$ or DDQ. ${ }^{28}$ The 3-aza-Cope rearrangement could thus constitute an efficient route to indole alkaloids substituted in the benzene portion. The primary obstacles that must be overcome are: finding a general and efficient catalyst system, improving reaction yield reproducibility, and increasing overall reaction yield.

Results and Discussion.

Substrates for the aromatic 3-aza-Cope rearrangement were cleanly prepared by N-alkylation through the methodology of Tweede and Allabashi. ${ }^{29}$ Since previous rearrangements were executed using only a small variety of spectator (protective) N substituents, a variety of substrates (Figure I-2, I-3, and I-4) were synthesized. Preparation of these substrates were as indicated in Scheme I-1. The protecting group or equivalent was added to the aniline or aniline derivative and the product then isolated. The protected aniline was then allowed to react with the alkyl bromide to provide the N allylanilines. The specific syntheses were as follows: N-methyl- N-allyl aniline (I-49) was prepared in 91% yield by allylating N-methyl aniline. N-Allyl- N-benzyl aniline (I50) was prepared in 3 steps from I-35 by condensation first of I-35 with benzaldehyde to form N-benzylidine aniline (I-51) which was subsequently reduced to N-benzyl aniline (I-52) with LiAlH_{4}. Substrate I-52 was allylated to give I-50 in $\mathbf{5 4 \%}$ overall yield. N -tosyl- N-allyl aniline (I-53) was prepared by the reaction of I-35 with tosyl chloride to yield the N-tosyl aniline (I-54) which was then allylated to provide I-53 in 40% overall yield. N-allyl acetaniline (I-55) was prepared via preparation first of acetaniline (I-56) from I-35, followed by allylation in 50\% overall yield. Preparation of I-57 in 20\% overall yield from m-nitro aniline was accomplished by methylation of I-74 to give N -methyl-m-nitroaniline (I-58) which was then allylated to provide I-57. Preparation of I59, by allylation of I-45, was accomplished in 75% yield.

The p-methoxy substrates were prepared in similar fashion from p-anisidine (Figure I-3). N-Methyl- N-allyl-p-methoxy aniline (I-60) was prepared in 42% overall yield via N-methyl- p-methoxy aniline (I-61). N-Benzyl- N-allyl-p-methoxy aniline (I-62) was prepared in 28% overall yield in 3 steps by preparation first of N-benzylidine- p methoxy aniline (I-63), reduction of I-63 to N-benzyl-p-methoxy aniline (I-64) followed by allylation.

The m-methoxy substrates (Figure I-4) were prepared from m-methoxy aniline (I66), which was prepared as outlined in Scheme I-3.30 N-methyl- N-allyl-m-methoxy aniline (I-67) was prepared by formation first of N-methyl-m-methoxy aniline (I-68) followed by alkylation in 50% overall yield. N-benzyl- N-allyl-m-methoxy aniline (I-69) was prepared in similar fashon via N-benzyl-m-methoxy aniline (I-70) or via N -benzylidine-m-methoxyaniline (I-71) followed by alkylation in 72% overall yield. N -isobutyl- N-allyl-m-methoxy aniline (I-72) was prepared via N-isobutyl-m-methoxy aniline (I-73) in 62% overall yield.

Figure I-2. Substrates Prepared for Acid Catalyzed Rearrangement

I-49

I-50

I-55

I. 57

I-59

Figure I-3. N-Substituted-p-methoxy Substrates

Figure I-4. N-Substituted-m-methoxy Substrates

I-67

I-69

I-72

Scheme I-3. Preparation of N-Benzyl- N-allyl-m-methoxyaniline.

$\mathrm{TH}_{4} / \mathrm{NaBH}_{4}$ $\left(\mathrm{H}_{3} \mathrm{COCH}_{2}\right)_{2}$
(75%) (75\%)

Acid catalyzed rearrangement of the substrates I-49, I-50, I-53, I-55, I-57, and I59 were then explored with emphasis being placed on the rearrangement of I-49 (eq 13). Initial studies of the rearrangement of $\mathrm{I}-49$ focused on the optimization of conditions using the well studied catalyst $\mathrm{ZnCl}_{2} . \mathrm{ZnCl}_{2}$ molarities were varied from 0.36 to 3.0 M under conditions of refluxing xylenes $\left(140^{\circ} \mathrm{C}\right)$ and 1.2 equivalents of catalyst. Rearrangement of I-49 to the o-allyl product (I-77) occurred in 45% isolated yield at 0.5 M (Table I-2). Compound I-49 was then subjected to rearrangements using a variety of acid catalysts. These catalysts exhibited a wide range of activities as indicated in Table I3.

I-77

Table I-2. Effect of Varying ZnCl_{2} Molarities on Maximum \% I-77 in the Reaction Mixture in the Rearrangement of I-49
 mixture as I-77, as indicated by G.C. without an internal standard.

Table I-3. Results of the Acid Catalyzed Rearrangement of I-49

Entry	Catalyst ${ }^{\text {a }}$	Time (hours)	\% yield of 1-77 ${ }^{b}$
1	TiCl_{4}	20	46
2	MgBr 2	44	38
3	HBF_{4}	48	33
4	bis-t-Cl-AlMe ${ }^{\text {c }}$	24	28
5	bis-d-Ph-AlMe ${ }^{\text {d }}$	72	27
6	FeCl_{3}	4	24
7	$\mathrm{AlMe}_{2} \mathrm{Cl}$	24	22
8	$\mathrm{H}_{2} \mathrm{SO}_{4}$	24	17
9	MeAlCl 2	44	16
10	EtAlCl_{2}	14	8
11	HCl	No rxn.e	0
12	$\mathrm{AlMe}_{2} \mathrm{Cl}$	No rxn.e	0
13	SnCl_{4}	No rxn.e	0
14	FeBr 3	Dest of SMf.	0

 relative to an internal standard. ${ }^{c}$ bis-t-Cl-AlMe represents bis-(2,4,6-trichlorophenoxy)methylaluminum. ${ }^{d}$ bis-d-Ph-AlMe represents bis-(2,6-diphenylphenoxy)methylaluminum. ${ }^{e}$ No rxn. indicates that less than 2% of the starting material was consumed over 48 hours. f Dest of SM indicates complete destruction of starting material with less than 2% yield of any single isolable product.

Table I-4. Effect of Solvent Reflux Temperature on the Rearrangement of I-49

Scheme I-4. Possible Mechanism for the Formation of I-78 from I-49

The effect of temperature was examined by running similar reactions in refluxing xylenes $\left(140^{\circ} \mathrm{C}\right)$, toluene $\left(111^{\circ} \mathrm{C}\right)$ or decalin $\left(190^{\circ} \mathrm{C}\right)$ as indicated in Table I-4. These results indicated that, in general, xylenes exhibited the optimum solvent conditions for the catalysts examined. Notable exceptions were those of BF_{3}-etherate, which provided an increase in yield from 49% at 24 hours in xylenes to 79% at 40 hours in toluene, and of HBF_{4} which provided an increase in yield from 11% at 2 hours in xylenes to 33% at 48 hours in toluene. Another interesting result obtained from these experiments was the formation of 1,2 -dimethylindole ($\mathbf{I - 7 8}$) as the sole product in 30% isolated yield from ZnCl_{2} catalyzed reaction of $\mathrm{I}-49$ under conditions of refluxing decalin for 16 hours. A possible mechanism for this conversion is indicated in Scheme I-4.

Since AlCl_{3} in xylenes gave the highest yield of I-77, the next variable explored was the equivalents of AlCl_{3} relative to I-49 (Table I-5). These experiments yielded interesting results in that lower equivalents of AlCl_{3} tended to promote cyclization to the 1,2-dimethyl-2,3-dihydroindole (I-85) and even aromatization to I-78. Decomposition to N-methylaniline (I-86) was also noted (eq. 14).

Although G.C. yields for the rearrangement of I-49 to I-77 were extremely promising, isolation of I-77 proved to be challenging as expected from the results of Jolidon and Hanson. 9 Products of the test reactions were generally isolated by quenching the acid in situ with an excess of 15% aqueous sodium hydroxide. Quenching was followed by repeated washing with 15% aqueous sodium hydroxide, saturated aqueous sodium chloride and water. Solvent removal was then affected by rotary evaporation, and the resulting product mixture chromatographed on silica with petroleum ether. Isolated yields of I-77 for the three most effective acid catalysts are given in Table I-6. Reaction yield consistency remains problematic at times, especially for the AlCl_{3} catalyzed systems.

Rearrangements of I-50, I-53, and I-55 were also examined using a variety of catalysts. For the other substrates, a more limited number of catalysts was examined as indicated (Tables I-7 - I-9).

Table I-5. Effect of Varying Equivalents of AlCl_{3} on the Rearrangement of I-49

EntryEquivalents of $\mathrm{AlCl}_{3}{ }^{a}$		Time (hours)	\% $\mathbf{I - 7 7} \boldsymbol{b}$	\% $\mathbf{I - 8 5} \boldsymbol{b}$	\% $\mathbf{I - 7 8} \boldsymbol{b}$	\% $\mathbf{I - 8 6} \boldsymbol{b}$
1	1.5	2	38	0	0	0
2	1.5	4	22	0	0	0
3	1.5	8	9	0	0	0
4	1.2	4	49	0	0	0
5	1.2	8	88	0	0	2
6	1.2	24	71	0	0	3
7	1.2	30	66	0	0	5
8	0.75	2	58	0	0	0
9	0.75	4	68	1	0	0
10	0.75	8	70	6	0	0
11	0.75	24	23	32	5	0
12	0.75	48	4	37	9	1
13	0.75	72	1	42	12	3
14	0.5	2	36	0	0	0
15	0.5	4	51	2	0	0
16	0.5	8	72	6	0	4
17	0.5	24	3	71	9	5
18	0.25	2	18	0	0	0
19	0.25	4	33	1	0	0
20	0.25	8	55	11	0	0
21	0.25	24	9	56	9	0
22	0.25	48	3	40	13	0
23	0.25	72	2	29	22	0

$a_{\text {Rearrangements were run }} 0.5 \mathrm{M}$ of $\mathrm{I}-49$ with 1.2 equiv. of Lewis acid at reflux in xylenes. b Yieldswere determined by G.C. analysis of the crude reaction mixture relative to an internal standard.

Table I-6. Optimized Yields for the Rearrangement of I-49

Entry	Catalyst a	\% yield of I-77 by G. C. \boldsymbol{b}	\% yield of I-77 isolated
1	AlCl_{3}	88	46
2	$\mathrm{BF}_{3}-$ etherate	79	58
3	ZnCl_{2}	52	45

$a_{\text {Rearrangements were run }} 0.5 \mathrm{M}$ of substrate with 1.2 equiv. of Lewis acid at reflux in toluene $\left(111^{\circ} \mathrm{C}\right.$, $\left.\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}\right)$ or xylenes $\left(140^{\circ} \mathrm{C} \mathrm{ZnCl}_{2}\right)$. ${ }^{b}$ Yields were determined by G . C. analysis of the crude reaction mixture relative to an internal standard.

Table I-7. Results of the Acid Catalyzed Rearrangement of I-53

Entry	Catalyst $^{\boldsymbol{a}}$	Solvent (at reflux)	Time (hours)	\%
o-prod ${ }^{b}$				
1	AlCl_{3}	xylenes	1	33
2	ZnCl_{2}	xylenes	No rxn c	0
3	BF_{3}-etherate	toluene	Dest of SM^{d}	0
4	$\mathrm{AlMe}_{2} \mathrm{Cl}$	xylenes	24	11

$a^{\text {Rearrangements were run }} 0.5 \mathrm{M}$ of I-53 with 1.2 equiv. of Lewis acid. b Yields were determined by G. C . analysis of the crude reaction mixture relative to an internal standard. ${ }^{c}$ No reaction indicates that less than 2% of the starting material had been consumed over 48 hours. d Dest. of SM indicates complete destruction of starting material with less than 2% of any single product formed.

Table I-8. Results of the Acid Catalyzed Rearrangement of I-50 to I-87

Entry	Catalyst a	Solvent (at reflux)	Time (hours)	\% o-prod I-87b
1	AlCl_{3}	xylenes	2	75
2	$\mathrm{AlMe}_{2} \mathrm{Cl}$	xylenes	2	0
3	BF_{3}-etherate	toluene	24	0
4	HF	xylenes	72	13
5	$\mathrm{H}_{3} \mathrm{PO}_{4}$	xylenes	24	0

$a_{\text {Rearrangements were run }} 0.5 \mathrm{M}$ of I-50 with 1.2 equiv. of Lewis acid. ${ }^{b}$ Yields were determined by G . C. analysis of the crude reaction mixture relative to an internal standard.

Table I-9. Results of the Acid Catalyzed Rearrangement of I-55

Entry	Catalyst $^{\boldsymbol{a}}$	Solvent (at reflux)	Time (hours)	\% o-prod b
1	AlCl_{3}	xylenes	2	1
2	BF_{3}-etherate	toluene	2	10
3	ZnCl_{2}	xylenes	No rxnc	0
4	TiCl_{4}	xylenes	No rxn	0
5	AlMe_{3}	xylenes	2	8
6	$\mathrm{AlMe}_{2} \mathrm{Cl}$	xylenes	No rxn	0
7	$\mathrm{H}_{2} \mathrm{SO}_{4}$	xylenes	No rxn	0
8	bis-d-Ph-AlMed $/$	xylenes	No rxn	0

[^0]Results of the acid catalyzed rearrangements of I-59 were particularly promising in lieu of the strained transition state. Isolated yields of I-44 along with the corresponding G. C. yields are indicated in Table I-10.

Table I-10. Results of the Acid Catalyzed Rearrangement of I-57

Entry	Catalyst ${ }^{\text {a }}$	Solvent	Time (hours)	\%yield I-44b	\% iso yield of I-44
1	AlCl_{3}	xylenes	8	88	54
2	ZnCl_{2}	xylenes	No rxn ${ }^{\text {c }}$	0	-
3	BF_{3}-etherate	toluene	4	5	-
4	$\mathrm{AlMe}_{2} \mathrm{Cl}$	xylenes	24	30	20
5	TiCl_{4}	xylenes	8	3	-
6	AlMeCl_{2}	xylenes	24	23	5
7	bis-d-Ph-AlMe ${ }^{\text {b }}$	xylenes	No rxn	0	-
8	FeCl_{3}	toluene	No rxn	0	-

[^1]At this time, several initial attempts to achieve ring closure of I-77 were attempted. Photocyclization (Hg arc lamp, $\mathrm{C}_{6} \mathrm{H}_{6}$) ${ }^{16}$ yielded the desired $\mathrm{I}-85$ in 50% yield as determined by G. C. (a portion isolated for analysis by preparative TLC). Ring closure initiated by action of $\mathrm{Hg}(\mathrm{OAc})_{2}$ gave 10% isolated yield of the same product (Scheme I5). ${ }^{26}$

Scheme I-5. Ring Closure of I-77

A potentially promising route to ring closure could be through the use of KMnO_{4} / $\mathrm{NaIO}_{4}{ }^{31}$ Subsequent aromatization could then be achieved using Mn (II) ${ }^{27}$ or DDQ. 28

To determine the scope and generality of the aromatic aza-Cope rearrangement, several other aniline substrates were examined: I-60, I-62, I-67, I-69 and I-72 (eq 14, 15). Results for rearrangement of I-49, I-50, I-53, I-57, I-60, I-62, I-67, I-69, I-72 and I81 using the most favorable catalyst conditions are indicated in the summary tables I-11-I-13:

$$
\begin{array}{ll}
\mathrm{I}-50 \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H} & \mathrm{I}-87 \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H} \\
\mathrm{I}-60 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OMe} & \mathrm{I}-88 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OMe} \\
\mathrm{I}-62 \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{OMe} & \mathrm{I}-89 \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{OMe}
\end{array}
$$

I-67 R = Me
I-69 $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
I-72 $\mathrm{R}=\mathrm{iBu}$
$\mathrm{I}-90 \mathrm{R}=\mathrm{Me}$
I-92 $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
I-94 $\mathrm{R}=\mathrm{iBu}$

I-91 R = Me
I-93 $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
I-95 R $=\mathrm{iBu}$

Table I-11. AlCl_{3} Catalyzed Rearrangements of Various Nitrogen and Aromatic Substituted Anilines ${ }^{a}$

ring substitution	$\begin{gathered} N \text {-isobutyl } \\ \text { hrs. G.C. / iso. } b \end{gathered}$	$\begin{gathered} N \text {-methyl } \\ \text { hrs. G.C. / iso.b } \end{gathered}$	$\begin{gathered} N \text {-benzyl } \\ \text { hrs. G.C. /iso. } b \end{gathered}$	$\begin{gathered} N \text {-tosyl } \\ \text { hrs. G.C. / iso. }{ }^{b} \end{gathered}$
unsubstituted		08 88/68	02 35/15	48 33/0
p-methoxy		04 0/0	01 11/Cnic	04 0/Dsm ${ }^{\text {d }}$
m-methoxy	$04 \mathrm{0} / \mathrm{dsm}$	$24{ }^{\text {e }} 0 / \mathrm{Dsm}$	$01{ }^{\text {e }} 18 / \mathrm{Cni}$	08e 0/Dsm
m-nitro		04 0/Dsm		

$a^{\text {Rearrangements were run }} 0.5 \mathrm{M}$ of substrate with 1.2 equiv. of Lewis acid at reflux in toluene ($111^{\circ} \mathrm{C}$, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$) or xylenes ($140^{\circ} \mathrm{C} \mathrm{ZnCl}_{2}$). ${ }^{b}$ Yieldswere determined by G.C. analysis of the crude reaction mixture relative to an internal standard. ${ }^{c}$ Cni indicates no isolable products. ${ }^{d}$ Dsm indicates destruction of starting material. ${ }^{e}$ Yield is inclusive of both o-regioisomers formed.

Table I-12. ZnCl_{2} Catalyzed Rearrangement of Various Nitrogen and Aromatic Substituted Anilines ${ }^{a}$

ring substitution	$\begin{gathered} N \text {-isobutyl } \\ \text { hrs. G.C. /iso. } \end{gathered}$	$\begin{gathered} N \text {-methyl } \\ \text { hrs. G.C. } \text { / iso. } \end{gathered}$	$\begin{gathered} N \text {-benzyl } \\ \text { hrs. G.C. }{ }^{\text {b }} \text { / iso. } \end{gathered}$	$\begin{gathered} N \text {-tosyl } \\ \text { hrs. G.C. }{ }^{b} / \text { iso. } \end{gathered}$
unsubstituted		16 52/45	$24 \quad 30 / 15$	48 0/Norxn ${ }^{\text {e }}$
p-methoxy		16 66/58	24 57/53	$480 / \mathrm{Dsm}^{c}$
m-methoxy	06d 98 / 98	08d $77 / 70$	$24^{d} 64 / 57$	48 0/Dsm
m-nitro		48 0/No rxn		

Abstract

${ }^{a}$ Rearrangements were run 0.5 M of substrate with 1.2 equiv. of Lewis acid at reflux in toluene $\left(111^{\circ} \mathrm{C}\right.$, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$) or xylenes ($140^{\circ} \mathrm{C}, \mathrm{ZnCl}_{2}$). ${ }^{b}$ Yields were determined by G.C. analysis of the crude reaction mixture relative to an internal standard. ${ }^{c}$ Dsm indicates destruction of starting material. ${ }^{d}$ Yields are inclusive of both o-regioisomers formed. ${ }^{e}$ No rxn indicates no reaction.

Table I-13. BF3-etherate Catalyzed Rearrangement of Various Nitrogen and Aromatic Substituted Anilines ${ }^{\mathbf{a}}$

ring substitution	N-isobutyl hrs. G.C. / iso.	$\begin{gathered} N \text {-methyl } \\ \text { hrs. G.C. } \text { b iso. } \end{gathered}$	$\begin{gathered} N \text {-benzyl } \\ \text { hrs. G.C.b / iso. } \end{gathered}$	$\begin{gathered} N \text {-tosyl } \\ \text { hrs. G.C. } / \text { iso. } \end{gathered}$
unsubstituted		$48 \quad 79 / 58$	$240 / \mathrm{Cni}^{\text {c }}$	48 0/Dsm ${ }^{\text {d }}$
p-methoxy		72 61/55	48 42/35	48 0/Dsm
m-methoxy	24e $89 / 80$	48e 99/99	48e $47 / 38$	$48^{e} 0 / \mathrm{Dsm}$
m-nitro		24 0/Dsm		

${ }^{a}$ Rearrangements were run 0.5 M of substrate with 1.2 equiv. of Lewis acid at reflux in toluene $\left(111^{\circ} \mathrm{C}\right.$, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$) or xylenes ($140^{\circ} \mathrm{C} \mathrm{ZnCl} 2$). ${ }^{b}$ Yields were determined by G.C. analysis of the crude reaction mixture relative to an internal standard. ${ }^{c}$ Cni indicates no isolable products. ${ }^{d}$ Dsm indicated destruction of stanting material. ${ }^{e}$ Yields are inclusive of both o-regioisomers formed.

For the I-67, I-69, and I-72, rearrangement resulted in the formation of o-allyl regioisomers (Table I-14). Rearrangement to the position para to the m-methoxy group was always preferred. HCl catalyzed rearrangement in refluxing ethanol according to the method of Krowicki ${ }^{2}$ yielded regioisomer ratios of $2.1: 1.0$ for I-72 after 60 hours (78%
conversion), $2.8: 1.0$ for I-67 after 60 hours (26% conversion) and $2.7: 1.0$ for the I-69 after 60 hours (22% conversion).

Table I-14. O-Allyl Regioisomer Product Ratios for the N-Substituted m Methoxy Substrates Under Conditions of Varying Acid Catalysis.

	Lewis Acid	
	Catalyst	
product ratio	ZnCl_{2}	BF_{3}-etherate
$\mathrm{I}-95: \mathrm{I}-94$	$2.7: 1.0$	$2.6: 1.0$
$\mathrm{I}-91: \mathrm{I}-90$	$1.8: 1.0$	$1.9: 1.0$
$\mathrm{I}-93: \mathrm{I}-92$	$2.5: 1.0$	$2.6: 1.0$

For the nitrogen substituents examined, the rearrangement appears to be promoted by bulky N-substituents (probably through ground state destabilization). This finding correlates well with previous work. ${ }^{15}$ Rearrangement in the presence of the benzyl substituent is retarded though, and the N-tosyl substrate (I-53) did not rearrange. Substituents on the aniline aromatic ring promoted rearrangement in the order of m methoxy >p-methoxy > unsubstituted >> m-nitro. This supports the notion of greater ring reactivity being associated with electron releasing substituents.

For regioisomers obtained where m-substituted anilines underwent rearrangement, the two o-allyl products were generally obtained in the ratio of 2.0-3.0:1.0. Bulkier N substituents promoted somewhat greater selectivity than non bulky substituents. This correlation was opposite that observed under conditions of HCl catalysis described earlier. Also, HCl catalyzed reactions did not go to completion after 84 hours.

Comparison of relative rearrangement rates of the non-activated substrate I-49 (eq 13) vs the activated I-67 (eq 15) was carried out through direct competition of 1.0 equiv of each substrate with 1.8 equiv of Lewis acid (Table I-15). Results of this study indicated that I-67 reacted approximately 1.5 times faster when the rearrangement was promoted by $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$ and approximately 3.0 times faster when promoted by ZnCl_{2}.

Table I-15. Competitive Lewis Acid-Promoted 3-Aza-Cope Rearrangement of I-49 and I-67

		product formation ${ }^{b}$ (\%)		
	condns a			$(\mathbf{I}-90+$ I-91) :
catalyst	(time (hours))	I-90 + I-91	I-77	I-77
$\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$	2.0	24	15	$62: 38$
	4.0	33	22	$60: 40$
	6.0	49	30	$62: 38$
	8.0	55	33	$63: 37$
ZnCl_{2}	0.5	17	7	$71: 29$
	1.0	36	10	$78: 22$
	1.5	47	15	$76: 24$
	2.0	55	18	$75: 25$

[^2]In order to establish a potential route to methoxy-substituted natural products, the rearrangement of several substrates containing unsymmetrical allylic substituents was examined. N-((E)-2-Hexen-1-yl)- N-methyl-m-methoxyaniline (I-100) and N-((E)-2-hexen-1-yl)-N-methyl-p-methoxyaniline (I-97) were prepared by standard procedures in 72 and 73% yields from their respective methoxy substituted- N-methyl anilines and 1 -bromo-2-hexene (I-98). Bromination of 2-hexene-1-ol with NBS provided I-98 in 68% yield. ${ }^{32}$

Rearrangement of $\mathbf{I}-97$ provided $\mathrm{I}-99$ in 50% yield with ZnCl_{2} in xylenes at $140^{\circ} \mathrm{C}$ and in 79% yield with $\mathrm{BF}_{3}-\mathrm{Et} 2 \mathrm{O}$ at $111^{\circ} \mathrm{C}$ (eq 16). For the meta-substituted aniline substrate (I-100), a mixture of regioisomers was obtained (eq 17).

Selectivities for the rearrangement of $\mathrm{I}-100$ under conditions of $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ and ZnCl_{2} were higher than for I-67, as was expected based on the bulkier allyl substituent. For the $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ promoted system, a regioselectivity of $\mathbf{7 5 : 2 5}$ was obtained for $\mathbf{I - 1 0 1}$ and $\mathrm{I}-102$. For the ZnCl_{2} system, a regioselectivity of $83: 17$ was obtained for the same products. Yields for these reactions were 75% and 70% respectively. Another product isolated from both of these reactions in 11% was I-103.

I-103

To determine whether any N-methyl-p-allylaniline (1-104) was formed during the aromatic 3 -aza-Cope rearrangement of I-49, I-104 was prepared by standard methodologies. The preparation of I-104 was executed by Grignard reaction of bromobenzene with allylbromide to provide allylbenzene (I-105). ${ }^{33}$ The alkene was then masked using Br_{2} in diethyl ether at $-78^{\circ} \mathrm{C}$ to give I-106 in 92% overall yield. Nitration of I-106 gave I-107 (72% yield), and debromination gave p-allylnitrobenzene ($\mathbf{I}-108$) with some o-product present (69% yield). ${ }^{33,34}$ The nitro group was then reduced to the corresponding amine using acid activated iron to give I-109 in 95% yield. ${ }^{35}$ The o-, and p-isomers were then separated by chromatography and the p-isomer N-methylated to give the desired product, I-104 (Scheme I-6). ${ }^{29}$ Overall yield for the conversion of bromobenzene to $\mathrm{I}-104$ was 16%.

Scheme I-6. Synthesis of N-Methyl- p-allylaniline.

It was determined that in no rearrangement of I-49 to I-104 occurred in greater than 2%.

Conclusion.

It was hoped that conditions for the 3-aza-Cope reaction could be developed under which the 3 -aza-Cope rearrangement would occur at a reasonable rate, at practical temperatures and with adequate reproducibility and regiospecifity. The catalyst systems $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ in toluene and ZnCl_{2}, and AlCl_{3} in xylene efficiently accelerated the 3-azaCope rearrangement of N -allylaniline substrates accessing a convenient method for $\mathrm{C}-\mathrm{C}$ bond formation between N-alkyl substituents and an ortho aromatic ring carbon. This versatile rearrangement yields products which may potentially act as precursors to a variety of indole alkaloids substituted in the benzene ring portion.

Experimental Section.

General Methods.

All reactions were carried out using standard inert atmosphere techniques to exclude moisture and oxygen, and reactions were performed under an atmosphere of nitrogen. Benzene, toluene and diethyl ether were distilled from sodium/benzophenone immediately prior to use. Xylenes and decalin were heated over calcium hydride for a minimum of 12 hr and then distilled prior to use. LiAlH_{4} ($1 M$ in THF) was obtained from Aldrich Chemical Co. Unless specified, concentration of mixtures was performed using a Büchi rotary evaporator.

Gas chromatographic (G. C.) analyses were carried out on one of two instruments. For lower molecular weight compounds gas chromatographic analysis was carried out isothermally on a Perkin-Elmer 8500 instrument using a 50 meter RSL-200 capillary column (5% methylphenyl silicon) and an FID detector at $200^{\circ} \mathrm{C}$ oven temperature, 220 ${ }^{\circ} \mathrm{C}$ injector temperature, and $300^{\circ} \mathrm{C}$ detector temperature. Helium gas pressure was set at 15 psi with a flow rate of $2 \mathrm{~mL} / \mathrm{min}$. For higher molecular weight compounds, gas chromographic analysis was carried out on a Hewlett-Packard 5880A series gas chromatograph fitted with a 30 meter silica capillary column and a flame ionization detector. For these analysis injector and detector temperatures were set at $250^{\circ} \mathrm{C}$ and the column oven temperature was programmed: $40^{\circ} \mathrm{C}, 2 \mathrm{~min} ., 10^{\circ} \mathrm{C} / \mathrm{min}$. ramp to $200^{\circ} \mathrm{C}$. All reactions were monitored by G. C. and the reactions terminated either when the starting material had been consumed or no further reaction appeared to continue. For reactions in which a Dean-Stark trap was used, the trap was filled with molecular sieves to a level below that of returning solvent turbulence. These were changed during reactions in which additional reagent was added after the reactions initiation. Molecular sieves were activated by heating in a $150^{\circ} \mathrm{C}$ oven for at least 24 hours prior to use. NMR spectra were obtained on a VXR-300 spectrometer using CDCl_{3} with 0.1% TMS as an internal standard $\delta(0.00 \mathrm{ppm})$, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sept $=$ septet), integration and coupling. Infrared spectra were recorded on a Nicolet 42 FT-IR instrument.

Formation of 1-Bromo-2-hexene ($1-98$). 2-Hexene-1-ol ($2.00 \mathrm{~g}, 20 \mathrm{mmol}$) and triphenylphosphine ($6.29 \mathrm{~g}, 24 \mathrm{mmol}$) were added to 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$. Using a solids addition funnel, NBS ($4.27 \mathrm{~g}, 24 \mathrm{mmol}$) was slowly added over a period of 1 h . The reaction was allowed to warm to room temperature. After 14 h , the solvent was removed and the solid mass extracted with low boiling petroleum ether (10 X 50 mL) with vigorous mixing. Solvent removal gave a clear, colorless oil ($2.23 \mathrm{~g}, 68 \%$
yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.41$ (sext, $J=7.3 \mathrm{~Hz}$, 2 H), 2.04 ($\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.60-5.80(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 13.49,21.90,33.40,33.99,126.40,136.26$; IR (oil/ NaCl) 3032, 2961, 2874, 1661, $1464 \mathrm{~cm}^{-1}$

General Method for \boldsymbol{N}-Alkylation of primary anilines. The aniline (2.0-50 mmol, 4.0 equiv) and the alkyl bromide or alkyl iodide (1.0 equiv) were taken up in a 4:1 ethanol/water mixture (0.5 M relative to the aniline) along with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.6 equiv). After stirring at room temperature for 14 h , the EtOH was removed under reduced pressure and the crude oil purified by flash column chromatography (silica, 230-400 mesh; eluent - 5:95 $\mathrm{Et}_{2} \mathrm{O}: 1 \mathrm{low}$ boiling petroleum ether). The solvents were evaporated and the mono- and dialkylated aniline by-products isolated.
N-Tosylaniline (I-54). ($\mathbf{3 0 \%}$ Yield, mp $101-103{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 2.32(\mathrm{~s}, 3 \mathrm{H}), 7.14(\mathrm{~m}, 7 \mathrm{H}), 7.65(\mathrm{~s}-\mathrm{br}, 1 \mathrm{H}), 7.73,(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.41,121.19,124.98,127.21,129.15,129.53,129.58,135.83,136.59$, 143.77; IR (KBr) 3052, 3059, 2899, 1483, 1339, 1159, 914, $756 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Methyl-m-nitroaniline (I-58). (20% yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ 2.89 (d, $J=2.7 \mathrm{~Hz}, 3 \mathrm{H}$), 4.19 (s-br, 1H), 6.86 (ddd, $J=8.4,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (t, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (ddd, $J=8.1,2.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.42,105.67,111.65,118.40,129.55,149.39,149.95$; IR (oil/ NaCl) 3410 (broad), 3000, 2800, 1541, 1343, 1094, 779, $729,667 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Methyl-p-methoxyaniline (I-60). (65% yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.73$ (s, 3H), 3.44 (bs, 1H), 3.70 (s, 3H), 6.50-6.56 (m, 2H), 6.74-6.80 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.30,55.55,113.39,114.68,143.59,151.82$; IR ($0 \mathrm{oil} / \mathrm{NaCl}$) 3405 (broad), 3058, 2988, 2832, 2811, 1620, 1514, $1466 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Methyl-m-methoxyaniline (I-68). (73% yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.74(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{bs}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 6.12(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (ddd, $J=8.1,2.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (ddd, $J=8.1,2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 30.44,54.82,98.08,102.07,105.42,129.70,150.65,160.68$; IR (oil/ NaCl) 3413 (broad), 2994, 2836, 2811, 1617, $1499 \mathrm{~cm}^{-1}$.

N-Benzyl-m-methoxyaniline (I-70). (87% yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.70 (s, 3H), 4.01 (bs, 1H), 4.25 (s, 2H), 6.15 (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ (ddd, $J=7.8,2.4$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (ddd, $J=8.4,2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.04(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.38$, (m, 5 H), ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.14,54.90,98.74,102.52,105.84,127.10,127.38$, $128.51,129.87,139.25,149.45,160.70$, IR ($\mathrm{oil} / \mathrm{NaCl}$) 3416 (broad), 3029, 2836, 1615, $1495 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{N}-Benzylidene aniline ($\mathbf{I}-51$) from the Condensation of Aniline and Benzaldehyde. To benzene (100 mL) were added aniline ($9.31 \mathrm{~g}, 100.0 \mathrm{mmol}$), benzaldehyde ($1.10 \mathrm{~g}, 100.0 \mathrm{mmol}$) and p-toluenesulfonic acid ($0.33 \mathrm{~g}, 1.7 \mathrm{mmol}$). The reaction flask was fitted with a Dean-Stark trap containing $4 \AA$ molecular sieves, and the solution heated at reflux for 14 h . After cooling the mixture, the volatiles were removed under reduced pressure and the imine recrystallized from low boiling petroleum ether to give N-benzyliminaniline ($16.60 \mathrm{~g}, 92.0 \mathrm{mmol}$) in 92% yield. ($\mathrm{mp} 50-52{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathbf{7 . 1 5 - 7 . 2 2}(\mathrm{m}, 3 \mathrm{H}), 7.31-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 2 \mathrm{H}), 8.39(\mathrm{~s}$, ${ }^{1 H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 120.77,125.81,128.63,128.69,129.03,131.22$, $136.14,151.98,160.15$; IR (KBr) 3061, 2892, 1626, $1591,1451 \mathrm{~cm}^{-1}$.

Reduction of \boldsymbol{N}-Benzylidene-aniline (I-51) to Benzylaniline (I-52). To a suspension of $\mathrm{LiAlH}_{4}(10.36 \mathrm{~g}, 280.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(56 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was slowly added $1-51(5.00 \mathrm{~g} 27.6 \mathrm{mmol})$. The mixture was heated at reflux for 72 h , after which the solution was cooled to $0^{\circ} \mathrm{C}$ and quenched by the addition of water (10 mL), followed by 15% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$, and water (30 mL). After stirring for 2 h , the solution was filtered through $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure at room temperature. The resulting oil was purified by flash column chromatography (silica, 230400 mesh; eluent - 10:90 $\mathrm{Et}_{2} \mathrm{O}: \mathrm{low}$ boiling petroleum ether). The solvents were evaporated to give $\mathrm{I}-52(7.92 \mathrm{~g}, 210.0 \mathrm{mmol})$ in 75% yield: ($\mathrm{mp} 34-37^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77$ (bs, 1H), 4.09 ($\mathrm{s}, 2 \mathrm{H}$), 6.46 (dd, $J=8.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.63 (tt, J $=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $48.15,112.72,117.42,127.10,127.39,128.51,129.15,139.34,148.03$; IR (oil/NaCl) 3420 (broad), 3027, 2843, 1603, 1507, $1453 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{N}-Benzylidene-p-methoxyaniline (1-63) from the Condensation of \boldsymbol{p}-Methoxyaniline and Benzaldehyde. To 100 mL of benzene were added p methoxyaniline ($1.79 \mathrm{~g}, 14.6 \mathrm{mmol}$), benzaldehyde $(1.54 \mathrm{~g}, 14.6 \mathrm{mmol})$ and p toluenesulfonic acid ($0.05 \mathrm{~g}, 0.1 \mathrm{mmol}$). The reaction flask was fitted with a Dean-Stark trap containing $4 \AA$ molecular sieves, and the solution was heated at reflux for 14 h . After cooling the mixture to room temperature, the volatiles were removed under reduced pressure, and the imine purified by flash column chromatography (silica, 230-400 mesh; eluent - 10:90 $\mathrm{Et}_{2} \mathrm{O}: l \mathrm{low}$ boiling petroleum ether). The solvents were evaporated and the solvents removed under reduced pressure to give $1-63(2.30 \mathrm{~g}, 10.9 \mathrm{mmol})$ in 75% yield: ($\mathrm{mp} 70-71{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.87-6.95(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.26$ (m, 2H), 7.40-7.47 (m, 3H), 7.83-7.91 (m, 2H), $8.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.38,114.29,122.13,128.49,128.63,130.93,136.38,144.79,158.23$; IR (KBr) 3054, 2955, 2879, 2838, 1622, $1507 \mathrm{~cm}^{-1}$.

Reduction of \boldsymbol{N}-Benzylidene- \boldsymbol{p}-methoxyaniline (I-63) to \boldsymbol{N}-Benzyl-pmethoxyaniline (I-64). To a suspension of $\mathrm{LiAlH}_{4}(4.04 \mathrm{~g}, 109.1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ (20 mL) at $0^{\circ} \mathrm{C}$, was slowly added I-63 ($2.30 \mathrm{~g}, 10.9 \mathrm{mmol}$). The mixture was heated at reflux for 72 h , after which the solution was cooled to $0^{\circ} \mathrm{C}$ and quenched by the addition of water (10 mL), 15% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$, and water (30 mL). After stirring for 2 h, the solution was filtered through $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The oil was then purified by flash column chromatography (silica, 230-400 mesh; eluent - 20:80 Et 2 O :low boiling petroleum ether). The solvents were evaporated and the aniline distilled under vacuum to give $\mathrm{I}-64(1.63 \mathrm{~g}, 7.8 \mathrm{mmol})$ in 71% yield.(mp $46-49{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{bs}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 6.53-$ $6.60(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.79(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}$ 49.08, 55.66, 113.98, 114.78, 127.04, 127.42, 128.47, 139.60, 142.34, 152.04; \mathbb{R} (KBr) 3376 (broad), 2998, 2950, 2832, $1514 \mathrm{~cm}^{-1}$.

Formation of Acetanilide (I-56) from Aniline and Acetic anhydride. To an acidified $50^{\circ} \mathrm{C}$ aqueous solution of aniline ($0.91 \mathrm{~g}, 9.7 \mathrm{mmol}, 0.3 \mathrm{M}$) was rapidly added acetic anhydride ($1.38 \mathrm{~g}, 13.5 \mathrm{mmol}$) followed immediately by addition of sodium acetate ($2.25 \mathrm{~g}, 1.1 \mathrm{mmol}$) in water (60 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$ for 15 min and the white crystals collected by vacuum filtration. The crystals were then dissolved in methylene chloride, dried and the solvent removed under reduced pressure to give (1.10 $\mathrm{g}, 8.3 \mathrm{mmol}) 85 \%$ of the desired I-56.(mp $113-115{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.12(\mathrm{~s}, 3 \mathrm{H}), 7.07(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=$ $7.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $8.37(\mathrm{~s}-\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.24,120.13,124.15$, 128.76, 147.91, 169.04; IR (KBr) 3295, 3195, 3059, 1665, 1599, 1557, 1435, 1323, 760, $694 \mathrm{~cm}^{-1}$.

General Method for the \boldsymbol{N}-Allylation of Secondary Anilines. The aniline (2.050.0 mmole, 1.0 equiv) and the alkyl bromide or alkyl chloride (1.2-4.0 equiv) were taken up in a 4:1 ethanol:water mixture (0.5 M relative to the aniline) along with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.6 equiv). After stirring at room temperature for 14 h the ethanol was removed under reduced pressure and the crude oil purified by flash column chromatography (silica, 230400 mesh; eluent 5:95 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated and the di-alkylated anilines distilled under vacuum.
N-Allyl- N-methylaniline (I-49). (91% yield, bp $107-110^{\circ} \mathrm{C}<1.5 \mathrm{mmHg}$): ${ }^{1} \mathrm{H}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dt}, J=5.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{dq}, J=17.0,1.7$
$\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{dq}, J=10.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (ddt, $J=17.0,10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-$ $6.68(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.19(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 37.57,54.86,112.16$,
115.70, 116.17, 128.82, 133.60, 149.81; IR (oil/NaCl) 3063, 3027, 2980, 2897, 2815, $1644,1599,1449 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Allyl- N-benzylaniline (I-50). (85% yield); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 3.85-3.91 (m, 2H), 4.43 (s, 2H), $5.10(\mathrm{dq}, J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dq}, J=17.4,1.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.78 (ddt, $J=17.4,10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.68(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.24(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 52.81,53.76,112.24,116.06,116.43,126.41,126.63$, $128.40,128.99,133.52,138.76,148.73$; IR (KBr) $3062,3028,2862,1599,1509 \mathrm{~cm}^{-1}$.

N-Allyl-N-tosylaniline (I-53). (87\% yield, mp $66-68{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DCDl_{3}) $\boldsymbol{\delta}, 2.41(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{dt}, J=6.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{sext}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dq, $J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (ddt, $J=17.1,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~m}, \mathrm{sH}), 7.26(\mathrm{~m}$, 5 H), 7.48 (dt, $J=8.7,2.1,1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.46,53.43,118.68$, $127.62,128.76,129.35,132.74,135.32,139.02,143.36$; IR (KBr) 3068, 2928, 1493, $1183,1038,918,696,670 \mathrm{~cm}^{-1}$.
N-Allyl- N-acetanilide (I-55). (75% yield, mp $44-46{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.86(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.87 (ddt, $J=17.1,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.47,51.77,117.53,127.64,127.86,129.34,132.95,142.78$; IR (KBr) $3009,2938,1645,1593,1501,1399,1277,1009,939,916,708 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Allyl-N-methyl-m-nitroaniline (I-57). (99% yield); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 3.01(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dt}, J=4.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{dq}, J=16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dq, $J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.81 (ddt, $J=17.1,10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.93 (ddd, $J=8.1,2.4$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{tt}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 38.17, $54.81,106.02,110.55,116.54,117.56,129.47,132.25,149.31,149.74$; IR (oil/ NaCl) 3088, 2909, 2826, 1530, 1375, 1348, 1003, 735, $673 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Allyl- \boldsymbol{N}-methyl-p-methoxyaniline (I-60). (66% yield, bp $<4 \mathrm{mmHg} 80-86$ ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.83(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{dt}, J=5.3,1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.14$ (dq, $J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dq}, J=17.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (ddt, $J=17.4$, $10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 38.54, 55.55, 56.44, 114.54, 114.59, 116.26, 134.20, 144.38, 151.64; IR (oil/NaCl) 3077, 2936, 2832, 2809, 1642, $1516 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Allyl- N-benzyl-p-methoxyaniline (I-62). (75\% yield, bp $<4 \mathrm{mmHg}$ 128-139 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{dt}, J=5.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}$, $2 \mathrm{H}), 5.16(\mathrm{dq}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dq}, \mathrm{J}=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{ddt}, \mathrm{J}=17.2$, $10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.80(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 53.78,54.82,55.66,114.35,114.63,116.33,126.71,126.80,128.46$, $134.17,139.25,143.61,151.53$; IR ($\mathrm{oil} / \mathrm{NaCl}$) $3085,2934,2832,1512 \mathrm{~cm}^{-1}$.
N-Allyl- N-methyl-m-methoxyaniline (I-67). (68% yield, bp $<4 \mathrm{mmHg}$ 83-87 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.91(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{dt}, J=5.1,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.13(\mathrm{dq}, J=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dq}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{ddt}, J=17.1$, $10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.29(\mathrm{~m}, 2 \mathrm{H}), 6.30-6.36(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 37.96,54.95,55.16,98.90,101.09,105.50,116.01,129.66,133.66$, $150.79,160.65$; IR (0 il/ NaCl) 3085, 2998, 2938, 2836, $1609,1503 \mathrm{~cm}^{-1}$.
N-Allyl- N-benzyl-m-methoxyaniline (I-69). (83\% yield, bp $<4 \mathrm{mmHg}$ 130-137 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{dt}, J=4.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}$, $2 \mathrm{H}), 5.16(\mathrm{dq}, J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dq}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.1$, $10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.35(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{ddd}, \mathrm{J}=8.4,2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 53.03,53.89,54.88,98.91$, 101.19, 105.46, 116.21, 126.46, 126.71, 128.48, 129.71, 133.50, 138.77, 150.26, 160.63; IR (0 il/ NaCl) 3085, 3936, 2836, 1612, $1501,1453 \mathrm{~cm}^{-1}$.
N-Allyl- N-isobutyl-m-methoxyaniline (I-72). (80% yield, bp $<4 \mathrm{mmHg} 35-36$ ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.06$ (sept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{dt}, J=4.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{dq}, J=16.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dq}, J=11.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{ddt}, J=16.8,11.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-$ $6.32(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.33,27.30,53.96$, $54.82,58.93,98.83,100.27,105.39,115.82,129.51,133.82,149.98,160.58$; IR (oil/ NaCl) 2955, 2870, 2836, 1611, 1576, $1499 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-(E-2-hexene)-N-methyl-p-methoxyaniline (I-97). (73\% yield); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36($ sext $, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{q}, J=7.4 \mathrm{~Hz}$, 2H), 2.78 (s, 3H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{bd}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{dtt}, J=15.3,5.7,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{dtt}, J=15.3,5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.46,22.29,34.22,38.21,55.41,55.78,114.41,114.81$, 125.66, 132.91, 144.55, 151.60; IR (oil/ NaCl) 2957, 2932, 2872, 2832, 1620, 1562, 1464 cm^{-1}.
\boldsymbol{N}-(E-2-hexene)- \boldsymbol{N}-methyl-m-methoxyaniline (I-100). (72\% yield); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\operatorname{sext}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{q}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.85(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=5.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~m}$, $1 \mathrm{H}), 6.21-6.28(\mathrm{~m}, 2 \mathrm{H}), 6.31-6.36(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.48,22.29,34.20,37.57,54.41,54.80,98.91,100.97,105.58,125.18$, $129.55,132.63,150.88,160.59$; IR (0 il/ NaCl) 2959, 2872, 2836, $1607,1503,1456 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{N}-Isobutyl-m-methoxyaniline (I-72) by a Modified \boldsymbol{N}-alkylation Procedure. The aniline ($4.00 \mathrm{~g}, 35.5 \mathrm{mmol}$) and isobutyl bromide ($2.22 \mathrm{~g}, 16.2 \mathrm{mmol}$) were taken up in a 4:1 ethanol:water mixture (65 mL) along with $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.02 \mathrm{~g}, 9.7$
mmol). After stirring at reflux for 48 h the ethanol was removed under reduced pressure and the crude oil purified by flash column chromatography (silica, 230-400 mesh; eluent $-10: 90 \mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated and product distilled under vacuum to give ($1.21 \mathrm{~g}, 6.3 \mathrm{mmol}$) 78% yield of the I-72. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.86$ (nonet, $\left.J=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.89(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.72 (bs, 1H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 6.14 (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.26$ (m, 2H), $7.05(\mathrm{t}, \mathrm{J}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.40,27.95,51.72,54.94,98.50,101.95$, 105.81, 129.83, 149.93, 160.80; IR (oil/NaCl) 3407 (broad), 2957, 2870, 2836, 1617, $1497 \mathrm{~cm}^{-1}$.

General Method for \boldsymbol{N}-Alkylation of Indole and Acetanilide. The indole or acetanilide (10.0 mmol, 1.0 equiv) was added to a previously prepared mixture of crushed KOH ($40.0 \mathrm{mmol}, 4.0$ equiv) in DMSO (20 mL) and allowed to stir 45 min at room temperature. After cooling the mixture in an ice bath for several minutes, the alkyl bromide or alkyl iodide ($20.0 \mathrm{mmol}, 2.0$ equiv) was then added. After stirring at room temperature for 1 h , a large excess of water was added and the product mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ was then removed under reduced pressure and the crude oil purified by flash column chromatography (silica, 230-400 mesh; eluent - 5:95 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated and the alkylated anilines distilled under vacuum or recrystallized.
N-Allylacetanilide (I-55). (75% yield, mp $44-46{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.86(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.87 (ddt, $J=17.1,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.47,51.77,117.53,127.64,127.86,129.34,132.95,142.78$; IR (KBr) 3008, 1645, 1593, 1501, 1399, 1277, 1009, 916, 708, $662 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-Allylindole (I-59). (73% yield); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87$ (dt, $J=$ $7.0,1.5 \mathrm{HZ}, 2 \mathrm{H}), 5.43(\mathrm{dq}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dq}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (ddt, $J=21.0,10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=3.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~m}, 3 \mathrm{H}), 8.25(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.13,101.07$, $109.40,116.49,119.18,120.68,121.23,127.52,128.48,133.22,135.83$; IR (0 oil $/ \mathrm{NaCl}$) 3086, 2859, 1645, 1511, 1465, 1316, 1259, 1013, 992, 924, 737, $718 \mathrm{~cm}^{-1}$.
m-Nitroanisole (I-76). (54% yield, $\mathrm{mp} 35-38{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.88(\mathrm{~s}, 3 \mathrm{H}), 7.32$ (ddd, $J=8.4,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.82 (ddd, $J=7.2,2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.83$, $108.15,115.75,121.27,121.36,129.93,121.01,149.27,160.16$; IR (KBr) 2832, 1530, $1352,1250,1042,801,739,671 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{m}-Nitrophenol (1-75) from m-Nitroaniline. To a stirred mixture of m-nitroaniline ($2.87 \mathrm{~g}, 20.8 \mathrm{mmol}$) in 35% aqueous sulfuric acid (50 mL), 50 g of ice was added followed by sodium nitrite ($1.70 \mathrm{~g}, 25.0 \mathrm{mmol}$) in water (20 mL). After 5 min several crystals of urea were added and the mixture then allowed to continue stirring for an additional 5 min . A solution of cupric nitrate ($466.50 \mathrm{~g}, 2050 \mathrm{mmol}$) in water (900 mL), and cupric oxide ($2.80 \mathrm{~g}, 19.6 \mathrm{mmol}$) were then added and the solution allowed to warm to room temperature. After 1 h the dark green mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($15 \times 50 \mathrm{~mL}$). The solvent was removed under reduced pressure and the solid recrystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{low}$ boiling petroleum ether to give a yellow solid ($\mathbf{2 . 4 0 \mathrm { g } , 2 0 . 1}$ $\mathrm{mmol})$ in 83% yield. ($\mathrm{mp} 95-97{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{dd}, J=8.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 9.21(\mathrm{~s}-\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 110.64,115.02,122.71,131.07,149.98,158.86,207.29$; IR (KBr) 3391 (broad), 1522, 1350, 1300, 1078, 818, 739, $673 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{m}-Nitroanisole (I-76) from \boldsymbol{m}-Nitrophenol (I-75) Using $\mathbf{K}_{\mathbf{2}} \mathbf{C O}_{3}$ in Acetone. m-Nitrophenol ($0.50 \mathrm{~g}, 3.6 \mathrm{mmol}$) and methyl iodide ($0.27 \mathrm{~g}, 7.2 \mathrm{mmol}$) were added to a stirred mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.02 \mathrm{~g}, 7.2 \mathrm{mmol})$ in dry acetone (7.2 mL). After stirring for 14 h at room temperature, the mixture was filtered and the solvents removed under reduced pressure. The crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - 10:90 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to give the desired product ($0.32 \mathrm{~g}, 0.3 \mathrm{mmol}$) in 58% yield. Spectroscopic data was identical to that reported for the product obtained by the general N-alkylation of Indole and Acetanilide procedure.

Formation of m-Nitroanisole (I-76) from m-Nitrophenol (I-75) Using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in Aqueous Ethanol. m-Nitrophenol ($0.50 \mathrm{~g}, 3.6 \mathrm{mmol}$) and methyliodide ($2.04 \mathrm{~g}, 14.4 \mathrm{mmol}$) were taken up in 7.2 mL of a $4: 1$ ethanol/water mixture along with $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.76 \mathrm{~g}, 7.2 \mathrm{mmol})$. After stirring at room temperature for 14 h the ethanol was removed under reduced pressure, the crude oil purified by flash column chromatography (silica, 230-400 mesh; eluent - 5:95 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to give m-nitroanisole ($0.54 \mathrm{~g}, 3.5 \mathrm{mmol}$) in 98% yield. Spectroscopic data was identical to that reported for the product obtained by the general N-alkylation of Indole and Acetanilide procedure.

Formation of \boldsymbol{m}-Methoxyaniline (I-70) from \boldsymbol{m}-Nitroanisole (I-76). To a mixture of $\mathrm{TiCl}_{4}(1.19 \mathrm{~mL}, 11.0 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.25 \mathrm{~g}, 33.0 \mathrm{mmol})$ in dimethoxyethane (40 mL) was slowly added a solution of m-nitroanisole ($1.53 \mathrm{~g}, 10.0$ mmol) in dimethoxyethane (10 mL) at $0^{\circ} \mathrm{C}$. After 14 h at room temperature the reation mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by carefull addtion of excess water. Extraction
of the reaction mixture with $\mathrm{Et}_{2} \mathrm{O}$ followed by solvent removal at reduced pressure afforded a crude oil which was purified by flash column chromatography (silica, 230-400 mesh; eluent - 5:95 $\mathrm{Et}_{2} \mathrm{O}: 10 w$ boiling petroleum ether). The solvents were evaporated to give m-methoxyaniline ($1.84 \mathrm{~g}, 15.0 \mathrm{mmol}$) in 75% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66$ (s-br, 2H), 3.74 (s, 3H), 6.21 (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (dddd, $J=15.9,8.4,2.4,0.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 54.95,100.93,103.79$, 107.79, 129.99, 147.74, 160.63; IR (oil/NaCl) 3372 (broad), 3002, 2838, 1603, 1496, $1461,1208,1173,1159,1037,739,689 \mathrm{~cm}^{-1}$.

In a separate reaction acetone was allowed into the reaction mixture during quenching affording N-isopropyl-m-methoxyaniline. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18$ (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$), $3.47(\mathrm{~s}-\mathrm{br}, 1 \mathrm{H}), 3.85(\mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 6.13(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=8.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=8.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=8.1 \mathrm{~Hz}$, ${ }^{1 H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.88,44.09,54.89,99.02,101.83,106.28,129.85$, $148.80,160.75$; IR (oil/NaCl) 3395 (broad), 2967, 2872, 2836, 1617, 1512, 1497, 1211, $830,756,689 \mathrm{~cm}^{-1}$.

Alternate Method for the Formation of \boldsymbol{N}-Tosylaniline (I-54) from Aniline and Tosyl Chloride. Aniline ($2.50 \mathrm{~g}, 26.9 \mathrm{mmol}$) and tosyl chloride ($5.65 \mathrm{~g}, 29.6 \mathrm{mmol}$) were added to chlorobenzene (54 mL) and heated at reflux for 18 h . After cooling, the solvent was removed under reduced pressure to give a solid. Recrystallization of the solid from $\mathrm{Et}_{2} \mathrm{O}$ /low boiling petroleum ether under aspirator vacuum gave N-tosylaniline ($4.40 \mathrm{~g}, 17.7 \mathrm{mmol}$) in 66% yield. Spectroscopic data was identical to that reported for the I-54 obtained by the general N -alkylation procedure.

General Method for the Lewis Acid Catalyzed Rearrangement of \boldsymbol{N}-Allyl- \boldsymbol{N} alkylanilines. The aniline ($0.5-2.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) and the catalyst ($0.6-2.4 \mathrm{mmol}, 1.2 \mathrm{eq}$) were added to dry xylenes or toluene (0.5 M relative to the aniline) at $-78{ }^{\circ} \mathrm{C}$ along with an internal standard of decalin. The reaction was heated to the appropriate temperature and allowed to react as described in the text. The reaction was then quenched at $0^{\circ} \mathrm{C}$ by addition of a 15% aqueous NaOH solution and the organics concentrated. The crude products were isolated and purified by flash column chromatography (silica, 230-400 mesh; eluent, 5:95 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether).

Formation of N-Methyl-o-allylaniline (I-77) by Acid Catalyzed Rearrangement of \boldsymbol{N}-Allyl- N -methylaniline (1-49). (45% yield): ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 2.83(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{bd}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{bs}, 1 \mathrm{H}), 5.08(\mathrm{dq}, J=16.7,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{dq}, J=10.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddt}, J=16.7,10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=$ $7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 30.54,36.21,109.73,115.97,116.93$,
123.39, 127.59, 129.47, 135.95, 147.22; IR (oil/ NaCl) 3436 (broad), 3075, 2978, 2894, $2815,1634,1605,1514,1466 \mathrm{~cm}^{-1}$.

Formation of o-Allyl-N-benzylaniline (I-87) by Acid Catalyzed Rearrangement of \boldsymbol{N}-Allyl- \boldsymbol{N}-benzylaniline ($\mathbf{I}-50$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}$ 3.34 (bd, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.10 (bs, 1 H$), 4.34(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{dq}, J=16.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{dq}, J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddt}, J=16.8,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.50,48.13,110.69,116.29$, 117.34, 123.49, 127.12, 127.35, 127.68, 128.57, 129.78, 135.93, 139.41, 146.11; IR (oil/NaCl) 3440 (broad), 3031, 2888, 2843, 1633, 1603, $1510 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{o}-Allyl- \boldsymbol{N}-methyl-p-methoxyaniline (I-88) by Acid Catalyzed Rearrangement of \boldsymbol{N}-Allyl- \mathbf{N}-methyl-p-methoxyaniline (I-60). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.81(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{dt}, J=6.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{bs}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.07$ (dq, $J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dq}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddt}, J=17.1,10.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.37,36.31,55.70,110.96,112.02,116.23,116.50$, 125.45, 135.76, 141.65, 151.81; IR (oil/NaCl) 3422 (broad), 2938, 2832, 2808, 1638, $1514,1464 \mathrm{~cm}^{-1}$.

Formation of 0 -Allyl-N-benzyl-p-methoxyaniline (I-89) by Acid Catalyzed Rearrangement of \boldsymbol{N}-Allyl- \boldsymbol{N}-benzyl-p-methoxyaniline (I-62). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.29(\mathrm{dt}, J=6.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{bs}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 5.06$ (dq, $J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dq}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{ddt}, J=17.1,10.5,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.73(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.37$ (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.46,48.89,55.65,111.94,112.02,116.39$, $116.55,125.50,127.05,127.39,128.51,135.69,139.67,140.34,151.93$; IR (oil/NaCl) 3430 (broad), 3063, 2936, 2832, 1636, 1509, $1466 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{N}-Methyl-2-allyl-3-methoxyaniline (Minor Isomer, I-90) and \boldsymbol{N} -Methyl-2-allyl-5-methoxyaniline (Major Isomer, I-91) by Acid Catalyzed Rearrangement of \boldsymbol{N}-Allyl- \boldsymbol{N}-methyl-m-methoxyaniline (I-67). Minor Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.84(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dt}, J=6.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{bs}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{dq}, J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dq}, J=9.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddt}, J=$ $17.4,9.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.90,31.04,55.78,100.66,103.68,114.76$, 125.90, 127.67, 136.05, 148.70, 157.60; IR (oil/NaCl) 3438 (broad), 3077, 2939, 2836, $2815,1601,1591,1478 \mathrm{~cm}^{-1}$. Major Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.82$ (s, 3 H), $3.21(\mathrm{dt}, J=6.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 (bs, 1 H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{dq}, J=16.8,1.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.08(\mathrm{dq}, J=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddt, $J=16.8,10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.27(\mathrm{~m}$, $2 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.62,35.69,55.10,97.19$, 100.74, 115.79, 116.31, 130.17, 136.53, 148.51, 159.83; IR (oil/ NaCl) 3438 (broad), $3077,2938,2834,2809,1617,1520 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{N}-Benzyl-2-allyl-3-methoxyaniline (Minor Isomer, I-92) and \boldsymbol{N} -Benzyl-2-allyl-5-methoxyaniline (Major Isomer, I-93) by Acid Catalyzed Rearrangement of \boldsymbol{N}-Allyl- \mathbf{N}-benzyl-m-methoxyaniline (I-69). Minor Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.42(\mathrm{dt}, J=6.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{bs}, 1 \mathrm{H})$, $4.34(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{dq}, J=16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dq}, J=11.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ (ddt, J $=16.8,11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (bd, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (t, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21-7.36 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.02,48.35,55.77$, $100.81,104.50,114.97,127.06,127.30,127.65,128.55,128.62,135.93,139.61,147.43$, 157.90; IR (oil/NaCl) 3440 (broad), 2936, 2836, 1634, 1599, $1476 \mathrm{~cm}^{-1}$. Major Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.25$ (dt, $J=6.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.72 (s, 3 H), 4.13 (bs, 1 H), 4.31 (s, 2H), 5.05 (dq, $J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (dq, $J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddt, J $=17.1,10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.27(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 35.82, 48.12, $55.04,97.96,101.16,115.95,116.22$, 127.15, 127.38, 128.57, 130.32, 136.41, 139.21, 147.22, 159.68; IR (oil/ NaCl$) 3438$ (broad), 3063, 2834, 1617, 1586, 1520, $1466 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{N}-Isobutyl-2-allyl-3-methoxyaniline (Minor Isomer, I-94) and N-Isobutyl-2-allyl-5-methoxyaniline (Major Isomer, I-95) by Acid Catalyzed Rearrangement of N -Allyl- N -Isobutyl-m-methoxyaniline (I-72). Minor Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), 1.89 (nonet, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.39 (dt, $J=5.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 3.83 (bs, 1H), 5.03 (dq, J $=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dq}, J=16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddt}, J=16.8,10.8,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.57,28.00,28.13,51.89,55.76,100.17,104.03,110.84$, $114.91,127.58,136.30,147.90,157.67$; IR (oil/ NaCl) 3430 (broad), 3076, 2959, 2870, $2836,1635,1601,1476 \mathrm{~cm}^{-1}$. Major Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}$), 1.91 (nonet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{dt}, J=6.3,1.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 3.83 (bs, 1H), 5.06-5.16 (m, 2H), 5.93 (ddt, $J=17.7,9.6,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.17-6.24(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{2 0 . 5 8}$, 27.84, 36.14, 51.59, 55.12, 97.42, 100.43, 115.88, 116.08, 130.33, 136.82, 147.74, 159.79; IR (oil/NaCl) 3432 (broad), 3079, 2957, 2870, 2834, 1617, 1588, $1520 \mathrm{~cm}^{-1}$.

Formation of \mathbf{N}-Methyl-2-(2-vinylpentane)-3-methoxyaniline (Minor Isomer, I-102), \boldsymbol{N}-Methyl-2-(2-vinylpentane)-5-methoxyaniline (Major Isomer, I-101) as well
as \boldsymbol{N}-Methyl-3-methoxy-4-(2-E-hexene)-aniline (\boldsymbol{E}-Isomer, I-103) by Acid Catalyzed Rearrangement of \boldsymbol{N}-trans-2-Hexene- \boldsymbol{N}-methyl-m-methoxyaniline (I-100). Minor Isomer: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.70-$ $1.89(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.17(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{dt}, J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{bd}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) 6.37(\mathrm{bd}, \mathrm{J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 14.18,21.11,31.06,32.49$, $37.58,55.78,100.89,104.45,113.37,114.28,127.58,141.64,148.91,158.10$; IR (oil/ NaCl) 3426 (broad), 2919, 2848, 1588, $1476 \mathrm{~cm}^{-1}$. Major Isomer: ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, \mathrm{J}=7.4,3 \mathrm{H}), 1.21-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.81(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H})$, 3.15 (bq, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{bs}, 1 \mathrm{H}), 5.01(\mathrm{dt}, J=11.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dt, $J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (ddt, $J=17.7,10.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.28 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $14.09,20.75,30.80,35.48,43.19,55.04,97.49,100.92,114.13,120.41,127.59,141.76$, 148.28, 159.31; IR (oil/NaCl) 3438 (broad), 3077, 2959, 2930, 2872, 2836, 2807, 1615, $1586,1463 \mathrm{~cm}^{-1}$. E-Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.37 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.97 (bq, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.82$ (s, 3H), 3.20 (d, $J=7.4 \mathrm{~Hz}$, 2 H), 3.62 (bs, 1H), 3.79 (s, 3H), 5.43 (dtt, $J=15.0,6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (dtt, $J=15.0$, $6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13-6.20(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.69,22.69,31.03,32.21,34.66,55.25,96.26,104.09,118.56,129.13$, 130.07, 130.70, 149.03, 158.03; IR (oil/NaCl) 3413 (broad), 2957, 2930, 2872, 2836, 1618, $1516,1464 \mathrm{~cm}^{-1}$.

Formation of \boldsymbol{N}-Methyl-2-(2-vinylpentane)-4-methoxyaniline (I-99) by Acid Catalyzed Rearrangement of \mathbf{N}-Methyl- \mathbf{N}-(trans-2-hexene)-p-methoxyaniline (I-97). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 0.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.81$ (m, $2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{bq}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{bs}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{dt}, J=$ $17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dt}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.1,10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.57-6.66 (m, 1H), 6.71-6.76 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.03,20.65,31.54$, 35.52, 43.50, 55.61, 111.10, 111.38, 114.24, 114.49, 129.87, 141.09, 141.35, 152.04; IR (oil/NaCl) 3413 (m-broad), 3077, 2957, 2872, 2832, 2809, 1647, 1510, $1458 \mathrm{~cm}^{-1}$.

Formation of 1,2-Dimethyl-2,3-dihydroindole (I-85) by Photochemical Ring Closure of o-Allyl- N -methylaniline (I-77). o-Allyl- N -methylaniline ($\mathbf{0 . 1 2 \mathrm { g } , 0 . 8 2 \mathrm { mmol } \text {) }) ~ (0)}$ and Argon degassed thiophene free benzene (41 mL) were placed in a pyrex tube and subjected to a 450 Watt medium pressure Hg lamp. After 3.5 h the solvent was removed under reduced pressure. The reaction had gone 50% to completion by G.C. The resulting oil was separated by preparative TLC (silica) to give the desired product. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H})$,
3.08 (dd, $J=15.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{qt}, J=2.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.65 ($\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 18.7, 33.7 , 37.4, 62.8, 107.1, 117.8, 124.0, 127.3, 129.2; IR (oil/NaCl) 3073, 2921, 2815, 1605, $1586,1514,1466,1312,1264,1065,914,748,648 \mathrm{~cm}^{-1}$.

Formation of 1,2-Dimethyl-2,3-dihydroindole (I-85) by Hg(OAc)2 Catalyzed Ring Closure of o-Allyl-N-methylaniline (I-77). o-Allyl- N-methylaniline ($1.42 \mathrm{~g}, 9.66$ mmol) was added to anhydrous methanol (48.3 mL) followed by addition of $\mathrm{Hg}(\mathrm{OAc})_{2}$ ($3.69 \mathrm{~g}, 11.59 \mathrm{mmol}$) at room temperature. After 1 h the reaction mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$ and reduced by careful addition of NaBH_{4} (2 equiv, 0.5 M solution) in $\mathrm{NaOH}(2 \mathrm{~N}$). After 20 h the reaction mixture was extracted repeatedly with $\mathrm{Et}_{2} \mathrm{O}$ and the organics concentrated under reduced pressure. The crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - 1:99 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to give the desired product ($0.14 \mathrm{~g}, 0.9 \mathrm{mmol}$) in 10% yield.

Formation of 2,3-Dibromopropylbenzene (I-106). To Mg turnings (15.29 g , 636.94 mmol) in dry $\mathrm{Et}_{2} \mathrm{O}$ (40.0 mL) was slowly added a solution of bromobenzene ($10.00 \mathrm{~g}, 63.69 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(23.7 \mathrm{~mL})$. The Grignard reagent was allowed to form over an hour at room temperature (the solution turned dark brown). The solution was transfered via cannula to a dry flask. The temperature was lowered to $0^{\circ} \mathrm{C}$ and allylbromide ($9.35 \mathrm{~g}, 76.43 \mathrm{mmol}$) was added dropwise via syringe. The reaction was allowed to warm to room temperature. After 14 h the reaction was quenched by addition of water. The organics were collected and the aqueous layer washed with 4 portions of ether (20.0 mL).

The organics were dried, collected and cooled to $-78^{\circ} \mathrm{C}$. To this mixture was added $\mathrm{Br}_{2}(12.23 \mathrm{~g}, 76.43 \mathrm{mmol})$ dropwise. The solution was allowed to stirr for 1 h and remained red. Solvent removal under reduced pressure gave an orange oil. The crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent -5:95 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to yield the desired product as a clear oil ($16.28 \mathrm{~g}, 92 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.13$ (dd, $J=$ $14.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=14.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (dd, $J=10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (m, 1 H), $7.24-7.37$ ($\mathrm{m}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 36.02,42.00,52.39,127.18,128.48,129.48,136.83$; IR (oil/NaCl) 3106, 3031, 2938, 1497, 1431, 1252, 1219, $1142 \mathrm{~cm}^{-1}$.

Formation of 2,3-Dibromopropyl-p-nitrobenzene (I-107). To a mixture of $70 \% \mathrm{HNO}_{3}(26.6 \mathrm{~mL})$ and $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}(33.7 \mathrm{~mL})$ was added 2,3-Dibromopropylbenzene ($16.28 \mathrm{~g}, 58.58 \mathrm{mmol}$) dropwise at $-15^{\circ} \mathrm{C}$. The reaction was then allowed to warm to $0^{\circ} \mathrm{C}$
over 45 min . After an additional 15 min the reaction was cooled again to $-15^{\circ} \mathrm{C}$ and quenched by partitioning between water and ether. The organics were collected, dried and the solvent removed under reduced pressure to give oils. The crude oils were purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to give the desired pure product. ($13.66 \mathrm{~g}, 72 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.21$ (dd, $J=14.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{t}, \mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=14.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=10.7,4.2 \mathrm{~Hz}, 1$ H), 4.37 ($\mathrm{m}, 1 \mathrm{H}$), $7.42-7.51$ ($\mathrm{m}, 2 \mathrm{H}$), 8.14-8.24 ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ 35.31, 41.42, 50.74, 123.58, 130.38, 135.91, 144.13; IR (oil/NaCl) 3079, 2973, 2855, $1607,1520,1435,1346,1250 \mathrm{~cm}^{-1}$.

Formation of p-Allylnitrobenzene (I-108). To a solution of 2,3-dibromopropyl-p-nitrobenzene $(3.00 \mathrm{~g}, 9.28 \mathrm{mmol})$ in EtOH $(92.8 \mathrm{~mL})$ was added $\mathrm{NaI}(2.78 \mathrm{~g}, 18.58$ mmol) as a single portion at room temperature. The reaction was heated at reflux for 1.5 h . $\mathrm{NaI}(2.78 \mathrm{~g}, 18.58 \mathrm{mmol})$ was again added in small portions. After 6 h total, the reaction was allowed to cool to room temperature and stir for 14 h . The solvent was removed under reduced pressure and the residue partitioned between CHCl_{3} and aqueous 50% saturated sodium bicarbonate solution. The organics were collected, dried and the solvent removed under reduced pressure to give an oil. The crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - low boiling petroleum ether). The solvents were evaporated to yield the desired product as a clear oil (1.05 g , $6.43 \mathrm{mmol})$ in 69% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.49(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.12$ (dq, $J=16.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dq}, J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.94 (ddt, $J=16.9,10.2,6.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.32-7.37 (m, 2 H), 8.10-8.70 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.86$, 117.37, 121.28, 123.64, 129.35, 135.44, 147.77; IR (oil/ NaCl) 3081, 2853, 1640, 1605, 1518, $1346 \mathrm{~cm}^{-1}$.

Preparation of \boldsymbol{p}-Allylaniline (I-109). To a solution of \boldsymbol{p}-allylnitrobenzene (0.55 $\mathrm{g}, 3.37 \mathrm{mmol}$) in benzene (20.0 mL) was added activated $\mathrm{Fe}(5.00 \mathrm{~g}, 89.28 \mathrm{mmol})$ and water ($2.0 \mathrm{~g}, 111.11 \mathrm{mmol}$). The reaction was brought to reflux. After 2 h a trace of HCl was added to the reaction along with a several drops of water. After 12 h the reaction was quenched by partitioning between water and $\mathrm{Et}_{2} \mathrm{O}$. The organics were separated, dried and the solvents removed under reduced pressure to yield an oil. The crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to yield the desired product as an oil ($0.43 \mathrm{~g}, 95 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.28$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.56 (sbr, 2 H), 5.02 (dq, $J=10.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.04(\mathrm{dq}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddt, $J=$ $17.1,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.61-6.65$ (m, 2 H), $6.95-7.00$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 39.36,115.06,115.25,129.34,130.02,138.18,144.45$; IR ($\mathrm{oi} / \mathrm{NaCl}$) 3436 (broad), 3355 (broad), 3218 (broad), 3077, 3004, 2897, 1624, 1516, 1435, $1273 \mathrm{~cm}^{-1}$.

Formation of N-Methyl-p-allylaniline (I-104). The p-allylaniline ($0.20 \mathrm{~g}, 1.50$ mmol) and MeI ($0.05 \mathrm{~g}, 0.38 \mathrm{mmol}$) were taken up in a 4:1 ethanol:water mixture (3.0 mL) along with $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.02 \mathrm{~g}, 0.22 \mathrm{mmol})$. After stirring at room temperature for 14 h the ethanol was removed under reduced pressure and the crude oil purified by flash column chromatography (silica, 230-400 mesh; eluent - 5:95 $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to give a clear colorless oil. ($0.06 \mathrm{~g}, 37 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.82$ (s, 3 H), 3.28 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.60(\mathrm{~s}-\mathrm{br}, 1 \mathrm{H}), 5.01$ (dq, $J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dq}, J=16.8,1.7,1 \mathrm{H}$), 5.95 (ddt, $J=16.8,10.2,6.9,1$ H), 6.54-6.59 (m, 2 H), 6.99-7.03 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{3 0 . 9 6}, 39.37$, 112.58, 114.93, 128.69, 129.29, 138.37, 147.69; IR (oil/NaCl) 3413 (broad), 2977, 2893, $2813,1615,1522,1318,1264,1063 \mathrm{~cm}^{-1}$.

References.

1) Katritzky, A. R.; Rees, C. W. Comprehensive Heterocyclic Chemistry, Vol. 4; Pergamon Press: 1984.
2) Smith, A. B., III; Visnick, N.; Haseline, J. N.; Spanger, P. A. Tetrahedron, 1986, 42, 2959.
3) Harrington, P. J.; Hegedus, L. S.; Mc Daniel, K. F. J. Am. Chem. Soc. 1987, 109, 4335.
4) Murai, Y.; Masuda, G.; Inoue, S.; Sato, K. Heterocycles, 1991, 32, 1377.
5) Murai, Y.; Masuda, G.; Inoue, S.; Sato, K. Heterocycles, 1991, 32, 1377.
6) Harrington, P. J.; Hegedus, L. S. J. Org. Chem. 1984, 49, 2657.
7) Muratake, H.; Natsume, M. Heterocycles 1989, 29, 783.
8) Lutz, R. Chem. Rev. 1984, 84, 205.
9) Jolidon, S.; Hansen, H.-J. Helv. Chim. Acta. 1977, 60, 978.
10) Frater, G.; Habish, A.; Hansen, H.-J.; Schmid, H. Helv. Chim. Acta. 1969, 52, 335.
11) Schmid, M.; Hansen, H.-J.; Schmid, H. Helv. Chim. Acta. 1973, 56, 105.
12) Abdrakhmanov, I. B.; Sharafutdinov, V. M.; Tolstikov, G. A. Zhur. Org. Chem. 1984, 163.
13) Abdrakhmanov, I. B.; Fakhretdinov, R. N.; Khusnutdinov, R. N.; Dzhemilev, U. M. Zhur. Org. Chem. 1982, 2325.
14) Hurd, C. D.; Jenkins, W. W. J. Org. Chem. 1957, 22, 1418.
15) Abdrakmanov, I. B.; Sharafutdinov, V. M.; Nigmatullin, N. G.; Sagitdinov, I. A.; Tolstikov, G. A. Zhur. Org. Chem. 1982, 1278.
16) Krowicki, K.; Paillous, N.; Riviere, M.; Lattes, A. J. Hetero. Chem. 1976, 13, 555.
17) Bader, A. R.; Bridgwater, R.J.; Freeman, P. R. J. Am. Chem. Soc. 1961, 83, 3319.
18) Takamatsu, N.; Inoue, S.; Kishi, Y. Tetrahedron Lett. 1971, 48, 4661.
19) Abdrakhmanov, I. B.; Sharafutdinov, V. M.; Sagitdinov, I. A.; Tolstikov, G. A Zhur. Org. Chem 1978, 2350.
20) Brown, J. B.; Henbest, H. B.; Jones, E. R. H. J. Chem. Soc. 1952, 3172.
21) Casnati, G.; Francioni, M.; Guareschi, A.; Pochini, A. Tetrahedron Lett. 1969, 29, 2485.
22) Büchi, G.;Mak, C.-P. J. Org. Chem. 1977, 42, 1784.
23) Jolidon, S.; Hanison, H.-J. J. Org. Chem. 1974, 39, 846.
24) Inada, S.; Nagai, K.; Takayanagi, Y.; Okazaki, M. Bull. Chem. Soc. Jpn. 1976, 49, 833.
25) Aristoff, P. A.; Johnson, P. O.; Harrison, A. W. J. Am .Chem. Soc. 1985, 107, 7967.
26) Katayama, H.; Tachikoma, Y.; Takatsu, N.; Kato, A. Chem. Pharm. Bull. 1983, 31, 2220.
27) Ketcha, D. Tetrahedron Lett. 1988, 29, 2151.
28) Tao, X.; Nichiyama, S.; Yamamura, S. Chem. Lett. 1991, 1785.
29) Tweedie, V.; Allibashi, J. J. Org. Chem. 1960, 26, 3676.
30) (a) Cohen, T.; Dietz Jr., A. G.; Miser, J. R. J. Org. Chem. 1977, 42, 2053. (b)

Johnstone, R. A. W.; Rose, M. E. Tetrahedron 1979, 35, 2169. (c) Kano, S.;
Tanaka, Y.; Sugino, E.; Satsoshi, H. Synthesis 1980, 695.
31) Aristoff, P. A.; Johnson, P. D.; Harrison, A. W. J. Am. Chem. Soc. 1985, 107, 7967.
32) Bose, A. K.; Lal, B. Tetrahedron Lett. 1973, 33, 3937.
33) (a) Hobbs, C. F.; Hamman, W. C. J. Org. Chem. 1970, 35, 4188. (b) Gough, R.G.; Dixon, J. A. J. Org. Chem. 1968, 33, 2148
34) Robertson, G. R. Org. Syn. 1932, I, 389.
35) Hazlet, S. E.; Dornfield, C. A. J. Am. Chem. Soc. 1944, 60, 1781.

CHAPTER II.
 AZA-ANNULATION AS A ROUTE TO HYDROXYLATED ALKALOIDS: THE TOTAL SYNTHESES OF D-MANNONOLACTAM AND DEOXYMANNOJIRIMYCIN

Introduction.

Naturally occurring piperidine alkaloids exhibit a wide variety of biological activities. ${ }^{1}$ Although found in a number of organisms, these alkaloids possess alike stereochemical arrays similar to those found in simple sugars such as glucose (II-1), Dmannose (II-2), and fucose (II-3) (Figure II-1). For example, deoxymannojirimycin (II4), with stereochemistry similar to II-2, is an inhibitor of both bovine α-L-fucosidase and mannosidase I for glycoprotein processing. D-mannonolactam (II-7) inhibits both α-Dmannosidase and α-D-glucosidase. ${ }^{2}$ Deoxynojirimycin (II-4), stereochemically similar to II-1, has exhibited selective inhibition of α-glucosidases I, and II without effective inhibition of α-mannosidase. ${ }^{3}$ The more lipophilic alkaloids, prosopinine (II-5) and cassine (II-8) are also very biologically active. ${ }^{4}$ A convergent route to these alkaloids would thus be beneficial.

While compounds II-6 and II-7 have been prepared from their sugar analogs, ${ }^{5}$ an efficient and convergent synthesis of these compound types from simple organic molecules has not been previously reported (Scheme ח-1). Key to the preparation of any of the aforementioned alkaloids is the construction of the piperidine ring of the type represented by II-11 (Figure II-2). In II-11, particular attention to the stereochemistry of C-4 relative to C-5 is critical. Protected hydroxyl functionality at C-4 and C-6 must also be incorporated. Further stereochemical features at $\mathrm{C}-2$ and $\mathrm{C}-3$ must then be incorporated efficiently and specifically relative to the first two. Adding the tether to C - 1 could then be executed if desired. It is the objective of this work to use the aza-annulation in the design of a convergent route toward the preparation of these highly active compounds.

Figure II-1. Hydroxylated Piperidine Alkaloids and Stereochemically Similar Sugars

(glucose)

II-4
(deoxynojirimycin)

II-2
(D-mannose)

II-5
(prosopinine)

II-6
(deoxymannojirimycin)

II-7
(D-mannonolactam)

II-8
(cassine)

Scheme II-1. Preparation of II-6 and II-7 from Sugar Analogs

II-7

II-6

II-9

II-10

Figure II-2. Alkaloid Precursor Target

II-11

Results and Discussion.

The initial piperidine ring system was prepared via aza-annulation. ${ }^{6}$ Desired substitution at C-5 as well as at C-4 was incorporated at the onset, in the preparation of the initial β-diketone, β-ketoester, or acetylenic ester. In the simplest instance, benzylamine was added to acetoacetone to form the enamine which was annulated with acryloyl chloride to give II-12 in 94\% yield (Scheme II-2). Reduction of II-12 to II-13 was afforded in 81% yield using Pd / C and H_{2}. Baeyer-Villiger oxidation of II-13 (epimerized to an equilibrium 24:76 ratio of cis:trans isomeric products) yielded II-14 in 45% yield. Subsequent hydrolysis of II-14 provided II-15 in 89% yield. Of particular interest were the development of predictable conditions for cis-hydrogenation of $I I-12$ and development of an efficient method for the oxidation of II-13 to II-14.

Scheme II-2. Preparation of Initial Precursor Analog II-15

II-12
$1 \mathrm{~atm} \mathrm{H}_{2}$, $\mathrm{Pd} / \mathrm{C}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, EtOH

II-14
(trans:cis, .99:1)
(81%)

1) DBU, THF, RT
2) $\underset{(45 \%)}{\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{MCPBA}}$, (45\%)

II-13
(trans:cis, 10:90)
$\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}(89 \%)$

II-15

Examination of a variety of oxidation conditions had been initiated prior to optimization of the hydrogenation conditions. ${ }^{7}$ A series of oxidations were attempted using II-12, which was a mixture of isomers at the reduced double bond (trans:cis, 10:90). Conditions and percent reaction mixture as product are given in Table II-1.

Table II-1. Baeyer-Villiger Oxidation Studies on cis II-13

Entry ${ }^{\text {(ref) }}$	Conditions ${ }^{\text {a }}$	time (hours)	\% rxn. mix as prod. b
17a	MCPBA, $\mathrm{NaOAc}, \mathrm{CHCl}_{3}$, reflux	96	4
$2^{7 \mathrm{~b}}$	$\mathrm{Fe}_{2} \mathrm{CO}_{3}$, benzaldehyde, $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{O}_{2}$, RT	96	1
37c	$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{NaOAc}, 0^{\circ} \mathrm{C}$ to RT	120	0
47d, 7e	MCPBA, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	120	8
57 f	MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	120	18
67g	MCPBA (2.6 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	120	35
77h	MCPBA, glacial HOAc, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT	120	33
878	MCPBA (2.6 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	72	51
978	MCPBA (5.2 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	72	60
$10^{7 g}$	MCPBA, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	48	12
$11^{7 \mathrm{~g}}$	t-BuOH, $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	24	0
127 g	t-BuOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	24	0
1378	MCPBA (10.4 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	24	34

Since none of these sets of conditions yielded satisfactory results, and since all prepared II-13 had been consumed, more II-12 was reduced. Reduction of II-12 under more dilute conditions resulted in a product isomer ratio of 24:76 cis:trans (Table II-3). Again, a series of oxidations was attempted. These yielded greatly improved results, even under similar conditions (Table II-2).

Table II-2. Baeyer-Villiger Oxidation Studies on trans Substrate II-13

Entry ${ }^{\text {(ref) }}$	Conditions ${ }^{\text {a }}$	Time (hours)	\% rxn. as prod^{b} (iso)
17 g	MCPBA (5.2 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	24	86 (41\%)
2^{78}	MCPBA (5.2 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	10	75 (45\%)
37 g	MCPBA (2.6 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	7.5	66 (43\%)
47 g	MCPBA (2.6 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	10	67 (20\%)
57 g	MCPBA (5.2 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CHCl}_{3}$, reflux	14	89 (18\%)
67 g	MCPBA (5.2 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	24	52 (22\%)

 as product was determined by G. C. without an intemal standard.

Because it appeared that the primarily trans substrate yielded superior results, a series of reduction conditions were examined to try to maximixe the portion of trans II-13 formed (Table II-3). The greatest percentage trans achieved was 76\%. This represented the approximate thermodynamic product distribution, as exhibited by several equilibration studies. Several other sets of oxidation conditions were then attempted but yielded inferior results to those indicated in Table II-2 (Table II-4).

Table II-3. Various Conditions Used in the Palladium Mediated Reduction of II-12

Entry	$\mathrm{g} \mathrm{Pd}:$ mmol reactant	Molarity (substrate)	II-13 cis:trans ratio a^{a}
1	$1.0: 1$	0.25	$61: 39$
2	$0.2: 1$	0.50	$83: 17$
3	$0.1: 1$	0.50	$69: 31$
4	$0.1: 1$	0.10	$24: 76$
5	$0.1: 1$	0.05	$32: 68$
	b The cis to trans product ratio was determined by ${ }^{1} \mathrm{H}$ NMR.		

Table II-4. Continued Baeyer-Villiger Oxidation Studies of II-13 to II-14

Entry(ref)		Ratio cis : trans	Conditions	Time (hours)	\% rxn. as proda(iso)
17 g	$28: 72$	MCPBA (5.2 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	24	$62(41 \%)$	
27 g	$54: 46$	MCPBA (5.2 eq), $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	24	$63(32 \%)$	
37 i	$24: 76$	MCPBA (5.2 eq), $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	36	23	
47 j	$24: 76$	MCPBA (5.2 eq), pTsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	84	$88(18 \%)$	
57 k	$24: 76$	MCPBA (5.2 eq), $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	12	9	
671	$24: 76$	MCPBA (5.2 eq), $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	84	30	
77 i	$24: 76$	MCPBA (5.2 eq), $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	84	16	
87 j	$53: 47$	MCPBA (5.2 eq), $\mathrm{pTsOH}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux	60	68	

${ }^{a}$ The percent reaction mixture as product was determined by G. C. without an internal standard.

To further indicate the role substrate structure might have been responsible for the relatively low oxidation yields, compound II-16 was reduced to $\mathrm{II}-17$ (62% yield) and then oxidized to II-18 (Scheme II-3). Yield of the oxidation was 67%.

II.21. 0

Scheme II-3. Oxidation of Achiral Substrate Surrogate

Efficient base catalyzed equilibration of cis II-13 to trans II-13 yielded a product mixture that was consistently 30% cis to 70% trans (Figure II-3). Baeyer Villiger oxidation yielded only trans II-14 as detectable by NMR. Confirmation of stereochemistry was achieved by comparison to known compounds ${ }^{8}$ and by comparison of the final products to purchased standards.

Figure II-3. Epimirization of Model Compound II-13

69% cis : 31% trans	LHMDS, THF, $-78^{\circ} \mathrm{C}-$ RT, 12 hrs	28% cis : 72% trans
61% cis : 39% trans	DBU, THF, $-78^{\circ} \mathrm{C}-$ RT, 12 hrs	30% cis : 70% trans

Extension of this methodology toward the preparation of compounds of the type indicated by structure II-11 was then executed. Initially, propargyl alcohol was deprotonated and protected using benzyl bromide to afford II-18 in 90\% yield. Deprotonation of the alkyne using BuLi, followed by reaction with II-20, gave the alcohol II-21. Oxidation of II-21 with PCC provided II-22 in 54\% yield. ${ }^{9}$ Aza-annulation of II-22 in the usual manner provided II-23 in 33\% yield. Hydrogenation of II-23 provided II-24 in 67\% yield (Scheme II-4).

Scheme II-4. Preparation of Alkaloid Precursor II-24

II-19

1) $\mathrm{BnNH}_{2}, \mathrm{THF}, \mathrm{RT}$
2) acryloyl chloride (33\%)
II-23

II-21 PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (54\%)

Scheme II-5. Preparation of Alkaloid Precursor II-31

An alternative route to the preparation of II-31 could be accessed from tetronic acid (Scheme II-6). Annulation of tetronic acid using benzylamine and acrylic anhydride afforded II-32 in 71% yield. Reduction of II-32 provided II-33 in 83% yield. Use of the modified Grignard procedure to open the lactone yielded II-34 in 27% yield. Protection of the C-6 alcohol using benzyl bromide was executed in 71% yield providing II-28 as a mixture of cis and trans isomers in the ratio of 20:80 respectively.

Scheme II-6. Alternate Route to Alkaloid Precursor Preparation

This alternate route was significant in that it could possibly allow access to a variety of natural products with stereochemistry incorporated at C-6 (Scheme II-7). Alkylation of II-35 (prepared from the respective carboxylic acid) provided II-36 in 80% yield. The tetronic acid derivative, II-37, was then prepared in 35\% yield. ${ }^{11}$ Aza-annulation of II37 in the usual fashion using acryloyl chloride afforded II-38 in 29\% yield. Reduction of II-38 provided II-39 in 70\% yield as a mixture of isomers in the ratio of 70:30 .

Scheme II-7. Use of Alternate Route to Introduce Chiral Center

II-35

II-38

II-36

II-37

II-39

As a synthetic equivalent to II-11, II-31 proved to be a versatile substrate for the preparation of alkaloids. For example, the preparation of Π - 5 from Π - 31 was executed in 29% overall yield. ${ }^{10}$ Preparation of II-6, and II-7 were then executed from II-31 as outlined in Scheme II-8. Selenation of II-31 followed by NaIO_{4} oxidation provided II40 in 78% yield. ${ }^{12}$ Stereospecific cis-dihydroxylation of $I I-40$ using OsO_{4} in NMO gave II-41 in 64% yield. ${ }^{13}$ Attempted protection of II-41 with benzyl bromide using KOH afforded II-42 as the sole product. Direct reduction of the diol using LiAlH_{4} provided II43 in near quantative yield. Reductive removal of the protecting groups from II-43 using $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, and with a trace of acid afforded II-6 in 52% yield. ${ }^{14}$ Preparation of $\mathrm{II}-7$ from II-41 was executed smoothly by $\mathrm{Li} / \mathrm{NH}_{3}$ reduction in 44% yield. ${ }^{15}$ Yields for the preparation of II-5, II-6, and II-7 from II-18 were 3\% overall for each (Scheme II-8). DQ-COSY spectra of II-6 and II-7 are shown in Figure II-4 and Figure II-5, respectively.

Scheme II-8. Preparation of II-6 and II-7 fom Alkaloid Precursor

Conclusion.

Stereochemically complex hydroxylated piperidine alkaloids can be efficiently accessed through use of the aza-annulation. The $\mathrm{C}-4$ and $\mathrm{C}-5$ substituent pattern may be incorporated at the onset by aza-annulation substrate manipulation. The stereochemistry at these positions may then be controlled through choice of reduction conditions. Trans stereochemistry at C-4 relative to C-5 may be efficiently incorporated to an extent of >98:2 through use of the Baeyer-Villiger oxidation. Subsequent incorporation of cis stereochemistry at the $\mathrm{C}-2$ and $\mathrm{C}-3$ positions may then be accessed through use OsO_{4} cis hydroxylation. Comparison of II-6 with a purchased standard of the same compound showed that all four stereocenters were incorporated as initially predicted from asymmetric starting materials.

Figure II-4. DQ-COSY Spectra of II-6

Figure II-5. DQ-COSY Spectra of II-7

Experimental Section.

General Methods. All reactions were carried out using standard inert atmosphere techniques to exclude moisture and oxygen, and reactions were performed under an atmosphere of nitrogen. Benzene, toluene and ether were distilled from sodium/benzophenone immediately prior to use. Xylenes and decalin were heated over calcium hydride for a minimum of 12 h and then distilled prior to use. LiAlH_{4} (1 M in THF) was obtained from Aldrich Chemical Co. Unless specified, concentration of mixtures was performed using a Buchi rotary evaporator.

For reactions in which a Dean-Stark trap was used, the trap was filled with molecular sieves to a level below that of returning solvent turbulence. These were changed during reactions in which additional reagent was added after the reactions initiation. Molecular sieves were activated by heating in a $150^{\circ} \mathrm{C}$ oven for at least 24 h prior to use.

Formation of II-12. To 2,4-pentanedione ($25.00 \mathrm{~g}, 250.00 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}$ (500.0 mL) was added benzylamine ($47.50 \mathrm{~g}, 250.00 \mathrm{mmol}$) and a catalytic amount of p TsOH at room temperature. The reaction was fitted with a Dean - Stark trap, filled with molecular sieves to a level below that of returning solvent turbulence, and heated at reflux. After 12 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. THF (500.0 mL) and acryloyl chloride ($38.45 \mathrm{~g}, 425.00 \mathrm{mmol}$) were then added and the reaction again heated at reflux. After 14 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. The reaction mixture was then chromatographed (silica, 230-400 mesh; eluent -90:10 Et 2 O :petroleum ether). The solvents were evaporated to give a clear, colorless oil ($54 \mathrm{~g}, 94 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.21(\mathrm{~s}, 3 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.68(\mathrm{~m}, 4 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H})$, 7.12 (bd, $J=2.0,2 \mathrm{H}$), 7.16-7.34 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.72$, $21.81,29.33,30.84,44.22,116.95,125.65,126.67,128.28,137.08,145.83,170.11$, 198.32; IR (oil/NaCl) 3031, 2969, 2843, 1669, 1590, 1383, 1275, $1186 \mathrm{~cm}^{-1}$.

Formation of II-13. To II-12 ($10.00 \mathrm{~g}, 56.50 \mathrm{mmol}$) in EtOH (565.0 mL) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(20.96 \mathrm{~g}, 197.74 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(5.65 \mathrm{~g})$. The reaction vessel was purged with N_{2} and then flushed with and maintained under an atmosphere of H_{2}. After stirring for 16 h , the reaction mixture was filtered through a fine scintered glass funnel and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil (8.19. g, 81\% yield, 90:10 cis:trans). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 1.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, 1.92-2.17 (m, 4 H), 2.48 (ddd, $J=18.3,10.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (ddd, $J=18.3,7.4$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1$
H), 5.31 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.22-7.36$ (m, 5 H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 14.52,17.33,28.08,29.96,47.74,51.03,51.14,127.04,127.36,128.28$, 136.97, 168.67, 206.25; IR (oil/NaCl) 2975, 1713, 1640, $1163 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} m / z 245.1416$, found $m / z 245.1415$.

Isomerization of II-13. To II-13 cis ($0.20 \mathrm{~g}, 1.12 \mathrm{mmol}$) in THF (2.24 mL) was added DBU ($0.09 \mathrm{~g}, 0.56 \mathrm{mmol}$) at room temperature. After 16 h the reaction was terminated by addition of an equal volume of water. The organics were seperated and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.20 \mathrm{~g},>99 \%$ yield, 72% trans); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (trans isomer) $\delta 1.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.91-2.12(\mathrm{~m}, 3$ H), 2.35-2.63 (m, 3 H), $3.82(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, 1 H), 7.22-7.34 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (trans isomer) $\delta 19.53,19.86$, 27.47, 29.39, 46.98, 51.14, 52.26, 126.93, 127.78, 128.10, 136.97, 168.87, 207.05; IR (oil/ NaCl) 2975, 1713, 1640, $1163 \mathrm{~cm}^{-1}$.

Formation of II-14. To II-13 (76% trans) ($1.00 \mathrm{~g}, 5.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(11.2 \mathrm{~mL})$ was added m-CPBA ($5.00 \mathrm{~g}, 29.20 \mathrm{mmol}$) and $\mathrm{CF}_{3} \mathrm{COOH}(0.60 \mathrm{~g}, 5.60$ mmol) at room temperature. The reaction was heated at reflux. After 14 h , the reaction was cooled to room temperature and the solvent removed under reduced pressure. The resulting slurry was brought up in a minimum amount of $\mathrm{Et}_{2} \mathrm{O}$ and purified by flash chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($4.5 \mathrm{~g}, 41 \%$ yield, 100% trans) ($\mathrm{mp}=66-67{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.89 (s, 3 H), 1.97 ($\mathrm{m}, 1 \mathrm{H}$), 2.16 (dddd, $J=$ $14.7,11.4,7.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (ddd, $J=18.3,7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (ddd, $J=$ $18.3,11.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (qt, $J=6.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.88 (dt, $J=3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.80,20.75,21.03,26.81,47.18,54.38,70.07,127.19$, 127.72, 128.32, 136.95, 168.57, 169.89; IR ($01 / / \mathrm{NaCl}$) 2975, 2942, 1736, 1634, 1482, $1246,1179 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 261.1365$, found $\mathrm{m} / \mathrm{z} 261.1363$.

Formation of II-15. To II-14 ($0.10 \mathrm{~g}, 0.56 \mathrm{mmol}$) in water (0.6 mL) was added crushed $\mathrm{NaOH}(0.04 \mathrm{~g}, 1.12 \mathrm{mmol})$ at room temperature. The reaction was heated at approximately $50^{\circ} \mathrm{C}$. After 12 h , the product was extracted from the reaction mixture with 6 portions of CHCl_{3} (1.0 mL each). The organics were combined, dried, and the solvent removed under reduced pressure. the product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{low}$ boiling petroleum ether giving white crystals. $\left(0.06 \mathrm{~g}, 89 \%\right.$ yield) $\left(\mathrm{mp}=110-113^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 2$
H), 2.42 (ddd, $J=18.0,7.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (ddd, $J=18.0,10.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20-7.35 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.37,24.05,26.92$, $47.42,57.96,68.45,127.23,127.78,128.56,137.33,169.42$; IR ($0.1 / \mathrm{NaCl}$) 3289, 3023, 2890, 1609, 1453, 1175, cm ${ }^{-1}$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~m} / \mathrm{z} 219.1259$, found $m / z 219.1245$.

Formation of II-17. To II-16 ($0.24 \mathrm{~g}, 1.05 \mathrm{mmol})$ in EtOH (10.5 mL) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.39 \mathrm{~g}, 3.67 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g})$. The reaction vessel was purged with N_{2} and then flushed with and maintained under an atmosphere of H_{2}. After stirring for 16 h , the reaction mixture was filtered through a fine scintered glass funnel and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.15 \mathrm{~g}, 62 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.79-1.94$ (m, 2 H), 2.14 (s, 3 H), 2.49 (ddd, $J=16.8,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (ddd, $J=17.8,6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (tdd, $J=9.9,5.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (ddd, $J=12.6$, $5.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=12.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.36 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.79,28.01$, 30.96, 46.58, 47.17, $50.07,127.40,128.05,128.52,136.70,168.63,207.21$; IR ($0 \mathrm{il} / \mathrm{NaCl}$) 3032, 2932, 2876, 1713, 1642, 1495, 1455, 1262, 1167, cm^{-1}.

Formation of II-18. To II-17 ($0.10 \mathrm{~g}, 0.43 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.86 \mathrm{~mL})$ was added m-CPBA ($0.39 \mathrm{~g}, 2.25 \mathrm{mmol}$) and $\mathrm{CF}_{3} \mathrm{COOH}(0.05 \mathrm{~g}, 0.43 \mathrm{mmol})$ at room temperature. The reaction was heated at reflux. After 14 h , the reaction was cooled to room temperature and the solvent removed under reduced pressure. The resulting slurry was brought up in a minimum amount of $\mathrm{Et}_{2} \mathrm{O}$ and purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil (0.07 g , yield $=67 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.01(\mathrm{~s}, 3$ H), 2.02-2.08 (m, 2 H), 2.52 (ddd, $J=17.9,6.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (ddd, $J=17.9$, $9.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (ddd, $J=13.2,3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.43(\mathrm{dd}, J=13.2,3.9 \mathrm{~Hz}, 1$ H), $4.49(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dq}, J=3.9,3.6 \mathrm{~Hz}, 1$ H), 7.21-7.36 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.97,25.49,27.86,49.80$, $50.46,66.17,127.49,127.99,128.60,136.56,168.73,170.18$; IR (oil/ NaCl) 3063, 2959, 2873, 1738, 1646, 1491, 1365, 1421, 1238, 1182, $1075 \mathrm{~cm}^{-1}$.

Formation of 22. To II-19 ($0.43 \mathrm{~g}, 2.95 \mathrm{mmol}$) in THF (8.56 mL) was added BuLi ($1.41 \mathrm{~mL}, 2.5 \mathrm{M}$) at $-78^{\circ} \mathrm{C}$). After stirring for $10 \mathrm{~min}, \mathbf{I I}-20(0.53 \mathrm{~g}, 3.53 \mathrm{mmol}$) was added, and the reaction allowed to warm to room temperature. After 10 min at room temperature, the reaction was quenched by addition of water. The reaction was extracted
with EtOAc ($5 \times 10 \mathrm{~mL}$) and the organics dried and concentrated. The resulting oil was brought up in a minimum amount of $\mathrm{Et}_{2} \mathrm{O}$ and purified by flash chromatography (silica, 230-400 mesh; eluent - 1:1 petroleum ether:Et $\mathrm{t}_{2} \mathrm{O}$. The solvents were evaporated to give II-21 as a clear, colorless oil. $(0.67 \mathrm{~g}, 77 \%$ yield).

To Π - 21 ($0.43 \mathrm{~g}, 1.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.50 \mathrm{~mL})$ was added PCC $(0.63 \mathrm{~g}$, 2.91 mmol) at room temperature. After 14 h , the reaction was repeatedly extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organics combined and concentrated. The resulting oil was brought up in a minimum amount of $\mathrm{Et}_{2} \mathrm{O}$ and purified by flash column chromatography (silica, 230-400 mesh; eluent - 1:1 petroleum ether:Et2O). The solvents were evaporated to give II-22 as a clear, colorless oil. $\left(0.23 \mathrm{~g}, 54 \%\right.$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.19$ (s, 2 H), 4.28 (s, 2 H), 4.56 ($\mathrm{s}, 2 \mathrm{H}$), 4.61 ($\mathrm{s}, 2 \mathrm{H}$), $7.25-7.78$ ($\mathrm{m}, 10 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 56.72,56.75,71.97,73.24,75.49,83.12,90.58,127.80,127.90,127.92$, 127.95, 128.33, 136.51, 136.77, 184.23; IR (oil/ NaCl) 3065, 1694, 1455, 1352, 1211, $1173,1028 \mathrm{~cm}^{-1}$.

Formation of II-23. To II-22 ($0.60 \mathrm{~g}, 2.04 \mathrm{mmol}$) in THF (4.0 mL) was added $\mathrm{BnNH}_{2}(0.19 \mathrm{~g}, 2.04 \mathrm{mmol})$ at room temperature. The reaction was heated at reflux. After 12 h the reaction was cooled to room temperature and acryloyl chloride (0.31 $\mathrm{g}, 3.47 \mathrm{mmol}$) added. The reaction was again heated at reflux. After 14 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. The reaction mixture was then chromatographed (silica, 230-400 mesh; eluent - 10:90 $\mathrm{Et}_{2} \mathrm{O}$:petroleum ether). The solvents were evaporated to give a clear, colorless oil ($0.30 \mathrm{~g}, 33 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.48-2.61 (m, 4 H), 4.21 ($\mathrm{s}, 2 \mathrm{H}$), 4.31 (s, 2 H), 4.54 ($\mathrm{s}, 4$ H), 5.08 (s, 2 H), 6.98 (dd, $J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18-7.37 (m, 13 H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.53,30.78,44.47,63.68,72.72,73.41,74.46,119.82,126.08$, $127.78,127.91,127.96,128.04,128.15,128.43,128.50,128.65,136.91,137.59$, $137.72,144.55,170.53,198.97$; IR (oil/ NaCl) 3031, 1678, 1605, 1497, 1455, 1306, $1277,1068 \mathrm{~cm}^{-1}$.

Formation of II-24.To II-23., ($0.15 \mathrm{~g}, 0.34 \mathrm{mmol}$) in EtOH (3.4 mL) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.13 \mathrm{~g}, 1.19 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.034 \mathrm{~g})$. The reaction vessel was purged with N_{2} and then flushed with and maintained under an atmosphere of H_{2}. After stirring for 16 h , the reaction mixture was filtered through a fine scintered glass funnel and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.10 \mathrm{~g}, 67 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (isomer ratio 70:30) δ (major isomer, diagnostic peaks) 3.12 ($\mathrm{dt}, J=12.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H})$, (minor
isomer, diagnostic peaks) $3.26(\mathrm{dt}, J=6.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $17.54,20.03,29.85,30.09,44.08,45.81,48.17,49.13,55.15,55.74,67.64,69.91$, $73.03,73.06,73.16,73.22,73.77,74.74,127.30,127.35,127.54,127.64,127.69$, $127.70,127.73,127.78,127,85,127.90,128.16,128.29,128.34,128.36,128.43$, 128.50, 136.81, 137.03, 137.08, 137.25, 137.33, 169.44, 170.21, 206.33, 207.68; IR (oil/ NaCl) $3031,1717,1645,1453,1100 \mathrm{~cm}^{-1}$.

Formation of II-25. To benzyl protected propargyl alcohol ($1.20 \mathrm{~g}, 8.19$ mmol) in THF (16.38 mL) was added BuLi ($3.28 \mathrm{~mL}, 2.5 \mathrm{M}$ in Hexane) at $-78^{\circ} \mathrm{C}$. After 10 min ethyl chloroformate ($0.89 \mathrm{~g}, 8.19 \mathrm{mmol}$) was added dropwise. The reaction was slowly warmed to $0^{\circ} \mathrm{C}$ (until a deep red color began to form) and was promptly quenched by addition of water. The organics were separated and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - petroleum ether). The solvents were evaporated to give a clear, colorless oil ($1.61 \mathrm{~g}, 91 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ $\mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.78,56.53,61.90,71.81,78.07,82.94,127.87,127.90$, $128.29,136.59,152.87$; IR (0 il/ NaCl) 3032, 2984, 2872, 2236, $1713,1248 \mathrm{~cm}^{-1}$.

Formation of II-26. To II-25 ($1.61 \mathrm{~g}, 7.37 \mathrm{mmol}$) in THF (14.74 mL) was added $\mathrm{BnNH}_{2}(0.70 \mathrm{~g}, 7.37 \mathrm{mmol})$ at room temperature. The reaction was heated at reflux. After 12 h the reaction was cooled to room temperature and acryloyl chloride (0.70 $\mathrm{g}, 7.74 \mathrm{mmol}$) added. The reaction was again heated at reflux. After 14 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. The reaction mixture was then chromatographed (silica, 230-400 mesh; eluent - 10:90 Et2O:petroleum ether). The solvents were evaporated to give a white solid ($1.61 \mathrm{~g}, 35 \%$ yield) ($\mathrm{mp}=84$ $87^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.49-2.58(\mathrm{~m}, 2 \mathrm{H})$, 2.62-2.71 (m, 2 H), 4.17 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.57 ($\mathrm{s}, 2 \mathrm{H}$), 4.60 (s, 2 H), 5.12 (s, 2 H), 6.97-7.03 (m, 2 H), 7.16-7.39 (m, 8 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.16, 21.69, 30.82, 44.51, 60.76, 63.56, 72.65, 113.54, 126.06, 126.97, 127.93, 128.07, $128.42,128.63,137.61,137.90,146.08,166.71,170.92$; IR (0 il/ NaCl) 2984, 1682, $1636,1269,1130 \mathrm{~cm}^{-1} \mathrm{HRMS}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z} 379.1784$, found m / z 379.1777.

Formation of II-27. To II-26 ($2.50 \mathrm{~g}, 6.85 \mathrm{mmol}$) in EtOH (68.50 mL) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.54 \mathrm{~g}, 23.97 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.69 \mathrm{~g})$. The reaction vessel was purged with N_{2} and then flushed with and maintained under an atmosphere of H_{2}. After stirring for 16 h , the reaction mixture was filtered through a fine scintered glass funnel and the solvent removed under reduced pressure. The resulting crude oil was purified by flash
column chromatography (silica, 230-400 mesh; eluent - 70:30 $\mathrm{Et}_{2} \mathrm{O}$:petroleum ether). The solvents were evaporated to give a clear, colorless oil ($1.66 \mathrm{~g}, 66 \%$ yield, $90: 10$ cis:trans). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 1.13(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.03(\mathrm{~m}, 1 \mathrm{H}), 2.21$ (ddt, $J=9.9,7.8,12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (ddd, $J=18.3,10.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59 (ddd, J $=18.3,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.88-4.08 (m, 3 H), 4.15 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (s, 2 H), 5.23 (d, $J=15.2 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.17-7.37(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 13.82,19.18$, $30.07,42.40,49.16,56.17,60.65,68.62,73.15,127.19,127.44,127.59,127.67$, 128.19, 128.42, 137.22, 137.31, 169.56, 171.06; IR (oil/NaCl) 2959, 2870, 1734, 1645, $1173 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z} 381.1940$, found $\mathrm{m} / \mathrm{z} 381.1988$.

Formation of II-28. To $\mathrm{MeMgBr}\left(2.27 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ in THF) in $\mathrm{C}_{6} \mathrm{H}_{6}$ (19.1 mL) was added NEt3 $(2.06 \mathrm{~g}, 20.44 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After $10 \mathrm{~min} \mathrm{II-27}(1.25 \mathrm{~g}, 3.41$ $\mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(5.0 \mathrm{~mL})$ was added with vigorous stirring. After 3 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by addition of an equal volume of 3 M aqueous HCl . The organics were separated and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.56 \mathrm{~g}, 61 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 1.87$ (m, 1 H), 2.02 ($\mathrm{s}, 3 \mathrm{H}$), 2.12 (m, 1 H), 2.32-2.64 (m, $2 \mathrm{H}), 2.71(\mathrm{dt}, J=13.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=9.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=$ $9.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.28(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.36(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ cis isomer) $\delta 18.07,28.30,29.82,48.85,49.63,55.82,67.89,72.90,127.12,127.34$, 127.49, 128.03, 128.11, 128.29, 136.91, 137.04, 169.23, 205.36; IR (oil/ NaCl) 3088, $2924,1713,1644,1161,1101 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 351.1835$, found m/z 351.1818.

Isomerization of trans II-28. To cis II-28 ($0.2 \mathrm{~g}, 0.74 \mathrm{mmol}$) in THF (1.48 mL) was added DBU ($0.06 \mathrm{~g}, 0.37 \mathrm{mmol}$) at room temperature. After 16 h the reaction was terminated by addition of an equal volume of water. The organics were separated and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, $230-400$ mesh; eluent $-\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.20 \mathrm{~g},>99 \%$ yield, 83% trans); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (trans isomer) $\delta 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dt}, J=$ $17.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (ddd, $J=17.7,7.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dt}, J=6.5,4.8 \mathrm{~Hz}, 1$ H), 3.42-3.52 (m, 2 H), $3.94(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 2 H), 5.14 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16-7.36$ (m, 10 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (trans isomer) $\delta 19.93,27.27,29.58,47.78,47.98,55.17,69.36,72.81,127.01$,
127.30, 127.45, 127.53, 127.82, 128.12, 136.91, 137.15, 169.86, 207.06; IR (oil/ NaCl) 3088, 2924, 1713, 1644, 1161, $1101 \mathrm{~cm}^{-1}$.

Formation of II-29. To II-28 (83% trans) ($1.15 \mathrm{~g}, 4.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(8.48 \mathrm{~mL})$ was added MCPBA $(3.66 \mathrm{~g}, 21.22 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{COOH}(4.24 \mathrm{~g}, 0.48 \mathrm{mmol})$ at room temperature. The reaction was heated at reflux. After 14 h , the reaction was cooled to room temperature and the solvent removed under reduced pressure. The resulting slurry was brought up in a minimum amount of $\mathrm{Et}_{2} \mathrm{O}$ and purified by flash chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.60 \mathrm{~g}, 60 \%$ yield, 100% trans); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.88$ (s, 3 H), 1.94 ($\mathrm{m}, 1 \mathrm{H}$), 2.17 (dddd, $J=13.8,10.8,7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (ddd, $J=18.3$, $7.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (ddd, $J=18.3,10.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.92$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1$ H), $5.39(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.40(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}$ 20.86, 22.30, 27.00, 48.12, 58.52, 67.97, 68.74, 73.31, 127.37, 127.63, 127.92, 128.01, 128.44, 128.50, 136.91, 137.31, 169.72, 169.96; IR (oil/ NaCl) 3063, 2934, $2869,1738,1647,1240,1181 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z} 367.1784$, found m/z 367.1768.

Formation of II-30. To II-29 ($0.30 \mathrm{~g}, 1.05 \mathrm{mmol}$) in water (1.05 mL) was added crushed $\mathrm{KOH}(0.2 \mathrm{~g}, 0.52 \mathrm{mmol})$ at room temperature. The reaction was heated at approximately $50^{\circ} \mathrm{C}$. After 12 h , the product was extracted from the reaction mixture with 6 portions of CHCl_{3} (2 mL each). The organics were combined and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.22 \mathrm{~g}, 85 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.81$ ($\mathrm{m}, 1$ H), 2.00 (dddd, $J=12.6,9.9,6.9,3.0,1 \mathrm{H}$), 2.37 (ddd, $J=18.3,6.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (ddd, $J=16.8,9.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.39(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H})$, $4.07(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{bs}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.18 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16-7.38$ ($\mathrm{m}, 10 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.16,27.37,48.09,62.13,65.65,69.42,73.27,127.15,127.58,127.71$, 127.86, 128.45, 128.46, 137.23, 137.44, 170.28; IR (oil/ NaCl) 3364 (broad), 3063, 2928, 1617, 1453, 1181, $1101 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 325.1678$, found m/z 325.1666.

Formation of II-31. To II-30 ($0.50 \mathrm{~g}, 2.05 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(4.10 \mathrm{~mL})$ was added crushed $\mathrm{KOH}(0.23 \mathrm{~g}, 4.10 \mathrm{mmol})$ and molecular sieves $(0.40 \mathrm{~g})$ at room temperature. After 5-10 min of stirring $\mathrm{BnBr}(0.39 \mathrm{~g}, 2.26 \mathrm{mmol})$ was added. After 3 h the reaction was quenched by addition of excess water. The reaction mixture was extracted
with 10 portions of $\mathrm{Et}_{2} \mathrm{O}$ (4 mL each), the organics combined and solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent $-\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a white solid $\left(0.57 \mathrm{~g}, 84 \%\right.$ yield) ($\mathrm{mp}=60-63^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.91-2.02(\mathrm{~m}, 2$ H), 2.40 (ddd, $J=18.0,6.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (ddd, $J=18.0,10.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.39(\mathrm{dd}, J=9.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.83$ (dd, $J=6.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14-7.36 (m, 15 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{2 2 . 1 8 , ~ 2 7 . 2 2 , ~}$ 47.69, 58.37, 69.16, 69.77, 71.79, 73.03, 126.87, 127.07, 127.28, 127.37, 127.56, 127.65, 128.05, 128.21, 128.26, 137.06, 137.36, 137.85, 169.93; IR (0 il/ NaCl) 3088. $3030,2867,1642,1453,1096 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 415.2148$, found m/z 415.2142.

Formation of II-32 Using Acryloyl Chloride. To tetronic acid (2.00 g , 20.00 mmol) in $\mathrm{C}_{6} \mathrm{H}_{6}(40.0 \mathrm{~mL})$ was added benzylamine ($1.95 \mathrm{~g}, 18.18 \mathrm{mmol}$) and a catalytic amount of $p-\mathrm{TsOH}$ at room temperature. The reaction was fitted with a Dean Stark trap and heated at reflux. After 12 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. THF (40.0 mL) and acryloyl chloride (2.80 $\mathrm{g}, 30.91 \mathrm{mmol}$) were then added. The reaction was again heated at reflux. After 14 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. The reaction mixture was then chromatographed (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a white solid ($3.08 \mathrm{~g}, 70 \%$ yield) $\left(\mathrm{mp}=121-124^{\circ} \mathrm{C}\right.$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.58(\mathrm{bt}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{bt}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.65$ $(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.54,30.26,45.58,64.98,102.21,126.53,127.77,128.73$, $135.25,159.97,169.18,170.94$; IR (solid/KBr) 3071, 2961, 2869, 1738, 1698, 1665, 1437, 1277, $1138 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z}$ 243.0896, found m / z 243.0880 .

Formation of II-32 Using Acrylic Anhydride. To tetronic acid (2.00 g , 20.00 mmol) in $\mathrm{C}_{6} \mathrm{H}_{6}(40.0 \mathrm{~mL})$ was added benzylamine $(1.95 \mathrm{~g}, 18.18 \mathrm{mmol})$ and a catalytic amount of $p-\mathrm{TsOH}$ at room temperature. The reaction was fitted with a Dean Stark trap and heated at reflux. After 12 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. THF (40.0 mL) and acrylic anhydride (3.15 $\mathrm{g}, 30.91 \mathrm{mmol}$) (Acrylic anhydride was prepared immediately prior to use by adding NaH (1.8 equiv) to acrylic acid (1.2 equiv) at $-78^{\circ} \mathrm{C}$ and allowing the mixture to warm to room temperature followed by the addition of acryloyl chloride (1.0 equiv) and allowing the
mixture to stir for 1 h . This mixture was transfered via cannula.) were then added. The reaction was again heated at reflux. After 14 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. The reaction mixture was then chromatographed (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a white solid ($3.13 \mathrm{~g}, 71 \%$ yield).

Formation of II-33. To II-32 ($0.46 \mathrm{~g}, 1.96 \mathrm{mmol}$) in EtOH (30.0 mL) and $\mathrm{MeOH}(15.0 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.72 \mathrm{~g}, 6.86 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.40 \mathrm{~g})$. The reaction vessel was purged with N_{2} and then flushed with and maintained under an atmosphere of H_{2}. After stirring for 16 h , the reaction mixture was filtered through a fine scintered glass funnel and the solvent removed under reduced pressure. The resulting crude solid was purified by flash column chromatography (silica, 230-400 mesh; eluent $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a white solid ($0.38 \mathrm{~g}, 79 \%$ yield, $>98: 2$ cis:trans). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 2.01$ ($\mathrm{m}, 1 \mathrm{H}$), $2.30(\mathrm{~m}, 1 \mathrm{H})$, $2.41(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.30(\mathrm{~m}, 4 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}$, 1 H), $7.14-7.42$ ($\mathrm{m}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 19.88,29.68$, 37.85, 47.94, 55.20, 71.23, 127.93 (2), 128.97, 136.15, 169.49, 176.09; IR (solid/KBr) 3071, 2961, 2862, 1738, 1698, 1665, 1437, 1277, $1196 \mathrm{~cm}^{-1}$.

Formation of II-34. To MeMgBr ($1.77 \mathrm{~mL}, 3.0 \mathrm{M}$ in THF) in $\mathrm{C}_{6} \mathrm{H}_{6}$ (3.0 mL) was added $\mathrm{NEt}_{3}(1.61 \mathrm{~g}, 15.92 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After $10 \min I I-33(0.65 \mathrm{~g}, 2.65 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ (2.3 mL) was added with vigorous stirring. After 3 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by addition of an equal volume of $3 M$ aqueous HCl . The organics were separated and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $95: 5$ $\left.\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeOH}\right)$. The solvents were evaporated to give a clear, colorless oil ($0.17 \mathrm{~g}, 25 \%$ yield, >98:2 cis:trans); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\boldsymbol{\delta} 1.90$ (m, 1 H), 1.91 ($\mathrm{s}, 3 \mathrm{H}$), $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=17.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dt}, J=17.7,6.8 \mathrm{~Hz}, 1$ H), 3.03 (dt, $J=6.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (dd, $J=11.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.65 (dd, $J=11.4$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (m, 1 H), 3.92 (bs, 1 H), 4.08 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 (d, $J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (bd, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20-7.34 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) (cis isomer) $\delta 20.11,25.58,29.86,47.49,48.03,57.15,61.87,127.45,127.91$, 128.54, 136.91, 171.06, 207.88; IR (oil/NaCl) 3374, 3088, 2942, 1711, 1613, 1455, $1256,1169 \mathrm{~cm}^{-1}$.

Formation of Preparation of Ethyl 2(S)-acetoxypropanoate (II-36). To a solution of S-ethyl lactate ($\mathbf{2 . 0} \mathrm{g}, 16.96 \mathrm{mmol}$) in pyridine (14.75 mL), was added acetic anhydride ($1.88 \mathrm{~g}, 18.42 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was allowed to stirr at room temperature. After 12 h the reaction was poured into a mixture of crushed ice (100 mL)
and $\mathrm{HCl}(7 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the ether extracts washed with water followed by brine. The organics were dried, and the solvent removed under reduced pressure to give a colorless oil. The crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$:low boiling petroleum ether). The solvents were evaporated to give the product pure as a clear oil ($5.2 \mathrm{~g}, 44.44 \mathrm{mmol}$) in 80% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H), 2.11 (s, 3H), 4.19 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $5.03(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.66,16.46,20.14,60.85,68.29,169.82,170.38$; IR ($0 \mathrm{il} / \mathrm{NaCl}$) 2990, 2878, 1744, 1451, 1373, 1240, 1134, 1101, 1020, $735 \mathrm{~cm}^{-1}$.

Formation of 4-Hydroxy-5(S)-methyl-2-furanone((S)- $\boldsymbol{\gamma}$ Methyltetronic Acid) (II-37). To a solution of lithium bis(trimethylsilyl)amide (15 mmol, 1 M in THF) in THF (40 mL) was added Ethyl 2(S)-acetoxypropanoate (II-36) $(1.00 \mathrm{~g}, 6.29 \mathrm{mmol})$ in THF (40 mL) at $-78{ }^{\circ} \mathrm{C}$. The reaction was kept at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then poured into $2 M \mathrm{HCl}(60 \mathrm{~mL})$. The two layers were separated and the aqueous layer washed with EtOAc. The combined organics were dried and the solvents removed under reduced pressure. The oil was brought into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried and the solvent removed to provide a solid. The solid was then recrystallized from EtOAc-low boiling petroleum ether to yield the desired product pure ($0.25 \mathrm{~g}, 2.2 \mathrm{mmol}$) in 35% yield. ($\mathrm{mp} .108-111^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.93(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (s, 1H), 11.92 (bs, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.33,77.32,88.18,178.13$, 185.04; IR (oil/ NaCl) 2942, 2708, 1709, 1599, 1279, 1238, $909 \mathrm{~cm}^{-1}$.

Formation of II-38. To II-37 ($2.00 \mathrm{~g}, 20.00 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(40.0 \mathrm{~mL})$ was added benzylamine ($1.95 \mathrm{~g}, 18.18 \mathrm{mmol}$) and a catalytic amount of $p-\mathrm{TsOH}$ at room temperature. The reaction was fitted with a Dean - Stark trap and heated at reflux. After 12 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. THF (40.0 mL) and acryloyl chloride ($2.80 \mathrm{~g}, 30.91 \mathrm{mmol}$) were then added. The reaction was again heated at reflux. After 14 h the reaction was cooled to room temperature and the solvent removed under reduced pressure. The reaction mixture was then chromatographed (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give pure II-38 in 29% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.49(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, 2.51-2.71 (m, 2H), 2.72-2.91 (m, 2H), $4.50(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{qd}, J=6.7,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.78,19.42,30.85,45.87,73.19,103.99,126.25,128.03$, $129.11,135.48,142.26,163.78,169.98$; IR (KBr) 2982, 2853, 1748, 1669, 1451, 1424, 1319, 1148, 1038, $773 \mathrm{~cm}^{-1}$.

Formation of II-39. To II-38 ($0.46 \mathrm{~g}, 1.96 \mathrm{mmol}$) in EtOH ($\mathbf{3 0 . 0} \mathrm{mL}$) and $\mathrm{MeOH}(15.0 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.72 \mathrm{~g}, 6.86 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.40 \mathrm{~g})$. The reaction vessel was purged with N_{2} and then flushed with and maintained under an atmosphere of $\mathrm{H}_{\mathbf{2}}$. After stirring for 16 h , the reaction mixture was filtered through a fine scintered glass funnel and the solvent removed under reduced pressure. The resulting crude solid was purified by flash column chromatography (silica, 230-400 mesh; eluent $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give pure II-39 in 70% yield. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (diagnostic peaks for the two isomers are designated A and B$) \boldsymbol{\delta}(\mathrm{A}) 1.31$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{qd}, J$ $=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, (B) $1.44(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J$ $=9.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.49$, 20.04, 20.33, 21.80, 29.57, 30.60, 37.21, 38.69, 47.73, 49.06, 56.05, 60.54, 78.95, 80.41, 127.95, 128.92, 128.96, 135.97, 169.50, 170.82, 175.95, 176.05.

Formation of II-40. To II-31 ($1.00 \mathrm{~g}, 2.41 \mathrm{mmol}$) in THF (16.1 mL) was added BuLi ($1.06 \mathrm{~mL}, 2.5 \mathrm{M}$ in THF) at $-78{ }^{\circ} \mathrm{C}$. After 10 min , phenylselenium chloride ($0.51 \mathrm{~g}, 2.65 \mathrm{mmol}$) in THF (8.0 mL) was added and the reaction allowed to warm to 0 ${ }^{\circ} \mathrm{C}$. After 3 min the reaction was quenched by addition of an equal volume of water. The mixture was extracted with 4 portions of $\mathrm{Et}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ and the organics dried and concentrated under reduced pressure. The residue was brought up in MeOH:THF:HOH (16.0:8.0:1.0 mL) and $\mathrm{NaIO}_{4}(1.55 \mathrm{~g}, 7.23 \mathrm{mmol})$ added. After 14 h the reaction was diluted with an equal volume of water and the mixture extracted with 10 portions of $\mathrm{Et}_{2} \mathrm{O}$ (10.0 mL). The organics were separated, dried, and the solvent removed under reduced pressure. The resulting crude solid was purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$:low boiling pet ether to give white crystals. ($0.78 \mathrm{~g}, 78 \%$ yield) ($\mathrm{mp}=98-99^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.34(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1$ H), 4.00 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=5.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1$ H), $4.33(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.37(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (ddd, $J=9.6,5.9,1.1 \mathrm{~Hz}, 1$ H), 7.10-7.15 (m, 2 H), 7.19-7.3 ($\mathrm{m}, 13 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.07$, 57.40, 68.07, 68.60, 70.11, 73.24, 127.32, 127.52, 127.69, 127.75, 127.87, 128.04, 128.24, 128.29, 128.44, 128.51, 134.59, 136.91, 137.40, 137.52, 162.29; IR (oil/NaCl) 3088, 2870, 1669, 1611, 1455, 1262, 1146, $1092 \mathrm{~cm}^{-1}$.

Formation of II-41. To II-40 ($0.10 \mathrm{~g}, 0.24 \mathrm{mmol}$) in t - $\mathrm{BuOH}(1.4 \mathrm{~mL})$ was added NMO (excess) and $\mathrm{OsO}_{4}(0.96 \mathrm{~mL}, 0.05 \mathrm{M}$ in t - BuOH) at room temperature. After 3 h the reaction was quenched by addition of excess $\mathrm{Na}_{2} \mathrm{SO}_{3}$. Solvent was removed under
reduced
purified
$50: 50 \mathrm{E}:$
were eva
MHz, C
H), 3.97
4.41 (s,
5.27 (d,

MHz ,
127.65,
171.20
calce fo
and Lin
the reac
was the
was ext
through
a solid
chromat
evapo
MH_{2}
MHz ,
(dd, $J=$
4.20
71.94,

1032 cD
added e
slow ad
filtered
was p
solvents
1300 M
$\mathrm{Hz}, 1$
H), 3.55
$=10.4$,
reduced pressure till the reaction color began to turn grey. The resulting mixture was purified by repeated flash column chromatography (silica, 230-400 mesh; eluent - Et 20 to $\left.50: 50 \mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOH}\right)$ till the resulting product fractions were clear and colorless. The solvents were evaporated to give a white solid ($0.07 \mathrm{~g}, 64 \%$ yield) ($\mathrm{mp}=95-98{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1$ H), $3.97(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=15.6,1 \mathrm{H}), 4.37(\mathrm{td}, J=3.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11-7.21 (m, 4 H), 7.21-7.39 (m, 11 H); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $47.56,58.98,68.11,68.85,69.57,71.48,73.13,75.21,127.39,127.55$, $127.65,127.74,127.83,128.23,128.35,128.41,128.53,136.83,137.19,137.43$, 171.20δ; IR (oil/ NaCl) 3409, 3088, 3031, 2869, 1645, 1455, 1250, $1074 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5} m / z 447.2046$, found $m / z 447.2046$.

Formation of II-7. To II-41 ($0.06 \mathrm{~g}, 0.13 \mathrm{mmol}$) was added $\mathrm{NH}_{3}(3.9 \mathrm{~mL})$ and Li metal at $-78^{\circ} \mathrm{C}$, until the solution turned a persistent deep blue. After 3 h at reflux the reaction was cooled to $-78^{\circ} \mathrm{C}$ and quenched by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction was then allowed to warm to room temperature allowing for NH_{3} removal. The reaction was extracted with 10 portions of a solution of $\mathrm{CHCl}_{3}: \mathrm{MeOH}(2: 1,2.0 \mathrm{~mL})$ and filtered through cotton. Solvent removal under reduced pressure then under flat vacuum resulted in a solid which was dissolved in a minimum amount of MeOH and purified by flash column chromatography (silica, 230-400 mesh; eluent -90:10 $\mathrm{CHCl}_{3}: \mathrm{MeOH}$). The solvents were evaporated to give a white solid ($0.01 \mathrm{~g}, 44 \%$ yield) ($\mathrm{mp}=163-168{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.23(\mathrm{td}, J=6.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=11.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dd, $J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=5.7,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.20 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 57.30, 61.11, 67.20, 68.14 , $71.94,173.17$ ס ; IR (oil/NaCl) 3287, 3063, 2941, 2890, 2834, 1609, 1453, 1281, 1175, $1032 \mathrm{~cm}^{-1}$.

Formation of II-43. To II-41 ($0.07 \mathrm{~g}, 0.16 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(1.6 \mathrm{~mL})$ was added excess LAH at room temperature. After 3 h the reaction was quenched at $0^{\circ} \mathrm{C}$ via slow addition of $15 \% \mathrm{NaOH}$ until all visible LAH had been consumed. The reaction was filtered, dried and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a clear, colorless oil ($0.07 \mathrm{~g},>99 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (cis isomer) $\delta 2.21$ (dd, $J=12.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.38(\mathrm{dt}, J=8.7,2.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.82 (s-broad, 2 H), 2.91 (dd, $J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1$ H), 3.55 (dd, $J=8.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J$ $=10.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$
room te
under r
white s
(ddd, J
3.0 Hz ,
$J=6.8$
Refere
1)
2) E

19
3) (a)
(a)
4)
5)
(a)
Fie
6)
7)
($\mathrm{s}, 1 \mathrm{H}$), $4.56(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 15 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 54.71,56.67,64.76,66.87,68.10,73.26,74.61,75.90$, $78.42,127.16,127.65,127.74,127.79,127.97,127.99,128.40,128.94,137.85$, 138.52, 138.60; IR (oil/NaCl) 3422, 3063, 2923, 1495, 1453, $1098 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{4} m / z 433.2253$, found $m / z 433.2253$.

Formation of II-6. To II-43 ($0.08 \mathrm{~g}, 0.18 \mathrm{mmol}$) in EtOH (1.8 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(0.18 \mathrm{~g})$ and conc $\mathrm{HCl}(1.8 \mathrm{~mL})$. The reaction flask was purged with N_{2} and then flushed with and maintained under an atmosphere of H_{2} and allowed to stir at room temperature. After 14 h the reaction mixture was filtered and the solvent removed under reduced pressure. The crude solid was recrystallized from $\mathrm{MeOH}: \mathrm{Et}_{2} \mathrm{O}$ to give a white solid. ($0.01 \mathrm{~g}, 33 \%$ yield) ($\mathrm{mp}=184-186{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.00$ (ddd, $J=9.9,6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=13.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (dd, $J=13.8$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=12.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H})$.

References.

1) (a) Fairbanks, A. J.; Carpenter, N. C.; Fleet, G. W. J.; Ramsden, N. G.; de Bello, I. C.; Winchester, B. G.; Al-Daher, S. S.; Nagahashi, G. Tetrahedron 1992, 48, 3365. (b) Sharon, N. Lis, H. Sci. Amer. 1993, 82 (c) Fuhrmann, U.; Bause, E.; Legler, G.; Ploegh, H. Nature 1984, 307, 755.
2) Evans, S. V.; Fellows, L. E.; Shing, T. K. M.; Fleet, G. W. J. Phytochemistry 1985, 24, 1953.
3) (a) Truscheit, E.; Frommer, W.; Junge, B.; Muller, L.; Schmidt, D. D.; Wingender, W. Angew. Chem. Int. Ed. Engl. 1981, 20, 744. (b) Fellows, L. E. Chem. Ber. 1987, 23, 842.
4) (a) Fr. Patent; FR 1524395, [CA 71:91733w]. (b) Bourrinet, P.; Quevauviller, A. Ann. Pharm. Fr. 1968, 26, 787, [CA 71: 29012g]. (c) Bourrinet, P.; Queviller, A. Compt. Rend. Soc. Biol. 1968, 162, 1138, [CA 70:95233k].
5) (a) Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. Tetrahedron 1989, 45, 319. (b) Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. Tetrahedron 1989, 45, 327.
6) Paulvannan, K.; Stille, J. R. J. Org. Chem. 1992, 57, 5319.
7) (a) Daniewski, A. R.; Kiegiel, J. Synthesis 1987, 70, 5. (b) Murahashi, S-I.; Oda, Y.; Naota, T. Tetrahedron Lett. 1992, 33, 7557. (c) Daniewski, A. R.; Warchol, T. Liebigs Ann. Chem. 1992, 965. (d) Miki, Y.; Ohta, M.; Hachiken, H.; Takemura, S. Synthesis 1989, 312. (e) Wender, P. A.; Tebbe, M. J. Synthesis 1991, 1089. (f) Conversations with Paulvannan, K. (g) Canan, Koch, S. S.;
8)
9)
10)
11)

Chamberlin, R. Synth. Commun. 1989, 19, 829. (h) Hassal, C. H. Organic Reactions 1943, 3, 73. (i) Wilson, S. R.; Di Grandi, M. J. J. Org. Chem. 1991, 56, 4766. (j) Siginome, H.; Yamada, S. J. Org. Chem. 1985, 50, 2489. (k) Baxter, A. J. C.; Holmes, A. B. JCS Perkin I 1977, 2343. (l) Warasaki, K.; Sakakura, T.; Uchimura, T.; Guedin-Vuong, D. J. Am. Chem. Soc. 1984, 106, 2954.
8) Paulvannan, K.; Stille, J. R. Tetrahedron Lett. 1993, 34, 6673.
9) (a) Kurth, M. J.; O'Brian, M. J.; Hope, H.; Yanuck, M. J. Org. Chem. 1985, 50, 2626. (b) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 31, 2647.
10) Cook, G. R.; Beholz, L. G.; Stille, J. R. Tetrahedron Lett. 1994, 35, 1669.
11) (a) Fryuk, M. D.; Dosnich, B. J. Am. Chem. Soc. 1978, 100, 5491. Brandage, S.; Flodman, L.; Norberg, A. J. Org. Chem. Soc. 1984, 49, 927.
12) (a) Clive, D. L. J. Tetrahedron 1978, 34, 1049. (b) Reich, H. J. Acc. Chem. Res. 1979, 12, 22.
13) (a) Nishiyama, S.; Yamamura, S.; Hasegawa, K.; Sakoda, M.; Harada, K. Tetrahedron Lett. 1991, 32, 6753. (b) Guillerm, G.; Varkados, M.; Auvin, S.; Legoffis, F. Tetrahedron Lett. 1987, 28, 535.
14) The physical data for II-6 were consistent with those reported, 5b
15) The physical data for II-7 were consistent with those reported, 5a
Introc
these c
proces
enzym
anothe
(Figu
agents

CHAPTER III
 AZA-ANNULATION AS A ROUTE TOWARD THE PREPARATION OF PEPTIDE MIMICS

Introduction.

There has recently been increased interest in the preparation of peptide mimics, as these compounds have been used in the modification of an increasing number of biological processes. Compounds such as A58365A (III-1) act as effective angiotension converting enzyme (ACE) inhibitors, effective for the treatment of hypertension. ${ }^{1}$ L-696,229 (III-2), another peptide mimic, constitutes one of the latest in HIV-reverse transcriptase inhibitors (Figure III-1). ${ }^{2}$ Other peptide mimics have been implicated for use as potential anti-cancer agents. ${ }^{3}$

Figure III-1. Several Important Peptide Mimics

III-1

III-2
(L-696,229)
the tar
but dif
desirec
III-2).
them p
$\mathrm{H}_{2} \mathrm{~N}$
comm
units
Any
An ex

In the design of a peptide mimic, a known peptide possessing some function acts as the target for the design. A peptide surrogate is then designed to mimic the original peptide but differ from it significantly enough to disrupt normal enzyme function and elicit some desired response. An example of this method of design was executed by Rapoport (Figure III-2). ${ }^{4}$ In this work, several dipeptides were targeted and 5 -membered ring analogs of them prepared. In each instance, the first amino acid side chain was tethered into the ring.

Figure III-2. Examples of Peptide Surrogate Design

III-3
(Val-Ala)

III-4

III-5
(Ile-Ala)

III-6

III-7
(Leu-Ala)

III-8

Extremely important to peptide function is the peptides secondary structure. One common structural unit is the β-turn. In natural peptides, the β-turn is four amino acid units long. In β-turn mimics, the turn can be comprised of a variety of structural units. Any structure that effectively mimics the topography of the targeted β-turn may be used. An example of a conformationally restricted β-turn mimic is presented in Figure II-3. ${ }^{5}$
mimi as fix
confc
infon
restri
incor
right
signi
Thes

Figure III-3. β-Turn Mimic

III-9
(β-turn)

III-10
(β-turn mimic)

Many conformationally restricted β-amino acids have also been prepared as peptide mimics. ${ }^{6-8}$ Generally, these peptide surrogates are resistant to enzymatic cleavage as well as fixed in geometry, making them effective probes of enzyme function. Incorporation of conformationally restricted β-amino acid segments into linear bioactive peptides can give information concerning the linear peptides active conformation. ${ }^{7}$ Further, conformationally restricted β-amino acids may be highly biologically active without further modification.

An example of a piperidinone β-turn mimic is shown in Figure III-4. 8 When incorporated into short peptides, the β-amino acid adopts the conformation shown at the right. Pyridinone β-amino acids and their derivatives, such as III-1, would exhibit significantly altered external topography, thus potentially inhibiting enzyme function. These pyridinone β-amino acids are also very stable.

Figure III-4. Piperidinone Peptide Mimic

III-11

III-11
(3-D conformation)

The objective of the current work was to examine ways to employ the azaannulation as a tool for accessing conformationally restricted 6-membered-ring peptide mimics. ${ }^{6}$ The general strategy for approaching functionalized pyridinone systems is indicated in Scheme III-1.

Scheme III-1. General Strategy for Functionalized Pyridinone Formation

To this end, a variety of substrates were prepared and annulated, exploring the scope and generality of the aza-annulation methodology toward peptide mimic formation. The prepared piperidinone β-amino acid mimics were then oxidized yielding the corresponding pyridinone β-amino acids.

Results and Discussion.

As precursors of pyridones substituted at the C-4 position and especially the C-5 position, functionalized β-ketoesters, β-ketoamides, or acetylinic esters were prepared. These reacted with benzylamine or the amine salt of phenyl glycine ethyl ester to provide compounds with a structure similar to III-14. ${ }^{10}$ These were then annulated using the mixed anhydride of 2-acetamidoacrylic acid, accessing structures similar to III-13.9 DDQ oxidation of these compounds provided compounds similar to III-12. ${ }^{11}$ The amino acids used as models for preparation of the β-amino acid analogs by aza-annulation were: alanine (III-15), proline (III-16), aspartic acid methyl ester (III-17), benzyl protected serine (III-18), and phenylalanine (III-19). The aza-annulated derivative types are represented by structures III-20-III-24 (Figure III-5).

Initially, the β-ketoester III-25 was annulated. Reaction of III-25 with benzylamine and 2-acetamidoacrylic acid cleanly afforded III-27 in 91% yield. DDQ oxidation provided III-28 in 73\% yield (Scheme III-2). Annulation of enaminoester III29 with 2-acetamidoacrylic acid provided III-30 in 77\% yield. Oxidation of III-30 with DDQ gave III-31 in 73\% yield (Scheme III-3).

Figure III-5. Aza-annulation β-Amino Acid Analogs

III-15
(alanine)

III-16
(proline)

III-17
(aspartic acid methyl ester)

III-22

III-18
(benzyl protected serine)

III-23

III-19
(phenylalanine)

III-24

Scheme III-2. Aza-annulation of β-ketoester III-25

III-25
$\mathrm{BnNH}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux

III-26
2-acetamidoacrylic acid, NaH, $\mathrm{EtO}_{2} \mathrm{CCl}, \mathrm{THF}$ (91% from III-25)

III-28

Scheme III-3. Aza-annulation of Enamino Ester III-29

with
dikete
reacti
amine
provic
gave
Simil
as a
in 55
III. 30

34 wi
ratio o

Several β-ketoamide substrates were smoothly prepared by reaction of diketene with benzyl amine or the amine salt of glycine ethyl ester (Scheme III-4). Reaction of diketene with benzyl amine, using NaHCO_{3} as a base, provided III-33 in 81% yield while reaction with the amine salt of glycine ethyl ester provided III-34 in 98% yield.

Scheme III-4. Preparation of β-keto amide substrates

Aza-annulation of III-33 and III-34 were executed as described ${ }^{7}$ using benzyl amine or the amine salt of phenylglycine ethylester (Scheme III-5 and III-6). Oxidation provided the corresponding peptide analog types. Annulation of III-33 with benzyl amine gave III-35 in 90\% yield. Subsequent oxidation with DDQ afforded III-36 in 76\% yield. Similar reaction of III-33 with the amine salt of phenylglycine ethylester provided III-37 as a mixture of diastereomers in a ratio of 51:49 in 87% yield. DDQ oxidation gave III-38 in 55% yield. For the annulation substrate III-34, reaction with benzyl amine provided III-39 in 95\% yield. DDQ oxidation afforded III-40 in 78\% yield. Annulation of III34 with the protected phenylglycine salt gave III-41 as a mixture of diastereomers in a ratio of $51: 49$ in 86% yield. Oxidation of III-41 provided III-42 in 60% yield.

Scheme III-5. Aza-annulation of $\boldsymbol{\beta}$-ketoamide III-33

III-33

III-35
DDQ, toluene, reflux
(76\%)

III-36

Scheme III-6. Aza-annulation of β-ketoamide III-34

III-34

To effect placement of functionality at the C-5 position, aza-annulation using acetylenic esters was executed (Scheme III-7, III-8, and III-9). Annulation of III-43 with benzyl amine gave III-48 in 71% yield. Subsequent DDQ oxidation gave III-45 in 71% yield. Ethyl ester II-45 (prepared as described in chapter II) was annulated in 83% yield providing III-46. DDQ oxidation of III-46 failed, giving recovery starting material. ${ }^{11}$ Substrate III-49 (prepared in similar fashon to II-25 in 94\% yield) was annulated using benzyl amine to provide III-50 in 61% yield. The stereochemical conformation about the double bond was determined using NOE. 12 The expected isomer comprised 8% of the product mixture.

Scheme III-7. Aza-annulation of Acetylenic Ester III-43

III-43

1) $\mathrm{BnNH}_{2}, \mathrm{THF}$, reflux
2) 2-acetamidoacrylic acid, NaH, THF (71\%)

III-44
DDQ, toluene, reflux (71\%)

III-45

Scheme III-8. Aza-annulation of Acetylenic Ester II-45

Scheme III-9. Aza-annulation of Acetylenic Ester III-49

III-48

III-49

1) $\mathrm{BnNH}_{2}, \mathrm{THF}$, reflux
2) 2-acetamidoacrylic acid, $\mathrm{NaH}, \mathrm{THF}$ (61\%)

III-50

Hydrolysis of III-28 and III-31 prepared the substrates for acylation of the amine or alkylation of the carboxylic acid. Treatment of III-28 with aqueous KOH cleanly hydrolyzed the ester leaving the amide intact to provide III-51 in 83% yield. Hydrolysis of III-31 under similar conditions provided III-49 in 82% yield. To deprotect the amine of III-28, KOH in $\mathbf{3 0 \%} \mathrm{H}_{2} \mathrm{O}_{2}$ was used to give III-53 in 75\% yield (Scheme III-10).

Scheme III-10. Hydrolysis of III-28 and III-31

The versatility of compounds such as III-52 was demonstrated by alkylation of the free carboxylic acid. Alkylation of III-52 with phenylglycine ethyl ester provided III-54 in 78% yield (eq 18).

1) $\mathrm{NaH}, 2) \mathrm{EtO}_{2} \mathrm{CCl}$,
2) phenylglycine ethylester (78\%)

III-54

Hydrogenation of III-50 under conditions of $\mathrm{Pd} / \mathrm{C}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, and H_{2} at one atmosphere resulted in the formation of III-55 as a mixture of diastereomers in a ratio of 96:4 in 94% yield (eq 19). Attempted DDQ oxidation of III-50 failed. 9

III-50

III-55

Conclusion.

The aza-annulation constitutes a quick and efficient method of building up highly functionalized 6-membered nitrogen heterocycles. Oxidation of these heterocycles provide the corresponding functionalized pyridone ring. The aza-annulation methodology thus constitutes a rapid and efficient route for the formation of peptide mimics with functionalization possible at the $\mathrm{C}-2, \mathrm{C}-4$, and $\mathrm{C}-5$ positions. In the current work, the azaannulation methodology was used to prepare a series of extended, 6-membered ring amino acid analogs. ${ }^{14}$ These analogs constitute conformationally modified protein segments that may be incorporated into peptide mimics.

Experimental Section.

General Methods. All reactions were carried out using standard inert atmosphere techniques to exclude moisture and oxygen, and reactions were performed under an atmosphere of nitrogen. Benzene, toluene and ether were distilled from sodium/benzophenone immediately prior to use. Xylenes and decalin were heated over calcium hydride for a minimum of 12 h and then distilled prior to use. LiAlH_{4} (1 M in THF) was obtained from Aldrich Chemical Co. Unless specified, concentration of mixtures was performed using a Büchi rotary evaporator.

Gas chromatographic (GC) analyses were carried out on one of two instruments. For lower molecular weight compounds gas chromatographic analysis was carried out isothermally on a Perkin-Elmer 8500 instrument using a 50 meter RSL- 200 capillary column (5% methylphenyl silicon) and an FID detector at $200^{\circ} \mathrm{C}$ oven temperature, $220^{\circ} \mathrm{C}$ injector temperature, and $300^{\circ} \mathrm{C}$ detector temperature. Helium gas pressure was set at 15 psi with a flow rate of $2 \mathrm{~mL} / \mathrm{min}$. For higher molecular weight compounds, gas chromographic analysis was carried out on a Hewlett-Packard 5880A series gas chromatograph fitted with a 300 meter silica capillary column and a flame ionization detector. For these analysis injector and detector temperatures were set at $250^{\circ} \mathrm{C}$ and the column oven temperature was programmed: $40^{\circ} \mathrm{C}, 2 \mathrm{~min} ., 10^{\circ} \mathrm{C} / \mathrm{min}$. ramp to $200^{\circ} \mathrm{C}$. All reactions were monitored by GC and the reactions terminated either when the starting material had been consumed or no further reaction appeared to continue. For reactions in which a Dean-Stark trap was used, the trap was filled with molecular sieves to a level below that of returning solvent turbulence. These were changed during reactions in which additional reagent was added after the reactions initiation. Molecular sieves were activated by heating in a $150^{\circ} \mathrm{C}$ oven for at least 24 hours prior to use. NMR spectra were obtained on a VXR-300 spectrometer using CHCl_{3} with 0.1% TMS as an internal standard $\boldsymbol{\delta}(0.00$ ppm), $\mathrm{CD}_{3} \mathrm{OD}$, Acetone- d_{6}, or DMSO- d_{6}, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint = quintet, sept = septet), integration and coupling. Infrared spectra were recorded on a Nicolet 42 FT-IR instrument.

General Method for the Formation of $\boldsymbol{\beta}$-Ketoamides. Diketene (5.0-30.0 mmol, 1.0 equiv) and the amine or amine hydrocloride salt (1.0 equiv) were taken up in benzene (0.5 M relative to the amine) along with an excess of NaHCO_{3} (2.0 equiv) at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 14 h , the reaction mixture was filtered and the solvent removed under reduced pressure to yield the product as a solid. Recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CHCl}_{3}$ yielded the product as white leaflets.

III-34: ($1.74 \mathrm{~g}, 9.35 \mathrm{mmol}, 99 \%$ yield); $\mathrm{mp} 52-53^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.20$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (bs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.84,30.36,41.11$, 49.63, 61.13, 166.16, 169.41, 203.54; IR (KBr) 3353, 2986, 1754, 1715, 1673, 1543, $1418,1401,1321,1175 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z}$ 187.0845, found m / z 187.0844.

III-33: ($3.59 \mathrm{~g}, 18.80 \mathrm{mmol}, 81 \%$ yield); $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.90,43.46,49.56,127.42,127.62,128.62,137.88,165.38$, 204.35; IR (KBr) 3249, 3085, 1715, 1640, 1443, 1410, 1190, $1163 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~m} / \mathrm{z}$ 191.0146, found m / z 191.0982.

General Method for the Aza-Annulation of $\boldsymbol{\beta}$-Ketoamides and $\boldsymbol{\beta}$ Ketoesters. A mixture of the primary amine or primary amine salt ($0.5-5.0 \mathrm{mmol}, 1.0$ equiv) and the B-ketoamide (1.0 equiv) were taken up in benzene (0.5 M relative to the amine) along with BF_{3}-etherate (0.5 equiv) and fitted with a modified Dean-Stark trap which passes returning solvent through molecular sieves. After the reaction had gone to completion, as indicated by ${ }^{1} \mathrm{H}$ NMR, the solvent was removed under reduced pressure and the crude enamine brought up in THF (0.1 M relative to the enamine). The sodium salt of 2-acetamidoacrylic acid (1.3 equiv) was added at $-78^{\circ} \mathrm{C}$ and the reaction allowed to stir at rt for 14 h , or longer if ${ }^{1} \mathrm{H}$ NMR suggested the reaction not complete. Sat. aq. NaHCO_{3} (excess) was added, and the mixture was extracted 4 times with EtOAc. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{3}$, filtered, and the solvent evaporated under reduced pressure. The crude product was purified by flash column chromatography (silica, 230-400 mesh, eluent, $\mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOAc}^{\mathrm{MeOH}}$)
III-27: ($0.56 \mathrm{~g}, 1.70 \mathrm{mmol}, 74 \%$ yield); mp $132-135^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ $1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{tq}, J=15.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{dt}, J=$ $14.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{bd}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22-7.36(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.14,16.11,23.15,27.69,45.80,48.96,60.51,109.12,126.04,127.41$, $127.63,128.83,136.73,147.35,166.68,170.12$; IR (KBr) 3299, 2986, 1686, 1389, 1248, $1163 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z} 330.1580$, found $\mathrm{m} / \mathrm{z} 330.1572$.
III-30: ($1.27 \mathrm{~g}, 4.77 \mathrm{mmol}, 74 \%$ yield); mp $150-151^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ $1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 2.03 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{tt}, J=15.6$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{td}, J=7.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=16.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dt}$,
$J=11.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dt}, J=11.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.54$ (dt, J = 14.4, 7.2, 1 H), $6.39\left(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.33$, $21.59,23.17,27.99,31.20,46.17,49.60,60.15,100.82,152.30,166.41,167.89$, 170.23; IR (KBr) 3281, 2984, 2849, 1690, 1642, 1545, 1399, 1248, 1173, $1109 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}$ 266.1267, found m / z 266.1260.
III-39: ($1.06 \mathrm{~g}, 2.74 \mathrm{mmol}, 95 \%$ yield); mp $71-74^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{btd}, J=15.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=18.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dd, $J=18.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{dt}, J=15.3,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ 7.13 (m, 3 H), 7.19-7.34 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.84,15.79,22.78$, $28.31,41.18,45.42,48.74,61.09,111.95,125.82,127.12,128.58,136.78,139.74$, $168.09,169.34,169.69,170.25$; IR (KBr) $3285,2984,1744,1657,1584,1543,1319$, $1190 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 387.1794$, found $m / z 387.1789$.
III-35: ($0.78 \mathrm{~g}, 2.06 \mathrm{mmol}, 90 \%$ yield); $\mathrm{mp} 82-85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ 1.92 (s, 3 H), 2.07 (d, $J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.41$ (btd, $J=15.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dd, $J=$ $15.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=14.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=14.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{dt}, J=15.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.80 (bt, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{bd}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-$ 7.30 (m, 8 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.87,22.79,28.51,43.44,45.45,48.78$, $112.45,125.86,127.15,127.57,128.39,128.61,136.82,138.02,139.12,167.80$, 169.27, 170.21; IR (KBr) 3289, 3002, 1734, 1659, 1584, 1543, $1321,1248 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}$ 391.1896, found m / z 391.1895.
III-41: (mixed diastereomers, ratio 49:51); ($0.52 \mathrm{~g}, 1.13 \mathrm{mmol}, 86 \%$ yield); $\mathrm{mp} 77-80^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, characteristic peaks) δ (major isomer) $2.03(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$), 2.45 (btq, $J=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (ddd, $J=7.8,3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.62(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{bt}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, (minor isomer) $2.02(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 3 \mathrm{H}$), 2.33 (btq, $J=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (ddd, $J=9.0,3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (s, 1 H), 6.13 (bt, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.97,16.29,16.56$, $22.75,22.98,28.16,28.26,41.35,41.42,46.44,49.04,59.71,59.91,60.78,61.32$, $61.80,62.35,100.38,113.15,113.52,167.73,127.71,127.77,127.99,128.04$, $128.09,128.20,128.34,133.26,134.22,134.44,139.46,139.49,140.42,167.92$, $168.04,168.47,169.04,169.30,169.35,169.40,169.74,169.79,170.22,170.30$, 171.05; IR (KBr) 3277, 2986, 1744, 1655, 1541, $1204 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7}$ m / z 459.2006, found $m / z 459.2011$.

III-37: (mixed diastereomers, ratio $49: 51)$; $\left(0.36 \mathrm{~g}, 0.80 \mathrm{mmol}, 87 \%\right.$ yield); $\mathrm{mp} 83-85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, characteristic peaks) δ (major isomer) $2.01(\mathrm{~s}, 3 \mathrm{H}), 2.22$ (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.30(\mathrm{bdt}, J=9.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.67(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H})$, (minor isomer) $2.02(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{btd}, J=9.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ (s, 1 H), $5.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.87,16.22,16.50,20.86$, 22.78, 28.17, 28.33, 40.42, 43.46, 46.47, 48.94, 59.82, 61.67, 111.05, 113.61, $114.01,117.30,126.02,127.06,127.17,127.50,127.55,127.71,127.95,128.21$, 128.37, 128.41, 128.52, 134.26, 134.42, 137.88, 137.95, 138.52, 139.39, 167.46, $167.64,168.02,168.43,169.22,169.61,170.13,170.18$; IR (KBr) 3297, 3007, 1742, 1651, 1532, $1217 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 463.2107$, found $m / z 463.2150$.

General Method for the Formation of Acetylenic Esters. To benzyl protected propargyl alcohol (10-50 mmol, 1.0 equiv) in THF (0.5 M relative to the alcohol) was added $\mathrm{BuLi}\left(1.0\right.$ equiv, 2.5 M in Hexane) at $-78^{\circ} \mathrm{C}$. After 10 min ethyl chloroformate (1.5 equiv) was added dropwise. The reaction was slowly warmed to $0^{\circ} \mathrm{C}$ (only until a deep red color began to form for the case of II-25, after which time it was promptly quenched) and then to rt . After 14 h , the reaction was quenched by addition of water. The organics were separated and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent petroleum ether). The solvents were evaporated to give a clear, colorless oil.
II-25: ($1.61 \mathrm{~g}, 7.45 \mathrm{mmol}, 91 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29$ (t, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.78,56.53,61.90,71.81,78.07,82.94,127.87$, 127.90, 128.29, 136.59, 152.87; IR (oil/NaCl) 3032, 2984, 2872, 2236, 1713, $1248 \mathrm{~cm}^{-}$ 1.

III-49: ($3.06 \mathrm{~g}, 16.28 \mathrm{mmol}, 94 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.00,24.97,61.87,74.84,86.20,127.16,127.99,128.69$, 134.07, 153.67; IR (oil/ NaCl) 2984, 2238, 1709, $1255 \mathrm{~cm}^{-1}$.

General Method for the Aza-Annulation of Acetylenic Esters. A mixture of the primary amine ($0.5-5.0 \mathrm{mmol}, 1.0$ equiv) and the acetylenic ester (1.0 equiv) were taken up in THF (0.5 M relative to the amine) along with BF_{3}-etherate (0.5 equiv) and allowed to heat at rt . After the reaction had gone to completion, as indicated by ${ }^{1} \mathrm{H}$ NMR, the solvent was removed under reduced pressure and the crude enamine brought up in THF (0.1 M relative to the enamine). The sodium salt of 2-acetamidoacrylic acid (1.3 equiv) was added at $-78^{\circ} \mathrm{C}$ and the reaction allowed to stir at rt for 14 h , or longer if ${ }^{1} \mathrm{H}$

NMR suggested the reaction not complete. Sat. aq. NaHCO_{3} (excess) was added, and the mixture was extracted 4 times with EtOAc. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{3}$, filtered, and the solvent evaporated under reduced pressure. The crude product was purified by flash column chromatography (silica 230-400 mesh, eluent, $\left.\mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOAc}: \mathrm{MeOH}\right)$
III-44: ($3.60 \mathrm{~g}, 10.00 \mathrm{mmol}, 71 \%$ yield); $\mathrm{mp} 151-154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.05$ (s, 3 H), 2.34 (dd, $J=16.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (dd, $J=16.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (s, 3 H), 3.73 ($\mathrm{s}, 3 \mathrm{H}$), 4.63 (ddd, $J=15.6,7.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.65 (d, $J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{bd}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.36 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.07,26.41,47.81,48.43,52.24$, 52.90, 108.95, 127.13, 127.79, 128.56, 135.77, 141.88, 163.32, 165.05, 169.21, 170.14; IR (KBr) 3306, 2953, 1742, 1705, 1634, 1534, 1437, $1248 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~m} / \mathrm{z} 360.1322$, found $\mathrm{m} / \mathrm{z} 360.1308$.
III-46: ($3.32 \mathrm{~g}, 7.61 \mathrm{mmol}, 83 \%$ yield); mp $97-99^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{td}, J=16.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=$ $16.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=12.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (dt, $J=15.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (bd, $\left.J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.38(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(300} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 13.97,22.99,28.00,45.62,48.50,60.90,63.07,72.50,112.97,125.91,127.16$, $127.87,128.32,128.64,137.12,137.39,145.35,165.91,170.07$; IR (KBr) 3310 , $3011,2936,1673,1632,1497,1392,1372,1217 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z}$ 436.1998, found m / z 436.2064.

III-50: (mixed isomers, ratio 92:8); ($2.64 \mathrm{~g}, 6.5 \mathrm{mmol}, 61 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{ddd}, J=13.1,11.1,6.6,1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, 2.80 (ddd, $J=13.1,9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85-4.87(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{dt}, J=11.1,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13-7.38 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.84,23.00,29.05$, $40.78,48.71,51.43,61.38,121.37,127.32,127.47,128.40,128.51,128.90,134.38$, $135.82,137.00,169.53,170.00,171.91$; IR (KBr) 3330, 2982, 1734, 1671, 1496, $1410,1244,1184 \mathrm{~cm}^{-1}$.

General Method for the DDQ Oxidation of Aza-Annulation Products. A mixture of the aza-annulation product ($0.5-50.0 \mathrm{mmol}, 1.0$ equiv) and DDQ (1.5 equiv) were taken up in tolune (0.1 M with respect to the aza-annulation product). After heating at reflux for 14 h the solvent was removed under reduced pressure and the crude product was
purified by flash column chromatography (silica, 230-400 mesh, eluent, $\mathrm{Et}_{2} \mathrm{O}$: EtOAc) or recrystallized (CHCl_{3} : EtOAc). For compounds derived from B-ketoamides, the oxidation was repeated to give the indicated yields.
III-28: ($0.029 \mathrm{~g}, 0.088 \mathrm{mmol}, 58 \%$ yield); mp $176-178{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.47$ ($\mathrm{s}, 2 \mathrm{H}$), 7.09 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 3 \mathrm{H}), 8.30(\mathrm{bs}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.19,16.91,24.63,48.33,61.15,110.44,122.64$, $125.77,126.05,127.64,128.94,135.22,145.30,158.40,165.88,169.02$; IR (KBr) 3308, 2982, 1713, 1638, 1516, $1192 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}$ 328.1423, found $m / z 328.1411$.
III-31: ($0.039 \mathrm{~g}, 0.150 \mathrm{mmol}, 78 \%$ yield); mp $225-226{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.21$ (quint, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}$), $4.16(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{bs}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.31,20.99,24.63,33.04,49.43,60.78,106.11$, 122.55, 126.13, 149.57 156.83, 164.86, 168.80; IR (KBr) 3297, 2982, 2936, 1715, $1684,1636,1532,1196,1100 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z} 264.1110$, found m / z 264.1108.

III-40: ($0.31 \mathrm{~g}, 0.15 \mathrm{mmol}, 80 \%$ yield); $\mathrm{mp}=177-180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Acetone-d d_{6}) $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.56(\mathrm{~m}, 3 \mathrm{H})$, $8.01(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Acetone-d d_{6}) δ $14.42,17.22,24.38,42.21,48.85,61.47,108.55,122.56,127.30,129.21,129.52$, $129.62,137.19,145.59,158.65,168.80,170.10,170.28$; IR (KBr) 3277, 3032, 1748, $1671,1644,1512,1210,1003 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 385.1638$, found m / z 385.1623.

III-36: ($0.21 \mathrm{~g}, 0.56 \mathrm{mmol}, 76 \%$ yield); $\mathrm{mp} 180-181^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Acetone$\left.\mathrm{d}_{6}\right) \delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 2 \mathrm{H}), 7.12-7.16$ (m, 2 H), 7.19-7.56 (m, 8 H), $8.18(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, Acetone-d ${ }_{6}$) $\delta 17.28,24.36,44.20,48.79,108.50,122.42,127.30$, $127.83,128.13,128.45,129.21,129.51,129.60,136.99,137.25,145.43,158.59$, 168.47, 169.97; IR (KRr) 3299, 3067, 3034, 2880, 1705, 1634, 1507, 1476, 1248, 1003 cm^{-1}; HRMS for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}$ 389.1739, found $m / z 389.1762$.
III-42: ($0.32 \mathrm{~g}, 0.70 \mathrm{mmol}, 60 \%$ yield); $\mathrm{mp}=204-205^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3$ H), 4.13-4.29 (m, 6 H), $6.14(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{bs}, 1 \mathrm{H}), 7.26-7.48(\mathrm{~m}, 5 \mathrm{H}), 8.32(\mathrm{~s}, 1$ H), $8.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.08,17.53,24.54,41.88,61.74$,
$62.17,62.65,112.68,115.71,121.15,126.60,128.08,128.59,128.92,132.86$, $134.72,140.19,157.78,167.40,167.67,169.65$; IR (KBr) $3314,2986,1744,1645$, 1524, 1217, 1082, $1003 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~m} / \mathrm{z} 457.1849$, found m / z 457.1853.

III-38: ($0.16 \mathrm{~g}, 0.35 \mathrm{mmol}, 55 \%$ yield); $\mathrm{mp}=155-156^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 2.18 (s, 3 H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.57$ (dd, $J=5.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.12$ (s, 1 H), 6.19 (m, 1 H), 7.19-7.43 (m, 10 H), 8.27 (s, 1 H), 8.53 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.10,17.52,24.67,44.28,62.11$, 62.69, 116.21, 120.69, 126.86, 127.73, 127.85, 128.15, 128.54, 128.62, 128.85, $133.01,137.69,139.77,140.51,167.20,167.38,169.27$; IR (KBr) 3280, 2960, 2920, 1736, 1647, 1516, 1455, $1217 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 461.1951$, found m / z 461.1901.

III-45: ($0.21 \mathrm{~g}, 0.59 \mathrm{mmol}, 71 \%$ yield); $\mathrm{mp}=128-129^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}$ 2.19 (s, 3 H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 3.85 (s, 3 H), 5.26 ($\mathrm{s}, 2 \mathrm{H}$), 7.19-7.32 (m, 5 H), 8.34 (bs, 1 H), $8.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.67,50.44,52.62,53.41,109.06$, 120.06, 127.36, 128.04, 128.61, 128.83, 134.77, 138.14, 157.02, 163.12, 164.18, 169.23; IR (KBr) 3374, 3021, 2955, 1728, 1691, 1645, 1516, 1437, $1215 \mathrm{~cm}^{-1}$.

General Method for the Hydrolysis of Esters and Amides. A mixture of the oxidation product ($0.5-2.0 \mathrm{mmol}, 1.0$ equiv) and KOH (20.0 equiv) were taken up in $\mathrm{H}_{2} \mathrm{O}$ (for hydrolysis of esters) or $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (for hydrolysis of amides) (0.1 M with respect to the oxidation product). After 14 to 38 h , the reaction was extracted with CHCl_{3}, filtered, neutralizated with HCl , and the carboxcylic acid collected by filtration or the amines collected by solvent removal under reduced pressure followed by extraction with MeOH or acetone. The products were then recrystallized ($\mathrm{MeOH}: \mathrm{CHCl}_{3}$ or $\mathrm{MeOH}: \mathrm{Et}_{2} \mathrm{O}$). III-51: ($0.48 \mathrm{~g}, 2.03 \mathrm{mmol}, 61 \%$ yield); $\mathrm{mp}>260^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Acetone- d_{6}) $\delta 2.07$ (s, 3 H), 2.70 ($\mathrm{s}, 3 \mathrm{H}$), 5.55 (s, 2 H), 7.17 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.35$ ($\mathrm{m}, 4$ H), $8.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Acetone) $\delta 17.09,24.32,48.52,106.25,123.00$, $127.10,128.14,129.62,130.55,133.29,137.24,158.84,167.42,171.53$; IR (KBr) $3277,3031,1692,1622,1603,1553,1387,1190 \mathrm{~cm}^{-1}$.
III-52: ($0.061 \mathrm{~g}, 0.314 \mathrm{mmol}, 82 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$) $\boldsymbol{\delta} 2.03$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 21.09,32.45,48.73,111.03,128.51,129.14$, $135.41,143.12,156.81$; IR (KBr) $3364,1698,1615,1536,1117 \mathrm{~cm}^{-1}$.
III-53: ($0.047 \mathrm{~g}, 0.183 \mathrm{mmol}, 61 \%$ yield); mp 205-206 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6) $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 7.07-7.54(\mathrm{~m}, 5 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(75 MHz, DMSO-d $_{6}$) $\delta 16.83,30.74,115.41,127.05,128.34,129.37,129.86,133.98$, $135.86,137.69,160.60,169.74$; IR (KBr) 2928, 1709, 1640, 1549, 1455, 1256, 1024 cm^{-1}.

Formation of III-54: To a solution of II-52 ($0.20 \mathrm{~g}, 0.848 \mathrm{mmol}$) in THF (8.48 mL) was added $\mathrm{NaH}(0.92 \mathrm{~g}, 0.848 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. To the reaction was added $\mathrm{EtO}_{2} \mathrm{CCl}$ ($0.081 \mathrm{~mL}, 0.848 \mathrm{mmol}$) followed by phenylglycine ethyl ester ($0.183 \mathrm{~g}, 0.848 \mathrm{mmol}$). The reaction was allowed to warm to room temperature and stirr for 2 hr . Sat. aq. NaHCO_{3} (excess) was added, and the mixture was extracted 4 times with EtOAc. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{3}$, filtered, and the solvent evaporated under reduced pressure. The crude product was purified by flash column chromatography (silica, 230-400 mesh, eluent, $\mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOAc}: \mathrm{MeOH}$). ($0.29 \mathrm{~g}, 0.66 \mathrm{mmol}, 78 \%$ yield); mp $209-210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.42$ (s, 3 H), $4.17(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2$ H), $5.63(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.25-7.44 (m, 8 H), 8.37 (s, 1 H), 8.55 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.90$, $16.88,24.43,48.53,57.22,61.99,126.20,126.31,127.33,127.63,128.49,128.57$, $128.84,128.96,135.02,135.89,140.32,157.95,166.84,169.61,170.58$; IR (KBr) $3324,3019,1736,1636,1514,1217 \mathrm{~cm}^{-1}$.

Formation of III-55. To III-50 ($0.24 \mathrm{~g}, 1.05 \mathrm{mmol}$) in EtOH (10.5 mL) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.39 \mathrm{~g}, 3.67 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g})$. The reaction vessel was purged with N_{2} and then flushed with and maintained under an atmosphere of H_{2}. After stirring for 16 h , the reaction mixture was filtered through a fine scintered glass funnel and the solvent removed under reduced pressure. The resulting crude oil was purified by flash column chromatography (silica, 230-400 mesh; eluent - $\mathrm{Et}_{2} \mathrm{O}$). The solvents were evaporated to give a white solid which was recrystallized fron EtOAc (mixture of diastereomers, ratio $96: 4)$, $\left(0.23 \mathrm{~g}, 0.99 \mathrm{mmol}, 94 \%\right.$ yield). $\mathrm{mp} 202-205{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) (major diastereomer) $\delta 1.16$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.32$ $(\mathrm{q}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=13.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=$ $13.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dq, $J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=$ $7.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.21-7.34$ (m, 8 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) (major diastereomer) $\delta 13.92,22.87,25.69,37.30,42.80,49.65,50.81,58.76$, $60.95,126.77,127.37,127.47,128.51,128.57,129.34,136.80,138.09,169.14$, $170.45,170.52$; IR (solid/ NaCl) 3297, 3067, 3009, 1732, 1642, 1541, $1455,1217 \mathrm{~cm}^{-1}$.

References.

1) Jones, J. H. In Amino Acids and Peptides. The Royal Society of Chemistry, London, 1991, Vol. 22. pp 161-7, and references therein.
2) Houpis, I. N.; Molina, A.; Lynch, J.; Reamer, R. A.; Volante, R. P.; Reider, P. J. J. Org. Chem. 1993, 58, 3176.
3) Liskamp, R. M. J. Angew. Chem. Int. Engl. 1994, 33, 305.
4) Wolf, J.-P.; Rapoport, H. J. Org. Chem. 1989, 54, 3164.
5) Kahn, M.; Chen, B. Tetrahedron Lett. 1987, 28, 1623.
6) Paulvannan, K.; Stille, J. R. Tetrahedron Lett. 1993, 34, 8197.
7) Nagai, U.; Sato, K.; Nakamura, R.; Kato, R. Tetrahedron 1993, 49, 3577.
8) Kemp, D. S.; McNamara, P. E. J. Org. Chem. 1984, 49, 2286.
9) For a sample of other aza-annulation uses see: (a) Paulvannan, K.; Stille, J. R. J. Org. Chem. 1992, 57, 5319. (b) Paulvannan, K.; Stille, J. R. Tetrahedron Lett. 1993, 34, 6673. (c) Cook, G. R.; Beholz, L. G.; Stille, J. R. Tetrahedron Lett. 1994, 35, 1669.
10) (a) In a procedure developed by Nancy Barta, of Michigan State University, the amine of an amine salt could be freed by mixing it with NaHCO_{3} in $\mathrm{C}_{6} \mathrm{H}_{6}$ followed by filtration or the amine salt could be used directly in the condensation with 0.5 equiv of BF_{3}-etherate as catalyst. (b) In a procedure developed by Carol Walters, of Michigan State University, formation of the mixed anhydride during annulation could be efficiently executed by adding the acrylate salt to the enamine, followed by addition of ethylchloroformate.
11) (a) Sano, T.; Horiguchi, Y.; Tsuda, Y.; Itatani, Y. Heterocycles 1978, 9, 161. (b) Kozikowski, A. P.; Xia, Y.; Rajarathnam Reddy, E.; Tukmantel, W.; Hanin, I.; Tang, X. C. J. Org. Chem. 1991, 56, 4637. (c) Walker, D.; Hiebert, J. D. Tetrahedron 1966, 153. (d) Modifications on described DDQ oxidation procedure attempted to provide increased yield included: 6 hour addition of DDQ, use of increased equivilants of DDQ, use of dioxane and mixed xylenes as solvent, use of pTsOH as catalyst in all three solvents, and use of triethyl amine as catalyst in all three solvents. None of these modifications provided an increased yield. (e) Attempted oxidation of III-46 using Pd / C in refluxing diglyme or EtOAc resulted in no reaction. Fu, P. P.; Harvey, R. G. Chem. Rev. 1978, 78, 317. Attempted oxidation of III-46 using SeO_{2} with HOAc also yielded no product formation. Nagaoka, H. Schmid, H. Kishi, Y.; Kishi, I. Tetrahedron Lett. 1981, 22, 899.
12) NOE studies on III-50 indicated that the stereochemistry of the double bond of the major isomer was E (NOE enhancements between the vinyl proton and N-benzyl protons were 3.3% and 1.6% when the vinyl proton was irradiated. NOE enhancement between the vinyl proton and the benzylidine protons was 9.7% when the vinyl proton was irradiated).
13) DDQ oxidation of III-50 under optimum conditions (see reference 8 and text) provided a mixture of products consisting of III-50 (20\%), the analog of III-50 with the double bond isomerized into the ring (80%), and possibly a trace of the fully oxidized analog of III-50. The composition of the reaction mixture was determined by ${ }^{1} \mathrm{H}$ NMR. Characteristic peaks of the double bond isomerized product were: 2.49 (td, $J=15.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dt}, J=15.1$, 6.3 Hz, 1 H).
14) Compounds III-27, III-28, III-30, III-35, III-36, III-37, III-39, III-40, III-41, III-44, III-45, III-46, III-54, and III-55 were submitted for biological testing.

Deprimed from The Jourgal of Organic Chamintry, 19s3, 53.

Lowis Acid-Promoted 3-Aza-Cope Rearrangement of N -Allyl- N -allylanilines

Lars G. Beholz and John R. Stille ${ }^{\circ}$
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

Received Saptember 25, 1892 (Revised Manuscript Received June 18, 1983)

The 3-asa-Cope rearrangement of N-allyl- N-allylaniline subetrates, which required $250^{\circ} \mathrm{C}$ to proceed thermally, was promoted by Lewis acid reagents at $111-140^{\circ} \mathrm{C}$. Systematic studies of this reaction were parformed to examine a number of reaction variables such as concentration, the stoichiometry of the Lewis acid with the substrate, the optimum temperature for rearrangement, and the type of Lewis acid reagent. Of the many Lewis acids investigated, $\mathrm{ZnCl}_{2}\left(140{ }^{\circ} \mathrm{C}\right)$ and $\mathrm{Bt}_{2} \mathrm{O}-\mathrm{BF}_{3}\left(111{ }^{\circ} \mathrm{C}\right)$ were the most generally succesaful reagents for promoting the aromatic 3-aza-Cope rearrangemeat. With respect to substrate variation, the presence of a methoxy substituent para to the N-allyl group slowed the reaction alightly, while a meta subetituent accelerated the rate of $\{3,3]$ rearrangement and produced moderate site salectivity on the aromatic ring. Lowis acid-promoted rearrangement of an unsymmetrically subetituted allyl moiety resulted in [3,3] sigmatropic rearrangement to give the 1-bexen-3-yl subetituent on the aromatic ring. Overall, both ZnCl_{2} and $\mathrm{Br}_{2} \mathrm{O}-\mathrm{BF}_{3}$ were shown to efficiently accelerate the regioapecific 3-ara-Cope rearrangement of N-allyl- N-allylanilines for the purpose of forming a carbon-carbon boed between a secondary allyi substituent and an aromatic ring.

Intreduction

The aromatic 3 -ara-Cope rearrangement of N-allylaniline subetrates 1 and 2 has been of interest for some time as a route to the formation of 2 -subetituted aniline and indole products, but the utility of this reaction hes been graatly limited (eq 1). ${ }^{1}$ The severe conditions (200-

$350{ }^{\circ} \mathrm{C}$) required for thermal rearrangement, which produced low yields of 2-allylanilines (3) and significant amounts of products resulting from removal of the allyl Eroup, have restricted the utility of this reaction and presented an enormous challenge to synthetic organic chamiste. ${ }^{2}$ Approaches to overcoming these barriers have focused around one common theme-charge acceleration of the rearrangement process by reaction of N-allylaniline subetrates with electrophilic reagents through generation of a quaternary intermediate.
The electrophile sources most commonly used for charge acceleration of the aromatic 3 -aza-Cope rearrangement hove been Brensted scids, which typically promote rearrangement at temperatures of $140-150^{\circ} \mathrm{C}$. Polyphowphoric acid has been used to promote charge-accelerated 3-asa-Cope rearrangement, but effective use of this reagent was limited to the N-erotyl derivatives $\left(R^{3}=\mathrm{Me}\right)$ of 1^{3}

[^3]and 24 Two other protion sources, HCl and $\mathrm{H}_{3} \mathrm{SO}_{4}$ were studied more extensively and have ahown greater vecsetility in promoting this [3,3] sigmatropic rearrangement. The use of HCl to promote the rearrangement of 1 to 8 was achieved by treatment of 1 with either HC13 or PhNHr HCL's Similarly, the treatment of 2 with HCl also gave 2-allylaniline derivatives ${ }^{46}$ Rearrangement of both 1 and 2 was promoted effectively with $2 \mathrm{NH}_{8} \mathrm{SO}_{4}{ }^{7} \mathrm{~A}$ drawbeck to the use of strone protic acids hes been the tendency of these reagents to produce formation of indole and indoline products from 3, thus reducing the overall effectiveness of this reaction.2/ic Generation of the analogous quaternary ammonium ealts (E, $R^{1}=$ allyl) produced similar charge acceleration of the aromatic 3-emCope rearrangement at $140^{\circ} \mathrm{C}$; bowever, significant amounts of subetrate deallylation usully oceurred.2na

The use of Lewis acids for charge acceleration of the 3-ara-Cope rearrangement appears to be a prominiog alternative to the use of protic acids. As early as 1957,5 ZaCl_{2} wa found to promote the tranaformation of 1 to 3, and subeequent examples have produced 37-78\% yields ofs.sadion Treatment with $\mathrm{B}_{2} \mathrm{O}_{-}-\mathrm{BF}_{3}$ was aloo an effective method of promoting [3,3] rearrangement of 1 at 140

[^4]${ }^{\circ} \mathrm{C}$, ${ }^{2} 10$ and the ure of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BP}_{3}$ was the caly example of a Lewis acid-promoted 3 -azs-Cope rearrangement of $2^{2 / 4}$ Other catalyats, such as $\mathrm{AlCl}_{5} \mathrm{FeCl}_{3} \mathrm{SnCl}_{4}$, and TiCl_{4} were leas effective at promoting the rearrangement of 1 . Stad A stribing feature of studies of the Lewis acid-promoted rearrangerpent of substrates 2 hes been the varying succeme reported for very similar substrates. Typically, the origin of these differences is a sensitivity of this system to ore or many of the reaction conditions.
Our recent inveatigations in the area of the aliphatic 3-eva-Cope rearrangement have led to the development of proton ${ }^{11}$ and Lewis acid ${ }^{12}$ charge-eccelerated rearrangement of N-allyl- N-allylenamines at temperatures ranging from 40 to $110^{\circ} \mathrm{C}$. Organoaluminum complexes were particularly efficient and versatile in promoting the 3 -arenCope rearrangement, and a recent report of an aromatic Chisen rearrangement acceleratod by an organoehuminum reagent provided additional optimism for the ability of orgnonluminum complexes to promote the aromatic 3-exa-Cope rearrangement ${ }^{23}$ Herein, we report the syetematic inveatigation of the aromatic 3 -aza-Cope rearrangement of N-allyyl- N -allylanilines promoted by Lewis acida

Results and Discussion

An investigation of a number of reaction variables was performed by studying the effect of the relative amount of Lewis acid, concentration of the reaction, reaction time, and the temperature at which rearrangement would occur. The nature of the nitrogen "spectator" substituent on the N-allyleniline substrate, as well as subotitution on the aromatic ring and the allyl group, were used to probe the fentures of this reaction.
Studies were initiated by monitoring the rearrangement of $\mathrm{ha}_{\text {(}} \mathrm{eq} 2$) in the precence of varying amounts of ArCl_{5}, a catalyst that was effictive for the rearrangement of 1 .

The 3-aza-Cope rearrangement of 4 gave 5 se in all casea, but the relative amount of ACC_{3} was critical to the selectivity of the reaction (Table I). Treatment of ta with 1.5 equiv of Lewis acid produced rapid disappearance of starting material, low amounts of Sa , and further destruction of 5 a over time. ${ }^{14}$ With the use of 1.2 equiv, the reection was slowed to a useful rate, and optimal generation

[^5]Tawe I. Eucete of sho Amouth of ACh ea tho 2-Asa-Coeo Pearcurvent of 4

equiv	(a)	yialt (\%)				
		48	product foramion			
			Fe	Ca	7a	88
1.5	2	12	38	0	0	0
	4	0	22	0	0	0
	8	0	9	0	0	0
1.2	4	50	49	0	0	0
	8	8	88	0	0	2
	24	6	71	0	0	3
0.75	4	28	68	1	0	0
	8	16	70	6	0	0
	24	11	23	22	5	0
	48	9	4	37	9	1

- Rearrapquents mere TV 0.5 M ca at redur in zyleoes ($140^{\circ} \mathrm{C}$). - Vabeas reperveat CC yialds of voletila, monoligumetic productis (ref 14). © Pacmetion of 10 grater then 1% se wes obeerved.

Tribl II. Elicets of Penction Concestration on the 2-Ase-Cope Rearrancoreat of fa Premetid by 12 Eqaiv of

$\begin{aligned} & \text { condrap } \\ & \text { (M, 4a) } \end{aligned}$	yiald (\%)				
	4	prodect formetiog			
		5	Ca	78	8
30	1	7	19	35	5
20	16	37	18	15	7
10	19	51	4	6	5
0.75	22	52	4	6	4
0.5	28	58	4	4	3
Os6	6	27	2	0	0

- Remrangements were ron at refux in syleaes ($140^{\circ} \mathrm{C}$) for 16 h
 repremat \% yielde es deter mined by GC menbin (ref 14). ' Pormation of po queter then 1\% sa was obeerved.
of 5a was observed. Problems associated with subwequent $[3,3]$ rearrangement to the para position were not encountered. When less than a stoichiometric amount of AlCl_{3} was used, significant quantities of byproducter, resulting from cyclization of 5 e, were produced during the time neccasary to drive the rearrangement to $>95 \%$ completion. Eramination of other Lewis acids sbowed similar patterns, and in each case, 1.2 equiv of Lewis acid was the optimum amount of reagent.
Another Lewis acid reported to promote the rearrangoment of $1, \mathrm{ZnCl}_{2}$, showed a greater sensitivity toward reaction conditions and was used to probe the effect of subetrate coscentration on the product distribution (Table II). Acceleration of the rearrangement with ZnCl_{2} at concentrations greater than 1.0 M resulted in the generatioc of subetantial quantities of Ga and 7s, and reaction concentrations from 0.5 to 1.0 M were found to be optimel For all subeequent rearrangements deecribed, reections were performed at 0.5 M of substrate with 1.2 equiv of the corresponding Lewis acid.
Once general reaction conditions were established, a survey of Lewis acids revealed that $\mathrm{AlCl}_{3}, \mathrm{ZnCl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$ were the moot effective reagenta for promoting $[3,3]$ rearrangement of te to Sa (Table III). Treatment of 4 a with TIC_{4} or MgBr_{2} produced consumption of 4 A , but in both casea, 6a ($10-12 \%$) and $7 a(2 \%)$ were formed concurrently under these reaction conditions. Allylifuminum complexes, including the methylaluminum bis-(4-bromo-2,6-di-tert-butylphenoside) reagent used for the aromatic Claisen rearrangement, produced disappointing revults by slow consumption of ta, presumably to meth-

sumeat	conde		product formetica sa; yield (\%)
	temp (${ }^{\circ} \mathrm{C}$)	time (t)	
AlCl_{5}	140	8	88
$20 \mathrm{Cl}_{3}$	140	16	53
E40.8Fs	111	4	79
Eta-BF3	140	24	49
TCH	140	16	46
Mebis	140	40	38
(ANO)Anme	140	72	28
PCCl_{4}	140	4	24
Mesaral	140	24	22
Mancle	140	4	16

- Rearrangemento were rum 0.5 M of la with 1.2 equiv of Lewie seid at reflus in tolvere ($111{ }^{\circ} \mathrm{C}$) of Eyleses ($140{ }^{\circ} \mathrm{C}$). ${ }^{\circ}$ Vabres sepreepat GC yidde of Es (ref 14). © ANO $=4$-broceo-2b-di-certbutylphenoax.

subatrate	$\begin{aligned} & \text { smapent } \\ & \text { (1.2 equiv) } \end{aligned}$	$\begin{aligned} & \text { concent } \\ & \text { (timen(h)) } \end{aligned}$	$\begin{gathered} \text { yiald (}(\%) \\ \text { imolated (CC) } \end{gathered}$
4	$\begin{aligned} & \mathrm{ACC}_{9} \\ & 2 \times \mathrm{CH}_{3} \\ & \mathrm{E} 4 \mathrm{O}_{\mathrm{BF}} \end{aligned}$	$\begin{array}{r} 8 \\ 16 \\ 48 \end{array}$	$\begin{aligned} & 68(88) \\ & 45(52) \\ & 58(79) \end{aligned}$
$4{ }^{\text {d }}$		$\begin{aligned} & 2 \\ & 24 \\ & 24 \end{aligned}$	$15 \text { (35) }$ 15 (30) 18 (20)
16	$\begin{aligned} & 2_{2} C_{4} \\ & \mathrm{~B}_{2} \mathrm{O}-\mathrm{Br} \end{aligned}$	$\begin{aligned} & 16 \\ & 72 \end{aligned}$	$\begin{aligned} & 58 \text { (68) } \\ & 55(61) \end{aligned}$
163		$\begin{aligned} & 24 \\ & 48 \end{aligned}$	$\begin{aligned} & 53(57) \\ & 35(4) \end{aligned}$

- Remrrangements mese rmo 0.5 M of la with 1.2 equiv of Lewis acid at reflor in tolveme $\left(111^{\circ} \mathrm{C}\right.$, Be-O-BP) or zylemen ($140^{\circ} \mathrm{C}$, $\mathrm{A} C C_{4}$ and ZaCle. ${ }^{\circ}$ Overall inoleted yialds of 5 and 11 . Reformece 14.
ylated and oligomeric products, without generation of significant amounts of 5 a-sa. In geperal, these trends were opposite those obeerved for the aliphatic 3-aze-Cope rearrangement, in which the organoaluminum species were the moot efficient reagents, and the metal halides typically used for Freidel-Crafts allylation produced very poor reculta. 12 The temperature at which the aromatic 3-azaCope rearrangement occurred was also critical to the success of the reaction. The use of decalin $\left(180^{\circ} \mathrm{C}\right)$ resulted in the formation of Ga and 7a as the major producta in poor yield, and the use of toluene ($111{ }^{\circ} \mathrm{C}$) did not provide a high enough temperature at reflux to promote conversion of la to products. Interestingly, the use of $\mathrm{Et}_{2} \mathrm{O}_{2} \mathrm{BF}_{3}$ was the one exception, and rearrangement in toluene at reffur was more efficient than reaction in sylenc.
The three optimum catalyats, $\mathrm{ANCl}_{3}, \mathbf{Z n C l}_{2}$, and $\mathrm{Bt}_{2} \mathrm{O}-\mathrm{BF}_{3}$ were each used in the studies of subatrate variability. Under the optimum conditions for rearrangement, 5 a was isolated from the resction mixture in 4568\% yield (Table V). The reaction of Lewis acids with 4b, having an N-benayl group instead of an N-methyl subetituent, producod much poorer results. Under similar reaction conditions, a 35% yield was the best that could be obtained from any of the catalysts with 4 b . The disappearance of 4b without formation of the desired products was suspected to result from reaction of nucleophiles at the benxylic position and concomitant displacement of a quaternary nitrogen during the vigorous reaction conditions. Treatment of the analogous allyl acetamide and sulfonamide substrates with these Lewis acids did not result in $[3,3]$ rearragement producta.

Table V. Lowis Acjd-Proanced 2-Axa-Copo Inerrasquenet of 12

subetrate	$\begin{gathered} \text { requent } \\ \text { (1.2 equiv) } \end{gathered}$	$\begin{aligned} & \text { coodnop } \\ & \text { (time (h)) } \end{aligned}$	product formation (\%)	
			12:14 ${ }^{6}$	yield (GC) ${ }^{\text {d }}$
128	$\begin{aligned} & 2 \mathrm{OCl}_{2} \\ & \mathrm{Et}_{2} \mathrm{O} \mathrm{Br}_{3} \end{aligned}$	$\begin{array}{r} 8 \\ 48 \end{array}$	$\begin{aligned} & 64: 36 \\ & 66: 34 \end{aligned}$	$\begin{aligned} & 70(77) \\ & 90(99) \end{aligned}$
128	$\begin{aligned} & \mathrm{ZoCh} \\ & \mathrm{E} 40-\mathrm{Br} \end{aligned}$	$\begin{aligned} & 24 \\ & 48 \end{aligned}$	$\begin{aligned} & 71: 29 \\ & 72=20 \end{aligned}$	$\begin{aligned} & 57 \text { (} 64) \\ & 38 \text { (47) } \end{aligned}$
12 e	$\begin{aligned} & 20 C_{2} \\ & \mathrm{~B}, \mathrm{O}-\mathrm{Br} \end{aligned}$	$\begin{gathered} 6 \\ 24 \end{gathered}$	$\begin{aligned} & 7327 \\ & 72=28 \end{aligned}$	$\begin{aligned} & 98(80) \\ & 80(8) \end{aligned}$

- Rearrangemeats mere rum 0.5 M of 4 a with 1.2 equiv of Levis acid at reflux in tolvene ($111^{\circ} \mathrm{C}$, $\mathrm{E}, 2 \mathrm{O}-\mathrm{BF}$) or aylemes ($140^{\circ} \mathrm{C}, 2 \mathrm{CCl}$). - Retios of $13: 14$ were determined by GC maly yis of the crude rematic: minture. For substrates b and c, ratios were coofirmed by ${ }^{1}$ H NMR apalyia - Overall imolated yield as the mirture of 18 and 14 . ${ }^{1}$ Refertere 14.

Rearrangement of substrates containing a methory subetituent on the aromatic ring provided useful imsight into the nature of this Lewis acid-promoted transformation (eqs 3 and 4, Tables IV and V). The most noticeable

Enanem
difference obeerved with these subetrates was that A1Cl produced rapid disappearance of 10 and 12, without the generation of any of the typical $[3,3]$ rearrangement products. ${ }^{55}$ Due to the slight deactivation at the position meta to the methozy subetituent, substrate 10 rearranged more slowty than the analogous unsubstituted subetrate 4. However, even though the substituent deactivated the position at which carbon-carbon bond formation oceurred, standard conditions for the rearrangement promoted with ZnCl_{2} and $\mathrm{E}_{2} \mathrm{O}-\mathrm{BF}_{3}$ led to comparable or higher isoleted yialds of 11.

Rearrangement of substrate 12, having a methory substituent meta to the altylamine substituent, introduced the poesibility of regioisomer formation. Depending on the ortho position at which rearrangement took place, two different products resulted, and in each case, reaction occurred at a position activated by the ortho and para directing methosy substituent (eq 4). Unfortumately, regioeelectivity was only moderate, ranging from 64:36 to $73: 27$ for 13:14, and the product ratio showed litule dependence on the Lewis acid used. Formation of the pera product analogous to 8 a was not obeerved. Activation of the aromatic ring by the methory subatituent had beneficial effects. Not only did rearrangement to products
(15) The tratment of methil pheagi cthere with ANCh and aca sucloophiles bes been reported to cleave the mechyl ether to peodece
 Cham, 1890, 46, 4875. Similat probleme heve been supertied with the vee C EeO-BF\%

5098 J. Org. Chem., Vol 58, No. 19, 1993

remuat	$\begin{aligned} & \text { coodrep } \\ & \text { (time (h)) } \end{aligned}$	produet formation (\%)		
		$12+14$	Sa	$(12 a+14 a)=5$
$\mathrm{BrO} \mathrm{Br}_{2}$	2	24	15	62:38
	4	33	22	60.40
	6	49	30	62.38
	8	56	33	$64: 37$
$\mathbf{2 . C H}$	0.5	17	7	7128
	1.0	36	10	$78: 28$
	1.5	47	15	76.24
	20	55	18	75-25

- Rearrangementes mose ros 0.5 M of 4a with 1.5 equiv of Iswis
 with 1.8 equiv of Lewie acid 'Ratios nere determined by CC malyio of the crode renction misture (ref 14).
occur in shorter time periods, but higher product yields resulted due to the increased rate of the transformation of 12 to 13 and 14 relative to the competitive formation of byproducts. As was obecrved in the reaction of $10, \mathrm{AlCl}_{3}$ reculted in consumption of 12 without producing 13 or 14. 15 Comparison of relative reaction rates was observed by the direct competition of 1.0 equiv each of la and 12a promoted by 1.8 equiv of Lewis acid. Results from this study showed that formation of 13a and 14a was approrimately 1.5 times faster than that of 5a when promoted by $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$ and roughly 3.0 faster in the presence of $\mathrm{ZaCl} \mathrm{I}_{2}$ (Table VI). ${ }^{16}$
A final set of substrates was examined in order to determine the regioeelectivity of the rearrangement with an unsymmetrical allylic substituent, enhance rezioelective reaction on the aromatic ring, and eatablish a potential route to a methoxy-substituted variety of naturally occurring allaloids. These substrates were prepared with an unsymmetrical N-((E)-2-heren-1-yl) subetituent on the aniline (eq 5). Rearrangement of $\mathbf{1 5}$ with $\mathbf{Z a C l} \mathbf{2}_{2}$ at

$140^{\circ} \mathrm{C}$ or Ery-BF3 at $111^{\circ} \mathrm{C}$ produced 16 in 50% and 79\% isolated yields, respectively. Compared to the analogous rearrangement of 10 a , the use of ZnCl_{2} was similar, while the reaction promoted by $\mathrm{E}_{2}-\mathrm{O}-\mathrm{BF}_{3}$ was far more efficient. In both reactions, only [3,3] rearrangement wasevident from analyais of the reaction products; carboncarbon bood formation resulting from [1,3] rearrangement of the substrate through a nonconcerted pathway was not obeerved. Most importantly, these reagents efficiently promoted the reziospecific 3-aza-Cope rearrangement of N-alkyl- N-allylanilines and produced carbon-carbon bood formation between an aromatic ring and a secondary allyl subetituent.

The rearrangement of the correaponding substrate having a methoxy subutituent meta to the amine, 17 , produced results similar to those observed for the rearrangement of 12a and 15a (eq 6). As was observed for

[^6]

12a, a mirture of regioisomers was obtained. In the came of 17, however, slightly increased product selectivities of 75:25 and 83:17 for 18:19 were obtained for rearrangement with $\mathrm{E}_{2} \mathrm{O}-\mathrm{BF}_{3}$ and ZnCl_{2}, respectively. However, in contrast to previous rearrangement with the N -ally substituents, further $[3,3]$ Cope rearrangement of 18 and/ or 19 in the presence of ZnCl_{2} produced 20 , which could be separated from 18 and 19 in 11% isolated yield. This product appeared to result from two sequential [3,3] rearrangements giving only the (E)-2-bezen-1-yl aromatic substituent. Because of the different rates at which 20

was generated from 18 versus 19, the regionelectivity ratio besed on the direct obearvation of product distribution might not directly reflect the actual selectivity of the relative reaction rates. The similarities in structure of 16 , 18, and 19 to the indole alkeloids 21 such as acricine (X ${ }^{\mathbf{1}}$

21
$\left.=\mathrm{X}^{3}=\mathrm{H}, \mathrm{X}^{2}=\mathrm{OMe}\right),{ }^{17}$ reserpinine $\left(\mathrm{X}^{1}=\mathrm{OMe}, \mathrm{X}^{2}=\mathrm{X}^{\mathbf{3}}\right.$ $=H),{ }^{17}$ ochropposinine ($\left.X^{1}=X^{2}=0 \mathrm{Me}, X^{3}=H\right),{ }^{18}$ and mitragynaline $\left(X^{1}=X^{2}=H, X^{3}=0 M e\right)^{19}$ are striting and provide some intriguing possibilities for future application of this methodology.

Sumanary

Systematic studies of the aromatic 3-ass-Cope rearrangement have been used to eramine a number of reection variables, and results have shown that reaction conditions heving a substrate concentration of 0.5 M and treatment with 1.2 equiv of Lewis acid were optimum for obtaining the desired product. Of the many Lewis acids investigated, $\mathrm{ZaCl}_{2}\left(140^{\circ} \mathrm{C}\right.$) and $\mathrm{Bt}_{2} \mathrm{O}-\mathrm{BF}_{3}\left(111{ }^{\circ} \mathrm{C}\right.$) were the most generally succesaful reagents for promoting the 3 -aca-Cope rearrangement. The presence of a methoxy substitvent para to the N-allyl group slowed the reaction slightly, while a meta substituent greatly accelerated the rate of rearrangement to the position ortho or para to the methory croup. In this case, site selectivity on the aromatic ring was moderate. Rearrangement of an umaymmetrically substituted allyl moiety resulted in regioselective $[3,3]$ rearrangement to produce a 1-hezen-3-yl substituent on the aromatic ring. Overall, both ZnCl_{2} and $\mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$ were demonstrated to efficiently accelerate the regioapecific 3-aza-Cope rearrangement of N -allyl- N -allylanilines for

[^7]the purpose of forming a carbon-carbon bond between a scoondary allyl subatituent and an aromatic ring.

Experimental Section

Geapral Methole. All reactions were carried out parforming standard inert atoroupbere techniques to exctude moisture and angen ${ }^{* 10}$ Bensene, tolvene, tetrahydrofuran (THF), and ExO were distilled from sodium/bemsophenoce immediately prior to we. Xylemea and decalin were beated over calcium hydride for a minimum of 12 h and then distilled prior to use. Petroleum cother ($35-60{ }^{\circ} \mathrm{C}$ boiling range) was used without further puriGention LiNHH (1 M in THF) was obtained from Aldrich Chemical Ca. 1-Bromo-2-berene ${ }^{2}$ and all secondary allylanitione wire prepered by literature methoden ${ }^{2}$ Compound 8a we prepared through an independent route.
Por reactions in which a Dean-Siark trap was uned, the trap was filled with 4-A molecular sieves to a loval below that of returning solvent turbulence. The sieves were changed during renctions in which additional reageot was added during the course of the reaction. Moleculn sieves wese activated by heationg in a $150^{\circ} \mathrm{C}$ oven for at lonet 24 h prior to use. Unlews epecified, concentration of mintures after workup wes performed uring a Bochi rotary evaporator.
Comeral Methed for the N-Allylation of 8ecosdary Anilimes ${ }^{2}$ The aniline ($20-50.0$ mmol, 1.0 equiv) and the ally brocoide or allyl chloride ($1.2-4.0$ equiv) were tathen up in a 4.1 $\mathrm{E} 0 \mathrm{OH} / \mathrm{H}_{3} \mathrm{O}$ misture (0.5 M reletive to the aniline) aloos with $\mathrm{Na}_{\mathrm{a}} \mathrm{CO}_{3}$ (0.6 equiv). After stirring at room temperature for 14 h, the BLOH was removed under reduced presure and the cruch of porified by flash column chromatography (silica, 250-400 meah; elvent $\mathrm{S}=95 \mathrm{Et} \mathrm{O} /$ petroleum ether). The solvents mere cmaporeted and the dialtylated anilinas dirtilled undar vecurin.
NAllyl-N-methylaniline (4a): 91% yield; bp 107-110 ${ }^{\circ} \mathrm{C}$, $<1.5 \mathrm{mmH} \mathrm{H}_{5}{ }^{2} \mathrm{H}\left(300 \mathrm{MaHz}, \mathrm{CDCl}_{4}\right) \& 2.78$ (s, 3H), 3.76 (dt. $J=$ $5.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{dq}, J=17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dq}, J=$ $104,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (ddt $J=17.0,10.4,50 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-668$ ($\mathrm{m}, 3 \mathrm{H}$), 7.11-7.19 (m, 2H); ${ }^{15} \mathrm{C}$ ($75.5 \mathrm{MH}_{2}, \mathrm{CDCl}_{4} 837.57,54.86$, $11216,115.70,116.17,12882,133.60,149.81$; \mathbb{R} (oil/NaCl) 30es, $3027,2000,2897,2815,1644,1599,149 \mathrm{~cm}^{-1}$. HRMS caled for $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}$ m/2 147.1049, foumd m/2 147.1010 .
N-Allyt-N-bensylarilive (4b): 85\% yield; 1H NMR (800 $\mathrm{MH}_{2}, \mathrm{CDCl}_{4} 8385-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{dq}, J=10.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dq, $J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (ddt, $J=17.4$, $10.5,48 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.68(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.24(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{2} \mathrm{C}$ NMR (75 M M ², CDCly $85281,53.76,112.24,116.06,116.43,126.41$, 128.63, 128.40, 128.99, 133.52, 138.76, 148,73; IR (KBr) 3062,3028, $2832,1599,1509 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{4} \mathrm{H}_{17} \mathrm{~N} \mathrm{m/z} 223.1302$ found $m / 2223.1882$
N-Allyl-N-methyl-4-metherganiline (10a): 66\% yiold; bp $80-60^{\circ} \mathrm{C}, ~<4$ mmins ${ }^{1} \mathrm{H}$ NMAR ($300 \mathrm{MHz}, \mathrm{CDCl}_{4} 8283$ (5, 3H), $3.72(8,3 H), 380(d t, J=5.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{dq}, J=10.5,1.7$ $\mathrm{H}, 1 \mathrm{H}, 5.16(\mathrm{dq}, J=17.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (ddt $J=17.4,10.5$, $58 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.84(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{24} \mathrm{C}$ NMR (75 Mif, CDCl4) 838.54, 55.55, 56.44, 114.54, 114.59, 116.26, 134.20, 144.38, 151.64; IR (0il/NaCl) 3077, 2936, 2832, 2809, 1642, 1516 cmal HRNS caled for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO} \mathrm{m} / \mathrm{z}$ 177.1154, found m / z 177.1148.

NAllyl-Nbeazyi-4 mothogyanilize (10b): 75\% yield; bp
 3H), 2.92 (dt, $J=5.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(6,2 \mathrm{H}), 5.16(\mathrm{dq}, J=10.2$
(20) Por more detailed Geoceal Experimentel procedures from theme the, seo ref 12
 Trippeth, S. J. Chem Soe. 18א2, 2557. (b) Boce, A. K.iLai B. Tctrehedron Lett. 1978, 3937.
(22) Prepered by a modification of the meehod deecribed in: Twoedie. Vi Alibeahi, J. J. Ore. Chem. 1860, 25, 3076 .
(23) Compoumd sa wie propared trow allyi beapere by the following

 (21) Roverion, J. H.; Yetion, K J. An. Chem Soc. 1909, 91, 1460. (25) Robartion, G. R. Organic Symeheser; Wiey. New Yort, 1882 Colioct Vol Li $p^{3 \%}$.
(25) Jutian, P. Li. Kerpel. W. J. J. Am Chem Soc. 1890, 72, 362
(27) Heter, S. E; Dornfeld, C. A. J. Arn. Chem. Soc. 194, 00, 1781
$1.8 \mathrm{~Hz}, \mathrm{LH}$), 5.17 (dq, $J=17.2,1.8 \mathrm{~Hz}, ~ \mathrm{LH}), 5.57$ (ddh $J=17.2$ 10.2,5.1 H2, 1H), 6.64-6.71 (m, 2H), 6.74-6.80 (m, 2H), 7.18-7.33 (mo, 5H); ${ }^{2} \mathrm{C}$ NMR (75 MH2, CDCle) $853.78,54.82,55.66,114.35$, 114.63, 116.33, 126.71, 126.80, 128.46, 134.17, 139.25, 143.61. 151.53; IR (oilNaCl) 3085, 2934, 2832, $1512 \mathrm{~cm}^{-1}$; HRMS caled for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO} \mathrm{m} / \mathrm{z} 253.1468$, foumd 253.1453.
N-Allyl-N methyl-8 mechergarilize (12a): 68\% yield; bp
 3.76 ($8,3 \mathrm{H}$), $388(\mathrm{dt}, J=5.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{dq}, J=10.8,18$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{dq}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (ddt, $J=17.1,108$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.29(\mathrm{~m}, 2 \mathrm{H}), 6.30-6.36(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.15(\mathrm{~m}$, 1H); ${ }^{12}$ CNNR (75 Mit2, CDClis) $837.96,54.25,55.16,9890,101.09$, 105.50, 116.01, 129.66, 133.66, 150.79, 160.65; R (oil/ NaCl) 3085, 2998, 2938, 2836, 1609, $1503 \mathrm{~cm}^{-1}$; HRNGS caled for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}$ $m / 2177.1154$, foum $m / 2177.1156$.

N-Allyl-NHeasyl-3-metherganilise (12b): 83\% yield; bp 150-137 ${ }^{\circ} \mathrm{C}$, <4 mmits. ${ }^{1 H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{4}$) 368 (s, 3H), 3.96 (dth $J=4.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{dq}, J=10.5$, $18 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dq}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.1$, $10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.35(\mathrm{~m}, 3 \mathrm{H}), 6.32$ (ddd, $J=8.4,21,08$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.31(\mathrm{~m}, 5 \mathrm{H}) \mathrm{H}^{18} \mathrm{C}$ NMR (75 MH2 CDCl) $858.03,58.89,5488,9891,101.19,105166,116.21$, 128.46, 126.71, 128.48, 129.71, 133.50, 138.77, 150.26, 160.63; IR (oil/ NaCl) 3085, 3936, 2836, 1612, 1501, $1453 \mathrm{~cm}^{-1}$; HRMS calod for $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{NO} m / 2253.1468$, found $m / 2253.1465$.

NAMyl-Nimbuty-2-mechoryanilioe (12e): 80\% yieldibp
 $6.6 \mathrm{~Hz}, 6 \mathrm{H}), 206$ (sept $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.73(\mathrm{c}, 3 \mathrm{H}), 3.91(\mathrm{dt}, J=4.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{dq}, J=16.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{dq}, \mathrm{J}=11.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 578(\mathrm{ddt}, J=168,11.1$, $48 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.32(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.11$ (m, 1H); 14C NMR (75 MHE, CDCly \& 20.33, 27.30, 53.96, 54.82, 58.93, 98.83, 100.27. $105.39,11582,129.51,133.82,149.98,160.58 . \operatorname{IR}(0 i / \mathrm{NaCl}) 2965_{0}$ 2870, 2836, 1611, 1576, $1499 \mathrm{~cm}^{-1}$; HRMS calod for C3H4aNO $\mathrm{m} / \mathrm{z} 219.1624$, foum $\mathrm{m} / \mathrm{z} 219.1631$.

N (($\mathrm{B}_{3}-2-$ Hexem-1-yl)- N -methyl-4-mechorganiline (15): 73\% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCL}_{4} 8086(t, J=7.4 \mathrm{~Hz}, 34)$, 1.36 (seat, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 278(8,3 \mathrm{H})$, $3.70(2,3 \mathrm{H}), 3.73 \mathrm{bd}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.43$ (dtt, $J=15.3,5.7$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dtt}, J=153,5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.73$ (m, 2H), 6.76-6.82 (m, 2H); ${ }^{2}$ CNMR (75 MHis, CDClis $813.46,22.29$, $34.22,38.21,55.41,55.78,114.41,114.81,125.66,132.91,144.55$, 15160; IR (oil/ NaCl) 2957, 2932, 2872, 2832, 1620, 1562, 1464 $\mathrm{cm} \mathrm{m}^{-2}$; HRMS calod for $\mathrm{C}_{4} \mathrm{H}_{\mathrm{a}} \mathrm{NO} \mathrm{m} / \mathrm{z} 219.1624$, found m / z 219.1618.

N-((2)-2-Eacsam-1-yl)-N methyl-3-mecheryaniline (17): 72% yield; H NMR ($300 \mathrm{MH}_{2}, \mathrm{CDC} \mathrm{L}_{4}$) $0.86(t, \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.36 (sert, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(q, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(2,3 \mathrm{H})$, $3.74(8,3 H), 381$ (dd, $J=5.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.42$ (m, 1Hi), 5.55 (m , 1H), 6.21-6.28 (m, 2H), 6.31-6.36 (m, 1H). 7.09 (td, $J=8.0,0.7$ H2, 1H); ${ }^{24}$ C NMR (75 MH2, CDCli $813.48,2229,34.20,37.57$, 54.41, 54.80, 98.91, 100.97, 105.58, 125.18, 129.55, 132.63, 150.88, 160.59; IR (oil NaCl) 2959, 2872, 2896, 1607, 1503, $1456 \mathrm{~cm}^{-1}$; HRNS calod for $\mathrm{C}_{14} \mathrm{H}_{1} \mathrm{NO} \mathrm{m} / 2219.1624$, found $\mathrm{m} / \mathrm{z} 219.1659$.

Gemeral Method for the Lewis Acid-Prometed Bearrangement of N -Allyl-N-allylanilises. The aniline (0.5-2.0 mool, 1.0 equiv) and the catalyat ($0.6-24$ mmol, 1.2 equiv) were added to dry zyleoses or tolueve (0.5 M relative to the smilipe) at-78 ${ }^{\circ} \mathrm{Calong}$ with an internal stenderd of decalin. The reaction wes heated to the appropriate temperature and allowed to reet a devcribed in the tact. The reaction wes then quenched at 0 ${ }^{\circ} \mathrm{C}$ by addition of a 15% aqueous NaOH solution, and the orgamic frections were combined, seperated, dried over MSSO_{6} and concentrated. The crude products were isolated and purified by Imah column chromatography (ailica, $230-400$ meah; elvent. 505 $\mathrm{Br} \mathrm{O} /$ /petroleum ether). Yields for these reactions are provided in the tablen.

N-Methyt-2-allylaniline (5a): ${ }^{1 H}$ NMR (300 Mriz, CDCLa) $8283(2,3 H), 3.26(\mathrm{bd}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (be 1 H$), 5.08(\mathrm{dq}$, $J=16.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dq}, J=10.4,18 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddt $J=16.7,10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (td, J $=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ ($\mathrm{td}, J=$
 115.97, 116.93, 12339, 127.50, 129.47, 13595, 147.22; IR (oil

NaCl) 8456 (beod), 5075, 2878, 2894, 2815, 1634, 1605, 1514 $1406 \mathrm{~cm}^{-1}$; HRNS caled for $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N} \mathrm{~m} / \mathrm{z}$ 147.1049, foumd m / z 147.0994 .

N-Beasyl-2-allylariline (5b): ${ }^{\text {h }}$ H NMR (300 MHz, CDC4 8334 (bd, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.10 (ben, 1H), 4.34 ($0,2 \mathrm{H}$), 5.07 (dq) $J=16.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dq}, J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddt}$ $J=168,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60\left(\mathrm{td}_{2}, J\right.$ $=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, $J=7.4,1.2 \mathrm{~Hz} 1 \mathrm{H}), 7.12\left(\mathrm{td}_{1} J=\right.$ 7.4, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.57 (m, 5H); ${ }^{2} \mathrm{C}$ NMR (75 Miss, CDC4 85650, 48.13, 110.69, 116.29, 117.34, 123.49, 127.12, 127.35, 127.88 128.57, 129.78, 135.93, 139.41, 146.11; RR (oi/NLCD) 3440 (broed) $3031,2888,2843,1633,1603,1510 \mathrm{~cm}^{-1}$; HRNS calcd for $\mathrm{C}_{4} \mathrm{H}_{87} \mathrm{~N}$ $\mathrm{m} / \mathrm{z} 223.1302$, found $\mathrm{m} / \mathrm{z} 223.1373$.
NMethyl-2-allyl-4-zethexpanilise (11a): 1H NMR (500 Mif2, CDCly 8281 ($2,3 \mathrm{H}$), $3.25(\mathrm{dt}, \mathrm{J}=6.0,1.7 \mathrm{~Hz} 2 \mathrm{H}), 3.57$ (be 1H), 3.74 (s, 3H), 5.07 (dq, $J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dq, $J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddt, $J=17.1,10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=8.7$, $80 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{\text {² }} \mathrm{C}$ NMR ($75 \mathrm{MHz} \mathrm{CDCl}_{4}$) $31.37,3631,55.70$, $110.56,112.02,116.23,116.50,125.45,135.76,141.65,151.81$; IR (0 i/ NaCl) 3422 (broed), 2038, 2832, 2308, 1638, 1514, $1464 \mathrm{cmar}^{-1}$; HRMS calced for $\mathrm{C}_{1} \mathrm{H}_{4} \mathrm{NO} \mathrm{m} / \mathrm{z}$ 177.1154, foumd $\mathrm{m} / \mathrm{z} 177.1161$.

NBensyl-2-allyl-4-metherganilise (11b): ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHF}_{2}, \mathrm{CDCl}_{2} \delta 8.29(\mathrm{dt}, \mathrm{J}=6.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (be 1H), $4.28(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{dq}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dq}$, $J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddt, $J=17.1,105,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (d, $J=3.0 \mathrm{~Hz}$ LHD, $686-6.73$ (m, 1HD), 7.21-7.57 (m, 5H); ${ }^{20}$ C NMR (75 Mifs, CDC4) 83646,4880 , $5565,11194,11202,116.39,11655,12550,127.05,12739,128.51$, 135.69, 139.67, 140.34, 151.93; IR (oil/NaCl) 3430 (broed), 8063 , 2336, 2832, 1636, 1509, $1466 \mathrm{cmin}^{-2}$, HRMS calod for $\mathrm{C}_{72} \mathrm{H}_{8} \mathrm{NO}$ $\mathrm{m} / \mathrm{z} 253.1468$, found $m / 2253.1468$.

NK Nochyl-2-alisi-5-mechocyarilise (19a): IH NMR (500 Mits, CDCly 8282 (,$~ 3 \mathrm{H}$), 321 (dt $J=6.0,1.8 \mathrm{~Hz} 2 \mathrm{H}$), 3.77 (be, IH), 3.79 ($\mathrm{c}, 3 \mathrm{H}$), 5.05 (dq, $J=168,1.8 \mathrm{~Hz}, ~ I H), 5.08$ (dq, $J=108,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddt, $J=168,10.8,60 \mathrm{Hzs}$ 1HD, 6.19-6.27 (m, 2H), $693(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{21} \mathrm{C}$ NMR (75 MHz CDCl ${ }^{2}$ 80.62, 35.69,55.10, 97.19, 100.74, 115.79, 116.31, 130.17 . 136.53, 148.51, 159.83; IR (cil/NaCl) 3438 (broed), 3077, 2238, 2834, 2809, 1617, $1520 \mathrm{~cm}^{-1}$, HRMS calod for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO} \mathrm{m} / \mathrm{z}$ 177.1154, fourd $m / 2177.1145$.

NMethyl-2-allyt-s metheryanilize (14a): 'H NMR (200 Mis, CDCly 8284 (s, 3H), 3.38 (dt. $J=6.0,1.9 \mathrm{~Hz} 2 \mathrm{H}$), 8.78 (be 1H), $3.80(\mathrm{c}, 3 \mathrm{H}), 5.02$ (dq, $J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dq, $J=9.3,18 \mathrm{~Hz} 1 \mathrm{H}$), 5.88 (ddt, $J=17.4,9.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 635$ ($\left.d_{1}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.38(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~L}, \mathrm{~J}=8.4 \mathrm{~Hz}$
 103.68, 114.76, 125.90, 127.67, 136.05, 148.70, 157.60, IR (cil NaCl) 3438 (broed), 3077, 2939, 2836, 2815, 1601, 1591, 1478 cm^{-1}, HRNS calod for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO} \mathrm{m} / \mathrm{z}$ 177.1154, found m / z 177.1142

NBenal-2-allyl-5-methospaniling (13b): ${ }^{1} H$ NMR (800 MHz, CDCL) 83.25 (dt, $J=6.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.72(\mathrm{~m}, 3 \mathrm{H}), 4.13$ (be, 1HD), $4.31(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{dq}, \mathrm{J}=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (dq) $J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddt, $J=17.1,10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19-6.27$ ($\mathrm{m}, 2 \mathrm{H}$), $6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{41}$ C NNR (75 MHz CDCle $835.82,48.12,55.04,97.96,101.16$, 115.95, 116.22, 127.15, 127.38, 128.57, 130.32, 136.41, 139.21, $147.22,159.68$, RR (oi/ NaCl) 3438 (broed), 3063, 2834, 1617, 1586, $1520,1466 \mathrm{~cm}^{-1}$, HRNS calod for $\mathrm{C}_{37} \mathrm{H}_{20} \mathrm{NO} \mathrm{m} / \mathrm{z} 253.1468$, foomd $\mathrm{m} / \mathrm{z} 253.1492$
NBerayl-2-allyl-2-methexyanilino (14b): ${ }^{1} H$ NMR (500 Mifs, CDCly) $\delta 3.42(d 4, J=5.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(5,3 \mathrm{H}), 4.16$ (be 1 H$), 4.34(\mathrm{c}, 2 \mathrm{H}), 5.01(\mathrm{dq}, J=16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dq}$ $J=11.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ (ddt $J=168,11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (bl $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 657(\mathrm{bd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(t, J=84$ H_{2} 1H), 7.21-7.36 (m, 5H); ${ }^{4} \mathrm{C}$ NMR ($75 \mathrm{MHH}_{2}, \mathrm{CDC}_{4}$) 828.02, 4835,55.77,100.81, 104.50, 114.97, 127.06, 127.30, 127.65, 12855, $128.62,135.93,139.61,147.43,157.90 ;$ IR (oil/NaCl) 3440(broed), 2936, 2836, 1634, 1599, $1476 \mathrm{~cm}^{-1}$; HRNS calod for $\mathrm{C}_{77} \mathrm{H}_{23} \mathrm{NO}$ $m / z 253.1468$, foumd $m / 2253.1436$.
NIEobutyl-2-allyl-5-methosyanilime (12c): 'H NMR (300 Mify, CDCly $\delta 0.98$ (d, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}$), 1.91 (nomet, $J=6.7 \mathrm{~Hz}$ 1H), 2.91 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{dt}, J=6.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ ($\mathrm{m}, 3 \mathrm{H}$), 3.83 (be, 1H), $5.06-5.16$ ($\mathrm{m}, 2 \mathrm{H}$), 5.93 (ddt, $J=17.7,9.6$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-624\left(\mathrm{~m}, 2 \% \mathrm{D}, 694(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{2 \times} \mathrm{CNMR}\right.$
(75 MHz, CDCl $820.58,27.84,36.14,51.50,56.12,97.42,10048$, 115.88, 116.08, 130.33, 136.82, 147.74, 159.79, IR (ci/NaCl) 8432 (bsoed), 3079, 2957, 2870, 284, 1617, 1588, 1520 cm^{-1}; HR calod for $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NO} m / z 219.1624$, foumd $m / 2219.1641$.

N-Icobutyl-2-ellyl-s-methenganiline (14e): IH NDR (500 $\mathrm{MH}_{2}, \mathrm{CDCl}_{4} 80.97$ (d, $\left.J=6.6 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.89$ (novet, $J=6.6 \mathrm{~Hz}$ 1H), $2.92(\mathrm{~d}, ~ J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{dt}, J=5.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 379$ (s, 3H), 383 (be, 1H), 5.03 (dq, $J=10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 506 (dq $J=168,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, 5.88 (dde $J=168,10.5 .7 \mathrm{~Hz}, 1 \mathrm{H}$), 681 $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~L}, J=8.2 \mathrm{~Hz}$ LH); ${ }^{2 \times C N M R ~(75 ~ M H 2, ~} \mathrm{CDCl}_{4}$ 820.57, 28.00, 28.13,51.89,55.76, 100.17, 104.03, 110.84, 114.91, 127.58, 136.30, 147.90, 157.67; RR (cil/ NaCl) 3450 (bromd), 3076, 2959, 2870, 2836, 1635, 1601, 1476 cm^{-1}; HRMS calod for $\mathrm{C}_{4} \mathrm{H}_{\mathrm{g}} \mathrm{NO} \mathrm{m} / \mathrm{z} 219.1624$, fomd m / z 219.1622
 ($300 \mathrm{MHz}, \mathrm{CDCl} 480.92(4, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.48(\mathrm{~m}, 24 \mathrm{D}$), $1.62-1.81(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{bq}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.4$ (be, 1H), 3.75 (a, 3H), 5.02 (dt $J=17.1,14 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dt) $J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (ddd, $J=17.1,10.2,7.4 \mathrm{~Hz}, 1 \mathrm{HD}$, 6.57-6.66 (m, 1H), 6.71-6.76 (m, 2H); ${ }^{2} \mathrm{C}$ NNR (75 MH2, CDCly) $814.03,2065,31.54,35.52,43.50,55.61,111.10,111.38,11424$, 114.49, 12987, 141.09, 141.35, 152.04; IR (oil/NaCl) 3413 (mbroed), 3077,2957,2872,2832, 2809, 1647, 1510, 1458 cm^{-4}, HRNS caled for $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NO} m / 2$ 219.1624, found $m / 2$ 219.1487.

NM: Chyl-2-(1-hacos-yi)-E-methougavilion (18): JH NDR (300 MHz, CDCl) 80.92 ($5, J=7.4,3 H$), 1.21-1.48 (m, 2\%. $)$ $1.62-1.81$ (m, 2H), $2.82(\mathrm{e}, 3 \mathrm{H}), 3.15(\mathrm{bq}, J=7.4 \mathrm{~Hz}$ 1HD, 2.79 $(\mathrm{s}, 3 \mathrm{H}), 3.87 \mathrm{HE}, 1 \mathrm{H}), 501(\mathrm{dt}, J=17.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dt}$ $J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (ddd, $J=17.7,10.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=8.4,24 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $84 \mathrm{His}, 1 \mathrm{H}$); ${ }^{12} \mathrm{C}$ NMR (75 MH2, CDCly) $\delta 1409,20.75,3080$, $35.48,43.19,55.04,97.49,100.92,114.13,120.41,127.59,141.76$, 148.28, 159.31; IR (oil/NaCD) 3438 (broed), 3077, 2959, 2930, 2872, 2836, 2807, 1615, 1596, $1463 \mathrm{~cm}^{-1}$; HRMS calod for $\mathrm{C}_{4} \mathrm{H}_{\mathrm{m}} \mathrm{NO}$ $m / z 219.1621$, found $m / z 219.1650$.
 ($500 \mathrm{MHL}, \mathrm{CDCl}) ~ \$ 0.87$ ($\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.07-1.37 (m, 24D, 170-1.89 (m, 2H), 277 ($\mathrm{m}, 3 \mathrm{H}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 398-4.17 (m, 21.). 5.07 (dt, $J=66,24 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~m}$, $1 \mathrm{H}), 6.30$ (bd, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 637 (bd, $J=8.1 \mathrm{~Hz}, 1 \mathrm{HD}, 7.10$
 $31.06,3249,37.58,55.78,100.89,104.45,11357,11428,127.58$, 141.64, 14891, 158.10, IR (oi/NaCD) 3426 (broed), 2919, 2848, 1508, $1476 \mathrm{~cm}^{-1}$; HRNS calod for CaHin $\mathrm{NO} \mathrm{m} / \mathrm{z} 219.1624$, fomed $\mathrm{m} / \mathrm{z} 219.1635$.
N-M
 $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{bq}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 202(\mathrm{~m}, 3 \mathrm{H}), 320(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.62$ (bey, 1 H$), 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.43(\mathrm{dta}, J=15.0$, $6.5,1.4 \mathrm{~Hz}$ 1H), $555(\mathrm{dtt}, \mathrm{J}=15.0,65,1.4 \mathrm{~Hz}$ 1H), 6.13-6.50
 $1369,2269,31.08,3221,34.66,55.25,96.26,10409,11856,129.18$, 150.07, 130.70, 149.03, 158.03; IR (oi/ NaCl) 3418 (broed), 2\%67. $2930,2872,2836,1618,1516,1464 \mathrm{~cm}^{-1}$.

Acknowledment. We are grateful to Michigan State University for financial support of this research. Spectral product characterization was performed on NMR instrumentation purchased in part with funds from NIH grant 1-S10-RRO4750-01 and from NSF grant CHE-88-00770. Mass spectral data were obtained at the Michigan State University Mass Spectrometry Facility, which is supported, in part, by a grant (DRR-00480) from the Biotechnolony Resources Branch, Division of Research Resources, Nrtional Institurtes of Health.

Supplomeatary Material Available: ${ }^{1 H}$ and ${ }^{2 C} C$ NDR upectra of all compounds in the Byperimental Section (46 perea). This material is contained in liberries on microfiche, immediately followe this articis in the microfilm vession of the journal, and can be ordered from the ACS; see any current meathend page for ordering information

Aza-Annulation as a Route To Hydroxylated Alkaloid Lipids. The Synthesis of (\pm)-Prosopinine.

Gregory R. Cook, Lars G. Beholz, and John R. Suille* Deparment of Chemistry, Michigan State University, East Lansing, MI 48824-1322

Abstract

The total synthesis of (\pm)-prosopinine is described. Aza-annulation was used to generate the six-membered nitrogen heterocycie, stereochemical conurol was achieved through the use of the δ-lactam umplate. and homologation of the lactam introduced the alkyl chain substituent on the piperidine ring.

Prosopinine (1) and prosophylline (3) are naturally occurring alkaloids isolated from the leaves of the African mimosa Prosopis africana Taub. These intriguing molecules possess a variety of antibiotic and anesthetic propertics due to the blend of physiologically important structural features. ${ }^{1}$ The polar head group of this class of lipids consists of a piperidine ring with similarities to the alkaloid deoxynorjirimycin (5), a potent α-glucosidase inhibitor with demonstrated antitumor activity and inhibition of syncytia formation in HIV-1. ${ }^{2}$ Each of these compounds, in turn. have hydroxyl functionality with the same stereochemistry found at C-4 and C. 6 of glucose (6). The tail portion of naturally occurring 1 and 3 produces a striking resemblance to the membrane lipid sphingosine (7). Previous synthetic efforts directed toward the preparation of Prosopis alkaloids have resulted in the synthesis of desoxoprosopinine (2), ${ }^{3}$ prosophylline (3), ${ }^{4}$ and desoxoprosophylline (4). ${ }^{32.3 b}$.3e

Our approach to the synthesis of prosopinine involved five phases. Of initial importance was the construction of the six-membered nitrogen heterocycle, which involved the synthesis of the corresponding δ lactam with the use of recenuly developed aza-annulation methodology. 5 Once prepared, this versatile δ-lactam intermediate served as a framework for the introduction of the correct relaive stereochemistry of the -OH and - $\mathrm{CH}_{2} \mathrm{OR}$ substituents. The third phase of the synthesis addressed the homologation necessary for the stereochemically controlled transformation of the lactam carbonyl to the alkyl chain substituent. The preparation of the tail portion, and subsequent Wittig coupling of this fragment with the hydroxylated piperidine head group, completed the synthesis.

The first facet of this synthesis. the construction of the six-membered nitrogen heterocycle, was accomplished through aza-annulation methodology for the formation of $\mathbf{1 0}$ (Scheme I). Deprotonation and ethoxycarboxylation of 8 generated 9, the substrate required for the two step annulation procedure. Conjugate addition of BnNH_{2} to 9 produced the corresponding β-enamino ester intermediate, which led to the formation of 10 when treated with acrylic anhydride. Analogous use of acryloyl chloride was less effective for the transformation of 9 to 10 (35\%).

Scheme L. Synthesis and Use of The δ-Lactam Template for The Formation of 14.

The δ-lactam template provided a means through which the relative stereochemistry of the ring substituents could be controlled in the next stage of this synthesis. Catalytic hydrogenation of $\mathbf{1 0}$ was performed in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, which prevented the deprotection of the hydroxyl group, to stereoselectively give the reduced δ-lactam 11.6 Transformation of 11 to 12 was accomplished through the use of $\mathrm{MeMgBr} / \mathrm{NEt}_{3}{ }^{7}$ and base catalyzed epimerization at the position α to the ketone produced an equilibrium 83:17 trans:cis ratio of 12. The subsequent Bacyer-Villiger oxidation produced only the trans isomer 13 under these conditions, with efficiency of the reaction directly proportional to the original trans:cis ratio of $12 .{ }^{8}$ Hydrolysis of the acetyl group, followed by benzyl protection of the resultant hydroxyl group. gave 14.

Scheme II. Homologation of The Lactam Carbonyl.

$\xrightarrow[(88 \%)]{\mathrm{NaBH}_{3} \mathrm{CN}}$

$\frac{\mathrm{LiAH}_{4}}{(87 \%)}$

The next segment of this synthesis centered around the homologation of the lactam carbonyl in a stercoselective manner that would accommodate subsequent elaboration of the molecule (Scheme II). Conversion of 14 to the thiolactam 15,9 followed by alkylation and Eschenmoser contraction, ${ }^{10}$ gave the vinylogous carbamate 16. Hydride reduction selectively produced 17, with the stereochemical configuration of 1 rather than 3, and LiAlH_{4} reduction of the ester functionality gave 18.

Preparation of the phosphonium salt 24, required for Wittig coupling with the aldehyde derived from 18. is illustrated in Scheme III. Monobromination of 19 produced $20 .{ }^{11}$ which was oxidized to the corresponding aldehyde, 21. Addition of EtMgBr, followed by oxidation gave 22, which was subsequently protected as dioxolane 23. Treatment with PPh_{3} resulted in generation of the corresponding phosphonium salt 24.

Scheme III. Synthetic Preparation of the Aliphatic Witug Reagent.

Extension of the aliphatic chain was performed by Swern oxidation of 18 to $\mathbf{2 5}$, followed by Wittig olefination to give 26 as an $85: 15$ mixture of cis and trans isomeric alkenes, respectively. The synthesis of prosopinine was completed by deprotection of the carbonyl followed by hydrogenation of the alkene with concomitant removal of the benzyl protecting groups to give 1 in 3% overall yield from 8.12

Scheme IV. Wittig Homologation to Autach the Aliphatic Chain.

Acknowledgment. This project was supported initially by BRSG Grant \#2-S07 RR07049-15 awarded by the Biomedical Rescarch Support Grant Program. Division of Research Resources, National Institutes of Health. Support from the National Institutes of Health (GM44163) is gratefully acknowledged. GRC acknowledges BASF Corporation for a Graduate Research Fellowship.

REFERENCES AND NOTES

1. (a) Ratle, G.: Monscur. X.; Das, B.: Yassi. J.: Khuong-Huu, Q.: Goutarel. R. Bull. Soc. Chim. Fr. 1966. 2945, (CA 66:18779h]. (b) Bourrinet, P.; Quevauviller, A. C. R. Soc. BioL 1968. 162, 1138, [CA 70:95233k]. (c) Fr. Patent: FR 1524395 /CA 71:91733w]. (d) Bourrinet. P.; Quevauviller, A. Ann. Pharm. Fr. 1968, 26, 787. [CA 71:29012g]. (e) Khuong-Huu. Q.; Ratle. G.; Monseur, X.: Goutarcl, R. Bull. Soc. Chim Belges 1972. 81. 425. (f) Khuong-Huu, Q.; Ratle. G.: Monseur, X.: Goutarel, R. Bull. Soc. Chim. Belges 1972, 81, 443.
2. For information on nojirimycin and related hydroxylated piperidines, see the following articles and the references cited within: (a) van den Brock. L. A. G. M.; Vermaas, D. J.: Heskamp, B. M.: van Boeckel. C. A. A.; Tan, M. C. A. A.; Bolscher. J. G. M.; Ploegh, H. L.; van Kemenade, F. J.; de Goede, R. E. Y.: Miedema, F. Recl. Trav. Chim. Pays-Bas 1993, 112. 82. (b) Fairbanks, A. J.: Carpenter. N. C.: Fleet. G. W. J.: Ramsden. N. G.: de Bello, I. C.: Winchester, B. G.: Al-Daher, S. S.; Nagahashi, G. Tetrahedron 1992.48. 3365. (c) Fleet. G. W. J.; Fellows, L. E.; Winchester. B. Plagiarizing Plants: Aminosugars as a Classs of Glycosidase Inhibitors. In: Bioacrive Compounds from Plants. p 112-125, Wiley, Chichester (Ciba Foundation Symposium 154) 1990. (d) Legler, G. Adv. in Carbohydr. Chem. and Biochem. 1990, 48, 319.
3. (a) Saitoh, Y.: Moriyama. Y.; Takahashi, T. Tetrahedron Lert. 1980. 21. 75. (b) Saitoh. Y.; Moriyama. Y.: Hirota, H.: Takahashi. T.: Khuong-Huu, Q. Bull. Chem Soc. Jpn. 1981, 54, 488. (c) Holmes, A. B.; Thompson, J.: Baxter, A. J. G.: Dixon, J. J. Chem. Soc., Chem. Commun. 1985, 37. (d) Ciufolini, M. A.: Hermann. C. W.: Whitmire, K. H.; Byrne, N. E. J. Am. Chem. Soc. 1989, 111, 3473. (e) Tadano, K.: Takau, K.: Nigawara, Y.; Nishino, E.: Takagi, I.; Maeda, K.; Ogawa Synlett 1993. 565.
4. Natsume. M.: Ogawa, M. Heterocycles 1981, 16, 973.
5. (a) Paulvannan, K.: Stille. J. R. J. Org. Chem 1992, 57, 5319. (b) Paulvannan, K.; Schwarz. J. B.: Stille, J. R. Tetrahedron Lett. 1993. 34, 215. (c) Paulvannan, K.; Suille, J. R. Tetrahedron Leth. 1993, 34, 6673.
6. (a) Barth. W.: Paquette. L. A. J. Org. Chem. 1985, 50, 2438. (b) Kazmierczak, F.; Helquist, P. J. Org. Chem. 1989, 54, 3988.
7. Kikkawa. I.: Yorifugi. T. Synthesis 1980. 877.
8. Canan Koch. S. S.: Chamberlin. R. Synth. Commun. 1989, 19, 829.
9. Jain, S.: Sujatha. K.: Rama Krishna. K. V.; Roy, R.; Singh. J.: Anand, N. Tetrahedron 1992, 48. 4985.
10. (a) Hart. D. J.: Kanai. K. J. Am Chem. Soc. 1983. 105, 1255. (b) Hart. D. J.; Hong, W.-P.; Hsu. L.-Y. J. Org. Chem. 1987, 52, 4665.
11. Kang. S.-K.; Kim, W.-S.; Moon, B.-H. Synthesis, 1985, 1161.
12. The physical data for 1 were consistent with those reported for 1 and $2,1,3.4$ and were as follows: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.41(\mathrm{~m}, 13 \mathrm{H}), 1.44-1.61(\mathrm{~m} .5 \mathrm{H}), 1.66$ (m, 1 H), 1.74 (m, 1 H), 2.07 (bs. 3 H), 2.39 ($. ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.41 (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.76 (m, $1 \mathrm{H}), 2.87$ (dt. $J=5.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (ddd. $J=4.0,5.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd. $J=5.4,10.5 \mathrm{~Hz}$ 1 H), 3.65 (dd. $J=7.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,23.9,26.3,27.4,28.6$, 29.2, 29.3, 29.4, 29.6. 33.9, 35.8. 42.4, 49.7, 58.1, 62.3, 68.1, 212.0.

MSC: jo940171k BATCE: jofb22 USER: eap69 PAGE: 1
DIV: Gxyldr/data2/CLS_pj/GRP_jo/JOB_il2/DIV_jos40171k DATE: 04/22/94

Construction of Hydroxylated Alkaloids (\pm)-Mannonolactam, (\pm)-Deoxymannojirimycin, and (\pm)-Prosopinine through Aza-Annulation

Gregory R. Cook, Lars G. Behoks, and John R. Stille ${ }^{\circ}$
Depertment of Chemistry, Michigas Secte University, East Lamaing, Michigen 43s34-1322
Received Fotruery 1, 1900

Abstract

The ara-amplation of β-anamino carboayl subetrates with acrylate derivatives provides an efficient and convenient route for the regionlective construction of d-lactams. This two-sten ring-forming squence involved initial gemeration of the bencyl enamine through cither a condensatic n or conjugate addition reaction with BaNH_{2} followed by aze-annulation with acryloyl chloride or acrylic anhydride. Controlled by the rigid framework of the intermediate lactam, introduction of ring subatituenta wes cocompliahed with high relative stersoeloctivity. The carboayl fumetionality, which was neceseary to direct the agioselectivity of the asa-annulation reaction, was then tranaformed into a protected hydroxyl subetituent through Beeyer-Villiger caidation. The resultant \&-lectam product wes ued as a valuable intermedinte in the synthenis of three metural products. Subeequent modification of this \&-lectam gave the naturally occursing a-mannosidese inhibitors (\pm)-mannonolactam and (\pm)deorymannojirimycin, while syatheais of the altaloid (t)-proeopinine was eccomplisbed through bomologation of the lectam carbonyl.

Introdivetion

Hydroxylated piperidine alkaloidsare found frequently in living systems, ${ }^{2}$ and the wide range of potent phyaiological effects stems from their ability to mimic carbohydrate subatrates in a variety of enxymatic procesen. ${ }^{2}$ With the pivotal role that carbohydrates play in biological procemes such as cell recognition and differentiation, theoe altaloids have become important syatbetic targetas ${ }^{3}$ Important structure-activity relationshipe for these molecules center around the stereocbemical configuration of hydroxyl functionality which are β to the nitrogen. Due to the prominance of D-glucose (1) and D-mannoee (3) in biolosical procesees, many alkaloids mimic the C-4 and C-6 structural features of these carbohydrates (Chart 1).
Polyhydroxyiated piperidine alkaloids exhibit selective inhibition of a number of biologically important pathways, including the binding and procesaing of glycoproteins. ${ }^{4}$ For example, compound 4 has been shown to inhibit a-Lfucosidsee, α-D-mannosidase, and a-D-glucosidsse activity, twhile the analogous lectam 5 inhibited both a-D

[^8]Chart 1

S: $X=0$; D-Nenciaterim

12 Re-comer Proentime

14: Fucees

15: R = CO_t: Cappant Act 18:R = -(CH2)com; spectine
mannosidase and α-D-glucosidase.s The piperidine atkaloid 2 has exhibited selective inhibition of a-glucosideses I and II without effective inhibition of a-mannosidase, ${ }^{27}$ and this glucose analog has potential for use in the therapy

MSC: jos40171k BATCE: josb22 USER: cap69 PAGE: 2
DIV: © $\mathrm{e} y 1 \mathrm{dr} / \mathrm{data2/CLS} \mathrm{_pj/GRP} \mathrm{jo/JOB} \mathrm{_il2/DIV} \mathrm{jos40171k} \mathrm{DATE:} \mathrm{04/22/94}$

B J. Ors. Chem.

of diabeces mellitus, mypertipoproteinemia, cancer, and arthritis. Interestingly, wheo compared to 2 , syetbetic derivatives such as N-butyl-2 and N-decyl-2 sbow peosousced antiviral activity through inhibition of syncytia formation in HIV-1.20
Naturally oceursing betarocyctic amines with lons aliphatic appendages, such es the Procopis (7 and 8) and Cassic altraloids ($12,13,15$, and 16), have also been reported.' These compounds are found throughourt the world and heve received incremeng atteation as medicinal agents due to the variety of pharmecological propertion they arhibit ${ }^{20}$ The Prooppis altaloids 7 and 8 ase perticularty intrisuing becacse they contain a blead of physiologically important etructural featurea. ${ }^{11}$ At ose and of the molecuie is the polar head group with a configuration of bydroxyl subetituents similar to that found in 2 and 4, while a lipophilic tail portion resemblee that of the zemberase lipid ephingoaine (6). Similar mictures of allyi chain "ail" and carbohydrate "hand" structural featurses are foumd in penareaidines A and B, which display pocent ATPes-activating propertien, and BAY R 1005 , which shows procmine for immunireation of petiente with defective T-lymphocytes such as patiente with AIDS. ${ }^{12}$ In each of theee molecules, the allyl chain serves to (1) facilitate tranafer seroes membranea, (2) anchor the active compound in the membrane with the polar portion proeruding, or (3) interact with the hydrophobic portion of the enrymen to which there compounds bind.

Our appreech to the construction of several bydrocyiated piperidines utilized the are-annulation reaction for officient construction of nitrogen beterocycle 18 from B-enamino carbonyl derivative 19 (Scheme 1). ${ }^{13}$ The beterocycle was then ured as a framework to control the relative steseochemistry of the C-4 and C-5 ring subetitu-

[^9]Cook er al.
Schere 1. Gencral Appreach for Formation of L-Lactanes by Ara-Ananlation/Eydropemation

Schoen 2 Eeterseyele Formation throegh Conjugate Alditioa/Asa-Anmelatione

 (ii) HCL , (iii) N (OH. H O (24\%).
ents in the geseration of $17 .{ }^{14}$ From this versatile intermediate, the naturally cocurring altribids (\pm)-mannonoisctam (5), (\pm)-decorymannojisimycin (4), and (土) proeopinive (7) were prepared.

Resuks and Discuscion

Moched Development. The use of ketone and cuter functionality as electron-withdrawing subetituents was found tosignificantly enhance the efficiency and selectivity of the asa-anaulation reaction (Scheme $1 ; Y=\mathrm{Me}, \mathrm{OEt}$). ${ }^{2}$ However, several key tranaformations were required to adapt this methodology to the synthesis of hydrozylated alkeloids. Of initial importance was the need for additional methods of enamine preparation that were compatible with the subeequent arr-annulation reection. In coajumetion with these sundies, ara-annulation was explored as a route to 19 in which $R \neq \mathrm{Me}$, followed by subeequent stereoselective introduction of the C-5 subatituent. In addition, methods for conversion of the C-4 carbonyl substituent to a hydroxyl group and bomologation of the resulting lectam carbonyl were required.

One approech to the deaired \&-iectam products involved the combination of three fragments, an acetylenic ester, a primary amine, and an acryiate derivative, to produce the desired beterocycles (Scheme 2). Conjuggate addition of BaNH_{2} to 20 generated the intermediate β-enamino ester, which gave the correppondingsir-membered nitrogee beterocycle 21 upon ame-annulation with acryioyl chloride. A variety of reagents, which inciuded $\mathrm{Me}_{2} \mathrm{CuCNL}_{2}, \mathrm{MO}_{2}$ $\mathrm{CuCNLi} / \mathrm{BF}_{5} \mathrm{OEi}_{2}, \mathrm{Me}_{2} \mathrm{CuBrLi}_{2}$, and $\mathrm{MeCu}-\mathrm{BF}_{3}$, were employed for ponaible introduction of a methyl subetituent
(13) a) Pautreasan. K.i. Stille. J. R. J. Org. Chem. 1952, 57, 5319. (b)
 215. (c) Peulveesen. K. Stille. J. R Tecrebedron Lext. 1g83, 34. 673 (d) Peulvaman. K. Stille. J. R J. Ore. Chem 1954, 50. 1613 (e) Peotvarana, K. Stille. J. R Tecrehedron Lett. 1939, 34, 8197.
 this mavecripe whe soforing io the pyidemen

MSC: jos40171k BATCR: jo6b22 USER: eap69 PAGE: 3
DIV: © $2 y 1 d r / d a t 22 / C L S _p j / G R P \quad j o / J O B _i 12 / D I V$ _jos40171k DATE: 04/22/94

Hydroxylated Alloloide through Ase-Annuintion
Scheme 2. Formation and Oxdation of 270

 $\mathrm{H}_{2} \mathrm{Pd} / \mathrm{C}, \mathrm{E} \mathrm{OHH}$ (17\%): (c) CFsCOH, m-CPBA (80\%).
β to the eater, but conjugate addition to the vinylogous carbamate 21 was not obecrved. ${ }^{\text {is }}$
In order to explore modification of the carboryl substituent at C-4, 21 wee redveed through catalytic hydrosemation to give 22, and selective hydrolynis of the eater produced the correaponding β-amino acid derivative 23. Attemptas at oxidative decarboxylation with the use of astablished methods were not successful for selective introduction of the C-4 hydroxyl due to the formation of complex product mirturre. ${ }^{16}$ However, a similar oxidative procedure for introduction of an amino croup resulted in partial succes. Treatment of 23 with DPPNNEts in $\mathrm{t}-\mathrm{BuOH}$, followed by hydrolyzis of the intermediate tertbertylcarbamate, provided amine 24 in low yield. ${ }^{17}$ Optimization of this tramaformation was not pursued.
Related studies were performed with the corresponding methyl ketone derivative 26 (Scheme 3). Hydrolysis of 25 produced the corresponding aldehyde, which was condensed with BaNH_{2} and treated with acryloyl chloride to cive 25. The low yield obrained for this three-step process resulted from self-condensation of the intermediate aldehyde. As foumd for 21. conjugate addition of nucioophiles to vinylogous imide 26 did not proceed under catabliabed conditions. ${ }^{14}$ Baeyer-Villiger oxidation of 27 ro2s generated very promising results for the introduction of an oxygen subatituent at C-4. ${ }^{18}$ However, the inability to introduce subatituents at the position β to the ester or ketone group required that the C - 5 subatituent be in place prior to aza-annulation.
As previoualy reported. ${ }^{124} 29$ was cosdensed with BnNH_{2} and treated with acryloyl chloride to produce the cor-
(25) a) (Me_CuCNLia) Dodd. D. S.: Oehbechinger. A. C. Tetrehedron Letk. 1991. 32.343 (b) (MerCuBrLia) Beres. S. H.: Dabbagh. G. Tetrahedron 1929. 45, 425. (c) Lipebutz. B. H. Synchecis 1837. 325. (d) (MaCu-BF) Yamera, Y.: Yamamota, S.: Yateqai. H.: Iehihara. Y.: Maruyame K. J. Org. Chem. 1se2, 47, 119. (e) (MorCuCNLid) Lipahure: B. H.: Wilhetm, R. S.; Floyd. D. M. J. Am. Chem. Soc. 1381. 103.7672 (16) a) Fane. F. G.i Damiabefily. S. J. Tetrahedron Lett. 1309.30. 3621 . (b) Kiemie. F.i Holland, G. W.: dersom. J. L.: Kwoh. S. Roven. P.
 N. J. Org. Chem. 19es, 30 , 3700 .
N. (i7) a) Mowemer, D.: Beterecki. C.. Chmielomaki, M. Synthesis 1 SSI. 273. (b) Seta. M.: Kataciri, N.: Tatayama. K.: Hirose, M.: Kameto. C. 273. (b) Sesa, M.: Katagiri, N.: Tatryarma. K.: Hirope. M.: Kanako. C. Price. G. Di Pluth. J. J. Gilbert. E. E; Alster. J. Sandus O. J. Ore. Chem. 1se4. 49. 185. (d) Heeliger. W; Kloppeer. E. Helv. Chim. Acta. 1ss2. 65, 1257. (e) Chanrerpil. B.; Gelin. S. Syncheas $1981,315$.
(18) a) Canas Koch. S. S.: Chamberlin. R. Synth. Commun. 1899. 19. 229. (b) Wiboa. S. R.: Di Gradi. M. J. J. Org. Chem. 1991, 56. 4766. (c) Suginome. H.: Yamede S. J. Ors. Chem. 1s95, 50, 2489. (d) Berrer, A. J. G:- Hotmes. A. B. J. Chem. Soc.. Pertion Truns. 11977.2343 (e) Narmiki. K.: Saltatrura, T. Uebinera. T.: Guidin-Vuoee. D. J. Am. Chem. Soc. 184. 206, 2264.
J. Ors. Chem C

Scheme 4. Pormation and Oridation of 31°

 chloride. THF. ${ }^{\circ}{ }^{\circ} \mathrm{C}\left(84 \%\right.$); (b) 1 ctas of $\mathrm{H}, \mathrm{Pd} / \mathrm{C}$, $\mathrm{Ne} \mathrm{CO}_{2} \mathrm{BeOH}$ (81\%): (c) DBU: (d) CFsCOsH, m-CPBA (46%; (() NOOH, H4O (74\%).
Schere 5. Ecencinotion of ine Isetan Cartenylo

 (ii) NaBH4 (45%) from 24).
reaponding ara-annulation product 30 , and catalytic hydrogenation generated 31 as a $10: 90$ mirture of trans and cis isomers (Scheme 4). ${ }^{19}$ In order to access alkaloids 12 and 16, a variety of conditions were used to affect the desired Bacyer-Villiger ozidation of cis-31. ${ }^{13}$ However, 32 was the only acetate derivative generated under these conditions. Epimerization of 31, by treatment with DBU, generated an equilibrium ratio of trans/cis isomeric products (76:24), and oxidation of this predominantly trams subatrate mirture resulted in the formation of 32 in 45\% yield. When compared to the succeasul oxidation of 27 , steric constraints imposed by the cis methyl substituent prevented efficient Beeyer-Villiger axidation of cis-31, while trans-31 was transformed to the corresponding ester. Hydrolysis of the acetate resulted in deprotection of the bydrozyl group to generate 33.
The final stage of method development focused on homologation of the lactam carbonyl, which was neceseny in order to append lipophilic tail segments to the altnoloid portion of these molecules. Initial studies of lectam carbonyl homoiogation were performed with 22 (Scheme 5). Lawesson's reagent provided an extremely efficient method for the transformation of 22 to thiolactam 34, and subsequent S-methylation generated the corresponding imidate salt 35.20 Treatment of 35 with a carbon nucleophile, to generate the intermediate iminium species,

[^10]

D J. Ore. Chem

Scheme 6. Remelaratioe of 30°

followed by NaBH_{4} reduction, was ured as a strategy for homologation of this gystem. With the use of PrMgBr, the reection conditions resulted in formation of 36 as the oaly reaction product. In contrats, the addition of an acetylide follownd by treatment with NaBH 4 gave 378 a63.37 ratio of dispterecmers in 45% yieid, with the balance of the subetrate coaverted to 36.21 Unfortamately, extension of this methodology to the homologation of the methytsubetitured derivative 38e was not effective.

An alternative route for carbonyl bomologation of 38 a wesexplored through the Eechenmoeer contraction/sulfide extruaion procedure. ${ }^{22}$ Thiolectam formation of 38b and allylation with ethyl bromoscetate generated the corresponding thioimidate salt, and subeequent contraction sulfide exrusion produced the corresponding vinylogous carbamate 39 (Scheme 6). Homologation of 38a through this sequence provided an efficient and attractive route to 39 as a single isomer. On the beais of steric constrainta, this isomer was designated as the corresponding E alkene isomer. Reduction with $\mathrm{NaBH}_{3} \mathrm{CN}$ tranaformed 39 to a misture of diastereomers 40 and 41, in a ratio of 9208 , while catalytic hydrogenation provided the complementary $15: 85$ ratio of these products. 25 Stereochemical assignments of $40(8.0 \%$ enhancement) and $41(5.6 \%$ enhancement) were eatablished through NMR NOE techniques on cach isomer by irradiation of the H and Me substitvents α to the nitrogen (Scheme 6).

Applications to Alkaloid Syathesis. With the model studies complete for both construction and elaboration of 17, two separate approeches to 17 were explored in which

[^11]Cook et al.
Scheme 7. Symethaio of Intermediace 17

 (i) BaNH. THP. © ${ }^{\circ} \mathrm{C}$, (ii) arylic enhydride. THT, $0^{\circ}{ }^{\circ} \mathrm{C}$ (e2\%)

 H.O (53\%); (L) KOH. BaBe (54\%).
dififerent subetratee for enamine formation wese uned. The first approech to 17 involved the conjugate addition of BaNH_{2} for gemeration of the β-emamino cuter species required for ane-amulation (Sebeme 7). ${ }^{\text {M }}$ The reaction of BaNH_{2} with 43, prepared by deprotomation and ethoxycarbozylation of 12, led to the correeponding B-enamino eater intermediate. ${ }^{25}$ Treatment with acrylic anhydride resulted in am-annulation to gemerate 44 in 62% yield for the two-atep proceen, while the use of acryloyl chloride produced lees favorable results for this tramformation (35\% yield). Catalytic hydrogenation of 44 in the presecce of $\mathrm{Na}_{3} \mathrm{CO}_{3}$ stereoselectively generated 45 without deprocection of the hydrozyl croup, ${ }^{19}$ and treatment with NEt_{3} followed by MeMgBr gave the corresponding methyl ketone (46) as a 2988 ratio of trans/cis producta. ${ }^{23}$ Base-catalyzed epimerization changed the trans/cis ratio to 72:28, and Beeyer-Villiger oxidation under optimized conditions gave 47 as a aingle diastersomer. Deprotection of the secondary hydroxyl group. followed by bengylation, provided the desired intermadiate 17.

An alternative route to 17 involved condemsation of $\mathrm{BaNH} \mathrm{H}_{2}$ with tetronic acid (48) to form the required β-emamino ester intermodiate (Scheme 8). Subsequent am-annulation with acrylic anhydride (71%) or acryloyi chloride $(70 \%$) resulted in formation of the corresponding s-lectam 49. Catalytic hydrogenation generated the ciefused bicyclic system 50, and conversion of the lactone to methyl ketone 51 ($2:>98$, trans/cis) wes performed under the same conditions used for the transformation of 45 to 46. Bengyiation of the hydroxyl group under besic conditions resulted in formation of an equilibrium mixture
(21) ook, G. Ri; Bebok, L. G; Stille, J. R. Tctrahadron Lets. 1994, 35. 1008.

 (26) ikhome Li Yocifuij. T. Symehatio 1sen. 877.

MSC: jos40171k BATCR: jofb22 USDR: eap9 PAGE: 5 DIV: eazyldr/data2/CLS_Dj/GRP_jo/JOB_il2/DIV_jos40171k DATE: 04/22/94

Hydroxylated Altribids through Ase-Ansulation
Scheme 8. Cenversion of is to to

 (83\%): (e) NBect MoMdte (27\%); (d) KOH, BaBe (71\%).
 and Manaphetan (5)

- Rengente and conditions: (a) (i) LDA. (ii) PhSuCl. (iii) NaO_{4}

of 45 (80:20, trans/cis). Nlthough methods for a more efficient tramaformation of 50 to 51 were not fully pursued. this synthetic scheme provided an alternative route to 46, and ultimately to 17.
(\pm)-Mannomolactan (5) and (土)-Doorymanmofirjmycin (4). The coaversion of 17 to the tetrahydroxylated derivatives 4 and 5 was accomplisbed by introduction of the cis hydroxyl subatituents through OsO 4 dihydrozytation (Scheme 9). Treatment of the anion of 17 with PbSeCl, followed by periodate oxidation and elimination of selenic scid, produced the $a_{\Delta} \beta$-uneaturated species $52 .{ }^{27}$ Dihydroxylation gave 53. which wes used for the synthesen of both 4 and 5.2 Removil of the benayl protecting Eroups from 53 generated 5 in 44% yield after recryatallization. ${ }^{\circ}$ Stepwise reduction of the lectam carbonyl followed by deprotection with catalytic hydrogenation gave 4 in 52% yield, and white crystalline material was obtained in 33\% yield after recrystallization. ${ }^{30}$ Overall, the syatheses of 4 and 5 were both achieved in 3% ovesall yield from 42.
(\pm)-Prosopinise. Two representative Prosopis alleloids, 7 and 8, isolated from the leaves of the African
(27) a) Cive. D. L. J. Tecrabedren IS75, 34, 1049. (b) Reich. H. J. Ace.
Chem. Res. 1979. 12.22
 K. Trerahedron Lete 1991. 22.6753 (b) Guillerm, G.i Vertadoen M.: Auvin. S.i Le Goetic. F. Tecratidron Lett. 1937, $23,535$.
(29) be phymical deta for 4 were consiatest with thoee reportedt Fiver, G. W. J.; Remedea, N. G. Witty, D. R. Tetrehetron 1890. 45, 319.

Schome 10. Blamplogation of 170

mimoea Proopis africanc Taub, ${ }^{31}$ difter anly in the stersochemistry of the carbon at which the allyl chain and the hetarogycla are connected. Although the symthemia of 7 hes not been reported, syathetic efforts have reculted in the constructica of descosoprosopinive (9) ${ }^{23}$ presophatline (8), ${ }^{33}$ and deacsoprosophylline (10). 510 ${ }^{30}$ Doe to the disatercomeric relationahip of proeopinine (7) and proeephylline (8), our approech to the syathesis of theee molecules was desigod around the coatrol of stersochemistry during bomologation of the lectam. As observed during formation of 40 and 41 , stereochemical control was a function of the reagent used for reduction of the iminium ion gemerated from 39 (Scheme 6).
Homologation of the lectam carboayl of 17 was performed in the same manner described for 38 (Seheme 6)." Formation of the thiolectam, followed by the Eechemmoees contraction/sulfide extruaion procedure, gave 56 in good overall yield (Scheme 10). 2 Hydride reduction of 56 selectively produced 57 in a $>90: 10$ ratio of the two pomible dinstersomers, with the stercochemistry of the major product similar to that of 7. In contrast to the results obeerved for 38, catalytic hydrogenation of 56 also produced 57 as the major dimatersomer. In this case, lower product aelectivity was obtained (67:33, 57/58), and selective formation of 58, the intermediate related in structure to 8 , was not eccomplisbed.

The final stages of the prosopinine syntheais sequired extemaion of the chain through Wittis methodolony

 C.: Mowsur. X. Goweral R Bull Sec. Chim Bele. Ifrz2 81, Qes (c) Bock. 1972.81 .443
 Tetrahedron Lete isex. 21, 75, (b) Seisol. Yi Moriyinn Y. Hirocen H.

 K. H: Byrae. N. E. J. Am Chem. Soe. 189. 111,3473 (e) Tedeso. K.
 1893.585.

MSC: jos $10171 k$ BATCE: jo6b22 USDR: eap69 PAGE: 6
DIV: esyidr/data2/CLS_Dj/GRP_jo/JOB_il2/DIV_jos40171k DATF: 04/22/94

F J. Org. Chem

- Rempres and condisione (a) (i) LiNHH (ii) NaOH (87%); (b)

 (72\%).
(Scheme 11). Further reduction of 57 generated 59, which was then partially oxidired to the correaponding aldehyde CO. Chain extemsion of $\mathbf{C O}$ with the ylide formed from 65 (Scheme 12) gave 61 es a 15:85 mirture of trans/cis allsene isomers on the allyl appendage. Deprotection of the carbonyl. followed by reduction of the alkene and debenzylation during hydrogenation, gave 7 in 3% overall yield from 42.3
Summary. The ama-annulation of β-enamino ketone and eater subatrates with either acryloyl chloride or acrylic anhydride has provided an efficient and convenient route for the regioselective construction of \&-lactams. This annulation procedure was performed in tandem with two different methods for enamine generation, through conjugare addition of BnNH_{2} to an α, β-acetyienic ester or by condensation of BnNH_{2} with a β-keto eater or ketone to form the desired \&-lactar. Once earablished, the δ-lactam framework was usod to control the stereochemical preference of substituents on the ring, and the carbonyl functionality was transformed into a protected hydroxyl subatituent. From o-lectam 17, the naturally occursing a-mannocidsse inhibitors (\pm)-mannonolactam and (\pm)deozymannojirimycin were prepared In addition, bomologation of the lactam carboayl of 17 also provided a route to the alkaloid ($\mathbf{~}$)-prosopinine.

Experimeatal Section

Ceneral Morbels. All resctione were carried out by performing stasdard inert atmosphere techniques to exctude moiecure and oxygen, and rocetions were carried out under an atrmoeplere of either nitrogen or ergon. ${ }^{3}$ Assotropic removal of $\mathrm{H}_{2} \mathrm{O}$ was ansiated by the une of 3 - or $4-\mathrm{A}$ molecular sieves ${ }^{36}$ In each cose. dinstersomeric product ratios were determined by ${ }^{1} \mathrm{H}$ NMR.

Cook et al.
 asolertion of $20(8.41 \mathrm{~g} .100 \mathrm{mmol})$ in $\mathrm{Et} \mathrm{O}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the solution man warmed to sth the micture man etirrod for 12 h The misture was shen coccentrated and dimolved in THF (600 mil), and acryloyt chloride (9.92 g . 110 mmol) mes addad at it Arter being beeted for 16 h at refurs, the solution sem melod withisarurited equecia $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, and the aquoce layer mes cxtrected with $3 \times 200 \mathrm{~mL}$ of E*O. The combined crepenic hyers nare dried (MNON) and purified by chromatopraphy 770 : 30 petrolemem ether/ Br O) to give 21 ($13.12 \mathrm{z}, 53$ minol) in 53%

 © 198, 30.7, 498, 51.5, 1088, 127.6, 1278, 1288, 153.4, 1394. 1036, 1096; IR (8met) 3000, 3065, 3052, 2331, 2306, 2349, 1000 . 1699, 1459, 1377, 124, 1254, 1184, 1121, 729, $700 \mathrm{cas}^{-1}$.

 edded. After the mixtro wes stirsed at it for 12 h , the solution
 cepasic layers mere dried (MeSOd. The solution was filcered, BaNH $(1.071 \mathrm{~g}, 10 \mathrm{mmol})$ wasadded, and the mitrous wa beeted at redure for 48 h . Concentration geve the erudo cermina, which mes dinoolved is THF (00 ml). Aerylogl chlocido (1.11 s 10 masol) was added, and the echution men boeted at redur After 20 h , saturated equeres $\mathrm{NaFiCO}_{3}(50 \mathrm{mh})$ mes added, and the misture wea extracted with $4 \times 40 \mathrm{~mL}$ of B40. The combined cepmic fractioge mere dried (NapON, filerod, and concemtraced The arode product mes purified by chroesatopraphy (40000 petroleum ether/E2O) to give 23 ($0.517 \mathrm{~g}, 23$ minol) in 23\% yield: mp 72-75 ${ }^{\circ} \mathrm{C}$ (from petrolemm ether/E4, O); ${ }^{1 H}$ NMIR (300 $\mathrm{MH}_{2} \mathrm{CDCl}_{4} 82.18$ ($\mathrm{m}, 3 \mathrm{H}$), 255-2.66 (m. 4 H), 4.76 ($6,2 \mathrm{H}$). 7.15 ($5,1 \mathrm{H}$). 7.20-7.38 (m, 5 H); ${ }^{4} \mathrm{C}$ NMR (75.5 MHz CDClq) 818.8 , $24,306,49.9,119.4,127.5,1280,1289,1362,1403,1098,1948$ IR (180et) 3007, 3065, 3032, 3005, 2907, 2032, 2004, 2349, 1004. 1636, 1373, 1292, 1184, $702 \mathrm{~cm}^{-1}$. HRMS calod for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{4} \mathrm{~m} / 2$ 229.1103 , found $\mathrm{m} / \mathrm{z} 209.1109$.

Ceseral Methed for the Eydreceation of Fannidee. A misture of cosamide (1 equiv). $\mathrm{NaCO}_{3}(3.0$ equiv), and 10% Pd cacarboa ($0.1 \mathrm{z} /$ momol enamido) in $\mathrm{EtOH}(0.05-0.2 \mathrm{M})$ wasetirsed under an atwoephers of $\mathrm{H}_{2}(1-3 \mathrm{etm})$ for $16-48 \mathrm{~h}$. The colids were removed by firtration the misture mesecocetreted, and the erude product wes purified by chromatorraply.
22: $5.23 \mathrm{~g} .21 .66 \mathrm{mmol}, 98 \%$ yield: ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MH} \mathrm{H}_{2}, ~ C D C 7\right)$ $\delta 1.98$ (ddt, $J=6.0 .135,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 212(\mathrm{~m}, 1 \mathrm{H}) .245$ (ddd. $J=63,9.6,17 . \mathrm{Hz}, 1 \mathrm{H}), 2.59$ (ddd. $J=5.2,6.3,178 \mathrm{~Hz}, 1 \mathrm{H})$. 2.76 (dddd. $J=3.9 .5 .8,9.9,124 \mathrm{~Hz}, 1 \mathrm{H}$). 3.36 (ddd, $J=1.1$. 5.8. $124 \mathrm{~Hz}, 1 \mathrm{H}) .342$ (dd. $J=8.5,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(5,3 \mathrm{H})$. $4.50(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}) .4 .67(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.36$ ($\mathrm{m}, 5 \mathrm{H}$): ${ }^{5} \mathrm{C}$ NMR ($7=.5 \mathrm{MH}_{2}, \mathrm{CDCl}_{3}$) 238, 30.6. 38.9. 47.9. 50.0. 52.0, 127.4, 128.0. 128.5. 136.6. 1688, 1724; IR (ment) 3006, 3063. 3030. 2953, 2875. 1736. 1642, 1495, 1454. 1497, 1381. 1356, 1332. 1284, 1204. 1171, 1013, 727, $700 \mathrm{~cm}^{-1}$: HRMS caled for $\mathrm{C}_{1} \mathrm{H}_{17} \mathrm{NO}_{5} m / 2$ 247.1209, found $m / z 247.1206$
27: $0.15 \mathrm{~g} .0 .65 \mathrm{mmol} .62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{Maltr}_{\mathrm{c}} \mathrm{CDCL}_{4}$) $81.79-1.94$ (m. 2 H), 2.14 ($\mathrm{s}, 3 \mathrm{H}$). 249 (ddd. $J=16.8,10.4,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 259$ (ddd. $J=17.8,6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 279$ (ldd, $J=$ 9.9. 5.2, 38 H2, 1 H). 3.29 (ddd, $J=126.53 .1 .4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (dd, $J=123,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d} . J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}) .7 .22-7.36$ ($\mathrm{m}, 5 \mathrm{H}$): ${ }^{15}$ C NMR ($75 \mathrm{MAHz} \mathrm{CDCl}_{2}$) 823.79. 28.01, 30.96, 46.58, 47.17, 50.07, 127.40, 128.05, 123.52, 136.70. 168.63.207.21: RR (oil/ NaCl) 3032, 2032, 2076, 1713 , 1642 . 1495, 1455, 1262. 1167, cm^{-1}; HRMS caled for $\mathrm{C}_{2} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~mm} / \mathrm{s}$ 231.1259, foumd m/z 232.1251.

31: $8.19 \mathrm{~g} .33 .4 \mathrm{mmol}, 81 \%$ yield, 90.10 (cia/trama); 1H NMR ($300 \mathrm{MH}_{2} \mathrm{CDCl}_{5}$ cis isomer) $\delta 1.07$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$). 206 (a. 3 H). 1.92-2.17 (m .4 H). 248 (ddd. $J=183,10.4,8.0 \mathrm{~Hz}, 1$ $\mathrm{H}) .261$ (ddd. $J=18.3,7.4 .2 .0 \mathrm{~Hz} 1 \mathrm{H}$). 279 (dt. J $=12.6,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 384 (m, 1 H), 396 ($\mathrm{d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.31(\mathrm{~d}, J=$
(35) or mare dexnived tumeral expermeovel procoduren froe thene eboracorime, soce Cook. G. R.: Berte. N. S.i Stille J. R. J. Ore. Chem. 932. 57.461.
(36) ehydration of coodemation renctione wes performed with the uop of a modifised Deno-Start apperatus in outich the cooided diatillete mee
 J. Bi Stille. J. R. Symeh. Commun. 1994. 24. 503

MSC: jos40171k BATCE: jo6b22 USER: eap69 PAGF: 7
DIV: Gzyldr/data2/CLS_pj/GRP_jo/JOB_il2/DIV_jos40171k DATE: 04/22/94

Hydroxytated Albrioids through Asp-Anmulation

 (eomer) $814.52,17.33,28.08,29.96,47.74,51.03,51.14$, 127.04, 127.56, 128.25, 136.97, 168.67, 206.25; RR (oil/NaCl) 2975, 1713, $1640,1163 \mathrm{~cm}^{-1}$; HRN S caled for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{~m} / 2$ 245.1416, found $\mathrm{m} / \mathrm{z} 245.1415$.
 (300 $\mathrm{MHI}_{2} \mathrm{CDCL}$ (cie jecerer) 81.13 ($\mathrm{L} \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$) 2.03 $\left(m_{1}, 1 \mathrm{H}\right), 221$ (ddt, $\left.\mathrm{J}=9.9 .78,129 \mathrm{~Hz}, 1 \mathrm{H}\right) .249$ (ddd J $=189$ 100.85 Hm 1 H). 250 (ddd, $J=183,78,18 \mathrm{~Hz} 1 \mathrm{H}$), 279 (dt $J=150,90 \mathrm{~Hz}, 1 \mathrm{H}), 353(\mathrm{~d}, J=5.4 \mathrm{~Hz} 2 \mathrm{H}), 388-108(\mathrm{~m}$, $3 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=25.2 \mathrm{~Hz} 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=152$
 inomer) \& $1382,19.18,3007,4240$, 49.16, 56.17, 60.65 , 68.62 72.15, 127.19, 12744, 127.59, 127.07, 128.19,128,42, 137,22, 157.31. 160.56, 171.08; IR (ail/NeCD) 2969, 2870, 1734, 1645, $1173 \mathrm{cmil}^{-1}$

 (cis incmers) \& 201 (m, 1 H). 230 ($\mathrm{m}, 1 \mathrm{H}$). 241 ($\mathrm{m}, 1 \mathrm{H}$), 2.52 (m , $1 \mathrm{H}), 298$ ($\mathrm{m}, 1 \mathrm{H}$), $1.18-430(\mathrm{~m}, 4 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=150 \mathrm{~Hz}, 1$
 1989, 2996, 3785, 47.94, 56.20.71.28, 127.93(2), 12897, 136.15, 199.49, 1760%, RR ((1 id/KBr) $3052,2969,2946,2922,1783,1 \mathrm{CH4}$, 1470. 1451, $1502,1163 \mathrm{em}$, HRNS caled for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z}$ 2450006 , found $\mathrm{m} / \mathrm{z} 245.1034$.
Eydrelyaie of 22 A solutice of $22(300 \mathrm{E} .120 \mathrm{mmol})$ and $\mathrm{NaOH}(0.56 \mathrm{~g}, 240 \mathrm{mmol})$ in a mixture of THF (50 mL) and $\mathrm{H}_{4} \mathrm{O}$ (200 mL) mesetirred for 20 h at rt, and the mirtrose mes adjued to $\mathrm{pH}<3.0$ by addition of coocd HCL The misturs wes extracted with $3 \times 75 \mathrm{~mL}$ of CHCl_{4} and the combined organic layess wore dried ($\mathrm{M}_{\mathrm{H}} \mathrm{SO}_{4}$) and concemersted to give $23(2.52 \mathrm{~g}, 108 \mathrm{mmol})$ in 90% yield: mp 156-157 ${ }^{\circ} \mathrm{C}$ (from CHCl/ E4O): ${ }^{1} \mathrm{H}$ NRR (800 $\mathrm{MHz} \mathrm{CDCl}_{4}$ \& $106(\mathrm{~m}, 1 \mathrm{H}), 213(\mathrm{~m}, 1 \mathrm{H}) .250$ (ddd. J $=63$, $9.3,17.9 \mathrm{~Hz} 1 \mathrm{H}), 263(\mathrm{dt}, \mathrm{J}=17.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 278$ ($\mathrm{m}, 1 \mathrm{H}$), 338 (dd. $J=5.8,125 \mathrm{~Hz} 1 \mathrm{H}), 343(\mathrm{dd}, \mathrm{J}=85,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.43(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}) .7 .16-7.35$ (m. 5 H), 11.24 (be. 1 H): ${ }^{12} \mathrm{C}$ NMAR (75.5 MH2 CDCl) 8226. 30.4. 388, 480, 50.5, 127.6, 128.1. 128.7. 1382. 170.0. 175.7; IR (Dent) $3070,3029.2930,2572,2780,2670,2492,1940,1713,1591$. 1455. 1421. 1375. 1302. 1223, 980, 752. $698 \mathrm{~cm}^{-1}$; HRMS caicd for $\mathrm{C}_{42} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 233.1052$ found $\mathrm{m} / \mathrm{z} 233.1039$.

Ceneral Proceduse for DBU Epimerization. To a 9010 solertice of cis-31/tranc-31 (0.20 g .1 .12 mmol) in THF (2.2 mL) was added DBU ($0.09 \mathrm{~g}, 0.56 \mathrm{mmol}$), and the mirture wes stirnd at rl . Afrer 16 h , the reection was quesched by addition of 3 ml of $\mathrm{H}_{2} \mathrm{O}$. The organic layers were sepperated, conceatrated, and purified by chromatography (E 2 O) to give 31.
crangs31: $0.20 \mathrm{~g} .0 .82 \mathrm{mmol},>99 \%$ yield. $28: 72$ (cis/rana): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{2}$) (trams incemer) 81.22 (d. J $=6.6 \mathrm{~Hz} 1$ H), 1.80 ($\mathrm{s}, 3 \mathrm{H}$). 1.91-2.12 (m. 3 H). 2.35-263 (m. 3 H). 382 (m. $1 \mathrm{H}), 4.01(\mathrm{~d} . J=15.2 \mathrm{~Hz} 1 \mathrm{H}), 5.23(\mathrm{~d} . J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.34 (m, 5 H); ${ }^{25} \mathrm{C}$ NMR (75 MaHz CDCla) (trana ivomer) 8 19.53. 19.86, 27.47.20.39,46s8.51.14.5225, 126.93, 127.78. 128.10. $136.97,16387,207.05$; RR (oil/ NaCl) 2975, 1713, 1640.1163 cm-l; HRMS caled for $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{~m} / \mathrm{z} 245.1416$, found $\mathrm{m} / \mathrm{z} 245.1415$. trang-45 (from 51): 0.20 g .0 .57 mesol $>99 \%$ yield. $17: 83$ (cia/ trana): ${ }^{2} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{8}$) (trame isomer) 81.89 (8, 3 H). $1.95(m, 1 \mathrm{H}) .204(\mathrm{~m}, 1 \mathrm{H}), 24(\mathrm{dt}, J=17.7 .6 .5 \mathrm{~Hz}, 1 \mathrm{H}), 258$ (ddd, $J=17.7,7.5,65 \mathrm{~Hz}, 1 \mathrm{H})$. $295(\mathrm{dt}, J=6.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42-3.52 (m, 2 H), $3.94(m, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ $(\mathrm{d}, ~ J=1.5 \mathrm{~Hz}, 2 \mathrm{H}) .5 .14(\mathrm{~d}, ~ J=15.0 \mathrm{~Hz} 1 \mathrm{H}), 7.16-7.36(\mathrm{~m}, 10$ H): ${ }^{24} \mathrm{C}$ NMR (75 Mifz CDCly) (trame ieower) 8 19.93. 27.27. 29.58, 47.78, 47.98, 55.17. 69.36, 72.81. 127.01. 127.50. 127.45, 127.53, 127.82, 128.12. 138.91, 137.15. 169.86, 207.06: IR (cill $\mathrm{NaCl}) 3088,2924.1713,1644.1161 .1101 \mathrm{~cm}^{-1}$: HRMS caled for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 351.1835$, foumd $\mathrm{m} / \mathrm{z} 351.1818$.

Gemeral Procedure for Beeyer-Villiger Oxidation. To a solurion of $27\left(0.10 \mathrm{~g}, 0.43\right.$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ mere added $m-C P B A(0.39 \mathrm{~g}, 225 \mathrm{mmol})$ and CF, $\mathrm{COOH}(0.05 \mathrm{~g}, 0.43 \mathrm{mmol})$ at ith. and the reaction was beated at reflur. After 14 h , the reection we cooled and concencrated, and the reaulting sherry wes purified by chromerograply (EuO) to give 28.
20. $0.069 \mathrm{~g}, 0.28$ mmol. 67% yield: ${ }^{2} \mathrm{H}$ NMR ($\left.300 \mathrm{MH} 2, ~ C D C l 2\right)$ 8201 (s. 3 H). 202-2.08 (m. 2 H). 2.52 (ddd. $J=17.9,6.0,5.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.67 (ddd. $J=17.9,9.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (ddd. $J=$ $13.2,3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (dd. $J=13.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}$, 4.49 (d.
J. Ore. Chem.

G
$J=14.7 \mathrm{~Hz} 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz} 1 \mathrm{H}) .5 .12(\mathrm{dq}, \mathrm{J}=38$, $36 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{2} \mathrm{C}$ NMR (75 MH2, CDCly $)$
 136.56, 168.73, 170.18; IR (coi/ NaCl) 3063, 2059.2073, 1738, 1646, 1491, 1385, 1421, 1238, 1182, 1075 c.m.
22. 4.09 g . 17.2 mmol 41% yiald mp $68-67^{\circ} \mathrm{C}$ (from petroleme
 $3 \mathrm{H}) .2 .9(6,3 \mathrm{H}) .197(\mathrm{~m}, 1 \mathrm{H}), 216$ (dddd. J $=14.7,114,7.5$, $27 \mathrm{H} 2,1 \mathrm{H}), 251$ (dd. $J=183,7.5,21 \mathrm{~Hz}, 1 \mathrm{H}), 206$ (ddd, J $=183,114,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{qR}, \mathrm{J}=6.7,20 \mathrm{~Hz}, 1 \mathrm{H}) .380(\mathrm{~d}$, $J=153 \mathrm{~Hz}, 1 \mathrm{H}), 488(\mathrm{dt}, \mathrm{J}=39,21 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, \mathrm{~J}=$ 15.3 Hz, 1 H), 7.20-7.57 (m, 5 H); ${ }^{29}$ C NMR (75 MHz CDCly) 8 1780, 20.75, 2L03,2881, 47.18, 5438, 7007.127.19,127.72, 12832, 13855, 1c357, 16989, IR (NaCl) 2075, 294, 1736, 1634, 1482,
 m/a 262.1303.
 $8183(6,3 \mathrm{H}), 104(\mathrm{~m}, 1 \mathrm{H}), 217$ (dddd, $J=138,108,78,30$ $\mathrm{Hz}, 1 \mathrm{H}), 251$ (ddd, $J=183,7.6,27 \mathrm{~Hz}, 1 \mathrm{H}), 203$ (ddd, $J=$ $183,108,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 345-360(\mathrm{~m}, 3 \mathrm{H}), 392(\mathrm{~d}, \mathrm{~J}=153 \mathrm{~Hz}$ $1 \mathrm{H}), 4.43(\mathrm{~d}, J=120 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=120 \mathrm{~Hz}, 1 \mathrm{H}) .5 .16$ ($\mathrm{m}, 1 \mathrm{H}$) $539(\mathrm{~d}, \mathrm{~J}=153 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.00(\mathrm{~m}, 10 \mathrm{H})$) ${ }^{2 \mathrm{LC}}$ NNRR (75 Mriz CDCl4) $82086,2230,27.00,48.12,5852,67.97 .6274$. 7331.127.57, 12763, 127,92, 12301, 12044, 12960, 15301, 157.31.
 $1181 \mathrm{em}^{-1}$; HRMS ealed for CothanOs $\mathrm{mo} / \mathrm{z} 367.1784$, found m / z 307.1788

Formation of 23. To a solutice of $52(0.10 \mathrm{E}, 0.383 \mathrm{amec})$ in $\mathrm{H}_{4} \mathrm{O}(0.6 \mathrm{~mL})$ mas edded crubbed $\mathrm{NaOH}(0.04 \mathrm{~g}, 1.12 \mathrm{mmol})$, mod the reaction wes hemed at apperecimetely $50^{\circ} \mathrm{C}$ for 12 h . After thin tima, the product wes errocted from the reaction mirture with 6×1 mi of CHCh. The orgaic layers mere combined and dried, and the solveat wee removed under ractuced poseruse. The peoduct wes recrytallized from EtsO/petroleum cther to cive 88 ($0.062 \mathrm{~g}, 0.253 \mathrm{mmol}$) in 74\% yield: mp 110-113 ${ }^{\circ} \mathrm{C}$: 1 H NMR
 $1.96-2.12$ ($\mathrm{m}, 2 \mathrm{H}$). 242 (ddd. $J=180.7 .1,28 \mathrm{~Hz}, 1 \mathrm{H}$, 271 (ddd. $J=180,10.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}$) 334 ($\mathrm{m}, 1 \mathrm{H}$) 383 (dı, $J=48$, $28 \mathrm{~Hz}, 1 \mathrm{H}) .395(\mathrm{~d} . J=152 \mathrm{~Hz}, 1 \mathrm{H}), 535(\mathrm{~d}, J=15.2 \mathrm{~Hz} 1$
 28.92, 47.42, 57.96, 68.45, 127.23, 127.78, 123.56, 137.33, 169.42 IR (oil/NaCl) $3209,3023.2890,1609,1453,1175, \mathrm{~cm}^{-1}$; HRMS caled for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~m} / \mathrm{z} 219.1259$, found $\mathrm{m} / \mathrm{z} 219.1245$.

Preparatioa of Thimanidee. Laweoon's remgent (0.5 equiv) me edded to a solution of the lactam (1.0 equiv) in THF (0.4 M). and the mixture was stirred for 4-12 h. After evaporation of the solvent, the poovolatile mirture was diluted with EtOAc (3 time the volume of THF), and the solution was wabed sequeatially with 3 portions of saturated equeous $\mathrm{NaHCO}_{3}(1 / 3$ the volume of ExOAc) follomed by 2 portions of saturated aqueou $\mathrm{NaCl}(1 / \mathrm{c}$ the volume of EtOAc). The equeous layers were combined and extracted with 2 portices of EtOAc ($1 / 2$ the volume of EuOAc). All organic layers were combined and thea dried ($\mathrm{Na}_{\mathrm{i}} \mathrm{SO}$). Purification by chrometography (EteO) afforded the pure thicinctan.

30: 5.36 g. 20.4 mmol. 99\% yield; mp 63-65 ${ }^{\circ} \mathrm{C}$ (from Bro): 'H NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{4}$) 81.87 (ddth $J=58.13 .7,9.1 \mathrm{~Hz}, 1$ $\mathrm{H}) .200$ (dq, $J=13.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .278(\mathrm{~m}, 1 \mathrm{H}) .297$ (ddd, J $=6.3 .88,18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dL} \mathrm{J}=18.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.56$ ($m, 2 \mathrm{H}$), $3.56(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}) .5 .40(\mathrm{~d}, J=$ 14.5 Hz 1 H), 7.18-7.29 (m, 5 H); ${ }^{2} \mathrm{C}$ NMR (75.5 MHz CDCl4) 8 22.0, 38.6, 40.3, 50.0. 52.0. 57.1. 127.6, 127.7, 128.5, 134.8, 172.0 , 199.7; RR (Deat) 3000, 3030, 2951. 2960, 1734, 1514, 1453, 1348
 263.0900, found $m / 2283.0962$

38b: 2.28 g .7 .82 mmol, 99% yield: ${ }^{1}$ H NMR (300 Mriz2 CDCly) $\delta 1.17$ (d) J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~L}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.93-213$ (m. 2 H), 277 (ddd $J=4.7,58,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 ($d t, J=8.5$ $19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (ddd. $J=3.3,6.6,19.5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .98(\mathrm{dq}, J$ $=58.6 .6 \mathrm{~Hz} 1 \mathrm{H}), 4.09(q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=148$ $\mathrm{Hz} 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 5 \mathrm{H}) \mathrm{I}^{2} \mathrm{C}$ NMR (75.5 MHz, CDCly) $814.0,14.7,18.3,40.0,43.5,54.9 .558,61.0$ 127.5, 127.7.128.7, 1353, 170.8, 199.8: IR (Deat) 3087, 3061.200. 2938, 1732, 1497, 1452. 1348. 1171, 961. $708 \mathrm{~cm}^{-1}$; HRMS ciled for $\mathrm{C}_{10} \mathrm{H}_{2} \mathrm{NO}_{5} \mathrm{~S} \mathrm{~m} / \mathrm{z} 291.1293$, foumd $\mathrm{m} / \mathrm{z} 291.1341$.

MSC: jos40171k BATCE: josb22 USER: eap69 PAGE: 8 DIV: eryldr/data2/CLS_pj/GRP_jo/JOB_il2/DIV_jos40171k DATE: 04/22/94

E J. Org. Chem

Cook et al.

55: $1.45 \mathrm{~g}, 336 \mathrm{mmol} .94 \%$ yield: $\mathrm{mp} 81-8{ }^{\circ} \mathrm{C}$ (trom ErO); ${ }^{3} \mathrm{H}$ NMR (300 MHz CDCH) $81.83-2.06$ (min 2 H), 3.10 (ddd. J $=4.4,6.1,190 \mathrm{~Hz}, 1 \mathrm{H}), 350$ (ddd, $J=7.1,9.6,19.0 \mathrm{~Hz}, 1 \mathrm{H}$). 3.40 (dd, $J=6.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd. $J=4.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $385(\mathrm{~m}, 1 \mathrm{H}) .391(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}$. $J=118 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.50(2 \mathrm{~m}, 3 \mathrm{H}) .6 .45(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.40 (m, 15 H): ${ }^{2} \mathrm{C}$ NRR (75.5 MHz CDCl2) 8227.37 .3 $565,61.1$. 69.1. 700. 722, 733, 1272, 127.4, 127.5, 127.6. 127.9. 128.2, 1235, 135.2, 137.1. 137.7, 201. \&i IR (1, 1t) 3100,3000,3031. 2440, 2067. 1497, 1453, 1345, 1173, 1073, 1028, 733, $606 \mathrm{cma}^{-1}$; HRMS caled for CmHaNOS m/z 431.1919, found $\mathrm{m} / 2$ 431.1877.

Ceamal Moched for Eecheameoer 8ulfil Conersetion. The thiolectam (1.0 equiv) and $\mathrm{BrCH} \mathrm{CO}_{5} \mathrm{Ex}$ (1.2 equiv) were stirred in EesO (1 M) for 24-36 h. Atter removel of sotvent, the chionium enlt wee dimoked in CH3CN (0.2 M), and PPhy (1.2 equiv) wes added. The micture mee allowed to stir for 10 min
 After 26 h , the colids mere reanoved by filtration, and the ravilenat solution mie concencrated. Chrometopraply (sor10 to 70-50 petroleum ether/EtyO) provided the pure camminoevters.

25: 0.428 g 1.23 manol 79\% yiedi mp 69-71 ${ }^{\circ} \mathrm{C}$ (arem
 $=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~L}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~L}, \mathrm{~J}=7.0 \mathrm{~Hz}, \mathrm{~S}$ H), 1.2i-2.11 (m, 2 H), $286-300(\mathrm{~m}, 2 \mathrm{H}), 3.2$ (ddd, $J=31.6 .7$. $18.7 \mathrm{~Hz} 1 \mathrm{H}) .380(q u i n t, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) .399(\mathrm{dq}, J=34$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{dq}, J=3.4 .7 .0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}$ $2 \mathrm{H}), 428(\mathrm{~d}, \mathrm{~J}=165 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 463$
 (75.5 Mit2, CDCly) $814.0,14.5,14.6,17.0,254,44.1,54.0,848$, 582, 60.6, 85.7, 126.4, 127.1, 1296, 136.1. 159\&, 1686. 171.8: IR (melth) 3100, 3000, 3050, 2978, 2920, 2570, 1734, 1602, 1561. 1136. 1090, 1050, 966, 791, 727, $606 \mathrm{~cm} \mathrm{~m}^{-1}$, HRMS calcd for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$ $\mathrm{m} / \mathrm{z} 345.1940$, found $\mathrm{m} / \mathrm{z} 345.1939$.

S5: 1.22 g .2 .51 manol. 81% yield; 1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{4}$) $\delta 1.17$ (L) $\mathrm{d}=7.1 \mathrm{~Hz} 3 \mathrm{H}$), 1.85 ($\mathrm{m}, 1 \mathrm{H}$), 1.95 ($\mathrm{m}, 1 \mathrm{H}$), 2.95 (dL $J=18.1 .6 .2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (dd, $J=6.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 350(m$ 1 H). 3.51 (dd, $J=45,9.7 \mathrm{~Hz} 1 \mathrm{H}$). 361 (ddd, $J=28,4.4 .7 .1$ $\mathrm{Hz}, 1 \mathrm{H}$) 3206 (ddd, $J=30,4.4,69 \mathrm{~Hz}, 1 \mathrm{H}$). 3.98 (dq. $J=38$. $7.1 \mathrm{~Hz}, 1 \mathrm{H}) .4 .01(\mathrm{dq}, J=38.7 .1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=16.5 \mathrm{~Hz}$ $1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d} . J=14.6 \mathrm{~Hz}, 1 \mathrm{H}) .4 .52(\mathrm{~d}, J=14.6$ $\mathrm{Hz}, 1 \mathrm{H}) .4 .53(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}) .4 .60(\mathrm{~s}, 1 \mathrm{H}) .7 .18-7.36$ (m.
 62.5. 70.1. 70.2. 73.2. 73.3. 84.8. 126.6. 127.0. 127.4. 127.5. 127.6. 127.8. $1283.128 .4,128.5,136.3$, 137.6. 138.2 , 161.7. 168.9. IR (meat) $3100,3000,3031,2900.2934,2607,1680,1561.1497,1455$, 1362. 1142, 1094, 1073, 735, $696 \mathrm{~cm}^{-1}$: HRMS calod for $\mathrm{C}_{2} \mathrm{H}_{3}$ NO4 $m / 2$ 485.2567, foumd $m / z 485.2559$.

Formation of 43 . To a solution of $42(1.20 \mathrm{~g} .2 .19 \mathrm{mmol})$ in THFF (16 mL) weo added BuLi ($3.28 \mathrm{~mL}, 2.5 \mathrm{M}$ in herape) at -78 ${ }^{\circ} \mathrm{C}$. After the mircure wee stirred for $10 \mathrm{~min} . \mathrm{CCO}_{2} \mathrm{Et}(0.89 \mathrm{~g}$. 8.19 mmol) weadded droperies. The reaction we alowly warmed to $0^{\circ} \mathrm{C}$ (until a deep rod color began to form) and was then promplly quenched by addition of $\mathrm{H}_{2} \mathrm{O}$. The oreanic phese wes separated, and the solvene was removed under reduced preseure to produce a crude oil. which wes purified by chromatography (perroleum ecther) to give 43 (1.61 g .7 .39 mmol) in $91 . \%$ yield: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \& $1.20(\mathrm{~L}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). 4.22 (q . $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}) .7 .22-7.40$ (m, 5 H); ${ }^{12} \mathrm{C}$ NMR ($75 \mathrm{MH}_{2}, \mathrm{CDCl}_{4}$) δ 13.78, 56.53, 61.90, 71.81. 78.07. 8294. 127.87. 127.90. 128.29, 136.59, 152.87: IR (oil/ NaCl) 3032 2994, 2872, 2236, 1713, $1248 \mathrm{~cm}^{-1}$.
Ara-Anamiation Procedure for Formation of 44. To a solution of $43(1.61 \mathrm{~g}, 7.37 \mathrm{mmol})$ in THF (15 mL) was added $\mathrm{BaNH}_{2}(0.70 \mathrm{e} .7 .37 \mathrm{mmol})$ at rt, and the rection wes beated at reflux for 12 h . After the mirture wis cooled to the ecrylic anhydride (1.7 equiv) was edded, and the reaction was heated at reflur for $14 \mathrm{~h}^{31}$ The solution wes then cooled to It and coseratrated, and the crude product was purified by chromatography ($10: 90 \mathrm{Et}_{5} \mathrm{O} /$ /petroleum ether) to give 44 (1.73 g .4 .56
(37) crylic entydride meo preperod in mediatety prioe toune by adding NaH (1.8 equiv) to ecrytic acid (1.2 equav) at $-78{ }^{\circ} \mathrm{C}$ and allowne the mixture to werm to rR Aeryloy ctionde (1.0 equiv) wa then sdided. and wepeel vee chasoule.
(38) are. S.-K.: Kin. W.S.: Moca, B.FH. Synchesis 1888, 1161.

 (m. 2 H). 2.62-271 (m. 2 H). 4.17 ($\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$). 4.57 (a. 2 H), 4.60 (, 2 H), 5.12 ($\mathrm{m}, 2 \mathrm{H}$), 6.97-7.03 (m, 2 H). 7.16-7.39 (m. 8 H); ${ }^{20}$ C NMR (75 M ${ }^{2}$ 60.76, 63.56, 7265, 11354, 128.06, 126.97, 127.93, 12807. 12212. 123.63, 137.61. 137.90, 146.08. 166.71. 170.92; RR (NaCl) 294. 1682. 1656. 1200, $1130 \mathrm{cm-h}$. HRNAS caled for $\mathrm{C}_{4} \mathrm{H}=\mathrm{NO} \mathrm{m} / \mathrm{m}$ 379.1784 , found m/s 379.1777 .

Comeral Procedars for Conversion of Enter to Mathol Fecten Funetionality. To a solution of MeMifBr (227 min 20 M in THI) in beasees (19 mL) mes added $\mathrm{NB}_{4}(206$ go 20.4 mmol) as $0^{\circ} \mathrm{C}$. Aftert 10 min a solution of $45(1.25 \mathrm{~s}, 3.41 \mathrm{mmol})$ in beaseas (5 mL) wan added with vigorove stiring, and the mirture wes etirrod for $3 \mathrm{hat} 0^{\circ} \mathrm{C}$. The ryection wee quesched by eddition of 25 mL of 3 M equeces HCL. The cerpmic lay mee saparated and coscestrated, and the stoulting arede oil men purified by chrometography (ETO) to give te.

 $1 \mathrm{H}) .232-264$ ($\mathrm{m}, 2 \mathrm{H}$), 271 (dr. J $=132 \mathrm{4} .1 \mathrm{~Hz} 1 \mathrm{H}$). 342 (dd) $J=9.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .324(\mathrm{~m}, 1$ $\mathrm{H}) .405(\mathrm{~d}, ~ J=150 \mathrm{~Hz}, 1 \mathrm{HD}, 4.20(\mathrm{~d}, J=18 \mathrm{~Hz}, 2 \mathrm{H}) .523(\mathrm{~d}$. $J=150 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.36(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{2} \mathrm{CNMR}\left(75 \mathrm{MH}_{2} \mathrm{CDCl}\right)$
 $127.12,12734$. $127.49,12303,128.11,12829,13691$, 137.04. 100.23, 200.36; IR (oi/NaCh) 3088, 2924, 1713, 1644, 1161, 1101 cari: HRNS caled for $\mathrm{C}_{\mathrm{m}} \mathrm{H}_{\mathrm{a}} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z} 351.1835$, found m / z 361.1818.

51: 0.17 g .065 mool 25\% yield. 2902 (cia/trana): ${ }^{2 H 1}$ NBR (500 Mats, CDCly (cis ieceres) 81.00 ($\mathrm{m}, 1 \mathrm{H}$), 1.91 ($0,3 \mathrm{H}$), 210 $(\mathrm{m}, 1 \mathrm{H}), 240(\mathrm{dt} ~ J=17.7,68 \mathrm{~Hz}, 1 \mathrm{H}), 2.4(\mathrm{dth} J=17.7,68$ $\mathrm{Hz}, 1 \mathrm{H}$), 303 (dt. $J=6.6,48 \mathrm{~Hz}, 1 \mathrm{H}$), 257 (dd, $J=116,28$ $\mathrm{Hz}, 2 \mathrm{H}) .365$ (dd. $J=11.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 382(\mathrm{~m}, 1 \mathrm{H}), 3.92$ (bm $1 \mathrm{H}), 408(\mathrm{~d} . \mathrm{J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d} . \mathrm{J}=150 \mathrm{~Hz} 1 \mathrm{H}) .7 .21$
 CDCl2) (cis inomer) $820.11 .25 .58,20.86,47.49,4803,57.15 .61 .87$. 127.45, 127.91. 12854, 136.91. 171.06, 207.88; [R (oiV NaC1) 3374, 3088, 2042, 1711, 1613, 1455, 1256, 1169 cmel. HRMS calcd for $\mathrm{C}_{u} \mathrm{HH}_{10} \mathrm{NO}_{s} m / 2261.1365$, found $m / z 261.1354$.
Formation of 17. To a solution of $47(0.30 \mathrm{e}, 0.80 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{~mL})$ was added cruabed KOH $(0.20 \mathrm{e}, 0.52 \mathrm{mmol})$ et ith and the reaction wes beated at approcimately $50^{\circ} \mathrm{C}$. After 12 h. the proctuct was extrected from the reaction mixture with 6 $\times 2 \mathrm{~mL}$ of CHCl_{3}. The organic layers wese combined and concentrated, and the resulting crude aloobol was purified by chromatography ($\mathrm{E}_{4} \mathrm{O}$) to give an oil ($0.22 \mathrm{E}, 0.68$ mmol) in 85\% yield: 'H NMR ($300 \mathrm{MH}_{2}, \mathrm{CDCl}_{4}$) 1.81 ($\mathrm{m}, 1 \mathrm{H}$), 2.00 (dddd. $J=12.6 .9 .9 .6 .9 .3 .0 .1 \mathrm{H}$) 2.37 (ddd. $J=18.3,6.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$). 2.64 (ddd, $J=16.8 .9 .3 .6 .9 \mathrm{~Hz} 2 \mathrm{H}) .339$ ($\mathrm{m}, 1 \mathrm{H}$), $3.40(\mathrm{~s}, 1 \mathrm{H})$. $3.51\left(\mathrm{~m}_{1}, 1 \mathrm{H}\right), 4.07(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{be}, 1 \mathrm{H}), 4.57(\mathrm{~d}$ $J=120 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=153 \mathrm{~Hz}$. $1 \mathrm{H})$. $7.16-7.38$ (m. 10 H); ${ }^{12} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{4}$) ${ }^{25} .16$. 27.37. 48.09, 62.13, 65.65, 69.42, 73.27, 127.15, 127.58, 127.71. 127.86, 128.45. 128.46. 137.23. 137.44, 170.28; IR (cil/NeCl) 3364 (br). 3063. 2928, 1617, 1453, 1181. 1101 ewith; HRMS caled for $\mathrm{C}_{\mathrm{m}} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 325.1678$, foumd $\mathrm{m} / \mathrm{z} 325.1666$.
To a solutica of the alcobol $(0.50 \mathrm{~g}, 205 \mathrm{mmol})$ in $\mathrm{E} 4 \mathrm{O}(4 \mathrm{~mL})$ were added crusbed KOH (0.23 g .4 .10 mmol) and molecular sieves $(0.40 \mathrm{~g})$ at rt. After $5-10 \mathrm{~min}$ of stirsing. $\mathrm{BaBr}(0.39 \mathrm{~g}, 226$ mmol) wes added. The renction wes quemeted after 3 h by addition of excess $\mathrm{H}_{2} \mathrm{O}$, and the misture we axtracted with 10 $\times 4 \mathrm{~mL}$ of E 4 O . The acganic layers mere combined and coccuntrated, and the repultiong crude oil wa purifiod by chromatography ($\mathrm{E} \mathrm{H}_{2} \mathrm{O}$) to sive 17 (0.57 g .1 .37 mmol) in 94\%
 $\left.\mathrm{CDCl}_{4}\right)$ \& $1.91-202(\mathrm{~m} .2 \mathrm{H}), 240$ (ddd, $j=18.0,6.2,39 \mathrm{~Hz}, 1$ H), 2.69 (ddd. $J=18.0,10.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (dd, $J=9.9,7.2$ $\mathrm{Hz}, 1 \mathrm{H}$). 3.52 (dd. J = 9.9, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (m, 1 H), 383 (dd. $J=6.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=120$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=120 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$. $4.41(\mathrm{~d} . J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .5 .36(\mathrm{~d} . J=15.3 \mathrm{~Hz} 1 \mathrm{H}) .7 .14-7.36$ ($\mathrm{m}, 15 \mathrm{H}$): ${ }^{25} \mathrm{C}$ NMR ($75 \mathrm{MH}_{2}, \mathrm{CDCl}_{4}$) $822.18 .27 .22,47.69 .5837$. 69.16, 69.77. 71.79. 73.03. 126.87, 127.07, 127.23. 127.37, 127.56. 127.65. 128.05. 128.21. 128.26, 137.06, 137.36, 137.85, 169.93; IR

(NeCl) 3088, 3050, 2307, 1642, 1453, 1096 cmit, KRMS aled for $\mathrm{C}_{5} \mathrm{H}_{-1} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 415.2148$, found $\mathrm{m} / \mathrm{z} 415.2142$

Formation of 52 To a eclution of 17 (1.00 g .241 manol) in THF (16 mL) mes added Buli ($1.06 \mathrm{~mL}, 25 \mathrm{M}$ in THP) at -78 ${ }^{\circ}$ C. After 10 min. PhSoCl ($0.51 \mathrm{~g}, 265 \mathrm{mmol}$) in THF (8 mL mas edded and tho rmetico mirture allowed to warm to $0^{\circ} \mathrm{C}$ for 3 min. The reection men quepeched by eddition of $25 \mathrm{~mL} \propto \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, and the mirture weo criseted with $4 \times 10 \mathrm{~mL}$ of E4O. The combised organic layers mere coscestrited under roduced
 21.25 mL), and $\mathrm{NalO}_{4}(1.55 \mathrm{~g} .723 \mathrm{mmol})$ wasdded. Arear this nirture meatired for 14 h , the rection wes dikuted with 25 mi of $\mathrm{H}_{3} \mathrm{O}$, and the micturs mes extracted with $10 \times 10 \mathrm{~mL}$ © Eto O . The arganic hyers mese combined and cocomatrated to pive erode solid, which men purifiod by recryuallimation free Byol

 248 (dd) $J=28,50 \mathrm{~Hz} 1 \mathrm{HD}, 384(\mathrm{~m}, 1 \mathrm{HD}, 400 \mathrm{~d}$ d $J=15$. $\mathrm{Hz}, 1 \mathrm{H}), 400(\mathrm{dd}, J=59,14 \mathrm{~Hz}, 1 \mathrm{HD}, 47(\mathrm{~d}, J=120 \mathrm{~Hz}$ $1 \mathrm{H}), 433(\mathrm{~d}, \mathrm{~J}=120 \mathrm{~Hz} 1 \mathrm{H}), 400(\mathrm{~d}, J=120 \mathrm{~Hz}, 1 \mathrm{H}) .445$ (d. $J=120 \mathrm{~Hz}, 1 \mathrm{H}$). 5.37 (d. $J=15.5 \mathrm{~Hz} 1 \mathrm{H}$). 6.15 (d. $J=26$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.47 (ddd, J = 26.59, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$). 7.10-7.15 (m, 2 H).
 c307, 6300, 70.11, 73.24, 127.52, 127.52, 127.99, 127.75, 127.57. 12804, 12824, 12929, 12844, 12351, 13450, 13601, 137A0. $157.52,162$ 24 IR (NACD $5004,2070,1600,1611,1466,1292,1146$ $1002 \mathrm{emar}^{+}$; HRMS calod for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO} \mathrm{m} / \mathrm{m} / \mathrm{s} 43.1901$, fomed m / z 418.1809.

Fermative of 58. To a solutica of $82(0.10 \mathrm{~s}, 0.25$ manel) in $8-\mathrm{BuOH}(1.4 \mathrm{~mL})$ mere added NMO (exemen) and $0 \times \mathrm{O}_{4}(0.53 \mathrm{~min}$ 005 M in $6-\mathrm{BoOH}$) at rt. Atere 3 h , the reaction wio queached by edditioa of exceen solid NasO2, Solveat wee removed under sedveed perecors until the reectioa color begm to turn groy. The resalting mixture mea purified by chrecmatopraphy (soolvas gredient E4O to $50.50 \mathrm{Et} 0 / \mathrm{MoOH}$) to give 53 (0.009 g .0 .154 mmol) in 64\% yield: mp $96-80^{\circ} \mathrm{C}$ (froem E40/MCOH); ${ }^{1} \mathrm{H}$ NMR (300 MHs CDClu $8296(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz} 1 \mathrm{H}), 361-3.78(\mathrm{~m}, 3 \mathrm{H}), 384$ (d. $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=15.6$, $1 \mathrm{H}), 4.37(\mathrm{tch}, \mathrm{J}=3 \mathrm{k}, 21 \mathrm{~Hz}, 1 \mathrm{H}) .4 .41(\mathrm{~s}, 2 \mathrm{H}) .4 .42(\mathrm{~m}, 1 \mathrm{H})$. $4.41(\mathrm{~d}, J=120 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=120 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz} 1 \mathrm{H}), 7.11-7.21$ (m .4 H), 7.21-7.39 (m, 11 H) ${ }^{14} \mathrm{C}$ NDR (75 MHz CDC4) 47.56. 58.58, 68.11. 6885, 99.57 . 71.48. 73.13,7521.127.39. 127.55.127.65, 127.74, 127.83, 128.23, 12235. 128.41. 128.53. 136.83, 137.19. 137.43, 171.20 8: IR (NaCl) 3409. 3088, 3031. 2509, 1645, 1455, 1250, $1074 \mathrm{~cm}^{-1}$: HRMS caled for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{5} \mathrm{~m} / \mathrm{z} 477.2046$. foumd $\mathrm{m} / 2447.2046$.
Fermation of 5 . To a golvtion of $53(0.06 \mathrm{~g} .0 .13 \mathrm{mmol})$ in $\mathrm{NH}_{3}(4 \mathrm{~mL})$ wes added Li metal at $-78^{\circ} \mathrm{C}$ until the solution cursed a persinieat doep bhere. After 3 h at rellur, the solution wes cooled to - $78{ }^{\circ} \mathrm{C}$ and then the reection was quenched by the addition of solid NHACL. The mixture wees thea allowed to warm cort Osce NH, removil wes complese, the resction mirture wes extracted with $10 \times 2 \mathrm{~mL}$ of a 2.1 solution of $\mathrm{CHCl}_{3} / \mathrm{MaOH}$ and chen filtered. Solvent removal under roduced preseure produced a solid. which wen dineotvod in a minimum amount of MOOH and purifiod by chrocelegraphy ($90: 10 \mathrm{CHCl} / \mathrm{MeOH}$) to give 5 (0.010 8. 0.057 mmol) in 44% yield. $\mathrm{mp} 163-168^{\circ} \mathrm{C}$ (from CHCl/ E40); H NMRR ($300 \mathrm{MH}_{2}, \mathrm{CDCl}_{4}$) 3.23 ($1 \mathrm{~d}, \mathrm{~J}=6.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}$) 3.59 (dd. $J=11.9,59 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (dd, $J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (L, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 389 (dd. $J=5.7,39 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=$ 3.9 Hz 1 H); ${ }^{4} \mathrm{C}$ NMR ($75 \mathrm{MH}_{2}$ CDCly) 57.30. 61.11. 67.20. 68.14.71.94, 173.17: IR (oiv/NaCl) 3287, 3063, 2911. 2090. 2834. 1600. 1453, 1281, 1175, $1082 \mathrm{emil}^{-1}$: HRMS caled for $\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{NO}_{3}$ $\mathrm{m} / \mathrm{z} 177.0697$, found $\mathrm{m} / \mathrm{z} 176.0481$.
Formetion of S4. To a solution of 53 (0.07 g .0 .16 mmol) in $\mathrm{ErOO}_{2}(1.6 \mathrm{~mL})$ mes added acem LiNiH4 at IL After 3 h , the reection we querebed at $0^{\circ} \mathrm{C}$ via slow addition of 15% equeous NaOH until all vinible LiNH4, had been cospurmed. The reection was filtered, dried, and coocentrated to give a crude oil. which was purified by chrocetography (ELO) to give $54(0.069 \mathrm{~g}, 0.16$ momol) is $>98 \%$ yield: ${ }^{2} \mathrm{H}$ NMR ($300 \mathrm{MH}_{2}$, CDCL_{3}) (cis isomer) 8221 (dd, $J=12.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dt. $J=8.7 .2 .6 \mathrm{~Hz}, 1 \mathrm{H}$). 282 (be. 2 H). 291 (dd. J = $1224.4 \mathrm{~Hz}, 1 \mathrm{H}$). 3.27 (d. $J=129$ Hz 1 H). 3.55 (dd, $J=8.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~L}, \mathrm{~J}=8.6 \mathrm{~Hz} 1$ H), 3.73 (m, 1 H), 3.76 (dd. $J=10.4,2.6 \mathrm{~Hz} 1 \mathrm{H}), 3.83(\mathrm{dd} . J=$ 10.4. 26 Hz 1 H$), 4.16(\mathrm{~d}, \mathrm{~J}=13 . \mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.56$
($\mathrm{d} . J=11.1 \mathrm{~Hz} 2 \mathrm{H}$). $490(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz} 1 \mathrm{H}) .7 .20-7.00(\mathrm{~m}$
 68.10, 73.25, 74.61, 75.90, 78.12, 127.16, 127.65, 127.74, 127.79. 127.97, 127.99, 12340, 12894, 137.85, 13852, 138.60; RR (cil NaCl) 3422, 3053, 2203, 1495, 1453, 1098 c.m-1; HRNS caled for $\mathrm{C}_{3} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{~mm} / \mathrm{z} 4392053$, foumd $\mathrm{m} / \mathrm{z} 4532253$.
Formation of 4 . To a solution of $54(0.00$ es 0.18 manol) in ECOH (2 mL) men added 10\% Pd co carboe (0.18 c) and comed HCl (L8 mL), and the mirture meo pleced under en etrecephere of H_{3} and stirred at it. After 14 h , the raectioa zirtuse mes fikerod and the solvent rumoved under roduced peneure to give 4 ($0.014 \mathrm{~g}, 0.094$) a crude solid (52% yiald). which

 8200 (ddd $J=99,66,30 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd $J=138,13 \mathrm{~Hz}$ $1 \mathrm{H}), 3.27(\mathrm{dd}, J=138,20 \mathrm{~Hz} 1 \mathrm{H}), 35(\mathrm{dd}, J=96,10 \mathrm{~Hz}$ $1 \mathrm{H}), 270(\mathrm{dd}, \mathrm{J}=12 \mathrm{~s}, 60 \mathrm{~Hz}, 1 \mathrm{H}), 374(\mathrm{~L}, \mathrm{~J}=68 \mathrm{H}, 1 \mathrm{H}$,

185 (dd. d = $123,25 \mathrm{~Hz} 1 \mathrm{H}) .4 .10(\mathrm{~m}, 1 \mathrm{H})$. sepeters. To a solution of the macmino ceter (1.0 equiv) and bremocreol groen (trece anounes es en indicator) in MeOH (0.2 M) wes added NaBHACN (10 equiv). A 5\% methasolic HCl solution weo added dropwies until a yallow color perineted in selution. While the remetion mixture wastirsed for 2 h , pariodic
 wen thea dikuted with $\mathrm{CH}_{2} \mathrm{Ch}_{3}$ (5 timee the volume of $\mathrm{M} O \mathrm{OH}$). mented with 10\% aqueove $\mathrm{NaHCO}_{3}\left(1 / 2\right.$ the voluene $\left.\mathrm{of} \mathrm{CH}_{3} \mathrm{Cl}_{3}\right)$. and the organic pheme me dried over NaSO_{4}. The solvert men
 cficoded the pure piperidize.
 (DSO:10): ${ }^{1 H}$ NMR (300 MAH2, CDCl) \& (major iecment) ase (d) $J=69 \mathrm{~Hz} 3 \mathrm{H}), 1.13(L, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .1 .14(t, J=7.1 \mathrm{~Hz}$ $3 \mathrm{H}), 2.37(\mathrm{dq}, J=52,124 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dq}, J=132,30 \mathrm{~Hz}$ $1 \mathrm{H}), 1.72-1.92(\mathrm{~m}, 2 \mathrm{H}), 219(\mathrm{dd}, j=7.4,148 \mathrm{Hf}, 1 \mathrm{H}), 246$ (dd, $J=69.148 \mathrm{~Hz}, 1 \mathrm{H}$). 278 (dt. $J=4.9,118 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dq, J = 4.7. $69 \mathrm{~Hz}, 1 \mathrm{H}$). 334 ($\mathrm{m}, 1 \mathrm{H}$), 3.67 ($\mathrm{m}, 2 \mathrm{H}$), 3.93-4.12 (m, 4 H), 7.12-7.31 (m, 5 H); (minor inomer) 0.93 (d. $\mathrm{J}=7.0 \mathrm{~Hz}$ 3 H). 1.19 (L, J $=7.3 \mathrm{~Hz} 3 \mathrm{H}$). $1.20(\mathrm{~L}, \mathrm{~J}=7.3 \mathrm{~Hz} 3 \mathrm{H}), 1.62-1.77$ (m. 3 H). 1.84 (m .1 H). 234 ($\mathrm{dd}, \mathrm{J}=103,14.2 \mathrm{~Hz}, 1 \mathrm{H}$). 265 (dd. $J=3.4 .14 .2 \mathrm{~Hz}, 1 \mathrm{H}) .273$ (m, 1 H). $3.22-3.35$ (m, 2 H). 375 ($\mathrm{a}, 2 \mathrm{H}$), $4.06\left(\mathrm{q}_{\mathrm{i}} J=7.3 \mathrm{~Hz} 2 \mathrm{H}\right), 4.08\left(\mathrm{q}_{\mathrm{c}} \mathrm{J}=7.3 \mathrm{~Hz} 2 \mathrm{H}\right)$, 7.17-7.34 (m. 5 HH): ${ }^{\mathrm{LC}} \mathrm{C}$ NMR (75.5 MHz CDCly s (major icocere) 10.4. 14.1. 21.2, 28.2, 40.1. 41.5, 50.7, 51.9. 53.2. 60.1. 60.4. 1286. 127.8. 128.2, 140.6, 172.1, 174.1: IR (Denc) 3007. 3063, 3029, 2000., 2940, 2874. 2853, 1734, 1495, 1453, 1370, 1200, 1152, 1054, 733. $608 \mathrm{cma}^{-1}$; HRMS calcd for $\mathrm{C}_{\mathrm{m}} \mathrm{H}_{\mathrm{m}} \mathrm{NO} \mathrm{N} \mathrm{m} / \mathrm{z} 347.2097$, found m / z 347.2113.

57: 0.619 8. 1.27 mmol, 88\% yield, mixture of somers $1>90:$ 10): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCH}_{3}$) δ (major isomer) 1.17 (L. $\mathrm{J}=7.2$ Hz, 3 H). 1.53-1.78 (m, 3 H). 1.99 (m. 1 H). 243 (dd, $J=8.7,14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.60$ (dd. $J=5.3,14.2 \mathrm{~Hz} 1 \mathrm{H}$), $295(\mathrm{dt}, \mathrm{J}=7.0,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dt}, \mathrm{J}=4.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~m}$, $3 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{a}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .4 .36(\mathrm{a}, 2 \mathrm{H}), 4.42$ (d. $J=11.4 \mathrm{~Hz} 1 \mathrm{H}$). $4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}) .7 .16-7.38$ (m. 15 H): ${ }^{12} \mathrm{C}$ NMR ($75.5 \mathrm{MHz} \mathrm{CDCl}_{3}$) \& (major isomer) 14.1. 24.7. 25.4.33.9. 52.7.59.2,60.2.688, 70.8, 729. 74.2, 126.5, 127.3, 127.4. 127.5, 127.6. 128.0, 128.2, 128.3, 128.4, 138.4, 1388, 140.7, 1726; IR (Deet) 3087, 3063, 3031. 2900, 2936, 2865, 1732, 1495, 1452 1368, 1290, 1157, 1096, 102s, 737, $636 \mathrm{cma}^{-1}$; HRMS caled for $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{4} \mathrm{~m} / \mathrm{z} 487.2723$, found $\mathrm{m} / \mathrm{z} 487.2709$
Reduction of 57 to 59 . To a solutice of 57 (0.167 E. 0.342 mmol) in E4O was added LiN1H4 (0.1 g .263 mmol), and the mirture was stirred for 2 h . The reection wee quesched by addition of $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL}), 15 \%$ equecus $\mathrm{NaOH}(0.1 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{ml})$. After the mirture wes stirred for 1 h , the solution wea filtered, and the eolvents mere evaporated to give 59 (0.133 g. 0.298 mmol) in 87\% yield: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH}_{2} \mathrm{CDCl}_{2}$) 1.16 (m. 1 H). 1.27 ($\mathrm{s}, 1 \mathrm{H}$), 1.41 ($\mathrm{m}, 1 \mathrm{H}$), 1.68 ($\mathrm{m}, 1 \mathrm{H}$), 1.94 (m .1 H), $209(m, 1 \mathrm{H}), 227(m, 1 \mathrm{H}), 2.91(\mathrm{~m} .1 \mathrm{H}), 3.40(\mathrm{dL} \mathrm{J}=22$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.68$ (m) 3 H), $3.62(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}$) .3 .74 $(\mathrm{dd}, J=8.0 .9 .9 \mathrm{~Hz}, 1 \mathrm{H}) .386(\mathrm{dd}, J=3.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ $(\mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=121$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. 7.20-7.38 (m, 15 H); ${ }^{12} \mathrm{C}$ NMR (755 MHI2, CDCly) $226,28.6$, $30.9,50.6,54.4 .57 .1,629,68.2,70.4,723,73.3,1289,127.3,127.4$.

MSC: jos40171k BATCE: jo6b22 USER: eaps9 PAGE: 10
DIV: Czyldr/data2/CLS_Dj/GRP_jo/JOB_il2/DIV_jos40171k DATE: 04/22/94
127.6, 1223, 129.0. 1382, 138, 7, 1400. RR (50ek) 3405,3007,3008, 3029, 2956, 2061. 1495, 1455, 1100, 1075, 733, $208 \mathrm{cman}^{-1}$, HRNS

Smern Oridation of 59 te CA. Tonsolution of omityl chloride ($0.057 \mathrm{~g}, 0.45 \mathrm{mmol}$) is $\mathrm{CH}_{5} \mathrm{Ch}_{8}$ at $-70^{\circ} \mathrm{C}$ mas added a solution of DMSO (0.070 g . 0.50 mmol) in $\mathrm{CH}_{3} \mathrm{Cl}_{4}(1 \mathrm{~mL})$. After 10 min
 added. The mistrone men llfomed tostix for 45 min at $-65^{\circ} \mathrm{C}$, and them $\mathrm{NB}_{0}(0.182 \mathrm{q} .18 \mathrm{mmol})$ wee edded. Ater the micture wes stirred for 20 min at $-65^{\circ} \mathrm{C}$, it meen mermed to it for 1 h . The
 extrected with $3 \times 10 \mathrm{~mL}$ of CHBCh . The solveate mepe craporeted and the aldehyde mes and immedintely withous further perification
 0.6 manol) and PPhe $(0.157 \mathrm{~g}, 06 \mathrm{manch})$ man hated at redurs in tolvece (2 mL) for 48 h Atios the solution men cooled to ith the sobvens wis remored under vecuers and THT $(2$ nh) wa edded
 added to the pheaphoaiou sath at $-78^{\circ} \mathrm{C}$ aod the mirtrove mee cairred for 15 min et $-78{ }^{\circ} \mathrm{C}$ and then stirrod for 1 h at it The remulting ytide solution mes cooled to -78 ${ }^{\circ} \mathrm{C}$ and CO (0.157 E . 0.26 moll) is THP (1 mL) men added. Ater the mirture mes merned to $-46^{\circ} \mathrm{C}$ ove 2 h it mes stirsed at that remparsturo for an additionel 1 h , wermed $500^{\circ} \mathrm{C}$ for 3 h , and stirred en addition 2 h at it. The rection wen quesebed with $\mathrm{H} \mathrm{O}(10 \mathrm{~mL})$ and thea the solution erracted with $3 \times 20 \mathrm{~mL} \mathrm{of} \mathrm{CH} \mathrm{Cl}_{4}$. The combined arganic hyers wese dried over $\mathrm{Na} \mathrm{SO}_{4}$ and concentrated The ail wes purified by ctrocentepraphy s $80: 10$ to 80:20 petrobur. Cther/E40) to give 61 (0.102 \&. 0.163 manol) in 53% yiuld (cia/

 $220-235(m, 2 H) 258(m, 1 H$, trans imomer) $200(m, 1 \mathrm{H}) .280$ (dtu $J=7.4,38 \mathrm{~Hz}, 1 \mathrm{H}$, tram incmer). 3.01 (dth $J=7.4,4.3 \mathrm{~Hz}$ $1 \mathrm{H}), 354$ ($\mathrm{m}, 1 \mathrm{H}$), 360-3.78 (m, 3 H), 391 (2, 4 H), 405 (d. J $=140 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{tran}$ inomer). $403(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, 480 $(2,2 \mathrm{H}) .42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) .443$ (d. $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, \tan. remers), $455(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, trase iecmer), 4.56 (d, $J=11.5$
 NMR (75.5 Mifin CDCly 8 (cis inomer) 8.1. 23.7. 25.0. 25.4. 27.4. 29.1. 29.2, 29.4, 20.5, 29.6, 29.7, 298, 52.5, 55.0, 58.9, 64.9, 68.7, 708, 729,74.6. $1121.1284,127.2,127.3,127.4,127.6,128.0,1283$. 1284. 131.1. 1384. 1388. 141.1: (tran inomer) 8.1. 23.5, 25.0. 27.2. 29.1. 29.2, 29.4. 29.5, 29.6, 29.7. 29.8. 524. 54.8. 588, 64.9. $68.7,70.8,729.74 .6,1120,126.2$ 126.9.127.3. 127.4.127.7, 127.8. 128.2, 128.3. 128.4.131.3, 138.4. 1389, 141.2. IR (дeat) 3100.3000. 3029. 2930. 2555, 1453, 1075, 733, 626 c.r-l. HRMS culced for $\mathrm{C}_{n} \mathrm{H}_{\mathrm{m}} \mathrm{NO} \mathrm{m} / \mathrm{m} / \mathrm{2}$ 65.4131, foumd $\mathrm{m} / \mathrm{z} 625.4112$

Preparatioa el 7. To a solution of 61 (0.099 g. 0.158 mmol) is THF (8 mL) men added 10% aqueoun $\mathrm{HCl}(4 \mathrm{~mL})$. After the
misture mea stirsed for 2 h , aturated aquoon $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the mirture was extracted with $\mathrm{CH}_{3} \mathrm{Cl}_{4}$ The combined organic layers were dried ($\mathrm{Ne}_{3} \mathrm{CO}_{4}$) asd coscoperated. Is preperation for hydrogunation, the rosidve wee dimolved in $\mathrm{ErOH}(10 \mathrm{~mL})$, and coeed HCl (20 drope) men added. To this mirture wa added 10\% Pd ca carboe (0.05 E), and the solution
 and cocecentrated. The raidoe men direolved in 20 mL of CHCl melhad with manratad squeove NaHCO_{5} and extracted with 4 $\times 20 \mathrm{~mL} \propto \mathrm{CHCl}_{5}$ and the combined organic layser were dried cuer $\mathrm{Na}_{3} \mathrm{SO}_{4}$. Fiteretico through basic alumina with CHCl_{5} and MOOH , follomed by removal of solvent, produced eryutain, which more welhed with a minimura amount of acetose end dried under necuer to give 7 (0.045 g, 0.142 mmol) in 90 yiold en whito
 $81.06(t, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. $1.23-1.41$ ($\mathrm{m}, 13 \mathrm{H}$). $1.44-1.61(\mathrm{~m}, 6$ HD, 1.65 ($m, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 207$ (ben 3 H$), 2.59(\mathrm{~L}, \mathrm{~J}=7.5$ H2, 2 H$), 241(q, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 276(\mathrm{~m}, 1 \mathrm{H}), 287($ det $J=$ $55,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 353 (ddd $\mathrm{J}=40,56,69 \mathrm{~Hz}, 1 \mathrm{H}$), 361 (d $J=54.10 .5 \mathrm{~Hz}, 1 \mathrm{H}$), 365 (dd, $J=7.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{20} \mathrm{C}$ NMR (75.5 M12, CDC4) $878,229,263,27.4,216,222,203,294$,
 2326, 2355, 1717, 1400, 1577. 1275, 1119, 1073,723 em-1. HIRN'S

Aclunowlodioneat. This project waseupportad in part by BRSG Grant No. 2-S07 RRO7049-15 awarded by the Biomedical Rewareh Support Grant Propern, Division of Remarch Resources, National Inatitutes of Health. Support from the National Institutes of Health (GMA4163) is eratefully achoowledsed. G.R.C. acionowledsen BASP Corporation for a Graduate Remarch Fellowhip. Spectral product characterization was performed on NMR instrumentation purchesed in part with funds from NIH 1-S10-RRO4750 and from NSF gramt CHE-88-00770. Mm epectral data were obtained at the Michigan State University Mass Spectroenetry Facility which issupported, in part, by a grant (DDR-00480) from the Biotectsolody Resources Branch. Division of Research Resources, Netioal Institutes of Health.

8upplementary Material Availables Experimemeal peocodures for 24, 25, 37, 49, 63, G4, and 65 and copine of ${ }^{14}$ NDMR spectra of all corapounde in the Experimental Section (49 pegn). This materinl is coarained in meny tibraries oo microfiche, immediately follow' this artick in the miarofilm version of the jourmal. and can be ordered from the ACS; see any curreats menthend page for credering information.

UST: PACE 6 DATE 048% TDRE $17 E T E T$

Author Index Entribs
 MSC: joghol7t BATCE: jotb22 VOLUNE: 059 ISSUE: 012

Cook, G. R.
Beholz, L. G.
Stille, J. R.

[^0]: ${ }^{a}$ Rearrangements were run 0.5 M of I-55 with 1.2 equiv. of Lewis acid or $0.1-0.3$ equiv. using the Lewis acid TiCl4. b Yields were determined by G. C. analysis of the crude reaction mixture relative to an internal standard. ${ }^{c}$ Bis-d-Ph-AlMe represents the bis-(2,6-diphenylphenoxy) methylaluminum. ${ }^{d}$ No rxn indicates that less than 2% of starting material had been consumed within 48 hours.

[^1]: $a^{\text {Rearrangements were run }} 0.5 \mathrm{M}$ of $\mathrm{I}-57$ with 1.2 equiv. of Lewis acid or $0.1-0.3$ equiv using the Lewis acid TiCl4. ${ }^{b}$ Ratios were determined by G. C. analysis of the crude reaction mixture relative to an internal standard. ${ }^{c}$ Bis-d-Ph-AlMe represents bis-(2,6-diphenylphenoxy)methylaluminum. ${ }^{d}$ No rxn. indicates that less than 2% of the substrate had been consumed within 48 hours.

[^2]: ${ }^{a}$ Rearrangements were run 0.5 M of substrate with 1.5 equiv. of Lewis acid at reflux in toluene $\left(111^{\circ} \mathrm{C}, \mathrm{E}_{2} \mathrm{O}-\mathrm{BF}_{3}\right)$ or xylenes $\left(140^{\circ} \mathrm{C} \mathrm{ZnCl} 2\right)$ with 1.8 equiv of Lewis acid. ${ }^{b}$ Yields were determined by G. C. analysis of the crude reaction mixture relative to an intemal standard.

[^3]: (1) Por roviows that inclode a discuasion of the arocentic 3-ax-Cope vriapumert eax (A) Bempete, G. B. Syntheais 1977, 590 . (b)
 Purt 2, 655. (c) Later R. P. Chem. Rav. 184, \&N, 205 . (d) Pribevalabiai. N. M. Graodbers. I I Ruce. Cham, Rev. 1897, $56,477$.
 (2) (a) Carpothon, F. Li; Hurd, C. D. J. Am. Chem. Soc. 1980, $52,4508$. (b) Hurd. C. Di dentina, W. W. J. Org. Chem. 1557, 22,1418
 (3) (a) Hyse. J. E. Beder, A. R J. Am. Chem. Soc. $1868,80,437$. (b) Bedra, A. R.; Bride water, R J.i Promen, P. R. J. Am. Chem Soc. 1981, 23,3312

[^4]: Chem. 1976, 13, 585.
 (5) (a) Abdralnanow, I. B; Sharafutimov, V. M; Segiedinor, L A; Tointirov, G. A. Zh Ore. Chem 1879, 15, 2601. (b) Abdialthmemer, I
 Chem. 1831, 17, 2004 (e) Abdratornoor, I B; Sharafuedinop, V. M: Nigaterlin, N. G.i Segindinov, I A: Tointirov, G. A Zh. Org. Cheir

 197s, 2073.
 (7) (a) Jotidoa, S; Haqua, H. J. Chioria 1976, 30,21 (b) Joliden, 8 ;

 Knto, A Chem. Pherm. Bull 1533, 31,2290
 (8) (a) Sehmid, M; Hansen, H.J. Schanid, H. Bedo. Chim, Aces IEch, 56, 105 . (b) Katayama, H. Chem Pharm. Bull 1975, 23, 201.
 4662.

[^5]: (10) Gecres, C.; GII, E. W; Hivioon, J. A J. Cheme Soe, Cheme Comaner 158
 (11) Cook, G. R; Stille, J. R. J. Ors. Chem 1991, 56, 5878
 (12) Cook G. R; Beria, N. S; Stiln, J. R J. Org. Chem. 1932, 57,461 (13) Maruaka, Ki Seto, J.i Bama, H. Yemamoto, H. Tetrahedron Lese. 1980, 31, 577.
 (14) Product dimtribution and yield for theoe compound wers determined by capplery fas chrometcgraphic enabyis of the queached suection misture (HIO, NSO:D ning internal standurde and cocrecting for detectior supeote.

[^6]: (16) Theoe viboes illutuate the propmes of this cuparal trad, but the eceuracy of theoe values is somewhet limited by the differing efficiescies of thene rentions.

[^7]: (17) Holecher, P_{i} Knolker, H.J. Winteofolth E. Tetrehedron Lett. $1950,31,705$.
 (18) Faïi, T.; Ohba, M.; Tachinami, T.; Miynime Cheme Pherm. Bull 1590, 33, 1200 .
 (19) Howhtion, P. J. I Letif, A; Said, I. M. Phytochem. 1991, 30, 347.

[^8]: - Abvernes pablinhed in Advence ACS Abetraces. Xco.c... YY. ZUEZ (1) ot ruviow that imetude piparidime alboloide ser; (a) Wang. C.-L J.: Wroeel. M. A Org. Prep. Proe. Ins. 1932 24. 585. (b) Pisdes. A. R Net. Prod Rep. 19s2, 9. 491. (c) Pioder. A R. Nac. Prod Rep. 19s2. 9, 17. (d) Piades. A. R. Nat. Pred Rep. 1953, 7.447. (e) Numate. A. Ibuke, T. Is The Alhaloids: Broeni. A. Ed. Acederaic Prear Now York. 1587; Vol 31. Chpeer 6. (D) Poder. G. B. Colenanti, B. In Alhaloide: Chemical and Bioloncal Purapectiver; Pollecier. S. W.. Ed: Wiby. New Yort. S35: Vol 3, Chapter 1.
 (2) or more appeific informacioa on inydrosylated piperidinea, see the
 M G. M. Versena, D. J. Hensep. B. M.: van Beectel, C. A. A.i Tma M. C. A A.i Boneber. J. G. Mi: Ploegh, H. Li: Van Kemenade. F. J.i do (b) Wischerer B. Fien G.w. J Glyeolicion 19922 199 (c) Fuirtente
 A. J.: Cerpenter. N. C.i Floet G. W. J.- Rannden. N. G.. Cemei de Bello.
 Plantr: Aniscouraps as a Clees of Glycouiden Inhibitors Is Bioactive Compoundefrom Plarer: Wrive Chicheter (Cibe Fourdetion Sympoiur 154). 1990; pp 112-125. (e) Leder. G. Adv. Carbohydr. Chem. Biochem. 1980. 48. 319.
 (3) al Shava, N. Lia, H. Sci. Am. 1933, 258. 82 (b) Sharce. N.: Lia, H. Seience 1909. 266, 227. (e) Karteon, K.-A. Trende Pherm. Sci. 1991 , 12. 285.
 (4) Dibia, A. D. Ans. Rev. Biechem. 1957, 56. 497.

[^9]:
 R. Areh. Bioctrem. Biophys. 194. 235. 579. (c) Leder. G. Jolieh. E

 Freer G. W. J. Phytochemeery 1ses, 24. 1963.
 (G) a) batida. N.: Kuragii. K.i Nida. T_{i} Heremoca. K. Sbopere. T.

 (7) a) Nive T.i mouse. S.: Trurvoten T; Kocen, Y.; Nide T. Apric. Biol Chem 1970. 34. 968. (b) Truechiot E: Fromane. W.; Jurge. B.; Maller. L. Schaide D. D. Wiogeader, W. Angew. Chem. Ins. Ed. Engl $181.200,744$. (c) Fuhrmean. U.i Bevee. E.: Plocch H. Biochim. Biophys. Acte 1995. 825 . S5. (d) Mures. S.; Miyete S. Apric. Biol Chem. 1500. 46. 219. (0) Fellow. L E. Chem. Br. 1507, 23, 842
 and refersemen ared theroin
 S. K. R pheder N. G. Jecob. G.S.: Redemechar. T. W. Proc. NatL Aced Sci U.S.A igis 85, 9229.
 Philippieen (111). aod South Armorce (13): whay exhibit a verioty of

 15: antitubarculotic and antiontior ectivity. effectes on the brain and cardiowneuler oyvem besolytic effreter, asd bypoceosive effecta).
 (11) a) Fr. PaL FR 1524305; Chem. Abotr. 1969. 71. 91733. (b) Bourriser. P.: Queveviller, A Ann. Pharm. Fr. 183. 20. 787: Chem. Aber. 1909 . 71.20012 . (e) Bourrines. P.: Quoveviller. A. C. R. Soc. Biol 1953. 162 . is3i: Chem. Abetr. 1893. 70. 95233 K .
 (12) a) Peomaidine A aod B: Koboynhii J.: Cbeag. J.-F.: Lehibemhi. M.: Walchli, M. R. Y A mame. S. Obizumi. Y. J. Chem Soc. Pertun Trane. 1191.1235 (b) BAY R 1005 Lecthoef. 0 . Angeu. Chem. Ine. Ed. Engi 199i, 30.1611.

[^10]: and pervented the reapoval of the beatyl profection of hydrocy prevpen (b) Keraierceak, F.i Hilquine P. J. Ore. Chem. Ispo, Ss. seve.

[^11]: N. Ternohedron 1982 48, 4903.
 (21) a) Tambara H.: Talrimbi. K.: Wema. E-C.i Yemonti. T. J.
 Hocomi, Λ Tetrahedron Lece 1597. 28. 1529.
 (22) a) Hert D. J. Kamai. K. J. Am. Chem Soc. 1903. 105. 1255. (b) Hern D. J.: Hoes. W. P. How L.Y. J. Ore. Chem 1967. 52 . 4655.
 (23) ydrognation of 39 at 1 atim H_{2} only procepded io $\sim 50 \%$ cocvervice after 40 h The crede proctucts conisedod of a mirture of 39. A4. end 41 (15ess, revpectivaly), and a amall amorus of the N-debearyieted asalog.
 of the N -bengyl eroup and erve tbe

