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ABSTRACT

RIEMANNIAN GEOMETRY OF
VECTOR BUNDLES

By

Keumseong Bang

A natural metric structure on the tangent bundle of a manifold, considered as
a manifold, was introduced by S. Sasaki. The curvature of this metric was studied
by Kowalski and he answered the question of locally symmetric tangent bundles.
Naturally, similar questions were raised and D. Blair and others provided answers
concerning locally symmetric tangent sphere bundles and conformally flat tangent
sphere bundles. In this line of study, the Sasaki metric on the normal bundle of a
submanifold was studied by Borisenko and Yampol’skii and they showed that the
Sasaki metric on the normal bundle is flat if and only if the submanifold is flat with

flat normal connection.

In this thesis, we attempt to extend this to general vector bundles over a manifold
and define a metric via a similar method. We compute the curvature of this metric
on general vector bundles and obtain some differential geometric results. We prove
that the Sasaki metric on a general vector bundle is locally symmetric if and only if
the base manifold is locally symmetric and the connection V of this metric is flat. It
is also proved that a vector bundle is conformally flat if and only if either the base
manifold is flat with flat connection, or it has constant curvature with flat connection

and rank 1. The unit vector bundle of a vector bundle of rank 2 is also studied.



Then, the normal bundle of an integral submanifold M in a Sasakian manifold is
studied and we show that the normal bundle has a contact metric structure satisfying
R.£ = 0, where { is the characteristic vector field and R denotes the Riemannian

curvature tensor. Moreover, R..£ depends only on the induced metric of the sub-

manifold M.

Motivated by this, we consider the contact metric manifolds with R.¢§ = 0 and
prove that a locally symmetric contact metric manifold with R.¢£ = 0 is locally the
product of a flat (n + 1)-dimensional manifold and a manifold of constant curvature
4. It is also shown that a contact metric manifold of dimension > 5 with R..{ =0

cannot be conformally flat.

Finally, we investigate the normal bundle NL of a Lagrangian submanifold L in
a Kahler manifold and show that NL has a natural symplectic structure and provide

equivalent conditions for NL to be Kahler.
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Introduction

Let M™ be an n-dimensional differentiable manifold. The set of all tangent vectors
of M form, with a natural topology, the tangent bundle of M™, denoted by TM™.
The set of all unit vectors of M™ constitutes a hypersurface of T M™, called the tangent
sphere bundle of M™, denoted TyM™. The tangent bundle of a given manifold M™
and more generally a vector bundle over a given manifold are among fundamental

objects in modern differential geometry.

H. Poincareé first introduced a notion of Riemannian metrics on the tangent sphere

bundles when regarded as manifolds. (See e.g. [Sa58].)

In 1958, S. Sasaki [Sa58] studied the differential geometry of tangent bundles of
Riemannian manifolds by introducing a natural Riemannian metric structure on the

tangent bundle of a manifold.

Let (M™,G) be a Riemannian manifold. Given the line element ds? = G;;dz'dz’

of the manifold M™", the line element of the tangent bundle TM™ is defined by
do® = G;;dz*dr’ + G;; Dv* Dv’ (0.1)
where Dv' is the covariant differential of v, i.e.,
Dv' = dv' + I‘;kvjdx",

*x being the Christoffel symbols of G and v* the fiber coordinates. This metric g,

called the Sasaki metric, is canonically defined on naturally lifted vectors on M.
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In 1961, the Sasaki metric on tangent bundles was determined in an invariant
manner by Dombrowski [Do]. He studied the Sasaki metric on tangent bundles in
terms of the connection map K : TTM — TM. Due to his work, the classical Sasaki

metric g on the tangent bundle is expressed in vector form by

9(X,Y) = G(r.X,7.Y) + G(KX,KY) (0.2)

where 7 : TM — M is the projection map.

Then, Kowalski [Ko] began studying the curvature of the Sasaki metric on the
tangent bundle of a Riemannian manifold and answered some geometric questions.

In particular, he proved the following theorem.

Theorem 0.1 Let M™ be a Riemannian manifold with Riemannian metric G. The

classical Sasaki metric on the tangent bundle is locally symmetric if and only if the

metric G of the base manifold M is flat.

The tangent sphere bundle T M has an induced metric considered as a hypersur-
face of TM. It is of interest as a contact manifold and the induced metric here is
homothetic to an associated metric of the contact structure. The question of locally
symmetric tangent sphere bundles was studied by D. Blair [BI89] and he obtained the

following result.

Theorem 0.2 The tangent sphere bundle TyM™ with the Sasaki metric g is locally
symmetric if and only if either (M, G) is flat, or M is 2-dimensional and of constant

curvature 1.

D. Blair and T. Koufogiorgos also studied conformally flat tangent sphere bundle

and proved the following theorem [BIK].



Theorem 0.3 Let M be an (n + 1)-dimensional Riemannian manifold and T\M its
tangent sphere bundle with the standard contact metric structure. Then, TYM s
conformally flat if and only if M is a surface of constant Gaussian curvature 0 or

+1.

We now turn to normal bundles. Let M™ be a submanifold of (M™+*,§). Then,
the Sasaki metric g of the normal bundle NM™ is similarly defined as follows: The
line element du? of the Sasaki metric in naturally induced local coordinates (z*,£*)
are defined by

du? = Gy;dz'de’ + §L;D¢> D4 €P

L is the fiber metric induced from § and

where G is the induced metric on M™, §
DY¢r = de* + p§EPde’ the covariant differential of the normal £ in the normal
connection. The Sasaki metric g on the normal bundle was determined in an invariant

manner by H. Reckziegel [Re] again using the concept of the connection map K :

TNM"™ - NM™" and can be expressed in the form

9(X,Y)=G(x.X,nY)+ i (KX,KY)

Borisenko and Yampol’skii [BoY] studied this metric structure and as an analogue

of a result of Kowalski, they showed the following theorem.

Theorem 0.4 The Sasaki metric of NM™ is flat if and only if M™ is flat with a flat

normal connection.

In the first chapter of this thesis, we define the Sasaki metric on a vector bundle
over a manifold equipped with fiber metric and a metric connection on it. Then, we
compute the covariant derivatives with respect to the Riemannian connection of the

Sasaki metric on the vector bundle and calculate the curvature on various lifted vector



fields. Using this, we study locally symmetric and conformally flat vector bundles and

prove the following theorems.

Theorem 1.6 Let 7 : E*** — M™ be a vector bundle over a manifold M with
fiber metric gt and a metric connection V. Then, the Sasaki metric on E is locally

symmetric if and only if the connection V is flat and M s locally symmetric.

Theorem 1.7 Let 7 : E™** — M™, n > 3, be a vector bundle over a manifold M™
with fiber metric g* and a metric connection V. Then, E™t* is conformally flat if
and only if either, M™ is flat with flat connection V, or M™ has (nonzero) constant

curvature with flat connection V and k = 1.

Theorem 1.8 Let 7 : E*** — M? be a vector bundle over a manifold M? with fiber
metric g1 and a metric connection V. Then, E*** is conformally flat if and only if
either, M? is flat with flat connection V and k > 2, or M? has constant curvature

with flat connection V and k = 1.

We also study the unit vector bundle of a general vector bundle of rank 2 and

prove the following theorem.

Theorem 1.10 Let 7 : E**? — M™, n > 3, be a vector bundle over an Einstein
manifold M with fiber metric g* and a metric connection V. Suppose the unit vector
bundle E, is conformally flat and is of constant scalar curvature. Then, either the

connection V is flat, or (M, G) admits an almost Hermitian structure.

Chapter 2 is a preliminary to the remainder of the thesis. We review definitions
and some well known results on contact manifolds. The Sasakian structures and some

formulas related to them will also be discussed.

In Chapter 3, we study the normal bundle of an integral submanifold in a contact
manifold and curvature properties of it associated with the Sasaki metric of the normal

bundle. We define a linear operator ! by IX = Rx{ and obtain the following results.
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Theorem 3.1 Let M" be an integral submanifold of a Sasakian manifold M*"*! with
the structure (@,€,7,§). Then, NM has the contact metric structure (¢,£,7,g) with
[=0.

Theorem 3.2 Let M™ be an integral submanifold of a Sasakian manifold M?"+!.
Then, for the contact metric structure (¢,€,n,9) on NM, R..£ is intrinsic, i.e., it

depends only on the induced metric on M.

Motivated by Theorem 3.1, we also study contact metric manifolds satisfying { = 0

and answer a question raised by Perrone [Pe].
We prove the following theorems.

Theorem 3.6 Let M?"t! be a locally symmetric contact metric manifold with | = 0.

Then, M is locally isometric to E"*! x S™(4).

Theorem 3.7 Let M?"*! n > 2, be a contact metric manifold satisfying |l = 0.

Then, M*"*! can not be conformally flat.

In the last chapter of this thesis, we will study Lagrangian submanifolds in a
Kahler manifold and the normal bundle of the submanifolds using the Sasaki metric

of the normal bundle. We obtain the following results.

Theorem 4.1 Let L be a Lagrangian submanifold of a Kihler manifold (M?",J, g).
Then, (NL,J,§) is a symplectic manifold.

Theorem 4.2 Let L be a Lagrangian submanifold of a Kihler manifold (M*",J,g).

Then, the following are equivalent:

(1) NL is Kdhler.
(2) L has flat normal connection.

(3) L is flat.



Chapter 1

Geometry of Vector Bundles

We define the Sasaki metric on general vector bundles and compute its Riemannian
curvature in Section 1. In Section 2 and Section 3, we study vector bundles over a
manifold and provide the necessary and sufficient conditions for the bundle to be
locally symmetric and conformally flat, respectively. In the final section, we study

conformally flat unit vector bundles of rank 2.

1.1 Vector bundles and their Sasaki metrics

We consider the vector bundle = : E*** — M" of rank k equipped with fiber
metric g' and a metric connection V where (M™,G) is a Riemannian manifold.
Let D be the Riemannian connection and R the curvature tensor of M. Elements
of E can be identified as (z,U) where z is a point in M and U is a vector in its
fiber 7=1(z). Let {e,} be a local orthonormal basis of the sections of E. Then,
(91,925 - -+ qn, u1,u2,...,u;) form local coordinates for E where ¢; = z; o 7 and u,
are coordinates of U with respect to {e,}. For a section U = U%e, of the bundle E,

oue

VxU = Xi(Z=

+ ﬂS.-U")ea

where V%eg = 43 €a-



We say that the connection V is flat if the curvature tensor
RxyU =VxVyU — VyVxU - Vix iU

vanishes for any X, Y, and U.

7. : TE — TM is a fiber-preserving linear transformation and is onto. Let
(Xi, X™*) be the local components of the tangent vector X to E at (z,U)

with respect to the basis (2, 2-). Then, 7. X = X‘E‘Z—.. We define a linear map

9g,? Bua

K:TE — E by

KX = (X™** + p5 0P XY)eq. (1.1)
Clearly, K is fiber-preserving and is also onto.

We define an inner product g of the vectors X and Y tangent to E at (z,V) by
9(X,Y) = G(m.X,n.Y)+ ¢ (KX,KY). (1.2)

This metric is called the Sasaki metric of the bundle FE.

We call the kernels of the mappings . and K the vertical subspace VE and the

horizontal space HF, respectively. Then, there is a splitting
TE=HE®VE

and HE and V E are orthogonal.

For a vector field X = X‘% on M, we define

) .
H — i e Byt . 1.
X X 3a, pgu” X B (1.3)
For a section U = U%e, of E, we define
UV = Uai. (1.4)

Ou,



Then,
nX? = X' —=X
nVVY =0
KXH = (—ugiuﬂX‘ + ugiuﬂX‘)ea =0
KVYV = Voe, =V
i.e., X¥ € HE and V¥ € VE.
Thus, we note that at the point (z, W)
g X", Y®)y = Gr.XH xnYH),=G(X,Y).
g XH. U)W = G X", x.UV),+ g (KXH KUY )w =0
U Vw = g (KUY, KVV)w = ¢*(U,V)w
Now, we let X = (X, X"*+*) be a tangent vector to E. Then,

: 50w _ 50 o 55 0
(Xa_x‘) _Xaq;-ﬂﬁivxava

(KX)Y = [(X™ +pgofXi)ea]” = (X2 + #S;v"ff‘)a%

and, hence, we can write

~ ~ ~

X =(mX)"+(KX)".

Thus, it is enough to consider various combinations of horizontally and vertically
lifted vector fields. We now prove in general three lemmas that were stated in the

normal bundle case by Borisenko and Yampol’skii [BoY].

Lemma 1.1 Let X and Y be vector fields on M, and U and V sections of the bundle

E. Then, the Lie brackets at the point (z,W) are as follows:
[UV, VV] =0, [XH, UV] = (VXU)Vv

W.[XX, YH] = [X’ Y]’ K[XH’ YH] = _RXYW-



9

Outline of Proof: The proof can be done by direct calculations using definitions of

horizontal and vertical lifts. For example, using (1.3), we have at W = u®e,

.0 .0 .0 .0
XH H — i e Byi_ 2 iYL syi Y
[ Y ] [X dg; Hpit X auavy aqj B Y auW]
YIS 9Xi 9 L . 8XP 9 . o 3Yi
= X Y ) ag T Y 55 e~ #v X G g
Opg; .0 Oy .9
] t_ Byl _ i 55,6V
tY 6ziuxau‘:9 X@z‘uyau"a
+ ﬂZ;#ZjX‘YjUB% - #Zjﬂng‘YjU%;

= [X,Y)i — (RxyW)".
The other two cases are easy. ]

By definition, RxyU is a section of the total space E™** such that at any point

z € M, RxyU is tangent to the fiber 7~!(z). If V is another section of E, it is

possible to compute the inner product g*(RxyU, V). We define the adjoint Ryy X
by the equality

G(RyvX,Y) = g*(RxyU,V). (1.5)

We now compute the covariant derivatives with respect to the Riemannian connection

V of the Sasaki metric g on E.

Lemma 1.2 Let X and Y be tangent vector fields on M, and U and V sections of
the bundle E. Then, at each point (z, W)

Vv VY =0, VxaVV = (VxV)V + L Rwy X)H,

VuvYH = L RwyY)H, VxaYH = (DxY)¥ - L(RxyW)".

Outline of Proof: We use Lemma 1.1 and a well known formula for the Riemannian

connection
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~ ~

+9(IX,Y),2) - g(IY, 2], X) + 9(1Z, X),Y)

to compute various combinations of covariant derivatives. For example, we can com-
pute as follows,
29(VovYH, XH) = UVg(YH,XH") +4([UY, Y], XH)
—g([Y?,X"),U0") + o(1X",U"], YH)
= UVQ(XH’ YH) + g((Rny)V, UV)
= Uvg(XH1 YH) + gl(RYXWa U)
= UYg(X",Y¥) + G(RwuY, X).
But, since g(X#,Y#) is a constant along each fiber, UV g(X¥,Y¥) vanishes. We also
have
29(©UVYH, VV) = YHg(UVa VV) + g([Uva YH]’ VV) - g([YHa VV]’ UV)
= Ygl(U, V) - g((VYU)V, VV) - g((VyV)V, UV)
= Ygl(Uv V) - g‘L(VYUa V) - gl(vYVa U)

= 0.
Therefore, we get VyvY# = 1(RyyY)H.
Other cases follow by similar calculations. L]

We define the covariant derivatives of the tensors R and R as usual:
(VzR)xyU = VzRxyU — Rp,xyU — Rxp,yU — RxyVzU
(DxRwvZ = DxRuvZ - Rv,uvZ - RyvywZ — RyvDxZ.
Lemma 1.3 The curvature tensor of the Sasaki metric of the bundle E at the point
(z,W) is given by

. 1. 1. 1.
RxuynZ" = [BxyZ + ZRWRZYWX + ZRWR”WY + ERWnyWz]H



RxuysUYV =

RXHUVZH

RynpvVV =
RUVVV ZH =

Ruvvvsv =

11

+5[(VaR W),
SI(Dx RywuY — (Dy Rywu X1

+ [RxyU + iRRqu xW - %Rnw,,x y W17,
%[(DXR)WUZ]" + [%szU + %RRWUZXW]V,
—[%RUVX + %RWURWVX]H’
[RuvZ + %RWURWVZ - %fi'wvffwvz]",

0.

Outline of Proof: We will outline the proof of the first three identities. The above

two lemmas will be used freely. At the point W = u®e,, we have

RynyvZH

But,

= VxaVyvZH —VyuVxuZ" — VixnyvZ?

1- . . 1
= §VXH(RWUZ)H - Vuv((DxZ2)7 - '2‘(RXZW)V)

- e(va)VZH. (16)
@xuu"(R,QUZ)"

(XHu)(Reov Z2)7 + uoVyu(Royu2)?
M R 1
—p3 0P X (ReuuZ)? + u*{(Dx Re,u Z)¥ - 3 (Bx AeswzW)'}
R n 1
—(RoywuvZ)? + u*(DxRevZ)" - 5(Rx AwwzW)¥

R A 1
—(Re,xwuvZ)? + (DxRwyZ)H - E(Rx Rw,,zw)v (1.7)

where we have the last equality since

DwauZ = Dxu"ReauZ = (Xu“)fZCQUZ + uanReauz,

and since the u® are the fiber coordinates.
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Similarly, we can compute

Vuyv(RxzW)¥ = (RxzU)". (1.8)

Continuing our computation of (1.6) with (1.7) and (1.8), we have

~ 1 A 1 A 1
RXHUVZH = _E(RVXWUZ)H + 5(DwauZ)H - Z(RXRWUZW)V
1, . 1 1 .
- E(RWUDXZ)H + E(szU)V - §(RWVXUZ)H

1, o« 1 1
= 5[(DxRwuZ]" + [5RxzU + Rpyyz x W1 (1.9)

as desired.
The second identity follows easily from the Bianchi identity and (1.9).

To show the first identity, we compute

BynynZ = VxnVyuZ" —VyuVxunZ" — Vnym 2"
- 1 x 1
= Vx((Dy2)" - 5(RyzW)") = Vyu((Dx2)" - 5(RxzW)")

—6[x'y]HZH+6(RXYW)VZH (1.10)

Here, we do a similar calculation to the one in (1.7) and obtain the following:

1

@xu(RyzW)V = (VnyzW)V + (anysz)H - (RszxW)V (1.11)

N

and

. 1.
Vyn(RxzW)" = (VyRxzW)¥ + 5 (Rw rxwY)? — (RxzVyW)". (1.12)

Thus, using (1.11) and (1.12), the equation (1.10) can be written as follows:

. 1 1 1, -
RynynZ” = (DxDyZ)" - -2'(Rx pyzW)V — E(VXRYZW)V - Z(anysz)H

1

1
+ ~(RyzVxW)¥ — (DyDxZ)¥ + §(Ry pyzW)Y

L
1

N =N

A 1
+ =(VyRxzW)V + —(BRw py,wY)" - '2‘(RXZVYW)V
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1

2
1. 1. 1.

= [BxyZ+ ZRW RzywX + ZRWR"ZWY + §RWnyWZ]H

1 R
- (Dixn12)" + E(R[X,Y]ZW)V + z(RwRyywZ)"

1
+ 5[—Rx DyzW — VxRyzW + RyzVxW + Ry p, zW

+VnyzW—szVyW+R[X'y]zW]V (1.13)

Now, using the Jacobi identity, it is straightforward to see that the vertical part of

(1.13) is equal to [(VzR)xy W]V. Thus, we obtain the first identity.

The remaining identities can be proved by the similar arguments and simple com-

putations. L]

1.2 Locally symmetric vector bundles

The locally symmetric tangent bundle was first studied by Kowalski, who showed
[Ko] that the classical Sasaki metric on the tangent bundle is locally symmetric if and

only if the metric of the base space G is flat.

We now study the local symmetry of a general vector bundle.

Proposition 1.4 Let 7 : E"tF — M™ be a vector bundle over a manifold M with
fiber metric gt and a metric connection V. Suppose the connection V is flat. Then,

for the Sasaki metric g on E, we have
(vA”R)(XH’YH’ZH) = [(DAE,)(X, Y, Z)]H

for any vectors A, X,Y, and Z tangent to M™.

Proof: Since the connection V is flat, we note, from Lemma 1.3, that RyuysU",

RxuyvZH RynyvVV,and RyvyvZH all vanish. Using this together with Lemma 1.2
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and Lemma 1.3, we have

(Van R)(XH,YH,ZH) = VauRynynZ" — Ry, xuynZ"

- ny VAHY”Z” - RxHvaAHZH

N N 1-
= VanlBxyZ" — Rip,xyuyn Z¥ + ER(RAXW)V yuZt
. 1-
- RxH(DAy)HZ” + §RXH(RAYW)VZH

. 1 -
— Rxnyu(DAZ)H + 5R,(,,YH(RAZW)V
= [DaBRxyZ - Rp,xyZ — Rxp,yZ — RxyDaZ)"

= [(DAE)(Xa Y, Z)]H
as desired. D

We will use the following lemma of Cartan [Ca] pp.257-258.

Lemma 1.5 Let (M, g) be a Riemannian manifold, V the Riemannian connection

of g and R its curvature tensor. Then, (M, g) is locally symmetric if and only if
(VxR)(Y,X,Y,X)=0 (1.14)

for any orthonormal pairs {X,Y}.
We now prove the following theorem.

Theorem 1.6 Let 7 : E™* — M™ be a vector bundle over a manifold M with
fiber metric gt and a metric connection V. Then, the Sasaki metric on E is locally

symmetric if and only if the connection V 1s flat and M 1is locally symmetric.

Proof: Suppose that E is locally symmetric, i.e., VR = 0. First, we show that the

connection V is flat. Using Lemma 1.2 and Lemma 1.3, we have at (z, W) on E

(VyuRYXH,UY,VY) = VyuRxupvVY = Ry, xuyvV"
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- Rxﬂ VYHUVVV - Rxﬂvveyﬂvv

1.~ R 1e h R
= —§Vyn(Rqu)H - ZVyH(RwURWVX)H

1

- I}(DYX)HquV + R(Rny)VUVVV

[N )

— Rxn(vyu)vvv — qu(awuy)uvv
1~

— Ryuyv(Vy V)Y — ZRxuyv(RwvY)?

2
1 N 1
- E[DYRUWX]H + Z[RY apvxW1¥

1 . R 1
- Z[DYRWURWVX]H + '8‘[RY RquvaW]V

Il

1, ) A R
+ E[RUVDYX]H + Z[Rquvayx]H
l A 1 A A
+ §[RVyUVX]H + Z[RWVyURWVX]H
1 " . R
= 1 [(DxR)wv RwuY — (D, v R)wv X"
1 1 1 y
- E[Rx RwoyV t ZRRWVRWUYXW - ZRRWVX Awoy W]
1 2 1 A A
+ [§RUVyVX + ZRWURWVyVX]H
1 .
- Z[(DxR)qu]”
11, 1 y
- 5[5 X Ry U+ ZRRWURWVY xW]
1 1
= Z[RY RUVXW]V + §[RY RWUvaXW]V
1 1
- 5[Bx fwor V1Y - g[Rnwvnwuy xW1Y
1 1
+ g[Rvax RWUYW]V - Z[Rx RWVYU]V

1
= 5 RRwoRwyy x W1 H [ 17 (1.15)
Applying K to this, we get

8K([(Vyn R)Y(XH,UV,VY)] = 2Ry p,, xW + Ry p, 0 xW

- 4RX RWUYV - RvavaY Xw
+ Rpux RyovyW — 2By g, vU
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Since V is compatible to g+, we have that
gt (RxyU,V) = —g*(RxyV,U) (1.17)

for any X,Y,U, and V.
Since VR = 0, taking the inner product of (1.16) with W, we have, using (1.17) and
the definition (1.5) of R, that

= 4G(RvwX, BwuY) + 2G(Ruw X, RwvY) (1.18)

We choose X =Y and U =V in (1.18) and then, we have

0 = 4G(RuwX,Rwux)+2G(RuwX,Rwux)
= —6G(RwuX, RwuX)
that is, 6/ Rwy X|? = 0 for any X, W, and U. Then, by the definition (1.5) of R, we

have

RxyW =0
for any X,Y, and W, i.e., the connection V is flat.
Finally, by Proposition 1.4, DR = 0, i.e., M is locally symmetric.

For the converse, in view of the lemma of Cartan, it is enough to check if the equa-
tion (1.14) holds for an orthonormal pairs which we may decompose into horizontal

and vertical parts.

Suppose the connection V is flat. Then, from Lemma 1.2, we see that

~

ViU = (VxU)V and Vyv X7 = 0.

So, using Lemma 1.3, we see that all of the types RyuynUY, RxuyvZH, RyuyvVV,

RUVVVZH, and RUVVVSV vanish.
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Therefore, using Lemma 1.3 and Proposition 1.4 again, it is straightforward to see

the equation (1.14). ]

1.3 Conformally flat vector bundles

We now study conformally flat vector bundles. It is well known that a Riemannian

manifold (M™, g) is conformally flat if and only if

RxvZ = —5(o(Y,2)QX ~ 9(Z, X)QY +9(QY, 2)X ~ 4(2,QX)Y)
- 1§n —5 0, 2)X ~g(Z,X)Y)  forn24  (L19)
and
(VxP)Y = (VyP)X  forn=3 (1.20)

where @ is the Ricci operator, R = TrQ is the scalar curvature of M™ and P is the

tensor field defined by

P=—Q+§M.

We note that the equation (1.19) (with n = 3) is valid on any 3-dimensional Rieman-

nian manifold.

We now present the following theorems.

Theorem 1.7 Let v : E"* — M™, n > 3, be a vector bundle over a manifold M™
with fiber metric g* and a metric connection V. Then, E™* with the Sasaki metric
g is conformally flat if and only if either, M™ is flat with flat connection V, or M™

has (nonzero) constant curvature with flat connection V and k = 1.

Proof: Suppose that E™t* is conformally flat. From Lemma 1.3, we have at (z, W)

. 1 - 2
RXHYHWV = 5[(DXR)WW}I—(DYR)WWX]H
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1 1
+ [RxyW + ZRwany - ZRRWWX yW1Y

_ %[(DXR)WWY_(Dyiz)WWX]"HRXYWIV (1.21)

On the other hand, since E™** is conformally flat, we also have

1

~ WV:—
RXHYH n+k—2

[9(QYH, W¥) X" — g(QXH,W¥)YH] (1.22)
where () is the Ricci operator of the total space E"tk,

Comparing vertical components of (1.21) and (1.22), we conclude that Rxy W = 0,
i.e., the connection V is flat. We now take an orthonormal basis {X”,VY},i =
1,2,...,nand a=1,2,...,k, so that {X;} form an orthonormal basis of M. Then,

since the connection V is flat, we compute, using Lemma 1.3,
QXH = Z RXHXIHX,-H + Z RX”VQV VOV
1 a

= [2BxxX:]"

= (éX)”, (1.23)

QWV = ZRWV,\’.HX,‘H+ZRWVV°VVQV

= 0, (1.24)

and

R= EQ(RX."XJ”X;I,X&H) =R (1.25)

5]
where R and R are the scalar curvatures of E and M , respectively.

. _ 1 _
We write a = ;1 — and b=

1

e Then, since E is conformally flat, we

have, taking the horizontal projection in view of (1.19),

RxyZ = o{G(Y,2)QX — G(Z,X)QY + G(QY, Z)X — G(Z,QX)Y}

— bR{G(Y, 2)X - G(Z,X)Y} (1.26)
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where G is a Riemannian metric of the base manifold M. So, taking trace of this, we

have
QX = afnQX - 3 G(X, X)@X: + 3 G(@X:, X)X — Y G(@X, X)) X.)
— bR{nX -3 G(X, X;) X}
= a{(n—2)QX + RX} — b(n — 1)RX (1.27)

QX = cRX (1.28)

where ¢ = %:—:12%%';-. Hence, M is an Einstein manifold. Moreover, R is a constant

since n > 3.

If R=0, then @ = 0. Thus, from (1.26), we conclude that M is flat.

If R # 0, then, using (1.26) and (1.28), we have

RxyZ = A{G(Y,2)X - G(Z,X)Y}

where A = 2(ac — b)R is a nonzero constant. Hence, M has a constant curvature A.

Now, we take trace in (1.27) and get

R = a{(n—2)R+nR} —bn(n— )R
= (n—1)(2a - bn)R

or, equivalently,

n 1

1=(n—l)(2a—bn)=(n—-l)(2—n+k_1)n+k_2.

(1.29)

By a simple computation, we see, from this, that k(k — 1) = 0. Thus, k = 1.

We now prove the converse. In either case, since the connection is flat, we note
that the equations (1.23) - (1.25) remain. We also recall that on a manifold (M, G)

of constant curvature C, we have

RxyZ = C(G(Y,2)X - G(Z,X)Y) (1.30)
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Case 1: M™ is flat with flat connection V.

Since C = 0, from (1.30), I?X,-,Z = 0 for any vectors X,Y, and Z tangent to E,

E™tk is flat and hence, conformally flat.

Case 2: M™ has (nonzero) constant curvature, say C, with flat connection V and

k=1.

We shall see that the equation (1.19) holds for various combinations of horizontally
and vertically lifted vector fields. This will be mainly simple computations using

Lemma 1.3, (1.19) and (1.30). First of all, we look at the case {X¥,YH K ZH}. Since

the manifold M™ has constant curvature, we have, from (1.30),
QX =C(nX—zn:G(X,-,X)X.-) =C(n-1)X (1.31)
i=1
where {X;} is an orthonormal basis of M™. Thus,
R=Cn(n-1). (1.32)

Hence, the RHS of (1.19) is, using (1.23), (1.25), (1.31), and (1.32), equal to

2C(n — 1)(G(Y, Z)XH - G(Z, X)Y'H)

n-1
R
T 1)(G(Y, 2)XH - G(zZ,X)YH)
= {20 - %}(G(Y, Z)XH — G(z,X)YH)

= C(G(Y,Z)X¥ - G(z,X)Y¥),

which is equal to [Rxy Z]" by (1.30). On the other hand, since the connection V is
flat, we have, from Lemma 1.3, that Ryxy»Z¥ = [RxyZ]". Hence, the equation
(1.19) holds for this case. For the remaining cases, since the connection V is flat, we
see, from Lemma 1.3, that the LHS of (1.19) is zero. Moreover, using (1.24), (1.31),

and (1.32), it is easy to see that the RHS of (1.19) vanishes. For example, we can see
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that the RHS of (1.19) vanishes for the cases with { X" ,UY,Z#} and {XH,UV,VV}
as follows: Using (1.23) and (1.24), for the case {XH#,UV,ZH¥}, we have

~

R

RHS of (1.19) Y

{-9(z",X")U"}

Il

1 N
n—_l{—g(Z", QX")UV} -

_C(n-1)  Cn(n-1)

n-—1 n(n —1) Jo(2%, XU =0

{

and, for {X¥ UV ,VV}, we have

RHS of (1.19) = n—i—lg(UV,VV)QXH—

e UM

Cn-=1) Cn(n-1)
n—1  n(n-1)

{ Yo(U¥,v¥)x#

This completes the proof. ]

Theorem 1.8 Let 7 : E*** — M? be a vector bundle over a manifold M? with
fiber metric g+ and a metric connection V. Then, E*** with the Sasaki metric g is
conformally flat if and only if either, M? is flat with flat connection V and k > 2, or

M? has constant curvature with flat connection V and k = 1.

Proof: We suppose that E?** is conformally flat. Then, we observe that the equations

(1.21) and (1.22) are still valid and so, the connection is also flat.
Case 1: k > 2.

Notice also that the equation (1.27) holds. However, R may not be a constant
but we shall show that R is, in fact, identically zero on M?. So assume that R # 0
at some point £ € M?. Then, we can choose a neighborhood U of = such that R # 0
on U. Since the equation (1.27) holds, we infer, by the same computation as above,

that £k = 1. This is a contradiction.

Hence, R = 0, i.e., the Gaussian curvature K = 0 on M? when k > 2.
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Case 2: k=1.
Recall that the connection is still flat in this case. Then, we compute, using (1.24),
(VxaP)WY — (Vyv P)XH
= 6xHPWV - vaHWV - @wVPXH + vaVXH

R e i.vx,,izwv — P(VxW)Y + Vv OXH — %VVWVRX"

- ix”(iz)w" + iR(VxW)V - 411'2(VXW)" - %w"(iz)x" - %Rﬁwvx"
= %X”(R)WV - iWV(R)X” (1.33)

Thus, if E?** is conformally flat, we have, using (1.20),
L ow v Luwv oy yH
= ZX (R)\WW" — ZW (R)X".

But, since X# and WV are linearly independent, we have X¥(R) = X(R) = 0,

that is, R is a constant. Hence, the Gaussian curvature K is a constant.

To prove the converse, we first observe that the equations (1.19), (1.23), and (1.25)
are still valid since the connection V is flat. Thus, the equations (1.26) - (1.28) remain

valid.
Case 1: M? is flat with flat connection V and k > 2.

From our observation above, the same argument as in the Case 1 of the converse

of Theorem 1.7 proves this case.
Case 2: M? has a constant curvature and k = 1.

From (1.30), we see that R is a constant and so, from (1.25), R is a constant.

Hence, this shows, in view of (1.33), that

~ ~

(VxaPYWY — (Vv P)XH = 0.
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Moreover, since M has a constant curvature, QX = cX for a constant c¢. Using this

and (1.23), it is a routine computation to see
(VxuP)YH — (Vyu P)XH = 0.

Therefore, E?** is conformally flat. []

Corollary 1.9 The classical Sasaki metric g on the tangent bundle of a Riemannian
manifold (M™,G), n > 2, is conformally flat if and only if (M™,G) is flat in which
case (TM",g) is flat.

1.4 Conformally flat unit vector bundles

Let 7 : EntF — M™ be a vector bundle equipped with fiber metric g* and a metric
connection V where (M",G) is a Riemannian manifold. Let D be the Riemannian
connection and R the curvature tensor of M. We consider a hypersurface F; of E

defined by

called the unit vector bundle. The metric on E; induced from the Sasaki metric on
E is denoted by ¢’, the Riemannian connection of ¢’ by V', and it’s Riemannian

curvature tensor by R’X)-,Z .

Notice that the vector field W = u%(e,)¥ is a unit normal and the position
vector of a point W in E,. Then, we consider the Weingarten map A, defined by
AX = —6XW, of the immersion ¢ : E; — E.

For any vertical vector field V tangent to E;, we have using Lemma 1.2

VW = (LVu®)(en)” +uV, v(ea) =V, (1.34)
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and for X¥ = (X', X"**) tangent to E,,

vaW = '{7xyu°’(ea)v

- (x"ua)i +u®Vyn(eqa)V

Jue
. 0 1
= —I‘S.‘“ax'a? +u*((Vxea)" + E(RWeaX)H)
. 0 . d 1
= _pgiuﬂx'% +u X0+ ,15,-)517,- + §(waX)”
~ 0 (1.35)
Hence, A = —Id on vertical vectors and A = 0 on horizontal vectors. From this

and the well-known identity for the second fundamental form o

<t

g(U(X, Y)3 ) = g(A{/X,Y),

we have that
o(X,Y)=0 (1.36)
if at least one of X and Y is horizontal.

In this section, we consider the vector bundles = : E*** - M™ with k = 2. Since
each fiber has dimension 2, we can choose orthonormal sections {U,V}. Then, we

can write

VxU = k(X)V and VxV = —k(X)U,

where k is a 1-form. Thus,

RxyU = Vxk(Y)V = Vyk(X)V — k([X,Y])V

= 2dk(X,Y)V.

We define a linear operator L by

G(LX,Y) =2dk(X,Y).
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Then, we have
G(LX,Y) = 2dk(X,Y) = ¢g*(RxyU,V) = G(Ryv X,Y) (1.37)
and

G(L*X,Y) = G(RyvRuvX,Y) = —~G(Ruv X, RuvY) = —G(LX,LY).  (1.38)

Thus, from (1.37), we can write L = Ruv.

We prove the following theorem.

Theorem 1.10 Let 7 : E"*? — M™, n > 3, be a vector bundle over an Einstein
manifold M with fiber metric gt and a metric connection V. Suppose the unit vector
bundle E, is conformally flat and is of constant scalar curvature. Then, either the

connection V is flat, or (M,G) admits an almost Hermitian structure.

Proof: We take an orthonormal basis {X/,V}, ¢ = 1,...,n, tangent to E; so that

{X.} form an orthonormal basis of M. Then, using the Gauss equation for E; in E

and (1.36), we have

gI(Q’XHvYH) = ZgI(RIX”X,HXiH’YH)+g’(RIX”VVsYH)
i=1

= S (o(Rxnxp X, YH) + g(o(X",YH), o(XH, X))
— o(a(X7, Y ), (XH, XH)) + g(RxnyV, Y ¥)
+o(o(XH,YH),0(V,V)) - glo(V,Y¥), a(V, X¥))

= EQ(RXHX.”X(Hs YH) + g(RxuyV,YH)

1=1

Continuing the computation using Lemma 1.3, we have at U

JQXHY") = Y g(RyuxpXF,YH) + g(RynyV, YY)

i=1
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n 3 R
= 2 9([Rxx.X: + ZRURXX'.UXn‘]Ha Y*)

1=1

+ g('—%[RUVRUVX]HaYH)
= G(QX,Y)

3 1. X
- 329" (Rx x.U, Ry xU) + ;G(Ruv X, RuvY) (1.39)

i=1

and

J@QVV) = L g(R, xuXH,V)

=1

n

= Eg(RX‘”VV, X|H)

=1

n 1. . .
= Zg(—Z[RUVRUVXi]HaX,‘H)

=1

G(Ruv Xi, Ruv X;). (1.40)

n
=1

|-

)

Using (1.39) and (1.40), we also have
R = 3 d@@xF xF)+4@QV,V)
1=1

n n

. 3 1 . -
= LG@X:X) -7 3 ¢*(Rx.x,U Rx,x,U) + 5 3 G(Ruv X, Ruv Xi)
i=1

1,7=1 i=1

no 3.0
> |Ruv Xi|* - 1 > |Rx.x,UJ? (1.41)
=1

5J=1

DN

But, due to (1.38), we have

trL* = Y G(L*X;, X;)
=1

= -3 G(LX;, LX)

i=1

n

= =Y G(RuvXi, Ryv X,). (1.42)

1=1
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Thus, from (1.41) and (1.42), we get

R =R- %tr‘L2 - % Z |Rx‘xJU|2 (1.43)

5,J=1
Now, since E, is conformally flat and since dimE; = n + 1 is at least 3, we have,
in view of (1.19),

1
n—1

+4(QY,2)d(X,W) - g'(Q@X,W)g(Y,W))

9'(Ryy 2, W) &' (V,2)d(@Q@X,W)-d¢(Z,X)g'(QY,W)

- n(nR-’— 1)(9’(?’2)9'(5("3’) -d'(X,2)g'(Y,W)) (1.44)

From this together with (1.39), we have at U, for X and Y orthogonal,
/ / 1 / 'y
9(Byuy VYY) = —9@ X",y H)

= —(GERXY)

= 1
- %EQ‘L(RXX.U, Ry x,U) + ZG(LX’ LY)) (1.45)
=1

On the other hand, again using the Gauss equation, (1.36) and Lemma 1.3 succes-

sively, we have

g'(R'vaVa YH) = Q(RXHVV, YH)

= -iG(RUVRUVX,Y)
= G(Ruv X, RovY)
_ %G(LX, LY) (1.46)
So, comparing (1.45) and (1.46), we get
1 1 1 3
Z(l - m)G(LX,LY) == 1(G'(QX,Y) ~1 zgl(Rxx'U, Ry x,U)) (1.47)

i=1
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But, from (1.37), we see that

gl(RX X-'Ua Ry X-U) = 4zgl(dk(x’ X.‘)V, dk(X’ X,)V)

=1 =1
= Y G(LX,X))G(LY, X;)

=1

= G(LX,LY) (1.48)

where we have the last equality since {X;} is an orthonormal basis. Therefore, we

have, using (1.47) and (1.38)
4
2 - _ XY 1.49
G(L*X,Y) = - — < G(@X.Y) (1.49)
and hence,
4
2 — Q=al 1.50
L*+ s IQ a (1.50)
where a is a function and I is the identity transformation.

Now, from (1.38) and (1.48), we have

Z IRX.-X,U|2 = —trL2.

‘v]=l

Therefore, (1.43) gives

R =R+ i—trL"’.
Now, the trace of (1.50) yields
na = trL? + 4 R=4R — in R.
n+1 n+1

Thus, since R’ is a constant and M is Einstein with dimM > 3, « is a constant.

Again, since M is Einstein, i.e., Q = ’;{I, we have, from (1.50),
L? = 81 (1.51)

where 8 = W%_IT — « is a constant.
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Now, taking X =Y in (1.38), we easily see that 5 > 0.
Case 1: 8 =0.
In this case, L? = 0. Taking X =Y in (1.38) again, we have that |[LX]|?> = 0 for
any X, that is, L = 0. Hence, by the definition (1.5) of R, we have

RxyW =0

for any X,Y, and W, i.e., the connection V is flat.
Case 2: 8> 0.

We define a tensor field J by J = VIEL. From the definition of J, it is clear that

J is an almost complex structure on M. Moreover, we have, using (1.38) and (1.51),

G(JX,JY) = %G(LX,LY)

_ Yo
= —3GLX.Y)

= G(X,Y)

This completes the proof. ]
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Chapter 2

Review of Contact Manifolds

In this chapter, we review definitions and some well known results on contact
manifolds which will be used later in this thesis. Section 1 is an introduction to
contact manifolds and their integral submanifolds. Section 2 will discuss mainly
Sasakian structures and some formulas related to them. As for the notations, we

basically follow those of [B176].

2.1 Contact manifolds and integral submanifolds
of the contact distribution

An odd dimensional differentiable manifold M?2"*! is said to have an almost contact
structure ($,€,n) if it admits a (1,1)-tensor field @, a vector field £ and a 1-form g
satisfying

n(é)=1and ¢’ = -I+n®¢ (2.1)

where I denotes the identity transformation, or equivalently, if the structural group
of its tangent bundle is reducible to U(n) x 1. A manifold M with an almost contact
structure (¢, €, ) is called an almost contact manifold and is denoted by (M, ¢, £, 7).
On an almost contact manifold, we have ¢ 0 £ = 0,90 ¢ = 0, and ranké = 2n. If

g is a Riemannian metric on an almost contact manifold M?"*+! with the structure

30
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(#,&,n) such that

9(8X,¢Y) = g(X,Y) = n(X)n(Y) (22)

for any vector fields X and Y, then M?"+! is said to have an almost contact metric

structure (¢,€,7,9), and g is called a compatible metric.

Proposition 2.1 An almost contact manifold M admits a compatible metric g such

that n(X) = g(X, ) for any vector field X.

Proof: Let h be a Riemannian metric on M and define k' by
K'(X,Y) = h(¢*X, 6°Y) + n(X)n(Y).

Now, we define g by

[S——y

9(X,Y) = 5 (K (X,Y) + h(¢X, 8Y) + n(X)n(Y)) (2.3)

It is easy to check that g is a compatible Riemannian metric. Now, setting Y = £ in

(2.2), we have that n(X) = g(X,¢). ]

Let M?"*1 be an almost contact manifold with an almost contact metric structure
(#,€,m,9). Let U be a coordinate neighborhood and choose a unit vector field X; on
U orthogonal to £. Then, by (2.1) and (2.2), ¢X; is also a unit vector field on U,
orthogonal to £ and X;. Next, we chose a unit vector field X, orthogonal to £, X; and
#X, then ¢X; is a unit vector field orthogonal to ¢, X;, ¢X; and X;. Proceeding in
this way, we obtain an orthonormal basis {£, X1, X1, X2, 6 X3, -+, Xn, 60X, }, called
¢-basis.

If (M,¢,€,7,9) is an almost contact metric manifold, we can define a 2-form ¢
on M by &(X,Y) = g(X, ¢Y). This 2-form is called the fundamental 2-form of the

almost contact metric structure.
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A manifold M?"+! is said to be a contact manifold if it carries a global 1-form 75

such that

A (dn)™ #0
everywhere on M. 75 is called the contact form. n = 0 defines a 2n-dimensional
distribution or subbundle D of the tangent bundle with the fibers D, = {X € T, M |
n(X) = 0}. D is sometimes called the contact distribution. Since n A (dn)" # 0, D is
not integrable and dn has rank 2n. The subspace V, = {X € T,M | dn(X,T,M) = 0}
of T,M is of dimension 1. Let £, be the element of V, on which n has the value

1. Then, £ is a vector field, which we call the characteristic vector field, defined on

M?2n+1 gych that

dn(¢, X) = 0 and n(§) =1 (2.4)

for any tangent vector X to M.

Theorem 2.2 Let M?"t! be a contact manifold with the contact form n. Then, there

erists an almost contact metric structure (¢,€,n,g) such that ® = dy.

Proof: We choose the characteristic vector field £ so that n(¢§) = 1 and dp(¢,X) =0
for any tangent vector X to M. Thus, if A’ is a Riemannian metric on M?"*! h

defined by

h(X,Y) = K (=X +9(X)& =Y +n(Y)) + n(X)n(Y)

is a Riemannian metric such that p(X) = h(X,§). Setting ® = dn, ® is a symplectic

form on D and hence, by polarization, there exists a metric ¢’ and an endomorphism

¢ on D such that
g'(X,8Y) =dp(X,Y) and ¢ = —1.

Extending ¢’ to a metric g agreeing with k in the direction ¢ and extending ¢ so that

# o0& = 0, we obtain an almost contact metric structure (¢, €,n,g) with ® = dn. []
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An almost contact metric structure with ® = dp is called an associated almost

contact metric structure for n, or simply, a contact metric structure (¢,€,71,9)-

Let M?"*! be a contact metric manifold with contact form 5. Roughly speaking,
the condition A (dn)™ # 0 means that D is as far from being integrable as possible.

In particular, we have the following theorem.

Theorem 2.3 (Sasaki [Sa64]) Let M?"*! be a contact manifold with contact form .
Then, there ezist integral submanifolds of the contact distribution D of dimension n

but of no higher dimension.

Proof: Since n A (dn)* # 0, we can choose, by the classical theorem of Darboux
(see for example, [St] pp.137), local coordinates (z',y',z),i = 1,2,...,n, such that
n = dz — ¥, y'dr' on the coordinate neighborhood. Then, for a point p with
coordinates (z}, y, z0) in the coordinate neighborhood, z* = z{,y* = y}, 2o defines an
n-dimensional integral submanifold of D in the neighborhood and a maximal integral

submanifold containing this coordinate slice is an integral submanifold of D in M2"+1,

Now, we let M™ an r-dimensional integral submanifold of D and we suppose
that r > n. We denote by X, Xs,..., X, r linearly independent local vector fields
tangents to M" and extend these to a basis by X, 1, X;42,..., Xon, Xons1 = €. Then,

for2,7 =1,2,...,n we have

7(X:) = 0 and dn(Xi, X;) = 5(Xan(X;) = X;n(X:) = n(1X:, X;1)) = 0.

Thus, since r > n, we see that
(" A (d'l)")(Xh X2y ooy X2n+l) =0,

which is a contradiction. D
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We have just seen that if X and Y are vector fields tangent to an integral sub-

manifold of D, then

n(X)=n(Y)=0and dp(X,Y) =0.

Thus, for a submanifold M” immersed in a contact metric manifold M?"t1, we
see that if M" is an integral submanifold of D, ¢X is normal to M™ in M?"*! for any

tangent vector X to M".

We now state a theorem which shows the abundance of integral submanifolds of
D. As we saw above, ¢.X is normal to an integral submanifold for X tangent to it, so
loosely speaking the geometry is normal to the submanifolds. We shall study integral

submanifolds in contact manifolds later in this thesis.

Theorem 2.4 (Sasaki [Sa64]) Let X be a vector at p € M*"*+! belonging to D. Then,
there ezists an r-dimensional integral submanifold M™(1 < r < n) of D through p such

that X is tangent to M™.

We remark that on a contact metric manifold M with structure (¢,¢,7,g), the
integral curves of the characteristic vector field ¢ are geodesics. Indeed, as [¢| = 1,
9(Vx&,€) =0. And, %g(ng,X) = dn(&, X) = 0 for all vector fields X orthogonal to
¢ and hence,

Vet = 0. (2.5)

2.2 K-contact and Sasakian structures

We introduce the concept of a normal almost contact manifold. Consider a product
manifold M?"*! x R of an almost contact manifold (M, ¢,&,n) with the real line R.

A vector field on M2"+! x R looks like (X, f4) where X € TM?"+!, f is a function
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on M x R, and t is a coordinate of R. We define a linear map J on the tangent

spaces of M?"t! x R by

d d
Then, J? = -1, i.e., J is an almost complex structure on M?"+! x R. Let [J,J]
be the Nijenhuis torsion of J and similarly [#, ¢] the torsion of ¢. We say that the

almost contact structure is normal if this almost complex structure J is integrable

ie, [J,J]=0.
On a contact metric manifold, from the following two well known formulas
20(VxY,Z) = Xg(Y,Z)+Yq(Z,X) - Zg(X,Y)
+9(X,Y],Z2) - ¢([Y, Z], X) + 9([Z, X],Y) (2.6)
and
3do®(X,Y,Z) = X®(Y,Z)+Y®(Z,X)+ Z¥(X,Y)
- 9([X,Y],2) - ®([Y, Z], X) — ®([Z, X],Y), (2.7)
we have (e.g. see [B176])

20((Vx9)Y, Z) = g(ND(Y, Z), $X) + 2dn(¢Y, X)n(Z) — 2dn(¢Z, X)n(Y)  (2.8)
where NO(X,Y) = [4, ¢](X,Y) + 2dy(X,Y)E.

On a contact metric manifold, we define a tensor field A by A = %L’Ecﬁ. It is shown
in [B176] that h is a symmetric operator. We now have the following proposition.
Proposition 2.5 On a contact metric manifold with structure (¢,£,n,g), we have

(1) Ve =0
(2)Vx§=—¢X — ¢hX
(3) h =0 if and only if £ is a Killing vector field

(4) h¢ + ¢h =0
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QOutline of Proof: The proofs of (1) and (2) are straight forward using (2.8). For

example, using (2.8), we have

29((Vx¢)¢,Z) = g(d°€, Z) — 4[¢, ¢Z), X) — 2dn(¢Z, X)
= —29(¢hZ,¢X) —29(4Z,4X)

= —29(hZ,X)-29(X,Z)+29(n(X)¢, Z)

that is,

—¢Vx€=-X - hX +n(X)E.
Applying ¢ to both sides of this, we get (2).

Now, we have

1

0 = dn(X,&) = 5(Xn(€) - &n(X) = n([X,¢]))

from which we obtain
(£en)(X) = €n(X) —n([¢, X]) = 0.
Therefore, we see that (£eg)(X,€) = &n(X) — n([¢,X]) = 0, and, in turn, using
Le=1(€)od+do€), we have £¢dn = 0. But, since & = dy, we get
0 = (£8)(X,Y)=Eg(X,0Y) - g([6 X],8Y) - g(X, [¢, Y])

= (£eg)(X, 0Y) + g(X, (£¢9)Y)

Thus, h = 1 £¢¢ = 0 if and only if £ is Killing.
Finally, we see, using (1), that
X = £e(6X) - H(£X)
= VedX — Vox€ — ¢VeX + ¢V

= ¢Vx&— Vyxé.
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Applying ¢ on both sides, we have, using (2)

20hX = —Vx€—¢Vyxé
= $X + GhX — 6X — héX

= ¢hX — h¢X,

which yields (4). ]

In Theorem 2.2, we showed that a contact manifold with contact form 7 inherits
an almost contact metric structure (¢,&,n,9) with ® = dn. This structure was
referred as an associated structure or simply as a contact metric structure. A contact
metric manifold M is called a Sasakian manifold if the associated almost contact
metric structure is normal. The associated structure (@, &,7,g) is called a Sasakian
structure. It should be noted that Sasakian structure is not to be confused with the
Sasaki metric defined earlier in this thesis. It is shown [BI76] that the integrability
of J is equivalent to the vanishing of the tensor field N) = [¢, ] + 2dn ® €. So, we

have the following proposition.

Proposition 2.6 A contact metric manifold M is Sasakian if and only if

[6,¢] +2dn @ £ = 0.

A Sasakian structure is an odd dimensional analogue of a Kahler structure on an

almost Hermitian structure. This point of view is suggested in the following theorem.

Theorem 2.7 An almost contact metric structure (¢,€,1n,g) is Sasakian if and only
if
(Vxo)Y =g(X,Y)§ —n(Y)X (2.9)

where V denotes the Riemannian connection of g.
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Outline of Proof: The necessity is immediate from (2.8). For the converse, we set
Y =€ in (2.9) to get

—¢Vx{ =n(X)§{ - X
and, applying ¢ subsequently, so
Vxé =—¢X.

By the skew-symmetry of ¢, we see that £ is Killing. From this, we can easily see that

® = dn. Thus, (¢,€,7,9) is a contact metric structure and now using the formula

(6, ¢)(X,Y) = (Vyd — Vyeyd) X — (6Vxd — Vyx9)Y,

we can directly compute that [¢, ¢] + 2dp @ £ = 0. []

A contact metric manifold M?"*! with structure (¢,£,7,g) is called a K-contact
manifold if the characteristic vector field £ is a Killing vector field with respect to g,
i.e., if £¢g = 0 or equivalently, if g(Vx&,Y) + g(X, Vy€) = 0 for all vector fields X

and Y. It is immediate from Proposition 2.5 that
Vxé=—-9¢X (2.10)

if and only if the manifold is K-contact. In particular, a Sasakian manifold is K-
contact. It is noted, however, that Sasakian and K-contact structures are equivalent

on 3-dimensional manifolds. (For more details on this, refer to [B176].)

Here, we give a curvature property of K-contact manifolds.

Proposition 2.8 Let M?"*! be a K-contact manifold with structure tensors (¢,£,1,9).

Then, the sectional curvature of any plane section containing £ is equal to 1.

In particular, Sasakian manifolds have this property. We introduce the notion of

¢-sectional curvature, a notion similar to that of holomorphic sectional curvature on
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Kahler manifolds. A plane section in T,M?"*! is called a ¢-section if there exists a
vector X € T, M?"*1 orthogonal to £ such that { X, $X} is an orthonormal basis of the
plane section. The sectional curvature K(X,#X) is called a ¢-sectional curvature,
and is denoted by H(X). It is known that the ¢-sectional curvature determines
the curvature completely on Sasakian manifolds just as the holomorphic sectional

curvature of a Kahler manifold determines the curvature completely.

We now give some curvature properties of Sasakian manifolds.

Proposition 2.9 On a Sasakian manifold, we have Rxy€& = n(Y)X — n(X)Y.
Proof: The proof is immediate due to Theorem 2.7. ]

Proposition 2.10 On a Sasakian manifold, we have Rx¢£ = X for any vector field

X orthogonal to €.

Proof: We choose Y = £ in Proposition 2.9 [l

Later in this thesis, we will study contact metric manifolds with Rx¢£{ = 0. This

suggests that we define an operator ! by IX = Rx.£.

Proposition 2.11 On a Sasakian manifold, we have

Rxy¢Z = ¢RxyZ + g(¢X,2)Y —g(Y,Z)6X + g(X, Z)¢Y — g(¢Y,Z)X.

Proof: 1t is proved again using Theorem 2.7 and (2.10).

Rxy¢Z = VxVy¢Z —VyVx¢Z —Vxy0Z

Vx(Vyd)Z + Vx(¢VyZ) — Vy(Vxd)Z — Vy(¢Vx Z)

- (Vixn$)Z — ¢Vix v Z

= Vx(9(Y,2){ —n(2)Y) + 9(X,Vy Z) —n(VyZ)X
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- Vy(9(X,2)¢ —n(2)X) — g(Y,VxZ)§ + n(Vx Z)¢
—9([X,Y],2) + n(2)[X,Y] + ¢Rxy Z

= @RxyZ —g(Y,2)¢X +9(VxY,2){ + g(Y,VxZ)¢
- n(Z)VxY +g(¢X,2)Y — g(§, VxZ)Y + g(X,VyZ)¢ —n(VyZ)X
+9(X,Z)¢Y — g(Vy X, Z)¢ — 9(X,VyZ)¢
+0(Z)Vy X — g(¢Y,Z2)X + g(§, Vv Z2)X — g(Y,VxZ) + n(Vx2Z)Y
- 9([X,Y], 2)¢ + n(2)[X,Y]

= $RxvZ — g(Y,2)6X + g(¢X, 2)Y + g(X, Z)$Y — g(4Y, 2)X,

as desired. [:'

From this Proposition, we can easily derive

RxyZ = —¢Rxy¢Z + g(Y,2)X — g(X,2)Y — g(¢Y, Z)¢X + g(8X, Z)4Y.
Finally, we include the following theorems, which will be used later in this thesis.

Theorem 2.12 (Blair [B176]) Let M?**! be a contact metric manifold. Suppose that
Rxy& = 0 for all vector fields X and Y. Then, M?"*! is locally the product of a

flat (n + 1)-dimensional manifold and an n-dimensional manifold of positive constant

curvature equal to 4.

Theorem 2.13 (Blair [BI76]) Let M?"+! n > 2, be a contact manifold. Then, M?"*!

does not admit a contact metric structure of vanishing curvature.

As an extension of Theorem 2.13, Olszak [O]] proved the following.

Theorem 2.14 Let M*™*! n > 2, be a contact metric manifold of constant curva-

ture. Then, the sectional curvature of M?"*! is equal to 1 and M?"*! is Sasakian.



Chapter 3

The Normal Bundle of a
Submanifold in a
Contact Manifold

In this chapter, the normal bundle N M of an integral submanifold M of a contact
metric manifold M is investigated. We show that when M is Sasakian, NM has a
contact metric structure satisfying [ = 0, and that for the contact metric structure
on NM, R..£ depends only on the induced metric on M. Thus, we have a large class
of examples of contact metric manifolds with | = 0. Motivated by this, we also study
the contact metric manifolds with [ = 0 and show that such a manifold cannot be
locally symmetric unless it is locally isometric to E**! x S"(4). We also prove that

a contact metric manifold with | = 0 can never be conformally flat.

3.1 The normal bundle of a
submanifold in a Sasakian manifold

Let M™ be an integral submanifold of a contact metric manifold M2"+! with
structure tensors (@, £, 1, §). We consider the normal bundle NM of the submanifold

M equipped with the Sasaki metric §. This metric is not to be confused with a
41
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Sasakian structure. On the normal bundle NM, we define

ox" = (¢Xx)¥
o =0
oY = (0"

for all tangent vectors X and normal vectors ¢ orthogonal to ¢.

Let £ = £V and 7(X) = g(X, ) for any vector X. Then,

2

e X" = (X =—xH

= X" +q(Xx")E

€ = 0=-F+7()E
¢V = (#¢) =-¢"
= —¢"+7(¢")E

So, NM has an almost contact structure (¢,¢,7).

We consider the Weingarten map of the immersion ¢ : M® — M?"+!, The induced
metric G on M" is given by G(X,Y)o¢ = g(«. X, t.Y) for any tangent vectors X and
Y. For brevity, however, we shall not distinguish notationally between X and ¢.X.

Recall the Weingarten equation
Vx€=—A:X + Dx€ (3.1)
and the Gauss formula
VxY = DxY +o(X,Y) (3.2)

where A; is the Weingarten map and D is the Riemannian connection of the induced

metric G.

Using these together with Lemma 1.2 and Lemma 1.3, we have

at the point v € NM
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2d7(XH,YH) = XHp(YH) - YRy xH) - q((xH,YH)
= —g([x",Y"],§)
= —g(K[X",Y¥],%)
= §(Rxyv,£)
= —§(Rxy€,v)
= ~3(Vx(Vyé+ AY) = Vy(Vxé + A:X) — Vixyié,v)
= —§(Rxv€&v) - §(o(X, AY) — o (Y, AgX),v)
= —§(Rxv€,v) - §(AY, A.X) + §(AX, AY)

= _g(RXYE,V) +g([A{'7 AU]X7 Y) (33)

2dm(XH,¢Y) = XHF(¢Y) - ¢Va(XH) — (X7, ¢V])
= —g([x",¢"],€)
= —§(Vx(,€)
= —3(Vx(,§)
= §(¢, Vxé)

= —§(¢, X + $hX) (34)

2a7(XH,E) = X"qE") - € nx") - 7((x",E)
= —g((X",8,8)
= —3((Vx8)",§)
= -g(Vx£,§)

=0
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2d7(€,¢") = &n(¢Y) - ¢Vn(€) —7([&, <"
=0
for any normal vector { orthogonal to £
and, finally

2d7(¢Y,v") = —q([¢¥,v"]) = 0.

Suppose now that M?"+! is Sasakian. Then, using (3.1), (3.2) and the fact that

#X is normal to M™ for any tangent vector X to M™, we see that
G(AX,Y) = §(a(X,Y),6) =3(VxY,§)
= _g(Yv 6XE) = g(Ya QEX)
= 0.
for any vectors X and Y tangent to M, that is,
A; =0 (3.5)

Moreover, since M2"+! is Sasakian, using Theorem 2.7 and (3.1), we have

§(Rxy€,Q) = §(Vi(-9Y)+ VX +4[X,Y],()
= §(-VxoY — Ay X + VydX + A Y +4[X,Y],()
= §(—(Vx9)Y - dVxY + (Vyd)X + $Vy X + [X,Y],()
= §(—(VxY + (Vyd)X,()
= —§(X,Y)3(£,¢) +i(Y)§(X, ) + (X, Y)3(£,¢) — #(X)§(Y, )

=0

for any ¢ normal to M™. Thus,
Rxy€=0 (3.6)
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for any tangent vectors X and Y. So, by the definition of R,
R, X =0 (3.7)

for all v € NM.

Now, welet ¢ = @, £ = 26, n = 177 and g = 1g. If M is Sasakian, we have, from

1
2
(3.3), (3.4), and (3.5),

dn(X",YH) = 0=g(X¥,¢v¥)

(X", 6¢Y) = g(XH,6¢Y)

d(X7,¢Y) = ~39(6,8X) =

dn(XH,6) = 0=g(XH¥, ¢¢)

and other cases follow similarly. We now give the following theorems.

Theorem 3.1 Let M™ be an integral submanifold of a Sasakian manifold M?"+! with
the structure (¢,€,7,§). Then, NM has the contact metric structure (¢,£,7,g) with
[=0.

Proof: We have just seen that when M™ is an integral submanifold of a Sasakian
manifold M2"+1, N M has the contact metric structure (#,&,m,9). Now, by (3.7) and

Lemma 1.3, we have
Rxnel = qugvgv
1. 1. . H
= —[5ReeX + [ Ry gy X]
=0
and
Reve€ = 0.

This completes the proof. []
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Theorem 3.2 Let M™ be an integral submanifold of a Sasakian manifold M?"+1,
Then, for the contact metric structure (¢,€,1n,9) on NM, R.£ is intrinsic, i.e., it

depends only on the induced metric G on M. In particular, at v = ¢W € NM,
9(Reuynt, 27) = L{G(Bxy 2,W) = G(Y, 2)G(W, X) + G(X, Z)G(Y, W)} (38)

where R denotes the curvature of D. The other cases of R..£ vanish.

Proof: Using Lemma 1.3 and (3.7), we have, at v € M N,

g(RxHny, ZH) = (FXHYHEV,Z”)

Q|

g((DXR)(Va E)Y - (DYR)(Va E)Xa Z)

R,eY — Rpy,eY — RpyeY — R,eDxY,2)

o Ml o Nl Y M
-1

~~

=}

>

=S

™

o | =
Qe
—~~
>
h<
=

| =
«Qr
=y
N
O
<+
™M
>
|
X
<
o]
>
™"
=
X
)
©
N

Continuing this computation at v = W € M N, using (3.1), the Ricci equation
(nyU V) = §(R%yU,V) — §([Au, Av]X,Y), and Proposition 2.11,

g(Rﬁza’Y’V)
= %{g(ﬁxz&’, W) — §(Ry 24X, W)
- g([Ad';W? A&Y]X’ Z) + g([AJ;Ws A&X]Yv Z)

= Ha(RxzY, W) - §(Z,Y)3(3X, 8W) + 5(X, Y)§(32, $W)

W |

1. .
9(Rxnyn&, ZH) = —Zg(R,l,Z¢X,u)+

- §(Ryz X, W)+ §(Z, X)§(Y, W) — §(Y, X)§($Z, W)

- §(Asyy X, AgwZ) + §(Agw X, Asy Z)

+3(A;xY, AswZ) — §(AswY, Asx Z)}- (3.10)
Comparing the tangential part of

9(X,Y)E = (Vxd)Y = VxgY — gVxY,
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we get

Ay X = —¢o(X,Y)
and therefore, by the symmetry of the second fundamental form,
Az X = AzyY. (3.11)
Also, since j(a(W, X)) = §(o(W, X), &) = §(A;W, X) =0,
3(Azw X, Agy Z) = §(do(W, X), 40 (Y, Z)) = §(o(W, X),0(Y, Z)). (3.12)

Similarly,

Thus, by (3.11)-(3.13), (3.10) becomes

o(Rxuyn€, 2") = 2{a(Rxz¥, W) = 3(Ry2 X, W) - (2, V)3(X, W)
+X.Y)I(Z,W) + 32, X)(Y, W) - §(Y, X)3(2, W)

+3(o(W, X),0(Y,2)) - §(c(W,Y),0(X, 2))}

But then, applying Bianchi identity and Gauss equation successively, we get

9(Bxnyn&, Z") = {§(RxvZ,W) - §(Z,Y)3(X,W) +§(Z, X)3(Y, W)

1
4
+ g(U(W, X),G'(Y, Z)) - _(](G(W, Y)a U(X’ Z))}

_ i{a(gxyz, W) — G(Y, Z)G(W, X) + G(X, Z)G(Y, W))

It is immediate to see, from Lemma 1.3 and (3.7), that the other cases of R..£

vanish. This completes the proof. ]

Corollary 3.3 (Yano and Kon [YaK]) Let M™ be an integral submanifold of
a Sasakian manifold M**'. Then, M™ has flat normal connection if and only if

it has the constant curvature 1.




48

Proof: If M™ has flat connection, then, by (3.9), (3.8) gives
G(BxyZ,W) =G(Y,2)G(W, X) - G(X, Z2)G(Y,W)

which shows that M has the constant curvature 1.

For the converse, we suppose that M™ has the constant curvature 1. Then, from

(3.8), we see that

g(Rxuyn&, ZH) = 0.

Hence, from the first equality of (3.10), we have
— §(RYz6X,v) + §(Rx z9Y,v) = 0. (3.14)
So, choosing Y = Z in (3.14), we see that
9(Rxy$Y,v) =0,
from which we have, by linearization,
§(Rxy$Z,v) + §(Rxz9Y,v) = 0. (3.15)
Replacing X,Y, and Z by Z, X, and Y, respectively, in (3.15), we obtain
§(Rx28Y,v) + §(Ry z6X,v) = 0. (3.16)
Combining (3.14) and (3.16), we get
§(Rxz8Y,v) =0
for any X,Y, Z and v. Therefore, we conclude that
Rxz¢Y =0

for any X,Y, and Z.




49

Finally, it was shown by (3.6) that

Hence, the normal connection is flat. D

Example 3.4 S™ C S"+1,

We consider the usual contact metric structure (¢~S, £,7,§) on S?**! induced from
the usual almost complex structure on C**! by § = —JZ, #i(X) = §(X,§), § the
standard metric of S?"+! as a unit sphere and ¢(X) = the tangential part of JX. Let
L be an (n + 1)-dimensional linear subspace of C™**! passing through the origin and
such that JL is orthogonal to L. Then, S® = §?**! N L is an integral submanifold
of S?"*1 since $X is normal, and the normal connection is flat. In this case, NS™

becomes E™*! x S*(4).

Example 3.5 T? C S°.
We write S® = {Z € C3®: |Z| = 1} and consider the embedding X : T? — S°
given by
X = %(cosul,sinul,cosug,sinug,cos(ul + uz), —sin(uy + u2)),
where {u;,u;} are local coordinates on T? such that 8%‘ are orthonormal. Let
{v1,v2,v3} denote the fiber coordinates on NT?2. We may regard X as a position

vector of T? in S°. Putting X; = 35{ for : = 1,2, we have

X, = %(—sinul, cosu;, 0,0, —sin(u; + uz), —cos(u; + uz))
X, = 5(0, 0, —sinug, cosuz, —sin(u; + uyz), cos(u; + uz)).

Moreover, the characteristic vector field £ given by

- 1 . ; .
E=-JX = §(smu1, —cosuy, sinuz, —cosuy, —sin(u; + uz), —cos(u; + uz))

L
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is orthogonal to X; and X,. Thus, ¢X; = JX;, from which we see that $X; is normal

to T2. Therefore, T? is a flat integral submanifold of S°.

Now on NT?, we have n = }(dvs + vidu; + vzdus) and

1+ vZ + v? V107 —v3 0 v

1 V103 l1+vi4v: 0 -—v; vy

g = Z —V3 0 1 0 0
0 —v3 0 1 0

vy v 0 0 1

Notice that this metric has the similar form of the associated metric to the standard

contact metric structure on E?*+!

1 ( i + ¥’y +6i2% bz —yf )

g = :1- 5,‘_,'2 5,‘j 0

-y 0 1

(z',y', 2) the coordinates of E?"*!| which was constructed as a formal generalization

of the flat associated metric of the Darboux form on E3 (See [B176]).

Remark. In NM, for ¢ orthogonal to £
Vev€E=2VE =0

so from Proposition 2.5, (Y = —(Y. Thus, —1 is an eigenvalue with multiplicity n.
Since h¢ + ¢h = 0, +1 is an eigenvalue with multiplicity n and hence, A XH = XH.
Now, from Lemma 1.1, we see that the distribution [+1] in NM is integrable if and
only if NM is locally the product E**! x S"(4), i.e., M® C M?"*! has constant

curvature 1.

3.2 Contact manifolds with [ =0

From Theorem 3.1, we see that there is a large class of examples of contact metric

manifolds with [ = 0. We will study properties of those manifolds with { = 0.
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In [Pe], Perrone raised the question whether a locally symmetric contact manifold
with I =0 satisﬁes Rxy& = 0 for any vectors X and Y, i.e., if, in view of Theorem
2.12, M*"+1 is locally the product of a flat (n + 1)-dimensional manifold and an
n-dime_nsional manifold of positive constant curvature equal to 4. We answer this

question in the following theorem.

Theorem 3.6 Let M*"+! be a locally symmetric contact metric manifold with [ = 0.

Then, M 1is locally isometric to E**! x S(4).

Proof: We first consider case when the manifold M2"*! is irreducible. In this case,
M?+1 is Einstein. Since | = 0, Q¢ = 0 and therefore R = 0. Moreover, all sectional
curvatures have the same sign. Hence, M?"*! is flat, which is impossible for n > 2 in
view of Theorem 2.13. In dimension 3, a locally symmetric contact metric manifold

is of constant curvature 0 or +1, ! being 0 in the flat case (See [BIS)).

So, M*"*! is reducible, i.e., M?"t! = M; x M, x --- x My x E™ where each M;
is not flat. Then, the characteristic vector field £ must be tangent to the flat factor
E7, for otherwise, £ has a non-vanishing projecton tangent to some M; and so, the
sectional curvature containing ¢ is nonzero. This is impossible since [ = 0. Therefore,
Rxy& =0 for any X and Y tangent to M?"+!, Hence, by Theorem 2.12, we get the

conclusion. D

Theorem 3.7 Let M?"*! n > 2, be a contact metric manifold satisfying | = 0.

Then, M?"*! can not be conformally flat.

Proof: The proof will be by contradiction. Suppose (¢,£,7,9) is a conformally flat

contact metric structure. Then, in view of (1.19), we have

Rxef = 5——(QX ~n(X)Q€ +9(Q€,OX — g(@X,£)6)

y
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R

- gy X~ 1(X08) (3.17)

Since | = 0, the Ricci curvature in the direction of § vanishes and so, from (3.17),

we get

QX = n(X)QE +n(QX)E + 2o (X ~ n(X)6) (318)

We consider the tensor L defined by L = 5-1=(—Q + 1) where I is the identity
transformation.
Then, by (3.18),

1 R R R

LX = ——(-n(X)Q€ - n(QX)E — 5-X + T-n(X)¢ + 1-X)

= S (nQE — (@K + gon(XE — 1o X)

n—1 4n

for any vector X.

In particular, for any X orthogonal to &,

1 R

LX = —o——(0(QX) + 7-X)

From this and that (VxL)Y = (VyL)X on a conformally flat manifold, we have,

using (3.18), for X and Y orthogonal to ¢

0 = ~Vx(nQY)E+ 1o¥) + n(VxY)QE +n(@VxY)E

R R
- %ﬂ(vxy)ﬁ + 4—anY

+ Vr(nQX)E + 1o X) ~ n(Vy X)Q€ ~ n(QUy X)¢

+Son(Vy X)E ~ oV X
= —n(QY)VxE ~ (Xn(QY))E - 1o
+1(VxY)QE+1(QVAY)E ~ 5on(VxY)E + 1o Vx¥

+1(QX)VyE + (Yn(@X))E + =

4n

1
VxY - —X(R)Y

VX + ~Y(R)X
4n
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~ 1Ty X)Q€ = QU X)E + 7on(Vy X)E — - Vv X

= 1(QY)($X + $hX) ~ (Xn(QY))E ~ - X(R)Y
+(VAY)QE +0(@QVxY)E - son(VxY)E
~1(@X)(BY + $hY) + (Y(QX))E + =Y (R)X

R
= 1(Vy X)Q¢ = n(QVy X)¢ + o—n(VyX)¢ (3.19)
Taking the component orthogonal to £ from (3.19), we have

0 = n(QY)(8X + ¢hX) +n([X,Y])Q¢
- Z%X(R)Y + %Y(R)X —1(Q@X)(8Y + ¢hY)
= —29(X,9Y)QE — 4—11;(X(R)Y -Y(R)X)

+1(QY) (86X + ¢hX) — n(QX)(¢Y + ¢hY) (3.20)
If Q¢ # 0, then, since the dimension 2n + 1 > 5, we can choose X = ¢Y and X
and Y orthogonal to Q¢ in (3.20), and so,
—2g(¢Y, 8Y)Q¢ = 0,
which gives
Q¢ =0, (3.21)
a contradiction. Therefore, Q¢ = 0.

Now, using (1.19) again, we see, for X and Y orthogonal to ¢
Rxy€ = 0.

But, Rx¢£ = 0 by hypothesis.

Hence, we have Rxy{ = 0 for any vectors X and Y. Then, by Theorem 2.12, M
is locally the product E**! x S™(4), which is, as is well known, not conformally flat,

giving a contradiction. ]




Chapter 4

The Normal Bundle of a
submanifold in a Kahler manifold

In this chapter, the normal bundle N L of a Lagrangian submanifold L of a Kahler
manifold is studied. We show that the normal bundle NL of such has a natural

symplectic structure and provide the equivalent conditions for NL to be Kahler.

4.1 Lagrangian submanifolds in a Kahler mani-
fold

An exterior 2-form 7 on a manifold M is called a symplectic structure if 7 is non-
degenerate at each point of M and is closed, i.e., dr = 0. We say that (M,7) is a
symplectic manifold. It is well known that a symplectic manifold is even dimensional.
Let W be a subspace of an even dimensional vector space V?". For a non-degenerate

bilinear form 7 on V" we define W} by
Wt ={veV|r(v,w)=0 for all w € W}.
The subspace W is said to be Lagrangianif W = Wi,

We consider an immersed submanifold L of M?" with the immersion ¢ : L - M
where (M, 7) is a symplectic manifold. We say L is a Lagrangian submanifold of M*"

if T,L is a Lagrangian subspace of (T, M, 7) for each p in L.
54
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We now consider a Lagrangian submanifold L of a Kahler manifold (M?", J, g).

On the normal bundle NL of L, we define J by

JxH = Ux)¥

Je&v = (JoH
for any tangent vectors X and normal vectors £ to L. Then, J is an almost complex
structure on N L since
JAXH = JUX) = (J*X)H =-XH, V
and
JY = JI" = (7)Y = ~¢".
Moreover, we see that J is compatible with the Sasaki metric § on the normal bundle

as follows:

GUXH,JYH) = g JXH, 7 JYH") + g(KJXH, KJYH)
= g(JX,JY),
X, vy"y = g(r. X", x.YH) 4 g(KXH, KYH)
= ¢(X,Y),
g(JXH Jev) = g(rJXH n.Je")+g(KIXH KJit¥) =0,
g(x",6V) = o,
§(Jev, Jn") = g(mJémdn’)+g(KJEY ,KJnY)
= g(J¢, JIn),
i&n) = g(r.¥,mn") +g(KE,Kn")

= g(&n)

By the compatibility of J with g, J is compatible with the Sasaki metric §.
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Therefore, (N L, J,§) is an almost Hermitian manifold.

We let V and V denote the Riemannian connections of § and g, respectively. Let
G be the induced metric on L and D its Riemannian connection. Then , we have

at £, by Lemma 1.1,
[XH,YH] = [Xa Y]H - (RiYﬁ)V (41)

We now prove the following theorems.

Theorem 4.1 Let L be a Lagrangian submanifold of a Kihler manifold (M*",J, g).

Then, (NL,J,§) is a symplectic manifold.

Proof: We consider the fundamental 2-form Q defined by Q(X,Y) = §(X,JY). Since

§ is positive definite and J is non-singular at each point, it follows that Q" # 0, i.e.,

(2 is non-degenerate.

We will show that the fundamental 2-form 2 is closed.

We have
QXH YH) = g(XH,JjYH)
= g(n. X", m.JYH) 4+ g(KXH KJYH)

= 0, (4.2)

X"y = gxH,Jn")
= g(mX", m.0n") +g(KX",KJn")
= g(X,Jn), (4.3)

and similarly,

Qn".¢%) =0. (4.4)
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Recall the coboundary formula

3d®(X,Y,Z) = X&(Y,Z)+Y®(Z,X)+ Z®(X,Y)

Using this and (4.1) - (4.4), we compute,

dUXH, YH, ZHy = —q(xH,YH), z") - (YH, ZzH], x") - Q(z", xH],Y¥)

= Q((Rxv8)",2") + Q(Ry z6)", X") + Q(Rzx )", YT

Now, using the Gauss-Weingarten equations, we get
VxJ€=DxJE + o(X,JE)

and

JVxE =—JAX + JDLe.

Comparing the tangential parts of these, using the Kahler condition, we have that

JD%€ = Dx JE. (4.5)

Continuing our computation, using this and the Bianchi identity, we get

3dUXH, Y, ZH) = —g(RxyJE, Z) — g(RyzJ& X) — g(Rzx JE,Y)

= g(BxyZ,JE)+ g(RyzX,JE) + g(RzxY, JE))

=0 (4.6)

3dUXT, Y7 0Y) = XHQYH,n")+YHQnY, X¥)
- Q([XH’ YH], 'lv) - Q([YH’ UV], XH) - Q([UV’XHL ) YH)

= §(VxaYH,(In)") + §(YH, Vxu(In)") + §(Vyan’,(IX)")
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+3(n", Vya(JX)") = (X, Y]? — (Rzy€)",7")
- Q(Dgn)", X") + U(Dxn)¥,YH)
= §(DxY)",(In)¥) +5(Y*,(DxIn)") + §((Dyn)¥, (JX)")
g(",(DyJIX)") - U[X,Y]",7")
- Q(Dygn)", X7) + Q((Dxn)", Y*H)
= §(DxY)",(In)¥) + §(n",(D¥IX)") — §((X, YI¥, (Im)")
= §(DxYV)",Jn") + §(Jn¥, —(DxY)") — 3(IX, Y)*, Jn")

= 0 (4.7)

3dXH 0", ¢Y) = 27", X")+ VX", nY)
—Q((X",7"1,¢*) = (1", ¢, XM) - 2([¢Y, XM],n")
= 3T ¢, XY + (Y, Ty (TX)Y) + 5T XH, (I))
+IX T (In)) - ((DFn)Y, )+ QUDEOY ")
= S3((RX), (I)) +

=0 (4.8)

§((Recdm)®, XH)

BO| =

Finally,
3d9(77v’ CV’ 6v) =0 (4.9)

is immediate. This completes the proof. ]

Theorem 4.2 Let L be a Lagrangian submanifold of a Kihler manifold (M*", J, g).
Then, the following are equivalent:
(1) NL is Kaéhler.

(2) L has flat normal connection.

(3) L is flat.
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Proof: We compute the Nijenhuis torsion.
L J(XH,YH) = —[xH YH) 4 [JXxH, JYH) - J(JX)",YH] - JIXH,(JY)]
= —[XH,YH]| 4+ (UDsIX)Y — (JDxJY)"
= —[X,Y)¥ + (Rgy€)V + (JDEJX — ID3JY)Y (4.10)
Using (4.5), we continue this computation and get
[J,J(XH,YH) = —[X,Y]" 4+ (REy€)” — (DyX — DxY)H
= —[X,Y]" + (Rzy€)¥ - [V, X]"

= (Rxv&)" (4:.11)

X", 0Y) = =X "]+ ((IX)Y, (In)"] - J(IX)Y, "] = J(XH, (Im)")
= —(Din)Y — (D3, IX)Y = J((X,Jn) = R% 1,6)")
= —(Dyn)Y = (D3,IX)Y = (J[X,Jn)¥ + (JRE 1,€)"
= —(Vxn)" = (A X)" = (Vind X)¥ = (AsxJn)"
— (IVxIn)Y + IV X)Y + (JRg 1,6)7
= —(Vxn)¥ = (A, X)Y = (Vi JX)Y = (AsxJn)Y
+(Vxm)¥ + (Vand X)¥ + (JRx 1,6)7

= —(A.X)" — (AsxJIn)¥ + (JRx 5,6)" (4.12)
Again, using the Kahler condition and (4.5), we see that

J[X,Jn] = —Vx?] —-VJ,,JX

= —Dxn— D} JX + A, X + AsxJn.
But, since J[X, Jq] is normal to L, we have

A X +AsxJn=0 (4.13)
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Thus, we have, from (4.12), that
[j’ j](XH’ ﬂv) = (JRJ# Jné)H

= (Bx s, JO"

[J’ J]( ’C ) = —[UV9CV] + [(J'I)”,(JC)H] - j[(Jﬂ)H,CV] - Jm"

= [(Im)*, (IO - DJ',C)V +J(DJ(77)
= [JU’JC]H ( JnJ(C) (JD.#nC)H
= [Jn,J¢)" - JnJ(O — (D JOT +

= _(Rjr;.l(f)v

In view of (4.11), (4.14), and (4.15), we conclude that [J, J] vanishes if and only

if L has flat normal connection.

This together with the equations (4.6) - (4.9) shows that N L is Kahler if and only

if L has flat normal connection.

Moreover, using (4.5), we have

RxyJ€ = JRyyé,

from which we easily see that L is flat if and only if NL has flat normal connection.

[

Remark. We have also shown, in the proof of Theorem 4.2, that Jon NL is

integrable if and only if L has flat connection.
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