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ABSTRACT

FINITE DIFFERENCE AND FINITE ELEMENT

MODELING OF CLOSED CELL CUSHIONS WITH

BLOCK AND RIBBED GEOMETRIES BASED ON

STRAH\I DEPENDENT TERMS

By

Andrew W. Chen

Closed cell cushions behave in a manner such that idealized

models cannot be used. Hooke's Law is one such example. The

compression of a closed cell cushion is non—linear, visco-elastic and

time dependent. Because of this dependency, the model to replicate

cushion curve data must account for thermodynamics and heat

transfer. The derivation of this model is a based on three laws:

Newton‘s second law of motion, the Gas Law, and the First Law of

Thermodynamics.

Solving three differential equations derived from the three

laws based on finite difference yield results that are comparable to

existing cushion curve data. The problem is the derivation is tedious

and cannot be applied to non—block cushions. Hence, the polytropic

model is developed to enable the use of a more powerful numerical

method, the finite element method (FEM). The polytropic model is

put into a constitutive equation form where the variables are all

strain dependent. The result of the FEM compares well with

published cushion curve data and experimental results.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Cellular polymers are multi-phase material systems that

consist of a polymer matrix and a fluid phase. The fluid is generally

a gas and is either trapped or continuous in the polymer matrix [9].

This has lead to the development of closed-cell and open-cell

cushions. Closed-cell cushions are foams in which the air is trapped

within individual unbroken cells. This type of foam is widely used in

the packaging industry for cushioning fragile items. Open cell foams

in which the air is able to circulate freely within the foam structure

behave differently because the air flows rather than compresses

[2,22]. In this study, only closed cell foams were studied.

The behavior of a closed cell cushion is generally described by

cushion curves [2]. Cushion curves relate the shock transmitted to a

product to the product weight, cushion thickness and bearing area of

the cushioning material. Because of the vast collection of cushion

curve information, the engineer and designer of protective packaging

can be overwhelmed. Naturally one would therefore try to reduce

the size of cushion curve data. A reasonable approach would be to

model the spectrum of cushion curve data in the form of descriptive

equations or some type of cushion model [3].

The straight forward approach toward modeling cushion

behavior would be to relate the cushion compression to the force the

cushion exerts upon a product. The solution of this solid mechanics

problem must consider: [5]

1. Equations of motion

2. Geometry
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3. Material constitutive laws (stress-strain)

If the relationship between stress and strain is linear, the

constitutive law is known as Hooke's Law [15]. Hooke's Law is an

idealized model which some physical systems obey. The problem

with using Hooke's Law to describe the compression of a cushion,

however, is that cushion behavior is known to be non-linear, visco-

elastic, time dependent and strongly related to temperature. Despite

these dependencies, there are models that try to "fit" foam cushions

into the Hookean model [9,21,22].

The compression of foam cannot be accurately modeled by the

Hookean equations that assume a linear relationship between stress

and strain. To show this, it is sufficient to look at the prediction for

peak G-level to a mass dropped onto a cushion using Hooke's Law

and to compare it to published cushion data [2]. The basic steps are:

a. stress = modulus x strain (Hooke's Law)

O'=E8 eq 1

where o 2 stress (psi), 8 2 strain and

E 2 material modulus (psi)

b. energy absorbed by cushion =

(energy density) x (cushion volume)

0.2

U =—— Ab

2E( ) eq 2

where A is the cushion bearing area and b is the

thickness [26].

c. energy absorbed 2 potential energy [23]

U = Wh eq 3

where W is the weight dropped from a height h
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d. Combining a, b, c and solving for the peak stress and

using o=F/A where F is force,

_ 2hWEA

F— ‘7,— eq 4

e. Force = mass x acceleration 2 weight x G

F = WG eq 5

f. Solving for peak deceleration,

2 E ‘

b(s) eq

where static loading is defined as s=W/A.

According to equation 6, G should continue to decrease as the

static loading increases. This is shown in Figure 1 under linear

cushion behavior. This agrees with known cushion performance, but

only up to a point. It fails to predict the increase in deceleration as

static loading increases. Since the only assumption involved in the

analysis is Hooke's Law, it must be cbncluded that equation 1 is in

error [22].

To model the cushion accurately, one needs to develop more

realistic constitutive equations. In order to develop the constitutive

equations one must first consider the nature of the compression

process. This'inevitably leads to considering heat transfer.



 

   

   

real cushion

D
e
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e
l
e
r
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t
i
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'
s
)

linear cushion  
static loading (psi)

Figure 1. Real cushion behavior compared to a Hookean cushion



As a closed—cell cushion compresses, the air volume decreases

and the pressure and temperature increase. Since air temperature is

now higher than the cell wall temperature, heat is transferred from

the air to the walls. This raises the wall temperature only slightly

because of its large heat capacity so that walls can be considered as a

nearly constant temperature heat sink. So during the entire

compression and expansion process, energy is extracted from air and

therefore not given back to the weight (see Figure (2)). As a

consequence, the stress depends not only on strain, but strain rate as

well [2]. Unfortunately, there has been very little work done on

models with strain rate dependent terms.



 

W = weight

   

   

   

A = bearing area

p = pressure

T = air temperature

h = drop height

x o = cushion thickness

 

rigid surface

Figure 2 Schematic of weight in a free fall onto a cushion
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CHAPTER2

MATERIALS AND METHODS

2.1 Derivation of the Governing Differential Equations

In modeling a closed cell foam, three coupled differential

equations must be solved. The three equations are derived from

Newton's second law of motion, the Ideal Gas Law, and the First Law

of Thermodynamics [2]. Three equations are required since there are

three time dependent variables involved when the cushion is

compressed. The variables are the thickness of the cushion denoted

by x, the air pressure p within the cells, and the air temperature, T.

Figure 2 shows a weight in a free fall from a height h onto a block of

closed—cell cushion of thickness x0 with a bearing area A. Newton's

law can now be applied and the first governing equation can be

derived.

In order to solve for the deceleration of the weight, a force

balance is performed on the weight. The free body diagram in Figure

3 shows the weight and a cut away portion of the cushion. Newton's

second law states that:

2

zeld—g— eq 7

g dt

Wdzx

pA+0A—p0A_W:_g—-E§- eq 8

where o is the yield pressure required to compress the foam

structure (less the air), p0 is normal atmospheric pressure, p is the

cell air pressure during compression (assumed to the same for each

cell) and g is the acceleration due to gravitational pull.

 



lioliii

iw     

 

V=AX

pA+oA

Figure 3 Free body diagram of cushion and weight



Solving for acceleration and rearranging equation 7. gives

dzx 0' + p —— po

zeal—S‘1] eq 9

Equation 9 cannot be solved because the variable p is a function of

time.

The second governing equation which relates the air pressure

to the other variables is the ideal gas law, [18]

pV=nRT eq 10

where V is the volume of the air in the cushion, n is the fixed

number of moles of air trapped in the cushion, R is the universal gas

constant, and T is the absolute temperature. Given that the quantity

of air in a closed cell foam is constant, equation 10 states that pV/T

is constant at every instant. Since V=Ax, this leads to

_ z: _T_
P—Po x T. eq 11

Equation 11 relates the pressure to the position, but the new

variable T has appeared. Consequently, another relation must be

derived. The third equation required to solve the system of

equations is the energy equation. The energy equation is applied to

the fixed quantity of air within the foam using the first law of

thermodynamics applied to the closed system, [25]

work done + heat added = change in internal energy

During the compression and expansion of the cells surrounding the

air, there is work done on the air. This is known as simple boundary

work [25]. Heat is added to the air as a result of compression or

expansion and takes place through convection heat transfer to the
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cell walls. The change in the internal energy of the air is the direct

result of a change in temperature [10,25]. Mathematically, the first

law of thermodynamics can be written as,

Sq + SW = du eq 12

For a closed system over a small time period, the work done, the heat

added and the change in internal energy can be expressed as,

' SW = -pdV eq 12a

Sq = -HS(T- T0)dt eq. 12b

where H is the convection heat transfer coefficient, S is the total

surface area of the cells in the foam matrix, T is the instantaneous air

temperature and To is the ambient air temperature. Also,

du = vadT eq 120

where m is the total mass of the air, and CV is the constant volume

specific heat for air. Substitution into equation 12 yields,

—pdV + -HS(T- To)dt = mCVdT eq 13

Rearranging with dV=Adx and dividing by dt, the third governing

equation becomes,

  

 

dT ( pA )dx ( HS )
—=— —— T—To

dz? mc. dt mc. ( ) “I 14

In summary, the three governing equations are:

dzx 0+ p— p0

Newton's Law dtz =8[_;———1] eq 9

x0 T

The Ideal Gas Law I): ”(Sc—X?) eq 11

  

dT pA )dx ( HS )
—= — —— T— ToEnergy Balance dt [va dt mCy ( ) eq 14



l 1

The three coupled equations may be reduced to two equations

since equation 11 is not a differential equation. Substituting p in

equation 11 into equations 9 and 14 yields

   

dzx 0—pa ) (gpaxo)T

dt2 g( s STo x eq 15

dT A ano T dx HS HS

— = — — —— + T. — T 16
dt MCv To x dt MCV "ICV eq

Since the terms in parenthesis are constants for a particular cushion,

these two equations can be written as:

2

d—x = K1+ 10(5)
X

  

 

 

(1,2 eq 15a

a7" de
—=—K3 —— K4—K5T

dt (x dt)+ ( ) eq 168

where

0— 0

K1: [—p‘—:l eq 17a

s

K2- (gpoxa)

7 ST.
eq 17b

+ A ana

K3: va To eq 17c

(11sz

K4: mc, " eq 17d

(”5)K5: va eq17e

In order to examine the effect of cushion geometry and cell

dimensions on the constants K1 through K5, certain terms in the

above expressions need to be examined. Specifically, they are 6, s, m,

and H.
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2.2 The Yield Pressure 6

' The yield pressure, 0, is the stress required to compress the

cell matrix alone and contributes significantly to decelerating the

product. The polymer matrix can be considered a thin wall

membrane which supports no bending moments [20,21,22]. The cell

can be assumed to under go both buckling and yielding [9]. Modeling

of the cell matrix is difficult due to the variability in cell size and the

complexity of geometry. Many geometry's have been proposed such

as the spherical cell connected by a cylindrical strut model, the

pentagonal dodecahedron cell and the tetrakidecahedronal cell [9,22].

The geometry will vary depending on the material and the foaming

process. Matonis [14] has proposed an equivalent model to simplify

the analysis of the cell structure. The model proposed is a cubical

plate model which consists of layered cubical arrays as in Figure 4.

Figure 4 shows a hypothetical section from a closed cell

cushion. The yield pressure 0, is defined as the vertical surface

pressure which causes the cell walls to yield. A simple force balance

yields,

ozoyp(Aw/A) eq 18

where oyp is the material yield point stress, Aw is the total cross

sectional area of only the walls and A is the apparent bearing area

(1*W). The total amount of wall support area in Figure 4 is,

Aw = [1(w/a) + w(l/a)]t = 2(lwt)/a eq 19

Rearranging and substituting results in

G = (2t/a)0'yp CC] 20
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cell

+|H A k AJ—V

 
 

      

   

Figure 4 Foam section with a hypothetical array of square cells
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Typical values for the cell dimensions for Arcel 512 [16] are, a=45

mils, t=0.3 mils [21] and Gyp=1500 psi [9,20]. Applying equation 20

to Arcel 512 gives a yield pressure of approximately 20 psi.

2.3 The Total Cell Wall Surface Area S

The total cell wall surface area can be calculated by considering

the average surface area of one cell and multiplying by the number

of cells in a volume of cushioning material.

52(602) Lfix—o :6lwx0 =65 eq 21

aa a a a

 

where V0 is the original volume of the cushioning material.

2.4 The Convection Heat Transfer Coefficient H

The heat transfer rate is related to the overall temperature

difference between the gas in the encapsulated cell and the cell wall

by the convection heat transfer coefficient, H [9]. This term has been

found to be 4 BTU/(hr-ft2-0F) for cells with the dimensions given in

2.2 [2].

2.5 The Total Air Mass m

The mass of the air is estimated to be the volume of the

cushion times the density of the air. The foam itself contributes very

little to the volume of the cushion. This can be realized by taking an

open cell cushion and compressing the cushion. The open cell

cushion can be made to flatten out almost completely. The mass is,

m=p(l*w*x0) eq 22

where the air density is p=.0000428 lb/in3 =.074 lb/ft3 [17].

Substituting the results for o, s, m, and H into the expressions for K1

through K5 gives,



 

 

 

1 20 ‘-t

K1: — ’P — o—

gs[ a p s] eq 23

K2- gpoxo I

‘- To S
eq 24

p0

K =

3 (can) eq 25

6HTo 1
K4— —— ——

( Cvp )(a) 6“ 26

6H 1

K5: —

(010an 6“ 27

The terms on the right hand sides of equations 23 through 27 have

been grouped using parenthesis in order to illustrate the effects of

material properties, cell dimensions, cushion dimensions and

environmental terms on the constants. Without this simplification,

one cannot deduce the effects of modifying the cell or cushion

structure. The constant K3 for example is dependent on air _

properties alone where as K4 and K5 depend on cell size as well. The

constants K1 and K2 depend on air properties, cell dimensions,

cushion dimensions, and the weight of the falling mass.

Since K1-K5 depends on certain properties of air, substituting

the physical constants in Table 1 into the expressions for K1—K5

further simplifies them.
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'_1"_able 1. Gas Related Constants

H = 4 Btu/hr/ft2/0F (heat transfer coefficient)

p0 = 14.7 psi (initial air pressure of cells)

To = 530 OR (initial cell air temperature)

CV = .1715 Btu/lboF (constant volume specific heat of air)

p = .0000428 lb/in3 = .074 lb/ft3 (density of air at 530 0R)
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Substituting g=386.4 in/sec2 and the values in Table 1 into

equations 23 to 27 gives the constants in terms of quantities which

relate to cell sizes and cushion size:

K1=386.4é—)—[2-(0—’;:—t-]—14:7-(s):l eq 28

K2 = 10.72696) eq 29

K3 =.04 eq 30

K4 = 335060661) eq 31

K5 = 6322(%) eq 32

where the static loading, 3 and yield pressure, oyp are in psi and the

cell dimensions, a and t, are in mils.

Now for a particular cushion like Arcel 512 [16] where a = 45

mils, t=0.3 mil, oyp =1500 psi, the expressions are further simplified

  

 

to

2048 in

K1=( S —386.4)[Sccz] eq 33

1 lb2
K2=10.72o — ——-—-

(x°)(s)[secz-°R-in2] eq 34

K3=.04 eq 35

”R

K4=74458[scc:| eq 36

. 1

K5=140[Q] eq 37
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At this. point, it is evident that only K1 and K2 depend on the

types of variables normally associated with cushion design: the static

loading s, and the cushion thickness x0. An additional parameter not

contained in K1 and K2 but important to cushion design, is the drop

height information. The drop height parameter will enter the

analysis through the governing equations as an initial condition on

velocity. Specifically, the initial or impact velocity is [4],

vi =s/2og'h eq 38

Once the weight, drop height, and the original cushion thickness are

known, the constants K1-K5 are known and the differential equations

can be solved numerically for the pressure, p, temperature, T, and

thickness, x. The procedure for doing this is outlined in the next

section. A computer program based on this procedure was written to

accept drop data (W, w, 1, x0, and h) and generate the shock pulse.

2.6 Solving the Governing Differential Equations With the Forward

Finite Difference Method

From the three governing equations, a series of values for

thickness, temperature and pressure can be generated. In order to

generate these values, the forward finite difference method was

used. The technique involves initializing the variables and stepping

the equations forward in time with an increment of At. This process

will continue until the experimenter decides to stop the march

forward. Referring back to the summary of the differential

equations, notice that only pressure can be found from the three

equations (equations 9, 11, 14). The thickness and temperature

variables are in differential form. In order to calculate the thickness
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and temperature, equations that relate position to acceleration and

temperature to temperature rate are required.

The equations that relate position and velocity to acceleration

are equations derived from kinematics in one dimension [12,13,23].

These equations are only valid for uniformly accelerated motion. For

some differential time dt, these equations hold true and for some

finite time At, they are only approximate.

 

_ dx ldzx 2
x—XO+ZAt+§dtozAt Cq 39

£—_dl+d_2x.At

dt dz, cit,2 eq 40

In a similar manner, the new temperature will depend on the rate of

temperature change.

T = To +£Ar

dt
0

eq 41

The three differential equations (9,11,14) coupled with the three

kinematic equations (39,40,41) are the six equations necessary to

solve the finite difference problem. The equations were solved'with

the Macintosh version of the Excel 4.0 spread sheet. An example of

the calculation with the spread sheet is shown in Table 3. The drop

data, material constants, environmental constants and gas related

constants used for this example are shown in Table 2.
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386.

4

0.

1500

2

0.001

-166.

K1

K2

K3

K4

K5

Table 2 Initial conditions

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

At T (R) X (in) P (psi) dX/dt G dT/dt d2x/dt2

0 0 530.00 2.000 14.700 -166.80 19.00 17871 7342

1 0.001 547.87 1.837 16.545 -159.45 20.85 16718 8055

2 0.002 564.59 1.681 18.626 -151.40 22.93 15694 8859

3 0.003 580.28 1.534 20.977 -142.54 25.28 14730 9767

4 0.004 595.01 1.397 23.630 ~132.77 27.93 13734 10792

5 0.005 608.75 1.269 26.601 -121.98 30.90 12587 11940

6 0.006 621.33 1.153 29.882 -110.04 34.18 11135 13208

7 0.007 632.47 1.050 33.414 -96.83 37.71 9187 14573

8 0.008 641.66 0.960 37.060 -82.26 41.36 6534 15981

9 0.009 648.19 0.886 40.575 -66.28 44.87 2997 17340

10 0.01 651.19 0.829 43.596 -48.94 47.90 -1474 18507

11 0.011 649.71 0.789 45.686 ~30.43 49.99 -6684 19315

12 0.012 643.03 0.768 46.439 -11.12 50.74 -12116 19606

13 0.013 630.91 0.767 45.642 8.49 49.94 -17000 19298

14 0.014 613.91 0.785 43.386 27.78 47.69 -20575 18426

15 0.015 593.34 0.822 40.045 46.21 44.34 -22386 17135

16 0.016 570.95 0.877 36.126 63.35 40.43 ~22433 15621

17 0.017 548.52 0.948 32.101 78.97 36.40 -21078 14065

18 0.018 527.44 1.034 28.300 93.03 32.60 -18830 12597

19 0.019 508.61 1.133 24.898 105.63 29.20 -16164 11282

20 0.02 492.45 1.244 21.951 116.91 26.25 -13429 10143

21 0.021 479.02 1.366 19.446 127.05 23.75 -10846 9176

22 0.022 468.17 1.498 17.336 136.23 21.64 -8527 8360

23 0.023 459.65 1.638 15.562 144.59 19.86 -6516 7674

24 0.024 453.13 1.787 14.067 152.26 18.37 ~4812 7097

25 0.025 448.32 1.943 12.801 159.36 17.10 -3394 6608

Table 3 Solution to system of differential equations
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The procedure used in the Excel spread sheet involved first

initializing all the variables at time t=0. Each column and row in the

worksheet represents one of the variables defined earlier at the

instant shown. For example, d2x/dt2 represents the acceleration of

the mass on the cushion and dx/dt is the velocity of the mass at a

instant in time. dT/dt is the temperature rate, T is air temperature, x

is the thickness of the cushion and p is the air pressure. G is the

dimensionless unit of acceleration defined as the acceleration at a

particular time interval divided by gravitational acceleration. This

variable is needed to specify the severity of the shock. When the

pressure p returns to its initial value of 14.7 psi, the weight is

leaving the cushion and the finite difference calculation is completed.

For the particular run in Table 4 the peak deceleration is seen

to be 50.74 G's‘and the shock duration is approximately 24 msec.

The rebound velocity is 152.26 in/sec which implies the coefficient

of restitution [4] to be e=.91. Considering the complexity of the three

governing differential equations, the solution over the duration of

the shock pulse seem to produce reasonable results. For example the

velocities and accelerations have magnitudes and direction that are

reasonable. The value of G increases and decreases and the

coefficient of restitution is less than 1. The actual value of G from

the Arcel Cushion Curves in Appendix B is 50 G's.

To check the validity of the model and the finite difference

solution, the results of the finite difference solution for 12 inch and a

36 inch drops were compared to the published cushion curves [16].

Figure 5 and Figure 6 show that the finite difference equations

predict the concavity of the curve and the results are similar to that
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of Arcel 512 (see Tables 4 and 5 for errors). Assuming that the finite

difference method solves the system of differential equations

accurately, the model seems to under estimate G's for a low drop

height and over estimate G's for a high drop height. This is partially

due to the fact that actual experimental cushion curves are in error

by 10% to 15% [27] on average and partially due to the use of

constant values for air properties. The heat transfer coefficient H in

particular is only accurate to within i50% and is known to be a

function of the temperature difference [10, 27]. The constant value

of H24 Btu/hr/ft2 used in the solution could therefore be in error by

as much as i3 Btu/hr/ftz. The experimental error in reading the

cushion curve must also be included in accessing the accuracy of the

finite difference method. At this point the important fact to note is

the ability of the model to simulate cushion performance and the

significance of incorporating heat transfer and thermodynamic terms.

The motivation now will be to simplify the complexity of the three

differential equations by modeling the cushion by a polytropic

pI'OCCSS .
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Table 4 Percent error between finite difference result and Arcel 512

cushion curve data for a 12 inch drop onto a 2 inch thick

block cushion
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Table 5 Percent error between finite difference results and Arcel 512

cushion curve data for a 36 inch drop onto a 2 inch thick

block cushion
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2.7 The Polytropic Process

The solution process so far has been tedious and complicated

because the generation of G's requires lengthy calculations. An

alternative method to generate G's is to model the compression of air

as a polytropic process [25].

ka = constant eq 42

This model explicitly excludes the heat transfer and the

thermodynamic terms. Implicitly, all of these terms are included in

the polytropic constant k [25]. The motivation for using the

polytropic model is to simplify the stress-strain analysis so that

cushion geometries which are more complicated than a simple block

may be analyzed. This then allows for techniques such as the finite

element method to be used. It also simplifies the model considerably

by requiring only one physical constant, k instead of the many

thermodynamic terms previously used.

As a result of the finite difference calculations in Table 3,

values of position(thickness) and pressure at specific times are

known. When a complete table has been generated, the material

constant k in equation 42 can be found by fitting the known data to

the polytropic equation. The value of k will determine the amount of

heat transfer that occurs in the cushion. The value of k is 1.4 for an

adiabatic process: in an adiabatic process, compression is assumed to

occur so quickly that no heat is transferred to the cell walls. The

value of k is 1.0 for an isothermal process: in an isothermal process,

compression is assumed to occur so slowly relative to the heat

transfer rate. that the air remains at constant temperature as it is

compressed.
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An adiabatic process would result if H or S were extremely

small or if the cushion is compressed quickly as in a drop. If H or S

were very large or if the cushion is compressed very slowly, then the

process would approach isothermal conditions. Since H and S are

both finite in reality, the compression process will be neither

isothermal nor adiabatic. The expected result is 1.0<k<1.4.

Predicting the polytropic constant involves fitting equation 42

to the data in Table 2. Since kazconstant and the bearing area is

constant, we can fit the data to pxkzconstant instead. Since the

pressure and temperature are initially p0 and x0, this leads to:k .

P0 x0

The objective now is to assume that equation 43 is true and to choose

k to "best fit" the data in Table 3. This is a necessary step in order to

develop the constitutive equations for a closed cell foam.

2.7.1 mired—1

Because the air compression process is not truly a polytropic

process, equation 43 will not be satisfied exactly because k is chosen

to best fit all the data points for pressure and position

simultaneously [6]. As a result, there will be an error between the

actual value and the expected value. Defining the error at any

instant i using the numbers from the i th row in Table 1 as

k

P0 x0

we can find the variance in the error. This done by calculating the

sum of squares of the errors,
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N o 0 k 2

SSE=Z[(-&Ii) —1] eq 45

i=1 p0 x0

The best fit involves choosing k so that the SSE is a minimum [6].

From the theory of differential calculus, minimizing equation 45

would be very difficult as it would result in a highly nonlinear

equation to be solved for k. Instead a similar method will be used.

2.7.2 _M_ethod_2

Instead of using equation 43 in its present form, take the

natural log of both sides,

k

P x _

“(Elmizl ‘0 eq 46

The error can now be defined as

' k

x

8i =ln(—pI-:—]+kln[;) eq 47

and the SSE becomes

N N . . k 2

SSE=28i2=2 ln(-&)+kln[i) eq 48

i=1 i=1 p0 x0

Minimizing equation 48 is now much simpler since k is no longer an

exponent. Taking the first derivative of equation 48 and setting the

result equal to 0 gives,

d N . . .

&(SSE) = 22[1n£'— + lei]1n(i] = 0 eq 49

i=1 0 x0 x0

N N 2

Pi xi xi
ln—ln— +k ln— =0

EA x0] 1:21[ x0] eq 50i=1 p0



 

_. P x
k— le 0x 20 eq 51

tit—i]

El .0

The result for k using equation 51 and the data in Table 3 is k=1.072.

Using this k, the values of pxk for several points in Table 3 were

generated. The results are shown in Table 6. Even though pxk is not

constant, it appears to vary by no more than 9%. Next, a series of

tables were generated similar to Table 3 for five different drop

heights and the same initial conditions. This was done to examine

the effect of drop parameters on k. Using equation 51, the results

ranged from k=1.072 for a 6 inch drop height to k=1.188 for a 36

inch drop height. These results show that cushion compression is

closer to being isothermal than adiabatic and that k is relatively

insensitive to drop conditions.
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time (ms) pxk

0 33.61

10 34.81

20 28.20

3 0 31.13

average: 31.94

standard deviation: 2.93 (9%)
 

Table 6 Variability in pxk at selected times from Table 3 (k=1.072)
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2.8 Force vs. Compression Results

Figure 7 shows the force vs. compression results for a 2 inch

thick block cushion. These results were obtained using the

polytropic equation with the following definitions of force and

compression.

1. Force = (p - po)A

2. Compression: u = x0 — x

Substituting the expression for p from equation 43, the force vs.

compression relation for a polytropic process becomes,

k

x

F: A —°- —1

3. p0 [[xo—u) :|

The force vs. compression curves in Figure 7 were obtained using a

polytropic constant of k=1.072 and k=1.1882 along with the values

A2100 in2 and x022 in. The results show that the force vs.

compression curve is fairly insensitive to the variability in k.

Therefore, the remaining tests performed in this thesis will be based

on k=1.072 for Arcel 512. The important part to note here is that the

constants in the three differential equations can now be lumped into

one polytropic constant and the equations of elasticity may be

developed from this.
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Figure 7 The effect of k on the force vs. compression curve  
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2.9 Finite Element Method

The finite element method is a powerful tool that models a

complex domain as a collection of geometrically simple sub domains.

The finite element method can be interpreted as a piecewise

application of the variational method to solve differential equations

in which the approximation functions are algebraic polynomials and

the undetermined parameters represent the values of the solution at

a finite number of pre-selected points called nodes [17]. The

variational method is a technique used to solve a differential

equation approximately by putting the differential equation into a

variational form and taking the approximate solution to be a

combination of shape functions.

The accuracy of the finite element method depends upon the

element used to model the complex domain. Elements can have

nodes that have one, two or three degrees of freedom. The number

of nodes in the element as well as the number of elements in the

domain all contribute to the accuracy of the approximation. The type

of element and mesh used will generally require some knowledge of

the physical system to be modeled.

When one looks at a typical cushion, especially a block cushion

with a square bearing area, lines of symmetry become noticeable. A

three dimensional problem can be reduced to a one dimensional

problem and expect a reasonable degree of accuracy because the

depth dimension is much greater than the side dimensions. The

objective is to show that an impact on a closed cell cushion can be

accurately modeled by the polytropic equation and analyzed
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accurately by the finite element method. The results will be

compared to existing experimental data.

2.10 Finite Element Model:

Since the material constant k has already been determined and

the problem has been reduced to a one dimensional problem, the

closed cell cushion may now be viewed as an elastic solid whose

modulus of elasticity [15] is a function of the strain. The governing

equation becomes [15,26]

 

d

P(x)=(o+E<x>E“)A(x> eq 52

Ol‘

dP dA( )

E70 dxx+MAM)E(x)—) “1 53

where x is the coordinate variable along the thickness, E(x)=material

modulus at x, u=the displacement of a node during compression,

P(x)=the compressive force, o=yield pressure and A(x)=cross sectional

area at x (see Figure 8). The finite element process is able to solve

the governing differential equation (eq 53) for a variable material

modulus and a variable cross sectional area. The way in which the

area varies with depth is determined \by the geometry of the cushion.

The way in which the material modulus varies with depth is not

obvious and therefore must be determined by performing a force

balance on an element of cushion and using the polytropic

compression model. During compression, the stress applied to the

cushion must overcome the buildup in air pressure over and above

atmospheric pressure,

a: —

p p, eq 54
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37

Using the polytropic relation for p gives,

1:

poV.
0': Vk -Po eq 55

For a particular element, V0=Ato and V=At where A is the cross

sectional area of the element, V0 is the volume of the uncompressed

element, V is the volume of the compressed element, to is the

original thickness before the stress 0 is applied, and t is the thickness

after. Substituting into equation 55 and solving for 0 gives

k

__ 5.. _1
0_p0 I . eq 56

Now since t=to-u from Figure 9, where u is the compression,

1‘ t l 1

—"—=——-Q—= =———— eq 57
t to—u 1__l:l_ 1—8

to

where e = u/to is the strain. Substituting yields,

1 k

0=p0[1—_;) —1 6q 58

Equation 58 is the stress vs. strain relation for the cushion element.

 

Dividing both sides by the strain and noting that by definition, the

modulus is the ratio of stress to strain [15] gives

 

1 p
E: —1—°—

[(l-e)" ]8 eq 59

In the small strain limit, E approaches kpo=(l.072)(14.7)=15.76 psi

and steadily increases for larger strains. Both the material modulus

and cross sectional area are now a function of x. The area is an

explicit function of x because. it varies directly with position as the

geometry of the cushion dictates. The modulus is an implicit function

of x because it varies with the strain and the strain varies with

position.
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Figure 9 General variables used for a block cushion
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Because the modulus is a function of strain and the strain

distribution is not known before hand, the material modulus must be

initially guessed. A reasonable guess would be the value, E=14.7 psi

for small strains. The problem can then be solved with each element

having this modulus. The resulting strain field can then be used to

correct the modulus for each element using equation 59 and the

process is repeated. The program will iterate until the material

modulus converges upon a value for each element. Upon

convergence, the results will eventually be used to calculate the peak

G delivered to a product in a drop.

Now that the behavior of the cushion during compression has

been modeled as a purely mechanical process, it is possible to

examine cushions with more complicated geometric shapes like

ribbed cushions. Ribbed cushions are merely block cushions with

material removed at the base which gives them the appearance of a

thinner block cushion standing on legs. They have the advantage of

limiting the required amount of foam for protection while

maintaining full support of the base of the product. The method of

analysis which relies on the solution to the two coupled differential

equations has the disadvantage of being able to handle only block

shaped cushions (constant cross sectional area). The method also

requires the knowledge of several material properties and cell

dimensions. The advantage in modeling the process as a polytropic

one is that all of these properties are lumped into one k, which is

hopefully fairly constant for a particular brand of cushion. It is now

possible to use broad based numerical methods such as the finite

element method to analyze odd shaped cushions.
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2.11 Finite Element Program and Input:

The method to solve the system of equations involves the

implementation of a computer algorithm in a Fortran computing

environment. A computer code developed with assistance from R.

Averill [1] will be used to solve equation 53 [11,17,19]. The code was

written to model each element in a closed cell cushion according to

equation 59. The equation for each element is then combined into

system of equations and solved numerically by matrix algebra. The

algorithm to solve for the stress and strain consists of three basic

parts: the preprocessor, processor and the post processor [17].

In the preprocessor, the boundary conditions, mesh geometry

and element information is read in. This includes the data regarding

how many nodes per element, the number of elements, how the

nodes are restricted (boundary conditions), the type of interpolation

functions, and the number of Gauss points to numerically integrate.

The processor is where the local stiffness matrix is generated

for each element. The local stiffness matrix uses the interpolation

functions to generate the solution to the variational approximation

for each particular element. The local stiffness matrices are then

assembled into a global stiffness matrix where the influence of

adjacent elements are accounted for [17,19]. The contribution to a

stiffness coefficient at the global level could be the result of several

local element stiffness coefficients. The global stiffness matrix is

generally denoted as [Kij]. Once the global stiffness matrix is

assembled the system of equations are set up where the stiffness

matrix multiplies the displacement vector u and is set equal to the

nodal force vectors P: [K][u] = [P].
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The next step in the finite element method involves imposing

the boundary conditions on system of equations. The boundary

conditions include specifying displacements or forces at a node. Once

the boundary conditions are imposed, the system of equations are

solved. The solution of interest that the computer program returns

are the displacements for each node in the mesh.

The displacements are then used in the post processor to obtain

other pertinent information. In the post processor, the gradients

(strains) and stresses are calculated for each element. From this

data, the material modulus can be calculated. The preprocessor,

processor and post processor are located in the main program.

Routines that solve the differential equation are located outside of

the main program as subroutines. The details of the complete

program are shown in the appendix and a summary of the algorithm

and the routine is shown is Figure 10.

The first subroutine which is called from the main program,

MAIN, is STIF which develops the local stiffness matrix. While

generating the local stiffness matrix for each element, STIF will call

the subroutine SHAPE to develop the interpolation function, which

will be used to generate the solutions to the variational equation of

that element. The SHAPE routine contains information related to the

linear interpolation functions. The linear interpolation functions are

used in the STIF routine to solve equation 53 in variational form. As

the program treats each element in the mesh, the local stiffness

matrix is assembled into a global stiffness matrix by the subroutine
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ASSEMBLE. ASSEMBLE puts the global matrix in a banded matrix

form. The subroutine BNDY then imposes the specified boundary

conditions to the displacement and force vectors The subroutine

SOLVE uses the Gauss elimination technique to solve the matrix for

the unknown displacements.

The solution to a problem is solved by iteration. This is

necessary because the material modulus depends on the strains and

the strains are the solution to the problem. The initial condition

imposed on equation 53 to begin the calculation process involves

prescribing a compressive displacement of the upper surface while

fixing the base and selecting an initial material modulus. The

program then solves for the nodal displacements. The first iteration

is completed when the displacement at each node is calculated. From

 

this solution, values of stress and strain are calculated. Since the

strains determine the modulus through equation 59 and the modulus

used to solve for these strains in the first place was initially guessed,

a check is required to verify the solution. A comparison is made

between the old modulus (guessed) and the new one based on the

calculated strain. The second iteration now uses the new modulus

and the process continues until the modulus converges for each

element. In order to stabilize the iteration so that the solution

doesn't oscillate or diverge, a weighted strain average may be used

to calculate the new modulus for each element. The weighted strain

average using 10% of the new strain plus 90% of the old strain was

used for each element. The process is shown in Figure 10.
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2.12 Force vs. Compression Transformation to G's

Once the iteration process converges for a prescribed boundary

displacement, the only result of interest is the corresponding force on

the upper surface required to produce this displacement. In order to

be able to use this information to predict the shock to a product

dropped onto a cushion, the whole iterative solution process must be

performed again for various displacements. By prescribing larger

and larger displacements and solving for the corresponding forces, a

force vs. compression relationship, F vs. u, for this cushion like the

one shown in Figure 11 can be developed. The use of this force vs.

compression curve to predict G level is now straight forward. The

potential energy Wh to be absorbed by the cushion in dropping the

weight W from a height h is,

d».

Wh= Jqu eq 60

0

where dm is the peak dynamic deflection of the cushion. In other

words, the dynamic compression corresponds to the point on the

curve where the area underneath is equal to Wh. The corresponding

force F is related to the shock through Newton's Law

G = F/W eq 61

where F is the force corresponding to the compression dm.
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CHAPTER3

RESULTS

3.1 Simulation of Block and Ribbed Cushions

The polytropic model and finite element program will be tested

for two cushion types: a block cushion and a ribbed cushion. The

purpose of the test is to check the theory that the compression of a

closed cell foam may be modeled as a polytropic process and to solve

the problem using the finite element method. The stabilization and

convergence of the iterative solution generally takes from two

iterations for block cushions to about thirty iterations for the ribbed

cushions at large strains.

The block cushion solution will be checked quantitatively

against the Arcel 512 cushion curve data and the ribbed cushion

against a block cushion with the same overall length, width and

thickness dimensions. The ribbed cushion solution will be further

tested by comparing the results to the equivalent volume method [8].

3.2We

The finite element setup for analyzing the block cushion is

shown in Figure 12. Four elements with two nodes per element were

used as shown. The cross sectional areas were all taken to be A(n) =

(l)(w) and the moduli B were calculated in accordance with equation

59 using k=1.072. The force vs. compression curves for the two

different block sizes were calculated using the method outlined in

Figure 10. The first block was (l)(w)(t) -_- (10)(10)(2) in3 and the

second was (8)(8)(4) in3. The details of the input data to the finite

element program are shown in Table 7.
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Figure 12 Mesh variables for a block cushion

 



48

  LInput data FEM notation I2 in. thk. block II4 in. thk. block II

 

 

 

 

 

 

  
 

 

   

Nodes/element nodelm 2

Degrees of ndfnod 1 1

freedom per

element

number of Gauss ngpstif 2 2

pts to calculate

the displacement

number of Gauss ngpgrd 2 2

pts to calculate

the strain

Number of nelmsh 4 4

elements in mesh

domain domain 2 inch 4 inch

(thickness)

material constant k 1.072 1.072

material modulus (initial guess) E(x) 14,7 psi 14.7 psi

cross sectional area A(x) 100 square 64 square

inches inches  
Table 7 Input data for 2 inch and 4 inch thick block cushion
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The results of the finite element solution for the force vs.

compression curve for the 2 inch block are shown in Table 8. The

displacement at the upper surface was gradually increased in steps

of .2 inches and the corresponding force was determined by the

program. Since the prediction of G's requires areas under the force

vs. compression curve, a seventh order polynomial was passed

through the data points and then integrated to obtain the area as a

function of compression. The polynomial which fits the data in Table

8 is:

F = 31310.9x7 - 194322.5x6 + 490567.5x5 — 641655.5x4 +

460788.6x3-175799.1x2 + 32669.0x + 34.2

The results for the 4 inch block cushion are shown in Table 9.

The polynomial which fits the data points is:

F = 212.5x7 — 2622.7x6 + 13085.9x5 - 33568.7x4 +

46723.3x3-33878.9x2 + 11471.3x + 147.2
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prescribed corresponding energy

compression force absorbed

(in) (lb) (in*lb)

0 2000.0 0

0.1 2083.1 118.48

0.2 2175.9 339.56

0.4 2397.6 803.74

0.6 2685.2 1297.22

0.8 3072.71 1879.72

1 - 3622 2549.85

1.2 4458.2 3342.80I

1.4 5878.4 4365.04

1.6 8792.7i 5792.98

1.8 17909.8 8266.68    
Table 8 Force vs. compression results for the 10 in x 10 in x 2 in

block thick cushion
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prescribed corresponding energy

compression force absorbed

(in) (lb) (in*lb)

0 1280.0 0

0.1 1307.51 61.89

0.2 1337.0 185.21

0.4 1399.0 492.47

0.6 1469.4 797.39

0.8 1550.1 1088.74

1 1641.0 1389.91

1.2 1747.2 1721.35

1.4 1870.1 2089.47

1.6 2014.7 2490.17

1.8 2188.2 2917.79

2 2398.1 3373.39

2.2 2658.6 3868.45

2.4 2988.8 4423.37

2.6 3420.2 5062.48

2.8 4006.4 5810.35

3 4845. 6696.56

3.2 6138.24 7779.22

3.4 8365.4 9200.00I

3.6 13030.4 11286.25
 

block thick cushion

Table 9 Force vs. compression results for the 8 in x 8 in x 4 in
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Note that in both Tables 8 and 9 the force is not zero when the

compression is zero. This is due to the yield pressure, (5 = 20 psi,

required to deform the cell structure (less the air). In fact the force

at zero compression is easily calculated using force 2 yield pressure x

area.

Now that the force vs. compression curves for the two block

cushions analyzed are known, they may be used to find the shock

delivered to a product in a drop. An example showing how this is

done is given below.

Example: A 32 lb product is dropped from a height of 12 inches onto

the 8" x 8" x 4" cushion.

Solution: The product of weight and drop height is,

Wh=(32)(12) = 384 in-lb. Since this is the energy which must be

absorbed by the cushion and since energy absorbed is just the area

under the force vs compression curve, the corresponding force from

Table 9 is found to be F = 1377.3 lb. From Newton's Law,

(force=(mass)(acceleration)), the corresponding peak deceleration is,

G = F/w = 1377.3/32 = 43.

The result is then compared to Arcel 512 cushion curves where the

G's for a static loading of .5 psi and cushion 4 inches thick is,

G=4O

This same procedure, for an 8" x 8" x 4" cushion, was applied to other

drop situations in order to test the method over a broad range of

dynamic deflections. Table 10 shows the results.  
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drop weight (lb) thickness bearing predicted predicted actual

height (in) (in) area (1112) dm (in) G's" (FEM) G's

(ARCEL)

12 32 4 64 .10 43 40

12 160 4 64 1.25 11 10

30 32 4 64 .25 47 45

30 160 4 64 2.60 20 20

48 32 4 64 1.12 53 50

48 160 4 64 3.10 38 39

Table 10 Comparison of finite element deceleration results to Arcel

512 data
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The result in Table 10 show reasonable predictions of shock for

a range of dynamic deflections. The accuracy of the prediction with

the Arcel data implies that accounting for heat transfer and

thermodynamics are necessary. More important the results show

that the polytropic assumption seems valid. To qualify the

polytropic process, extreme drop conditions and odd cushion shapes

need to be tested. This qualification will help justify the polytropic

process. As will be seen, the odd cushion shape to be test will be a

ribbed cushion. The results will then be compared to the equivalent

volume method [8].

3.3 Ribbed Cushion Results

For a ribbed cushion, A(x) and E(x) will vary in the ribs and

remain constant in the plank. The schematic for the ribbed cushions

are shown in Figure 13 and Figure 14. The meshing of the ribbed

cushion as shown in Figure 15 shows the finite element model with

one rib. Since the finite element model is one dimensional, the cross

sectional area at each position x must weighted (see Table 11). The

mesh chosen for the ribbed cushion is a one dimensional uniform

mesh. The length of each element is 0.5 inches. Further mesh

refinements were found to be unnecessary since the results yielded

reasonable values. The force vs compression results from the FEM

solution are shown in Table 12. Comparing Tables 9 and 12, one

notices that at a given compression, the energy absorbed by a block

cushion is greater than that by the ribbed cushion with the same

overall size. This is reasonable since it takes more energy to

compress a block cushion because there is more material. This is also

shown by the force compression curves in Figure 16.
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Figure 13 Three dimensional view of the ribbed cushion
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Figure 14 Two dimensional view of the ribbed cushion
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Figure 15 Finite element mesh for the rib cushion
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material modulus

Element number

Cross sectional area

 

  
 

 

 

 

 

 

 

 

  

(initial guess) E(x) A(x), (in2)

_(psi) _

1 14.7 64.0

2 14.7 64.0

3 14.7 64.0

4 14.7 64.0

5 14.7 28.9

6 14.7 27.5

7 14.7 26.1

8 14.7 24.7   
Table 11 Geometry and initial modulus for the ribbed cushion
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prescribed corresponding energy

compression force absorbed

(in) (lb) (in*lb)

0.2 1313.28 147.90

0.4 1350.40 422.92

0.6 1394.56 711.84

0.8 1442.56 992.99I

1 1502.08 1277.27

1.2 1569.28 1578.43

1.4 1649.92 1902.58

1.6 1745.28 2248.80

1.8 1861.12 2614.27

2 2003.84 2999.75

2.2 2181.12 3412.38

2.4 2408.32 3865.34

2.6 2705.92 4375.12

2.8 3112.32 4959.45

3 3697.28 5640.60]

3.2 4599.68 6460.50]

3.4 6147.84 7516.37I
 

Table 12 Force vs. compression results for a 4 inch thick ribbed

cushion with cross section dimensions as specified in Table 12
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Figure 16 Comparison between ribbed and block cushions with the

same overall dimensions
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The FEM solution of the ribbed cushion was also compared to

theoretical drop results [8]. Drops were performed at three different

drop heights with three different weights. The test drop heights

were 18, 30 and 42 inches with weights of 37.6 lb., 65.8 lb. and 94.2

lb.. The theoretical calculation involved finding the volume of a

ribbed cushion and converting it to an equivalent block cushion of

the same thickness. The comparison is shown in Table 13. Based

upon the error, it seems that the constitutive equation derived

earlier does model the closed cell cushion accurately. Since the equal

volume method is a proven technique, it may be said that the

 

polytropic assumption is a valid one.

The development of the polytropic process has shown that heat

transfer must be incorporated into the constitutive equation to model

cushions. The development has also shown that it is possible to lump

allithe thermodynamic terms into a constant k. As a result of the

polytropic process we are now able to model a ribbed cushion based

on numerical methods.
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drop weight finite element equivalent percent

height (lb) results (G's) volume results error

(in) (G'S)

18 37.6 3 7 3 3 12

18 65.8 2 3 21 10

18 94.2 17 17 0

30 37.6 39 36 8

30 65.8 25 27 7

30 94.2 21 22 5

42 37.6 42 41 2

42 65.8 29 30 3

42 94.2 26 29 10     
Table 13 Comparison between finite element results and the

equivalent volume results [8]
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CONCLUSIONS

There were several steps involved in the modeling process of a

closed cell foam during an impact. The first model directly accounted

for heat transfer between the air and the foam. A system of three

differential equations obtained from Newton's Law, the Gas Law, and

the First Law of Thermodynamics were solved numerically by the

finite difference method (FDM). The prediction for peak G-level in a

drop was found to be in close agreement with published data. Based

on the success of this model, a simplified model which incorporated

all of the thermodynamic terms into a single property, the polytropic

constant k, was developed. This simplification converted the

problem into a non-linear, one dimensional elasticity problem which

was solved using the finite element method (FEM). The prediction

for peak G-level using this model was also found to be in excellent

agreement with published data.

To verify the accuracy of both the FEM and FDM models,

extreme drop scenarios must be tested. Table 14 shows the FDM

solution and the FEM solution for extreme drop situations. Both the

FEM and FDM model produced similar results as expected since FEM

is derived from the FDM model. The results in Table 14 shows that it

is necessary to consider thermodynamics to accurately model a

closed cell foam and that it is possible to simplify the analysis using a

polytropic process to represent the three differential equations. The

discrepancy in G at the 48 inch drop for the FDM model is probably

due to propagation of errors in the finite difference method.
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drop cushion static . FDM FEM cushion

height thickness loading solution solution curve

(in) (in) (psi) (G's) (G's) data (G's)

12 4 .5 43 43 41

24 2 1 36 35 3 7

48 2 1 73 69 70      

Table 14 Comparison between the finite difference, finite element,

and actual results at extreme loading conditions
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As the impact becomes more severe, the FDM model becomes less

accurate due to the smaller time intervals needed to capture the

deceleration accurately. Overall, it is difficult to dispute the validity

of the model based on the results.

The theory that the force required to compress a closed- cell

foam is strain rate dependent seem to be justified. The rate

dependence however is not due to any visco-elastic properties of the

foam material but to heat transfer between the air and the cell walls.

The process of compression is close to being isothermal. The

accuracy of the results for a block cushions was verified using actual

published data. The results for ribbed cushions cannot be completely

verified since only a comparison to the equivalent volume method

could be made. The comparison however does show a good

correlation.
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

variable list for one dimensional closed cell cushion block/ribbed

This program solves the linear equations of a second order

equation:

-a(XI(u’)’ + b(x)u = f(x)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

V A R I A B L E S

PARAMETERS:

IUNIT - INTEGER, UNIT NUMBER OF INPUT FILE.

OUNIT — INTEGER, UNIT NUMBER OF OUTPUT FILE.

BNDMAX - INTEGER, COLUMN DIMENSION OF GLOBAL STIFFNESS:

EDFMAX - INTEGER, MAXIMUM NUMBER OF D.O.F. PER ELEMENT.

NBCMAX - INTEGER, MAXIMUM NUMBER OF BOUNDARY CONDITIONS.

NDFMAX - INTEGER, MAXIMUM NUMBER OF D.O.F. PER NODE.

NEMMAX - INTEGER, MAXIMUM NUMBER OF ELEMENTS IN THE MESH.

NEQMAX - INTEGER, MAXIMUM NUMBER OF EQUATIONS (OR MAXIMUM

NUMBER OF D.O.F. IN THE MESH).

NGPMAX - INTEGER, MAXIMUM NUMBER OF GAUSS POINTS.

NNMMAX - INTEGER, MAXIMUM NUMBER OF NODES IN THE MESH.

NPEMAX - INTEGER, MAXIMUM NUMBER OF NODES PER ELEMENT.

ELEMENT PROPERTIES:

NDFELM - INTEGER, NUMBER OF D.O.F. PER ELEMENT.

NDFNOD - INTEGER, NUMBER OF D.O.F. PER NODE.

NODELM - INTEGER, NUMBER OF NODES PER ELEMENT.

MESH:

BNDWTH - INTEGER, HALF BANDWIDTH OF GLOBAL STIFFNESS MATRIX

FOR BENDING PROBLEMS.

EX - DOUBLE PRECISION(NPEMAX), EX(I) IS THE X-COORDINATE

OF THE I-TH NODE OF THE ELEMENT UNDER CONSIDERATION.
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IMESH INTEGER, FLAG TO INDICATE HOW MESH WILL BE INPUT:

IMESH = 0 IF THE MESH IS INPUT BY HAND,

IMESH = 1 IF THE MESH IS COMPUTED BY THE PROGRAM.

NDFMSH INTEGER, NUMBER OF D.O.F. IN THE MESH.

NELMSH INTEGER, NUMBER OF ELEMENTS IN THE MESH.

NODE INTEGER(NEMMAX,NPEMAX), CONNECTIVITY MATRIX:

NODE(I,J) IS THE J-TH NODE OF THE I—TH ELEMENT.

NODMSH INTEGER, NUMBER OF NODES IN THE MESH.

DOUBLE PRECISION(NNMMAX), X(I) IS THE GLOBAL

COORDINATE OF THE I-TH NODE.

BOUNDARY CONDITIONS:

ISGD INTEGER(NBCMAX,2), ISGD(I,J) INDICATES THAT THE J-TH

DISPLACEMENT D.O.F. OF THE I-TH NODE IS SPECIFIED.

ISGF INTEGER(NBCMAX,2), ISGF(I,J) INDICATES THAT THE J-TH

FORCE COMPONENT OF THE I-TH NODE IS SPECIFIED.

NSGD INTEGER, NUMBER OF DISPLACEMENT BOUNDARY CONDITIONS.

NSGF INTEGER, NUMBER OF NODAL FORCE BOUNDARY CONDITIONS.

VSGD DOUBLE PRECISIONINBCMAX), VSGD(I) IS THE SPECIFIED

VALUE OF THE I-TH DISPLACEMENT BOUNDARY CONDITION.

VSGF DOUBLE PRECISION(NBCMAX), VSGFII) IS THE SPECIFIED

VALUE OF THE I-TH NODAL FORCE BOUNDARY CONDITION.
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DSF

EF

ESTIF

GAUSPT

GAUSWT

GDSF

GF

GSTIF

NGPSTF

NGPSIG

SF.
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DOUBLE PRECISION(NPEMAX), DSF(I) IS THE LOCAL (XI)

DERIVATIVE OF THE I-TH SHAPE FUNCTION.

DOUBLE PRECISION(EDFMAX), ELEMENT FORCE VECTOR.

DOUBLE PRECISION(EDFMAX,EDFMAX), ELEMENT STIFFNESS.

DOUBLE PRECISION(NGPMAX,NGPMAX) GAUSPT(I,J) IS THE

I-TH GAUSS POINT OF J-TH GAUSS RULE.

DOUBLE PRECISION(NGPMAX,NGPMAX) GAUSWT(I,J) IS THE

I-TH GAUSS WEIGHT OF J-TH GAUSS RULE.

DOUBLE PRECISION(NPEMAX), GDSF(I) IS THE GLOBAL (X)

DERIVATIVE OF THE I-TH SHAPE FUNCTION.

DOUBLE PRECISION(NEQMAX), GLOBAL FORCE VECTOR,

WHICH, ON RETURN, CONTAINS THE SOLUTION VECTOR;

ALSO USED AS A DUMMY VECTOR IN EIGENPROBLEMS.

DOUBLE PRECISION(NEQMAX,BNDMAX), GLOBAL STIFFNESS.

INTEGER, NUMBER OF GAUSS POINTS TO BE USED TO

INTEGRATE THE STIFFNESS MATRIX.

INTEGER, NUMBER OF GAUSS POINTS AT WHICH THE

STRESSES ARE TO BE EVALUATED.

INTEGER(NPEMAX), SF(I) IS THE I-TH SHAPE FUNCTION.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C
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C
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Master Thesis Project Department of Packaging

By Andrew Chen

October 20, 1993

This program solves the linear equations of a second order

equation:

THIS PROGRAM WILL FIND THE STRESS, STRAIN AND YOUNGSMODULUS

OF A CLOSED CELL CUSHION BASED ON THE AIR MODEL AND THE

PROPERTIES OF THE MATERIAL SOLVED SEPERATELY

Note: This program will stabilize oscilating systems

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

0
0
0
0
0
0
0
0
0
0
0

C

C

C

c

C

C

-a(x)(u’)' + b(x)u = f(x) C

C

C

C

C

C

C *** Put declaration, dimension and open statements here.

implicit double precision (a-h,o-z)

integer neqmax, bndwth, nemmax, npemax, nodelm, ndfnod,

node, nelmsh, ngpstf, ngpgrd, bndmax, ndfelm, count,

elmnum, edfmax, ndfmax, ngpmax, nnmmax, nbcmax, ires,

ni, i, j, nodmsh, ndfmsh, nsgd, nsgf, isgd, isgf, finish,

k+
+

+
+

double precision vsgd, domain, elenth, gauspt, gauswt, pa,

sf, dsf, gf, estif, ef, gstif, jacobn,

elx, x, xi, dsx, gdsf, vsgf, nodsep,

x0, al, a2, a0, bl, b2, b0, fl, f2, f0, area, e, strain,

kon, stress,strntp,strnag+
-
+
+

+

parameter (bndmax=20, edfmax=3, nbcmax=20, ndfmax:l, nemmax=20,

neqmax=20, ngpmax=4, nnmmax=20, npemax=3, pa=14.7,

finish=10)

dimension node(nemmax,npemax), elx(nnmmax), isgd(nbcmax,2),

+ vsgd(nbcmax), isgf(nbcmax,2), vsgf(nbcmax),

+ gauspt(ngpmax,ngpmax), gauswt(ngpmax,ngpmax),

+ gf(neqmax), gstif(neqmax,bndmax), ef(edfmax).

+ gdsf(npemax), estif(edfmax,edfmax),area(nemmax),

+ sf(npemax), dsf(npemax),a0(nemmax),e(nemmax),

+ strain(nemmax), stress(nemmax),

+ strntp(nemmax), strnag(nemmax)

open (unit = 10, file = ’dtl', status = ’old’)

open (unit = 11, file = 'sdtl', status = 'unknown')

C ____________________

C --— PREPROCESSOR --—

C ____________________

write(ll,*)’This is the data output for evaluating the strains &’

write(ll,*)’stresses of a 1 dimensional material that obeys the'

write(ll,*)’following equation’

write(ll,*)’ —a(x) u” + b(x) u = f(x)'

C *** Read input data here.

a1:

a2:

b0:

bl:

b2:

f0:

fl:

f2: 0
0
0
0
0
0
0
0

1 continue

read(10.*) kon
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read(10,*) nodelm, ndfnod, ngpstf, ngpgrd, nelmsh

read(10,*) (e(n), n=l , nelmsh)

read(10,*) (area(n), n=1 , nelmsh)

read(10,*) a1, a2

read(10,*) b0, b1, b2

read(10,*) f0, fl, f2

read(10,*) nsgd, nsgf, domain

read(10,*) ((isgd(i,j), jzl, 2), i=1, nsgd)

read(10,*) (vsgd(i), i=1, nsgd)

read(10,*) ((isgf(i,j), j=1, 2), i=1, nsgf)

read(10,*) (vsgf(i), i=1, nsgf)

c ---------writing the input data ———————————————————————————————————

write(ll,*)’+++++++++++++++++++++++++++++++++++++++++++’

write(ll,*)‘the nonlinear constant used is ’, kon

write(ll,*)'the number of nodes per element is ',nodelm

write(ll,*)‘the number of elements per mesh is ',nelmsh

write(ll,*)‘the length of the domain is ',domain

do 2 n=1, nelmsh

write(ll,*)’initial modulus=’,e(n),'for element’,n

write(ll,*)‘initial cross sectional area =', area(n)

write(ll,*)' ............................................ '

2 continue

c-——- section to calculate the number of nodes in a mesh, the global

c coordinate and the boolean connectivity matrix

c ___________________________________________________________________

do 10 i=1, nemmax

do 20 jzl, npemax

node(i,j) = O

elx(i) = 0.0

strntp(i) = 0.0

strnag(i) = 0.0

20 continue

10 continue

nodmsh = nelmsh*(nodelm - 1)+l

ndfmsh = nodmsh*ndfnod

ndfelm = nodelm*ndfnod

bndwth = ndfelm

c—-——calculation of the coordinate system

do 30 i=1, nodmsh

elenth = domain/nelmsh

nodsep = domain/(nodmsh-l)

elx(i) = nodsep*float(i-l)

write (ll,*)'Global node',i,'at',elx(i)

30 continue

c write(ll,*)’nodmsh’,nodmsh,'elenth',elenth

c———boolean connectivity calculation

35

c

50

40

c

c

do 35 i=1, nodelm

node(l,i) = i

continue

write(ll,*)' nodelm is’,nodelm

do 40 i=2, nelmsh

do 50 j=1, nodelm

node(i,j)= node(i-1,j) + (nodelm - 1)

continue

continue

write(ll,*)‘the connectivity matrix local node vs global element'

do 55 i=1, nelmsh

write(ll,*) (node(i,i). i=l,nodelm)
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55 continue

C --- INITIALIZE THE ARRAYS WHICH CONTAIN THE GAUSS POINTS AND WEIGHTS.

CALL GQUAD (NGPMAX, GAUSPT, GAUSWT)

C *** Main processing operations or call to processor subroutine goes here.

do 5 count=1, finish

write(ll,*)':::==::::=:=;::===:::::::::::::;:::::::::::::::::::::'

write(ll,*)'this is iteration step number ',count

write (11 I *) ’ =:==:=:::::=========:=:====::::::::::::::::::=::::::: '

a1:

a2:

b0:

b1:

132:

f0:

fl:

f2:

X0 : 0.0

C
D
O
C
D
C
D
O
C
D
C
D
O

do 65 i =1, nemmax

a0(i)=0.0

65 continue

do 8 i = 1,edfmax

do 6 j = l,edfmax

estif(i,j)=0.0

ef(i)=0.0

6 continue

8 continue

16 continue

18 continue

do 60 elmnumzl, nelmsh

n = elmnum

a0(n) = e(n)*area(n)

call stif (elx, ndfelm, ngpmax, gauspt, gauswt, elenth,

+ nodelm, estif,ef,a0,b0,f0,a1,a2,bl,b2,fl,

+ f2, elmnum, nodmsh, const, x, jacobn, xi, ngpstf,nemmax)

call ASMBLE (NEQMAX, BNDMAX, EDFMAX, NEMMAX, NPEMAX, NODELM,

NDFNOD, NODE , ESTIF , BF , GSTIF , GF ,

. ELMNUM) '

60 continue

do 23 i = l,nodelm

do 26 j = 1,nodelm

write (11,*) 'estif of node,’,i,',',j,'is’,estif(i,j)

26 continue

23 continue

call fbndry (neqmax, nbcmax, ndfnod, nsgf, isgf, vsgf, gf)

call ubndry (neqmax, bndmax, nbcmax, ndfnod, ndfmsh, bndwth,

+ nsgd, isgd, vsgd, gstif, gf)
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ires = 0

call solve (neqmax, bndmax, ndfmsh, bndwth, gstif,

+ gf, ires)

do 70 k=1, nodmsh

write (ll,*)'displacement of ',gf(node(k,l)),’at node',k,

+ ' at x coord ’,elx(k)

70 continue

C .....................

c —-— POSTPROCESSOR —-—

C _____________________

C *** Printing of solution and computation of gradients goes here.

do 80 j = l, nelmsh

do 90 hi = l, ngpgrd

xi = gauspt<ni,ngpgrd)

call shplld (npemax, nodelm, xi, elenth, sf, dsf, gdsf,

+ jacobn)

x = 0.5*elenth*(l+xi)+elx(j)

dsx=0.0

do 99 i = l,nodelm

dsx: dsx + gdsf(i)*gf(node(j,i))

99 continue

dsx

(strain(j)+strntp(j))/2

strain(j)

strnag(j)

 

90 continue

write(ll,*)' ________________________________________ ,

e(j) = (pa/strnag(j))*(((1-strnag(j))**(-kon))-1)

write(ll,*)‘youngs modulus is’, e(j),’ for element',j

stress(j) = e(j)*strnag(j)

write(ll,*)’ stress is ',stress(j)

write(ll,*)’ strain is ',strain(j)

80 continue

do 82 n=1, nemmax

strntp(n)=strain(j)

strnag(n)=0.0

strain(n)=0.0

stress(n)=0.0

82 continue

5 continue

STOP

END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c c

c subroutine: stif c

c purpose: calculates the stiffness matrix of the variational c

C statement c

c c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine stif (elx, ndfelm, ngpmax, gauspt, gauswt, elenth,

+ nodelm, estif,ef,a0,b0,f0,a1,a2,bl,b2,fl,

+ £2, elmnum, nodmsh, const, x, jacobn, xi, ngpstf,nemmax)

integer i, j, ndfelm, ngpmax, ngpstf, nodelm, elmnum

double precision elx, xi, ni, const, gauspt, gauswt,

+ elenth, ef,

+ jacobn, sf, estif, gdsf, dsf, x, ax,

+ bx, fx, ex,
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+ a1, a2,°a0, bl, b2, b0, fl, f2, f0

dimension ef(3), gauspt(4,4), gauswt(4,4), estif(3,3),

+ gdsf(3), elx(SO), dsf(3), sf(3),a0(nemmax)

c ----- initialize all arrays

do 10 i=1, ndfelm

ef(i) = 0.0

‘do 20 j=1, ndfelm

estif(i,j) = 0.0

20 continue

10 continue

c -----do loop on the number of gauspts

do 40 ni = 1, ngpstf

xi = gauspt(ni,ngpstf)

ax = 0.0

c —————passing the value of x(i) to ex(i)

ex = elx(elmnum)

c -----call shape function to evaluate the interpolation functions

call shplld (npemax, nodelm, xi, elenth, sf, dsf, gdsf,

+ jacobn)

const = (jacobn)*gauswt(ni,ngpstf)

x=0.5*elenth*(l.0 + xi) + ex

c

c -----define the coefficient of the differential equation

c

ax = a0(elmnum) + al*x + a2*x**2

bx = b0 + bl*x + b2*x**2

fx = £0 + f1*x + f2*x**2

c

c ----- compute the coefficent matrix and the column vector for the deq

C .

do 50 i=1, ndfelm

ef(i) = ef(i) + const*sf(i)*fx

do 60 j=l, ndfelm

estif(i,j) = estif(i,j) + ax*const*gdsf(i)*gdsf(j) +

+ bx*const*sf(i)*sf(j)

60 continue

50 continue

40 continue

do 23 i = l, ndfelm

do 26 j = 1, ndfelm

c write (ll,*) 'estif of node,',i,',',j,’is',estif(i,j)

26 continue

23 continue

return

end

c—c ----------------------------------------------------------------------

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C

C SUBROUTINE: ASMBLE C

C PURPOSE: ASSEMBLE THE GLOBAL MATRICES IN BANDED FORM. C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ASMBLE (NEQMAX, BNDMAX, EDFMAX, NEMMAX, NPEMAX, NODELM,

NDFNOD, NODE , ESTIF , EF , GSTIF , GF ,

ELMNUM)

IMPLICIT LOGICAL (A-Z)

INTEGER NEOMAX, BNDMAX, EDFMAX, NEMMAX, NPEMAX, NODELM,
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NDFNOD, NODE , ELMNUM, INOD , JNOD , IDOF ,

JDOF , ROW , COL , COLl , EROW , ECOL

DOUBLE PRECISION ESTIF , EF , GSTIF , GF

DIMENSION NODE(NEMMAX,NPEMAX) , ESTIF(EDFMAX,EDFMAX), EF(EDFMAX),

GSTIF(NEQMAX,BNDMAX), GF(NEQMAX)

DO 40 INOD = l, NODELM

ROW = NDFNOD * (NODE(ELMNUM,INOD) - 1)

DO 30 IDOF = l, NDFNOD

ROW = ROW + l

EROW : (INOD - l) * NDFNOD + IDOF

GF(ROW) = GF(ROW) + EF(EROW)

DO 20 JNOD = l, NODELM

COLl : NDFNOD * (NODE(ELMNUM,JNOD) - 1)

DO 10 JDOF = 1, NDFNOD

COL : COLl - ROW + JDOF + l

ECOL : (JNOD - l) * NDFNOD + JDOF

IF (COL .GT. 0) THEN

GSTIF(ROW,COL) = GSTIF(ROW,COL) + ESTIF(EROW,ECOL)

END IF

10 CONTINUE

20 CONTINUE

3O CONTINUE

4O CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C

C SUBROUTINE: FBNDRY C

C PURPOSE: IMPOSE THE PRESCRIBED FORCE B.C.’S ON THE C

C BANDED SYMMETRIC STIFFNESS MATRIX AND MODIFY C

C THE FORCE VECTOR. C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE FBNDRY (NEQMAX, NBCMAX, NDFNOD, NSGF , ISGF , VSGF ,

GF )

10

IMPLICIT LOGICAL (A-Z)

INTEGER NEQMAX, NBCMAX, NDFNOD, NSGF , ISGF , IBC ,

IDOF

DOUBLE PRECISION VSGF , GF

DIMENSION ISGF(NBCMAX,2), VSGF(NBCMAX), GF(NEQMAX)

DO 10 IBC = l, NSGF

IDOF : NDFNOD * (ISGF(IBC,1) - l) + ISGF(IBC,2)

GF(IDOF) = GF(IDOF) + VSGF(IBC)

CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

0
0
0
0
0

SUBROUTINE: GQUAD

PURPOSE: ASSIGN VALUES TO THE ARRAYS "GAUSPT" AND "GAUSWT“

USED IN GAUSSIAN QUADRATURE.

0
0
0
0
0
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C ___

10

20

C -__

C --_

C ---

C -_-

SUBROUTINE GQUAD

IMPLICIT LOGICAL (A-Z)

INTEGER NGPMAX,

DOUBLE PRECISION GAUSPT,

DIMENSION GAUSPT(NGPMAX,NGPMAX),

INITIALIZE ARRAYS.

DO 20 I = l,NGPMAX

DO 10 J = l,NGPMAX

GAUSPT(I,J) = 0.000

GAUSWT(I,J) = 0.000

CONTINUE

CONTINUE

(NGPMAX, GAUSPT, GAUSWT )

GAUSWT

GAUSSIAN QUADRATURE OF ORDER 1.

GAUSPT(l,l)

GAUSWT(1,1)

0.000

2.000

GAUSSIAN QUADRATURE OF ORDER 2.

GAUSPT(1,2)

GAUSPT(2,2)

GAUSWT(1,2)

GAUSWT(2,2) H
I!

II
II

1.000

GAUSWT(1,2)

—l.OOO/SQRT(3.000)

GAUSSIAN QUADRATURE OF ORDER 3.

GAUSPT(1,3)

GAUSPT(2,3)

GAUSPT(3,3)

GAUSWT(1,3)

GAUSWT(2,3)

GAUSWT(3,3)

0.000

5.000/9.000

8.000/9.000

GAUSWT(1,3)

~SQRT(3.000/5.000)

GAUSSIAN QUADRATURE OF ORDER 4.

GAUSPT(1,4)

GAUSPT(2,4)

GAUSPT(3,4)

GAUSPT(4,4)

GAUSWT(1,4)

GAUSWT(2,4)

GAUSWT(3,4)

GAUSWT(4,4)

RETURN

END

—O.86ll363116

-O.3399810436

-GAUSPT(2,4)

-GAUSPT(1,4)

0.3478548451

0.6521451549

GAUSWT(2,4)

GAUSWT(1,4)

GAUSWT(NGPMAX,NGPMAX)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

0
0
0
0
0
0

SUBROUTINE:

PURPOSE:

SUBROUTINE SHPLlD (NPEMAX, NODELM, XI

JACOBN)

SHPLlD

EVALUATE THE 1-D LAGRANGIAN INTERPOLATION FUNCTIONS C

AND THEIR GLOBAL DERIVATIVES AT THE GAUSS POINTS.

GDSF ,

ELENTH, SF

C

C

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C .___
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IMPLICIT LOGICAB (A-Z)

INTEGER NPEMAX, NODELM, I

DOUBLE PRECISION XI , ELENTH, SF , DSF , GDSF , JACOBN

DIMENSION SF(NPEMAX), DSF(NPEMAX), GDSF(NPEMAX)

LINEAR LAGRANGE INTERPOLATION FUNCTIONS FOR Z-NODED ELEMENTS.

IF (NODELM .EQ. 2) THEN

SF(l) = 0.5000 * (1.000 — XI)

SF(Z) = 0.5000 * (1.000 + XI)

DSF(l) = -0.5000

DSF(2) = 0.5000

QUADRATIC LAGRANGE INTERPOLATION FUNCTIONS FOR 3-NODED ELEMENTS.

ELSE IF (NODELM .EQ. 3) THEN

SF(l) = ‘0.5000 * XI * (1.000 - XI)

SF(Z) = 1.000 - XI * XI

SF(3) = 0.5000 * XI * (1.000 + XI)

DSF(I) = '0.5000 * (1.000 - 2.000 * XI)

DSF(Z) : -2.000 * XI

DSF(3) = 0.5000 * (1.000 + 2.000 * XI)

END IF

COMPUTE THE GLOBAL DERIVATIVES OF SF(I).

JACOBN : ELENTH * 0.5000

DO 10 I = 1, NODELM

GDSF(I) = DSF(I) / JACOBN

CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C

C

C

C

C

C

C

C

SOLVE:

THIS PROGRAM SOLVES A BANDED SYMMETRIC SYSTEM OF EQUATIONS.

THE BANDED MATRIX IS INPUT THROUGH BAND(NEQNS,NBW), AND

RHS IS THE RIGHT HAND SIDE (FORCE VECTOR) OF THE EQUATION.

NEQNS IS THE NO..OF EQUATIONS AND NBW IS THE HALF BAND WIDTH.

IN RESOLVING, IRES .GT. 0, LHS ELIMINATION IS SKIPPED.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SOLVE (NRM , NCM , NEQNS , NBW , BAND ,

RHS , IRES )

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INTEGER NRM , NCM , NEQNS , NBW , IRES

DOUBLE PRECISION BAND , RHS

DIMENSION BAND(NRM,NCM), RHS(NRM)

MEQNS:NEQNS-l

IF (IRES.GT.0) GO TO 40

DO 30 NPIV=1,MEQNS

NPIVOT:NPIV+1

LSTSUB=NPIV+NBW—l

IF (LSTSUB.GT.NEQNS) LSTSUB=NEQNS

DO 20 NROW=NPIVOT,LSTSUB

C

C

C

C

C

C

C

C

C
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C --- INVERT ROWS AND COLUMNS FOR ROW FACTOR.

NCOL=NROW-NPIV+1

FACTOR:BAND(NPIV,NCOL)/BAND(NPIV,1)

DO 10 NCOL=NROW,LSTSUB

ICOL=NCOL-NROW+1

JCOL=NCOL—NPIV+1

10 BAND(NROW,ICOL):BAND(NROW,ICOL)—FACTOR*BAND(NPIV,JCOL)

20 RHS(NROW):RHS(NROW)-FACTOR*RHS(NPIV)

30 CONTINUE

GO TO 70

40 DO 60 NPIV=1,MEQNS

NPIVOT=NPIV+1

LSTSUB=NPIV+NBW~1

IF (LSTSUB.GT.NEQNS) LSTSUB=NEQNS

DO 50 NROW=NPIVOT,LSTSUB

NCOL=NROW-NPIV+1

FACTOR:BAND(NPIV,NCOL)/BAND(NPIV,1)

50 RHS(NROW)=RHS(NROW)-FACTOR*RHS(NPIV)

60 CONTINUE

C --- BACK SUBSTITUTION.

70 DO 90 IJK:2,NEQNS

NPIV=NEQNS-IJK+2

RHS(NPIV):RHS(NPIV)/BAND(NPIV,1)

LSTSUB=NPIV-NBW+1

IF (LSTSUB.LT.1) LSTSUB=1

NPIVOTzNPIV-l

DO 80 JKI:LSTSUB,NPIVOT

NROW=NPIVOT-JKI+LSTSUB

NCOL=NPIV—NROW+1

FACTOR:BAND(NROW,NCOL)

80 RHS(NROW)=RHS(NROW)-FACTOR*RHS(NPIV)

90 CONTINUE

RHS(1)=RHS(l)/BAND(1,1)

 

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C

C SUBROUTINE: UBNDRY C

C PURPOSE: IMPOSE THE PRESCRIBED DISPLACEMENT B.C.‘S ON THE C

C BANDED SYMMETRIC STIFFNESS MATRIX AND MODIFY C

C THE FORCE VECTOR. C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE UBNDRY (NEQMAX, BNDMAX, NBCMAX, NDFNOD, NDFMSH, BNDWTH,

. NSGD , ISGD , VSGD , GSTIF , GF )

IMPLICIT LOGICAL (A-Z)

INTEGER NEQMAX, BNDMAX, NBCMAX, NDFNOD, NDFMSH, BNDWTH,

NSGD , ISGD , IBC , IDOF , BWMl , ROW ,

COL , K

DOUBLE PRECISION VSGD , GSTIF , GF , UVALUE

DIMENSION ISGD(NBCMAX,2), VSGD(NBCMAX),

GSTIF(NEQMAX,BNDMAX), GF(NEQMAX)

DO 40 IBC : 1, NSGD

IDOF : NDFNOD * (ISGD(IBC,1) - 1) + ISGD(IBC,2)

UVALUE : VSGD(IBC)
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BNDWTH - 1

IDOF '- BNDWTH

BWMl

ROW

DO 20 K = l, BWMl

ROW : ROW + 1

IF (ROW .GT. 0) THEN

COL : IDOF - ROW + 1

GF(ROW) : GF(ROW) - GSTIF(ROW,COL) * UVALUE

GSTIF(ROW,COL) : 0.000

END IF

20 CONTINUE

GSTIF(IDOF,1) = 1.000

GF(IDOF) : UVALUE

ROW : IDOF

DO 30 K = 2, BNDWTH

ROW : ROW + 1

IF (ROW .LE. NDFMSH) THEN

GF(ROW) : GF(ROW) ‘ GSTIF(IDOF,K) * UVALUE

GSTIF(IDOF,K) = 0.000

END IF

30 CONTINUE

40 CONTINUE

RETURN

END



APPENDIX B

ARCEL 5.12 CUSHION CURVES
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Dynamic Cushioning Performance
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ARCEL 512 Resin
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