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ABSTRACT

GRAPHICAL VERIFICATION OF MULTI-AXIS NUMERICALLY CONTROLLED

MACHINING PROGRAMS FOR SCULPTURED SURFACE PARTS

By

Ki-Yin Chang

Verification of multi-axis numerically controlled (NC) machining programs is a costly

procedure in the manufacturing process, especially when one uses the side of the cutter to do

milling operations. A new object-space-based (surface-based) verification system has been

developed for multi—axis NC milling of sculptured surfaces. The dissertation describes an

algorithm which discretizes the nominal sculptured surfaces and directly computes the possible

interference between these surface points and the moving tool without explicitly creating the

bounding surface of the tool motion (the tool swept volume). The geometric model uses the ruled

surface defined by the axis of the cutting tool to define the center of the tool envelope. This result

requires far less computation under typical conditions than would the use of direct solid modeling.

In contrast to image-based methods, the algorithm is view independent (except for final graphical

display), which means that displaying another view of the part does not require a rerun of the

program, and, within broad limits, accurate displays of resulting gouging and undercutting with

altered tolerances are possible without rerunning the verification algorithm. The approach utilizes

positional (true position) tolerances on the desired part surfaces, and outputs a colored-coded

display of the as-designed surfaces which depicts regions within tolerance, gauged, and undercut.
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CHAPTER I

INTRODUCTION

Numerical connol (NC) can be defined as a technique allowing automatic control

of a machine tool with coded information which consists of numbers, letters and symbols.

NC technology is used extensively in the metal-removing milling process, but it has also

been applied to a wide variety of other machines and processes. Advanced NC systems

such as computer numerical control (CNC) and direct numerical connol (DNC), combined

with other computer technology, opened the door for computer-aided manufacturing

(CAM) to do automatic control of manufacturing processes and systems.

The automated NC machining process used to make contoured aircraft and

automotive dies and parts has been applied in industry since the 1950’s. The instructions

for NC systems can be prepared either manually or with computer assistance, and

instructions are often written using the APT (Automatically Programmed Tool) or Compact

languages to relieve the part programmer fiom manually entering all of the geomeuic data.

Among all the common NC languages, APT is the most widespread and the most

comprehensive one. The program uses statements to identify the machine parameters, the

tool shape and the part shape, then specifies the way the tool should move relative to

various surfaces.



1.1 NC Milling Machines

Numerically controlled milling machines are used to progressively remove material

from a workpiece. The tool used to do the milling is called a milling cutter, and is advanced

at a slow rate of feed into the workpiece while the cutter (mill) rotates at relatively high

speed. The material is removed in the form of small chips produced by each of the teeth of

the milling cutter. There are may different types of milling cutters, such as the ball—end mill,

the flat-end mill, the fillet-end mill, etc. The main purpose of the milling machine is to mill

flat or contoured configru'ations. A machine tool is characterized by the motions it can

perform. According to the changes of the relative position of the tool and workpiece

allowed, as shown in Figure 1.1, it can be classified into the following different types of

milling machine.

I. Two-axis Milling Machine. Two-axis milling indicates that the contouring capability of

the machine tool is limited to motions of the X and Y axes (i.e., in a fixed 2 plane). This

mode of operation is frequently referred to as two-dimensional operation.

2. Three-axis Milling Machine. Three-axis milling refers to a cutting tool moving

simultaneously in the X, Y and Z axes under complete conuol ofthe NC program. This type

ofNC machine tool is the most commonly used today for milling. The tool axis orientation

of the three-axis milling machine does not change relative to the workpiece during the

entire tool motion.

3. Maui-axis Milling. When more complicated parts with complex configm'ations are

designed, it is often not enough to have the X, Y and Z movements alone; in addition,

rotation about at least one of the axes, X, Y, or Z is needed. (Of course, the rotation about

the cutter axis to perform the cutting action is not counted.) In the aerospace industry there

has long been a need for machines that have 360° contouring with simultaneous control of

the Z axis; this usually is accomplished by a five-axis milling machine which has two rotary

axes. The five-axis milling machine can continuously re-orient the axis of the tool as it



follows the contour of the part, or alternatively, re-orient the part. For the multi-axis

milling process, the milling axis often changes with almost every motion of the mill.

 

Z

Tool axis A Y

Milling cutter /
\ r

4//.
 

/

Machine table    
Figure 1.1 NC milling machine tool axis system

A three-dimensional surface can be formed by having a duee-axis machine use a

ball-end or fillet-end mill to form the contour, for instance, by making a series of small

steps to approximate a twisted and warped surface. However, using a five-axis machine, if

the side ofthe tool, say, must be tilwd during the cut, the machine can make the sculptured

surface to close tolerances with the side of the cutter in one pass and with an extremely

satisfactory result. In addition, for high acetu'acy machining of sculpnued surfaces, the

five-axis milling machine is capable of operating the mill axis normal to the surface as the

mill progresses along the surface, providing tight conuol of cusp heights.

1.2 NC Program Verification

For one position tolerancing, as is employed here, overcutting and undercutting of

surfaces are relatively easy to define. Overcutting or gouging ofa point on the part surface



happens when an NC cutting tool cuts beyond the tolerance limit inside the desired part

surface [1][2]. Undercutting happens when an NC cutting tool does not cut the tolerance

limit outside the desired part surface. If the cutting tool cuts between the tolerance limit

outside the desired part and the tolerance limit inside the desired part surface, the point is

said to be cut within tolerance. An example is shown in Figure 1.2. The machined surface

point A is cut within tolerance, B and C are undercut, and D is gouged.

 

Machined surface

C Design part surface

V \V.

B - W
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A \

Tolerance outside limit Tolerance inside limit  
 

Figure 1.2 Tolerance for the NC machined surface

NC programs are commonly verified by milling a material softer than the actual

desired surface, creating wooden, wax, plastic or foam prototypes. To reduce the cost of

the process, verification of the NC program is sometimes used before these prototypes or

the actual part material is machined. The verification ofNC programs typically computes

the difference between the design part model (i.e., the model of the part as designed) and

the workpiece part model (i.e., the model of the part as it would be manufactured according

to the NC program). Among all the surface types machined by NC programs, sculptured

surfaces which are made up of arbitrary, nonanalytic contom's comprise one of the most



challenging areas. In a NC machining process, it is easy to overcut the part surfaces.

Therefore, how to avoid overcutting the part surface is one of the most crucial problems in

NC machining of sculptmed surfaces. Computer-assisted verification systems provide a

process by which the errors between the desired part with the specified tolerances and the

part as milled can be calculated and need to specific tool motions. This process, using

graphical computer models without expensive physical models, is a feasible and

economical way to check the CL data (cutter location data).

In NC verification algorithms, the term ‘cutter interference’ is used to mean

overcutting in a sculptured surface machining process [3]. A satisfactory handling ofcutter

interference requires not only removing overcutting, but also avoiding undercutting. Of

course, during the “roughing” portion, undercutting is purposely programmed, but even

there, verification software can be useful in pointing out the areas requiring additional

cutting to achieve the finished part. The task of verifying an NC program for 3-D

machining is tedious work. Recent research has tried to improve computational efficiency

and reduce the running time with various approaches.

1.3 Objectives of the Study

Most NC verification software can model the three-axis NC milling process, and a

few of them can model the five-axis NC milling process. Most of the current five-axis NC

verification programs generate swept volumes using a geomeuic model. Boolean

operations are calculated using a frame buffer. Therefore, the output display is view

dependent, which means that if another view is needed, then the whole simulation must be

rerun. It also cannot accmately provide true pofition tolerance calculations, because depths

are calculawd along sight lines of a fixed orientation. The above two disadvantages cause

that type of verification algorithm not to be very effective for many real NC milling

processes. This is because the five-axis milling process was originally designed for

contomed surfaces and high precision processes. The objective of this study is to create a



geometric model and computational algorithm to do multi-axis NC verification and

generate a view-independent data su'uctme which enables a variety of final displays in a

cost-effective way, while using me position tolerance for precise verification.



CHAPTER II

LITERATURE REVIEW OF NC VERIFICATION TECHNIQUES

In the last decade, many researchers have worked on NC verification and

simulation using various approaches, such as solid modeling with Boolean operations,

image-space methods, and object-space (surface-based) methods. An overview of these

approaches is presenwd below.

2.1 Solid Modeling Techniques

Solid modeling is a useful approach to both simulation and verification. There are

two notable schemes used in solid geomeuic modeling -- namely, constructive solid

geometry (C86) and boundary representation (B-rep) [4][5][6]. The CSG scheme is a

constructive representation in which primitive solids such as cylinders, spheres, blocks,

cones and other completely surface-bounded solids, appropriately positioned and

combined via Boolean operations, are used to define an object ofcomplicated shape. A tree

structure with Boolean operators at the non-terminal nodes and primitives at the terminal

nodes easily represents such a meme. The root node represents the complete solid.

Therefore, a complicated solid can use the simple Boolean set operators to do the union,

difference, intersection and assembly of the primitive solid. However, the C86

representation is an implicit representation, in the sense that the active regions bounding a

complex solid are not represented explicitly in the data structure, but must be computed by

means of the definitions of the primitives and the effects of the Boolean operations stored



in the tree sn'ucture. In contrast, in the B-rep scheme, a solid is viewed as bounded by the

union of its bounding faces, for which the definitions are stored explicitly. A construction

operation in a B-rep scheme uses the explicit representations of the boundaries of the solids

and uses the topological relations among faces, edges, and vertices to evaluate and store the

new boundary that is the result of the operation.

For a 2‘I2-axis flat-end mill motion, and using the C86 representation, the swept

volume of a toolpath can be represented as a union of two cylinders and one block, as

shown in Figure 2.1. Therefore, simulation can be done by sequentially subtracting models ,

of the swept volumes of tool motions from the model ofthe workpiece [7][8]. Verification

can be obtained by Boolean subtraction of the model of the workpiece from the desired part

model. For a multi-axis tool motion, the simple primitive solids cannot represent a twisting

tool motion. One needs either to generate more complex primitive solids for the complex

multi-axis tool motion, or to approximate it as the union ofa great many simplerprimitives.

Some modelers (such as I-DEAS from SDRC) are so-called hybrid modelers, using a

representation containing both C86 and boundary constituents [9][10]. These can, of

course, be used to implement the type of verification described above for CSG modelers.
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Figure 2.1 2‘lz-axis swept volume representation in C86 scheme



Fridshal [11] enhanced and modified TIPS-l [12], a solid modeling program, to do

NC simulation. TIPS-1 does intersection calculations using a searching method based on

a penalty function to find a series ofpoints on the boundary of the intersection between two

solids. These points can be interpolawd as a spline. In GD'IIPS, one generates the

trajectory volume of the tool motion to form various NC trajectory volume primitives, and

then subtracts the trajectory volumes from the workpiece and the holding fixture.

Therefore, the “collision” of the tool, driven by the part program during the machining

process, with the design geometry to be verified, is detected as verification procwds. The

problem with this approach is the large amount of computing resources it requires [13].

Five-axis swept volumes are composed of mathematical primitives which are exn'emely

complex, and Boolean operations on them are very compute-intensive, thus reducing the

cost-effectiveness of the technique.

2.2 ImageSpace Approach

In the irnage-space method, Boolean operations are computed during image

rendering. The threedimensional Boolean operation could be reduced to a one-

dimensional problem by considering the intersections of rays from each image pixel

through a C86 solid model. Van Hook [14] developed an extended Z-buffer data su'ucttue

called a dexel. The Z-buffer is a common approach for performing hidden surface removal

for display of an interactive shaded solid, and contains a real number Z, or depth value,

associawd with each (X,Y) screen pixel. In conuast to a Z-buffer, each dexel contains not

a single 2 value, but several ennies for each (X,Y) element: a pointer, a color, the 2 value

(depth) of the furthest surface, and the 2 value of the nearest surface. The dexel structure

is directly displayed just like a normal frame buffer, since the color of a dexel at the (X,Y)

screen coordinate is the visible surface color at that pixel location. A pixel image of the

cutting tool is precornpuwd. After scan conversion of a cutting tool, the tool is “mov

through the dexel structure, using Boolean operations along each ray and the stored depth
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values to compare with the boundaries of the tool in each location along its path. It is

performed like a CSG algorithm. The cutting tool is considered as a negative solid which

is Boolean subn'acted from the workpiece model (considered as a positive solid) as a

program steps along a toolpath. After the tool is subtracted from the workpiece, the far

surface of the tool typically becomes the new near surface of the block, and the inversely

shaded tool color is the prOperly shaded new workpiece color. The mathematical model for

the swept volume of the tool motion has not been described. Van Hook chose linear

interpolation to divide the toolpath segments into typically 10~20 steps each, depending on

the distance between the positions and a programmable interpolation tolerance. The

selecwd view of the shaded image after verifying the milling path is easily displayed, but

cannot be redisplayed from another view point without recornputing the entire problem.

Also, the shaded image is an image-based model that does not provide tolerancing

verification, and all distances are calculated along the view-dependent sight lines. The

cutting function will not entirely replace object-space intersection calculations on general

purpose computers, or test runs on the actual milling machine, because their algorithm for

dexel-based computation is much less accurate than the vector/solid intersections

employing surface normals. If a boundary representation of the tool motion is developed,

it could be easily converted into a dexel structure. Then it would have a better result than

the approximated boundary of the tool motion used by Van Hook. but would not resolve

the problem that errors are measured along sight lines, rather than along surface normals.

The direct NC geometric verification technique for five-axis milling applications

developed by Wang [13][15][l6][17] was originally designed to create a solid model for a

swept volume. The geomeuic model of boundary surface of the swept volume or the

composition of the envelope surface is clearly described by its parametric form equation.

The envelope consists of two categories of stuface: (l) the subset of the boundary of the

generator at the initial position and the final position, and (2) the new surfaces created by

the generator during the motion. Forexample, irt the swept volume ofa cylindrical tool, two
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side envelope faces are generated by a set of profile edges on the cylinder; the t0p and

bottom envelope faces are generated by the points on the bounding edges of the cylinder.

The method was later modified to perform graphical verification of NC toolpaths. This is

a novel view.dependent method for five-axis NC verification. The algorithm uses standard

Z-buffers and converts CSG part data into pixel data stored in the Z-buffer for subsequent

sight line Boolean operations with other models. The input for modeling a toolpath swept

volume includes cutter information and the CL data file, which consists of the tool control

points and orientations. The swept volume is also converted into pixel data, which will be

compared with those of the workpiece and fixtures. The Boolean subtraction removes the

material from the workpiece. The interference between the tool swept volume and the

workpiece or fixture can be shown using different colors to highlight various error

situations. To deal with tolerance specification, the tool surface is offset The result is

approximately equivalent to the result of offsetting the part surface. He has implemented

his geometric modeling scheme at the General Electric Company and has developed NC

simulation software. Similarly, Saito and Takahashi [18][l9] developed the G-buffer.

another extension of the idea of a Z-buffer, and applied it to NC toolpath generation and

verification using graphics or image processing hardware. This image-based method, as

developed by Hook and Wang, is view dependent, which allows undetected errors or false

indications of error because of the chosen viewing direction. Displaying another view of

the part requires running the entire simulation again. In addition, the Z-buffer approaches

are inherently limiwd in accuracy to the resolution of the Z-buffer, which is often only 16

or 24 bits. Thus, higher resolution is obtainable using the technique described here,

particularly when the range of the depths to be represented is large. Many commercial

milling verification programs, such as Vericut [20], are image-based algorithms.
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2.3 Object-space Approach

In this approach, the verification is accomplished by calculating intersections of

direction vectors with tool movement envelopes. The method can work for any part

composed of a set of surfaces for which surface points and their corresponding normal

vectors can be defined. That is, the data need not comprise a solid model. Chappel [21]

described a method of using vectors to represent excess material removed by numerical

conuol milling. The part surface is approximawd by a set of points. This method gives a

detailed description for calculating the intersection between a normal vector at a surface

point and a randomly oriented cylinder cutter. This algorithm is possibly more efficient

than solid modeling approaches since the intermediate simulation step is simplified

considerably. The mathematical model derived in that paper is used to simulate cutting

processes by moving the cylinder in discrete steps and calculating the intersection at each

position. This technique also allows true position toleranced dimensional verification,

which measures distances along part smface normal vectors to their intersections with the

cylinder model. However, this algorithm is not very general because it ueats only side

stn'faces of cylindrical cutters. For an end-mill cutter, to detect whether a part surface is

machined by the bottom ofthe cutter or the cylindrical part ofthe cutter is a crucial problem

for multi-axis tool motions. It is possible that in a multi-axis tool motion, the cylindrical

stn'face of the cutter is cutting during part of the toolpath, and the flat bottom is cutting

during another part. Both may be cutting simultaneously. Thus, computations for cutting

ofanormalvectorofapointonapartsurfacemustbemade with bothtoolsurfaces, and.

the correct (minimum) computation chosen for each portion of the toolpath. These are very

common and important situations in verifications when one might have unexpected cutter

interference [22][23]. Thus, this algorithm is not widely used.

Oliver and Goodman [24][25] developed an NC verification technique which

extends Chappel’s surface normal vector idea, but also incorporates solutions to the

problems which limited Chappel’s approach to relatively simple parts. The technique
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involves intersection of sm'face normal vectors with milling tool swept volumes. This is a

direct dimensional NC verification technique in which the minimum distance is compuwd

along a surface vector to the swept volume of each tool motion. The algorithm first

discretizes the desired part surface into surface points and their corresponding normals.

using a point density determined by the screen resolution and current view of the part.

Then, for each tool motion, it creates six planes which bound the tool swept volume for a

primitive test ofeach surface point. If a surface point passes the primitive tes -- that is, its

normal vector intersects the bounding volume within a certain specified “range ofinterest”

-- then the vector/solid intersection must be done. The swept volume is first approximated

as a parallelepiped. This model is refined in areas where intersection is determined likely

to occur by adding cylindrical and] or spherical surfaces. Results of intermediate

calculations are used to determine if further, more sophisticated. swept volume

intersections are required. This ensmes that redundant or superfluous calculation of vector]

solid intersection is minimiwd. The postprocessing procedure is also described in which

thecutvalue andcosineofthenormalvectorwith the sightline areusedtoassignhueand

intensity to generate graphical output. This algorithm developed by them is a viable

solution to the problem of accurate and efficient geometric verification of NC milling

programs. It offers distinct advantages over the existing solid geometric modeling

approaches. However, the entire portion of this algorithm dealing with mill axis space

would probably not be useful for five-axis tool motion, since the five-axis tool axis changes

at almost every motion of the mill.

Ierard [26][27][28] developed a surface-based technique for verification of NC

programs used to machine sculptured Sin-faces. He chose a set of points on the surface of

the object and used the sample as a discrete approximation to the actual smface. The surface

points are calculated from parametric space. Later these surface data are placed into 2-D

buckets with regular (x,y) spacing. Tool motion is projected onto the buckets. Only points

in the buckets need to be examined. Inaccuracies in the cutting errors he calculates are



14

caused by three factors: 1) deviation between the actual surface and its polyhedral

approximation, 2) the protrusion of the tool between the surface point because of the

curvattue of the tool and the non-zero distance between surface points, and 3) the fact that

measmements are made along the axis of the tool, rather than normal to the part surface.

The maximum error for this technique is the sum of the surface error, the protrusion error,

and the error caused by the angle between the tool axis and the surface normal. When the

method uses relatively few points for a given level of desired accuracy, it may indicate that

some points are out of tolerance when in fact they are not. To resolve this problem, Jerard

implemenwd a post-simulation analysis to calculate accurately the closest distance from the

cut point to the desired surface. The system outputs a color-coded graphics display of the

design sm'face which shows out-of-tolerance machined areas. This system can generate

another view of a part without rerunning the simulation. To gain efficiency, sm'face

curvature and cutting-tool size are used as inputs to a surface discretization algorithm,

which guarantees that a user-defined level of simulation accuracy is achieved. The

simulation time grows linearly with the number of tool motions and the number of surface

points used. However, this method, like that ofOliver and Goodman, is only used for three-

axis machining.

Fundamentally, direct solid modeling is expected to have more accurate

representations of the milling process than the other techniques described. and to be able to

do both verification and simulation. But the worst-case time complexity reported for direct

solid modeling approaches, according to the report of Hunt[8] is O(N4), or O(N3logN)

under certain special circumstances, where N is the numberof the CLpoints in the toolpath.

Since a multi-axis NC program contains many thousands of toolpath points, this can cause

such algorithms to take many hours of execution time in a mainframe computer for some

realistic verification problems. Image-space approaches take an advantage of specialized

computer hardware (Z-buffers). They can use scan-line algorithms to do computation in
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the frame buffer. This therefore reduces the execution time. But the resolution of the

verification depends on the size of the screen pixels. View-dependent calculations and

final display cause this algorithm to be unable to completely replace other approaches. The

object-space (surface-based) algorithms discretize the surface points and compute the

distance between the surface points and the tool swept volumes. The proper localization

techniques for the surface points can reduce the time complexity to O(N) [24]. These

algorithms can replace solid modeling in the verification of the NC milling process.

However, prior object-space algorithms have been limited to three-axis NC milling. This

dissertation presents such an algorithm to do multi-axis verification.



CHAPTER III

A GEOMETRIC MODEL FOR NC VERIFICATION

3.1 Historical Overview of Various Models for NC Verification

NC toolpath verification began with direct solid modeling approaches. NC

verification via direct solid modeling is based on the principles of set theory, which provide

that a simulated machined part can be represented by a series of Boolean subtractions of the

swept volumes of the tool motions from the workpiece, or equivalently, by subuaction of

the union of all of the swept volumes from the workpiece. The result of these operations is

a simulated machined part, but not the solution to the verification problem, which seeks to

show the discrepancies between the simulated machined part and the design part. Thus, to

solve the verification problem, direct solid modeling needs to perform another subtraction

to come up with the difference between the relatively simple design part model and the

generally very complex simulated machined part. Of course, this difference is not

necessarily in the form in which the user desires to see the discrepancies -- more likely, an

identification of which toolpath segment was responsible for a gouge, for example, is

desired. This would require still other computations than those generally performed by

solid modeling systems. The use of this approach for solving problems with high

complexity has been difficult, because such problems tend to require very intensive

computations. Therefore, some researchers have sought to develop other techniques

designed more specifically for solving this problem. For example, those using the “image

16
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space” approach described in Chapter 2 employ hardware originally developed for surface

shading to solve verification problems. The swept volume of the tool motion is converted

by a scan line rendering processor into screen pixels which are comparable with the screen

pixels of the workpiece and fixtures along a sight line. The Boolean subtraction is

performed in the image space and is view-specific. The resolution for detecting errors is

limited by the resolution of the view and the Z-buffer. The final verification produces the

same type ofresult as did the direct solid modeling approach, but only for the chosen view.

Disadvantages of this method were mentioned in Chapter 2.

This chapter inuoduces a different approach to geomeuic modeling of the NC

verification process. Most of the current multi-axis NC verification systems need to create

the boundary of the tool motion. The verification problem is handled only as a sort ofpost-

process, beginning after a full simulation ofthe NC process is completed. But in the object-

space algorithm described here, the verification is handled without many ofthe calculations

required for a full simulation of the NC process. This is a real advantage, since multi-axis

NC milling toolpaths often contain many thousands of CL points. Here we introduce a

geometric model which can be considered to define the swept volume of a tool moving

between CL points. However, the algorithm which uses this model detects interferences

between sculptmed surfaces, namely between part surfaces and tool swept volumes,

without using Boolean operations. This chapter only discusses mathematical models and

geomeuic models for the NC verification, leaving the discussion of methods for

discretizing the part surface and localizing the surface points in 3-D space for the next

chapter.

3.2 Characterization of Tool Motions

There are two types of cutter motions commonly employed in NC programming:

point-to-point motion and contouring motion. Point-to—point motion is tool motion fiom

the start point to the destination point, without specific requirements on the toolpath, and a



  



18

roughly linear motion over a fairly short segment is generally assumed, but not tightly

specified. Contouring motion is motion of the tool along a designated path with, in the case

of multi-axis toolpaths, designated orientations. Such complex tool motions are often

reduced, instead, to a sequence of simpler, point-to-point motions, maintaining the

deviation of the tool from the path within a specified tolerance of the given contour. Such

conversion often occurs in either a postprocessor or a machine controller. For example, in

APT contour motion, each step of the cutter motion can be defined by three surfaces: a

drive smface, a part surface, and a check smface [29], as shown in Figure 3.1. A drive

surface is a surface that guide the side of the cutter motion, and often does not represent any

smface in the part model. A part surface is the surface that limits the tool motion along the

tool axis or the depth of the cut. A check surface is the surface that defines the end point

of the motion. Since these three must be defined for an APT contouring motion, some

people use these three stufaces in implementing NC milling verification for this type of

APT-specific code. But this approach turns out to be quite intractable for multi-axis tool

motions. Alternatively, we will use a specification of the motion of the centerline of the

tool to define the translation and rotation of the tool through 3-dimensional space. This is

a key concept of the new algorithm developed here. If a cutter location file is specified in

some manner Other than the (x, y, z) for a conuol point on the tool and the cosines of the

angles of the tool axis from the coordinate axes, then external software must be uwd to

convert the CL file into this sort of representation, in order to use the algorithms described

below.

3.3 Ruled Surface of A Tool Motion

An NC toolpath typically consists of tool axis statements and a list of tool positions

and orientations which control a milling machine driving along the part surface. In a 3-axis

NC machine tool, the tool moves from one position to another position and the orientation
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of the tool axis does not change. For a multi-axis NC machine tool, the tool motion

becomes very complicated because there is at least one rotary axis.

 

Check surface

Drive smface

 

 

 

 

   
  

 

 

 
Part surface   

Figure 3.1 Three surfaces in APT contoming motions

The analysis of the geometric model presented here does not include any effects of

tool deflection, tool wear, or part distortion. However, the model is at least theoretically

extensible to represent such effects, although with a very significant time penalty for

computations.
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In order to analyze the problem, certain properties of the cutter are assumed:

1. For the purposes of the verification, the cutter may be represented as a

(symmetrical) surface of revolution, which means that the cross section at any

specific position along the cutter axis has a given radius. Of course, this is not

actually true ofmilling cutters -- they have teeth. In order to make the assumption

tenable, the speed of revolution of the cutter relative to its feed rate must be large,

so that the effects of the individual teeth are not large relative to the tolerances

being checked. This is the intent in milling operations, in general, so does not

cause a particular hardship for the verification process. However, if a soft

material were cut with a high feed rate, it is conceivable that this assumption could

be violated to such an extent that this verification process, and any others we have

discussed, would not detect some out of tolerance areas.

2. The envelope of the cutter can be expressed as a function of position (height)

along the cutter axis. This is true of any 7-parameter APT cutter except one with

a flat bottom. A flat bottom has a radius, but the cutter envelope is actually the

plane bounded by the circle of radius R(0). However, this verification procedure

handles such a flat-bottom cutter, as a special case, and also provides a flat “top”

sm'face for all cutters.

3. Each step of the tool motion is continuous.

The motion of the tool is defined by the control point E (t) and the orientation of

the tool axis (axis of revolution) E (t). The trajectory of the control point usually is

rendered by linear interpolation between the previous position and the current position [15].

A series oflinear motions is also frequently used to approximate more complex najectories,

such as circular motion between CL points, by using a chordal tolerance to determine the

step sizes for a series of short linear segments. This process can coma in either

postprocessors or machine controllers.
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There are a variety of possible ways to interpolate the orientation of the tool axis

between the orientations specified in successive C'L points. The scheme used here, and in

many other analyses, to interpolate the orientation of the tool axis (axis ofrevolution) is that

the previous tool axis and current tool axis are treated as two vectors on a unit sphere [15],

and interpolation is conducted along the great circle joining them. Other axis interpolation

models would require revision of the mathematical description given below (see Equation

3.1) of the ruled surface I'(t,h). Alternatively, a user could, for ptuposes of verification,

approximate the behavior of an arbitrary machine simply by generating a higher density of

CL points (each with its specified axis orientation), thereby making the error caused by a

different interpolation scheme become arbitrarily small.

 

Previous tool axis .

Current tool axis

  
 

Figure 3.2 The orientation of the tool axisN—(t)
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Thus, for this procedure, the vector function if (t) for tool orientation is defined

by an are on the great circle of a unit sphere passing through the two vectors, with motion

at a constant velocity, as shown in Figure 3.2. The unit sphere is determined by

normalizing the vectors and translating one of the vectors so that the two have a common

origin (at the center of the unit sphere). However, as noted above, the actual interpolation

for the motion of the tool axis relies on the NC controller and the postprocessor. If the

function for the motion of the tool axis were known to be different from the great circle

function used below, then i (t) could be specified without approximation.

The locus of the tool centerline moving with one degree of freedom during a multi-

axis tool move constitutes a ruled surface [30][31]. For a given E (t) =((x(t), 3!“). 2(0)

and If (t) = (Nxa), NY“), N23» in Cartesian coordinates, the ruled smface for a tool

motion can be parameterized as:

Ta, h) =50) + h N0)

= [rt(t) + h Nx(t)] 7+ [y(t) + b NY(t)] j + [z(t) + h Nz(t)] it (3.1)

where 05h_<_L , Ogtsl,andListhecutterheightfromthecontrol

point of the cutter.

For a general APT (Automatically Programmed Tool) cutter (see Appendix A), the

profile at any specific position along the cutter axis has a given radius. The radius of the

cutter can be expressed as a function R(h) of position (h = height) along the cutter axis.

The function R(h) for a general APT cutter can have up to three different functional forms

for subintervals of 05 h 5 L.

Two methods are described below to deal with points on part surfaces, or on offset

surfaces, as described also by Jerard[27]:
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TR (0' =1

 
Position along cutter axi at) 

(xi. yr. 1;)

   
Figure 3.3 Ruled surface and potential connecting vectors'lT(t, h,) of a toolpath segment

1. Ignore the specific normal direction at each surface point, which means that one does

not consider the normal vectors of the surface at all. This method can be used, for

example, for interference detection between a smface point and the envelope of the

tool motion, and will be described in section 3.3.
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2. Evaluate the surface point and the outward unit normal vector [21] [23], then calculate

the cut value along this outward unit normal vector. This will be discussed in

Appendix B.

3.4 Determination of whether or not a point is inside the envelope of the tool motion

In this section, a mathematical model will be presented for checking whether‘or not

a point is inside the envelope ofa specified tool motion. There are two pararneuic variables

for the ruled smface. For any point on the part surface, its relationship with a ruled surface

defined in terms of these two parametric variables can be found through the locus of

potential connecting vectors. Assume 71-0. him) is the locus of potential connecting

vectors between a point (xi, yi, zi) and a parametric ruled surface. By the properties of a

connecting vector, it is the shortest vector connecting a point (x, y, z) to the tool axis r(tj.h)

atanytime 5,0555 l,anditisperpendiculartothe liner(tj,h). Forthe specificpoint

(xi, yi, 2;), the locus of connecting vectors is specified as:

To. him) = (xi. yr. It) ' Tu. bra» 0'

30. him) = [Xi - X (t) - hi(t)Nx(t)fi+ [Ya - y (t) - hi(t)Ny(t)]T+ [2i - z (t) - hi(t)Nz(t)]_l;

For a given point, the local coordinate (the closest point) on an infinite ruled surface

must lie on a connecting vector '3'“, him) which by definition must be perpendicular to

the orientation of the tool axis '15 (t).

Thus, Fa, hi(t))- fig) = 0 , and substituting for Fa, him) from the previous

equation, we have:
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IX, - X (t) - hi(t)Nx(t)]Nx(t) + [yr - y (t) - hi(t)Ny(t)]Ny(t) + [2, - z (t) - hi(t)Nz(t)]Nz(t) = 0

[Xi - X (t)]Nx(t) + [yi ' Y (t)]Ny(t) + [It - 2(1) lNz(t) = hi0) [Nx2(t) +Ny2(t) +N22(t) ]

mm = [xi - x (t)]Nx(t) + (y, - y (t)1N,(t) + (z, - z (01sz (3.2)

The physical meaning of equation (3.2) is that every point in space has a

corresponding value hi(t) for any moment t representing the closest position on the cutter

axis for a particular tool motion. The value hi(t) might not be in the range of [0, L]. (Note

that this point does not necessarily correspond to the closest point on the tool at that time,

but to the closest position on the tool axis.)

For a given point (xi, yi, zi) and a tool motion (C(t), N(t)), 0 5 t5 1, a determination

whether or not a point is inside the envelope of the tool motion can be made from the

following expression:

The point (xi, yi, zi) has local coordinates (t, hi(t)), i.e., it is closest to the ruled

surface at the point 70. him) , and the minimum distance between the point (xi, yr, zi) and

the ruled surface is the difference between the point and the ruled surface point 7(t, hi(t)) .

So if 0 5 hi(t) 5 L, that is, if the local h coordinate of the point falls within the length

bounds of the cutter, then whether a point is inside the tool motion can be simplified to

whether the point is inside a circle with center Ta, him) = ([x(t) + hi(t)Nx(t)], [y(t) +

hi(t)NY(t)], [z(t) + hi(t)Nz(t)] ) and radius R(hi(t)).

The requirement that the point (xi, yi, zi) be within the circle can be written as:

[xi - x (t) - hi(t)Nx(t)]2 + ly, - y (t) - lemma)? + lz, - z (t) - brawn]25 Ride»

Expanding the above equation yields:
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[Xi - X (0]2 4' [Yr ' Y (0]2 4' [2i - 2(012 - 2hi(t){[ Xi - X (t)]Nx(t) + [yi ' Y (t)]Ny(t) +

lzi - z (t) ]Nz(t) l + hfiomxzm +N,2(t) mic) ] s R2(hi(t))

Then, applying Equation 3.2, and because N is a unit vector:

ix, - x (012 + [yr - y (012 + [2, - z (012- 2h,(t)h,(t) + r136) 5 Ride»

[xi - x (of + [yr - y (012 + [2, . z (012- hfirt) - Riots» s o (3.3)

That is, subject to the constraints, Equation 3.3 provides the condition that a point

be contained within the envelope of a tool motion. This can be expressed as a simple

optimization problem with one variable.

minimize: tf (1:) = [xi - x (t)]2 + [yi - y (t)]2 + [zi - z (t)]2- hi2(t) - R2040)

6

subject to :

05t51 (3.4)

05 his) 5 L

If f(t) is less than or equal to 0, we can say that this surface point is inside or on the

envelope of the tool motion at t or the surface point is inside the swept volume of the tool

motion at t.

Let us consider two examples of familiar cutters. The first example is a flat-end

cutter. Let the control point 6 (t) of the tool motion be specified as the center of the

bottom of the cutter as shown in Figure 3.4. Its mathematical model can be expreswd as

follows:
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Th(t)= L
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1: h(t)= 0

  

Part surface

   
Figure 3.4 Interference detection for a flat-end cutter

Given a tool motion (C(t), N0» and a point (xi, yi, zi),

minimize: {3%) = ix, - x (of + [yr - y (of + lz, - z (012- h,’ (t) - R2

subject to:

Ostsl

05. bin) 5 L

If f(t) is less than or equal to 0, then the surface point is inside or on the envelope

of the tool motion.

Let us consider another example -- that of the familiar ball-end cutter. Its

mathematical model can be specified as follows, given a definition of the conuol point of

the tool motion be specified as the center of the spherical cutter as shown in Figure 3.5:
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h(t)= L
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Figure 3.5 Interference detection for a ball-end cutter

Given a tool motion (C(t), Rio» and point (xi, y,, 2,).

minimize: Li? = ixi - x (or2 + iy, - y (012 + iz, - z (012- b,2 (t) - R2

subjectto:

Ogtgl

O < h,(t) 5 L

and

minimize: f (It) = ix, - x «>12 + iy, - y (012 + iz, - z (012 - R2
te

subject to :

Ogtsl

-R.<. hi0) .<.0
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If either f(t) is less than or equal to 0, then the surface point is inside or on the

envelope of the tool motion.

This interference detection algorithm is developed based on the ruled surface. One

important assumption in developing the algorithm is that the cutter is a symmetric smface

of revolution. Currently the APT cutter only supports convex cutters. However, the

algorithm can also be implemented if the cutter is concave, and even if the tool swept

volume is self-intersecting.

Implementation issues such as tolerance specification for NC verification using this

algorithm will be discussed in later chapters. The remainder of the body of this dissertation

will present various methods for applying the interference calculation of a point in space

with the envelope of the cutter to the task ofNC verification. A geomeuic model for vector]

solid intersection which evaluates the cut value of a smface point along its outward unit

normal vector, which is used by some others [25] for verification, is discussed in Appendix

B. However, the cut value, or depth ofcut, which is the minimum distance from the surface

point along its surface normal vector to the moving tool, (equation B.5) cannOt be solved

with a simple interpolation method, since s(t) may have more than two minimum solutions

under some conditions. Thus, exhaustive search is necessary to find a minimum cut value

in equation B.5. Therefore, despite its more natural direct relationship to cut values,

whether or not they are close to the tolerance specified, this algorithm was not implemented

as part of this work, for reasons of computational efficiency.



CHAPTER IV

NC VERIFICATION PROCEDURE

There are several steps in implementing NC verification. In the NC verification

software described here, one must load smface data, cutter information, and CL data, and

must discretizc the surface before doing the verification. This chapter will inu'oduce the

necessary input data and procedlues of the NC verification software.

4.1 Workpiece Surface Discretization

The desired part smfaces and associated holding fixtures are read as rational

(nonuniform or uniform) B-spline surfaces, in their Initial Graphics Exchange

Specification (IGES) standard formats. This type of smface is very commonly used by

CAD/CAM solid modelers, since the first derivative and second derivative are continuous

on the B-spline surface, and many common analytical smfaces have exact representations

using NURBS (Non-Uniform Rational B-Spline) surfaces. Sculpnned surfaces allow

accurate representation of complex surfaces, and allow interpolating wchniques to meet a

variety ofdesign criteria. The desired part surfaces are usually directly produced by a CAD

modeling package, such as the I-DEASTM software from Sn‘uctural Dynamics Research

Corporation (SDRC). The technique used to discretize unuimmed NURBS surfaces was

developed by other researchers in the Case Center for Computer-Aided Engineering and

Manufacttning (Correns [32]) to evaluate NURBS surfaces. The software can read and

discretize unuimmed NURBS (IGES type 128), uimmed NURBS (IGES type 144) and

30
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bounded NURBS (IGES type 143). Trim boundaries may currently include NURBS

curves, composite craves, or copious data types.

In this approach, the first step is to discretize a workpiece and associated holding

fixtures into a set of points, depending on the size and curvature of the surface. This data

structure is then used as a discrete approximation to the actual surface. This object-space-

based method shares some characteristics with the methods of Oliver [24] and Jerard [27]

-- specifically, the intersection of a moving tool with vectors passing through points on the

smface of the desired part. However, it differs in the method of surface discretization from

the methods of Oliver and Jerard (and differs in its core simulation method, as well). The

method presented is general, and can work for any set of smfaces on which surface points

and normal vectors can be defined. Each surface is discretiud into a triangular grid of

points, in which the resolution depends on user-entered values for the smaller of maximum

distances between points (in the s and t parametric directions) and maximum allowable

chordal deviation [32 - 36] (in both 5 and t directions).

4.1.1 Chordal Deviation and Subdivision of Curves between Two Points

The maximum chordal deviation is a vital factor determining the accuracy of the

NC verification. If the surfaces are not discretized sufficiently finely, it is likely that areas

overcut or undercut between the discrete points can go undetected, if the overcut or

undercut region does not include adjacent discrete points. The probability of this depends

not only on the surface shape, but also on the tool geometry. As the maximum chordal

deviation grows, relative to the allowed tolerance limit, the number of tolerance violations

undetected in the verification process tends to increase. Therefore, the chordal deviation

can be considered to be a practical lower bound on the accuracy of the verification process,

as illustrated in Figure 4.1. When tolerances to be verified are much smaller than the

chordal tolerance selected, some tolerance violations are likely to go undetected. (To save
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time in the discretization process, squares of the distance are compared with the square of

the criterion.)

 

Chordal deviation

    

Polyhedral smface

Tolerance outside limit
.

Tolerance inside limit   
Figure 4.1 The chordal deviation selected limits the potential accuracy of the

verification process.

The chordal deviation is approximawd as the distance between the geometric

midpoint Pm oftwo points and the point P as shown in Figure 4.2:

 

    
Figure 4.2 Chordal deviation of two surface points
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The points are evaluated either in the s or t parametric direction. Therefore, one

of the parameters is constant. For fixed 8, for example, the value P is evaluated as

P(s, (t1 + rpm. This may not lie on the normal through Pm, but this fact is ignored. To

speed up the program, two similar algorithms for s and t parameuic directions are

employed. The algorithm used to calculate the square of the chordal deviation in the s

direction is shown below:

set s = s1

set t = (tl+t2)/2

evaluatepointP(s,t)

chordaldeviation = (Px - ( P1,x + P2; ) / 2 )2 +

2
(FY-(PU +P2’y)/2) +

(Pz up” +P2’z)l2)2

If the distance between two points or the chordal deviation of two points P1 and P2

exwed the user-entered maxima, the curve needs to be subdivided. A new point P is

created with

5m ( $1 + $2 ) / 2

or

tm = ( t, + £2 ) / 2

depending on the direction of the evaluation. This is repeated until the user’s

specifications are met.

The points and triangles created in this process are stored in linked-list structures

shown in Figure 4.3, which defines structures SURFACE, TRIANGLE, POINT, and

TRI.LIST. The triangles are used to display the surface graphically. The accuracy of the

NC verification algorithm depends, of course, on the level of refinement of the sin-face

discretization. Verification error is caused by deviation between the actual surface and the
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uiangle approximation (the deviation is related to the chordal deviation specified in this

approach). A data Structure is created containing the (x, y, z) coordinate of each point, the

outward normal unit vector, and minimum distance from the surface point to the boundary

of the tool motion which cuts this vector most deeply to date (initialized to a large value).

 

   

Lfirst surface J____.| next surface J.__.| next surface

__.[ first point |___.[ next point 1_.

  

 
  ———-| firsttlr'iangle |-——-| next triilngle J——>

l 3.... l
 

    
Figure 4.3 Data structure of surfaces

The sculptmed surfaces needed for verification are usually only some of the

boundaries of a solid, and some modelers do not assrue a consistent orientation of surface

normals for their boundary representations. Of course, the sin-faces might not have come

from a solid modeler at all. Therefore, since the software now implemented uses the

surface normal direction of the workpiece model, the software also provides visualization

tools which allow the user to reorient any surfaces which are not oriented properly. It is

necessary to obtain surface normals which are all outward-directed before the verification

is initiated.



4.1.2 Spatial Subdivision

 

 

 
 

  

  
 

Figure 4.4 Space subdivision of a discretized NURBS surface

The subdivision method described here creates a set of uniform cubic 3-D voxels.

A voxel (volume element) is defined as a rectangular solid element in 3-D space. For

example, a l m3 volume could be considered to contain 106 individual 1 cm3 cells. A

translation and scaling transformation is determined and applied which will move all

surface points into a positive working space of a size such that the integer parts of each

point’s coordinates can serve as the index of the voxel containing the point. That is, after

the transformation, a point’s 3-dimensional voxel indices are the truncated real parts of its
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translated (x, y, z) coordinates. A linked list of all surface points within each voxel is

established. This makes it easy to search 3-D voxels and obtain the surface points possibly

affected by a given tool motion. If the size of the voxel is small, then the total number of

surface points for which to do the further computation is also small. But empty voxels

become a burden for 3-D searching, so there is a trade-off to make between the size of the

voxels and the number of voxels to be searched. It is suggested that one choose the size of

the voxel to be on the order of the length of the median toolpath segment. Therefore, each

tool movement may move into some voxels and out of others.

4.2. Toolpath Procesing

In addition to the desired part surface model, some other input data are required for

verification, including the cutter information, the cutter location data (CL-data), the

tolerance of the desired surfaces, the range of interest for display, and limits for

discretization of the toolpath. The cutter information includes seven parameters which are

defined by APT. Therefore, the type of cutter, the height of the cutting tool, the radius of

the cutter, etc., are all defined. There are three types of common cutting tools: the ball-

end, flat-end, and fillet-end cutters, which all can be specified by a general APT cutter

definition as shown in Figure 4.5. The most important assumption about the tool motion is

that the toolpath segments represent linear point-to—point motions. The conuol point of the

cutting tool moves along a straight line from point to point. Ifthe user programs for circular

interpolation between points, for example, then ctu' software depends on a postprocessor to

be run first to generate a linear approximation to the circular path between control points.

(In conuast, however, this software does internally allow for great-circle interpolation

between tool axis angles of sequential control points.) Therefore, the objective function of

the optimization problem for tool motion is only a second-order polynomial equation,

which can be solved without using penalty functions.
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Figure 4.5 Various cutter shapes

For a multi—axis tool motion, the hi(t) value in equation (3.2) for a surface point may

have more than two maximum or two minimum values under some circumstances.

Therefore, interference detection becomes very complicated. To avoid this situation, the

size of the toolpath discretization is regulated, via a maximum angle between the start point

orientation and the end point orientation, as described in Chapter V. The program makes

additional “internal” CL points for these intermediate tool positions and orientations.

4.3. Localization of A Tool Motion

A sculpttned surface is typically discretized into thousands of points, depending on

the desired accmacy, size, and curvature of the surface. Since a given tool motion will

interfere with only a small percentage of the surface points, it is very desirable to eliminate

all the surface points which cannot possibly cause interference. The calculation time is

directly proportional to the number of interference calculations. Therefore, one needs to

determine a loose boundary of a given tool motion. For any ruled surface 70. h) within

OShSL r Ostsl,onecaneasilyuseequation(3.1)toevaluatethemaximumand
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minimum values of the coordinate xmax, xmin, ymax, Ymim zmax and 2min Then the

coordinates of any surface point which might be affected by this tool motion satisfy:

xmin ' RmuS x -<- XM+RmaX ’ Ymin ' RmaxS. Y S. Ymax+Rmax ’ and

2min - Rams z _<_ gnu+me where R"m is the maximum radius of the cutter plus range

of interest Rim. The range of interest, Rim, is user-selected to provide a maximum offset

around the surface, outside of which the algorithm need not calculate our distance, (and

later, outside of which the depth display can be uniformly colored). Therefore, the indices

of the voxels containing those points are contained in the rectangular solid volume defined

by brain - RWIXJ S x 5- Lxmax'i'RmaxJ ’ LYm'm ' RmaxJ S y 5. LYmax+RmaxJ and

[_zmin - Rug 5 z5 Lzmui-RMJ . The linked list of surface points for each of those

voxels is then available for fluther consideration.

4.4. Toleranced NC Verification

The minimum distance along the surface normal vector to the boundary of the tool

motion can be evaluated by the method given in the Appendix B. Once all of the distances

between the surface points and boundaries of the tool motions have been evaluated, the user

can freely specify in- and out- tolerances about the desired part surface, as long as both

values are less than Rim, and one can view color-coded displays of the results from arbitrary

viewpoints.

The final machined part has to be compared with the desired part surface. For NC

programs with tolerances specified by the INTOL and OUTTOL concept of APT, if the

machined part is between the INTOL and OUTTOL smfaces, then the machined part

surface meets the tolerance (positional tolerance) specification.
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Desired Part Surface
/ To“, surface point

 

   
Surface normal vector

Tin smface point

  
 

Figure 4.6 To“, and Tin surface points for tolerance specification

An alternative way, which greatly reduces the cost of the minimum distance

calculation, is to use two surfaces offset from the part surfaces. Rather than to solve for the

equations of the offset smfaces, the normals to the part surface are simply used to generate

a Tin offset point = (xin, Yin: Zin) and a To“, offset point = (xom, yam, 20m) in the data

structtne corresponding to each discretized surface point. Tin is offset along the negative

of the normal vector by INTOL, and Tom is offset along the positive normal vector by

OUT'I'OL. By definition, these points are on the corresponding offset smfaces [37][38].

Then for each surface point, the algorithm must calculate the signed distance to Tin and

Tom , using the nominal tool radius function in equation (3.4). If the Tom surface point is

inside the envelope of the tool motion and the Tin surface point is not, then the

corresponding smface point is within the tolerance specification. The equivalence of this

method to calculating the distance along the surface normal unit vector to the boundary of

the tool motion is exact only when the depth of cut is at either Tin or Tom. However, we

are also guaranteed that the cut is within tolerance at the smface point if the depth of cut is
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anywhere between Tin and Tom, even though the level ofdeepest cut is only approximated.

A goal of interference detection is to allow subsequent adjustment of the toolpath

to eliminate undercut or overcut regions. Therefore, using this method, it is necessary to

approximate how deep the gouge is or how great the undercut is for any surface point

outside the tolerance specifications. The approximate distance between a surface point and

the side surface of the tool motion is evaluated as follows:

First, evaluate the approximate cut values Sin(t) and Sumo) for the Tin and Tmn offset

points, respectively.

shit) = (I ix,n - xii)? + iy,, - yit)? + [2,, - zit)? - h,,.(t)2 - R(hn.(t))

 

 

Semi!) = i/lxon - xii)? + [Your - yit)? + izout - zit)? - limit? - R(ho..,(t))

If 83,0) and 80mm are positive values, which means Tin and Tom do not interfere

with the enve10pe of the tool motion, then the approximate cut value is newS(t) = South) 4-

OU'l'I‘OL.

If Sin(t) is a positive value and Sumo) is a negative value, which means Tin does not

interfere with the envelope ofthe tool motion and To“, does, then the approximate cut value

is newS(t) = South) + OUT'IOL.

If Sin(t) and Som(t) are negative values, which means Tin and To“, interfere with

the envelope ofthe tool motion, then the approximate cut value is newS(t) = Sin(t) - INTOL.

If Sin(t) is a negative value and South) is a positive value, then we need to evaluate

the sin-face point itself, since the surface normal and tool axis are pointing in radically

different directions. If the approximate cut value of this surface point is also a negative

value, then the approximate cut value is newS(t) = Sin(t) - INTOL. Otherwise, this

describes a casein which a smface point is being approached by the cutter from behind

(inside) the outward-directed sin-face, and this anomaly can be considered either as an error

(a deep gouge, for example), or as not cutting the normal at the surface point, leaving its
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former value unchanged. This unusual configuration between the surface normal vector

I and the tool axis will be discussed as a special case in the Section 5.9.

Regardless of which of the four above cases holds, the cut value S(t) is then set to

min ( S(t), newS(t) ), representing the deepest cut to date.

If the surface point is cut by a flat bottom surface of a cutter, the approximate depth

of cut is calculated using h,(t) instead of S(t), which can be evaluated from Part 2 of

Appendix B. If the ”top" surface of a cutter cuts anything, it represents a collision of a non-

cutting smface of a tool or tool holder with the part or fixture geometry, and is reported as

an error condition.

This two—point algorithm can verify exactly whether the surface point is within the

tolerance specification. Depth of undercut or overcut, when not exactly equal to the

tolerance specifications, is calculated as an approximate value. Because the program n‘acks

the index of the toolpath segment causing the deepest cut value S(t) (i.e., the deepest gouge

or closest undercut) to date, the user always knows at the end of the verification which

segments need to be corrected, and by approximately how much, on each region ofthe part.

4.5 Postproeessing

The output image depicts the desired sculptured surface using color coding to show

the areas within tolerance and out of tolerance in different colors under X—window systems

[39 - 45]. Green represents the areas cut within tolerance. Gouges deeper than INTOL vary

from red to yellow for distances from INTOL to RM. Undercuts greater than OUTTOL

are shown in hues from dark blue to light blue for distances from OUTTOL to Rim. For

intelligibility of the output, intensities of all hues are varied according to the angle between

the eyepoint and the part surface normal.

Arbitrary views may be displayed without redoing any verification calculations,

and without changing the answers coded for any points. Within the limits of the dismnce
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approximations used for all points except those exacrly at the specified tolerance limits, the

user may also choose to display results with different tolerance limits, without needing to

recalculate cut values. Such rapid exploration of the depth of cut values is very useful, for

example, in identifying problems via visualizing cusps and near-gouges.



CHAPTER V

THE ALGORITHM FOR THE NC VERIFICATION SOFTWARE

In this chapter, the algorithm implemented in the NC verification software used as

proofofconcept for this work is presented and discussed via pseudo code [46]. Each of the

specific functions will be discussed based on the mathematical model already presented.

Testing the correctness of software is a very important phase of software development.

Therefore, we innoduce some geomeuic models as test cases with known results, to test the

accuracy of the program. This chapter will also present a performance analysis of the

algorithm in which an order of computational complexity is discussed.

5.1 Pseudo code for the system software

The NC verification algorithm can be depicted in pseudo—code as follows. The

algorithm is divided into three tasks. The surface discretization and output display tasks

will be discussed only briefly, since they are not the topic of this research. Each function

or subroutine in the toolpath processing and the verification will be comprehensively

discussed below.

Task] : Object-Space Surface Discretization

{

Load the surface data and determine desired discretization parameters.

Discretize NURBS (Non-uniform Rational B-Spline) surfaces and store points, tri-

angles and normals.

43
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Classify each surface point into a uniform discretization of3-D space (voxels), and

set up a linked list including all the points in a voxel.

TaskZ : Toolpath Processing and Verification

{

Load the cutter data and CL file, then link the CL points to make the struct

tool_vect.

For every CL-point from I to N

{

Calculate theparametersfor the tool axis motion, implicitly defining a ruled

surface.

Further discretize the toolpath segment ifnecessary, ifthe tool axis changes

within the segment.

Determine which voxels may contain this toolpath segment.

For every surface point in every voxel possibly interfering with this tool-

path segment

{

Simulate the motion along the toolpath and get the cut valuefor the

surface point.

Update the cut_value in the data structure ofPOINT.

}

}

}

Task3 : Display the verification output as a pseudocolor raster on the surface.

{
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Use the updated cut_valuefrom the data structure ofPOINT after the verification

is complete.

The color ofthe discretized surface is decided by the magnitude ofthe cut_value.

The boundary between regions of varying hues between the discretized surface

points is determined by linear interpolation ofcut_values. Intensity is based on an-

gle between sight line and surface normal.

5.2. Loading Surface Data

The desired part surfaces used in this method consist ofNURBS surfaces, which are

defined by a designer and typically are directly produced by a CAD surface or solid

modeling package. NURBS, uimmed NURBS, and bounded NURBS may all be read and

discretized in their standard IGES representations. Trim and boundary curves may be

either NURBS cln'ves, composite curves or copious data entities. Three user-supplied

values conuol the level of discretization performed on these surfaces. They are maximum

chordal deviation and maximum distance (in world coordinates) between sequential points

generated in each of the two parameuic directions. After the sm'faces are evaluated and

discretized, the surface outline is displayed. An implementation developed by Correns[32]

of NURBS evaluation algorithms is used here to evaluate unuimmed NURBS surfaces

(points, chordal deviations and normals). Program flow for the surface loading task is

illusuated in Figure 5.1.
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I read IGES data format surfaces J

l
Levaluate points, normals |'—-l Surface data structure I
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5 Outline Display   
Figure 5.1 Program Flow in Loading Sln'face Data

5.3 Create voxel space

All the surface points in the data sn'ucture of the surface are classified into a

uniform discretization of 3-D voxel space, and a linked list of all the points in a voxel is

built.

set up the indexfor the voxel space

While (surface != NULL)
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Translate all the surface points into positive quadrant ofa coordinate system based on

a box bounding all surfaces.

Classify each surface point into its corresponding voxel.

Transfer the surface cornerpoints, surface maximum and surface minimumpoints into

corresponding voxels.

5.4 Loading Toolpath data and cutter data

The data su'ucttue of the toolpath needs to be built as a linked list. The toolpath is

considered to define a linear motion of the tool’s conuol point between CLpoints. The

toolpath data read from the CLfile are in groups of six elements, which are (x, y, z)

coordinates of a CLpoint and (cosa, cosB, cosy) where a, B, and y are the angle of the tool

axis with the x, y, and z axes at that point, respectively. The data structme, called tool_vect,

has six data elements: the toolpath start point, start point orientation, end point, end point

orientation, toolpath number, and a link to the cutter information for this tool movement.

Dynamic allocations were used for all structures having a size dependent on the number of

points in the toolpath, so the program has no upper limit on toolpath size except for the

virtual memory capacity of the workstation.

Let P denote the start point of a toolpath segment; Pmm , the end point of a toolpath

segment.

Let P_orient denote the start point orientation; P“c _orient, the end point orientation.

allocate memory spacefor a toolpathsegment

read two CL data points
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Transform the CL data points using the voxel space transformation

Store toolpath data and set toolpath pointer to spacefor next transformed CL data

set P = Pm andP_orient = Pmorient

while (CL data != 80F)

{

allocate memory spacefor a toolpath segment

read another CLpoint

Transform CL point using the voxel space transformation

store toolpath data and set toolpath pointer to spacefor next transformed CL data

set P = PM and P_orient = Pmorient

The cutter information is defined by the general APT cutter in this program. Seven

parameters are defined according to the definition in Appendix A. The data structme for

the cutter contains cutter type (calculated from the APT parameters), distance from control

point to top of cutter, the seven APT parameters, h values for three points bounding the

three cutter regions, two precomputed coefficients ofradius-dependent functions (to avoid

the need to recalculate them for each move), and the range of the interest. The three most

common cutter types are treated as special cases, based on the contents of the APT

parameter file. In all cases but the ball-end cutter, the conuol point is considered to be at

the tip of the cutter. Definitions of these cutter types in terms of the seven APT parameters

are as follows:
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ball-end cutter : CUTTER] d, d/Z, 0, d/2, 0, 0, L

The ball-end cutter has radius d/Z and total length L (but the distance from the

control point to the top of the cutter is L-d/2)

flat-end cutter : CUTTER] d, 0. (ill. 0, 0, 0, L

The flat-end cutter has radius NZ and length L

fillet-end cutter : CUTTER] d. r, d/Z-r, r, 0. 0. L

The fillet-end cutter has radius d/2, corner circle radius r and length L

The cutter profile is displayed at the first two CLpoints when the toolpath is loaded,

allowing a visual check of tool correctness. This is very important for the general APT

cutter, since the shape of the cutter is not trivial to see from the seven segments parameters.

allocate memory spacefor a cutter data structure

store seven segments cutter value into cutter pointer data

evaluate h values at the dividing points between cutter regions ofthree difi’erent radii

decide the type ofcutter

evaluate the cutter coefficientsforfirst and third cutter radius regions

print all the cutter pointer datafor checking

5.5 Tool axis motion during verification

During verification, an additional data structure called segment_structure is filled

as each toolpath segment is processed. The data su'uctlue contains the three slope

coefficients of the linear tool motion from the start point to the end point, the arc angle

between the orientation of the start point and the end point, and the function coefficients
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defined below for the tool axis unit vector N(t). As described in Chapter 2, the tool axis

orientation is linearly interpolated along a great circle as shown below. Different tool axis

orientation functions are possible, and would require code modifications to implement.

 

N(t)

A“

‘

Figme 5.2 Circular interpolation between A and B in 3-D space

B

   

It is equivalent to solving the following three equations:

 

 

AON = lAllNlcos(0t) (1)

N -(A x B= O (2)

BON = IBI lNlcos(6 (t-1)) (3) 

where Ostsl,

N is the interpolation vector corresponding to

motion on a great circle on a unit sphere.

The A unit vector is the previous tool axis and the B unit

vector is the current tool axis

0 is are angle between the A vector and the B vector.

Therefore, solving (1), (2) and (3), the tool axis orientation N(t) becomes three

components Nx(t), Ny(t), Nz(t), where each component can be expressed in terms of cos(0t)

and cos(0(t-l)). This is very easy to evaluate for any interpolation unit vector N(t) between

Ogtsl.

arc_angle = cos"(P_orient - Pmorient)
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if (arc angle > epsilon )

{

evaluate N(t)

th) = Nx(t)_coefl70]*cos(0t) + Nx(t)_coeflII1*cos(9 (t-1))

Ny(t) = Ny(t)_coefl70]*cos(9t) + Ny(t)_coefl71]*cos(6 (t-I))

Nz(t) = Nz(t)_coefi70]"‘cos(6t) + Nz(t)__coefl7Il*cos(0 (t-I))

}

else

{

Nz(t)_coefl70] = th)_coefiII] = 0.5MI!0]

Ny(t)_coefl70] = Ny(t)_coefi711 = 05*AYI11

th)_00¢fl701 = NdILcoefll1I = 05*AZIZI

}

5.6 Additional toolpath discretization during verification for multi-axis milling

In equation (3.2). h,(!) = [X, - X (1)]Nx(t) + [y, - y (t)]Ny(t) + [2, - z (t)lNz(t). For

each surface point, there is a corresponding value hi(t) within 0 5 t _<_ l. The N(t) is

expressed in terms of cos(0t) and cos(0(t-1)). For multi-axis tool motion, the h,(t) may

have more than two extrema within 0 5 t _<_ 1. Therefore, evaluation of equation (3.3)

becomes very complicawd. Instead, dynamic discretization of the toolpath into shorter,

constant-orientation segments is used for multi-axis tool motion. For three-axis tool

motion, this additional discretization is not needed, since the tool axis does not change, so

the number of minima in the interval 0 < t < l is at most 1. For the multi-axis case, the

number of additional segments to be produced is decided by the angle between orientation

of the start point and the end point, relative to a maximum angle provided by the user.
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Figtue 5.3 Toolpath discretization for multi-axis milling

if (arc angle < epsilon)

number ofsegmenn' =1

else

number ofsegments = arc_angle I user_specified_maximurn_angle

store current toolpath data into temporary variables

for(j = I ,j <= numberofsegmenmj ++)

{

and cut value evaluation

}

restore the toolpath data values

5.7 Searching voxel space for a tool motion

A tool motion can be confined within some voxel volume, thus reducing useless

calculations for surface points far away from the tool motion. The edge dimensions of a
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voxel are usually selected to be similar to the length of the typical tool motion. After the

surfaces are discretized into points, during which process extrema are tracked, all the

surface points are transformed into a positive coordinate space and linked-listed within

their appropriate voxels in that space. The voxel volume containing a particular tool

motion can be evaluated according to equation (3.1). The mathematical concept can be

expressed as shown. The deviation is caused by the angle change between the orientation

of the start point and the end point.

 

 
  
 

Figure 5.4 Space bound for a ruled smface

Therefore,

Maximum of a tool motion boundary = max (V11, V12, V21, V22) + Rmax + Deviation

Minimum of a tool motion boundary = min (V11, V12, V21, V22) - Rum - Deviation

Where, V11, V12, V21, V22 are evaluated according to the ruled surface.

Rmax is the maximum radius of the cutter plus range of interest Rim-

Deviation : L(l-cos01) and 61 is the angle between the start point orientation and
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end point orientation.

Pseudo code for the algorithm can be expressed as follows:

Let cutter_bound = max_cutter_radius + range_of_interest + Deviation

Let min_x, minJ, min__z = minimum x, y and z coordinates of a tool motion boundary,

respectively.

Let max_x, max.“ max_z = maximum x, y and z coordinates of a tool motion boundary,

respectively.

evaluate the maximum and minimumfor each ofx, y, and zfor the ruledsurface ofthe tool

path segment

maximum coordinate ofthe tool motion = maximum coordinate ofthe ruled surface +

cutter_bound

minimum coordinate ofthe tool motion = minimum coordinate ofthe ruled surface -

cutter_bound

for ( i= min_x, i <= max_x, i++ )

f0r (.i= min). j <= maxj,j++)

for ( k= min__z, It <= max_z, k++ )

{

convert the voxel coordinate into a corresponding voxel number (integer)

set surface_point =firstpointer ofthis voxel number

while ( surface_point != NULL)

{

evaluate cut value ofa surface point

set surface_point = surface_point->neighbor
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5.8 Minimum distance evaluation from the surface point

Minimum distance evaluation between a surface point and the ruled surface is used

to decide whether or not the surface point is inside the envelope of the tool motion. The

approximate cut value is also evaluated, according to the equation in section 3.3. Recall

the equation -- it is sirniliar to an optimization problem in which an objective function is

minimized subject to two constraints.

Objective: minimize [xi - x (t)]2 + [yi - y (t)]2 + [zi - z (012- hi2 (0 - R2040)

Constraints: 0 5 hi (t) 5 L

Ostsl

For this optimization problem, it is possible to solve the minimization problem

without using a penalty function ifthe objective function is only a second-orderpolynomial

equation and the constraints are only first order, as is the case in this problem. In fact, for

the three-axis case, or with the linear approximation used in this work for solution of the

five-axis case, we can solve the constraints first for t. and then minimize the objective

function later. Let’s discuss this problem by examining three-axis and five-axis milling as

two different cases.

5.8.1 Three-Axis Case

In a three-axis milling machine, the N(t) is constant throughout the tool motion.

Therefore, h(t) is a linear function if the toolpath motion is linear. The algorithm simply

evaluates the start point, middle point and end point h(t) functions, then decides which R(h)

function we need to use (i.e., which regions of the cutter the point may be cut by).

Alternatively, one could solve the h(t) constraint for the t values at which h(t) is a dividing

point between cutter radius functions (i.e., the function R(h) changes shape). Using either

technique, one can usually determine that the radius function R(h) need only be evaluated



56

for one or two of its three possible functions, because the possible intersections with the

point are confined to those one or two regions of the cutter geometry. In the worst case, all

three radius functions must be evaluated.

f(t) = Ix, - x (012 + [y, - y (012 + (z, - z (012- Info) - Rzautumw (5.6.1)

ham = [xi - x (0le + (y, - y (t)]NY + (z, - z (t)]Nz

The minimization equation actually is only a second-order equation. To get the

minimized value, it is simple to solve f(t) = 0. Compare the {(0), f(minimized_t), f(l).

which satisified the constraints on h(t). The minimized value of f(t) is therefore obtained

without solving the penalty equation of the optimization problem.

The minimum distance from the stu'face point along the normal to the bottom (or

with a similar argument, the top surface) of the tool motion can be solved by solving the

constraints first, then minimizing the cut value s(t) later.

evaluate the coeflicients ofIx,- - x (t)], b’i - y (t)], [2,- - z (t)] and h,(t)

evaluate thefunction coefiicients of Ix,- - x (t)]2 + [yi - y (t)]2 + [2,- - z (t)]2 - hi2“)

evaluate the approximate cut value ofthe startpoint and endpoint

set min_cut_value = min( start point cut_value, endpoint cut_value)

evaluate the h,- value ofthe startpoint , middle point and endpoint

decide which portions of the tool may cut deepest during this toolpath segment (i.e.,

which radiusfunctions to evaluate)

evaluate thefunction coefl‘icients ofequation (5.6.1)

evaluate thefirst derivative ofequation (5.6.1)

solvefor the root ofthe above equation, t1

if(tI isbetweenOandI ,andh,{t)isbetween0andL)
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evaluate the approximate cut value: t_min_cut_value =

sqrt {[x, - x (t_min)]2+ (y,- - y (t_min))2+ (z,- - z (t_min))2- hi2(t_min)} - R(h,(t_min))

set min_cut__value = min( min_cut_value, tmin__cut_value)

5.8.2 Five-Axis Case - First Approach

For five-axis milling, one approach to evaluating the approximate cut_value is to

use an iterative solution technique. The solution can be reached subject to a convergence

condition. For five-axis tool motion, N(t) is not a constant any more. Direct solution of the

h(t) and f'(t) = 0 equations is no longer easy. The pseudo code of a simple iterative

technique is as follows :

set t_new = 0.5

if ( (t_new - t_old) < epsilon )

{

evaluate the coefl‘icients of h,(t) according to N(t_new)

evaluate thefunction coeflicients of[xi - x (t)]2 + by - y (t)]z + 12,- - z (t)]z- hi2(t)

solve thefirst derivative ofthe above equationfor t_min

let t_old = t_new

if 0 g t 5 I and t_min_cut_value = f(t_min) is the minumum valueforfunctionf(t)

then t_new = t_min_cut_value

else if ( t_min_cut_value > I)

t_new = 1

else if ( t_min_cut_value < 0)

t_new= 0



58

The proof of a sufficient condition under which the algorithm converges is based

on the following equation:

f(t) = [xi - x to]2 + (y, - y (012 + [zi - z (012- i130)- 12201.0» ------- (5.6.2)

him = [xi - x (t)]Nx(t) + (y, - y (01mm + (z, - z (t)]Nzu)

= (a + b't)(c*cosG t + d*cos(9 (I'D) (5°63)
 

Let [ti] be the sequence of approximate solutions for t in the above algorithm.

For all ti, let f '(t) - f '(t*) = Mi(t -t*) . Then, if IMil < 1, for all i>1, then the

solution converges, where t* is the solution of the equation.

Let’s derive the converge condition based on the special case R(h(t)) = R

Therefore,

f(t) = Ix, - x «>12 + (y, - y «)12 + [2, - z (012- hi2(t) - R2

Thcn P(t) = f '(t) = 2( xi - x (0) i0) + Zlyi ' Y (0] 90) + lei - z (0] i0) - 2hi(t)hi(t)

Let to be the first iteration value and t1 and t2, the next two values. We need to prove

that the solution converges under some conditions. First, assume t“ is nth iteration value

and tn“ is n-I-lth iteration value.
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Then

I”(tn) = 2 (xi - x (9.)) *6) + Zlyi — y 0.1)] W) + 2[2, - z (5)] i0) -

2(a + b t,.)(c cothM + d c0590“ - 1))[b (c cosOtM + d cosO(tn-1 - 1)) +

(a+b tn)9( -c sinOtM - d sin9(t,,,1 - 1)) ]= 0

and

F01“): 2( Xi ' X (5+1))i(t) 4' 2M ' Y (M1)] 90) + lei - Z “n+1” 10) -

2(a + b tn+1xc cosOtfl + d cos9(t,1 - 1)) [b (c cosOtn + d 60890“ - 1)) +

(a+b tn+1)0( -c sinth - d sin9(t,1 - 1))] = 0

We need to derive the relationship between successive iteration values:

Foo) - P(tmi) = 2 ( i2 + y’ + 21 )(tm - tn) - 2(a + b We oosotti + d cos6(tn-i -1))

[b (c cosOtM + d cos0(t,,.1 - 1)) + (a-t-b ta)0( -c sinGtM - d sin9(tn-1 - 1))]

+ 2(a + b tmlxc eosetn + d cos9(tn -l)) [b (c cosOtn +

d cos0(tn - 1) ) + (a+b tml)0( -c sinetll - d sin0(t,, - 1))] = 0

Rearranging, the equation becomes:

2 ( i2 + y! + 2'2 xi“, - tn) - 2b (a + b tn)(c costn1H + d t:0$9(t..,,1-1))2

20(a + b tn)2(c cosOtM + d mean-i -1))( -c sinOtM - d sin9(tn-1 - 1)) +

2b(a + b t,,+lxc cosOt,1 + d cosO(tn - 1))2 +

20(a + b tml)2(c 00ng + d coseon -1))( -c sinetn - d sinO(tn - 1)) = o --.. (5.6.2)

Let’s add and subtract two terms 2b(a + b tu )(c cosOtu + d cosO(tII -1))2 and

29(8 + b 5...}? (C 60895-1 + d COSGGWI -1))( -C sinOtM - d sin0(tn_1 - 1))

from equation (5.6.2)



Rearranging, the equation becomes

2(*2 + y: +22 )(tn+1-t‘,)+

2b(a + b t“)[(c cosOtn + d cosO(t,1 - 1))2 - (c cosOtM + d cos0(tn-1 - 1))2] +

26((a + b tn“)2 -(a + b tn)2)(c cosGtM + d c0590,” -1)( -c sinOtn_1 - d sin9(tn,1 - 1))

+ 2b2 “n+1 - tn )(c cosOtn + d 0089(tn '1))2 "'

20(a + b tn“)2((c costh + d cos6(tu -l))( -c sinOtu - d sin6(tll - 1)) -

(c cosOtM + d c0560,” -l))( -c sinGtM - d sin0(tn_1 - 1)) = 0

Let g(t) = (c cosGt + d cos9(t - 1))2, (a + b 02 or

(c cos9t + d cosO(t -1))( -c sinBt - d sin9(t - 1))

Introduce the mean value equation g(tn) — g(tn.1)= g'(t) ( t,1 - tn-1 ), where t is

bCIWOCl'l in Mid {0,1

Therefore,

(2 ( i2 + i1 + z" )+ 2b2(c casein + d 6089““ -1»2 mm - tn) -

2b6(a + b tn) [ 2(c coset + d cos6(t -1)) (c sine: + d sin6(t -1))] (t0 - tn_1)+

20*2b(a + b t)(c coset,1 + d cos6(tn -l))( -c sinetn - d sint)(tn - 1))(tM1 - tn) -

20201 + b tml)2[(c cosOt + d cosO(t -1))2 - ( c sinGt + d sin0(t - 1))2] (tn - t“) = o

Rearrange the equation to obtain the final expression:

[2 ( x2 + 92 + z'2 )+ 2b2(c cosOt,1 + d cos6(tn -1))2 ) +

4b0(a + b t)(c coset" + d cos0(tn -1))( -c sinOtfl - d sin0(tn - l))](tn+1 - tn)

= {4b0(a + b t“) [ (c cos0t+ d cosG(t-1)) (c sinGt + d sin0(t -1))] +

20% + b t,,+1)2[(c cosOt + d cos9(t -1))2 - ( c sinOt + d sin0(t - 1))2] 1a,. - i“)
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If “n+1 - tn) = M(tn - t“) and IMI <1 , then the iteration converges. But the above

equation is of that form, considering [(1

M = —— and defining

K2

K1 = {4b0(a + b to) [ (c cosGt + d cosO(t -l)) (c sinet + d sin6(t -l))] 4-

29% + b tn+1)2[(c cosOt + d cosG(t -1»2 - ( c sinOt + d sin9(t - 1))2] 1

[(2 = [2 ( x2 + 92 + z'2 )+ 2b2(c cosOtn + d cosG(t,1 -1))2 ) +

4b6(a + b t)(c cosetn + d cosG(tn -1))( -c sinOt.1 - d sin0(tll - 1))]

Using upper limits for some trigonometric values in the above equation,

we can evaluate an upper bound of M:

M s 4*D*9*L*1 + 2*02*L2/ (2n)2 - 4*D*0*L*l) < 1

Convergence condition : D > 4.3 [01.]

Where, L a length of the cutter

D = distance between toolpath start point and toolpath end point

The above convergence condition is for R(h(t)) = R. lfR(h) is different from R (i.e.,

other than a cylindrical cutter is used), one needs to add coefficient factors to the above

derivative expression. The upper bound ofM is a convergence condition for the algorithm

to work, allowing solution of S-axis problems without discretizing the toolpath into a series

of short, 3-axis segments to approximate it. Whether or not this convergence condition

holds is actually determined by the distance between successive CL points, the length of

the cutter, and the rate at which the tool axis orientation changes. There are some situations

in which the algorithm will never work properly. For instance, if D = 0 and the angle

change is non-zero, then the convergence condition will nor be satisified. It is necessary to

check the inequality before using the algorithm. But even though the algorithm may

converge, it is not the case that the point to which the solution converges is always the
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correct solution. The iteration algorithm for equation (5.6.1) does not necessarily produce

a global minimum or maximum. Therefore, subdivision of intervals with large angular

changes of the tool axis, and using linear solutions to approximate the nonlinear case is

necessary to avoid this problem, and it is the approach employed throughout the remainder

of this dissertation and in the final software implemented.

5.8.3 Five-Am Case -- Second Approach

Let’s discuss next the situation if we try to do five-axis verification using a toolpath

discretized into linear subsegrnents and calculating the cut value ofthe surface points based

on the three-axis algorithm, but allowing the tool axis to have slightly different orientations

at the start and end points of the subsegrnent. What is the maximum error ofthis algorithm?

Suppose we discretized the toolpath to asstne only a small angle change for each step. The

angle betweenthetoolpath startpointandendpointaxisorientationsise ,andwecallthe

start point tool axis orientation N(t=0) and end point tool axis orientation N(tsl). If we

evaluate the cut value based on the tool axis orientation interpolated linearly to a middle

point orientation N(t=0.5), the maximum error of this algorithm will be L(1 - cos(9/2)) + L

sin(9/2), where L is the length of the tool.

 
 

Figrue 5.5 Tool axis approximation for the multi-axis case
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For a discretized toolpath allowing 1 degree changes in axis orientation between

segments, and a cutter of length 1 inch, the maximum error is 10’3 inch. This occurs at the

top of the cutter (assuming the control point is at the bottom of the cutter). This error is a

significant amount in comparison to tolerance Specifications which are not uncommonly

only fractions of a thousandth ofan inch. Ifwe discretize more finely, we can have smaller

error. For example, if the toolpath were discretized to have only 0.01 degree steps, the

maximum error would be reduced to 10'5L. If one uses the tip of the ball end cutter to mill

the smface, and the conuol point is at the center of the spherical cutter, then there is no

error, so fine discretization is completely unnecessary. This is one reason some verification

software only verifies toolpaths for ball end cutters, at least for S-axis milling. But if one

needs, for example, to use the side of the cutter to mill the surface in a multi-axis milling

machine, the maximum error of this approach for practical levels of discretizations may be

too large at the top of the cutter. Therefore, there is a nwd to use a different approach for

a more general verification algorithm.

5.8.4 Five-Axis Case -- Third Approach

The most promising algorithm developed in this work also relies on discretizing

multi-axis toolpath segments into several subsegments, so that each segment typically has

only a relatively small change in tool axis orientation and cutter extension/retraction. We

divide the toolpath segment into several segments, using an upper bound on the error

caused by the tool axis orientation change and cutter extension/retraction. For each surface

point, we also translate the conuol points of each subsegment by the amount h(t = 0.5)

which is the local coordinate of the smface point on the tool axis N(t = 0.5) in the middle

of the subsegment. This reduces the error due both to cutter extension or retraction along

its axis and to change in orientation.

Assuming that we examine portions of the cutter with continuous slopes, the error

in cut value (which can be seen as error due to angular change plus error due to extension
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or retraction of the tool along its axis during the subsegment) has a maximum for this

approach at L(l - cos(0/2)) + hmsin(9/2), where hmax is the maximum change in h values

of the local coordinate of a surface point on the cutter between two toolpath subsegment

points (see Figure 5.6); it is the sum of the reaction/extension distance between adjacent

subsegment control points and the sin of the axis angle change between them.

 

 

   
 

Figure 5.6 Tool retraction and change of orientation of discretized toolpath

This maximum error occtn's when the portion of the tool furthest fi'om the conuol

point is cutting. The term hmxsin(0/2) replaces the term Lsin(0/2) from the second

approach described earlier. The maximum error is greatly reduced, since the conuol point

is, in effect, translated for each smface point to the position on the cutter axis offering the

least error for the smface point under consideration. For example, if the length of the cutter

is 1 inch and the allowable hmm is about 0.1 inch (that is, the sum of extension/retraction

(in inches) and the sin of the maximum change in angle is about 0.1), then the maximum
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error for this approach is about 10’5 inches. This error is essentially independent of the

cutter length, since the L0 - cos(6/2)) term is very small compared with hmsin(6/2) for

realistic situations with 9 less than a few degrees. The pseudo code for this algorithm can

be expressed as follows:

If it is a multi-axis tool motion, then use a user-specified allowable maximum error (al-

lowable hm“) to determine a bound on tool extension/retraction and angular change

for the subsegments in the interval 0 5, t g I .

Subdivide the toolpath segment into n subsegments accordingly. Thisyields subsegments

for which the maximum error is bounded at U] - cos(0l2)) + hmasinm/Z).

for (j = I ,j <= number ofsubsegments n,j ++)

{

evaluate discretized toolpath point and orientation

perform voxel space search

for every surface point in the voxel space

{

find the local coordinate h,{t = 05) ofthatpoint on the tool axis N(t = 05) at

the midpoint ofthe segment.

translate the starting and ending control pointsfor the segment along the tool

axis by h,{t = 05).

evaluate approximate cut value according to the three-axis algorithm with the

new control points and the tool orientation at N(t = 0.5)



66

5.9 The Use of Offset Surface Points for Tolerance Checking

If the approximate cut value is evaluated for the minimum distance between the

smface point and the envelope of the tool motion, it provides only a rough test for the

toolpath (so it is called “rough verify” in the software). Some undercut and overcut regions

may still be undetected due to the discrepancy between using surface normals and distances

of the ruled surface from the surface points, as shown in Figure 5.7. In Figme 5.8, the

approximate cut value is less than the actual cut value value. If the OUTTOL is specified

to be between the lengths AH and KC, then using the minimum distance evaluator from the

surface point, one gets a cut within tolerance. But, in fact, it is outside the tolerance region.

In Figtue 5.9, if the INTOL is specified between length AE and AD, then one gets a cut

within tolerance. However, in fact, it is a gauged region. To avoid this situation, the

minimum distance evaluator is used instead for points offset from the smface by INTOL

and OUTTOL. The approximate cut value in Section 4.4. describes this situation.

 

Tool motion profile

    
Figrne 5.7 Undetected undercut region



67

 

Tool motion profile

Surface normal   

  Part surface

 

Figure 5.8 Undetected overcut region

INT0L and OUTl'OL surface points are evaluated

for every surface point

{

evaluate approximate cut value ofOUTTOL surface point

evaluate approximate cut value ofINTOL surface point

If( INT0L_cut_value >= 0 && OUTTOL_cut_value >= 0)

{

if(checking_edges && surfacepoint is missed along normal to range ofin-

terest) set cut_value = 99

else set cut_value = OUTTOL_cut_value + OUTl‘OL

}

else if( INTOL_cut_value >= 0 && OUTTOL_cut__value =< 0)

set cut_value = OUTTOL_cut_value + OUTTOL

else if( INT0L_cut_value =< 0 && OUTTOL_cut_value =< 0)

set cut_value = INTOL_cut_vaIue - INTOL
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else if ( INTOL_cut_value =< 0 && OUTTOL_cut_value >= 0)

{

evaluate approximate cut value ofthe surface point

if ( surface_cut_value <= 0) set cut_value = surface_cut_value

else set cut_value = 99

}

The approximate cut.value = 99 means the smface point has (so far) always been

missed by the tool motion. For smface points for which the surface normal vector is very

different from the tool axis orientation, an edge checking process can be used to recognize

that this point is missed by the tool motion as shown in Figme 5.9. For the “rough”

verification, not using offset surface points, this edge checking would look along the

normal to determine whether or not there is an actual intersection with the cutter envelope.

But this edge checking requires a great deal of additional calculation effort for many

surface points between the OUTTOL and the range of the interest. It is not active in the

current code. There is one case in which the lNTOL_cut_value is less than 0 and the

OUTTOL_cut_value is larger than 0 (see Figrue 5.10). In this case, the surface normal is

nearly perpendicular to the swept volume of the tool motion. Whether or not this case is

detected depends on whether or not the evaluation is made of the cutting of the INTOL

point and the smface point when the OUTTOL point is not cut. If these (usually

unnecessary) evaluations are also done, then the program can distinguish a gouge (the

INTOL point and the surface point are cut) and a cut within tolerance (the INTOL point is

not cut, but the surface point is) fiom the undercut usually indicated by not cutting the

OUTTOL point. However, in the current software, this extra checking is not done.
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Tool motion profile

\

 

Figtue 5.9 Checking edge by tool motion

 

 

Tool motion profile
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OUTTOL smface point

INTOL surface point Surface pornt

 

Figure 5.10 Part surface is cut by wrong tool motion
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5.10 Circular or Contouring Motions

Although in this verification algorithm the trajectory of the control point in each

segment is rendered by linear interpolation between the previous and current position,

contouring motions and circularly interpolated motions could be treated easily by

discretizing the toolpath into a number of subsegments, with the number dependent on

allowable error bounds. For example, if the control point moves on a l-inch-radius circular

arc of 45 degrees from a previous position to the current position, then if the toolpath is

discretized into 0.5 degree subsegments, the maximum error (chordal deviation) from the

linear toolpath is about 10'5inches. Similar techniques would suffice for parabolic motion,

etc. The penalty for simulating additional subsegments is typically not unmanageably

large, since circular motions on large arcs may not occm' often in the toolpath. This

approach eliminates the need to write additional evaluation routines to treat these cases.

5.11 Correctness test of the program

It is said that good programmers make errors. The software development based on

this algorithm needs to tested to be error-free before it can be relied upon as a production

tool. Some testing of the software has already been conducted using both indusuially-

supplied data and test parts produced by a solid modeling package. One process used for

testing the NC verification program was to create channel-style solids with surfaces which

match the theoretical shape of the tool swept volume for a simple toolpath, as shown in

Figure 5.11. To easily visualize the tool motion and see the color image display, it is easiest

to use half channels, since the algorithm uses the cutter symmetrically, anyway. Therefore,

half channels can test the correctness of the software. Output of test runs made with half

channel srn'faces are shown in Chapter 6, together with other sample outputs.

A half channel was created with the l-DEAS solid modeler and written to a file as

NURBS surfaces in IGES type 128 format. For this purpose, the unuimmed surfaces at
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the ends of the channels needed to be removed. Several such test channels were created for

testing 3-axis toolpaths. However, this modeling package was not used to create a swept

volume representing a tool moving in 3-D space with a changing tool axis orientation. For

this case, instead of the swept volume, one can generate a skin group volume by sweeping

the tool profile along a generanix. However, this skin group object is not equal to the swept

volume of the tool motion since, for example, rotating the tool forward or backward causes

different tool profiles to become the active cutting regions.

The tests of the software were divided into two major parts: ( 1) the half-channel

tests, which let the tool move from the start point to end point with no tool axis change. This

is a general three-axis tool motion. But the tool axis need not always point to the coordinate

x-axis , y-axis or z -axis. The test was used not only to prove that the tool sweep is an exact

fit to the half channel, but also, using different cutter diameters or offset tools, to evaluate

gouge and undercut cut values to verify that the display is what we expected As discussed

in Chapter 6, the undercut and overcut regions were what we expected, so it increases our

confidence that this software can verify the toolpath correctly for general three-axis tool

motions.

(2) The next step was to use a tool profile to generate a half channel which only

roughly approximates the shape of the tool swept volume, for a tool motion in five axes.

To do this channel-creation operation by sweeping a single tool profile guarantees that

there will be errors between the swept volume and the walls of the channel. However, such

channels are still useful, because one can calculate the expected deviation at various points,

and compare those values with the cut values calculated for those points by the software.

After creation of the channel, it was rotated and translated it in 3-D space, to avoid

accidental alignments with axes, which may tend to hide errors in the software. It then

became a primitive model for five-axis tool motion, using a similarly translated and rotated

toolpath. But the bottom of the tool collided with the half channel, as it should, when we
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used the real tool to simulate it. This reflects the difference between the smface ofthe swept

volume and the skin group (channel surface).

 

 

  

   
 

Figrue 5.11 Solid model for test of three-axis milling process

The cut value after the tool axis was rotated was checked with the “query cut value”

command, which prints t1” cut value of the smface point. The analytically calculated cut

values matched the cut values evaluated by the program. The side surface of tool still fit the

channel relatively closely, and was checked visually. Since the software passed these tests,
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it is plausible that the software can verify more general five-axis tool motions correctly,

since the basic theory appears to be correct and correctly implemented.

5.12 Efficiency Analysis of the NC Geometric Verification Algorithm

This section presents an efficiency analysis of the algorithm. The computational

complexity or time complexity is measured based on order of complexity or “Big Oh”

analysis. The result of such an analysis is a function called the time complexity of the

algorithm, t(n), which is proportional to some function of the size ofthe input data “n”. We

define die worst case for complexity t(n) by an inequality V n 2 no, t(n) S cf(n), where n

and no are nannal numbers, c is a positive real constant, and f(n) is called the “growth rate”.

In other words, O(f(n)) is the set of all functions t(n) bounded above by a positive real

number multiple of f(n), provided that n is sufficiently large (greater than some threshold

Do).

For the purpose of the analysis, the NC geomeuic verification algorithm may be

depiCted in “pseudo-code” as below. The algorithm is shown broken down into nested

tasks. The time complexity ofeach of the tasks is denoted by the term “O(f(n))”, where f(n)

is the growth rate of each task. The term 0(1) indicates that the task has constant order

time complexity; i.e. , it is independent of input size. Each task in the algorithm will be

examined individually to determine the growth rate of the algorithm as a whole.

For every CL-point from I to N

{

Calculate the parametersfor the tool axis motion, implicitly defining a ruled sur-

face. 0(1)

Further discretize the toolpath segment ifnecessary, ifthe tool axis changes within

the segment. 0(1)

Detemtine which voxels may contain this toolpath segment. 0(1)

For every surface point in every voxelpossibly interfering with this toolpath seg-
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Simulate the motion along the toolpath and get the cut value for the surface

point. 0(1)

Update the cut_value in the data structure ofPOINT.

The function “calculate the parameters for the tool axis motion” involves

calculations related to defining a ruled surface. The function reduces to a calculation of

some constant, independent of any other structures; therefore it is of constant order time

complexity.

The fiinctions which subdivide the toolpath for multi-axis motions and which

search voxel space are of constant order since they are independent of the number of CL

points in the toolpath. The voxel search algorithm is actually also independent of the extent

of the part surfaces loaded, since it is performed only in the local area immediately

surrounding the tool swept volume for the motion being simulated. The main NC

simulation function is to find the approximate cut value. In this function, the approximate

cut value is evaluated according to the simplified optimization problem described above.

For any tool motion, this is of constant order time complexity (it is independent of the

number of other CL points) and can be bounded. Thus, since each of the tasks within the

outer loop is of constant time complexity, the growth rate for the entire NC geomeuic

verification algorithm is proportional to the number of times the statements in the outer

loop are executed. Thus, it is oforder O(N), where N is the number of the tool path points.

5.13 Computational Error

Some amount of error in the computations described here is evitable, since the they

utilize floating point representations. For example, if a flat end cutter is milling along a
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plate, a point at the tip of the cutter might be supposed to be evaluated as h(t) = 0, but in

fact, be represented as h(t) = -10"°. Depending on how the logic of the program is

implemenwd. this might cause either a minor computational error, or a more important

logical error. In some cases, interval calculations, rather than strict equalities or

inequalities, can help to avoid logical errors. For example, for the situation just mentioned,

for a negative h, we ordinarily would not invoke the evaluation function involving the

cylindrical surface of the tool. Then this point could not be cut by the tool motion.

Actually, it should probably be calculated as being cm within tolerance by this tool motion.

To avoid this problem, it is necessary to perform interval calculations, defining an epsilon

to set the boundary of the tool motion. Of course, the actual value of epsilon depends on

whether float or double precision is used, on the magnitudes of the variables involved, etc.

5.14 Direct Dimensional NC Verification

In direct dimensional NC verification, the cut value is directly evaluated as

described in Appendix B. The purpose of NC verification is not only to determine toolpath

errors, but also to do so efficiently. The part of the equation shown below under the square

root is not a second-order equation in the multi-axis milling case, even if the toolpath

motion is linear, since H(t) depends implicitly on N(t), the axis orientation. Thus, if it were

necessary to find the actual cut value by minimizing the full equation, the problem would

be very complicated, multimodal, and could not be solved by simple interpolation.

 

-H(t) i «I H20) - swarm)

2*](t)

 

s(t) =



CHAPTER VI

RESULTS AND EXAMPLES OF PERFORMANCE

OF THE ALGORITHMS

6.1 Application of the NC Verification

In Chapters Three, Four and Five, a new algorithm for multi-axis NC verification

is presented. This chapter deals with the application of the software bawd on the algorithms

to a series of test problems and more realistic models of manufactmed part srnfaces. For

verification of NC milling, a color-shaded image output is displayed. First, the structure

ofthe NC verification program is illusuated. Frgrne 6.1 presents the general ideas from the

loading of the surfaces and toolpath data to final color image display. Tradeoffs between

high-accuracy of the shaded color image and the conflicting goal of speedup of

computation time are mentioned. Next, some testing of the software which has already

been conducted using test solid model parts produced by a solid modeling package is

discussed. This method was used for testing the program before it was tested on real

industrial parts. Then some data from automotive applications for three-axis milling and

additional applications for five-axis milling demonsu'ate how the algorithm could be

applied in an industrial CAM environment. Examples are shown to illustrate that the parts

can be displayed from abiuary viewpoints without needing to recalculate the verification.
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Figure 6.1 Overview of verification system
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6.2 Solid Model Examples

The first step in testing the capability of the NC verification program was to create

channel-style solids with surfaces which match the theoretical shape of the tool swept

volume for a simple toolpath. A flat-end cutter and a fillet-end cutter example are shown

in Figure 6.2 and Figure 6.3, respectively. The single toolpath was used with different

cutter diameters or with offset tools, to produce desired gouge and undercut cut values, in

order to verify that the display produced matched what was expected. There are also fillet-

end cutter and flat-end cutter examples, which are shown in Figure 6.4 and Figure 6.5,

respectively. Figure 6.4 displays the gouging produced when the fillet-end cutter diameter

was increased by 0.0136 inch. Figure 6.5 shows the undercuts produced when the flat-end

cutter diameter is decreased by 0.0136 inch. The correctness of these examples shows

that the software meets at least minimum requirements for verifying three-axis motion.

 

 
 

Figure 6.2 Fitting test of flat-end half channel



 
Figure 6.3 Fitting test of fillet-end half channel

 
Figure 6.4 Overcut testing of fillet-end half channel
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Figure 6.5 Undercut test of flat-end half channel

Testing the four- or five-axis tool motion is not as easy as testing three-axis tool

motion. With the solid modeling software (I-DEASTM), it was difficult to create a channel

with geometry exactly matching the boundaries of the tool swept volume. Instead, a single

profile of the tool was swept through a 5-axis motion and skinned. Therefore, we are

testing to see that the discrepancies found are what is expected, rather than checking for an

exact match. One example using a ball-end cutter to sweep the side of a half channel is

shown as in Figure 6.6. In this example, the axis of the cutter was gradually tilted forward

10 degrees during the motion. Because this was only a four-axis move, and was restricted

to the plane of the motion, the fit is exact on the side surface, but not on the bottom.

Another example also using a ball end cutter to sweep the side of a half channel, is shown

as in Figure 6.7. In this case, the axis was tilted 10 degrees in the direction of motion and

10 degrees normal to that direction. In these multi-axis tool motions, the tool collides with
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the halfchannel due to the differences between the surface of the swept volume and the skin

group (channel surface).

 
Figure 6.6 4~axis test of ball-end half channel

6.3 Application Examples

This section deals with the application of the algorithm to realistic industrial parts. Two

final image displays are described. First, the two application examples are presented to

demonstrate the capabilities of the three-axis NC verification algorithm. The first example

manufactured part an automobile wheel (data furnished by CIMLINC). With discretization

parameters set at: chordal deviation = 0.1 mm, max_s = 1.0mm, max_t = 1.0mm,
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Figure 6.7 5-axis test of ball-end half channel

the verification system discretized the surface into 399,039 points. The toolpath consisted

of 6621 CL points. The CPU time verifying the surface points along the normal direction

for this case was 26 minutes and 45 seconds on a Sun SPARCstation 2. For this example,

INTOL and OUTTOL were 0.2 mm, and the range of interest, Rim, was 1.0 mm. The

output shows cusps (undercuts) above the wheel surface which slightly violate the specified

outside tolerance, perhaps caused by the toolpath step size, as shown in Figure 6.8. To see

the detail of the pan and to avoid the aliasing of the color image, a zoomed picture for this

example is necessary. The final verification image can be easily zoomed, rotated, or

evaluated roughly for other tolerance limits without rerunning the whole verification

program. Zooming is illustrated in Figure 6.9.



 
Figure 6.8 NC geomeuic verification of an automobile wheel

 
Figure 6.9 Zooming in on an automobile wheel surface
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The second example of a manufactured part is a frequently employed benchmark

surface set, also supplied by CIMLINC. For values of the discretization set at: chordal

deviation = 0.01 mm, max_s = 0.5mm, max_t = 0.5mm, the verification system

discretized the surface into 299, 962 points. The 3—axis toolpath consisted of 21,758 CL

points. It is cut with a ball-end mill. The CPU time verifying the surface points along the

normal direction for this case was 64 minutes and 2 seconds on a Sun SPARCstation 2.

For this example, INTOL and OUTTOL were 0.03 mm, and the range of interest, Rim, was

0.15 mm. The output shows cusps (undercuts) and gouges (overcuts) in numerous places,

using an example toolfile generated for test purposes, as shown in Figure 6.10. An actual

part cut using that toolpath was examined visually, and it exhibited the same cusps in the

same locations as are shown in that figure. The other side of this part is displayed, without

further verification calculations, in Figure 6.11.

 

 

 

Figure 6.10 NC geomeuic verification of a benchmark part
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Figure 6.11 Different view of a benchmark surface

Two additional application examples are presented to demonstrate the capabilities

of the multi-axis NC verification algorithm. The third example is a five-axis ball-end cutter

milling operation on a turbine blade. Using a maximum chordal deviation of 5x10‘5 in, the

verification system discretized the surface into 9750 points. The toolpath consisted of 1742

CL points. The CPU time verifying this case was 6 minutes and 31 seconds on a Sun 4/

110. The shaded image is shown in Figure 6.12. For this example, INTOL and OUTTOL

were 0.001 in, and the range of interest, Rim, was 0.01 in. The output shows cusps

(undercuts) violating the specified outside tolerance, indicating that the tool used to cut the

surface was too small in radius or the stepover selected for toolpath generation was too

large, for example.
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Figure 6.12 NC Verification of a Turbine Blade

The forn‘th example is a five-axis ball-end cutter milling operation on a sculptured

surface. The distance evaluator between the smface point and boundary of the tool

distinguishes whether the surface point is intersected by the cylindrical side surface or the

bottom spherical surface of the tool. Using a maximum chordal deviation of 0.001mm, the

verification system discretized the surface into 10345 points for verification. The toolpath

consisted of 2512 CL points. The CPU time to verify this case was 8 minutes and 22

seconds on a Sun 4/110. The shaded image is shown in Figure 6.13. The errors shown are

the result of deliberately choosing a tolerance tighter than that provided by the number of

CL points used for cutting the surface. For this example, INTOL and OUTTOL were

0.05mm, and the range of interest, Rim. was 0.25mm. The Mach bands are due to the

restricted color map available to such artificially pseudo-colored images on an 8-bit color

display.
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Figure 6.13 NC Verification of a Sculptured Surface



CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

The smface-based verification software developed by using this algorithm is useful

for verifying multi-axis NC machining programs with APT‘ cutters. The system first reads

standard IGES files defining desired part geometry,and CLfiles defining the toolpath.

After the surfaces are discretized, a voxel space is used to group smface points. Toolpath

segments are also transformed into voxel space, localizing them in 3D working space, so

that only the surface points possibly affected by a given tool motion will be used for ftn'ther

computation. The distance calculation between the surface points and tool swept volume

can be done without explicited creating the surface boundary of the tool motion (the tool

swept volume). The verification process is quite practical for verifying, for example,

complex parts (hundreds of surfaces) of a size on the order of one meter square with

toolpaths of several thousand CLpoints. The output display image uses color coding to

show the areas cut within tolerance and out of tolerance in different colors, and runs on

arbitrary X Window systems. Also it is view-independent; therefore, it allows the user to

do detailed checking of the verification results without repeating intense calculations,

which is an advantage of our view-independent. surface-based system. The algorithm is

very accruate at the specified tolerance limits, and provides useful approximate depths of

undercut and overcut outside the tolerance range. The results may be used to adjust the
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toolpath based on this approximate cut value to eliminate overcut or undercut regions, or to

generate additional toolpaths using smaller tools to complete milling of undercut regions

not cuttable by the original tool.

7.2 Limitations of the Algorithm

The resolution of the smface discretization process is a very important factor in the

accruacy of the final output. If the surface points are not dense enough, both cusps and

gauges may be undetected by the verification algorithm. Too large a toolpath stepover will

cause a cusp, which might be undetected as shown in Figure 7.1.

 

Tool motion profile

> ;Hi\ /lOU'ITOL

A BEC D

Figtue 7.1 Undetected cusp error

 

 

   

Points B and C are cut within the tolerance; therefore, the interpolation algorithm is utilized

between them. The shaded pixels between B and C are shown as cut within tolerance; but,

in fact, there are some out-of-tolerance regions. This error can be solved if one adds some

surface points between point B and point C; for example, if point B is created, then the

undetected error is eliminawd. A gouging error due to a small radius of curvattue in the

tool geometry is shown as in Figme 7.2. The tool curve protrudes into the surface, and an
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undetected gouging area occurs between these two points. This also can be eliminated if

one adds some points between these two surface points. Generally speaking, the denser the

surface points, the better the results. But more surface points not only cause potential

problems of virtual memory limitation, but also slow down the verification speed.

Therefore, how to decide the maximum distance between points to efficiently eliminate

undetected cusps and gouges is an important issue here. Although it has not been done

here, it may be possible for a given discretization, to determine bounds on the magnitude

of undetected errors, given adequate characterization of the surface ctn'vature, tool shape,

and required tolerances. This information, in true, can be used to determine the level of

discretization required to assrue conservative operation of the verification software (i.e., no

tolerance violations are missed. subject to certain conditions).

 

Tool motion profile

 

  
 

Figure 7.2 Undetected gouge error, due to tool geometry

7.3 Comparison with other NC verification systems

The algorithm provides S-axis NC verification for a general APT cutter. A major

difference between this algorithm and a solid-modeling-based system is that each surface

point has a local coordinate function for each tool motion, thus reducing the effort needed

to calculate the intersection ofa surface point and a tool sweep model. The NC verification





91

system described here behaves with a time complexity of O(k), where k is the number of

CL points. However, if the level of surface discretization required is also viewed as varying

with the same parameters which determine the number It of CL points, then a higher than

linear complexity results; in the current software, these are specified independently, so O(k)

complexity results. In contrast, a solid modeling system needs to compute the boundary of

each tool motion or combine the boundaries for all the tool motions, then find the possible

intersection between the desired part surface and the boundary of the tool motion. This

makes the problem very complicated and time-consuming.

Irnage-based systems use a Z-buffer to find the possible intersection between the

desired surface and the tool swept volume. These image-based algorithms are faster than

the classical solid modeling approach, but the results are view dependent, have limited

resolution, and cannot calculate true positional tolerance (offset surface) violations, so they

cannot totally replace the CSG or other methods. The data structure resulting fiom the

algorithm in this paper is a surface-based description, not an image-resolution data

structure. The final part at the completion of verification can readily be redisplayed from

another viewpoint. The out-of-tolerance regions can be traced to specific toolpath

segments for modification of the machining programs. User-variable in- and out-

tolerances may be uwd for adjustment of toolpath segments. The system does provide a

way to work cost-effectively in verification of NC programs.

7.4 Future Research

The mathematical basis presented in this dissertation for representing swept volume

can also be used in other applications. Obviously, it is useful for interference checking of

robot manipulators and their working environments. The voxel space concept can be used

for rough interference detection of two or more machining process working in the same

workspace. Then the mathematical model can be used for more precise intereference

detection [47]. Future research goals include extending verification to include tool wear.
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force calculation for tool deflection, and automatic generation of multi-axis toolpaths for

general APT cutters. The generation of error-free multi-axis toolpaths for general APT

cutter will be a very challenging problem, especially when one needs to use side surfaces

of cutters to mill sculptru'ed surfaces.



APPENDICES



APPENDIX A

DEFINITION OF THE APT CUTTER

. The statement defining a cutter in the APT language usually has seven parameters

and it is as follows (Figrue A.1) [48]:

CUTTER/dr,e,f,a,b,L

where

d = the diameter of the circle generated by the intersection of the end and the side

surfaces of the cutter.

r = the radius of the corner circle.

e = the distance from the comer circle center to the cutter center line.

f = the distance from the comer circle center to the plane passing through the cutter

end center and perpendicular to the cutter center line.

a = the angle (degrees) between the cutter end surface and the plane perpendicular

to the cutter axis (it lies in the range of 0 5 a < 90)

b = the angle (degrees) between the cutter side surface and the cutter axis (it lies in

therangeof-90<b<90)

L2 the cutter height measured from the control point of the cutter.

Note that usually the corner circle should be tangent to the end and side surface.
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Figure A.l Standard APT seven-parameter cutter

For this seven-parameter cutter, the radius of the cutter can be defined in terms of

three linear functions R,(h), R2(h) and R,(h), and according to simple geometric analysis,

can be expressed as a function of position (height) along the cutter axis from C(t) as

follows:

For 0 _<_ h 5 f - r*c0s(a), R101) =mm (a ¢ 0)

For f- r‘cos(a) 5 h 5 f- r‘sin(b),

if h > f then h1 = h-(f-r)

ith f then h1= r-(h -f)

R2(h) = e + (2mm - h1*h1)**0.5

For f-rrsintb)_<.h_<_L. R3(h)=d12+(h-d/2‘tan(a))*tanb
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APPENDIX B

INTERSECTION OF A VECTOR WITH A SWEPT VOLUME

Part 1: Intersection of a surface normal with a side surface of a swept

volume

The intersection between a smface normal vector and a side surface (i.e. any surface

but a flat bottom surface) of a tool swept volume is shown as in Figure B.l:

 

1:— h=L

 

 
 

.
l
"

 

  
 l... 

    
Figure B.l Intersection of a surface normal vector with a side surface of a

tool swept volume
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Given a surface normal unit vector V and the coordinate (xi, yi, zi)

7 = a i + B j + y k

Assume that (xs, ys, 23) is an intersection of with a side surface of the tool swept

volume; it can be expressed, using the parametric form of the surface normal unit vector,

 
  

as:

xs'xi Ys‘Yi zs‘zi
= = = S

a p 7

or xs=xi+as , ys=yi+fls, zs=zi+ys (3.1)

Since the surface normal vector V may intersect any part of the swept volume

model, the first step in solving this problem is to determine which part of the model may be

intersected by the surface vector. Let’s first discuss the most general case treated in this

work -- the intersection of the surface normal vector with the side surface of the general

APT seven-parameter cutter.

For a given surface point (xi, yi, 1,), a surface normal unit vector? and a tool motion

(C(t), N(t)), 0 5 ts l, the minimum distance from the surface point along the normal to the

envelope of the tool motion can be derived by the following expression:

The surface point (xi, yi, zi) has local coordinates (t, hi(t)). The intersection point

(x,, y,, 2,) is a point on the surface of the moving rigid body model. If its corresponding

h-axis value is h3(t), 0 5 hs (t) _<_ L, then we say that the local h coordinate of the point

falls within the length bounds of the cutter. The minimum distance between the

interaction point and the ruled surface is the length of vectorjoining the intersection point

and the ruled smface point 'r—(t, 115(0) , i.e., l(xs, ys, as) - 7(t, 113(0) I. Thus, whether an

intersection point is on the envelope of the tool motion can be simplified to whether this

intersection point is on a circle with center 7(t, hs(t)) = ([x(t) + hs(t)Nx(t)], [y(t) +
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hs(t)NY(t)], [z(t) + hs(t)Nz(t)] ) and radius R(hs(t)).

The requirement that the intersection point (x3, ys, 25) be on the circle can be written as:

Ix, - x (t) - batman? + Iy, - y (t) - new)? + Izs - z (t) - hs(t)Nz(t)]2= R2(h_,(t))

or Ix,- M012 + I y, - y (012+ I2, - z (012 - hi(t) = Rhino» (Ba)

Recalling the expression for hi(t) from Equation 3.2, the relationship between hs(t) and hi(t)

can be shown as follows:

 

N(t)

1‘9

y

(‘3’ Vs 7s) ham

 

    
Figure B.2 Relationship between hs(t) and hi(t)

From the above figme, we know that hs(t) = hi(t) + s*cosO

or “s(t) = hi(t) + s[aNx(t) + BNY(t) + yNz(t)] (B.3)

Applying parametric forms (DJ) and (B.2) to (3.3)

Ix, + as - x (012+ I y, + Bs - y (012+ Iz, + is - 2(012 - 11,20) = can»

or, collecting coefficients of like powers of s,

J(t)*s2+ H(t)*s + P(t) =0, (3.4)
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where: in) = 1- [aNx(t) + BNyu) +er(012

H(t) = mlxi’x(t)]+ZB[Yi'Y(t)]+2flzi'z(t)]'Zhi(t)[aNx(t)+BNy(t)+’YNz(t)]

P0) = Ix,-x (012+ I y,-y (012+ Iz,-z (of - 11,20) - 12201.0»

Then the cut value, that is, the minimum distance from the surface point along its

normal unit vector to its intersection point with the moving solid model, can be obtained

from the quadratic formula as:

 

rm) r. H20) - 4*](t)*P(t)

s(t) = 4 (13-5)

2%)

 

The I value for the minimum s(t) can be obtained from 73% = (3.6)

To speed up the program, one can compare the values 8(0) and s(l) with the s(t)

value from (B45). Thus, there is no need to get the 332:8 in order tojudge whether or not

I

the t value represents a minimum or maximum s(t).

This quadratic in s is of higher order in t, and cannot be solved in closed form, even

if a relatively simple form for the tool axis rotation functions Nx(t), Ny(t), and Nz(t) is

specified, so long as the tool axis is not held in a constant orientation (3-axis milling).

Instead, we would typically employ a root finding algorithm if we were to implement this

approach directly. The running time for a process based on such an algorithm would be

quite long. We can restate the situation as a simple optimization problem as follows:

 

-H(t) : 4/ H20) - «xterm
Minimize: s(t) =

te R 2*}(t)

 



subjectto:

Ogtgl

OsmmsL

The minimum s value for 0 5 t 5 l which satisfies equation (B.4) is the cut value of

the smface point. If H2(t) - 4J(t)*P(t) < 0, the smface vector misses the side smfaces of the

model. If two intersections with the side smface of the model are found, and 0 5 h, (t) 5

L for both solutions, then the closer of the two intersections defines the cut value.

However, if no intersections with the side smface are found. or a single intersection with

the side smface is found, and if the tool has a horizontal end surface, then the end surface

must be tested for an intersection. That is, the intersection of the smface normal with a

circle in the h = 0 plane normal to the cutter axis needs to be considered.

Part 2: Intersection of a surface normal with a circle in a plane

 

 

plane

 

 

  
A. d

_b

k

  
 

Figure B.3 Intersection of a smface normal vector with a circle in a plane
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Given a surface normal unit vector v and the coordinate (xi, yi, 2,)

dd—b

7 =ai+Bj+y

Assume the intersection point is (x8, ys, as); it can be expressed, using the

parameuic form of the smface normal unit vector, as:

 
 

xs'xi Ys'Yi zs’zi

= = — = SC

on p y

or xs=xi+asc , ys=yi-I-Bsc , zs=zi+78¢ (3.7)

For a given smface point (xi, yi, 2,), a smface normal unit vector? and a tool motion

(C(t), N(t)), 05 t5 l, the minimum distance from the surface point along the normal to the

bottom (or with a similar argument, the top surface) of the tool motion can be derived by

the following expression:

The surface point (xi, y,, 2,) has local coordinate (t, hi(t)) in the ruled surface

r(t,h(t)). The minimum distance from the surface point along the normal to any intersection

point on the plane of the bottom surface must have hi(t) = 0 in equation (B3). Thus this

problem can be simplified to whether the intersection point (x,, ys, 2,) with this plane is a

point within a circle with center 70, 0) = (x(t), y(t), 2(0) and radius R0.

There are two conditions to asstue that the intersection point is point within a circle

inthe hs(t)=0planeatsometime0<t< l:

[xs-x(t)]2+[ys-y(t)]2+[zs-z(t)]25 R2 ,forsome0<t<l, (3.8)

and, given hs(t) = 0 in Equation B.3, SC (I) = - hi(t) I [thx(t) + BNYO) + YNz(t)]

Or we can define the problem as a simple optimization problem as follows:
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minimize : Etc g) = - hi(t) / [orNx(t) + BNYO) + yNz(t)]

6

subject to :

Ogtsl

Ixs - x (or2 + I y, - y (012+ I2, - z (012 5 R20

Part 3: Example of a Ball-End Cutter

Let’s consider an example of a surface normal vector intersection with the volume

swept by a ball-end cutter, for a given definition of the control point of the tool motion as

 

 

 

shown in Figure B.4.

fitt)

T h= L

L

j i R n=o

R

1: _L 
    

Figure B.4 Intersection of a surface vector with a ball-end cutter
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The mathematical'model for the ball-end cutter can be divided into a cylindrical part

and a spherical part, if the control point is located at the center of the sphere. The next step

in solving the problem is to determine which part of the cutter is being intersected by the

surface vector. An easy way to solve the problem is to determine the I value for which

hs(t)=0 -- that is, the time (if any) within the sweep at which the cutter switches from cutting

with the ball to cutting with the side, or vice-versa. Then the mathematical model for the

cylindrical part has already been given in Part 1, and the mathematical model for the

spherical part can be expressed as follows:

[xs - x (0]2 + I y, - y (012+ IL, - 2(012 = R2 03-10)

and hp = hi(t) + s[thx(t) + pNym + yNz(t)] s 0 (3.11)

Applying parametric form (3.7) to (B.10)

Ix, + as - x (012+ I y, + as - y (012+ I2, +ys - z (or2 = R2

or, 52+ H(t)*s + P(t) = o , (3.12)

where:

H(t) = 2aIx,-x(t)1+2BIy,-y(t>1+2rIz,-z(t)1

P0) = Ix,-x (012+ I y,-y (012+ Iz,-z (012- R2

Or we can define the problem as the following:

 

. . . +10): H20) - 4*P t)
Mrnumze: s(t) = V (

te R 2

 

subjectto:

Ostsl

-R s h,(t) s 0
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The minimum 5 value of equation (3.12) for 0 5 t 5 1 which satisfies equation

(3.11) is the cut value of the surface normal vector. If H20) - 4P(t) < 0, the surface vector

misses the model. If the smface vector intersects with both parts, the cut value for this

toolpath is the minimum value of the two.
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