
 

" "‘ Wmnufi
m‘:“‘4 “an“,

- 1-2?

4
__ .. . . EM. .3

. , .
‘ _ . .

J
r
?

‘
.

‘7
? ..

b
e
,

;
..

 

u ,
L

3%“ t

’ k;

"JL .a;
«'4‘

.
1
3
“
!

5
“
.

 

.
J
-
‘

_
.
-
r
‘
,

~2
4

 

3
M
2
"
:
-

‘
.,

 

m
i
n
.
t

I
"
i

 

A
.
:
_

1

"
N
C
.
.
.

H

I
n "
.
‘
.
.
.
;
,
.

h 

v F

.
.

 

‘ ‘ 0"

73:23? {‘11,
a .v. 7.; '91 .

.‘(V' V -  



f”.-

This is to certify that the

dissertation entitled

RIEMANNIAN GEOMETRY 0F

VECTOR BUNDLES

presented by

Keumseong Bang

has been accepted towards fulfillment

of the requirements for

Ph-D- degree in Mathematics. 

Ewe/£154m-
 

Major professor

Date I7I/Z 7/7 ‘/

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

 



now am ST TE umvsns am

I

mimm'um(Him yum ill/lit
Ii

H

3 12930 027 2

 

LIBRARY

Michigan State

University   

PLACE ll RETURN BOXtoromwombchockoumyum.

TOAVOID FINES Mum on or balm-dd. duo.

DATE DUE DATE DUE DATE DUE

 

  
 

 
 

    
 

  

 

 

 

 

   

 
  

  
 

 

 

 
 
  

 

 

IMO"MSU IsAn Afflnnativo Action/Emil Opportunity

Mi

 mi



RIEMANNIAN GEOMETRY OF

VECTOR BUNDLES

By

Keumseong Bang

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1994



ABSTRACT

RIEMANNIAN GEOMETRY OF

VECTOR BUNDLES

By

Keumseong Bang

A natural metric structure on the tangent bundle of a manifold, considered as

a manifold, was introduced by S. Sasaki. The curvature of this metric was studied

by Kowalski and he answered the question of locally symmetric tangent bundles.

Naturally, similar questions were raised and D. Blair and others provided answers

concerning locally symmetric tangent sphere bundles and conformally flat tangent

sphere bundles. In this line of study, the Sasaki metric on the normal bundle of a

submanifold was studied by Borisenko and Yampol’skii and they showed that the

Sasaki metric on the normal bundle is flat if and only if the submanifold is flat with

flat normal connection.

In this thesis, we attempt to extend this to general vector bundles over a manifold

and define a metric via a similar method. We compute the curvature of this metric

on general vector bundles and obtain some differential geometric results. We prove

that the Sasaki metric on a general vector bundle is locally symmetric if and only if

the base manifold is locally symmetric and the connection V of this metric is flat. It

is also proved that a vector bundle is conformally flat if and only if either the base

manifold is flat with flat connection, or it has constant curvature with flat connection

and rank 1. The unit vector bundle of a vector bundle of rank 2 is also studied.



Then, the normal bundle of an integral submanifold M in a Sasakian manifold is

studied and we show that the normal bundle has a contact metric structure satisfying

12.56 = 0, where f is the characteristic vector field and R denotes the Riemannian

curvature tensor. Moreover, R...f depends only on the induced metric of the sub-

manifold M.

Motivated by this, we consider the contact metric manifolds with R.£{ = 0 and

prove that a locally symmetric contact metric manifold with R .£6 = 0 is locally the

product of a flat (n + 1)-dimensional manifold and a manifold of constant curvature

4. It is also shown that a contact metric manifold of dimension 2 5 with 12.56 = 0

cannot be conformally flat.

Finally, we investigate the normal bundle NL of a Lagrangian submanifold L in

a Kahler manifold and show that NL has a natural symplectic structure and provide

equivalent conditions for NL to be Kahler.
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Introduction

Let Mn be an n-dimensional differentiable manifold. The set of all tangent vectors

of M" form, with a natural topology, the tangent bundle of M“, denoted by TM".

The set of all unit vectors of M" constitutes a hypersurface of TM", called the tangent

sphere bundle of M", denoted TIM". The tangent bundle of a given manifold Mn

and more generally a vector bundle over a given manifold are among fundamental

objects in modern differential geometry.

H. Poincare first introduced a notion of Riemannian metrics on the tangent sphere

bundles when regarded as manifolds. (See e.g. [Sa58].)

In 1958, S. Sasaki [Sa58] studied the differential geometry of tangent bundles of

Riemannian manifolds by introducing a natural Riemannian metric structure on the

tangent bundle of a manifold.

Let (Mn, G) be a Riemannian manifold. Given the line element (132 = ngdx‘dxj

of the manifold M", the line element of the tangent bundle TM" is defined by

d02 = ngdx‘dxj + GijD'UiD'Uj (0.1)

where Dv‘ is the covariant differential of v‘, i.e.,

Dv‘ = dv‘ + ngvjdxk,

j-k being the Christoffel symbols of G and v‘ the fiber coordinates. This metric 9,

called the Sasaki metric, is canonically defined on naturally lifted vectors on M.

1



In 1961, the Sasaki metric on tangent bundles was determined in an invariant

manner by Dombrowski [Do]. He studied the Sasaki metric on tangent bundles in

terms of the connection map K : TTM -> TM. Due to his work, the classical Sasaki

metric g on the tangent bundle is expressed in vector form by

g(X, Y) = G(1r..X,1r.Y) + G(KX, KY) (0.2)

where 7r : TM —) M is the projection map.

Then, Kowalski [K0] began studying the curvature of the Sasaki metric on the

tangent bundle of a Riemannian manifold and answered some geometric questions.

In particular, he proved the following theorem.

Theorem 0.1 Let M" be a Riemannian manifold with Riemannian metric G. The

classical Sasaki metric on the tangent bundle is locally symmetric if and only if the

metric G of the base manifold M is flat.

The tangent sphere bundle TIM has an induced metric considered as a hypersur-

face of TM. It is of interest as a contact manifold and the induced metric here is

homothetic to an associated metric of the contact structure. The question of locally

symmetric tangent sphere bundles was studied by D. Blair [B189] and he obtained the

following result.

Theorem 0.2 The tangent sphere bundle TIM” with the Sasaki metric g is locally

symmetric if and only if either (M, G) is flat, or M is 2-dimensional and of constant

curvature 1.

D. Blair and T. Koufogiorgos also studied conformally flat tangent sphere bundle

and proved the following theorem [BlK].



Theorem 0.3 Let M be an (n + 1)-dimensional Riemannian manifold and TIM its

tangent sphere bundle with the standard contact metric structure. Then, TIM is

conformally fiat if and only if M is a surface of constant Gaussian curvature 0 or

+1.

We now turn to normal bundles. Let Mn be a submanifold of (M"+", g). Then,

the Sasaki metric g of the normal bundle NMn is similarly defined as follows: The

line element du2 of the Sasaki metric in naturally induced local coordinates (x‘,£a)

are defined by

du2 = ngdr‘dxj + gifiDiéaDiéfi

where G is the induced metric on M", gi is the fiber metric induced from g and

Dig“ = d5“ + ugiéadx‘ the covariant differential of the normal 6 in the normal

connection. The Sasaki metric g on the normal bundle was determined in an invariant

manner by H. Reckziegel [Re] again using the concept of the connection map K :

TNMn —; NM" and can be expressed in the form

902,?) = aunt, m?) + giant, KY)

Borisenko and Yampol’skii [BOY] studied this metric structure and as an analogue

of a result of Kowalski, they showed the following theorem.

Theorem 0.4 The Sasaki metric of NM" is flat if and only if M" is flat with a flat

normal connection.

In the first chapter of this thesis, we define the Sasaki metric on a vector bundle

over a manifold equipped with fiber metric and a metric connection on it. Then, we

compute the covariant derivatives with respect to the Riemannian connection of the

Sasaki metric on the vector bundle and calculate the curvature on various lifted vector



fields. Using this, we study locally symmetric and conformally flat vector bundles and

prove the following theorems.

Theorem 1.6 Let 7r : En” —+ M" be a vector bundle over a manifold M with

fiber metric gJ' and a metric connection V. Then, the Sasaki metric on E is locally

symmetric if and only if the connection V is flat and M is locally symmetric.

Theorem 1.7 Let it : En“ ——> M", n 2 3, be a vector bundle over a manifold M"

with fiber metric g‘L and a metric connection V. Then, EM’" is conformally flat if

and only if either, Mn is flat with flat connection V, or M" has (nonzero) constant

curvature with flat connection V and k = 1.

Theorem 1.8 Let 7r : E2” —> M2 be a vector bundle over a manifold M2 with fiber

metric gi and a metric connection V. Then, E2” is conformally fiat if and only if

either, M2 is flat with flat connection V and k 2 2, or M2 has constant curvature

with flat connection V and k = 1.

We also study the unit vector bundle of a general vector bundle of rank 2 and

prove the following theorem.

Theorem 1.10 Let 7r : E"+2 —> M", n 2 3, be a vector bundle over an Einstein

manifold M with fiber metric gi and a metric connection V. Suppose the unit vector

bundle E1 is conformally flat and is of constant scalar curvature. Then, either the

connection V is flat, or (M, G) admits an almost Hermitian structure.

Chapter 2 is a preliminary to the remainder of the thesis. We review definitions

and some well known results on contact manifolds. The Sasakian structures and some

formulas related to them will also be discussed.

In Chapter 3, we study the normal bundle of an integral submanifold in a contact

manifold and curvature properties of it associated with the Sasaki metric of the normal

bundle. We define a linear operator l by IX = 12ng and obtain the following results.
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Theorem 3.1 Let M" be an integral submanifold ofa Sasakian manifold Adz“l with

the structure (43,5, ‘39). Then, NM has the contact metric structure (¢,€,n,g) with

l = 0.

Theorem 3.2 Let M" be an integral submanifold of a Sasakian manifold M271“.

Then, for the contact metric structure (¢,§,n,g) on NM, R..§ is intrinsic, i.e., it

depends only on the induced metric on M.

Motivated by Theorem 3.1, we also study contact metric manifolds satisfying l = 0

and answer a question raised by Perrone [Pe].

We prove the following theorems.

Theorem 3.6 Let M2"+1 be a locally symmetric contact metric manifold with l = 0.

Then, M is locally isometric to E"+1 x S"(4).

Theorem 3.7 Let M271“, n 2 2, be a contact metric manifold satisfying l = 0.

Then, M2“1 can not be conformally fiat.

In the last chapter of this thesis, we will study Lagrangian submanifolds in a

Kahler manifold and the normal bundle of the submanifolds using the Sasaki metric

of the normal bundle. We obtain the following results.

Theorem 4.1 Let L be a Lagrangian submanifold of a Kiihler manifold (M2n, J,g).

Then, (NL, Lg) is a symplectic manifold.

Theorem 4.2 Let L be a Lagrangian submanifold of a Kiihler manifold (MM, J,g).

Then, the following are equivalent:

(1) NL is Kiihler.

(2) L has fiat normal connection.

(3) L is flat.



Chapter 1

Geometry of Vector Bundles

We define the Sasaki metric on general vector bundles and compute its Riemannian

curvature in Section 1. In Section 2 and Section 3, we study vector bundles over a

manifold and provide the necessary and sufficient conditions for the bundle to be

locally symmetric and conformally flat, respectively. In the final section, we study

conformally flat unit vector bundles of rank 2.

1.1 Vector bundles and their Sasaki metrics

We consider the vector bundle 7r : EM" —> M" of rank k equipped with fiber

metric 9i and a metric connection V where (M",G) is a Riemannian manifold.

Let D be the Riemannian connection and E the curvature tensor of M. Elements

of E can be identified as (1:,U) where a: is a point in M and U is a vector in its

fiber 7r‘1(:r). Let {ea} be a local orthonormal basis of the sections of E. Then,

(q1,q2, . . . ,qn,u1,u2, . . . ,uk) form local coordinates for E where q,- = x,- 0 1r and ua

are coordinates of U with respect to {ca}. For a section U = UGeo, of the bundle E,

BU“
VXU = X101“ + #ZJ/fika

 

where Via—:83 = [13,60.



We say that the connection V is flat if the curvature tensor

nyU = VXVyU — VnyU — meqU

vanishes for any X, Y, and U.

7r... : TE —-) TM is a fiber-preserving linear transformation and is onto. Let

(X‘, X’W”) be the local components of the tangent vector X to E at (x,U)

with respect to the basis (£7, 5—3:). Then, 7n)? = X‘g‘}... We define a linear map

K:TE—+Eby

K)? = (PM + pgiufixika. (1.1)

Clearly, K is fiber-preserving and is also onto.

We define an inner product 9 of the vectors X and )7 tangent to E at (2:, V) by

g()~(, )7) = G(7r,.)f, ml?) + gi(K)~{, KY). (1.2)

This metric is called the Sasaki metric of the bundle E.

We call the kernels of the mappings 7r. and K the vertical subspace VB and the

horizontal space HE, respectively. Then, there is a splitting

TE = HE EB VE

and HE and VE are orthogonal.

For a vector field X = X{ca—:7 on M, we define

 

 

H = i____ _ a_ B i . 1.3

X X sq.- an." X on. ( )

For a section U = Uaea of E, we define

UV = U“ a (1.4)

aua .



Then,

xx” = X‘-—-—. = X

«.v" = 0

KXH = (~-—)ug’,-u‘6Xi + ug,ufiXi)ea == 0

KVV = Vaea = V

i.e., x” e HE and V" 6 VB.

Thus, we note that at the point (x, W)

g(XH,YH)w = G(7:‘,..XH,1r...YH),t = G(X,Y)x

g(X”,UV)w = G(w.X",«.U"). + gi(KXH,KUV)W = 0

g(UV, vV)W gi(KUV, KVV)w = giw, V)w

Now, we let X : (X‘,X"+°‘) be a tangent vector to E. Then,

~ ~ . 6 ~ " 0 ~ ' a

H _ i H = i _ a. )0 i

(7r..X) — (X —8:r,-) X —8q.- lie.” X —0va

~ ~ ~ 0 ~ ~ 0 a

(KX)V = [(X"+" + pg,vfix')ea]v = (X”+°‘ + pg,v"X')—
five,

and, hence, we can write

X = (7r..X)H + (KX)V.

Thus, it is enough to consider various combinations of horizontally and vertically

lifted vector fields. We now prove in general three lemmas that were stated in the

normal bundle case by Borisenko and Yampol’skii [BOY].

Lemma 1.1 Let X and Y be vector fields on M, and U and V sections of the bundle

E. Then, the Lie brackets at the point (x, W) are as follows:

[UV,VVl = 0, ix”, UV] = (VxUlv.

«.[XX, Y”] = [X, Y], K[X”, Y”] = —nyw.



Outline of Proof: The proof can be done by direct calculations using definitions of

horizontal and vertical lifts. For example, using (1.3), we have at W = uo’ea

  

-3 . 6 - a - a
X” yH = Xi__ a. 5 i__ J___ '7. 6 J—

l 3 l [ aqi #fiiu X aua,Y an' ”611‘ Y 0117]

_ layj Ian a a fi jax' a 1 5 'an a

_ (xiii—Y are" $+umu Y Bari aua—fl6jUX—5576u"

.Bug. . a .6)”. . a

J___' 10 ’___ 'A 6 J—

+Y axjuxauaa Xaxiuyama

+ #Eg/tle‘YjuBa—u; — #ijflgixiyjusg'é;

= [X,Y]a, — (nyW)V.

The other two cases are easy. D

By definition, nyU is a section of the total space EM" such that at any point

a: E M, nyU is tangent to the fiber 7r‘1(:c). If V is another section of E, it is

possible to compute the inner product g‘L(nyU, V). We define the adjoint 13qu

by the equality

C(RUVX9Y) :gJ-(RXYU7V)' (1'5)

We now compute the covariant derivatives with respect to the Riemannian connection

V of the Sasaki metric g on E.

Lemma 1.2 Let X and Y be tangent vector fields on M, and U and V sections of

the bundle E. Then, at each point (x, W)

vuvvv = 0, vxnvv = (VXV)V + yawn”,

VUVY” = aim/Ur)", WHY” = (DXY)" — (nyW)V.l

2

Outline of Proof: We use Lemma 1.1 and a well known formula for the Riemannian

connection

~

29(VXY,Z) = X9072) + 379(1)?) - 290117)
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+ QUILT], 2) - 9017.21.50 + 902.50,?)

to compute various combinations of covariant derivatives. For example, we can com-

pute as follows,

29(VuvY”.X”) = UV9(Y”,X") +9([UV,Y”LX")

—g([Y”,X”l,UV) +9([X”,UV],Y”)

= UV9(X"aYH)+9((RYXW)V,UV)

= Uvgfoa Y”) + gi(RYX W, U)

= UVg(X”, y”) + G(1‘2WUY,X).

But, since g(XH, Y”) is a constant along each fiber, UVg(X", Y”) vanishes. we also

have

29(VuvY”, VV) = Y”9(UV, VV) + 9(lUV, YHJ, VV) - 9([Y", VV]. UV)

= Ygi(U, V) - 9((VYU)V, VV) - 9((Vyv)V, UV)

= Ygi(U, V) - 9L(VYUa V) - gi(VyV, U)

= 0.

Therefore, we get vUVYH .—. yawn”.

Other cases follow by similar calculations. C]

We define the covariant derivatives of the tensors R and E as usual:

(VzR)ny = VZRXYU - 1302ny - Rxosz - nysz

(Dxiihxvz = DXRUVZ — RVXUVZ — RUVXVZ — RUVszo

Lemma 1.3 The curvature tensor of the Sasaki metric of the bundle E at the point

(:r, W) is given by

e l .. l ,. l ..

RXHYHZH = [EXYZ + ZRWRZYWX + ZRWRXZWY + §anxywzly



RXHYHUV

RXHUVZH

RXHUVVV

RUvVvZH

RUVVVSV

Outline of Proof:

11

+ éuvzmnwl".

= %[(DxR)WUY — (DYR)WUX1H

l l

+ [nyU + ZRRWUYXW — ZRRWUXYWlV’

l . l l

-2-[(DXR)WUZ]H + [51‘szU + ZRnwuszlV,

1 " 1 A A

= -[§RUVX + ZvavaXlH,

A 1 “ 5 1 A A

= [RUVZ + 11?quva - ZRWVRWUZlHa

=0.

We will outline the proof of the first three identities. The above

two lemmas will be used freely. At the point W = uaea, we have

RXHUVZH = VXHVUVZH — VUVVXHZH - VUUJ’UVIZH

But,

VXH(RWUZ)H

1 - .. - 1

= EVXHUZWUZ)” — VUV((DXZ)H - 5(RXZW)V)

— V(VXU)VZH. (1.6)

= VXHUO(ReaUZ)H

= (X”u“)(n..u2)” + uavmizwzr

. .. .. l
= —ug,ufiX‘(ReaUZ)” + Ua{(DXReaUZ)H — §(Rxn,aqu)V}

.. . l

= -(RVxWUZ)H + U°(DxRe..UZ)H — 5(Rx nwqu)V

. . l

= —(RVXWUZ)H 'f' (DXRWUZ)H " §(RX Rwuzwlv (1'7)

where we have the last equality since

DXRWUZ = DxuaRcauZ = (Xua)fteaUZ + uaDXR.aUz,

and since the u“ are the fiber coordinates.
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Similarly, we can compute

VUv(szW)V = (szU)V. (1.8)

Continuing our computation of (1.6) with (1.7) and (1.8), we have

.. 1 . 1 . 1

RXHUvZH = —§(vawuZ)H + '2'(DXRWUZ)H — Z(RxRWUZW)V

1 . 1 l .

— 5(RquxZ)’, + §(RXZU)V - §(RWVxUZ)H

l .. l l

= —2-[(DxR)wUZ]H + [ERXZU + ZRvazxwlv (1.9)

as desired.

The second identity follows easily from the Bianchi identity and (1.9).

To show the first identity, we compute

Rxgyyz” = VXHVyHZH — VyHVXHZH — leyyelz”

~ 1 ~ 1

= qu((DYZ)H - '2-(RYZW)V) - VY”((DXZ)H - 5(RXZW)V)

— levylHZH + V(RXYW)VZH (1.10)

Here, we do a similar calculation to the one in (1.7) and obtain the following:

‘ V V 1 " H V
VXH(RyzW) = (VnyzW) + §(RWRYZWX) — (RszxW) (1.11)

and

p
—
a

vyemxzww = (vynxzwr’ + -(RWRXZWY)H — (szvywr’. (1.12)

N

Thus, using (1.11) and (1.12), the equation (1.10) can be written as follows:

- 1 1 1 ~
RXHyHZH = (DnyZ)” — —2-(RX DYZW)V — 5(VXRYZW)V — Z(RWR,,ZWX)”

A

1
1

+ 5(RszxW)V -— DYDXZ)H + 5(RYDXZW)‘,

l .. l

+ 5(VnyzW)‘, + (anxsz)H - §(RXZVYW)V

#
I
H
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l 1 .

- (D[X,Y]Z)H + §(R[X,Y]ZW)V + 5(RWnyWZ)H

1 A 1 e 1 A

= [EXYZ + ZRW 3,,wa + ZRW 3,,sz + ERWnyWZV’

l

+ §l—RX DyZW — VXRYZW + RYszW + RyszW

+VnyzW—szVyW+R[x,}/]ZW]V (l.l3)

Now, using the Jacobi identity, it is straightforward to see that the vertical part of

(1.13) is equal to %[(VZR)XYW]V. Thus, we obtain the first identity.

The remaining identities can be proved by the similar arguments and simple com-

putations. E]

1.2 Locally symmetric vector bundles

The locally symmetric tangent bundle was first studied by Kowalski, who showed

[K0] that the classical Sasaki metric on the tangent bundle is locally symmetric if and

only if the metric of the base space G is flat.

We now study the local symmetry of a general vector bundle.

Proposition 1.4 Let 7r : EH" —+ M" be a vector bundle over a manifold M with

fiber metric 9* and a metric connection V. Suppose the connection V is flat. Then,

for the Sasaki metric g on E, we have

(VAHR)(X",YHaZH) = [(DAE)(X,Y,Z)1H

for any vectors A, X, Y, and Z tangent to M".

Proof: Since the connection V is flat, we note, from Lemma 1.3, that RxflYHUV,

Exnuv ZH, EXHUvVV, and EUvVvZH all vanish. Using this together with Lemma 1.2
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and Lemma 1.3, we have

(VAHR)(X”,Y”,Z”) = vAHRXHYHz" — vaxgygz”

— RXHVAHYHZ” — faxeyuvfl z”

= memxyzw — RWANYHZH + énmwwuz”

— RXHDAWZ” + éhxemflwwz”

— RXHMDAZ)” + éaxeyemflmv

= [DAEXYZ _.EDAXYZ -flpryZ — EXYDAZV’

= [(DAEXX? Y? ZN”

as desired. D

We will use the following lemma of Cartan [Ca] pp.257-258.

Lemma 1.5 Let (M,g) be a Riemannian manifold, V the Riemannian connection

ofg and R its curvature tensor. Then, (M,g) is locally symmetric if and only if

(VXR)(Y, X, Y,X) = 0 (1.14)

for any orthonormal pairs {X, Y}.

We now prove the following theorem.

Theorem 1.6 Let 7r : EH" —) M" be a vector bundle over a manifold M with

fiber metric g‘L and a metric connection V. Then, the Sasaki metric on E is locally

symmetric if and only if the connection V is flat and M is locally symmetric.

Proof: Suppose that E is locally symmetric, i.e., VB 2 0. First, we show that the

connection V is flat. Using Lemma 1.2 and Lemma 1.3, we have at (2:, W) on E

(VyuR)(X”,UV,VV) = vYHRXHUVVV—RVYHXHUVVV



(91.1)MXAAMHnMuH—

MXAGMUAMUH_AAHMHX2117_

MXAMHHMUAHWLMXMWHZ=[(AA‘AnMMAHXS

:939M‘3ti01)1Supfiddv

(QI'I)Hl.........1+xii/“XAAMHHM881§_

AI7M

Aim““211;—AW"“”3ng+

8

AlAAXWWMHHI-I--MW”X21]?-

8l7

AlmxfimunMu‘Hlf+AlmxAnuAHlf=

AAA"“Mamas?+aim”X21?%—

v

Hl/lnMQJXUU'f_

H]xAAAMynMy¥+XMAHZI'f‘]+
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Since V is compatible to 9*, we have that

g‘L(nyU,V) = —gl(nyV,U) (1.17)

for any X, Y, U, and V.

Since Vii = 0, taking the inner product of (1.16) with W, we have, using (1.17) and

the definition (1.5) of R, that

:2 4G(vaX, Rwa) + 20(Ruwx, vaY) (1.18)

We choose X = Y and U = V in (1.18) and then, we have

0 = 4G(RUWX,RWUX) + 20(RUWX,RWUX)

= —60(1‘2WUX,1‘2WUX)

that is, GIRWUXP = 0 for any X, W, and U. Then, by the definition (1.5) of R, we

have

nyW = 0

for any X, Y, and W, i.e., the connection V is flat.

Finally, by Proposition 1.4, DE 2 0, i.e., M is locally symmetric.

For the converse, in view of the lemma of Cartan, it is enough to check if the equa-

tion (1.14) holds for an orthonormal pairs which we may decompose into horizontal

and vertical parts.

Suppose the connection V is flat. Then, from Lemma 1.2, we see that

vXHUV = (VXU)V and VUVXH = 0.

So, using Lemma 1.3, we see that all of the types quyuUV, RxflUVZH, RXHUV VV,

RUvVvZH, and RUvVvSV vanish.
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Therefore, using Lemma 1.3 and Proposition 1.4 again, it is straightforward to see

the equation (1.14). E]

1.3 Conformally fiat vector bundles

We now study conformally flat vector bundles. It is well known that a Riemannian

manifold (M", g) is conformally flat if and only if

 

nyz = gi—zum Z)QX - 9(Z,X)QY + gm, Z)X — 9(2. QX)Y)

— (n —1)1(n _ 2)(g(Y,Z)X — g(Z,X)Y) for n 2 4 (1.19)

and

(VxP)Y = (VyP)X for n = 3 (1.20)

where Q is the Ricci operator, R = TrQ is the scalar curvature of Mn and P is the

tensor field defined by

P=—Q+§M.

We note that the equation (1.19) (with n = 3) is valid on any 3-dimensional Rieman-

nian manifold.

We now present the following theorems.

Theorem 1.7 Let 7r : En” —+ M", n 2 3, be a vector bundle over a manifold M"

with fiber metric g‘L and a metric connection V. Then, EM" with the Sasaki metric

g is conformally flat if and only if either, M" is flat with flat connection V, or M"

has (nonzero) constant curvature with flat connection V and k = 1.

Proof: Suppose that En‘H‘ is conformally flat. From Lemma 1.3, we have at (x, W)

- 1 .. ,.

RXHYHWV = -2—[(DXR)wa—(DyR)wa]”
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1 l

+ lRXYW 'l’ ZRRWWYXW - ZRRWWX Yle

1 .. ..

= §[(DxR)wa - (DyR)wa]H + [nyW1V (1.21)

On the other hand, since En” is conformally flat, we also have

1~ WV:—

RxHyH n+k—2 [9(QY", WleH - 9(QX”, WV)YHl (1-22)

where Q is the Ricci operator of the total space EM".

Comparing vertical components of (1.21) and (1.22), we conclude that nyW = 0,

i.e., the connection V is flat. We now take an orthonormal basis {X,",Vav},i =

1,2, . . . ,n and a = 1,2, . . . , k , so that {X,} form an orthonormal basis of M. Then,

since the connection V is flat, we compute, using Lemma 1.3,

QXH = Z RxflxngH + Z RXHVOV Vav

. a

:: [:531iXAQ)CJLI

:- (éxw, (1.23)

QWV = ZRvagrxifl-i-ZRWVVOVVOV

= o, (1.24)

and

R = 29(RX.HX;IX;I’X!{) = 5 (1-25)

M

where it and E are the scalar curvatures of E and M, respectively.

 We write a = and b = (n+k_1)1(n+k_2) . Then, since E is conformally flat, we
__1_

n+k—2

have, taking the horizontal projection in view of (1.19),

exyz = a{G(Y, max — G(Z.X)QY + 0(a)”,M — Guam}

— bfi{G(Y, Z)X — G(Z,X)Y} (1.26)
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where G is a Riemannian metric of the base manifold M. So, taking trace of this, we

have

QX = a{ngX — Z: G(X, X.-)QX.- + ZG(_QX.-,X.-)X — 2 G(_Q_X,X.-)X.'}

— bfl{nX — ZG(X,X.')X:'}

= a{(n—2)QX+EX} —b(n—1)_IlX (1.27)

or,

QX : cflX (1.28)

where c = (“n—1)” Hence, M is an Einstein manifold. Moreover, it is a constant
aln—2)—1 °

since n _>__ 3.

If 3 = 0, then _Q_ = 0. Thus, from (1.26), we conclude that M is flat.

If E 74 0, then, using (1.26) and (1.28), we have

fiXyZ = A{G(Y, Z)X - G'(Z,X)Y}

where A = 2(ac — b)fi is a nonzero constant. Hence, M has a constant curvature A.

Now, we take trace in (1.27) and get

12 = a{(n — 2)E. + 723} - 57101 -1)E

= (n —1)(2a — bn)fl

or, equivalently,

n 1

1=(n—1)(2a—bn)=(n—1)(2—n+k_1)n+k_2. (1.29) 

By a simple computation, we see, from this, that k(k — 1) = 0. Thus, 1:: = 1.

We now prove the converse. In either case, since the connection is flat, we note

that the equations (1.23) - (1.25) remain. We also recall that on a manifold (M, G)

of constant curvature C, we have

nxyz = C(G(Y, Z)X — G(Z,X)Y) (1.30)
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Case 1: Mn is flat with flat connection V.

Since C = 0, from (1.30), 12,772 = 0 for any vectors X, 17, and Z tangent to E,

EM" is flat and hence, conformally flat.

Case 2: Mn has (nonzero) constant curvature, say C, with flat connection V and

kzl.

We shall see that the equation (1.19) holds for various combinations of horizontally

and vertically lifted vector fields. This will be mainly simple computations using

Lemma 1.3, (1.19) and (1.30). First of all, we look at the case {XH, Y”, Z”}. Since

the manifold Mn has constant curvature, we have, from (1.30),

QX = C(nX — ZG’(X,-,X)X,-) = C(n — 1)X (1.31)

i=1

where {X,} is an orthonormal basis of M". Thus,

E = Cn(n — 1). (1.32)

Hence, the RHS of (1.19) is, using (1.23), (1.25), (1.31), and (1.32), equal to

2C(n —1)(G(Y,Z)X” — G(Z, X)Y”) 

n — l

_ n(—nR—_1)(G(Y’ Z)X” — G(Z,X)Y”)

= {20 — %%_——11))}(G(Y1Z)XH — G(Z,X)Y”)

= C(G(Y, Z)X” — G(Z,X)Y")a

which is equal to [ExyZ]H by (1.30). On the other hand, since the connection V is

flat, we have, from Lemma 1.3, that Ii’xnyHZ” = [flxyZ]”. Hence, the equation

(1.19) holds for this case. For the remaining cases, since the connection V is flat, we

see, from Lemma 1.3, that the LHS of (1.19) is zero. Moreover, using (1.24), (1.31),

and ( 1.32), it is easy to see that the RHS of ( 1.19) vanishes. For example, we can see
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that the RHS of (1.19) vanishes for the cases with {XH, UV, Z”} and {X”, UV, VV}

as follows: Using (1.23) and (1.24), for the case {XH,UV, Z”}, we have

~

R
RHS of(1.19) = n—1_—1—{—g(Z”,QX”)U"}-;@;_—1){_g(ZH9XH)UV}

and, for {XH, UV, VV}, we have

~

__R__
n(n — l)

1

RHS of (1.19) = ——1g(UV,vV)QXH — g(UV,VV)X”
n .—

C(n—l) Cn(n—1)

n—l _ n(n—1)

 

{ }9(UV,VV)X"

This completes the proof. 1:]

Theorem 1.8 Let 7r : E2” —> M2 be a vector bundle over a manifold M2 with

fiber metric gl and a metric connection V. Then, E2” with the Sasaki metric g is

conformally fiat if and only if either, M2 is flat with flat connection V and k 2 2, or

M2 has constant curvature with flat connection V and k = 1.

Proof: We suppose that E2“c is conformally flat. Then, we observe that the equations

(1.21) and (1.22) are still valid and so, the connection is also flat.

Case 1: k 2 2.

Notice also that the equation (1.27) holds. However, fl may not be a constant

but we shall show that 3 is, in fact, identically zero on M2. So assume that 3 ;£ 0

at some point a: E M2. Then, we can choose a neighborhood U of a: such that fl 7:9 O

on U. Since the equation ( 1.27) holds, we infer, by the same computation as above,

that k = 1. This is a contradiction.

Hence, fl 5 0, i.e., the Gaussian curvature K E 0 on M2 when k 2 2.
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Case 2: k = 1.

Recall that the connection is still flat in this case. Then, we compute, using (1.24),

(vXHPwV — (vWVP)X"

~ ~

= VXHPWV — IBVXHWV — VWVPXH + PVWVXH

.. .. .. .. - - .. 1 - -

= —VXHQWV + i-VXHRWV — P(VxW)V + vaox” — ZVWVRX”

- .. .. .. 1 .. ..

= Examwv + imva)" — i—RWXW)" — EWWRW — ZRvaX”

_—_ iX”(R)WV — iwflinx” (133)

Thus, if E2” is conformally fiat, we have, using (1.20),

0 = ixflinw" —:11-WV(R)X”.

But, since XH and WV are linearly independent, we have XH (R) = X(E) = 0,

that is, E is a constant. Hence, the Gaussian curvature K is a constant.

To prove the converse, we first observe that the equations (1.19), (1.23), and (1.25)

are still valid since the connection V is flat. Thus, the equations (1.26) - (1.28) remain

valid.

Case 1: M2 is flat with flat connection V and k 2 2.

From our observation above, the same argument as in the Case 1 of the converse

of Theorem 1.7 proves this case.

Case 2: M2 has a constant curvature and k = 1.

From (1.30), we see that 3 is a constant and so, from (1.25), it is a constant.

Hence, this shows, in view of (1.33), that

~ ~

(VXHP)WV — (vaP)XH = o.
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Moreover, since M has a constant curvature, QX = cX for a constant c. Using this

and (1.23), it is a routine computation to see

(vXHPWH — (vyHP)X” = 0.

Therefore, E2” is conformally flat. D

Corollary 1.9 The classical Sasaki metric g on the tangent bundle of a Riemannian

manifold (M“,G), n _>_ 2, is conformally flat if and only if (M",G) is flat in which

case (TM",g) is flat.

1.4 Conformally flat unit vector bundles

Let 1r : EM" -—1 M" be a vector bundle equipped with fiber metric g‘L and a metric

connection V where (M", G) is a Riemannian manifold. Let D be the Riemannian

connection and E the curvature tensor of M. We consider a hypersurface E1 of E

defined by

called the unit vector bundle. The metric on E1 induced from the Sasaki metric on

E is denoted by g’, the Riemannian connection of g’ by V’, and it’s Riemannian

curvature tensor by R’XYZ.

Notice that the vector field W = u°'(eo,)v is a unit normal and the position

vector of a point W in E1. Then, we consider the Weingarten map A, defined by

AX = —VXW, of the immersion L : E1 —2 E.

For any vertical vector field V tangent to E1, we have using Lemma 1.2

mw = (i.Vu")(ea)V + u“V,.V(ea)V = ..v, (1.34)
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and for X” = (X‘,X"+°) tangent to E1,

VxflW = quu°(ea)v

= (X”u°')—a— + uanu(ea)V

011°

. a l

= waufirfi; + u"((vxe.)" + §(RweaX)H)

a i a a i a 1

= _l‘aiufix “51;; + 1‘ X (0 + #30517; + §(waX)H

= 0 (1.35)

Hence, A = —Id on vertical vectors and A = 0 on horizontal vectors. From this

and the well-known identity for the second fundamental form 0
<
1

9(0(X9 Y): )= 9(AVX'1 y),

we have that

00?, Y”) = 0 (1.36)

if at least one of X and 17 is horizontal.

In this section, we consider the vector bundles 7r : EM" —i M" with k = 2. Since

each fiber has dimension 2, we can choose orthonormal sections { U, V}. Then, we

can write

VxU = lc(X)V and VXV = —k(X)U,

where k is a l-form. Thus,

RXYU = ka(v)v — Vylc(X)V — k([X,Y])V

2dk(X, Y)V.

We define a linear operator L by

C(LX, Y) = 2dk(X, Y).
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Then, we have

G(LX, Y) = 2dk(X, Y) = gi(nyU, V) = C(RUVX, Y) (1.37)

and

G(L2X,Y) = G(RUVRUVXaY) = —G(RUVXaRUVY) = —G(LX,LY). (1-38)

Thus, from (1.37), we can write L = Evy.

We prove the following theorem.

Theorem 1.10 Let 7r : E"+2 —> M", n 2 3, be a vector bundle over an Einstein

manifold M with fiber metric gi and a metric connection V. Suppose the unit vector

bundle E1 is conformally flat and is of constant scalar curvature. Then, either the

connection V is flat, or (M, G) admits an almost Hermitian structure.

Proof: We take an orthonormal basis {X,-H, V}, i = 1,. . . ,n, tangent to E1 so that

{X,} form an orthonormal basis of M. Then, using the Gauss equation for E1 in E

and (1.36), we have

g,(Q’XHaYH) = ZgI(R’XHX.HXzH1YH)+g,(R’XHVV9YH)

i=1

= i:(9(RXHX,HX:HaYH)+g(0(XHaYH)10(X.H1X1H))

— 9(0(X.-”, Y”), 0(X.”, X")) + 9(Rxan. Y”)

+ your”. X"),o(v, v» — g<a(v, X"),a(v, Xv)

= 29(RXHX3’X1H1YH)+9(RX"VV1YH)

i=1

Continuing the computation using Lemma 1.3, we have at U

n

g’(Q’X",Y”) = 29(quxyXK’X”)+g(fzxqu.Y”)
i=1
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Thus, from (1.41) and (1.42), we get

12' = _1; _ it” _2 Z IRx.x,U|’ (1.43)
i,j=l

Now, since E1 is conformally flat and since dimE1 = n + 1 is at least 3, we have,

in view of (1.19),

1 ~

g’(R’X}’/Z~1W) = W)
 

n _ ,(g’uc Z)g'(Q'X, W) — g'(Z,X)g'(Q'1”/,

+ g’(Q’Y’, Z)g’(f(, W) - g'(Q'X, W)g'(1”/, W))

R!

_ W(gi(?a Z)g’(X’ W) _ g’( ~ 1 Z)g’(?a W» (1'44)

From this together with (1.39), we have at U, for X and Y orthogonal,

I 1 I I r

g’(RXHVVv Y”) = 9 (Q AHA/H)

n—l

 

= 1 (GQXX)
n—l

 

" 1

— gzgiUiX 1.11. 12mm + ZGUJX, LY» (145)
i=1

On the other hand, again using the Gauss equation, (1.36) and Lemma 1.3 succes-

sively, we have

g’( ’XHVVaYH) = 9(Rxflvv,YH)

1 . .

= ’ZGU‘ZUVRUVXa Y)

1 . .

= ZG(RUVX, RUVY)

: iaux, LY) (1.46)

So, comparing (1.45) and (1.46), we get

1 1

1(1 — nlleleaLY) = n—_—1(G(QX1Y) — gigi(RXX.-U1RYX1U)) (1-47)

i=1
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But, from (1.37), we see that

2gJ'(Rx x, U, Ry Xv) = 4 Z gl(dk(X, X,)V, dk(X, X.)V)

i=1 i=1

2 Z G(LX,X.-)G(LY,X1)

= C(LX, LY) (1-48)

where we have the last equality since {X,} is an orthonormal basis. Therefore, we

have, using (1.47) and (1.38)

G'(L2X,Y) = ——i’—G(QX,Y) (1.49)
n + 1 ‘—

and hence,

L2 + $9- = a] (1.50)

where a is a function and I is the identity transformation.

Now, from (1.38) and (1.48), we have

2 lRX,X,U|2 = —trL2.

i.j=1

Therefore, (1.43) gives

  

R’ = E + itrLz.

Now, the trace of (1.50) yields

4 4n

= t L2 R = 412’ — R.
”a r + n +1— n +1—

Thus, since R’ is a constant and M is Einstein with dimM _>_ 3, a is a constant.

Again, since M is Einstein, i.e., Q = $1, we have, from (1.50),

L2 = —flI (1.51)

where ,8 = 11—81%?) — a is a constant.
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Now, taking X = Y in (1.38), we easily see that 6 Z 0.

Case 1: B = 0.

In this case, L2 = 0. Taking X = Y in (1.38) again, we have that |LX|2 = 0 for

any X, that is, L = 0. Hence, by the definition (1.5) of it, we have

nyW = 0

for any X, Y, and W, i.e., the connection V is flat.

Case 2: 6 > 0.

We define a tensor field J by J = VIEL. From the definition of J, it is clear that

J is an almost complex structure on M. Moreover, we have, using (1.38) and (1.51),

G(JX, JY) = %G(LX, LY)

1 2
= —— XYflG(L , )

= G(X, Y)

This completes the proof. D



 

 

 

511

On

913



Chapter 2

Review of Contact Manifolds

In this chapter, we review definitions and some well known results on contact

manifolds which will be used later in this thesis. Section 1 is an introduction to

contact manifolds and their integral submanifolds. Section 2 will discuss mainly

Sasakian structures and some formulas related to them. As for the notations, we

basically follow those of [B176].

2.1 Contact manifolds and integral submanifolds

of the contact distribution

An odd dimensional differentiable manifold M2"+1 is said to have an almost contact

structure (¢,£,n) if it admits a (1,1)-tensor field <15, a vector field 6 and a l-form 17

satisfying

”(5) = 1 and 1,62 = —1+ 17 (85 (2.1)

where I denotes the identity transformation, or equivalently, if the structural group

of its tangent bundle is reducible to U(n) x 1. A manifold M with an almost contact

structure (45,6, 77) is called an almost contact manifold and is denoted by (M, 65,6,17).

On an almost contact manifold, we have d) 05 = 0,1] 0 d) = 0, and ranqu 2 2n. If

g is a Riemannian metric on an almost contact manifold M2"“ with the structure

30
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(6‘), 6, 77) such that

g(¢X, 451/) = g(X, Y) - n(X)n(Y) (2-2)

for any vector fields X and Y, then M2n+1 is said to have an almost contact metric

structure (43,5, 7),g), and g is called a compatible metric.

Proposition 2.1 An almost contact manifold M admits a compatible metric g such

that n(X) = g(X,£) for any vector field X.

Proof: Let h be a Riemannian metric on M and define h’ by

h'(X,Y) = h(¢2X, 4521’) + n(X)n(Y).

Now, we define g by

M. Y) = $0401, Y) + 11314314) + U(X)n(Y)) (2.3)

It is easy to check that g is a compatible Riemannian metric. Now, setting Y = f in

(2.2), we have that n(X) = g(X,§). B

Let M2"+1 be an almost contact manifold with an almost contact metric structure

((15, f, 17, g). Let U be a coordinate neighborhood and choose a unit vector field X1 on

U orthogonal to 6. Then, by (2.1) and (2.2), ¢X1 is also a unit vector field on U,

orthogonal to 5 and X1. Next, we chose a unit vector field X2 orthogonal to 5, X1 and

¢X1, then ¢X2 is a unit vector field orthogonal to {,Xl, ¢X1 and X2. Proceeding in

this way, we obtain an orthonormal basis {6, X1, ¢X1, X2, (ng, ~ - - , Xn, ¢Xn}, called

43- basis.

If (M, ¢,£,n,g) is an almost contact metric manifold, we can define a 2-form <I>

on M by <I>(X, Y) = g(X, (bY). This 2-form is called the fundamental 2-form of the

almost contact metric structure.



32

A manifold M2n+1 is said to be a contact manifold if it carries a global l-form 17

such that

71 A Mn)" 74 0

everywhere on M. 17 is called the contact form. 1) = 0 defines a 2n-dimensional

distribution or subbundle D of the tangent bundle with the fibers Dp = {X 6 TPM I

n(X) = 0}. D is sometimes called the contact distribution. Since 17 A (dn)" ¢ 0, D is

not integrable and dn has rank 2n. The subspace VP = {X E TpM I dn(X, TpM) = 0}

of TpM is of dimension 1. Let 5,, be the element of V, on which 17 has the value

1. Then, 5 is a vector field, which we call the characteristic vector field, defined on

M2"+1 such that

dn(€,X) = 0 and 71(6) =1 (2-4)

for any tangent vector X to M.

Theorem 2.2 Let MW"1 be a contact manifold with the contact form n. Then, there

exists an almost contact metric structure (¢,{,n,g) such that (I) = dn.

Proof: We choose the characteristic vector field 5 so that 17({) = l and d17({,X) = 0

for any tangent vector X to M. Thus, if h’ is a Riemannian metric on M2"+I, h

defined by

h(X, Y) = h’(-X + 77006. -Y + n(Y)£) + U(X)n(Y)

is a Riemannian metric such that n(X) = h(X,{). Setting <I> = (11), ‘1) is a symplectic

form on D and hence, by polarization, there exists a metric g’ and an endomorphism

45 on D such that

g'(X,¢Y) = d17(X,Y) and 452 = —I.

Extending g’ to a metric g agreeing with h in the direction 6 and extending <15 so that

(15 of = 0, we obtain an almost contact metric structure (45,6, 77,9) With ‘1) = d77- [:1
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An almost contact metric structure with <I> 2 dry is called an associated almost

contact metric structure for n, or simply, a contact metric structure (¢,§, mg).

Let M2"+1 be a contact metric manifold with contact form 7). Roughly speaking,

the condition 17 /\ (dn)" 75 0 means that D is as far from being integrable as possible.

In particular, we have the following theorem.

Theorem 2.3 (Sasaki [Sa64]) Let M2"“ be a contact manifold with contact form n.

Then, there exist integral submanifolds of the contact distribution D of dimension n

but of no higher dimension.

Proof: Since 1] A (dn)" 75 0, we can choose, by the classical theorem of Darboux

(see for example, [St] pp.137), local coordinates ($‘,y‘,z),i = 1,2, . . . ,n, such that

17 = dz — ,'-‘=1 y‘dm‘ on the coordinate neighborhood. Then, for a point p with

coordinates ($3,313, 20) in the coordinate neighborhood, at" = 3:3, yi _-_—. ya, 20 defines an

n—dimensional integral submanifold of D in the neighborhood and a maximal integral

submanifold containing this coordinate slice is an integral submanifold of D in M2"“.

Now, we let M" an r-dimensional integral submanifold of D and we suppose

that r > n. We denote by X1,X2, . . . ,X, r linearly independent local vector fields

tangents to M' and extend these to a basis by X,.+1, X,.+2, . . . , X2", X2n+1 = 5. Then,

for i,j= 1,2,...,n we have

770(1): 0 and dn(X.-,Xj) = $097709) - X17709") - U([Xianlll = 0.

Thus, since r > n, we see that

(77 A (dn)n)(X11X21 ' ' ' 1X2n+1)= 01

which is a contradiction. D
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We have just seen that if X and Y are vector fields tangent to an integral sub-

manifold of D, then

n(X) = n(Y) = O and dn(X,Y) = 0.

Thus, for a submanifold M’ immersed in a contact metric manifold M2"“, we

see that if M’ is an integral submanifold of D, (1)X is normal to M" in M2”“ for any

tangent vector X to M'.

We now state a theorem which shows the abundance of integral submanifolds of

D. As we saw above, 65X is normal to an integral submanifold for X tangent to it, so

loosely speaking the geometry is normal to the submanifolds. We shall study integral

submanifolds in contact manifolds later in this thesis.

Theorem 2.4 (Sasaki [Sa64]) Let X be a vector at p E M2"“ belonging to D. Then,

there exists an r-dimensional integral submanifold M"(l S r S n) ofD throughp such

that X is tangent to M’.

We remark that on a contact metric manifold M with structure (¢,{,n,g), the

integral curves of the characteristic vector field 6 are geodesics. Indeed, as |§| = 1,

g(Vx£,.£) = 0. And, %g(V££, X) = dn(£, X) = 0 for all vector fields X orthogonal to

6 and hence,

v.5 = 0. (2.5)

2.2 K-contact and Sasakian structures

We introduce the concept of a normal almost contact manifold. Consider a product

manifold M2"+1 X R of an almost contact manifold (M, (15,6, 17) with the real line R.

A vector field on M2"+1 X R looks like (X, f%) where X E TM2"+1, f is a function
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on M x R, and t is a coordinate of R. We define a linear map J on the tangent

spaces of M2"“ x R by

J(X,f%) = (4X — smug).

Then, J2 = —I, i.e., J is an almost complex structure on M2"+1 x R. Let [J, J]

be the Nijenhuis torsion of J and similarly [¢, ¢] the torsion of d). We say that the

almost contact structure is normal if this almost complex structure J is integrable

i.e., [J, J] = 0.

On a contact metric manifold, from the following two well known formulas

29(VXY, Z) = X90”, Z) + Yg(Z,X) - 29(X1Y)

+9(1XaYlaZ)-9(1Y1311X)+9([Z1X11Y) (2-6)

and

3d<I>(X, Y, Z) = X<I>(Y, Z) + Y<I>(Z,X) + Z‘I)(X,Y)

—<I>([X,Y],Z)—<I>([Y,Z],X) —<I>([Z,X],Y), (2.7)

we have (e.g. see [8176])

29((Vx¢)Y, Z) = g(N“)(Y, Z), 45X) + 2dn(¢Y,X)n(Z) - 2dn(¢Z,X)n(Y) (2-8)

where N(1)(X, Y) = [65, ¢](X, Y) + 2d17(X, Y){.

On a contact metric manifold, we define a tensor field h by h = %££¢. It is shown

in [B176] that h is a symmetric operator. We now have the following proposition.

Proposition 2.5 On a contact metric manifold with structure (¢,£,n, g), we have

(1) V64 = 0

(2) fo = —¢X — 31.x

(3) h = 0 if and only ifé is a Killing vector field

(4)h¢+¢h=0
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Outline of Proof: The proofs of (1) and (2) are straight forward using (2.8). For

example, using (2.8), we have

29((VX¢)£a Z) : g(¢21€a Z] - ¢1€3¢Z],X) — 2d7l(¢ZaX)

= -2g(¢hZ,¢X) - 290152, 3“)

= —2g(hZ,X) — 29(X, Z) + 2901005. Z)

that is,

—¢Vx5 = —X — hX + n(X)5.

Applying (b to both sides of this, we get (2).

Now, we have

1

0 = d71(X,€) = g(XnQ) - 677(X) — n([X,£l))

from which we obtain

(£477)(X) = 6000 - n([€,Xl) = 0-

Therefore, we see that (£ég)(X,5) = 517(X) — n([5,X]) = 0, and, in turn, using

.6): = 1(5) 0 d + d 0 1(5), we have £5dn = 0. But, since (I) = dn, we get

0 = (fe¢)(X,Y) = {g(X,¢Y) —g([€,X],¢Y) -g(X,¢[€.Yl)

= (5591(X44Y)+9(X1(££¢)Y)

Thus, h : %£5¢ = 0 if and only if5 is Killing.

Finally, we see, using (1), that

2hX ££(¢X) - ¢(££X)

= V£¢X — V¢x€ - ¢V5X + ¢VX€

= ¢Vx§ - Vaxé-
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Applying d) on both sides, we have, using (2)

2¢hX = -Vx€ - ¢V¢X€

= ¢X+¢hX—¢X-h¢X

= ¢hX -— thX,

which yields (4). [:1

In Theorem 2.2, we showed that a contact manifold with contact form n inherits

an almost contact metric structure (¢,5,n,g) with (I) = dn. This structure was

referred as an associated structure or simply as a contact metric structure. A contact

metric manifold M is called a Sasakian manifold if the associated almost contact

metric structure is normal. The associated structure (65,5,1), g) is called a Sasakian

structure. It should be noted that Sasakian structure is not to be confused with the

Sasaki metric defined earlier in this thesis. It is shown [B176] that the integrability

of J is equivalent to the vanishing of the tensor field N“) z: [(15, (15] + 2dr] (8) 5. So, we

have the following proposition.

Proposition 2.6 A contact metric manifold 11! is Sasakian if and only if

l¢,¢l+2dn®€=0-

A Sasakian structure is an odd dimensional analogue of a Kihler structure on an

almost Hermitian structure. This point of view is suggested in the following theorem.

Theorem 2.7 An almost contact metric structure (¢,5,n,g) is Sasakian if and only

If

(Vx¢)Y = g(X, Y)€ - U(Y1X (29)

where V denotes the Riemannian connection ofg.
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Outline of Proof: The necessity is immediate from (2.8). For the converse, we set

Y = 5 in (2.9) to get

-¢Vxé = r1(X)€-- X

and, applying d) subsequently, so

Vxfi = -¢X-

By the skew-symmetry of (15, we see that 5 is Killing. From this, we can easily see that

(I) = dn. Thus, (45, 5, n,g) is a contact metric structure and now using the formula

[45, ¢](X, Y) = (¢Vy¢ — V¢y¢)X - (¢Vx¢ — V¢X<15)Y,

we can directly compute that [(15, (1)] + 2dr] (8)5 = 0. 1:]

A contact metric manifold M2"+1 with structure (¢,5,n, g) is called a K—contact

manifold if the characteristic vector field 5 is a Killing vector field with respect to g,

i.e., if £59 = 0 or equivalently, if g(Vx5, Y) + g(X, Vy5) = 0 for all vector fields X

and Y. It is immediate from Proposition 2.5 that

VX5 : —¢X (2.10)

if and only if the manifold is K-contact. In particular, a Sasakian manifold is K-

contact. It is noted, however, that Sasakian and K-contact structures are equivalent

on 3-dimensional manifolds. (For more details on this, refer to [3176].)

Here, we give a curvature property of K-contact manifolds.

Proposition 2.8 Let M2"+1 be a K-contact manifold with structure tensors (gt), 5, n, g).

Then, the sectional curvature of any plane section containing5 is equal to 1.

In particular, Sasakian manifolds have this property. We introduce the notion of

d—sectional curvature, a notion similar to that of holomorphic sectional curvature on
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Kahler manifolds. A plane section in T,,,M2"+1 is called a ¢-section if there exists a

vector X E TpM2"+1 orthogonal to 5 such that {X, 43X } is an orthonormal basis of the

plane section. The sectional curvature K(X, 45X) is called a ¢-sectional curvature,

and is denoted by H(X) It is known that the ¢-sectional curvature determines

the curvature completely on Sasakian manifolds just as the holomorphic sectional

curvature of a Kahler manifold determines the curvature completely.

We now give some curvature properties of Sasakian manifolds.

Proposition 2.9 On a Sasakian manifold, we have ny5 = n(Y)X — 17(X)Y.

Proof: The proof is immediate due to Theorem 2.7. [:1

Proposition 2.10 On a Sasakian manifold, we have Rx£5 = X for any vector field

X orthogonal to 5.

Proof: We choose Y = 5 in Proposition 2.9 1:1

Later in this thesis, we will study contact metric manifolds with Rx¢5 = 0. This

suggests that we define an operator l by IX 2 Rxg5.

Proposition 2.11 On a Sasakian manifold, we have

RXY¢Z = ¢RXYZ + 9(¢X, Z)Y - g(Y, Z)¢X + g(X, 214W - 9(¢Y, Z)X-

Proof: It is proved again using Theorem 2.7 and (2.10).

RXY¢Z = VXVY¢Z - VYvX¢Z - V[X.Y]¢Z

VX(VY¢)Z + VX(¢VYZ) - VY(VX¢)Z - VY(¢VXZ)

- (V[X,Y]¢)Z — ¢V[X,Y]Z

= Vx(g(Y, Z)€ - n(Z)Y) +9(X,VYZ)€ — n(VyZ)X
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— Vy(g(X, Z)~£ — n(Z)X) - g(Y4VxZ)€ + n(VxZ)€

— g([X. Y], Z)€ + n(Z)[X, Y] + ¢nyz

= ¢nyZ —g(Y,Z)¢X +9(VXY,Z)£ +g(Y,VxZ)€

- n(ZWxY + g(cfiX, Z)Y - g(E,VxZ)Y +g(X,VyZ)€ — n(VYZ)X

+ 9(X1Z)¢Y - g(VyX. Z)€ — g(X,VyZ)£

+ n(ZWyX — g(tY,Z)X +g(€,VyZ)X — g(Y,VxZ)E + n(VXZ)Y

- g(lX1Yl, Z)£ + n(Z)[X, Y1

= 451?va - g(Y. Z)¢X + g((tX. Z)Y + g(X, Z)¢Y — g(¢Y. Z)X,

as desired. 1:1

From this Proposition, we can easily derive

nyZ = -¢ny¢Z + 90’. Z)X - g(X, Z)Y - g(ch, Z)¢X + 901% Z)¢Y-

Finally, we include the following theorems, which will be used later in this thesis.

Theorem 2.12 (Blair [B176]) Let M2"+1 be a contact metric manifold. Suppose that

ny5 = 0 for all vector fields X and Y. Then, M2"+1 is locally the product of a

flat (n +1)-dimensional manifold and an n-dimensional manifold of positive constant

curvature equal to 4.

Theorem 2.13 (Blair [B176]) Let Mzn“, n 2 2, be a contact manifold. Then, M2"+1

does not admit a contact metric structure of vanishing curvature.

As an extension of Theorem 2.13, Olszak [01] proved the following.

Theorem 2.14 Let MM“, 17. _>_ 2, be a contact metric manifold of constant curva-

ture. Then, the sectional curvature of M2"+1 is equal to 1 and M2"+1 is Sasakian.



Chapter 3

The Normal Bundle of a

Submanifold in a

Contact Manifold

In this chapter, the normal bundle NM of an integral submanifold M of a contact

metric manifold M is investigated. We show that when M is Sasakian, NM has a

contact metric structure satisfying l = 0, and that for the contact metric structure

on NM, R..5 depends only on the induced metric on M. Thus, we have a large class

of examples of contact metric manifolds with l = 0. Motivated by this, we also study

the contact metric manifolds with l = 0 and show that such a manifold cannot be

locally symmetric unless it is locally isometric to E"+1 x S"(4). We also prove that

a contact metric manifold with l = 0 can never be conformally flat.

3.1 The normal bundle of a

submanifold in a Sasakian manifold

Let M" be an integral submanifold of a contact metric manifold M271“ with

structure tensors ((b, 5, 17, g). We consider the normal bundle NM of the submanifold

M equipped with the Sasaki metric g. This metric is not to be confused with a

41
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Sasakian structure. On the normal bundle NM, we define

43X” = (MW

65” = 0

44" = (44)”

for all tangent vectors X and normal vectors 5 orthogonal to 5.

Let 5: 5V and n(X) = g(X,5) for any vector X. Then,

2

35 X” = (43%)" = —X”

= —X” + fix")?

3’? = 0 = -—Z + 6(2)?

6ch = (42W = —<V

= —C" + W”)?

So, NM has an almost contact structure (3,5,fi).

We consider the Weingarten map of the immersion t : M" —> MM“. The induced

metric G on M" is given by G(X, Y) o t = g(t.X, t...Y) for any tangent vectors X and

Y. For brevity, however, we shall not distinguish notationally between X and i..X.

Recall the Weingarten equation

ng = —A£'X + 0&5 (3.1)

and the Gauss formula

vXY = DXY + 0(X, Y) (3.2)

where A6 is the Weingarten map and D is the Riemannian connection of the induced

metric G.

Using these together with Lemma 1.2 and Lemma 1.3, we have

at the point V 6 NM



(r2)(X39?+X?‘3)5—

(3X4‘1)?

(39%)?"—

(30%»—

(21,13‘HXDE-

([AD‘HXIM-(”XMA)-(,9)ng

(Ai‘HXMPz

(A)‘HXMPZ

(8‘8)(x‘Xl‘V91/1)?+(A‘3”3!)§—:-

(AW‘X3v)§+(Xflv2131/)?_(,143.11121»-2

(4‘(XiVX10—(13V‘X)o)§-(/1‘3’”,{115—=

(x1134‘le—(XiV+fry/*4-(X3V+yawn)?—=

(/1‘3‘¥H)§-=

(3”1221)?=

($ng‘HX]X)é-=

(2‘1HA‘HXDQ—:

([Hx‘Hle—(HXMHX-(HA)QHX=(”A‘HXMPZ

8?
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2mm") = “7(5) — ("17(2) — W2. (”1)

= 0

for any normal vector 5 orthogonal to 5

and, finally

MM”. v") = —1)'([C".u"]) = 0.

Suppose now that M2n+1 is Sasakian. Then, using (3.1), (3.2) and the fact that

43X is normal to M" for any tangent vector X to M", we see that

C(Agxa Y) = 4(a(X.Y),£) = 4(va,£)

= —§(Ya ng) = g(Ya éX)

= 0.

for any vectors X and Y tangent to M, that is,

A,- = O (3.5)

Moreover, since MR“ is Sasakian, using Theorem 2.7 and (3.1), we have

§(RXYC,C) = §(VX(-<5Y) + Vii/43X +$[X,Y1.C)

= 4(—vx43Y — 4.3.x + vyix + A,~XY + 43m Y]. C)

= §(—(VX<Z>)Y '13ny + (VY$)X + ‘5va +431XaY11C)

= 9(“(VX$)Y +(VH51X1C)

= -§(X, Y)§(C, C) + 77(Y)§(X, C) + g(X, Y)§(C, C) - 170060”, C)

= 0

for any 5 normal to Mn. Thus,
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for any tangent vectors X and Y. So, by the definition of R,

Bax = 0 (3.7)

for all If) 6 NM.

Now,welet¢=$,5=25,n= %fi and g = fig. If M is Sasakian, we have, from

(3.3), (3.4), and (3.5),

dn(X”.Y") = 0 = g(X".¢Y”)

§(X”,¢CV) =g(X”.¢CV)

#
I
H

dn(X”,cV) = {em/3X) =

dn(X",C) = 0 = g(X",¢€)

and other cases follow similarly. We now give the following theorems.

Theorem 3.1 Let Mn be an integral submanifold of a Sasakian manifold M2n+1 with

the structure (3,5, *,g). Then, NM has the contact metric structure (¢,5,n,g) with

l=0.

Proof: We have just seen that when Mn is an integral submanifold of a Sasakian

manifold M211“, NM has the contact metric structure (¢,5,n,g). Now, by (3.7) and

Lemma 1.3, we have

Rxflgé = RXHEVEV

1 . 1 . . H

= _[§R€EX + 1345344“)

= 0

and

lip/£5 1’ 0.

This completes the proof. 1:1
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Theorem 3.2 Let M" be an integral submanifold of a Sasakian manifold Mzn“.

Then, for the contact metric structure (¢,5,17,g) on NM, R..5 is intrinsic, i.e., it

depends only on the induced metric G on M. In particular, at V = 41W 6 NM,

1

g(RXHYHéa Z”) = Z{G(EXYZa W) — C(Ya Z)G(W1 X) + C(X) Z)G(Ya W)} (38)

where it denotes the curvature of D. The other cases of R..5 vanish.

Proof: Using Lemma 1.3 and (3.7), we have, at u 6 MN,

g(quyuw”) = (RXHYHgVJH)

‘
Q
I

g((DXR)(V1€~)Y _ (DYR)(V16~)X1 Z)

A

A
l
t
-
w
k
l
h
-
‘
w
l
r
-
i

(
Q
;

A

b >
< =
0

- — 120M)! — RuDigY — Rugpr, Z)

Y

m

(DyRVEX —— RDMX — iawfix — Rugpyx, Z)

A
l
t
-
i

Q
1

Q
1

(11.04% — R. 0,514, 2) (3.9)

A
l
b
—
1

Continuing this computation at u = 43W E MN, using (3.1), the Ricci equation

g(nyU, V) = g(RfiyU, V) — g([AU, AV]X, Y), and Proposition 2.11,

g(quync. 2”) = 541124.424 u) + 71-312mm v)

= [@8sz 43W) - “Rx/24X, 4W)

— fill/143w) A$Y1X1 Z) + 9(1A6W1 ’44?le Z)

= imam. W) — «2.1/max, W) + g(X, Y)§($Z. 43W)

— 4(RYZX. W) + 4(2, X)4(43Y, 43W) — 4(Y, X).<7(<?>Z, 43W)

- gawk/1.5.42) + 3(43WX, 43y Z)

+§(A$XY1AJ,WZ) —§(A¢3WY1AJ>XZ)}' (3-10)

Comparing the tangential part of

g(X, Ylé = (21:43))” = <73(qu — AVXY,
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we get

A,,,X = —J)o(X,Y)

and therefore, by the symmetry of the second fundamental form,

A,,.X = AMY. (3.11)

Also, since 7")(0(W, X)) = g(a(W,X),£) = g(Aé-W,X) = o,

g(Ain, 43y Z) = §(<?>U(W, X),430(Y, 2)) = §(0(W.X),0(Y, 2)) (312)

Similarly,

g(Asz/isxz) = §(U(W,Y),0(X, Z))- (3-13)

Thus, by (3.11)-(3.13), (3.10) becomes

1 ~ ~ ~ ~ ,. -

g(RXHYHC, Z”) = EigUiXZY, W) " g(RYZX: W) ‘ 9(2) Y)g(X, W)

+ 3(X1Y)§(Z, W) + §(Z, X)§(Y, W) - §(Y, X)g(Z, W)

+ 3(0(W, X)» U(Y, 2)) - §(U(W» Y), U(X, Z))}

But then, applying Bianchi identity and Gauss equation successively, we get

[{MXYZ. W) —— 4(2. Y)§(X. W) + 4(Z,X).4(Y. W)

+ 9(0(W1X),0(Y1 2)) — 51(0(W,Y)1 ”(X1 2))1

g(RXHYfiéaZH) =

y
—
t

= 4{G(EX”Z’ W) — G(Y, Z)G(W, X) + G(X, Z)G(Y. W)}

It is immediate to see, from Lemma 1.3 and (3.7), that the other cases of R..5

vanish. This completes the proof. [:1

Corollary 3.3 (Yano and Kon [YaK]) Let M" be an integral submanifold of

a Sasakian manifold Mzn“. Then, M" has flat normal connection if and only if

it has the constant curvature 1.
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Proof: If M" has flat connection, then, by (3.9), (3.8) gives

G(EXYZ1 W) = C(Ya Z)G(Wa X) _ C(Xa Z)G(Ya W)

which shows that M has the constant curvature 1.

For the converse, we suppose that M" has the constant curvature 1. Then, from

(3.8), we see that

g(RxHyfié, Z”) = 0.

Hence, from the first equality of (3.10), we have

—§(Ri’z¢~5XaV) +§lRirz$YaVl = 0- (3-141

So, choosing Y = Z in (3.14), we see that

“Rim/WY, V) = 0,

from which we have, by linearization,

“Rim/<52) V) ‘1' g(RXzfigya V) = 0- (3-15)

Replacing X, Y, and Z by Z, X, and Y, respectively, in (3.15), we obtain

glRirzflh/a V) '1” “Rf/2‘”) V) = 0 (3-16)

Combining (3.14) and (3.16), we get

“332431310: 0

for any X, Y, Z and V. Therefore, we conclude that

R1243)” = 0

for any X, Y, and Z.
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Finally, it was shown by (3.6) that

R12: = 0.

Hence, the normal connection is flat. [:1

Example 3.4 S" C 52"“.

We consider the usual contact metric structure (if), 5, 77, g) on 5'2"“ induced from

the usual almost complex structure on C“1 by 5 = —JZ, 17(X) = g(X,E), g the

standard metric of 32"“ as a unit sphere and (11(X ) = the tangential part of JX. Let

L be an (n + 1)-dimensional linear subspace of C“1 passing through the origin and

such that JL is orthogonal to L. Then, S“ = 52"“ f) L is an integral submanifold

of 52"“ since (Z)X is normal, and the normal connection is flat. In this case, N5”

becomes E"+1 >< S”(4).

Example 3.5 T2 C S5.

We write 35 = {Z E C3 : [Z] = 1} and consider the embedding X : T2 —> 55

given by

1 . . .

X = g(cosul, smuhcosug, smug, cos(u1 + U2), —s1n(u1 + U21),

where {u1,u2} are local coordinates on T2 such that 5% are orthonormal. Let

{v1,v2,v3} denote the fiber coordinates on NT2. We may regard X as a position

vector of T2 in S5. Putting X,- = %,% for i = 1,2, we have

1

X1 = §(—sinu1, cosul, 0, 0, —sin(u1 + U2), —cos(u1 + u2))

1

X2 = 3(0,0, —sinu2,cosu2, —sin(u1 + uz),cos(u1 + u2)).

Moreover, the characteristic vector field 5 given by

.. 1 _ . .

5 = —JX = g(smul, —-cosu1,smu2, —cosu2, —sm(u1 + U2), -COS(U1 + ““2”
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is orthogonal to X; and X2. Thus, 43X,- = JX,-, from which we see that 43X; is normal

to T2. Therefore, T2 is a flat integral submanifold of 55.

Now on NTZ, we have n = %(dv3 + vldul + vgdug) and

1 + I)? '1' v3 ‘01‘02 —’l)3 0 ‘01

1 121122 1 + v; + v3 0 —v3 u;

g = Z —v3 0 1 O 0

0 —U3 0 1 0

v1 U2 0 0 1

Notice that this metric has the similar form of the associated metric to the standard

contact metric structure on 1‘32"+1

1 5v + y‘yj + 5:522 5:52 -yi

g = Z 6,12 651' 0 ,

—y‘ 0 1

(35", y‘, z) the coordinates of E2"+I, which was constructed as a formal generalization

of the flat associated metric of the Darboux form on E3 (See [B176]).

Remark. In NM, for 5 orthogonal to 5

V<v£ = 2VCVEV = 0

so from Proposition 2.5, hCV = —(V. Thus, -—1 is an eigenvalue with multiplicity n.

Since he) + (25h = 0, +1 is an eigenvalue with multiplicity n and hence, hXH = XH .

Now, from Lemma 1.1, we see that the distribution [+1] in NM is integrable if and

only if NM is locally the product E”1 X S"(4), i.e., M" C 1‘22"“ has constant

curvature 1.

3.2 Contact manifolds with l = 0

From Theorem 3.1, we see that there is a large class of examples of contact metric

manifolds with l = 0. We will study properties of those manifolds with l = 0.
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In [Pe], Perrone raised the question whether a locally symmetric contact manifold

with l = 0 satisfies ny5 = O for any vectors X and Y, i.e., if, in view of Theorem

2.12, Mn“ is locally the product of a flat (n + 1)-dimensional manifold and an

n-dimensional manifold of positive constant curvature equal to 4. We answer this

question in the following theorem.

Theorem 3.6 Let MM“ be a locally symmetric contact metric manifold with l = 0.

Then, M is locally isometric to E"+1 X S”(4).

Proof: We first consider case when the manifold M2"+1 is irreducible. In this case,

M2"+1 is Einstein. Since I = 0, Q5 :: 0 and therefore R = 0. Moreover, all sectional

curvatures have the same sign. Hence, M2"+1 is flat, which is impossible for n 2 2 in

View of Theorem 2.13. In dimension 3, a locally symmetric contact metric manifold

is of constant curvature 0 or +1, I being 0 in the flat case (See [BlS]).

So, M2"+1 is reducible, i.e., M2n+1 = M; x M2 x x M). x E' where each M.-

is not flat. Then, the characteristic vector field 5 must be tangent to the flat factor

E', for otherwise, 5 has a non-vanishing projecton tangent to some M,- and so, the

sectional curvature containing 5 is nonzero. This is impossible since I = 0. Therefore,

ny5 = 0 for any X and Y tangent to Mzn“. Hence, by Theorem 2.12, we get the

conclusion. [:1

Theorem 3.7 Let Mzn“, n 2 2, be a contact metric manifold satisfying 1 = 0.

Then, M2n+1 can not be conformally fiat.

Proof: The proof will be by contradiction. Suppose (¢,5,n, g) is a conformally flat

contact metric structure. Then, in view of (1.19), we have

1

Rxcfi = 2n _1
 

(QX - 17(X)QC+ g(QC,C)X - 9(QX,C)C)
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R

-le—U(X)C) (3-17)

Since I = 0, the Ricci curvature in the direction of5 vanishes and so, from (3.17),

we get

QX = 400624 + n(QX)€ + g(x — n(X)4) (3.18)

We consider the tensor L defined by L = 2n—1_1-(—Q + 51) where I is the identity

transformation.

Then, by (3.18),

l R R R

LX = 2n_1(—n(X)QE—U(QX)C—2—nX+§;n(X)C+;,-;X)
 

= 1 (—n<X)Q4—n<QX)4+£;n(X)c—,5nX)
271—1

 

for any vector X.

In particular, for any X orthogonal to 5,

1 R

LX = —,n _ Imam: + '47.)“ 

From this and that (Vx L)Y = (VyL)X on a conformally flat manifold, we have,

using (3.18), for X and Y orthogonal to 5

R

0 = -Vx(n(QY)C + my) + U(VXY)QC + n(QVxY)€

R R

— 550(VXYX + 4—nVXY

+ worm): + EX) — n(VyX)Q£ — n(QVyX)€

+ ‘gl‘MVYXlC - 1%va

R l

= —77(QY)VXC - (X77(QY))C - RVXY - Z;X(R)Y

R

+ n(VxY)Q£ + n(QVxY)€ — 5mm): + EV”

+ n(QXWyE + (Yn(QX))€ + {5va + 1];wa
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— n(VyX)Q€ — n(QVyX)C + gmvyxx - {5,-va

= n(QY)(¢X + 41X) - (Xn(QY))C — ,inxum’

+ n(vamc + n(QVxY)£ — gawk

— n(QX)(¢Y + W) + (Yn(QX))£ + {gum

R

- n(VYX)Q£ - n(QVXX)€ + 5;n(VYX)€ (3-19)

Taking the component orthogonal to 5 from (3.19), we have

0 U(QY)(¢X + WhX) + n([X.Yl)QC

_ (,1;me + immx — n(QX)(4Y + ¢hY)

= —2g(X. 4m: — 315mm — Y(R)X)

+ n(QY)(4X + 41X) — n(QX)(d>Y + W) (3.20)

If Q5 ¢ 0, then, since the dimension 2n + 1 Z 5, we can choose X = ¢Y and X

and Y orthogonal to Q5 in (3.20), and so,

which gives

a contradiction. Therefore, Q5 = 0.

Now, using (1.19) again, we see, for X and Y orthogonal to 5

RXYE = 0-

But, Rx£5 = 0 by hypothesis.

Hence, we have ny5 = 0 for any vectors X and Y. Then, by Theorem 2.12, M

is locally the product E“1 x S"(4), which is, as is well known, not conformally flat,

giving a contradiction. D

 



Chapter 4

The Normal Bundle of a

submanifold in a Kéihler manifold

In this chapter, the normal bundle NL of a Lagrangian submanifold L of a Kiihler

manifold is studied. We show that the normal bundle NL of such has a natural

symplectic structure and provide the equivalent conditions for NL to be Kihler.

4.1 Lagrangian submanifolds in a Kéihler mani-

fold

An exterior 2-form T on a manifold M is called a symplectic structure if r is non-

degenerate at each point of M and is closed, i.e., dr = 0. We say that (M,r) is a

symplectic manifold. It is well known that a symplectic manifold is even dimensional.

Let W be a subspace of an even dimensional vector space V2". For a non-degenerate

bilinear form r on V2", we define W} by

Wf : {v E V|r(v,w) :0 for all w E W}.

The subspace W is said to be Lagrangian if W = WTJ'.

We consider an immersed submanifold L of M2" with the immersion i : L —) M

where (M, 7') is a symplectic manifold. We say L is a Lagrangian submanifold of M2"

if TpL is a Lagrangian subspace of (TpM, r) for each p in L.

54
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We now consider a Lagrangian submanifold L of a Kz'ihler manifold (M2", J, g).

On the normal bundle NL of L, we define J by

JX” —_- (JX)V  
R" = NC)"

for any tangent vectors X and normal vectors 5 to L. Then, J is an almost complex

structure on NL since

fix” = J(JX)V = (J’X)” = —X”, F

and

«7sz = j(JC)H = (J2C)V = -Cv-

Moreover, we see that J is compatible with the Sasaki metric g on the normal bundle

as follows:

g(JX”,JY”) = g(7r..JX”,7r.JY”)+g(KJX”,KJYH)

= g(JXJY),

g(X”,Y”) = g(7r.X”,1r.Y”)+g(KX”,KYH)

= g(XaY).

g(JX”,J§V) = g(7r.JX”,7r.J5V)+g(KJX”,KJ5V) =0,

g(X”,CV) = 0,

éUCVJnV) = 9(r.jC.W.jnV)+9(K~7€V.anv)

= g(JCJn),

§(C.n) = 9(W46V.7r—nv)+g(K€V,Kn‘/)

: g(éa’l)

By the compatibility of J with g, J is compatible with the Sasaki metric g.



56

Therefore, (NL, J, g) is an almost Hermitian manifold.

We let V and V denote the Riemannian connections of g and g, respectively. Let

G be the induced metric on L and D its Riemannian connection. Then , we have

at 5, by Lemma 1.1,

1X",Y"l = {X, Y1” - (Rh/0V (4-1)

We now prove the following theorems.

Theorem 4.1 Let L be a Lagrangian submanifold ofa Kiihler manifold (Mzn, J,g).

Then, (NL, J,g) is a symplectic manifold.

Proof: We consider the fundamental 2-form R defined by Q(X , Y) = g(X, JY) Since

17 is positive definite and J is non-singular at each point, it follows that it" 51$ 0, i.e.,

Q is non-degenerate.

We will show that the fundamental 2-form Q is closed.

We have

H(X”.Y”) = g(XHJY”)

= g(7r.XH, 7r.JYH) + g(KX", KJY”)

= 0, (4.2)

Q(X",nv) = g(XHJUV)

= g(7r...XH,7r..J1]V)+g(KXHaKj77V)

= g(XJn). (4'3)

and similarly,

00)". CV) = 0. (4.4)
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Recall the coboundary formula

3d<1>(X,Y,z) = X<I>(Y,Z)+Y<I>(Z,X)+Z<I>(X,Y)

- q>(1Xa Y1) Z) — QUY') ZI’X) — ¢(1Z1 X11 Y)

Using this and (4.1) - (4.4), we compute,

3dQ(XH1YHaZH) : -Q(1XH1YH11‘ZH)-n(1YH1ZH11XH)—Q(1ZH1XH19YH)

”MEX-YEN], 2”) + n((RlJC-Z€)Vi X”) + n((RZX€)V1 YH)

Now, using the Gauss-Weingarten equations, we get

VXJ5 = DXJ5 + U(X, J5)

and

vag = —JA,X + wig.

Comparing the tangential parts of these, using the Kihler condition, we have that

JDfif = Dng. (4.5)

Continuing our computation, using this and the Bianchi identity, we get

3dQ(XH1YH12H) : —g(&YJ€1Z) _ g(flYZJéaX) _ g(flsz€,Y)

= g(flXYZa «151+ g(flYzX, JC) ‘1' g(EZXY, JC))

2 0 (4.6)

3dn(X”, Y”,nV) -_- X”Q(Y”,nv) + Y”Q(nV,X”)

_ fl(1‘XH, YH]: 77V) _ Q(1)/Ha ”V11 XH) — ”(invi XE], a YH)

= g(VXHYHa (Jlllfl) + g(YHv vXH(‘]77)H) + g(vl’flnva (JX)V)



701!9.17(8)

'uoipauuoo[vuuou1”}!9m]’1(Z)

“911191191’IN(1)

qualvainba9.112Euimonof911;‘usql

'(fi‘f‘uzw)plofiuvwJalqp‘yvjoplojiuqunsuvifiumb‘v’]1)sq739731;waaoaql

D'jOOJdaqisaialduroosgql'aierpaurun9!

(6'17)0=(,,9‘,,)‘Aumpe

‘Kusuzd

v
—
i
l
m
o

(Hx‘y(ar>>3))6§-+(H(ur)‘H(X>>3))4

(,0‘A(>¥a))u+(A)‘,,(h¥a))u-(H(ltrV’a‘HX)§+

(H(hr)‘HXA’LMQ‘+(A(Xr)A“a‘A))§+(HXr3,34%)?=

(Ah‘lflx‘film-(”X‘1A3‘Aullu-(A)‘[,,u‘HXDU-

(Au‘HX10A3+(HX‘A3)UAU=(AD‘AU‘HXMM:

(1'17)0=

(Ahr‘HIA‘X])é‘-(H(Axa)-301‘)?+(All!‘H(/{XCI))§=

(”(111)‘Hlx‘X])§—(A(Xr¢a)3,14)?"+(H(ur)3.4/Hm)?=

(HA‘,,(h¥a))u+(Hx‘Aw’T‘aDu-

(Au‘ulx‘XllU—(A(Xr+‘a)we+

(A(Xl‘)34040))?+(H(tha)3,3)?+(H(Ur)‘H(xXa))§=

(”A‘A(h¥a))u+(Hx‘AM’T‘aDu-

(A1.3,0441!)-”(A‘Xl)U-(A(Xr)“a4,101,;+
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(3”)110“”{110+AerV)—A()(“y)—=

HG”4111)+A(X["“A)+AWA)+
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HO”$111")+A(X"’A1‘)+,(upxm)_

AWXW)-A(X[“’A)-A(X“V)-Aw“)-=

HO”$111)+AW‘X]r)-,(Xr“4a)—-1(a¥a)—=

(A3”’42!-thr‘Xl)[-,,(Xr“40)—A(“’1‘50)-=

[H(hr)‘,,X][-[AU‘A(X1‘)1[—[H(UF)‘A(X[')1+1A“‘HX1—=(,u‘HXMr‘r] ~~

(Irv)AW?!)=

HIX>1]-A(§"¥H)+”[x‘Xl-=

”(3X0-Xl‘a)-A0442!)+HIA‘Xl—=(HA‘HXlll‘‘rl ~~

398punuorq'einduroosrqianuriuoo9M‘(g'flEms“

(0W)AMI’T‘ar—XI’T‘CII')+A(Mtg)+111/!y]-=

Amridl‘)-A(Xr+‘ar)+[H/1‘HX]-=

[AUN‘HXlI-lH/I‘A(X[‘)l[‘lH/([‘HX!'1+[H/I‘HXl—=(H/I‘HX)[["1‘1 ~~

°uorsmisrnquafrNsq;aqnduioo9AA:[003d
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Thus, we have, from (4.12), that

[J,J)(X”.n") = wens)"

= (42.x..J4)" (4.14)

{i.iunvfl) = —[nV.<V1+[(Jn)”.(JC)”)—.i{(Jn)".<"1—J"[n",(J<)”1

= [(Jn)”. (JC)”l - 1101.0" + j(Dicn)V

: [J7]? JC1H — (RfinJ(€)v —(JDJL17C)H + (JDJLCU)H

= 1J7). JClH - (R‘JLWCC)V - (Uh-IO” + (DJcJU)V

= —<R§...4)V (4.15)

In view of (4.11), (4.14), and (4.15), we conclude that [J, J] vanishes if and only

if L has flat normal connection.

This together with the equations (4.6) - (4.9) shows that NL is Kahler if and only

if L has flat normal connection.

Moreover, using (4.5), we have

RXYJC = JRXYC,

from which we easily see that L is flat if and only if NL has flat normal connection.

1:]

Remark. We have also shown, in the proof of Theorem 4.2, that J on NL is

integrable if and only if L has flat connection.
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