LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES retumn on or before date due.

DATE DUE DATE DUE DATE DUE

MSU |s An Affirmative Action/E qual Opportunity Inetitution
cAcirc\datedus. om3-p. 1




GRAPHICAL VERIFICATION OF MULTI-AXIS NUMERICALLY
CONTROLLED MACHINING PROGRAMS FOR SCULPTURED
SURFACE PARTS

By

Ki-Yin Chang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1991



ABSTRACT

GRAPHICAL VERIFICATION OF MULTI-AXIS NUMERICALLY CONTROLLED
MACHINING PROGRAMS FOR SCULPTURED SURFACE PARTS

By

Ki-Yin Chang

Verification of multi-axis numerically controlled (NC) machining programs is a costly
procedure in the manufacturing process, especially when one uses the side of the cutter to do
milling operations. A new object-space-based (surface-based) verification system has been
developed for multi-axis NC milling of sculptured surfaces. The dissertation describes an
algorithm which discretizes the nominal sculptured surfaces and directly computes the possible
interference between these surface points and the moving tool without explicitly creating the
bounding surface of the tool motion (the tool swept volume). The geometric model uses the ruled
surface defined by the axis of the cutting tool to define the center of the tool envelope. This result
requires far less computation under typical conditions than would the use of direct solid modeling.
In contrast to image-based methods, the algorithm is view independent (except for final graphical
display), which means that displaying another view of the part does not require a rerun of the
program, and, within broad limits, accurate displays of resulting gouging and undercutting with
altered tolerances are possible without rerunning the verification algorithm. The approach utilizes
positional (true position) tolerances on the desired part surfaces, and outputs a colored-coded
display of the as-designed surfaces which depicts regions within tolerance, gouged, and undercut.
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CHAPTER 1

INTRODUCTION

Numerical control (NC) can be defined as a technique allowing automatic control
of a machine tool with coded information which consists of numbers, letters and symbols.
NC technology is used extensively in the metal-removing milling process, but it has also
been applied to a wide variety of other machines and processes. Advanced NC systems
such as computer numerical control (CNC) and direct numerical control (DNC), combined
with other computer technology, opened the door for computer-aided manufacturing
(CAM) to do automatic control of manufacturing processes and systems.

The automated NC machining process used to make contoured aircraft and
automotive dies and parts has been applied in industry since the 1950’s. The instructions
for NC systems can be prepared either manually or with computer assistance, and
instructions are often written using the APT (Automatically Programmed Tool) or Compact
languages to relieve the part programmer from manually entering all of the geometric data.
Among all the common NC languages, APT is the most widespread and the most
comprehensive one. The program uses statements to identify the machine parameters, the
tool shape and the part shape, then specifies the way the tool should move relative to

various surfaces.



1.1 NC Milling Machines

Numerically controlled milling machines are used to progressively remove material
from a workpiece. The tool used to do the milling is called a milling cutter, and is advanced
at a slow rate of feed into the workpiece while the cutter (mill) rotates at relatively high
speed. The material is removed in the form of small chips produced by each of the teeth of
the milling cutter. There are may different types of milling cutters, such as the ball-end mill,
the flat-end mill, the fillet-end mill, etc. The main purpose of the milling machine is to mill
flat or contoured configurations. A machine tool is characterized by the motions it can
perform. According to the changes of the relative position of the tool and workpiece
allowed, as shown in Figure 1.1, it can be classified into the following different types of
milling machine.

1. Two-axis Milling Machine. Two-axis milling indicates that the contouring capability of
the machine tool is limited to motions of the X and Y axes (i.c., in a fixed Z plane). This
mode of operation is frequently referred to as two-dimensional operation.

2. Three-axis Milling Machine. Three-axis milling refers to a cutting tool moving
simultaneously in the X, Y and Z axes under complete control of the NC program. This type
of NC machine tool is the most commonly used today for milling. The tool axis orientation
of the three-axis milling machine does not change relative to the workpiece during the
entire tool motion.

3. Multi-axis Milling. When more complicated parts with complex configurations are
designed, it is often not enough to have the X, Y and Z movements alone; in addition,
rotation about at least one of the axes, X, Y, or Z is needed. (Of course, the rotation about

the cutter axis to perform the cutting action is not counted.) In the acrospace industry there

has long been a need for machines that have 360° contouring with simultaneous control of
the Z axis; this usually is accomplished by a five-axis milling machine which has two rotary

axes. The five-axis milling machine can continuously re-orient the axis of the tool as it



follows the contour of the part, or alternatively, re-orient the part. For the multi-axis
milling process, the milling axis often changes with almost every motion of the mill.

Z

Tool axis| 4 Y

Milling cutter /
\

/// s

Machine table

Figure 1.1 NC milling machine tool axis system

A three-dimensional surface can be formed by having a three-axis machine use a
ball-end or fillet-end mill to form the contour, for instance, by making a series of small
steps to approximate a twisted and warped surface. However, using a five-axis machine, if
the side of the tool, say, must be tilted during the cut, the machine can make the sculptured
surface to close tolerances with the side of the cutter in one pass and with an extremely
satisfactory result. In addition, for high accuracy machining of sculptured surfaces, the
five-axis milling machine is capable of operating the mill axis normal to the surface as the
mill progresses along the surface, providing tight control of cusp heights.

1.2 NC Program Verification

For true position tolerancing, as is employed here, overcutting and undercutting of

surfaces are relatively easy to define. Overcutting or gouging of a point on the part surface



happens when an NC cutting tool cuts beyond the tolerance limit inside the desired part
surface [1][2]. Undercutting happens when an NC cutting tool does not cut the tolerance
limit outside the desired part surface. If the cutting tool cuts between the tolerance limit
outside the desired part and the tolerance limit inside the desired part surface, the point is
said to be cut within tolerance. An example is shown in Figure 1.2. The machined surface
point A is cut within tolerance, B and C are undercut, and D is gouged.

Design part surface

Tolerance inside limit

Figure 1.2 Tolerance for the NC machined surface

NC programs are commonly verified by milling a material softer than the actual
desired surface, creating wooden, wax, plastic or foam prototypes. To reduce the cost of
the process, verification of the NC program is sometimes used before these prototypes or
the actual part material is machined. The verification of NC programs typically computes
the difference between the design part model (i.e., the model of the part as designed) and
the workpiece part model (i.e., the model of the part as it would be manufactured according
to the NC program). Among all the surface types machined by NC programs, sculptured
surfaces which are made up of arbitrary, nonanalytic contours comprise one of the most



challenging areas. In a NC machining process, it is easy to overcut the part surfaces.
Therefore, how to avoid overcutting the part surface is one of the most crucial problems in
NC machining of sculptured surfaces. Computer-assisted verification systems provide a
process by which the errors between the desired part with the specified tolerances and the
part as milled can be calculated and traced to specific tool motions. This process, using
graphical computer models without expensive physical models, is a feasible and
economical way to check the CL data (cutter location data).

In NC verification algorithms, the term ‘cutter interference’ is used to mean
overcutting in a sculptured surface machining process [3]. A satisfactory handling of cutter
interference requires not only removing overcutting, but also avoiding undercutting. Of
course, during the “roughing” portion, undercutting is purposely programmed, but even
there, verification software can be useful in pointing out the areas requiring additional
cutting to achieve the finished part. The task of verifying an NC program for 3-D
machining is tedious work. Recent research has tried to improve computational efficiency

and reduce the running time with various approaches.
13 Objectives of the Study

Most NC verification software can model the three-axis NC milling process, and a
few of them can model the five-axis NC milling process. Most of the current five-axis NC
verification programs generate swept volumes using a geometric model. Boolean
operations are calculated using a frame buffer. Therefore, the output display is view
dependent, which means that if another view is needed, then the whole simulation must be
rerun. It also cannot accurately provide true position tolerance calculations, because depths
are calculated along sight lines of a fixed orientation. The above two disadvantages cause
that type of verification algorithm not to be very effective for many real NC milling
processes. This is because the five-axis milling process was originally designed for
contoured surfaces and high precision processes. The objective of this study is to create a



geometric model and computational algorithm to do multi-axis NC verification and
generate a view-independent data structure which enables a variety of final displays in a

cost-effective way, while using true position tolerance for precise verification.



CHAPTER II

LITERATURE REVIEW OF NC VERIFICATION TECHNIQUES

In the last decade, many researchers have worked on NC verification and
simulation using various approaches, such as solid modeling with Boolean operations,
image-space methods, and object-space (surface-based) methods. An overview of these
approaches is presented below.

2.1 Solid Modeling Techniques

Solid modeling is a useful approach to both simulation and verification. There are
two notable schemes used in solid geometric modeling -- namely, constructive solid
geometry (CSG) and boundary representation (B-rep) [4](5]1[6). The CSG scheme is a
constructive representation in which primitive solids such as cylinders, spheres, blocks,
cones and other completely surface-bounded solids, appropriately positioned and
combined via Boolean operations, are used to define an object of complicated shape. A tree
structure with Boolean operators at the non-terminal nodes and primitives at the terminal
nodes easily represents such a structure. The root node represents the complete solid.
Therefore, a complicated solid can use the simple Boolean set operators to do the union,
difference, intersection and assembly of the primitive solid. However, the CSG
representation is an implicit representation, in the sense that the active regions bounding a
complex solid are not represented explicitly in the data structure, but must be computed by
means of the definitions of the primitives and the effects of the Boolean operations stored



in the tree structure. In contrast, in the B-rep scheme, a solid is viewed as bounded by the
union of its bounding faces, for which the definitions are stored explicitly. A construction
operation in a B-rep scheme uses the explicit representations of the boundaries of the solids
and uses the topological relations among faces, edges, and vertices to evaluate and store the
new boundary that is the result of the operation.

For a 2!/,-axis flat-end mill motion, and using the CSG representation, the swept
volume of a toolpath can be represented as a union of two cylinders and one block, as
shown in Figure 2.1. Therefore, simulation can be done by sequentially subtracting models
of the swept volumes of tool motions from the model of the workpiece [7][8). Verification
can be obtained by Boolean subtraction of the model of the workpiece from the desired part
model. For a multi-axis tool motion, the simple primitive solids cannot represent a twisting
tool motion. One needs either to generate more complex primitive solids for the complex
multi-axis tool motion, or to approximate it as the union of a great many simpler primitives.
Some modelers (such as I-DEAS from SDRC) are so-called hybrid modelers, using a
representation containing both CSG and boundary constituents [9][10]). These can, of
course, be used to implement the type of verification described above for CSG modelers.

\Cylinder

YA
| 4 /‘ Block
* Cylinder 4 Toolpath

Figure 2.1 2!/,-axis swept volume representation in CSG scheme




Fridshal [11] enhanced and modified TIPS-1 [12], a solid modeling program, to do
NC simulation. TIPS-1 does intersection calculations using a searching method based on
a penalty function to find a series of points on the boundary of the intersection between two
solids. These points can be interpolated as a spline. In GDTIPS, one generates the
trajectory volume of the tool motion to form various NC trajectory volume primitives, and
then subtracts the trajectory volumes from the workpiece and the holding fixture.
Therefore, the “collision” of the tool, driven by the part program during the machining
process, with the design geometry to be verified, is detected as verification proceeds. The
problem with this approach is the large amount of computing resources it requires [13].
Five-axis swept volumes are composed of mathematical primitives which are extremely
complex, and Boolean operations on them are very compute-intensive, thus reducing the

cost-cffectiveness of the technique.
2.2 Image-Space Approach

In the image-space method, Boolean operations are computed during image
rendering. The three-dimensional Boolean operation could be reduced to a one-
dimensional problem by considering the intersections of rays from each image pixel
through a CSG solid model. Van Hook [14] developed an extended Z-buffer data structure
called a dexel. The Z-buffer is a common approach for performing hidden surface removal
for display of an interactive shaded solid, and contains a real number Z, or depth value,
associated with each (X,Y) screen pixel. In contrast to a Z-buffer, each dexel contains not
a single Z value, but several entries for each (X,Y) element: a pointer, a color, the Z value
(depth) of the furthest surface, and the Z value of the nearest surface. The dexel structure
is directly displayed just like a normal frame buffer, since the color of a dexel at the (X,Y)
screen coordinate is the visible surface color at that pixel location. A pixel image of the

cutting tool is precomputed. After scan conversion of a cutting tool, the tool is “moved’
through the dexel structure, using Boolean operations along each ray and the stored depth
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values to compare with the boundaries of the tool in each location along its path. It is
performed like a CSG algorithm. The cutting tool is considered as a negative solid which
is Boolean subtracted from the workpiece model (considered as a positive solid) as a
program steps along a toolpath. After the tool is subtracted from the workpiece, the far
surface of the tool typically becomes the new near surface of the block, and the inversely
shaded tool color is the properly shaded new workpiece color. The mathematical model for
the swept volume of the tool motion has not been described. Van Hook chose linear
interpolation to divide the toolpath segments into typically 10~20 steps each, depending on
the distance between the positions and a programmable interpolation tolerance. The
sclected view of the shaded image after verifying the milling path is easily displayed, but
cannot be redisplayed from another view point without recomputing the entire problem.
Also, the shaded image is an image-based model that does not provide tolerancing
verification, and all distances are calculated along the view-dependent sight lines. The
cutting function will not entirely replace object-space intersection calculations on general
purpose computers, or test runs on the actual milling machine, because their algorithm for
dexel-based computation is much less accurate than the vector/solid intersections
employing surface normals. If a boundary representation of the tool motion is developed,
it could be easily converted into a dexel structure. Then it would have a better result than
the approximated boundary of the tool motion used by Van Hook, but would not resolve
the problem that errors are measured along sight lines, rather than along surface normals.

The direct NC geometric verification technique for five-axis milling applications
developed by Wang [13][15][16][17] was originally designed to create a solid model for a
swept volume. The geometric model of boundary surface of the swept volume or the
composition of the envelope surface is clearly described by its parametric form equation.
The envelope consists of two categories of surface: (1) the subset of the boundary of the
generator at the initial position and the final position, and (2) the new surfaces created by

the generator during the motion. For example, in the swept volume of a cylindrical tool, two
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side envelope faces are generated by a set of profile edges on the cylinder; the top and
bottom envelope faces are generated by the points on the bounding edges of the cylinder.
The method was later modified to perform graphical verification of NC toolpaths. This is
a novel view-dependent method for five-axis NC verification. The algorithm uses standard
Z-buffers and converts CSG part data into pixel data stored in the Z-buffer for subsequent
sight line Boolean operations with other models. The input for modeling a toolpath swept
volume includes cutter information and the CL data file, which consists of the tool control
points and oricntations. The swept volume is also converted into pixel data, which will be
compared with those of the workpiece and fixtures. The Boolean subtraction removes the
material from the workpiece. The interference between the tool swept volume and the
workpiece or fixture can be shown using different colors to highlight various error
situations. To deal with tolerance specification, the tool surface is offset. The result is
approximately equivalent to the result of offsetting the part surface. He has implemented
his geometric modeling scheme at the General Electric Company and has developed NC
simulation software. Similarly, Saito and Takahashi [18][19] developed the G-buffer,
another extension of the idea of a Z-buffer, and applied it to NC toolpath generation and
verification using graphics or image processing hardware. This image-based method, as
developed by Hook and Wang, is view dependent, which allows undetected errors or false
indications of error because of the chosen viewing direction. Displaying another view of
the part requires running the entire simulation again. In addition, the Z-buffer approaches
are inherently limited in accuracy to the resolution of the Z-buffer, which is often only 16
or 24 bits. Thus, higher resolution is obtainable using the technique described here,
particularly when the range of the depths to be represented is large. Many commercial
milling verification programs, such as Vericut [20], are image-based algorithms.
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2.3 Object-space Approach

In this approach, the verification is accomplished by calculating intersections of
direction vectors with tool movement envelopes. The method can work for any part
composed of a set of surfaces for which surface points and their corresponding normal
vectors can be defined. That is, the data need not comprise a solid model. Chappel [21]
described a method of using vectors to represent excess material removed by numerical
control milling. The part surface is approximated by a set of points. This method gives a
detailed description for calculating the intersection between a normal vector at a surface
point and a randomly oriented cylinder cutter. This algorithm is possibly more efficient
than solid modeling approaches since the intermediate simulation step is simplified
considerably. The mathematical model derived in that paper is used to simulate cutting
processes by moving the cylinder in discrete steps and calculating the intersection at each
position. This technique also allows true position toleranced dimensional verification,
which measures distances along part surface normal vectors to their intersections with the
cylinder model. However, this algorithm is not very general because it treats only side
surfaces of cylindrical cutters. For an end-mill cutter, to detect whether a part surface is
machined by the bottom of the cutter or the cylindrical part of the cutter is a crucial problem
for multi-axis tool motions. It is possible that in a multi-axis tool motion, the cylindrical
surface of the cutter is cutting during part of the toolpath, and the flat bottom is cutting
during another part. Both may be cutting simultaneously. Thus, computations for cutting
of a normal vector of a point on a part surface must be made with both tool surfaces, and
the correct (minimum) computation chosen for each portion of the toolpath. These are very
common and important situations in verifications when one might have unexpected cutter
interference [22](23]. Thus, this algorithm is not widely used.

Oliver and Goodman [24][25] developed an NC verification technique which
extends Chappel’s surface normal vector idea, but also incorporates solutions to the
problems which limited Chappel’s approach to relatively simple parts. The technique
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involves intersection of surface normal vectors with milling tool swept volumes. This is a
direct dimensional NC verification technique in which the minimum distance is computed
along a surface vector to the swept volume of each tool motion. The algorithm first
discretizes the desired part surface into surface points and their corresponding normals,
using a point density determined by the screen resolution and current view of the part.
Then, for each tool motion, it creates six planes which bound the tool swept volume for a
primitive test of cach surface point. If a surface point passes the primitive test -- that s, its
normal vector intersects the bounding volume within a certain specified “range of interest”
-- then the vector/solid intersection must be done. The swept volume is first approximated
as a parallelepiped. This model is refined in areas where intersection is determined likely
to occur by adding cylindrical and/ or spherical surfaces. Results of intermediate
calculations are used to determine if further, more sophisticated, swept volume
intersections are required. This ensures that redundant or superfluous calculation of vector/
solid intersection is minimized. The postprocessing procedure is also described in which
the cut value and cosine of the normal vector with the sight line are used to assign hue and
intensity to generate graphical output. This algorithm developed by them is a viable
solution to the problem of accurate and efficient geometric verification of NC milling
programs. It offers distinct advantages over the existing solid geometric modeling
approaches. However, the entire portion of this algorithm dealing with mill axis space
would probably not be useful for five-axis tool motion, since the five-axis tool axis changes

at almost every motion of the mill.

Jerard [26][27][28] developed a surface-based technique for verification of NC
programs used to machine sculptured surfaces. He chose a set of points on the surface of
the object and used the sample as a discrete approximation to the actual surface. The surface
points are calculated from parametric space. Later these surface data are placed into 2-D
buckets with regular (x,y) spacing. Tool motion is projected onto the buckets. Only points
in the buckets need to be examined. Inaccuracies in the cutting errors he calculates are
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caused by three factors: 1) deviation between the actual surface and its polyhedral
approximation, 2) the protrusion of the tool between the surface point because of the
curvature of the tool and the non-zero distance between surface points, and 3) the fact that
measurements are made along the axis of the tool, rather than normal to the part surface.
The maximum error for this technique is the sum of the surface error, the protrusion error,
and the error caused by the angle between the tool axis and the surface normal. When the
method uses relatively few points for a given level of desired accuracy, it may indicate that
some points are out of tolerance when in fact they are not. To resolve this problem, Jerard
implemented a post-simulation analysis to calculate accurately the closest distance from the
cut point to the desired surface. The system outputs a color-coded graphics display of the
design surface which shows out-of-tolerance machined areas. This system can generate
another view of a part without rerunning the simulation. To gain efficiency, surface
curvature and cutting-tool size are used as inputs to a surface discretization algorithm,
which guarantees that a user-defined level of simulation accuracy is achieved. The
simulation time grows linearly with the number of tool motions and the number of surface
points used. However, this method, like that of Oliver and Goodman, is only used for three-

axis machining.

Fundamentally, direct solid modeling is expected to have more accurate
representations of the milling process than the other techniques described, and to be able to
do both verification and simulation. But the worst-case time complexity reported for direct
solid modeling approaches, according to the report of Hunt[8] is O(N*), or O(N310gN)
under certain special circumstances, where N is the number of the CL points in the toolpath.
Since a multi-axis NC program contains many thousands of toolpath points, this can cause
such algorithms to take many hours of execution time in a mainframe computer for some
realistic verification problems. Image-space approaches take an advantage of specialized

computer hardware (Z-buffers). They can use scan-line algorithms to do computation in
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the frame buffer. This therefore reduces the execution time. But the resolution of the
verification depends on the size of the screen pixels. View-dependent calculations and
final display cause this algorithm to be unable to completely replace other approaches. The
object-space (surface-based) algorithms discretize the surface points and compute the
distance between the surface points and the tool swept volumes. The proper localization
techniques for the surface points can reduce the time complexity to O(N) [24]. These
algorithms can replace solid modeling in the verification of the NC milling process.
However, prior object-space algorithms have been limited to three-axis NC milling. This
dissertation presents such an algorithm to do multi-axis verification.



CHAPTER III

A GEOMETRIC MODEL FOR NC VERIFICATION

3.1 Historical Overview of Various Models for NC Verification

NC toolpath verification began with direct solid modeling approaches. NC
verification via direct solid modeling is based on the principles of set theory, which provide
that a simulated machined part can be represented by a series of Boolean subtractions of the
swept volumes of the tool motions from the workpiece, or equivalently, by subtraction of
the union of all of the swept volumes from the workpiece. The result of these operations is
a simulated machined part, but not the solution to the verification problem, which seeks to
show the discrepancies between the simulated machined part and the design part. Thus, to
solve the verification problem, direct solid modeling needs to perform another subtraction
to come up with the difference between the relatively simple design part model and the
generally very complex simulated machined part. Of course, this difference is not
necessarily in the form in which the user desires to see the discrepancies -- more likely, an
identification of which toolpath segment was responsible for a gouge, for example, is
desired. This would require still other computations than those generally performed by
solid modeling systems. The use of this approach for solving problems with high
complexity has been difficult, because such problems tend to require very intensive
computations. Therefore, some researchers have sought to develop other techniques

designed more specifically for solving this problem. For example, those using the “image

16
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space” approach described in Chapter 2 employ hardware originally developed for surface
shading to solve verification problems. The swept volume of the tool motion is converted
by a scan line rendering processor into screen pixels which are comparable with the screen
pixels of the workpiece and fixtures along a sight line. The Boolean subtraction is
performed in the image space and is view-specific. The resolution for detecting errors is
limited by the resolution of the view and the Z-buffer. The final verification produces the
same type of result as did the direct solid modeling approach, but only for the chosen view.
Disadvantages of this method were mentioned in Chapter 2.

This chapter introduces a different approach to geometric modeling of the NC
verification process. Most of the current multi-axis NC verification systems need to create
the boundary of the tool motion. The verification problem is handled only as a sort of post-
process, beginning after a full simulation of the NC process is completed. Butin the object-
space algorithm described here, the verification is handled without many of the calculations
required for a full simulation of the NC process. This is a real advantage, since multi-axis
NC milling toolpaths often contain many thousands of CL points. Here we introduce a
geometric model which can be considered to define the swept volume of a tool moving
between CL points. However, the algorithm which uses this model detects interferences
between sculptured surfaces, namely between part surfaces and tool swept volumes,
without using Boolean operations. This chapter only discusses mathematical models and
geometric models for the NC verification, leaving the discussion of methods for
discretizing the part surface and localizing the surface points in 3-D space for the next
chapter.

3.2 Characterization of Tool Motions

There are two types of cutter motions commonly employed in NC programming:
point-to-point motion and contouring motion. Point-to-point motion is tool motion from

the start point to the destination point, without specific requirements on the toolpath, and a
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roughly linear motion over a fairly short segment is generally assumed, but not tightly
specified. Contouring motion is motion of the tool along a designated path with, in the case
of multi-axis toolpaths, designated orientations. Such complex tool motions are often
reduced, instcad, to a sequence of simpler, point-to-point motions, maintaining the
deviation of the tool from the path within a specified tolerance of the given contour. Such
conversion often occurs in either a postprocessor or a machine controller. For example, in
APT contour motion, each step of the cutter motion can be defined by three surfaces: a
drive surface, a part surface, and a check surface [29], as shown in Figure 3.1. A drive
surface is a surface that guide the side of the cutter motion, and often does not represent any
surface in the part model. A part surface is the surface that limits the tool motion along the
tool axis or the depth of the cut. A check surface is the surface that defines the end point
of the motion. Since these three must be defined for an APT contouring motion, some
people use these three surfaces in implementing NC milling verification for this type of
APT-specific code. But this approach turns out to be quite intractable for multi-axis tool
motions. Alternatively, we will use a specification of the motion of the centerline of the
tool to define the translation and rotation of the tool through 3-dimensional space. This is
a key concept of the new algorithm developed here. If a cutter location file is specified in
some manner other than the (x, y, z) for a control point on the tool and the cosines of the
angles of the tool axis from the coordinate axes, then external software must be used to
convert the CL file into this sort of representation, in order to use the algorithms described
below.

3.3 Ruled Surface of A Tool Motion

An NC toolpath typically consists of tool axis statements and a list of tool positions
and orientations which control a milling machine driving along the part surface. In a 3-axis

NC machine tool, the tool moves from one position to another position and the oricntation
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of the tool axis does not change. For a multi-axis NC machine tool, the tool motion

becomes very complicated because there is at least one rotary axis.
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Figure 3.1 Three surfaces in APT contouring motions

The analysis of the geometric model presented here does not include any effects of

tool deflection, tool wear, or part distortion. However, the model is at least theoretically
extensible to represent such effects, although with a very significant time penalty for

computations.
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In order to analyze the problem, certain properties of the cutter are assumed:

1. For the purposes of the verification, the cutter may be represented as a
(symmetrical) surface of revolution, which means that the cross section at any
specific position along the cutter axis has a given radius. Of course, this is not
actually true of milling cutters -- they have teeth. In order to make the assumption
tenable, the speed of revolution of the cutter relative to its feed rate must be large,
so that the effects of the individual teeth are not large relative to the tolerances
being checked. This is the intent in milling operations, in general, so does not
cause a particular hardship for the verification process. However, if a soft
material were cut with a high feed rate, it is conceivable that this assumption could
be violated to such an extent that this verification process, and any others we have
discussed, would not detect some out of tolerance areas.

2. The envelope of the cutter can be expressed as a function of position (height)
along the cutter axis. This is true of any 7-parameter APT cutter except one with
a flat bottom. A flat bottom has a radius, but the cutter envelope is actually the
plane bounded by the circle of radius R(0). However, this verification procedure
handles such a flat-bottom cutter, as a special case, and also provides a flat “top”
surface for all cutters.

3. Each step of the tool motion is continuous.

The motion of the tool is defined by the control point C () and the orientation of

the tool axis (axis of revolution) N (t). The trajectory of the control point usually is
rendered by linear interpolation between the previous position and the current position [15].
A series of linear motions is also frequently used to approximate more complex trajectories,
such as circular motion between CL points, by using a chordal tolerance to determine the
step sizes for a series of short linear segments. This process can occur in either

postprocessors or machine controllers.
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There are a variety of possible ways to interpolate the orientation of the tool axis
between the orientations specified in successive CL points. The scheme used here, and in
many other analyses, to interpolate the orientation of the tool axis (axis of revolution) is that
the previous tool axis and current tool axis are treated as two vectors on a unit sphere [15],
and interpolation is conducted along the great circle joining them. Other axis interpolation
models would require revision of the mathematical description given below (see Equation
3.1) of the ruled surface r(t,h). Alternatively, a user could, for purposes of verification,
approximate the behavior of an arbitrary machine simply by generating a higher density of
CL points (each with its specified axis orientation), thereby making the error caused by a
different interpolation scheme become arbitrarily small.

. 1 axi
Previous tool axis nt tool axis

Figure 3.2 The orientation of the tool axisN (t)
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Thus, for this procedure, the vector function N (1) for tool orientation is defined

by an arc on the great circle of a unit sphere passing through the two vectors, with motion
at a constant velocity, as shown in Figure 3.2. The unit sphere is determined by
normalizing the vectors and translating one of the vectors so that the two have a common
origin (at the center of the unit sphere). However, as noted above, the actual interpolation
for the motion of the tool axis relies on the NC controller and the postprocessor. If the
function for the motion of the tool axis were known to be different from the great circle
function used below, then N (1) could be specified without approximation.

The locus of the tool centerline moving with one degree of freedom during a multi-

axis tool move constitutes a ruled surface [30][31]. Fora given C (1) =((x(t), y(t), z(t))

and N (t) = (Ny(t), Ny (1), Ny(t)) in Cartesian coordinates, the ruled surface for a tool

motion can be parameterized as:

T, h) = C(t) + h N(V)
= [x(t) + h N, (1)] i+ [y(t) + h Ny(®)]j + [z(t) + h N ()] k 3.1)
where O0<h<L , 0<t<1, andL is the cutter height from the control

point of the cutter.

For a general APT (Automatically Programmed Tool) cutter (see Appendix A), the
profile at any specific position along the cutter axis has a given radius. The radius of the
cutter can be expressed as a function R(h) of position (h = height) along the cutter axis.
The function R(h) for a general APT cutter can have up to three different functional forms
for subintervals of 0 <h<L.

Two methods are described below to deal with points on part surfaces, or on offset
surfaces, as described also by Jerard[27]:
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Figure 3.3 Ruled surface and potential connecting vectors u(t, h;) of a toolpath segment

1. Ignore the specific normal direction at each surface point, which means that one does
not consider the normal vectors of the surface at all. This method can be used, for
example, for interference detection between a surface point and the envelope of the

tool motion, and will be described in section 3.3.
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2. Evaluate the surface point and the outward unit normal vector [21] [23], then calculate
the cut value along this outward unit normal vector. This will be discussed in
Appendix B.

3.4 Determination of whether or not a point is inside the envelope of the tool motion

In this section, a mathematical model will be presented for checking whether or not
a point is inside the envelope of a specified tool motion. There are two parametric variables
for the ruled surface. For any point on the part surface, its relationship with a ruled surface
defined in terms of these two parametric variables can be found through the locus of

potential connecting vectors. Assume T (t, hy(t)) is the locus of potential connecting
vectors between a point (x;, y;, z;) and a parametric ruled surface. By the properties of a
connecting vector, it is the shortest vector connecting a point (x, y, z) to the tool axis r(t;h)
atany time t;, 0 << 1, andifisperpendiculartotheliner(tj, h). For the specific point

(x;» ¥;» Z;)» the locus of connecting vectors is specified as:

u(tb®) = % ¥p2) - Tt b)) or

u(t b)) = [x;-x (- hi(t)Nx(t)]-{ +lyi-y@®- hi(t)Ny(t)]T"’ [z-z(1)- hi(t)Nz(t)]—f

For a given point, the local coordinate (the closest point) on an infinite ruled surface

must lie on a connecting vector Ty (t, h;(t)) which by definition must be perpendicular to

the orientation of the tool axis N (t).

Thus, W(t, h(t)): N(t) =0, and substituting for T (t, hi(t)) from the previous

cquation, we have:
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[x; - X (1) - BN OIN,(0) + [y; - ¥ () - hiONLOING®) + [z - z (1) - ONOINL(1) =0
[x; - X (OIN(1) + [y; - ¥ (DIN(D) + [2; - 2 (1) IN,(®) = hy(t) [N, 2(t) +N, 2(®) +N,2(1) ]

hit) = [x; - x OINR(®) +[y; - y OIN,®) + [z - z OIN,(0) (3.2)

The physical meaning of equation (3.2) is that every point in space has a
corresponding value h;(t) for any moment t representing the closest position on the cutter
axis for a particular tool motion. The value h;(t) might not be in the range of [0, L]. (Note
that this point does not necessarily correspond to the closest point on the tool at that time,
but to the closest position on the tool axis.)

For a given point (x;, y;, z;) and a tool motion (C(t), N(t)), 0 <t < 1, a determination
whether or not a point is inside the envelope of the tool motion can be made from the
following expression:

The point (x;, y;, z;) has local coordinates (t, h;(t)), i.e., it is closest to the ruled
surface at the point T (¢, h;(t)) , and the minimum distance between the point (x;, y;, ;) and
the ruled surface is the difference between the point and the ruled surface point r (t, hi(t)).
So if 0 < hy(t) <L, thatis, if the local h coordinate of the point falls within the length
bounds of the cutter, then whether a point is inside the tool motion can be simplified to
whether the point is inside a circle with center T(t, hy(t)) = ([x(t) + )N, (D], [y(t) +
hj®)Ny ()], [z(t) + hj()N,(1)] ) and radius R(h;(t)).

The requirement that the point (x;, y;, z;) be within the circle can be written as:
[x; - X (1) - BiONLD)? + [y; - ¥ (1) - BONLD) + [2; - Z (1) - BN, ]2 < RA(y(r))

Expanding the above equation yields:
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[x; - x 1 + [y; - y 012 + [z; - z ©1 - 2h;0{[ x; - X OIN,® + [y; - y OINy (D) +

[2;- 2 ® IN,(®) } +h2OIN, 2@ +N20) +N21) 1 < R%(hy(v)

Then, applying Equation 3.2, and because N is a unit vector:

[x; - x OF + [y; - y (01 + [z - z OF- 2h0hy(0) + b2 ©) <R2My(0)

[x; - x ©1 + [y; - y 01 + [; - 2 ©F- b 2(0) - Ry®) < 0 (33)

That is, subject to the constraints, Equation 3.3 provides the condition that a point
be contained within the envelope of a tool motion. This can be expressed as a simple

optimization problem with one variable.

minimize: f(ﬁ) =[x -x (M +[y;-y O +[z -z ®1%- h2®) - RA(b()
€

subject to :
0<t<1
0<h® <L

3.4

If f(t) is less than or equal to 0, we can say that this surface point is inside or on the
envelope of the tool motion at t or the surface point is inside the swept volume of the tool

motion at t.

Let us consider two examples of familiar cutters. The first example is a flat-end

cutter. Let the control point C (t) of the tool motion be specified as the center of the
bottom of the cutter as shown in Figure 3.4. Its mathematical model can be expressed as

follows:
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Figure 3.4 Interference detection for a flat-end cutter

Given a tool motion (E(t), ﬁ(t)) and a point (x;, y;, Z;),
minimize: £ (1) = x; - x O +Iy;- y OF + [z -z -2 @) -R?
subject to :

O<t<

0<h@® <L

If £(t) is less than or equal to 0, then the surface point is inside or on the envelope
of the tool motion.

Let us consider another example -- that of the familiar ball-end cutter. Its
mathematical model can be specified as follows, given a definition of the control point of
the tool motion be specified as the center of the spherical cutter as shown in Figure 3.5:
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Figure 3.5 Interference detection for a ball-end cutter

Given a tool motion (C(t), N(t)) and point (x;, y;, 2,),

minimize: (1) = [x; - x O +Iy;-y OF + [z -z 01> b2 (0) - R?

subject to :
0<t<1
0< h(® <L

and

minimize: f (ltl) =[x;-x O + ly;-y o2+ (z-2 012 -R?
te

subject to :
O<t<1

R< hi() <0
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If either f(t) is less than or equal to 0, then the surface point is inside or on the

envelope of the tool motion.

This interference detection algorithm is developed based on the ruled surface. One
important assumption in developing the algorithm is that the cutter is a symmetric surface
of revolution. Currently the APT cutter only supports convex cutters. However, the
algorithm can also be implemented if the cutter is concave, and even if the tool swept

volume is self-intersecting.

Implementation issues such as tolerance specification for NC verification using this
algorithm will be discussed in later chapters. The remainder of the body of this dissertation
will present various methods for applying the interference calculation of a point in space
with the envelope of the cutter to the task of NC verification. A geometric model for vector/
solid intersection which evaluates the cut value of a surface point along its outward unit
normal vector, which is used by some others [25] for verification, is discussed in Appendix
B. However, the cut value, or depth of cut, which is the minimum distance from the surface
point along its surface normal vector to the moving tool, (equation B.5) cannot be solved
with a simple interpolation method, since s(t) may have more than two minimum solutions
under some conditions. Thus, exhaustive search is necessary to find a minimum cut value
in equation B.5. Therefore, despite its more natural direct relationship to cut values,
whether or not they are close to the tolerance specified, this algorithm was not implemented

as part of this work, for reasons of computational efficiency.



CHAPTER 1V

NC VERIFICATION PROCEDURE

There are several steps in implementing NC verification. In the NC verification
software described here, one must load surface data, cutter information, and CL data, and
must discretize the surface before doing the verification. This chapter will introduce the
necessary input data and procedures of the NC verification software.

4.1 Workpiece Surface Discretization

The desired part surfaces and associated holding fixtures are read as rational
(nonuniform or uniform) B-spline surfaces, in their Initial Graphics Exchange
Specification (IGES) standard formats. This type of surface is very commonly used by
CAD/CAM solid modelers, since the first derivative and second derivative are continuous
on the B-spline surface, and many common analytical surfaces have exact representations
using NURBS (Non-Uniform Rational B-Spline) surfaces. Sculptured surfaces allow
accurate representation of complex surfaces, and allow interpolating techniques to meet a
variety of design criteria. The desired part surfaces are usually directly produced by a CAD
modeling package, such as the I-DEAS™ software from Structural Dynamics Research
Corporation (SDRC). The technique used to discretize untrimmed NURBS surfaces was
developed by other researchers in the Case Center for Computer-Aided Engineering and
Manufacturing (Correns [32]) to evaluate NURBS surfaces. The software can read and
discretize untrimmed NURBS (IGES type 128), trimmed NURBS (IGES type 144) and
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bounded NURBS (IGES type 143). Trim boundaries may currently include NURBS
curves, composite curves, or copious data types.

In this approach, the first step is to discretize a workpiece and associated holding
fixtures into a set of points, depending on the size and curvature of the surface. This data
structure is then used as a discrete approximation to the actual surface. This object-space-
based method shares some characteristics with the methods of Oliver [24] and Jerard [27]
-- specifically, the intersection of a moving tool with vectors passing through points on the
surface of the desired part. However, it differs in the method of surface discretization from
the methods of Oliver and Jerard (and differs in its core simulation method, as well). The
method presented is general, and can work for any set of surfaces on which surface points
and normal vectors can be defined. Each surface is discretized into a triangular grid of
points, in which the resolution depends on user-entered values for the smaller of maximum
distances between points (in the s and t parametric directions) and maximum allowable
chordal deviation [32 - 36] (in both s and t directions).

4.1.1 Chordal Deviation and Subdivision of Curves between Two Points

The maximum chordal deviation is a vital factor determining the accuracy of the
NC verification. If the surfaces are not discretized sufficiently finely, it is likely that areas
overcut or undercut between the discrete points can go undetected, if the overcut or
undercut region does not include adjacent discrete points. The probability of this depends
not only on the surface shape, but also on the tool geometry. As the maximum chordal
deviation grows, relative to the allowed tolerance limit, the number of tolerance violations
undetected in the verification process tends to increase. Therefore, the chordal deviation
can be considered to be a practical lower bound on the accuracy of the verification process,
as illustrated in Figure 4.1. When tolerances to be verified are much smaller than the

chordal tolerance selected, some tolerance violations are likely to go undetected. (To save
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time in the discretization process, squares of the distance are compared with the square of

the criterion.)

Chordal deviation

Actual surface
Polyhedral surface

Tolerance outside limit

~

Tolerance inside limit

Figure 4.1 The chordal deviation selected limits the potential accuracy of the
verification process.

The chordal deviation is approximated as the distance between the geometric
midpoint Py, of two points and the point P as shown in Figure 4.2 :

P,
P chordal deviation

m
pl \

distance

Figure 4.2 Chordal deviation of two surface points
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The points are evaluated either in the s or t parametric direction. Therefore, one
of the parameters is constant. For fixed s, for example, the value P is evaluated as
P(s, (t; +t)/2). This may not lic on the normal through Py, but this fact is ignored. To
speed up the program, two similar algorithms for s and t parametric directions are
employed. The algorithm used to calculate the square of the chordal deviation in the s
direction is shown below:

set s = §,

sett=(1,+)/2

evaluate point P (s, t)

chordal deviation = (P, - (P, +P, )/2)%+

(P,

(P, - (P, +Py,)/2)2

- (P, + Py ) /2)24

Ly

If the distance between two points or the chordal deviation of two points P; and P,

exceed the user-entered maxima, the curve needs to be subdivided. A new point P is
created with
Sm = (8 +5)/2
or
tm = (4 +4)/2

depending on the direction of the evaluation. This is repeated until the user’s
specifications are met.

The points and triangles created in this process are stored in linked-list structures
shown in Figure 4.3, which defines structures SURFACE, TRIANGLE, POINT, and
TRI_LIST. The triangles are used to display the surface graphically. The accuracy of the
NC verification algorithm depends, of course, on the level of refinement of the surface

discretization. Verification error is caused by deviation between the actual surface and the
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triangle approximation (the deviation is related to the chordal deviation specified in this
approach). A data structure is created containing the (x, y, z) coordinate of each point, the
outward normal unit vector, and minimum distance from the surface point to the boundary

of the tool motion which cuts this vector most deeply to date (initialized to a large value).

first surface _.I next surface _4 next surface "

—— pe————

a
2 A

_{ first point ___.|7 next point —

——* first triangle —l[ next triangle |—*

Figure 4.3 Data structure of surfaces

The sculptured surfaces needed for verification are usually only some of the
boundaries of a solid, and some modelers do not assure a consistent orientation of surface
normals for their boundary representations. Of course, the surfaces might not have come
from a solid modeler at all. Therefore, since the software now implemented uses the
surface normal direction of the workpiece model, the software also provides visualization
tools which allow the user to reorient any surfaces which are not oriented properly. It is
necessary to obtain surface normals which are all outward-directed before the verification

is initiated.
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4.1.2 Spatial Subdivision

Figure 4.4 Space subdivision of a discretized NURBS surface

The subdivision method described here creates a set of uniform cubic 3-D voxels.

A voxel (volume clement) is defined as a rectangular solid element in 3-D space. For

example, a 1 m3 volume could be considered to contain 10° individual 1 cm3 cells. A
translation and scaling transformation is determined and applied which will move all
surface points into a positive working space of a size such that the integer parts of each
point’s coordinates can serve as the index of the voxel containing the point. That is, after
the transformation, a point’s 3-dimensional voxel indices are the truncated real parts of its
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translated (x, y, z) coordinates. A linked list of all surface points within each voxel is
established. This makes it easy to search 3-D voxels and obtain the surface points possibly
affected by a given tool motion. If the size of the voxel is small, then the total number of
surface points for which to do the further computation is also small. But empty voxels
become a burden for 3-D searching, so there is a trade-off to make between the size of the
voxels and the number of voxels to be searched. It is suggested that one choose the size of
the voxel to be on the order of the length of the median toolpath segment. Therefore, each

tool movement may move into some voxels and out of others.
4.2. Toolpath Processing

In addition to the desired part surface model, some other input data are required for
verification, including the cutter information, the cutter location data (CL-data), the
tolerance of the desired surfaces, the range of interest for display, and limits for
discretization of the toolpath. The cutter information includes seven parameters which are
defined by APT. Therefore, the type of cutter, the height of the cutting tool, the radius of
the cutter, ezc., are all defined. There are three types of common cutting tools: the ball-
end, flat-end, and fillet-end cutters, which all can be specified by a general APT cutter
definition as shown in Figure 4.5. The most important assumption about the tool motion is
that the toolpath segments represent linear point-to-point motions. The control point of the
cutting tool moves along a straight line from point to point. If the user programs for circular
interpolation between points, for example, then our software depends on a postprocessor to
be run first to generate a linear approximation lto the circular path between control points.
(In contrast, however, this software does internally allow for great-circle interpolation
between tool axis angles of sequential control points.) Therefore, the objective function of
the optimization problem for tool motion is only a second-order polynomial equation,

which can be solved without using penalty functions.
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Figure 4.5 Various cutter shapes

For a multi-axis tool motion, the h;(t) value in equation (3.2) for a surface point may
have more than two maximum or two minimum values under some circumstances.
Therefore, interference detection becomes very complicated. To avoid this situation, the
size of the toolpath discretization is regulated, via a maximum angle between the start point
orientation and the end point orientation, as described in Chapter V. The program makes

additional “internal” CL points for these intermediate tool positions and orientations.
4.3. Localization of A Tool Motion

A sculptured surface is typically discretized into thousands of points, depending on
the desired accuracy, size, and curvature of the surface. Since a given tool motion will
interfere with only a small percentage of the surface points, it is very desirable to eliminate
all the surface points which cannot possibly cause interference. The calculation time is
directly proportional to the number of interference calculations. Therefore, one needs to

determine a loose boundary of a given tool motion. For any ruled surface T (t,h) within

O<h<L , 0<t<1, one can easily use equation (3.1) to evaluate the maximum and
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minimum values of the coordinate Xpax, Xmin» Ymax» Ymin» Zmax and Zpyin. Then the

coordinates of any surface point which might be affected by this tool motion satisfy:
Xmin - Rmax< X € Xmax+Rmax - Ymin - Rmax<¥ € Ymax+tRmax ° and
Zmin - Rmax< 2 < Zmax+Rmax, Where Rpy,y is the maximum radius of the cutter plus range

of interest R;;,. The range of interest, R;p,, is user-selected to provide a maximum offset

around the surface, outside of which the algorithm need not calculate cut distance, (and
later, outside of which the depth display can be uniformly colored). Therefore, the indices

of the voxels containing those points are contained in the rectangular solid volume defined
by |Xmin- Rmax| X< | Xmax*Rmax | * [ Ymin - Rmax| <Y < | Ymax+Rmax | and
| Zmin - Rmax| S2< | Zmax+Rmax_| - The linked list of surface points for cach of those

voxels is then available for further consideration.
4.4. Toleranced NC Verification

The minimum distance along the surface normal vector to the boundary of the tool
motion can be evaluated by the method given in the Appendix B. Once all of the distances
between the surface points and boundaries of the tool motions have been evaluated, the user
can freely specify in- and out- tolerances about the desired part surface, as long as both
values are less than Ry, and one can view color-coded displays of the results from arbitrary

viewpoints.

The final machined part has to be compared with the desired part surface. For NC
programs with tolerances specified by the INTOL and OUTTOL concept of APT, if the
machined part is between the INTOL and OUTTOL surfaces, then the machined part

surface meets the tolerance (positional tolerance) specification.
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Desired Part Surface — Tou surface point

Surface normal vector

Tip surface point
INTOL OUTTOL

Figure 4.6 T, and T;,, surface points for tolerance specification

An alternative way, which greatly reduces the cost of the minimum distance
calculation, is to use two surfaces offset from the part surfaces. Rather than to solve for the

equations of the offset surfaces, the normals to the part surface are simply used to generate
a Ty, offset point = (X, Yin» Zin) and a Ty, offset point = (Xout» Your Zouy) in the data
structure corresponding to each discretized surface point. Tj, is offset along the negative
of the normal vector by INTOL, and T, is offset along the positive normal vector by

OUTTOL. By definition, these points are on the corresponding offset surfaces [37][38].
Then for each surface point, the algorithm must calculate the signed distance to T, and

Tout » using the nominal tool radius function in equation (3.4). If the T, surface point is
inside the envelope of the tool motion and the Tj, surface point is not, then the
corresponding surface point is within the tolerance specification. The equivalence of this
method to calculating the distance along the surface normal unit vector to the boundary of

the tool motion is exact only when the depth of cut is at either T;, or Ty,,,. However, we

are also guaranteed that the cut is within tolerance at the surface point if the depth of cut is
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anywhere between T, and T, even though the level of deepest cut is only approximated.
A goal of interference detection is to allow subsequent adjustment of the toolpath
to eliminate undercut or overcut regions. Therefore, using this method, it is necessary to
approximate how deep the gouge is or how great the undercut is for any surface point
outside the tolerance specifications. The approximate distance between a surface point and
the side surface of the tool motion is evaluated as follows:
First, evaluate the approximate cut values S;,(t) and Sqy(t) for the T, and Ty, offset
points, respectively.
Sin® = AJ [Xin - X + [yig - YOI+ [2i5 - 2012 - hp®? - Retyn(®)

Sout) = 4/ [%out - X(O1 + [Yout - YOI + [zogq - 2012 - hoyy(®? - Ro()

If Sin(t) and S,(t) are positive values, which means T;;, and T, do not interfere
with the envelope of the tool motion, then the approximate cut value is newS(t) = S,(t) +
OUTTOL.

If S;(t) is a positive value and S (1) is a negative value, which means T, does not
interfere with the envelope of the tool motion and Ty does, then the approximate cut value
is newS(t) = Sy (t) + OUTTOL.

If Sin(t) and S,(t) are negative values, which means T, and Ty, interfere with
the envelope of the tool motion, then the approximate cut value is newS(t) = S;p(t) - INTOL.

If Sin(t) is a negative value and S,,(t) is a positive value, then we need to evaluate
the surface point itself, since the surface normal and tool axis are pointing in radically
different directions. If the approximate cut value of this surface point is also a negative
value, then the approximate cut value is newS(t) = S;,(t) - INTOL. Otherwise, this
describes a case in which a surface point is being approached by the cutter from behind
(inside) the outward-directed surface, and this anomaly can be considered either as an error

(a deep gouge, for example), or as not cutting the normal at the surface point, leaving its
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former value unchanged. This unusual configuration between the surface normal vector
- and the tool axis will be discussed as a special case in the Section 5.9.

Regardless of which of the four above cases holds, the cut value S(t) is then set to
min ( S(t), newS(t) ), representing the deepest cut to date.

If the surface point is cut by a flat bottom surface of a cutter, the approximate depth
of cut is calculated using hy(t) instead of S(t), which can be evaluated from Part 2 of
Appendix B. If the "top" surface of a cutter cuts anything, it represents a collision of a non-
cutting surface of a tool or tool holder with the part or fixture geometry, and is reported as
an error condition.

This two-point algorithm can verify exactly whether the surface point is within the
tolerance specification. Depth of undercut or overcut, when not exactly equal to the
tolerance specifications, is calculated as an approximate value. Because the program tracks
the index of the toolpath segment causing the deepest cut value S(t) (i.e., the deepest gouge
or closest undercut) to date, the user always knows at the end of the verification which

segments need to be corrected, and by approximately how much, on each region of the part.

4.5 Postprocessing

The output image depicts the desired sculptured surface using color coding to show
the areas within tolerance and out of tolerance in different colors under X-window systems
[39 - 45]). Green represents the areas cut within tolerance. Gouges deeper than INTOL vary
from red to yellow for distances from INTOL to -R;;,. Undercuts greater than OUTTOL

are shown in hues from dark blue to light blue for distances from OUTTOL to R;. For
intelligibility of the output, intensities of all hues are varied according to the angle between
the eyepoint and the part surface normal.

Arbitrary views may be displayed without redoing any verification calculations,
and without changing the answers coded for any points. Within the limits of the distance
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approximations used for all points except those exactly at the specified tolerance limits, the
user may also choose to display results with different tolerance limits, without needing to
recalculate cut values. Such rapid exploration of the depth of cut values is very useful, for
example, in identifying problems via visualizing cusps and near-gouges.



CHAPTER V

THE ALGORITHM FOR THE NC VERIFICATION SOFTWARE

In this chapter, the algorithm implemented in the NC verification software used as
proof of concept for this work is presented and discussed via pseudo code [46). Each of the
specific functions will be discussed based on the mathematical model already presented.
Testing the correctness of software is a very important phase of software development.
Therefore, we introduce some geometric models as test cases with known results, to test the
accuracy of the program. This chapter will also present a performance analysis of the

algorithm in which an order of computational complexity is discussed.

5.1 Pseudo code for the system software

The NC verification algorithm can be depicted in pseudo-code as follows. The
algorithm is divided into three tasks. The surface discretization and output display tasks
will be discussed only briefly, since they are not the topic of this research. Each function
or subroutine in the toolpath processing and the verification will be comprehensively
discussed below.

Taskl : Object-Space Surface Discretization
{

Load the surface data and determine desired discretization parameters.

Discretize NURBS (Non-uniform Rational B-Spline) surfaces and store points, tri-

angles and normals.

43
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Classify each surface point into a uniform discretization of 3-D space (voxels), and

set up a linked list including all the points in a voxel.

Task2 : Toolpath Processing and Verification

{
Load the cutter data and CL file, then link the CL points to make the struct
tool_vect.
For every CL-point from 1 to N
{
Calculate the parameters for the tool axis motion, implicitly defining a ruled
surface.
Further discretize the toolpath segment if necessary, if the tool axis changes
within the segment.
Determine which voxels may contain this toolpath segment.
For every surface point in every voxel possibly interfering with this tool-
path segment
{
Simulate the motion along the toolpath and get the cut value for the
surface point.
Update the cut_value in the data structure of POINT.
J
J
J

Task3 : Display the verification output as a pseudocolor raster on the surface.
{
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Use the updated cut_value from the data structure of POINT after the verification
is complete.

The color of the discretized surface is decided by the magnitude of the cut_value.
The boundary between regions of varying hues between the discretized surface
points is determined by linear interpolation of cut_values. Intensity is based on an-

gle between sight line and surface normal.

5.2. Loading Surface Data

The desired part surfaces used in this method consist of NURBS surfaces, which are
defined by a designer and typically are directly produced by a CAD surface or solid
modeling package. NURBS, trimmed NURBS, and bounded NURBS may all be read and
discretized in their standard IGES representations. Trim and boundary curves may be
cither NURBS curves, composite curves or copious data entities. Three user-supplied
values control the level of discretization performed on these surfaces. They are maximum
chordal deviation and maximum distance (in world coordinates) between sequential points
generated in each of the two parametric directions. After the surfaces are evaluated and
discretized, the surface outline is displayed. An implementation developed by Correns[32]
of NURBS evaluation algorithms is used here to evaluate untrinmed NURBS surfaces
(points, chordal deviations and normals). Program flow for the surface loading task is
illustrated in Figure 5.1.
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query user for discretization parameters

read IGES data format surfaces

4

evaluate points, normals Surface data structure

-
Transform outline data to screen coordinates

r

v .
i Outline Display

een

Figure 5.1 Program Flow in Loading Surface Data

5.3 Create voxel space

All the surface points in the data structure of the surface are classified into a
uniform discretization ot" 3-D voxel space, and a linked list of all the points in a voxel is
built.
set up the index for the voxel space
While (surface != NULL)
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Translate all the surface points into positive quadrant of a coordinate system based on
a box bounding all surfaces.

Classify each surface point into its corresponding voxel.

Transfer the surface corner points, surface maximum and surface minimum points into

corresponding voxels.

5.4 Loading Toolpath data and cutter data

The data structure of the toolpath needs to be built as a linked list. The toolpath is
considered to define a linear motion of the tool’s control point between CLpoints. The
toolpath data read from the CLfile are in groups of six elements, which are (x, y, z)
coordinates of a CLpoint and (cosa, cosP, cosy) where a, B, and 7y are the angle of the tool
axis with the x, y, and z axes at that point, respectively. The data structure, called tool_vect,
has six data elements: the toolpath start point, start point orientation, end point, end point
orientation, toolpath number, and a link to the cutter information for this tool movement.
Dynamic allocations were used for all structures having a size dependent on the number of
points in the toolpath, so the program has no upper limit on toolpath size except for the
virtual memory capacity of the workstation.

Let P denote the start point of a toolpath segment; Py, , the end point of a toolpath
segment.

Let P_orient denote the start point oricntation; Py, orient, the end point orientation.
allocate memory space for a toolpath-segment

read two CL data points
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Transform the CL data points using the voxel space transformation
store toolpath data and set toolpath pointer to space for next transformed CL data
setP = P,,.,and P_orient = P,,,, orient
while ( CL data != EOF)
{

allocate memory space for a toolpath segment

read another CL point

Transform CL point using the voxel space transformation

store toolpath data and set 1oolpath pointer to space for next transformed CL data

setP =P, and P_orient = P,,,, orient

The cutter information is defined by the general APT cutter in this program. Seven
parameters are defined according to the definition in Appendix A. The data structure for
the cutter contains cutter type (calculated from the APT parameters), distance from control
point to top of cutter, the seven APT parameters, h values for three points bounding the
three cutter regions, two precomputed coefficients of radius-dependent functions (to avoid
the need to recalculate them for each move), and the range of the interest. The three most
common cutter types are treated as special cases, based on the contents of the APT
parameter file. In all cases but the ball-end cutter, the control point is considered to be at
the tip of the cutter. Definitions of these cutter types in terms of the seven APT parameters

are as follows:
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ball-end cutter : CUTTER/d, d/2,0,d/2,0,0,L

The ball-end cutter has radius d/2 and total length L (but the distance from the
control point to the top of the cutter is L-d/2)

flat-end cutter : CUTTER/ d, 0, d/2,0,0,0,L
The flat-end cutter has radius d/2 and length L

fillet-end cutter : CUTTER/d, 1, d/2-1,1,0,0,L

The fillet-end cutter has radius d/2, comer circle radius r and length L

The cutter profile is displayed at the first two CLpoints when the toolpath is loaded,
allowing a visual check of tool correctness.  This is very important for the general APT
cutter, since the shape of the cutter is not trivial to see from the seven segments parameters.

allocate memory space for a cutter data structure

store seven segments cutter value into cutter pointer data

evaluate h values at the dividing points between cutter regions of three different radii
decide the type of cutter

evaluate the custer coefficients for first and third cutter radius regions

print all the cutter pointer data for checking

5.5 Tool axis motion during verification

During verification, an additional data structure called segment_structure is filled
as cach toolpath segment is processed. The data structure contains the three slope
coefficients of the linear tool motion from the start point to the end point, the arc angle

between the orientation of the start point and the end point, and the function coefficients
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defined below for the tool axis unit vector N(t). As described in Chapter 2, the tool axis

orientation is linearly interpolated along a great circle as shown below. Different tool axis

orientation functions are possible, and would require code modifications to implement.

N(@®)

Figure 5.2 Circular interpolation between A and B in 3-D space

It is equivalent to solving the following three equations:

A°N = |AlINIcos(6t) M
Ne¢(AxB= 0 2)
B*N = IBI INIcos(6 (t-1)) 3)
where O<t<1,

N is the interpolation vector corresponding to
motion on a great circle on a unit sphere.

The A unit vector is the previous tool axis and the B unit

vector is the current tool axis

0 is arc angle between the A vector and the B vector.

Therefore, solving (1), (2) and (3), the tool axis orientation N(t) becomes three

components N_ (1), Ny(t), N, (1), where each component can be expressed in terms of cos(6t)

and cos(6(t-1)). This is very easy to evaluate for any interpolation unit vector N(t) between

O<t<1.

arc_angle = cos’'(P_orient * P,,,, orient)
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if ( arc angle > epsilon )
{

evaluate N(t)

Nx(t) = Nx(t)_coeffT0]*cos(6t) + Nx(t)_coeff1]*cos(6 (t-1))
Ny(t) = Ny(t)_coeffT0]*cos(0t) + Ny(t)_coeffT1]*cos(0 (1-1))
Nz(t) = Nz(t)_coeff{0]*cos(6t) + Nz(t)_coeffT1]*cos(© (t-1))

J
else

{
Nx(1)_coeff]0] = Nx(t)_coeffT1] = 0.5*Ax[0]
Ny(1)_coeff[0] = Ny(t)_coeff1] = 0.5*Ay[1]
N=(1)_coeff]0] = Nx(t)_coeff]1] = 05*Az[2]
}

5.6 Additional toolpath discretization during verification for multi-axis milling

In equation (3.2), hi(t) = [x; - X (DIN, (1) + [y; - ¥ ®INy®) + [z - z ®)IN,(). For
cach surface point, there is a corresponding value h;(t) within 0 < t < 1. The N(t) is
expressed in terms of cos(0t) and cos(6(t-1)). For multi-axis tool motion, the h;(t) may
have more than two extrema within 0 < t < 1. Therefore, evaluation of equation (3.3)
becomes very complicated. Instead, dynamic discretization of the toolpath into shorter,
constant-orientation segments is used for multi-axis tool motion. For three-axis tool
motion, this additional discretization is not needed, since the tool axis does not change, so
the number of minima in the interval 0 < t <1 is at most 1. For the multi-axis case, the
number of additional segments to be produced is decided by the angle between orientation

of the start point and the end point, relative to a maximum angle provided by the user.



52

Figure 5.3 Toolpath discretization for multi-axis milling

if (arc angle < epsilon )
number of segments =1
else
number of segments = arc_angle | user_specified_maximum_angle
store current toolpath data into temporary variables
Jor (j=1,j<= number of segments, j ++)
{
and cut value evaluation

}
restore the toolpath data values

5.7 Searching voxel space for a tool motion

A tool motion can be confined within some voxel volume, thus reducing useless

calculations for surface points far away from the tool motion. The edge dimensions of a
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voxel are usually selected to be similar to the length of the typical tool motion. After the
surfaces are discretized into points, during which process extrema are tracked, all the
surface points are transformed into a positive coordinate space and linked-listed within
their appropriate voxels in that space. The voxel volume containing a particular tool
motion can be evaluated according to equation (3.1). The mathematical concept can be
expressed as shown. The deviation is caused by the angle change between the orientation

of the start point and the end point.

T Ruled surface 7] V2!

—l' Vi1

Figure 5.4 Space bound for a ruled surface

Therefore,
Maximum of a tool motion boundary = max (V11, V12, V21, V22) + R, + Deviation

Minimum of a tool motion boundary = min (V11, V12, V21, V22) - Rpp,, - Deviation
Where, V11, V12, V21, V22 are evaluated according to the ruled surface.
Rpax is the maximum radius of the cutter plus range of interest Rip,.

Deviation = L(1-cos0;) and 0, is the angle between the start point orientation and
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end point orientation.
Pseudo code for the algorithm can be expressed as follows:
Let cutter_bound = max_cutter_radius + range_of_interest + Deviation
Let min_x, min_y, min_z = minimum x, y and z coordinates of a tool motion boundary,

respectively.
Let max_x, max_y, max_z = maximum X, y and z coordinates of a tool motion boundary,

respectively.

evaluate the maximum and minimum for each of x, y, and z for the ruled surface of the tool
path segment
maximum coordinate of the tool motion = maximum coordinate of the ruled surface +
cutter_bound
minimum coordinate of the tool motion = minimum coordinate of the ruled surface -
cutter_bound
Jor (i= min_x, i <= max_x, i++)
Jor (j= min_y, j <= max_y, j++ )
Jor (k= min_z, k <= max_z, k++ )
{
convert the voxel coordinate into a corresponding voxel number (integer)
set surface_point = first pointer of this voxel number
while ( surface_point != NULL)
{
evaluate cut value of a surface point

set surface_point = surface_point->neighbor
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5.8 Minimum distance evaluation from the surface point

Minimum distance evaluation between a surface point and the ruled surface is used
to decide whether or not the surface point is inside the envelope of the tool motion. The
approximate cut value is also evaluated, according to the equation in section 3.3. Recall
the equation -- it is similiar to an optimization problem in which an objective function is

minimized subject to two constraints.

Objective: minimize [x; - x ]2 + [y; -y (1 + [z; - z (1> h2 (©) - RA(ky(1))
Constraints: 0 < h;(t) < L
O<t<1

For this optimization problem, it is possible to solve the minimization problem
without using a penalty function if the objective function is only a second-order polynomial
equation and the constraints are only first order, as is the case in this problem. In fact, for
the three-axis case, or with the linear approximation used in this work for solution of the
five-axis case, we can solve the constraints first for t, and then minimize the objective
function later. Let’s discuss this problem by examining three-axis and five-axis milling as

two different cases.
5.8.1 Three-Axis Case

In a three-axis milling machine, the N(t) is constant throughout the tool motion.
Therefore, h(t) is a linear function if the toolpath motion is linear. The algorithm simply
evaluates the start point, middle point and end point h(t) functions, then decides which R(h)
function we need to use (i.e., which regions of the cutter the point may be cut by).
Alternatively, one could solve the h(t) constraint for the t values at which h(t) is a dividing
point between cutter radius functions (i.e., the function R(h) changes shape). Using either
technique, one can usually determine that the radius function R(h) need only be evaluated
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for one or two of its three possible functions, because the possible intersections with the
point are confined to those one or two regions of the cutter geometry. In the worst case, all
three radius functions must be evaluated.

O =[x;-x OF +[y;-y OF +[z-z ©1-h2() - R2h(®)-——- (5.6.1)
hi(®) = [x; - x (VINy + [y; -y (OINy + [z - z ®)IN,

The minimization equation actually is only a second-order equation. To get the
minimized value, it is simple to solve f'(t) = 0. Compare the £(0), f(minimized_t), f(1).
which satisified the constraints on h(t). The minimized value of f(t) is therefore obtained
without solving the penalty equation of the optimization problem.

The minimum distance from the surface point along the normal to the bottom (or
with a similar argument, the top surface) of the tool motion can be solved by solving the
constraints first, then minimizing the cut value s(t) later.

evaluate the coefficients of [x; - x (1)], [y; - y (1)], [2; - z (1)] and h{1)

evaluate the function coefficients of [x;- x (OF + [y;-y ®)F + [z;-z ()] - hi()

evaluate the approximate cut value of the start point and end point

set min_cut_value = min( start point cut_value, end point cut_value)

evaluate the h; value of the start point , middle point and end point

decide which portions of the tool may cut deepest during this toolpath segment (i.e.,
which radius functions to evaluate)

evaluate the function coefficients of equation (5.6.1)

evaluate the first derivative of equation (5.6.1)

solve for the root of the above equation, t1

if (¢l is between 0 and 1 , and hyt) is between 0 and L)
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evaluate the approximate cut value: t_min_cut_value =

sqrt {[x; - x (t_min)}+ [y; -y (¢_min)]?+ [2; - 2 (t_min)]?- h?(t_min)} - R(hs_min))

set min_cut_value = min( min_cut_value, tmin_cut_value)

5.8.2 Five-Axis Case -- First Approach

For five-axis milling, one approach to evaluating the approximate cut_value is to
use an iterative solution technique. The solution can be reached subject to a convergence
condition. For five-axis tool motion, N(t) is not a constant any more. Direct solution of the
h(t) and f'(t) = O equations is no longer casy. The pseudo code of a simple iterative
technique is as follows :

set t new= 05
if ((t_new - t_old) < epsilon )
{
evaluate the coefficients of h{t) according to N(t_new)
evaluate the function coefficients of [x; - x (0] + [y; -y (O + [2; - 2 (0P~ h¥(1)
solve the first derivative of the above equation for t_min
lett_old = t_new
if 0<t<1and t min_cut_value = f(t_min) is the minumum value for function f{1)
thent_new = t_min_cut_value
elseif (t_min_cut value > 1)
t_new=1
else if (¢_min_cut value < 0)

t new=0
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The proof of a sufficient condition under which the algorithm converges is based

on the following equation:

f®) = [x; - x OF +[y;-y OF + [z - (O b2®) - RA(y(1)) - (5.6.2)

hi(t) = [x; - x (INy (1) + [y; -y (DINy(V) + [z - z ()IN,(1)

= (a + b*t)(c*cosB t + d*cos(® (t-1)) (5.6.3)

Let {t;} be the sequence of approximate solutions for t in the above algorithm.

For allt;, let £'(t) - £(t*) = Mj(t -t*) . Then, if IMjl < 1, for all i>1, then the

solution converges, where t* is the solution of the equation.

Let’s derive the converge condition based on the special case R(h(t)) =R
Therefore,

£ =[x;- x OF +[y;-y ©F +[z- 20 b0 -Rr2
Then F(t) =f'(t) =2( x; - x (1) k() + 2[y; - y O] Y1) + 2(z; - z O] (1) - 2hy(Ohy(t)
Let tg be the first iteration value and t; and t), the next two values. We need to prove
th

that the solution converges under some conditions. First, assume t; is n™" iteration value

and t,,, is n+1'" iteration value.
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Then
F(ty) =2 (x; - x () X(t) + 2[y; - y (tp)] y(1) + 2[z; - z (t5)] (1) -

2(a + b ty)(c cosOt,_ 1 + d cosO(ty. - 1))[b (c cosOt, | +d cosO(t,.; - 1)) +

(a+b t;)0( ¢ sindty,_y - d sinB(t, ;- 1)) ]=0
and

F(tay1) = 2( x; - X (tgy1)) (V) + 2[y; - ¥ (t4 )] YO + 2[z; - Z (t41)] 2(0) -
2(a + b ty,1)(c cosBt, +d cosb(t, - 1)) [b (c cosbty, +d cosb(t, - 1)) +
(a+b t,,1)0( -c sinBt,, - d sinb(t, - 1)) ] =0

We need to derive the relationship between successive iteration values:

F(ty) - Fltay) =2 (224 y2 + 2 )tn41 - tn) - 2(a + b ty)(c cosOty + d cosb(ty.; -1))
[b (c cosBty_; + d cosO(ty.; - 1)) + (a+b t,)8( -c sinbty ) - d sinb(ty.; - 1))]
+2(a + b ty,1)(c cosBt, +d cosB(t, -1)) [b (c cosbt, +
d cosB(ty - 1) ) + (a+b t,,1)0( - sinbt, - d sind(t, - 1))] =0

Rearranging, the equation becomes:

2(%2 +¥ + 2 Ntgy) - t) - 2b (2 + b t)(c cosbty ; +d cosb(ty.; -1))2
26(a + b ty)(c cosBty,_; + d cosB(ty.; -1))( - 5inBty, - d sind(ty.; - 1)) +
2b(a + b t.1)(c cosBt, + d coso(t, - )2+
26(a + b t;,,.1)%(c cosBt, + d cos(t, -1))( < sinbt, - d sinb(t, - 1)) = 0 - (5.6.2)

Let’s add and subtract two terms 2b(a + b t, )(c cos8ty + d cos8(t, -1))2 and
26(a + b t,1)% (c cosOt,.; +d cosO(t, 1 -1))( < sinbt,.; - d sinB(ty g - 1))
from equation (5.6.2)



Rearranging, the equation becomes

2(x2 + 2 +2 Yige1-tp) +
2b(a + b tp)[(c cosOt, + d cosO(t, - ))2-(c cosOt, ; +d cosO(ty_; - D21+
20((a + b tg,1)2 -(a + b ty)?)(c cosBty_; + d cosB(ty. -1)( -C sinbty.; - d sind(ty. - 1))

+2b? (1,1 - t )(c cosBt, + d cosb(t, -1)) +

26(a + bty 1)2((c cosbt, + d cosO(t, -1))( -c sinbt, - d sin6(ty, - 1)) -
(c cosBt,.; + d cosB(t,.; -1))( -c sinbt,_; - d sinb(ty.; - 1)) =0

Let g(t) = (c cosOt + d cosO(t - 1))2, (a + b )2 or
(c cosBt + d cosO(t -1))( -c sin6t - d sin@(t - 1))

Introduce the mean value equation g(ty) - g(tq-1) = g'(t) ( tg - ty.1 ), Where tis
betweent, and t, ;

Therefore,

Q(x2+ Y2+ 2 )+ 2b%(c cosbty + d cosO(ty -1)) )tge1 - tn) -

2b8(a + b t;) [ 2(c cosbt + d cosB(t -1)) ( ¢ sin6t + d sin6(t -1)) ] (tg - ty.1) +

26*2b(a + b t)(c cosbt, +d cosB(t, -1))( < sin6t, - d sind(t, - 1))(tgs1 - tn) -

26%(a + b t,,,1)2[(c cos6t + d cos(t -1))2 - ( ¢ sin6t + d sinb(t - 1))?] (t - t5.1) =0
Rearrange the equation to obtain the final expression:

[2 (%2 +y2 + 2 }+ 2b2(c cosbt, + d cosb(t, -1))2 ) +
4b0B(a + b t)(c cosbt,, + d cosb(t,, -1))( -c sinBt, - d sinb(t, - 1))1(tn41 - tn)
= {4bB(a + b t;) [ (c cosBt + d cosO(t -1)) ( ¢ sinbt +d sin6(t -1)) ] +
26%(a + b t,,1)2[(c cosBt + d cos(t -1))? - ( ¢ sinBt + d sinb(t - 1))?] }(ty - tn-1)
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If (the1 - tp) = M(ty, - t,.1) and IMI <1, then the iteration converges. But the above
equation is of that form, considering K1

M= — and defining
K2

K1 = {4bB(a + b t,) [ (c cosOt + d cosO(t -1)) ( ¢ sinBt + d sinB(t -1)) ] +
262(a + b to,1)2[(c cosBt +d cos(t -1))2 - (¢ sinBt + d sinb(t - 1))?] )

K2 = [2 (%2 + 32 + 22 )+ 2b%(c cosBt, + d cosb(t, -1))?) +
4b6(a + b t)(c cosBt, + d cosB(t, -1))( -c sinbty, - d sinb(ty, - 1))]

Using upper limits for some trigonometric values in the above equation,
we can evaluate an upper bound of M:
M<  4*D+0*L*1 + 2+02*LY (2"D2 -4*D*6*L*1)< 1
Convergence condition : D > 4.3 |0L)}
Where, L = length of the cutter
D = distance between toolpath start point and toolpath end point
The above convergence condition is for R(h(t)) =R. If R(h) is different from R (i.e.,
other than a cylindrical cutter is used), one needs to add coefficient factors to the above
derivative expression. The upper bound of M is a convergence condition for the algorithm
to work, allowing solution of 5-axis problems without discretizing the toolpath into a series
of short, 3-axis segments to approximate it. Whether or not this convergence condition
holds is actually determined by the distance between successive CL points, the length of
the cutter, and the rate at which the tool axis orientation changes. There are some situations
in which the algorithm will never work properly. For instance, if D = 0 and the angle
change is non-zero, then the convergence condition will not be satisified. It is necessary to
check the inequality before using the algorithm. But even though the algorithm may
converge, it is not the case that the point to which the solution converges is always the
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correct solution. The iteration algorithm for equation (5.6.1) does not necessarily produce
a global minimum or maximum. Therefore, subdivision of intervals with large angular
changes of the tool axis, and using linear solutions to approximate the nonlinear case is
necessary to avoid this problem, and it is the approach employed throughout the remainder
of this dissertation and in the final software implemented.
5.8.3 Five-Axis Case -- Second Approach

Let’s discuss next the situation if we try to do five-axis verification using a toolpath
discretized into linear subsegments and calculating the cut value of the surface points based
on the three-axis algorithm, but allowing the tool axis to have slightly different orientations
at the start and end points of the subsegment. What is the maximum error of this algorithm?
Suppose we discretized the toolpath to assure only a small angle change for each step. The
angle between the toolpath start point and end point axis orientations is 6 , and we call the
start point tool axis orientation N(t=0) and end point tool axis orientation N(t=1). If we
evaluate the cut value based on the tool axis orientation interpolated linearly to a middle
point orientation N(t=0.5), the maximum error of this algorithm will be L(1 - cos(6/2)) +L
sin(0/2), where L is the length of the tool.

NO) N(.5)
4 N(D)
L
Ly
Control point

Figure 5.5 Tool axis approximation for the multi-axis case
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For a discretized toolpath allowing 1 degree changes in axis orientation between
segments, and a cutter of length 1 inch, the maximum error is 10° 3 inch. This occurs at the
top of the cutter (assuming the control point is at the bottom of the cutter). This error is a
significant amount in comparison to tolerance specifications which are not uncommonly
only fractions of a thousandth of an inch. If we discretize more finely, we can have smaller

error. For example, if the toolpath were discretized to have only 0.01 degree steps, the

maximum error would be reduced to 10-L. If one uses the tip of the ball end cutter to mill
the surface, and the control point is at the center of the spherical cutter, then there is no
error, so fine discretization is completely unnecessary. This is one reason some verification
software only verifies toolpaths for ball end cutters, at least for 5-axis milling. But if one
needs, for example, to use the side of the cutter to mill the surface in a multi-axis milling
machine, the maximum error of this approach for practical levels of discretizations may be
too large at the top of the cutter. Therefore, there is a need to use a different approach for
a more general verification algorithm.
5.8.4 Five-Axis Case -- Third Approach

The most promising algorithm developed in this work also relies on discretizing
multi-axis toolpath segments into several subsegments, so that each segment typically has
only a relatively small change in tool axis orientation and cutter extension/retraction. We
divide the toolpath segment into several segments, using an upper bound on the error
caused by the tool axis orientation change and cutter extension/retraction. For each surface
point, we also translate the control points of each subsegment by the amount h(t = 0.5)
which is the local coordinate of the surface point on the tool axis N(t = 0.5) in the middle
of the subsegment. This reduces the error due both to cutter extension or retraction along
its axis and to change in orientation.

Assuming that we examine portions of the cutter with continuous slopes, the error

in cut value (which can be seen as error due to angular change plus error due to extension
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or retraction of the tool along its axis during the subsegment) has a maximum for this
approach at L(1 - cos(6/2)) + hy,,,sin(6/2), where hpp,, is the maximum change in h values
of the local coordinate of a surface point on the cutter between two toolpath subsegment
points (see Figure 5.6); it is the sum of the retraction/extension distance between adjacent

subsegment control points and the sin of the axis angle change between them.

Figure 5.6 Tool retraction and change of orientation of discretized toolpath

This maximum error occurs when the portion of the tool furthest from the control
point is cutting. The term hp,,sin(6/2) replaces the term Lsin(6/2) from the second
approach described earlier. The maximum error is greatly reduced, since the control point
is, in effect, translated for each surface point to the position on the cutter axis offering the
least error for the surface point under consideration. For example, if the length of the cutter

is 1 inch and the allowable hp,, is about 0.1 inch (that is, the sum of extension/retraction

(in inches) and the sin of the maximum change in angle is about 0.1), then the maximum
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error for this approach is about 107 inches. This error is essentially independent of the
cutter length, since the L(1 - cos(6/2)) term is very small compared with hp,,,sin(6/2) for
realistic situations with 0 less than a few degrees. The pseudo code for this algorithm can
be expressed as follows:
If it is a multi-axis tool motion, then use a user-specified allowable maximum error (al-
lowable hyg,) to determine a bound on tool extensioniretraction and angular change
Jor the subsegments in the interval 0<t< 1.
Subdivide the toolpath segment into n subsegments accordingly. This yields subsegments
Jor which the maximum error is bounded at L(1 - cos(0/2)) + hyyasin(6/2).
for (j=1,j<= number of subsegments n, j ++)
{
evaluate discretized toolpath point and orientation
perform voxel space search
Jor every surface point in the voxel space
{
find the local coordinate h{t = 0.5) of that point on the tool axis N(t = 0.5) at
the midpoint of the segment.
translate the starting and ending control poinis for the segment along the tool
axis by hyt = 0.5).
evaluate approximate cut value according to the three-axis algorithm with the

new control points and the tool orientation at N(t = 0.5)
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5.9 The Use of Offset Surface Points for Tolerance Checking

If the approximate cut value is evaluated for the minimum distance between the
surface point and the envelope of the tool motion, it provides only a rough test for the
toolpath (so it is called “rough verify” in the software). Some undercut and overcut regions
may still be undetected due to the discrepancy between using surface normals and distances
of the ruled surface from the stfrface points, as shown in Figure 5.7. In Figure 5.8, the
approximate cut value is less than the actual cut value value. If the OUTTOL is specified
to be between the lengths AB and AC, then using the minimum distance evaluator from the
surface point, one gets a cut within tolerance. But, in fact, it is outside the tolerance region.
In Figure 5.9, if the INTOL is specified between length AE and AD, then one gets a cut
within tolerance. However, in fact, it is a gouged region. To avoid this situation, the
minimum distance evaluator is used instead for points offset from the surface by INTOL
and OUTTOL. The approximate cut value in Section 4.4. describes this situation.

Tool motion profile

Figure 5.7 Undetected undercut region
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Tool motion profile
Surface normal

Part surface

Figure 5.8 Undetected overcut region

INTOL and OUTTOL surface points are evaluated
Jor every surface point
{
evaluate approximate cut value of OUTTOL surface point
evaluate approximate cut value of INTOL surface point
If (INTOL _cut_value >= 0 && OUTTOL_cut_value >= 0)

{
if (checking_edges & & surface point is missed along normal to range of in-
terest) set cut_value = 99
else set cut_value = OUTTOL _cut_value + OUTTOL
}

else if (INTOL_cut_value >= 0 && OUTTOL _cut_value =< 0)
set cut_value = OUTTOL cut_value + OUTTOL

else if (INTOL_cut_value =< 0 && OUTTOL _cut_value =< 0)
set cut_value = INTOL cut_value - INTOL



68

else if (INTOL _cut_value =< 0 && OUTTOL _cut_value >= 0)

{
evaluate approximate cut value of the surface point
if ( surface_cut_value <= 0) set cut_value = surface_cut_value
else set cut_value = 99

J

The approximate cut_value = 99 means the surface point has (so far) always been
missed by the tool motion. For surface points for which the surface normal vector is very
different from the tool axis orientation, an edge checking process can be used to recognize
that this point is missed by the tool motion as shown in Figure 5.9. For the “rough”
verification, not using offset surface points, this edge checking would look along the
normal to determine whether or not there is an actual intersection with the cutter envelope.
But this edge checking requires a great deal of additional calculation effort for many
surface points between the OUTTOL and the range of the interest. It is not active in the
current code. There is one case in which the INTOL_cut_value is less than 0 and the
OUTTOL _cut_value is larger than O (see Figure 5.10). In this case, the surface normal is
nearly perpendicular to the swept volume of the tool motion. Whether or not this case is
detected depends on whether or not the evaluation is made of the cutting of the INTOL
point and the surface point when the OUTTOL point is not cut. If these (usually
unnecessary) evaluations are also done, then the program can distinguish a gouge (the
INTOL point and the surface point are cut) and a cut within tolerance (the INTOL point is
not cut, but the surface point is) from the undercut usually indicated by not cutting the

OUTTOL point. However, in the current software, this extra checking is not done.
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Tool motion profile

X

Part surface  gyrfa point

Figure 5.9 Checking edge by tool motion

Tool motion profile

X

OUTTOL surface point
INTOL surface point | Surface point

Figure 5.10 Part surface is cut by wrong tool motion
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5.10 Circular or Contouring Motions

Although in this verification algorithm the trajectory of the control point in each
segment is rendered by linear interpolation between the previous and current position,
contouring motions and circularly interpolated motions could be treated easily by
discretizing the toolpath into a number of subsegments, with the number dependent on
allowable error bounds. For example, if the control point moves on a 1-inch-radius circular
arc of 45 degrees from a previous position to the current position, then if the toolpath is
discretized into 0.5 degree subsegments, the maximum error (chordal deviation) from the
linear toolpath is about 10-3inches. Similar techniques would suffice for parabolic motion,
etc. The penalty for simulating additional subsegments is typically not unmanageably
large, since circular motions on large arcs may not occur often in the toolpath. This

approach eliminates the need to write additional evaluation routines to treat these cases.
5.11 Correctness test of the program

It is said that good programmers make errors. The software development based on
this algorithm needs to tested to be error-free before it can be relied upon as a production
tool. Some testing of the software has already been conducted using both industrially-
supplied data and test parts produced by a solid modeling package. One process used for
testing the NC verification program was to create channel-style solids with surfaces which
match the theoretical shape of the tool swept volume for a simple toolpath, as shown in
Figure 5.11. To easily visualize the tool motion and see the color image display, it is easiest
to use half channels, since the algorithm uses the cutter symmetrically, anyway. Therefore,
half channels can test the correctness of the software. Output of test runs made with half

channel surfaces are shown in Chapter 6, together with other sample outputs.

A half channel was created with the I-DEAS solid modeler and written to a file as
NURBS surfaces in IGES type 128 format. For this purpose, the untrimmed surfaces at
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the ends of the channels needed to be removed. Several such test channels were created for
testing 3-axis toolpaths. However, this modeling package was not used to create a swept
volume representing a tool moving in 3-D space with a changing tool axis orientation. For
this case, instead of the swept volume, one can generate a skin group volume by sweeping
the tool profile along a generatrix. However, this skin group object is not equal to the swept
volume of the tool motion since, for example, rotating the tool forward or backward causes
different tool profiles to become the active cutting regions.

The tests of the software were divided into two major parts: (1) the half-channel
tests, which let the tool move from the start point to end point with no tool axis change. This
is a general three-axis tool motion. But the tool axis need not always point to the coordinate
x-axis , y-axis or z -axis. The test was used not only to prove that the tool sweep is an exact
fit to the half channel, but also, using different cutter diameters or offset tools, to evaluate
gouge and undercut cut values to verify that the display is what we expected. As discussed
in Chapter 6, the undercut and overcut regions were what we expected, so it increases our
confidence that this software can verify the toolpath correctly for general three-axis tool
motions.

(2) The next step was to use a tool profile to generate a half channel which only
roughly approximates the shape of the tool swept volume, for a tool motion in five axes.
To do this channel-creation operation by sweeping a single tool profile guarantees that
there will be errors between the swept volume and the walls of the channel. However, such
channels are still useful, because one can calculate the expécted deviation at various points,
and compare those values with the cut values calculated for those points by the software.
After creation of the channel, it was rotated and translated it in 3-D space, to avoid
accidental alignments with axes, which may tend to hide errors in the software. It then
became a primitive mode! for five-axis tool motion, using a similarly translated and rotated
toolpath. But the bottom of the tool collided with the half channel, as it should, when we
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used the real tool to simulate it. This reflects the difference between the surface of the swept

volume and the skin group (channel surface).

essccccccccccccsacans

Figure 5.11 Solid model for test of three-axis milling process

The cut value after the tool axis was rotated was checked with the “query cut value”
command, which prints th- cut value of the surface point. The analytically calculated cut
values matched the cut values evaluated by the program. The side surface of tool still fit the

channel relatively closely, and was checked visually. Since the software passed these tests,
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it is plausible that the software can verify more general five-axis tool motions correctly,
since the basic theory appears to be correct and correctly implemented.

5.12 Efficiency Analysis of the NC Geometric Verification Algorithm

This section presents an efficiency analysis of the algorithm. The computational
complexity or time complexity is measured based on order of complexity or “Big Oh”
analysis. The result of such an analysis is a function called the time complexity of the
algorithm, t(n), which is proportional to some function of the size of the input data “n”. We
define the worst case for complexity t(n) by an inequality V n 2 ny, t(n) < cf(n), where n
and ng are natural numbers, c is a positive real constant, and f(n) is called the “growth rate”.
In other words, O(f(n)) is the set of all functions t(n) bounded above by a positive real
number multiple of f{n), provided that n is sufficiently large (greater than some threshold
np).

For the purpose of the analysis, the NC geometric verification algorithm may be
depicted in “pseudo-code” as below. The algorithm is shown broken down into nested
tasks. The time complexity of each of the tasks is denoted by the term “O(f(n))”, where f(n)
is the growth rate of each task. The term O(1) indicates that the task has constant order
time complexity; i.e. , it is independent of input size. Each task in the algorithm will be
examined individually to determine the growth rate of the algorithm as a whole.

For every CL-point from 1 to N
{
Calculate the parameters for the tool axis motion, implicitly defining a ruled sur-
face. O(1)
Further discretize the toolpath segment if necessary, if the tool axis changes within
the segment. O(1)
Determine which voxels may contain this toolpath segment. O(1)

For every surface point in every voxel possibly interfering with this toolpath seg-
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Simulate the motion along the toolpath and get the cut value for the surface
point. O(1)
Update the cut_value in the data structure of POINT.

The function “calculate the parameters for the tool axis motion” involves
calculations related to defining a ruled surface. The function reduces to a calculation of
some constant, independent of any other structures; therefore it is of constant order time
complexity.

The functions which subdivide the toolpath for multi-axis motions and which
search voxel space are of constant order since they are independent of the number of CL
points in the toolpath. The voxel search algorithm is actually also independent of the extent
of the part surfaces loaded, since it is performed only in the local arca immediately
surrounding the tool swept volume for the motion being simulated. The main NC
simulation function is to find the approximate cut value. In this function, the approximate
cut value is evaluated according to the simplified optimization problem described above.
For any tool motion, this is of constant order time complexity (it is independent of the
number of other CL points) and can be bounded. Thus, since each of the tasks within the
outer loop is of constant time complexity, the growth rate for the entire NC geometric
verification algorithm is proportional to the number of times the statements in the outer

loop are executed. Thus, it is of order O(N), where N is the number of the tool path points.
5.13 Computational Error

Some amount of error in the computations described here is evitable, since the they

utilize floating point representations. For example, if a flat end cutter is milling along a
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plate, a point at the tip of the cutter might be supposed to be evaluated as h(t) = 0, but in
fact, be represented as h(t) = -10°1°. Depending on how the logic of the program is
implemented, this might cause either a minor computational error, or a more important
logical error. In some cases, interval calculations, rather than strict equalities or
inequalities, can help to avoid logical errors. For example, for the situation just mentioned,
for a negative h, we ordinarily would not invoke the evaluation function involving the
cylindrical surface of the tool. Then this point could not be cut by the tool motion.
Actually, it should probably be calculated as being cut within tolerance by this tool motion.
To avoid this problem, it is necessary to perform interval calculations, defining an epsilon
to set the boundary of the tool motion. Of course, the actual value of epsilon depends on
whether float or double precision is used, on the magnitudes of the variables involved, etc.

5.14 Direct Dimensional NC Verification

In direct dimensional NC verification, the cut value is directly evaluated as
described in Appendix B. The purpose of NC verification is not only to determine toolpath
errors, but also to do so efficiently. The part of the equation shown below under the square
root is not a second-order equation in the multi-axis milling case, even if the toolpath
motion is linear, since H(t) depends implicitly on N(t), the axis orientation. Thus, if it were
necessary to find the actual cut value by minimizing the full equation, the problem would
be very complicated, multimodal, and could not be solved by simple interpolation.

-H(Y) £ A H2() - 4%3(t)*P()
2%)(t)

s(t) =



CHAPTER VI

RESULTS AND EXAMPLES OF PERFORMANCE
OF THE ALGORITHMS

6.1 Application of the NC Verification

In Chapters Three, Four and Five, a new algorithm for multi-axis NC verification
is presented. This chapter deals with the application of the software based on the algorithms
to a series of test problems and more realistic models of manufactured part surfaces. For
verification of NC miuing, a color-shaded image output is displayed. First, the structure
of the NC verification program is illustrated. Figure 6.1 presents the general ideas from the
loading of the surfaces and toolpath data to final color image display. Tradeoffs between
high-accuracy of the shaded color image and the conflicting goal of speedup of
computation time are mentioned. Next, some testing of the software which has already
been conducted using test solid model parts produced by a solid modeling package is
discussed. This method was used for testing the program before it was tested on real
industrial parts. Then some data from automotive applications for three-axis milling and
additional applications for five-axis milling demonstrate how the algorithm could be
applied in an industrial CAM environment. Examples are shown to illustrate that the parts

can be displayed from abitrary viewpoints without needing to recalculate the verification.
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Figure 6.1 Overview of verification system
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6.2 Solid Model Examples

The first step in testing the capability of the NC verification program was to create
channel-style solids with surfaces which match the theoretical shape of the tool swept
volume for a simple toolpath. A flat-end cutter and a fillet-end cutter example are shown
in Figure 6.2 and Figure 6.3, respectively. The single toolpath was used with different
cutter diameters or with offset tools, to produce desired gouge and undercut cut values, in
order to verify that the display produced matched what was expected. There are also fillet-

end cutter and flat-end cutter examples, which are shown in Figure 6.4 and Figure 6.5,

pectively. Figure 6.4 displays the i duced when the fillet-end cutter diameter

BOUEIng p

was increased by 0.0136 inch. Figure 6.5 shows the undercuts produced when the flat-end

cutter diameter is decreased by 0.0136inch.  The cor of these shows

that the software meets at least minimum requirements for verifying three-axis motion.

Figure 6.2 Fitting test of flat-end half channel
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Figure 6.3 Fitting test of fillet-end half channel

Figure 6.4 Overcut testing of fillet-end half channel



80

Figure 6.5 Undercut test of flat-end half channel

Testing the four- or five-axis tool motion is not as easy as testing three-axis tool

motion. With the solid modeling software (I-DEASTM). it was difficult to create a channel

with g y exactly hing the boundaries of the tool swept volume. Instead, a single
profile of the tool was swept through a 5-axis motion and skinned. Therefore, we are
testing to see that the discrepancies found are what is expected, rather than checking for an
exact match. One example using a ball-end cutter to sweep the side of a half channel is
shown as in Figure 6.6. In this example, the axis of the cutter was gradually tilted forward
10 degrees during the motion. Because this was only a four-axis move, and was restricted
to the plane of the motion, the fit is exact on the side surface, but not on the bottom.
Another example also using a ball end cutter to sweep the side of a half channel, is shown
as in Figure 6.7. In this case, the axis was tilted 10 degrees in the direction of motion and

10 degrees normal to that direction. In these multi-axis tool motions, the tool collides with
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the half channel due to the differences between the surface of the swept volume and the skin

group (channel surface).

Figure 6.6 4-axis test of ball-end half channel

6.3 Application Examples

This section deals with the application of the algorithm to realistic industrial parts. Two

final image displays are described. First, the two applicati ples are p d to

demonstrate the capabilities of the three-axis NC verification algorithm. The first example

£ q

partan bile wheel (data furnished by CIMLINC). With discretization

parameters set at: chordal deviation =0.1 mm, max_s = 1.0mm, max_t = 1.0mm,
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Figure 6.7 5-axis test of ball-end half channel

the verification system discretized the surface into 399,039 points. The toolpath consisted
of 6621 CL points. The CPU time verifying the surface points along the normal direction
for this case was 26 minutes and 45 seconds on a Sun SPARCstation 2.  For this example,
INTOL and OUTTOL were 0.2 mm, and the range of interest, R, was 1.0 mm. The
output shows cusps (undercuts) above the wheel surface which slightly violate the specified
outside tolerance, perhaps caused by the toolpath step size, as shown in Figure 6.8. To see
the detail of the part and to avoid the aliasing of the color image, a zoomed picture for this
example is necessary. The final verification image can be easily zoomed, rotated, or
evaluated roughly for other tolerance limits without rerunning the whole verification

program. Zooming is illustrated in Figure 6.9.
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Figure 6.8 NC geometric verification of an automobile wheel

Figure 6.9 Zooming in on an automobile wheel surface
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The second ple of a f: d part is a frequently employed benchmark

surface set, also supplied by CIMLINC. For values of the discretization set at: chordal
deviation = 0.01 mm, max_s = 0.5mm, max_t = 0.5mm, the verification system
discretized the surface into 299, 962 points. The 3-axis toolpath consisted of 21,758 CL
points. It is cut with a ball-end mill. The CPU time verifying the surface points along the
normal direction for this case was 64 minutes and 2 seconds on a Sun SPARCstation 2.
For this example, INTOL and OUTTOL were 0.03 mm, and the range of interest, R;;,, was
0.15 mm. The output shows cusps (undercuts) and gouges (overcuts) in numerous places,
using an example toolfile generated for test purposes, as shown in Figure 6.10. An actual
part cut using that toolpath was examined visually, and it exhibited the same cusps in the
same locations as are shown in that figure. The other side of this part is displayed, without

further verification calculations, in Figure 6.11.

Figure 6.10 NC geometric verification of a benchmark part
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Figure 6.11 Different view of a benchmark surface

Two

dditional licati les are d to d the capabilities

of the multi-axis NC verification algorithm. The third example is a five-axis ball-end cutter
milling operation on a turbine blade. Using a maximum chordal deviation of 5x10™ 5 in, the
verification system discretized the surface into 9750 points. The toolpath consisted of 1742
CL points. The CPU time verifying this case was 6 minutes and 31 seconds on a Sun 4/
110. The shaded image is shown in Figure 6.12. For this example, INTOL and OUTTOL
were 0.001 in, and the range of interest, Ry, was 0.01 in. The output shows cusps
(undercuts) violating the specified outside tolerance, indicating that the tool used to cut the

surface was too small in radius or the step d for toolpath ion was too

P &

large, for example.
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Figure 6.12 NC Verification of a Turbine Blade

The fourth example is a five-axis ball-end cutter milling operation on a sculptured
surface. The distance evaluator between the surface point and boundary of the tool
distinguishes whether the surface point is intersected by the cylindrical side surface or the
bottom spherical surface of the tool. Using a maximum chordal deviation of 0.001mm, the
verification system discretized the surface into 10345 points for verification. The toolpath
consisted of 2512 CL points. The CPU time to verify this casc was 8 minutes and 22
seconds on a Sun 4/110. The shaded image is shown in Figure 6.13. The errors shown are
the result of deliberately choosing a tolerance tighter than that provided by the number of
CL points used for cutting the surface. For this example, INTOL and OUTTOL were
0.05mm, and the range of interest, R;y,, was 0.25mm. The Mach bands are due to the
restricted color map available to such artificially pseudo-colored images on an 8-bit color

display.



87

Figure 6.13 NC Verification of a Sculptured Surface



CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

The surface-based verification software developed by using this algorithm is useful
for verifying multi-axis NC machining programs with APT cutters. The system first reads
standard IGES files defining desired part geometry,and CLfiles defining the toolpath.
After the surfaces are discretized, a voxel space is used to group surface points. Toolpath
segments are also transformed into voxel space, localizing them in 3D working space, so
that only the surface points possibly affected by a given tool motion will be used for further
computation. The distance calculation between the surface points and tool swept volume
can be done without explicited creating the surface boundary of the tool motion (the tool
swept volume). The verification process is quite practical for verifying, for example,
complex parts (hundreds of surfaces) of a size on the order of one meter square with
toolpaths of several thousand CLpoints. The output display image uses color coding to
show the areas cut within tolerance and out of tolerance in different colors, and runs on
arbitrary X Window systems. Also it is view-independent; therefore, it allows the user to
do detailed checking of the verification results without repeating intense calculations,
which is an advantage of our view-independent, surface-based system. The algorithm is
very accurate at the specified tolerance limits, and provides useful approximate depths of

undercut and overcut outside the tolerance range. The results may be used to adjust the

88
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toolpath based on this approximate cut value to eliminate overcut or undercut regions, or to
gencrate additional toolpaths using smaller tools to complete milling of undercut regions

not cuttable by the original tool.

7.2 Limitations of the Algorithm

The resolution of the surface discretization process is a very important factor in the
accuracy of the final output. If the surface points are not dense enough, both cusps and
gouges may be undetected by the verification algorithm. Too large a toolpath stepover will
cause a cusp, which might be undetected as shown in Figure 7.1.

Tool motion profile
: d\ i i \ ; | OUTTOL
A B EC D

Figure 7.1 Undetected cusp error

Points B and C are cut within the tolerance; therefore, the interpolation algorithm is utilized
between them. The shaded pixels between B and C are shown as cut within tolerance; but,
in fact, there are some out-of-tolerance regions. This error can be solved if one adds some
surface points between point B and point C; for example, if point E is created, then the
undetected error is eliminated. A gouging error due to a small radius of curvature in the

tool geometry is shown as in Figure 7.2. The tool curve protrudes into the surface, and an
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undetected gouging area occurs between these two points. This also can be eliminated if
one adds some points between these two surface points. Generally speaking, the denser the
surface points, the better the results. But more surface points not only cause potential
problems of virtual memory limitation, but also slow down the verification speed.
Therefore, how to decide the maximum distance between points to efficiently eliminate
undetected cusps and gouges is an important issue here. Although it has not been done
here, it may be possible for a given discretization, to determine bounds on the magnitude
of undetected errors, given adequate characterization of the surface curvature, tool shape,
and required tolerances. This information, in turn, can be used to determine the level of
discretization required to assure conservative operation of the verification software (i.c., no
tolerance violations are missed, subject to certain conditions).

Tool motion profile

Unde error

Figure 7.2 Undetected gouge error, due to tool geometry

7.3 Comparison with other NC verification systems
The algorithm provides 5-axis NC verification for a general APT cutter. A major

difference between this algorithm and a solid-modeling-based system is that each surface
point has a local coordinate function for each tool motion, thus reducing the effort needed
to calculate the intersection of a surface point and a tool sweep model. The NC verification
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system described here behaves with a time complexity of O(k), where k is the number of
CL points. However, if the level of surface discretization required is also viewed as varying
with the same parameters which determine the number k of CL points, then a higher than
linear complexity results; in the current software, these are specified independently, so O(k)
complexity results. In contrast, a solid modeling system needs to compute the boundary of
cach tool motion or combine the boundaries for all the tool motions, then find the possible
intersection between the desired part surface and the boundary of the tool motion. This
makes the problem very complicated and time-consuming.

Image-based systems use a Z-buffer to find the possible intersection between the
desired surface and the tool swept volume. These image-based algorithms are faster than
the classical solid modeling approach, but the results are view dependent, have limited
resolution, and cannot calculate true positional tolerance (offset surface) violations, so they
cannot totally replace the CSG or other methods. The data structure resulting from the
algorithm in this paper is a surface-based description, not an image-resolution data
structure. The final part at the completion of verification can readily be redisplayed from
another viewpoint. The out-of-tolerance regions can be traced to specific toolpath
segments for modification of the machining programs. User-variable in- and out-
tolerances may be used for adjustment of toolpath segments. The system does provide a

way to work cost-effectively in verification of NC programs.
7.4 Future Research

The mathematical basis presented in this dissertation for representing swept volume
can also be used in other applications. Obviously, it is useful for interference checking of
robot manipulators and their working environments. The voxel space concept can be used
for rough interference detection of two or more machining process working in the same
workspace. Then the mathematical model can be used for more precise intereference

detection [47]. Future rescarch goals include extending verification to include tool wear,
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force calculation for tool deflection, and automatic generation of multi-axis toolpaths for
general APT cutters. The generation of error-free multi-axis toolpaths for general APT
cutter will be a very challenging problem, especially when one needs to use side surfaces

of cutters to mill sculptured surfaces.
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APPENDIX A

DEFINITION OF THE APT CUTTER

The statement defining a cutter in the APT language usually has seven parameters
and it is as follows (Figure A.1) [48]):

CUTTER/, 1,¢,f,8,b, L
where

d = the diameter of the circle generated by the intersection of the end and the side
surfaces of the cutter.

r = the radius of the corner circle.

¢ = the distance from the comer circle center to the cutter center line.

f = the distance from the comer circle center to the plane passing through the cutter
end center and perpendicular to the cutter center line.

a = the angle (degrees) between the cutter end surface and ihc plane perpendicular
to the cutter axis (it lies in the range of 0 < a < 90)

b = the angle (degrees) between the cutter side surface and the cutter axis (it lies in
the range of -90 <b < 90)

L= the cutter height measured from the control point of the cutter.

Note that usually the corner circle should be tangent to the end and side surface.
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4 N(t)

T h=0

Figure A.1 Standard APT seven-parameter cutter
For this seven-parameter cutter, the radius of the cutter can be defined in terms of
three linear functions R, (h), R,(h) and R,(h), and according to simple geometric analysis,
can be expressed as a function of position (height) along the cutter axis from C(t) as

follows:
For 0<h<f-r*cos(a), R;(h) = hitan(a) @#0)
For f-r*cos(a)<h<f-r*sin(b),

ifh>f then hy=h-(f-r)
ifh<f then h)=r-(h-f)

Ry(h) = ¢ + (2*hy*r - hy*h1)**0.5

For f-r*sin(b)<h<L, R3(h) =d/2 + (h - d/2*tan(a))*tanb
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APPENDIX B

INTERSECTION OF A VECTOR WITH A SWEPT VOLUME

Part 1: Intersection of a surface normal with a side surface of a swept

volume
The intersection between a surface normal vector and a side surface (i.e. any surface

but a flat bottom surface) of a tool swept volume is shown as in Figure B.1:

 N()
_—/
R(h)

Figure B.1 Intersection of a surface normal vector with a side surface of a

tool swept volume
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Given a surface normal unit vector v and the coordinate (x;, y;, %)
YV =ai+ BT+ y_I:

Assume that (xg, ys, Zg) is an intersection of with a side surface of the tool swept

volume; it can be expressed, using the parametric form of the surface normal unit vector,

as:
XsXi ¥YsYi zZg°z
= = = s
a B Y
or  Xg=X;+Qs , ys=y;j+Ps, =%+ (B.1)

Since the surface normal vector v may intersect any part of the swept volume
model, the first step in solving this problem is to determine which part of the model may be
intersected by the surface vector. Let’s first discuss the most general case treated in this
work -- the intersection of the surface normal vector with the side surface of the general
APT seven-parameter cutter.

For a given surface point (x;, y;, Z;), a surface normal unit vector v and a tool motion
(C(v), N(t)), 0 <t< 1, the minimum distance from the surface point along the normal to the
envelope of the tool motion can be derived by the following expression:

The surface point (x;, y;, ;) has local coordinates (t, h;(t)). The intersection point
(x5, ¥g» Zg) is @ point on the surface of the moving rigid body model. If its corresponding
h-axis value is hy(t), 0 < hg(t) < L, then we say that the local h coordinate of the point
falls within the length bounds of the cutter. The minimum distance between the
intersection point and the ruled surface is the length of vector joining the intersection point
and the ruled surface point T(t, h(t)) , i.e., I(Xg, Y5 Z) - T(t, hy(t))l. Thus, whether an
intersection point is on the envelope of the tool motion can be simplified to whether this

intersection point is on a circle with center T{(t, hy(t)) = ([x(t) + hg()N,(1)], [y(t) +
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hg(t)Ny(®)], [z(t) + hg(t)N,(t)] ) and radius R(hg(t)).

The requirement that the intersection point (xs, ys, Zg) be on the circle can be written as:
[xg - X (1) - hsgONR(D1? + [yg - y () - h®ONxOI? + [z - z (1) - he®ON,(©]%= R¥ (b (1)
or [xg-x 12+ [ ys-y OF+ [z- z (12 - h2(®) = R2(h(1)) (B2)

Recalling the expression for hi(t) from Equation 3.2, the relationship between hy(t) and h;(t)

can be shown as follows:

(g5 Ys» Z5) hy(t)
h;(t)

(xi ’ Yi ’zi)

Figure B.2 Relationship between hy(t) and h,(t)
From the above figure, we know that hy(t) = h;(t) + s*cos

or hy(t) = hy(t) + s[aN, (t) + BN (t) + YN, (t)] (B.3)

Applying parametric forms (B.1) and (B.2) to (B.3)
[x; + as - x OF+ [y; + Bs - y 1%+ [z;+¥5 - 2012 - h,2(t) = R2(hy()
or, collecting coefficients of like powers of s,

J(®)*s2+ H(ty*s + P(t) = 0, (B.4)
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where: J(t) = 1 - [aN,(t) + BN, (1) + YN, ()]
H(t) = 2a[x;-x()]+2B[y;-y(t)]+2v(z;-z(1)]-2h; () [oN, ()+BN (D)+YN,(1)]
P(t) = [x;x (1% [ y;-y 012+ [zz () - h2(®) - R¥(h(1))
Then the cut value, that is, the minimum distance from the surface point along its

normal unit vector to its intersection point with the moving solid model, can be obtained

from the quadratic formula as:

-H() £ 4 H2() - 4*10)*P()
s(t) = (B.5)
2*J)

The t value for the minimum s(t) can be obtained from -gti = (B.6)

To speed up the program, one can compare the values s(0) and s(1) with the s(t)

value from (B.6). Thus, there is no need to get the %s in order to judge whether or not

t
the t value represents a minimum or maximum s(t).

This quadratic in s is of higher order in t, and cannot be solved in closed form, even
if a relatively simple form for the tool axis rotation functions N,(t), Ny(t), and N,(t) is
specified, so long as the tool axis is not held in a constant orientation (3-axis milling).
Instead, we would typically employ a root finding algorithm if we were to implement this
approach directly. The running time for a process based on such an algorithm would be

quite long. We can restate the situation as a simple optimization problem as follows:

H() + 4/ HA(0) - 44J0*P()
Minimize: s(t) =
teR 2*J(v)




subject to :
O<t<1

0< hg() <L

The minimum s value for 0 < t < 1 which satisfies equation (B.4) is the cut value of
the surface point. If H2(t) - 4J()*P(t) <0, the surface vector misses the side surfaces of the
model. If two intersections with the side surface of the model are found, and 0 < hg (1) <
L for both solutions, then the closer of the two intersections defines the cut value.
However, if no intersections with the side surface are found, or a single intersection with
the side surface is found, and if the tool has a horizontal end surface, then the end surface
must be tested for an intersection. That is, the intersection of the surface normal with a

circle in the h = 0 plane normal to the cutter axis needs to be considered.

Part 2: Intersection of a surface normal with a circle in a plane

plane

_h. i

’>/' i (xi' Yi9 Z')

-t

k

Figure B.3 Intersection of a surface normal vector with a circle in a plane
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Given a surface normal unit vector v and the coordinate (x;, y;, Z;)

-— e e

vV =ai+Pj+y

Assume the intersection point is (g, ys, Z); it can be expressed, using the

parametric form of the surface normal unit vector, as:

XsXj YsYi 5z
= = —— = s
a B ¥
or  xs=X;+Qsc , Ys=Yi+Psc. zg=z+7s (B.7)

For a given surface point (x;, y;, z;), a surface normal unit vector v and a tool motion
(C), N()), 0<t< 1, the minimum distance from the surface point along the normal to the
bottom (or with a similar argument, the top surface) of the tool motion can be derived by
the following expression:

The surface point (x;, y;, z;) has local coordinate (t, h;(t)) in the ruled surface
r(t,h(t)). The minimum distance from the surface point along the normal to any intersection

point on the plane of the bottom surface must have hy(t) = 0 in equation (B.3). Thus this
problem can be simplified to whether the intersection point (x,, s, Zg) With this plane is a
point within a circle with center r(t,0) = (x(t), y(t), z(t)) and radius Ry,

There are two conditions to assure that the intersection point is point within a circle

in the hy(t) = 0 plane at some time 0 <t< 1:

[Xg- x )2+ [ys-y O+ [z-z(®)]>< R%, ,forsomeO<t<1, (B.8)

and, given hg(t) = 0 in Equation B.3, s, (t) = - hy(t) / [cN,(t) + BNy () + YN,(0)]

Or we can define the problem as a simple optimization problem as follows:
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minimize : tsc g) = - hy(t) / [N (t) + BN(t) + YN,(1)]
€

subject to :
O<t<1

[xs - x @1 + [ y5-y 1%+ [z5-z (0 < RY,

Part 3: Example of a Ball-End Cutter
Let’s consider an example of a surface normal vector intersection with the volume
swept by a ball-end cutter, for a given definition of the control point of the tool motion as

shown in Figure B.4.

N®
T h=L
L
(X5, ¥s» Zg
|
R
3 1

Figure B.4 Intersection of a surface vector with a ball-end cutter
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The mathematical'modcl for the ball-end cutter can be divided into a cylindrical part
and a spherical part, if the control point is located at the center of the sphere. The next step
in solving the problem is to determine which part of the cutter is being intersected by the
surface vector. An easy way to solve the problem is to determine the t value for which

hy(t)=0 -- that is, the time (if any) within the sweep at which the cutter switches from cutting

with the ball to cutting with the side, or vice-versa. Then the mathematical model for the
cylindrical part has already been given in Part 1, and the mathematical model for the
spherical part can be expressed as follows:

[xs- x OF +[y5-y OF+[z5-z®)> = R? (B.10)
and ;= h(t) + s[aNy(t) + BNy () + YN,()] < O (B.11)
Applying parametric form (B.7) to (B.10)
[x; + 0s - x O+ [y; + Bs -y O+ [z, + 15 -z () = R?
or, s>+ H(t)*s + P(t) =0, (B.12)

where:

H(t) = 20fx;-x()]+2B[y;-y(©]+2¥(z-2(1)]
P(t) = [x;-x (0)%+ [ y;-y (01%+ [z (©)]> R?

Or we can define the problem as the following:

) 20 .
Minimize: oo H() + | HX(1) - 4*P(Y)
teR 2

subject to :

O<t<1
R < h(®) <0
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The minimum s value of equation (B.12) for 0 <t < 1 which satisfies equation

(B.11) is the cut value of the surface normal vector. If Hz(t) - 4P(t) <0, the surface vector
misses the model. If the surface vector intersects with both parts, the cut value for this

toolpath is the minimum value of the two.
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