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ABSTRACT
NUTRIENT EXPORT COEFFICIENTS:

AN EXAMINATION OF SAMPLING DESIGN AND NATURAL VARIABILITY
WITHIN DIFFERING LAND USES

By

Michael N. Beaulac

Lake management strategies and recent environmental legislation
dictate that non point nutrient sources, associated with stormwater run-
off, must be assessed. Estimation of nutrient flux is highly com-
plicated by watershed and climatic factors which contribute to natural
variability. Sampling design concepts, required to 1) reduce sampling
error, and 2) adequately account for natural variability, are examined.

Nutrient flux is assessed through 1) an extensive literature
review of nutrient export studies, 2) an examination and screening of
nutrient export coefficients according to sampling design criteria,
and 3) compilation of these coefficients according to land use. The
ecological mechanisms within each land use influencing the magnitude
of nutrient flux are discussed. The cross sectional and longitudinal
variability of the compiled coefficients are examined through applica-

tion to a hypothetical watershed.
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CHAPTER I
INTRODUCTION

Inland lakes are being used as water supply reservoirs, sources
of recreation and other human related activities at an increasing
rate. The extent and number of water uses is strongly dependent on
lake water quality which is, itself, influenced by land based activi-
ties within the drainage basin. To insure high water quality and
continued multiple water use necessitates the proper management of
the surrounding watershed and the control of point and non point
sources. Because point sources are amenable to direct measurement
and quantification, and thus to successful abatement programs, con-
cern has shifted to the role diffuse (or non point) pollution sources
play in water quality. The main focus of this thesis is non point
pollution from quickflow (stormwater runoff)1 and the ecological
mechanisms within the watershed which control its magnitude. Since
many of these mechanisms and watershed perturbations are land use
specific, a hypothesis central to this thesis is that a relationship

exists between land use and nutrient flux.

The Problem
Lakes have a variety of linkages for energy and nutrient exchange

with surrounding terrestrial ecosystems. The vectors transporting

]Quickf1ow consists of storm induced overland runoff, interflow
and baseflow.
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energy and materials may be categorized as meteorologic, geologic,

or biologic. The geologic output of water, dissolved nutrients, and
other chemicals and particulate matter from the terrestrial ecosystem,
is the main geologic input to most of these aquatic ecosystems, and

one of the most important land-water linkages in the biosphere. In
this regard, rivers, streams and overland runoff take on special signi-
ficance as the primary connection between terrestrial and standing
water systems (Bormann and Likens, 1967; Likens and Bormann, 1973,
1974).

Vollenweider (1968, 1975, 1976), Reckhow (1979) and numerous
others have demonstrated the empirical relationships between the input
(and recycling) of nutrients and lake nutrient concentrations. Exces-
sive nutrient inputs from cultural sources are commonly associated
with water quality problems and cultural eutrophication of lakes. In
particular, two nutrients, nitrogen and phosphorus, have been singled
out as leading causes of accelerated lake eutrophication.

Nutrient flux originates from the two aforementioned point and
non point sources. Because of the greater emphasis on point sources,
non point sources have historically been considered natural, un-
measurable, and generally uncontrollable. Vollenweider (1968)
characterized these sources as:

1. natural sources such as eolian loading and eroded

material from virgin lands, mountains, and forests,
and

2. artificial or semi-artificial sources which are

directly related to human activities, such as
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fertilizers, eroded soil, materials from agricul-
tural and urban areas, and wastes from intensive
animal rearing operations.

While natural sources seldom contribute to water quality deteri-
oration, man's activities in the watershed tend to alter, remove or
overwhelm the homeostatic capabilities of natural terrestrial eco-
systems. Although the quantity of nutrient export varies widely,
the greater the extent of human utilization and land disturbance,
the greater the amount of nutrient export from the watershed. As a
result, the increased nutrient load may accelerate the rate of eutro-
phication in aquatic systems.

The importance of non point sources in relation to water quality
is reflected in the Water Pollution Control Act of 1972 (Public Law
92-500) and the 1977 Amendments. Section 208 outlines a cooperative
local/state/federal mechanism for areawide water quality planning
including the identification of non point sources as well as procedures
and methods "...to control to the extent feasible such sources."
According to Pavoni (1977), this areawide approach implies that plan-
ning for water quality also requires planning for land use since:

1. many water pollution sources are land use -

specific, particularly non point sources, and
2. Tland use controls may be the most cost-effective
method for controlling one or more pollution
sources.
With this increased emphasis placed on non point sources and land use

controls, there is a clear and pressing need to develop tested
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procedures and collect reliable data on nutrient flux from various land

uses.

Current Research Practices

Although direct <n situ measurements provide more reliable
estimates, the time, expense and effort needed to derive annual nu-
trient loading coefficients for individual lakes, have prompted many
water quality investigators to rely on values reported in the liter-
ature. Many of these early literature values have been included in
comprehensive surveys relating specific land uses to the nutrient
mass transported to surface waters (Lin, 1972; Loehr, 1974; Uttormark
et al., 1974). Out of convenience these nutrient coefficients have
been frequently cited in nutrient budgeting studies for lakes, and have
become an integral part of water quality models.

Despite their wide acceptance, nutrient loading estimates in
the literature still exhibit considerable uncertainty (0'Hayre and
Dowd, 1978; Reckhow et al., 1980). Closer inspection of many of
these studies reveals that errors often result from a lack of under-
standing of the factors involved in proper sampling design. According
to Hines et al. (1977), the two prominent shortcomings of hydrologi-
cally related sampling programs are:

1. the arbitrarily derived, fixed temporal and spatial

design of sampling programs from which quality data
are derived, and

2. a failure to account adequately for the seasonal

and reach-to-reach variability of water quality
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that results from hydrologic phenomena.
Subsequent use of these improperly derived coefficients in water
quality management can potentially bias resulting policy decisions.
In recognition of nutrient loading uncertainty, a number of investi-
gators stress the need for either 1) additional data produced by
skilled specialists using sound sampling methods, or 2) careful
scrutiny of the nutrient export literature, to provide reliability
for models used in large-scale lake management schemes (Thomann, 1977;

Wanielista et al., 1977; Schindler, 1978; Dawdy, 1979).

The Problem Solution

For water quality planning to be effective, decisions must be
based upon reliable and more realistic information. To satisfy this
requirement, water quality data must be systematically quantified.
According to Reckhow (1978), the design of a systematic sampling
program is fundamentally a statistical problem with increasing
knowledge or the reduction of uncertainty as the primary objective.
Because the desired degree of precision is the function of parameter
variability, sampling programs must account for these irregularities.
While it is beyond the scope of this research to conduct in situ
measurements, this thesis will provide, 1) a careful review of litera-
ture studies which focus on non point (quickflow) nutrient flux, and
2) a selection and compilation of nutrient loading estimates derived
from an adequate sampling design for each land use.

To acquaint the reader with the thought processes involved in

the selection criteria, a discussion of sampling design will form the






basis of Chapter II. In particular, the components of the sampling
design best describing both temporal and spatial variability will be
examined. These will include the 1) parameters to be sampled, 2)
sampling frequency, 3) methods, 4) duration, and 5) location.

Chapters III through V focus on forest, agricultural and urban
land uses, respectively. Each chapter will include an in-depth
discussion of factors and activities which influence the "characteris-
tics and comparative magnitudes" of nutrient cycling and export from
each respective land use. For forest watersheds, these factors in-
clude geologic type, biome type, and ecological succession. Agricul-
tural activities include crop type (row versus non row crops),
pasture/grazing land, and feedlot/manure storage facilities. Percent
impervious surfaces and other factors which influence nutrient export
are discussed in the urban land use chapter. In addition to general
discussions, the compiled nutrient export coefficients are presented
both in tables and histograms for each land use, in accordance with
the sampling/screening criteria described in Chapter II.

Chapter VI presents concluding comments on the compiled nutrient
coefficients. To demonstrate to the reader and analyst the subjec-
tivity involved in application and the resulting nutrient export
variability, selected nutrient coefficients are applied to a hyoo-
thetical, mixed land use watershed for a two year period (reflecting
high and Tow rainfall). Chapter VII summarizes the results of this

research with notes on use of the compiled nutrient coefficients.



Trtryd

aither



CHAPTER II
NON POINT SOURCE SAMPLING DESIGN

Introduction

The bulk of non point source water quality studies have focused on
either surface runoff alone or runoff combined with groundwater flow.
Runoff (and the interstitial subsurface flow) flushes not only soluble
and suspended matter deposited on the watershed but also impurities
contributed by precipitation. Total storm induced water flux from a
watershed is often called quickflow and consists of overland runoff,
baseflow and interflow. It is the combination of these three frac-
tions which poses a most serious threat to our lakes and streams.

While exceptions (i.e., floods) have been noted, the pollutants
flushed from a particular land use during one storm event often are
not significant. The cumulative effect of many such storms, however,
are not only considerable enough to seriously degrade water quality,
but often negate the positive effects of local point source pollution
abatement programs.

In spite of the number of water quality runoff studies currently
available in the Tliterature, proper assessment of diffuse pollution
loads is fraught with a high degree of uncertainty and variability.
This variability is the result of essentially two factors; physio-
graphic and climatic characteristics. Physiographic characteristics

include those conditions within the watershed, such as geology, soil
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type, land use and other variables imposed by human intervention, which
alter biogeochemical processes and pathway conditions of overland
runoff. Climatic conditions influence the hydrologic cycle. However,
in spite of many thousands of man-years spend in the pursuit of
hydrologic knowledge, quantification of any hydrologic resource or
process can be performed only with limited accuracy (Moss, 1979;

Dawdy, 1979).

Diffuse Source Monitoring Deficiencies

In order to properly characterize the variable nature of diffuse
runoff, a monitoring program must be utilized which accounts for this
variability. Monitoring of annual nutrient flux is a statistical prob-
lem and this problem may be defined as "the minimization of uncertainty
in the annual nutrient flux estimate subject to a budget (cost) con-
straint," or conversely, "the minimization of sampling cost subject
to a desired precision level" (Reckhow, 1978). As a result, sampling
problems are placed in an economic and decision making framework,
thus introducing a need for the measure of worth of data (Dawdy, 1979).
Accordingly, the problem is reduced to two of the basic variables
of sampling design, precision (uncertainty) and cost.

Unfortunately, close inspection of a number of stormwater studies
in the literature has demonstrated that these factors were not always
fully considered. Some of the undesirable characteristics in these
studies included:

1. Point sources of contamination were not adequately accounted

for.






Storm events were disregarded in favor of more easily
obtained baseflow measurements.

Sediment or particulate matter was not adequately sampled.
Measurements taken during one season only, such as the

dry summer period, were extrapolated to give yearly
loading rates.

Sampling location often did not account for the horizontal
and/or vertical variability within the monitored tributary.
The monitored watershed comprised a number of land uses
thus making results difficult to interpret. (i.e., What

are the sources of the pollutants?)

Consequently, many of the published sampling results are not truly re-

presentative of the actual conditions at the particular time and place

under study or are not useful beyond the watershed of study. This

inadequacy is often because of one or both of the following two

scenarios:

1.

Available time, money and personnel constraints often
create many compromises which serve to undermine any con-
clusive information generated by the study.

Often 1ittle foresight is given toward the ultimate

use (objective) of the generated data. This results in
little thought invested in the representativeness of

the water samples or types of data analysis to be used.
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10

Systematic Quantification - Sampling Design

To make sound water quality management decisions, the required
data must be available, unbiased and exhibit Tow variability. These
needs are facilitated through acknowledgement and application of a
systematic monitoring program (or network). Development of a monitor-
ing program is dependent on the objective, and a basic objective is
to provide the optimal level of information subject to cost.

Identification of the network objectives (and criteria for
measuring achievement) is perhaps the most important (if not most
difficult) step in network design. Acknowledgement of these objectives,
however, should provide a more systematic basis to the network
development. To account for these objectives, Sanders and Ward
(1978) suggest that the entire monitoring network must be examined
and designed simultaneously if a balanced (collection versus use)
monitoring system is to be developed. They categorize this system
approach to monitoring into five major functions:

1. sample collection,

2. laboratory analysis,

3. data handling,

4. data analysis, and

5. information utilization.

In the context of water quality, these functions serve as a feed-
back loop from <n situ water quality conditions to water quality
management decision making. The information utilization function
(Step 5) not only is dependent on the previous four steps but also

establishes their objective or purpose. In particular, the sample
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collection process (Step 1) is crucial since 1) the data collected
are commonly used to quantify processes that vary in one temporal and
three spatial dimensions, and 2) it is usually desirable to use the
data collected to determine the character of process changes in space
and time (Lettenmaier, 1976). Accordingly, particular attention must
be paid to the design of the sample collection stage in order to
refine and strengthen the remaining functions (and objectives) of the
monitoring system. The sample (collection) design explicitly

details what, how and where samples are to be collected and is summa-
rized by Sherwani and Moreau (1975) as consisting of the:

1. parameters to be sampled,

2. sampling frequencies,

3. sample collection methods,

4. design period determination, and

5. sampling locations.

The components of the sampling design should be incorporated into
all water quality monitoring programs. Not only should these concepts
be applied by the field researcher, but the water quality manager
utilizing the reported data should also screen and disregard those
reports which do not adequately conform to satisfactory design
concepts (and objectives). Such a screening process can occur from
an examination of the methods sections of the individual reports.

During this investigator's literature survey of nutrient export
coefficients, considerable variability was found in the sampling designs.
The lack of well-founded methods (or design objectives) unfortunately

resulted in the rejection of some reported values. Since the sampling
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design components are of such importance to the accuracy and precision
of the reported data, the remainder of this chapter will focus on each
component individually. It is hoped that researchers will acknowledge
some of these standard procedures so that their results may be added

to the Titerature on nutrient export coefficients in the future.

Parameters to be Sampled

eutrophication and the limiting nutrient concept

The problems of eutrophication are very well known and widespread,
and the definitions are numerous. Among limnologists, the general con-
census is that eutrophic conditions are synonymous with the increased
growth rate of lake biota. Although there are many complex interac-
tions connected with this process, the most conspicuous measure of
increased productivity is the excessive growth of algae, aquatic plants
and oxygen depletion (King, 1979). Under severe conditions, this can
result in a general reduction of lake recreational value and aesthetics.
If the lake is used as a water supply, clogged screens and higher
chemical requirements for purification can increase water treatment
costs (Borchardt, 1970).

To produce aquatic plant growth and reproduction, a large
number of chemical elements are needed. Essential macronutrients
include carbon, oxygen, nitrogen, sulfur, phosphorus, potassium,
magnesium and calcium. Essential micronutrients include iron, boron,
zinc, copper, molybdenum, manganese, cobalt and sometimes sodium,
chlorine and vanadium (Simpson, 1979). While many are required only

in trace amounts, certain elements, especially carbon, nitrogen,
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13

oxygen, hydrogen, sulfur and phosphorus, are needed in large quantities
because they are the basic building blocks for organic matter (Fruh,
1967; Thomas et al., 1979).

Nutrient utilization is a function of the plant's needs and plant
growth is dependent on the presence of a sufficient quantity of
nutrients in the water column. According to Liebig's "law of the
minimun," the growth of a plant will be limited by those elements
available to it in the minimum quantity relative to its stoichiometric
requirements. If one compares the nutritional demands of algae to
the amounts of nutrients likely to occur in aquatic systems, the
limiting nutrients most often would be nitrogen and phosphorus. While
these two nutrients are generally accepted as the most limiting, it
must be noted that various other elements have at times been suggested
as affecting or 1imiting the eutrophication process. These include
iron, molybdenum, sulfate, vitamins, carbon and silicon (Goldman, 1960;
Menzel and Tyther, 1961; Goldman and Wetzel, 1963; Goldman, 1964;
Lange, 1967; Kuentzel, 1969; Provasoli, 1969; Kerr et al., 1970;

King, 1970; Schelske and Stoermer, 1972; Vallentyne, 1974; Rast and
Lee, 1975).

The relationship of nitrogen and phosphorus to eutrophication has
been well documented (Sawyer, 1947; Sakamoto, 1966; Vollenweider,

1968; Shannon and Brezonik, 1971; Edmonson, 1972; Schindler and Fee,
1974; Vallentyne, 1974; Jones and Backmann, 1975; Rast and Lee, 1978).

0f these two nutrients, phosphorus is generally the most common limiting
factor, although, under certain conditions, nitrogen may become limiting,
especially when man's activities add large amounts of phosphorus to the

lake.
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Effluents from sewage treatment plants and agricultural and
urban runoff often contain more phosphorus than nitrogen, relative to
plant requirements. Thus, in many culturally-impacted lakes, nitro-
gen appears at times to be the factor limiting growth of many algal
types (Dobsen et al., 1974; Miller, 1974; Stadelmann et al., 1974;
Rast and Lee, 1978; Thomas et al., 1979). Nitrogen limitation also
results from various nitrogen stripping mechanisms within the lake.
As organic decomposition and oxygen depletion begins, denitrification
occurs. If oxygen depletion is severe enough, nitrogen gas is formed
and subsequently lost to the atmosphere (Vollenweider, 1975; King,
1978, 1979).

A major consequence of nitrogen limitation is the production of
nitrogen-fixing blue-green algae. These forms are especially prone
to cause water quality deterioration because they produce taste and
odor problems and because of their ability to float and accumulate
on beaches. As the gaseous nitrogen in the water is used up by the
nitrogen-fixing algae, it is readily replaced from the inexhaustible
atmospheric sources. Thus, it is impractical and very often futile
to attempt to control eutrophication by restricting inputs of nitrogen
even in areas where it is currently limiting the growth of most algal
forms. To rehabilitate such areas, phosphorus inputs must be lowered
to the point where phosphorus replaces nitrogen as the limiting factor,
and then further reduced so that growth and yield of all algal forms
is reduced (Thomas et al., 1979).

This reliance on phosphorus control (over nitrogen) for lake
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management and rehabilitation is based on two reasons (Reckhow et. al.,
1980):
1. Phosphorus is often the major nutrient in shortest
supply relative to the nutritional needs of algae and
aquatic plants. This means that the concentration of
phosphorus is frequently a prime determinant of the
total biomass in a lake.
2. Of the major nutrients, phosphorus is the most
effectively controlled using existing engineering tech-
nology and land use development.
Because of these relationships, it is easy to visualize the
role phosphorus must play in any management plan to control cultural
lake eutrophication. Therefore, phosphorus is the parameter to be
sampled for non point source lake nutrient budget estimates. While
the major emphasis is on phosphorus and its management, where appli-
cable, information on nitrogen relationships and interactions, as they
relate to the components of sampling design and diffuse runoff, will

be presented for comparison purposes.

btoavailability

Phosphorus is collectable in basically two forms; particulate and
solution. The particulate form consists of total particulate and
sorbed or labile phosphorus. The solution form consists of total
soluble, molybdate reactive and soluble unreactive phosphorus (Porter,
1975).

Until recently, eutrophication control programs have been based



Y

-ty



16

largely on the regulation of any fraction of phosphorus that was
amenable to management, irrespective of whether the phosphorus was

in an available form which could support algae growth. More specifi-
cally, availability is defined as that nutrient fraction available
for biological uptake and algal growth within one growing season.
This has raised some serious questions concerning what fractions
should be collected and/or measured.

It is generally agreed that the soluble inorganic forms of
phosphorus are readily available biologically. This includes forms
such as the soluble orthophosphates and condensed phosphates. There
is a high degree of uncertainty, however, concerning what fractions
of particulate inorganic and organic forms are available. Complicating
matters is the presence of dynamic and complex sets of physical,
chemical and biological processes which determine this availability
in the aquatic system. For example, sediment-attached phosphorus
that is not available under certain chemical conditions at one point
in time, may become available under the same or different chemical
conditions at another point in time. This is in sharp contrast to
the static and controlled nature of the laboratory conditions where
a variety of techniques are used to correlate algal uptake with
actual and highly variable in situ conditions. Consequently, any
estimates of bioavailability must be viewed with a high degree of
uncertainty and as only "ball park" approximations.

One of the more comprehensive studies concerned with assessing
algal-available phosphorus was conducted by Cowen and Lee (1976a, b)

and Cowen (1974). From both urban runoff samples collected in Madison,
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Wisconsin and agricultural runoff samples obtained in New York State,
these investigators determined that in the absence of site-specific
data, an upper bound estimate could be made of the available phosphorus

in tributary waters:

available P = SRP + 0.2PP; (1)

where:

SRP = soluble reactive phosphorus

PPT total particulate phosphorus

Lee et al. (1979) later made the following recommendation for the
available phosphorus load from urban stormwater drainage and normal-
tillage agricultural runoff. If the runoff enters a lake directly, or
encounters a limited distance of tributary travel between source and

lake, then the available phosphorus loading may be estimated as:

available P = SP0 + 0.2 PPT (2)

where:

SP0 = soluble orthophosphorus

Additional studies have demonstrated comparable, albeit variable, re-
sults. Based on independent, but limited, studies of rivers in the
Great Lakes Basin, 40% or less of the suspended sediment phosphorus is

estimated to be in a biologically available form. Overall, probably
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no more than about 50-60% of the tributary total phosphorus (including
soluble P) is 1ikely to be biologically available (Logan et al., 1979;
Armstrong et al., 1979; Songzoni and Chapra, 1980; Thomas et al., 1979).

In contrast to phosphorus, the fraction of total nitrogen available
for plant utilization can be higher since nitrogen is more soluble
and, therefore, more easily transportable by water. The concentrations
of nitrogen compounds in overland runoff are often many times higher
than the critical level of 0.3 mg N/1 of inorganic N, which was
suggested by Sawyer (1947) for algal growth problems in lakes. Inor-
ganic nitrogen forms such as ammonia, nitrite and nitrate are readily
available for algal growth. However, the availability of the total
nitrogen will depend on the relative amounts of the organic and par-
ticulate fractions in the runoff and their equilibrium and minerali-
zation rates.

From studies of urban runoff in Madison, Wisconsin, Cowen et al,
(1976), determined that 70% of total N was biologically available
(with a range of 57-82%) as a result of nitrogen mineralization.
Similar results were also found in earlier studies with river waters
tributary to Lake Ontario (Cowen and Lee, 1976b).

It was previously mentioned that availability applies to the
nutrient fraction that is utilized within one growing season. However,
depending upon the conditions, there is a potential for at least some
(if not all) of the remaining fractions of particulate/organic
phosphorus or nitrogen to be utilized at a later date (due to sudden
equilibrium changes). This remaining fraction can represent a sig-

nificant, if unmeasurable, nutrient reservoir. In addition to this,
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the collection of total (soluble and particulate) nutrient fractions
is advised since total availability is unpredictable and depends,

in part, on the ratio of particulate to soluble nutrient forms in the
sample. This is especially important since particulate phosphorus

or nitrogen can be an order of magnitude greater in quantity than the
reported dissolved fraction. In this situation, failure to adequately
assess the particulate forms can result in substantial underestimation

of the total available fraction.

Sampling Frequency

Variation in nutrient flux through time is intimately linked to
changes in flow. Both dissolved and particulate fractions respond to
these flow changes differently. Proper assessment of the particulate
fraction requires a greater emphasis on sampling during storm events
since the bulk of this fraction is carried with stormwater runoff.
Although variation exists, the response of both dissolved and parti-
culate fractions relative to the storm hydrograph can be discussed
in somewhat general terms (see Figure 1).

The initial storm induced increase in streamflow is often associ-
ated with a decrease in the dissolved nutrient fraction. This decrease
is attributed to the dilution effect of the greater runoff volume as
well as the resulting greater contribution from overland flow and
reduced contribution from soil water which comprises baseflow.

This results in the lTowest dissolved concentration at the peak of the
hydrograph. As flow rates decrease, the dissolved component tends to

gradually increase to concentrations approaching that of the pre-storm
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baseflow conditions. This is because of the greater soil-water
contact time associated with increasing contributions of soil water
to baseflow.

For the particulate (or sediment) fraction, a different response
is evident. During the initial rapid rise of the hydrograph, the
particulate component increases dramatically - often reaching a
maximum concentration preceding peak flow. This phenomenon, often
referred to as “first flush," is the result of the dislodging of
particulate matter from the land surface during the initial stages of
runoff, leaving little material for transport at later periods.
Regardless of where the particulates "peak out" relative to the hydro-
graph peak, a decrease in flow is accompanied or preceded by a decrease
in particulate concentration.

To adequately account for these variabilities, and to reduce the
amount of uncertainty in the phosphorus loading estimate, the sampling
frequency should be dictated by the hydrologic response. Many previous
sampling studies have failed to address this issue but have instead
made broad but untested assumptions concerning watershed hydrology
and loading responses. Sampling intervals have ranged from once per
week to irregular periods during the year, resulting in many of the
more sporadic storm events being missed.

Hydrologic response (and sampling frequency) differs according to
drainage basin characteristics. As land use progresses toward urbani-
zation, channels are straightened or paved, small tributaries are
filled and the watershed surface generally becomes smoother and more

conducive to sheet runoff. Therefore, as land use is intensified
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half-life and response time of constituents,
seasonal fluctuations and random effects,
representativeness under different flow conditions,
short term pollution events,

magnitude of response, and

variability of the inputs.

Simply stated, there is no single best sampling frequency for all

conditions. However, sampling frequency should be a function of the

effect on the precision of the nutrient budget estimate (i.e., is

uncertainty minimized?), and the associated cost.

For many sampling programs, the actual design is often based on

random sampling. Under random sampling, all elements of the population

have an equal likelihood of being selected for the sample. Cochran

(1963) presents the following equation for the number of samples

necessary to achieve a desired level of precision:

n = (3)

where:

n = number of samples

= student's t
s~ = population variance estimate
d = desired precision

This, in turn, may be related to cost through the common cost function:
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C(n) = c. + c;n (4)

where:
C(n) = total cost of sampling program
Co = initial, fixed cost
c; = cost per sample

Thus, random sampling design is specified by the variance
estimate, the precision, and the sampling program cost (or number of
samples). For a single population with constant variance, sampling
frequency can be evaluated on the basis of a trade-off between cost
versus precision, or uncertainty (Reckhow, 1978). However, in order
to effectively apply Equation 3 for random sampling design, an
estimate of the population variance is needed. According to Reckhow
(1978), this implies specification of the population frequency
distribution, and given the limited available data on nutrient mass
flux to lakes, this is a difficult task.

The sampling collection process can often be made reasonably more
efficient (further reducing loading uncertainty and increasing accuracy
and precision) if a stratified random sampling program is employed
(Reckhow, 1979). Under this sampling scheme, the population is
divided into homogeneous sub-populations (strata) that are separately
sampled according to the degree of variability which they exhibit
(Snedecor and Cochran, 1973). The underlying assumption is that the
population can be more accurately represented as the sum of sub-popu-

lations, therefore reducing the sample variance.
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In the context of hydrologic data collection, two temporal strata
are evident:

1. high flow events produced by rainfall runoff and snowmelt,

and

2. baseflow produced by groundwater flux.

To expect a gain in precision over simple random sampling, more
frequent measurements should be applied to the stratum represented
by high flow events. If the sample size is increased in this stratum
and the final concentration properly weighted, a more precise and
accurate estimate of the population average will be obtained. From
a survey on sampling design, Reckhow (1979), states, that "sampling

is allocated in stratified random sampling design according to:

Ei ) w; (c.v.)xi (xi) (5)

n W, Tb.v.)xi (xi)

where:
n = total number of samples
n. = number of samples in stratum i
x; = magnitude (mean) of characteristic x in
stratum i
w. = a weight reflecting the size (number of
units, for example) of stratum 1
(c.v.)x; = coefficient of variation (standard de-
viation divided by the mean) of char-

acteristic x in stratum i
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If sampling cost may be estimated by:

C= o * ICiN; (6)

then

W (c.v.)Xi (xi)/VE;-

1
— = N 7
i levdy, (g )IVEy (7

In order to apply Equation 5 or 7, a relationship is needed for
the total number of samples n. Two equations are available, depending
upon whether precision or cost is fixed beforehand. If precision is
fixed (at d), and cost may be estimated according to Equation 6, then

(Cochran, 1963):"

[zwi(c.v.)xi(xi)‘VE;]zwi(c.v.)xi(xi)/‘VE;‘

n = (8)
2/t2

If cost is fixed, then (Cochran, 1963):

(c - co)z("i(c"")xi("i)/ N (9)
n =
2w (c.v. ), (x5) ¥ey)
1

In summary, Reckhow (1978) concludes that the composition of the

stratified random sampling design equations leads to the following
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general statements concerning stratified sampling. A larger sample
should be taken in a stratum if the stratum is:

1. more variable (c.v.)

2. larger (w, x)

3. less costly to sample (c)

Sample Collection Methods
Hydrographic response and the associated pollutant loads vary
widely between event/non-event periods thus increasing the potential
for considerable estimation error. Since conclusions are naturally
drawn from the nutrient estimates, it is imperative that both 1)
methods of acquisition of concentration samples and flow values, and
2) flux estimation techniques, do not introduce unacceptable bias.
Concentration samples are determined by a variety of field collec-
tion techniques. One common method is manual grab sampling which usu-
ally involves the collection of samples at a predetermined rate, such
as once per week, month, etc. However, grab sampling conducted on a
uniform basis usually provides an adequate description of baseflow
conditions only, since periodic storm events are often missed. 1In
this respect, manual collection methods are often inadequate for storm
event monitoring since:
1. Storms are highly random with respect to their timing,
location, intensity and duration.
2. For large watersheds, travel time between stations is
often great.

3. For small watersheds, runoff duration and associated
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lag time is relatively short (Nelson et al., 1978) with
sharper peaks and higher storm levels (Likens et al.,
1977).

4. The time between the period when the probability of
the storm event is high to the time when it occurs is
usually very small (i.e., warning time is short).

Because of these factors, the ability to mobilize field personnel
and equipment is severely limited especially when one considers the
probability of an event occurring during regular working hours. The
cost of maintaining competent field crews on a round-the-clock basis
for an extended time period would be prohibitive (Colston, 1974;
Sherwani and Moreau, 1975).

To reduce the inefficiencies (and bias) of manual collection, many
water quality studies have relied on automatic collection methods.
Probably the simplest of these methods is the batch holding tank, which
collects runoff, diverted by gutters or flumes, at the base of the
watershed (or runoff plot). Under some conditions, however, this
collection method is inadequate. With large watersheds or storms of
long duration, holding capacity can be exceeded and a portion of the
total Toad will be undetected. For some storms, the greater nutrient
concentration associated with the first flush can be obscured by
additional, less concentrated runoff.

More adequate, automated devices can collect individual samples
during a storm event. The collection process can occur at either
equal time intervals or on a flow-weighted basis. Sampling at equal

time intervals, however, is often less desirable. Since each aliquot
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is given equal weight, the higher nutrient concentrations associated
with first flush will be underrepresented. If the formula for the

calculation of average concentration is examined:

é‘=1] 1 (-IO)

it should be apparent that, as a consequence of this underrepresentation,
the "average" computed concentration will be biased too low (McElroy

et al., 1976; Grizzard et al., 1977; Huber et al., 1979). Flow-
weighted sampling is a more precise concentration estimate since sample
volume is accounted for and sample concentration appropriately weighted

according to the following equation (Huber et al., 1979):

n

Lo 0

¢ = l,%__l__l (11)
i 9

where:
Qi = flow volume
Accordingly, high concentrations associated with first flush are more
equitably represented than concentration estimates calculated from
equation 10. This results in a lower variance and greater accuracy of
the reported data.

In addition to the method and frequency of collection, Colston
(1974) notes many special requirements of automatic samples. These

include the following:
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1. The sampler should not interfere with water flow and must
be immune to damage from larger objects and debris wash-
ing downstream during storms.

2. Water velocity through the system must be sufficient to
keep all material in suspension to obtain representative
samples and minimize system clogging.

3. The sampling mechanism must automatically activate during
each runoff event.

4. The sampling system must be able to take discrete samples
at predetermined intervals with a known time for the
first and last sample.

5. The sampler intake must represent an average of the verti-
cle profile of contaminant concentration with respect
to depth.

While concentration samples should be collected during major
storm events (or at least a representative number of storm events),
the effectiveness of the "appropriate” number of samples to be
taken during the temporal extent of sampling should also be considered.
Reckhow (1978) reported on three papers, previously surveyed by
Allum et al. (1977), discussing intensive sampling of tributary
phosphorus. In all three studies, the sampling was quite frequent
(twice weekly or daily). However, at a concentration sampling
interval of between 14 and 28 days, the standard error of the annual
phosphorus flux varied between 10% and 20% of the "true" flux.

Reckhow (1978) further comments that:

1. More frequent sampling will still reduce uncertainty
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in the phosphorus concentration, but at a reduced efficiency.

2. Less frequent sampling can still be used to estimate
phosphorus concentration, but at a greater risk of
significant error.

Flow estimation is determined by three methods. The most pre-
ferred method is continuous flow measurement, and many sampling studies
take advantage of USGS gauging stations. Without these facilities, it
is costly and often not feasible. Another alternative is to measure
instantaneous flow at the time of concentration sampling. However,
Reckhow (1978) argues that this method must be considered unacceptable
because it does not yield an estimate of precision. A more acceptable
third alternative is an annual flow regression equation developed by
the USGS (for most states) which provides an estimate of annual flow
and the estimated standard error (Reckhow, 1978).

To estimate flux, Reckhow (1978) surveyed a number of approaches
described in the literature, each of which could be appropriate under
certain conditions. These include techniques dependent upon a:

1. regression of mass flux versus watershed characteristics,
flow-weighted concentration,

regression of concentration versus flow, and

~ w N
. . .

regression of flux versus flow.
He concludes that the estimation technique used should probably depend
upon the:
1. intended use (A regression on watershed characteristics
and land uses may be useful for future predictions.),

2. fit of the data to the equations, and
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3. simplicity of the mathematics.

The studies selected for inclusion in the nutrient export coeffi-
cient tables employ a wide variety of sampling techniques, but nearly
all are based upon complete flow records and adequate baseflow concen-
tration samples. While storm runoff was not sampled at every event,
it was felt that a sufficient number of events were examined to allow

for realistic estimates of the total load for a particular land use.

Temporal Extent of Sampling

Climate determines local weather conditions which in turn influence
the quantity and duration of baseflow and the number and periodicity of
storm events. While some areas of the country exhibit relatively uni-
form climates (e.g., pacific northwest) evenly distributed periods of
precipitation are usually not the norm. Winter thaws and spring or ¢
summer rains often create seasonal cycles of high and low runoff.

Intimately associated with climatic periodicity is the modifying
impact land use has on hydrologic response. The relatively uniform
annual flow patterns of many undistrubed forests is in sharp contrast
to the highly variable flows emanating from urbanized and agricultural
basins. As vegetative cover is artificially reduced and the basin is
increasingly developed, groundwater recharge and flux are reduced.
Baseflow and nutrient export are often either inconsequential or
absent during dry summer or winter periods. Consequently, a greater
percentage of nutrient export occurs during wet periods of the year
for disturbed watersheds than for undisturbed watersheds.

As a result of this seasonal variability, high runoff seasons
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exhibit greater variance in nutrient concentrations and total nutrient
loads than do low runoff or baseflow periods. For a given confidence
level (precision) and a margin of error (accuracy), the temporal
extent of sampling must include these high and low runoff periods
(especially for the more disturbed watersheds). If sampling duration
focuses exclusively on one season (e.g., spring), the nutrient flux
estimate may sufficiently describe that time period but may not be
indicative of other unsampled periods. For this reason, the analyst
is warned against extrapolating seasonally reported results toward
more extended time frames. This will bias the nutrient flux estimate
toward whatever season in which the sampling was performed. To better
account for this seasonal variability and to allow for a more standar-
dized unit of measure for comparison purposes, a more informative
approach is to sample and report the data in yearly increments.

While the bulk of studies included in the export tables are the
result of intensive sampling and annual flow data, many investigators
have refined the sampling period within the water-year time frame.
According to Likens et al. (1977), the ideal water-year is that succes-
sive twelve-month period that most consistently, year after year,
gives the highest correlation between precipitation and streamflow.

Examination of precipitation-streamflow data at Hubbard Brook
resulted in a water-year beginning June 1 and ending May 31. Since the
beginning of this water-year corresponds with the appearance of foliage,
it allows for a separation of the vegetation growth and dormancy
periods. This concept has been effectively applied by other investi-

gators working with agricultural land uses (Alberts et al., 1978;



35

Burwell et al., 1975).

Watershed Designs and Locations

Of the criteria necessary for a non point source monitoring program,
the sampling location, or more importantly, the watershed design, is
crucial for accurate estimation of nutrient yields. To facilitate
the sampling site/design selection process, two key interrelated
factors are involved: the specific objective of the network design
and the representativeness of the sample to be collected. To accomo-
date these factors, two basic approaches to diffuse load assessment
are, in turn, available.

The first approach involves sample collection from relatively
large streams draining large watersheds. If storm and seasonal
hydrologic response are routinely sampled throughout the year, an
accurate representation of total annual nutrient flux from particular
drainage basins can be obtained. This approach has been extensively
used to obtain estimates of Great Lakes tributary loads by the
Pollution from Land Use Activities Reference Group (PLUARG) associated
with the International Joint Commission.

A number of disadvantages to this approach have been noted
(Whipple et al., 1978). First, many large streams, particularly in
urban areas, include inputs from industrial and municipal point sources,
so that total loading does not relate directly to pollution from storm
water runoff. Second, subtraction of known point loads from total
yield can result in a biased diffuse load estimate. This occurs be-

cause the magnitude of reactions such as sediment attenuation, nutrient
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uptake and degradation by bioseston are not accurately accounted for

at the downstream sampling site. Since point sources, determined at
their end-of pipe source, do not undergo these transformation processes,
their subtraction from total loads may result in an underestimation

of diffuse source contributions. (Alternatively, if there is no

net accumulation of material in the stream, over a sufficiently long
time period all phosphorus discharged will reach the lake. In the
steady state, this suggests no bias from point source subtraction.)

Third, the land use of large watersheds is very often mixed, in
proportions which vary from one tributary to the next. This makes it
difficult if not impossible to determine the percent loading contri-
bution from each land use, and application of the results to other
watersheds for prediction purposes remains questionable.

If the objective of the sampling design is to describe runoff
loads from specific perturbations, representativeness will depend on
a comprehensive approach. This second approach is more specific and
is based on the examination of drainage from catchment basins which
define a particular land use. In order to maintain homogeneity,
the monitored watersheds are relatively small (except for some
forested systems).

The advantages to this approach are essentially two-fold. First,
land use - water quality relationships are more carefully defined
allowing for contrasts between natural and manipulated ecosystems.

By comparison this can provide information about the functional
efficiency and "health" of a particular land use. For instance, is a

particular land use conservative of nutrient inputs (forests) or is
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the assimilation capacity limited (pasture) or exceeded (feedlots)?
Second, the results can be used in conjunction with other similar
studies to predict future water quality changes corresponding to
projected land alterations.

Because of the identified advantages, a large percentage of
nonpoint source water quality investigations have utilized this latter
approach with forest, agricultural and urban activities as the major
land use categories studied. The remainder of this subsection con-
tains a discussion of how diffuse runoff is monitored from each of

these land use types.

forest land use

In order to provide hydrologic and nutrient flux information
from natural (undisturbed) ecosystems, a number of experimental
forested watersheds have been established across a wide range of
climates, geology and biological structure. Some of the well-known
watersheds are Hubbard Brook Experimental Forest in New Hampshire,
Walker Branch Watershed in Tennessee, H.J. Andrews Experimental
Forest in Oregon and Coweeta Hydrologic Laboratory in North Carolina.

Although biological (species type and age) and geological
characteristics (bedrock and soil) are often substantially different
among watersheds, the watershed designs are usually quite similar.
Each drainage basin has to some degree vertical and horizontal bor-
ders, demarcated by ridges and functionally defined by biological
activity and the drainage of water (Bormann and Likens, 1967).

Accurate monitoring of total hydrologic flux can pose problems.
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Since forest cover and litter layer dissipate much of the energy from
precipitation events, infiltration is high and the opportunity for
overland flow is slight. The runoff that does occur is usually
associated with snowmelt events. To register the greater percentage
of subsurface slow, v-notch weirs or flumes are often anchored to the
bedrock at the base of each watershed.

As the size of the forested area increases, flow measurement
methods change. Drainage basins covering hundreds or even thousands
of hectares use gauging staffs or other flow measuring devices to
determine the proportionately greater flow volumes. While automatic
sampling devices facilitate collection in the smaller basins, manual
methods often still persist in the larger watersheds because of the

relative uniformity of forest flow and chemical concentration.

agricultural land use

Water quality monitoring in agricultural settings is often con-
ducted in a manner similar to that for forested systems. Areas of
agrarian activity are defined and the resulting runoff is examined
separate from the influence of other land activities. Numerous studies
are available which give representative loading estimates from general
agricultural land use (Avadhanula, 1979; Campbell, 1978; Burton et al.,
1977; Lake and Morrison, 1977; Grizzard et al., 1977; Nelson et al.,
1978; Burwell et al., 1974; Taylor et al., 1971).

In contrast to nutrient export from forested systems nutrient
export from agricultural areas demonstrates wide variability. Prac-

tices are highly diversified and an agricultural basin can consist of
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a mosaic of different uses such as pasture, feedlots, row and non row
crops. Each type of perturbation creates different hydrologic
responses, and depending on the percent composition of the basin,

the effect of one activity can influence the final nutrient load.

In order to further delineate these effects, individual activities
should be, and often are, separately monitored.

Separation of the various agrarian activities into discrete
hydrologic units is conducted through two basic approaches, and the
differences between approaches are based primarily on the size of the
basin under study. The first approach relies on relatively large
dyrdologic units ranging from 5-500 hectares in size. In spite of
these dimensions, the entire catchment basin contains a single
activity such as row crop or pasture (Alberts et al., 1978;
Chichester et al., 1979).

The second technique employs several small runoff plots, usually
much less than a hectare in area. Separated by raised metal, wood
or concrete borders, the individual plots are 2-5 meters wide and
10-25 meters long. Runoff studies using these plots may include 1
to 2-individual plots. At the base of each plot is the flow/sampling
device often consisting of a collecting tank which generally relies
heavily on “bafch" collection methods.

Because of the low area and labor requirements, this particular
design has increased in use by university agricultural experiemnt
stations and other research agencies. Small size permits close
proximity to research facilities and personnel, which allows for both

close monitoring and manipulation of environmental conditions such as
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soil, slope, fertilizer, tillage methods and crops.

urban land uses

Sampling site selection for urban runoff monitoring potentially
poses some additional problems not encountered in agricultural water-
sheds. Since it is not economically feasible to re-create urban
settings using small runoff plots, available conditions must be
utilized. These conditions simultaneously impose an expanding set
of limitations on data transferability.

Urban runoff is often channeled into storm sewers which later
discharge into nearby tributaries. In order to derive an areal loading
rate, however, it is first necessary to ascertain that the network
of storm sewers is restricted to the boundaries of the watershed and
does not contribute runoff from other basins.

Many cities have combined storm and municipal sewers. During
high runoff events, domestic sewage often overflows and mixes with
effluent within the sewer system. While providing valuable information
about a particular site, the results are difficult to apply to other
areas because of the inability to separate the proportion of point
source contributions from total flow.

If the above spatial uncertainties can be accounted for, the
"flashy" nature of the individual runoff event must be suitably
monitored. To accurately assess these transient events, flow must
be continuously monitored. (To reduce monitoring costs, it is often
necessary to locate the study site in close proximity to established

stream gauges such as those used by USGS.) Similarly, water quality
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samples are (or should be) collected with automatic samplers.

Similar to agricultural lands, urban areas consist of a number of
different land activities. These activities include industrial com-
plexes, business and commercial districts, parking lots, residential
areas, parks and playgrounds. Recause of differing surface
characteristics, the hydrologic and water quality responses from city
parks or even large heavily vegetated residential lots are often quite
different from the response from the essentially sealed surface of
shopping malls or industrial complexes. Separation of these discrete
types of activities into distinct drainage basins is not always pos-
sible because of the lack of conformity with topographical boundaries.

A study by AVCO (1970) indicates that aside from these problems,
the following factors also influence site selection for urban runoff
studies.

1. Minimum area requirements for the acquisition of a

measurable sample.
2. Security of the sampling equipment from vandalism.

3. Accessibility of the sampling site.
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CHAPTER III
FOREST LAND USE

Introduction

The world's increasing population co-exists with a diminishing
stock of resource reserves. Because of this dichotomy, man's future
welfare may more than ever depend on an accurate knowledge of how
the flow of energy and nutrients vital to ecological systems can be
maintained. To more effectively facilitate resource decisions in-
volving land use, it is imperative that planners/managers have a
workable understanding of how undisturbed systems, such as forests,
operate.

In forested ecosystems, nutrient flux is primarily through meteor-
ological, geological and biological transport mechanisms. According
to Likens et al. (1977), 1) biological inputs are assumed to equal
outputs (unless a phenomenon such as animal migration imports more than
it exports or vice versa), and 2) geological imports will be negligible
(if ecosystem boundaries are sufficiently defined). Thus, nutrient
inputs into unmanipulated forests are principally from the meteorologic
vector (i.e., dust and rainfall) and export from the system is via
geologic outputs (i.e., surface and subsurface drainage).

Within the ecosystem, forests can be viewed as complex processors
in which nutrients are translocated from one portion of the community

to the other. This nutrient exchange process involves biological,
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physical and chemical interactions and is often referred to as the
biogeochemical cycle. This cycle can be described in very general
terms. For example: a percentage of nutrients not retained within
the plant's woody tissue is returned to the forest litter where it
may be acted upon by microorganisms and subsequently passed on to
heterotrophic consumers. Through respiration, organic decomposition
and/or leaching from living and dead tissue, bound nutrients once
more become soluble and available for plant uptake and recycling.
The major sites of accumulation and exchange within the system
have been conceptualized as occurring among four basic compartments;
1) atmosphere, 2) living and dead organic matter, 3) available nu-
trients, and 4) primary and secondary minerals (Likens and Bormann,

1972; Likens et al., 1977). This proposed black-box scenario

(Figure 3) provides a framework whereby not only structure and func-
tion are accounted for but ecosystem development and degredation can
also be considered in 1ight of an imbalance in any of these compart-
ments.

Factors which influence this accumulation and exchange process
also have an impact on total nutrient output from the watershed in
streamflow. The rates at which these nutrients leave the watershed are
affected by the manner in which these elements are circulated between
the forest vegetation and the underlying soil, especially the degree
to which these elements are bound into organic matter and held in
tight circulation. No matter how tight the circulation, however, some
loss of nutrients in water moving under and over the soil surface

into the stream is inevitable.
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In general, aggrading forest systems retain nutrients relatively
effectively as compared to other land uses. From a comparison of
precipitation inputs to streamflow outputs, it appears that nutrients
released from organic decomposition and the weathering process are
rapidly incorporated by the vegetation to produce a net gain in nitro-
gen and phosphorus (Frederiksen et al., 1975; Singer and Rust, 1975;
Likens et al., 1977; Swank and Douglass, 1977). Although the range
of nutrient export from forested watersheds is relatively narrow
(see Table 1 - page 63), a number of interaction factors such as
geology, climate, vegetation type, and ecological succession can often
influence the magnitude of elemental outflow concentrations and

nutrient flux.

Geology

The geological influences on stream nutrient concentrations and
loads should be considered. Unfortunately, 1ittle information is
currently available on specific effects.

A study of southern Ontario drainage basins by Dillon and
Kirchner (1975), indicates a strong influence of geology on stream
phosphorus loads. Generally, their median value for phosphorus loads
from streams draining sedimentary watersheds is 2-1/4 times greater
than those from igneous watersheds. Similarly, Jones and Bachmann
(1978), noted a greater ion content (especially for nitrogen) in
lakes located in glaciated regions than in those of older non-
glaciated areas.

From a comparison of forested watersheds from the nationwide
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EPA-NES survey, Omernik (1976) failed to reveal significant effects
of geologic origin on either stream nutrient concentrations or loads.
Omernik does suggest, that more appropriate comparisons should be
based on the mineral composition of rocks rather than being based
entirely or primarily on origin. Such a scheme might include two
groups: one containing rocks generally considered as being high in
phosphorus content and a second class containing rocks having very
little phosphorus. Rocks included in the first, or "high" phosphorus
group, would be the gabbros, diorites, and basalts or rocks largely
composed of ferromagnesian minerals and containing considerable

apatite (Goldschmidt, 1958).
The apatites represent by far the major amount of phosphorus in

the earth's crust and contain nearly all the phosphorus in igneous
rocks (Rankama and Sahuma, 1950). These mineral forms, however,
particularly the high crystalline ones, are very insoluble and become
available to organisms only slowly through physical or biological
dissolution (IJC, 1977). Because of this, the phosphorus is generally
termed "non-biologically" available. The rates of solution are
sufficiently slow that the presence of even large quantities of
cyrstalline apatite minerals in lake sediments is not apt to contri-
bute significantly to lake eutrophication (Omernik, 1976), especially
if more readily available forms are present.

Common rocks in the "low phosphorus" group include granite,
syenite, granodiorite, rhyolite and andesite; or rocks largely made
up of aluminosilicate minerals and containing 1ittle or no apatite.

Reinforcing this proposed method of comparison are studies by
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Smith et al. (1978) which suggest that the unusually high phosphorus
load entering their study lakes may have been the result of erosion
material containing naturally occurring calcium-phosphate apatites.
Citing early studies performed in Kentucky, Thomas (1970) shows that
streams draining high and Tow phosphorus limestone areas contain
high and Tow phosphorus concentrations, respectively.

Although this scheme represents a better breakdown for studying
the effects of general rock types on stream nutrient concentrations,
Omernik (1976) suggests that it may present difficulties. For many
parts of the U.S., geologic maps with the level of detail necessary

to accomplish this breakdown, may be lacking or difficult to obtain.

Vegetation, Soil Type and Climate

Among the many interacting factors influencing nutrient flux
in the forest community, vegetation, soil type and climate play major
roles. Many vegetation types have the ability to either 1) reduce
flow rates, or 2) repress/accelarate certain chemicals processes which
lower/raise stream concentrations. Both measures can effectively
control total nutrient export.

Active chemical weathering and organic decomposition occur in

soils. On a long term basis, soluble compounds are extracted from

originally insoluble minerals. In the short term, ion exchange and
storage occur between soil solutions and solid soil components. In
this latter function the soil may act as a chemical buffering agent
with respect to the composition and concentration of solutes in

groundwater (Johnson et al., 1969). Direct mineral soil influences



Z

[¥a)

—-—ty

(&)



48

on streamwater quality are often minimal since overlying humus and
litter layers tend to protect the surface layers from direct rainfall
impact (Singer and Rust, 1975).

Climate, however, is generally considered the most important
single factor influencing soil formation. This is partially because
of the influence it has on the distribution of vegetation and their
associated fauna and microflora. As a consequence of the climate-
vegetation interaction, soils tend to be distributed in broad
zones which correspond roughly to the vegetation zones of the world.
Since the structure of a plant community is similarly determined by
climate and soil, broad areas of the world have been mapped into
major ecosystems and biomes.

Instead of examining all species and soil types separately, this
investigator will broaden the following discussion to include similar
ecosystems or biomes. The remainder of this section will focus on the
following major biomes in relation to water quality: 1) boreal-subalpine
forest, 2) northern temperate rain forest, 3) temperate deciduous forest,

and 4) temperate evergreen forest.

Boreal, Subalpine Forest Biome
Boreal, taiga, subalpine-subarctic forests are distinguished from
other biomes by their cold winter and cool summer climate. Vegetation
consists of spruce, fir, larch, tamarac and pine. Mean annual rainfall
is generally less than 90 cm, however, the surface (humus) layer is
perpetually moist.

The cold, wet substrate conditions favors slow organic decomposition
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and subsequent accumulation of a thick acid humus consisting of
unconsolidated decomposing plant material which gradually but con-
tinuously releases organic acids. As a result, mineralization rates
are low, producing chronic nitrogen deficiencies (Weetman, 1962),

and cations (Fe, Al, Mn and Ca) are leached from the upper soil layers,
reducing phosphorus retention capacity. Accordingly, less phosphorus
is generally found in the predominantly nutrient-poor podzol type soils
supporting coniferous stands than in those under north temperate
hardwoods (Soil Survey Staff, 1975; Pritchett, 1979).

Nutrient-poor soils and extended winter freeze conditions reduce
total nutrient export in runoff. Many low lying bog areas, however,
often contain sufficient nutrients from groundwater flux to produce
eutrophic conditions (Verry, 1975; Pritchett, 1979). Alternating
freezing and thawing of the exposed litter layer has reportedly
caused phosphorus concentrations in snowmelt to increase up to 350%
above the average streamflow concentrations which may be sufficient to

produce temporary algal blooms (Verry, 1975).

Temperate Rain Forest
Northern temperate rain forests occur along the northwest paci-
fic coast from northern California to southeastern Alaska. Vegetation
includes alders and coniferous evergreen species such as spruce,
fir, and hemlock. The climate consists of a relatively high but well
distributed rainfall with mild temperatures. Because of the climatic
conditions, this biome exhibits high annual primary productivity and

rapid nutrient cycling. Consequently, decomposition nearly keeps
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pace with the litter accumulation rate. Although not exhibiting the
mull type humus layer of boreal forests, the upper soil layers are
rather well supplied with organic matter.

Nitrification is reportedly limited or absent in soils of this
region (Bollen and Wright, 1961) possibly because of low pH and lack
of electrolytes or because of the adaptation of the tree species for
ammonia over nitrate (Tiedmann et al., 1978). Streamwater nitrate
concentrations are subsequently low (Fredriksen, pers. comm.).

Some vegetation types, such as alder (Alnus sp.) are nitrogen
fixers and the underlying soils are much higher in nitrogen than are
soils associated with other species (Franklin et al., 1968). Brown
et al. (1973) reported both higher nitrate concentrations and loads
from alder watersheds than from streams draining primarily Douglas
fir and western hemlock.

Although coniferous species have a high capacity to survive and
compete in low phosphorus soils (Pritchett, 1979), comparatively high
phosphorus export has been observed from this region (Sylvester, 1960;
Fredriksen, 1972, 1979). Fredriksen (pers. comm.) speculated that
phosphorus export was influenced by local deposits of high phosphorus
soils. The high regional rainfall and ensuing runoff may also play

a major role in the high phosphorus flux from area watersheds.

Temperate Deciduous Forests
Temperate deciduous forests have relatively heavy but well dis-
tributed amounts of annual precipitation. Summers are generally

warm and humid and winters are cool to cold with heavy snowfall in
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the northern regions. Typical broad-leaved deciduous species are oak,
maple, beech, ash and poplar.

Litterfall is not only great but litter nutrient content also
tends to be high, notably for nitrogen and phosphorus (Wells et al.,
1972; Whittaker, 1975). Litter decay and nutrient release to under-
lying soils are more rapid than with pine/conifer litter, decomposition
products are not as acidic and the underlying podzolic (brown earth)
soils are relatively fertile, with higher nitrogen and phosphorus levels
than the previously discussed soils. The deciduous forest thus func-
tions with a nutrient rich economy, with a larger nutrient stock
more rapidly cycled, a smaller fraction of the nutrients in plant
tissue and a larger fraction in the soil (Whittaker, 1975). During
high rainfall periods, especially during leafless seasons, runoff and
nutrient export can be high (Swank and Miner, 1968; Likens et al.,
1977).

Deciduous forests are also subject to the freeze-thaw leaching
mechanism and to high nutrient snowmelt concentrations described for
boreal forests. Because snowfall is higher in north temperate than
in more northerly boreal ecosystems, additional amounts of nutrients
are accumulated over winter and snowmelt concentrations can be high

(Likens et al., 1970; Gosz, 1978).

Temperate Evergreen Biome
Climatic conditions within temperate evergreen ecosystems consist
of warm temperatures with high rainfall, especially during the late

summer months. Dominant vegetation is loblolly, shortleaf, longleaf



52

and slash pine. Large expanses of these vegetative types occur in
the coastal plain and piedmont of the southeast U.S. where they are
sometimes collectively called "southern pine." Soil characteristics
are highly variable but the positive water balance has often contri-
buted toward a base-poor, moder type humus layer overlaying sandy
soils of strong to slight acidity.

Much of the hydrologically related research with pine forested
watersheds has been focused on the influence that needle-type vegeta-
tion has on the regulation of streamflow volumes. In particular,
rainfall interception capacity and evapotranspiration rates have both
been Tinked to streamflow fluctuations.

Studies in the South Carolina piedmont region have demonstrated
that rainfall interception from 5-30 year old loblolly pine averaged
14-20% of the annual precipitation. On the average, the volume of
intercepted water was approximately 10 centimeters greater than that
from hardwood sites (Swank and Miner, 1968; Helvey, 1971; Swank et
al., 1972). Further work by Swank and Douglass (1977), has indicated
that pine forests also have greater evapotranspiration rates than
hardwood forests. As a result of these two characteristics, annual
streamflow was reduced about 20% below that expected for hardwood
cover 15 years after experimental watersheds had been converted from
mature deciduous hardwoods to white pine (Swank and Douglass, 1974).

With lower reported water runoff volumes, nutrient loads would
also be expected to be Tower. However, high nutrient yields from
pine watersheds in northern Mississippi and Georgia (see Table 1)

can be attributed to both high precipitation and selective erosion
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of fine clay sediments (Krebs and Golley, 1977; Duffey et al., 1978).

Exceptions to General Trends

Many forested areas deviate from the vegetation-soil-climate
relationships which inspire ecosystem/biome classification. Poor
drainage, steep slopes or the presence of large stones or outcroppings
are often typical of forest soil conditions. Many mountain soils
lack the kind of profile development described above and remain thin
and stony. Forest soil fertility is often very low since the more
productive and accessible soils have long since been converted to
agricultural land.

Differential chemical weathering of the parent material can in-
fluence the distribution and growth of the forested vegetation because
of changes in acidity, base status and nutrient availability associated
with weathering intensity. Down the slope of a hill, soils become
increasingly moist because of the gradual movement of water downslope
beneath the soil surface. Nutrients and soil particles are likewise
transported so that lowland soils tend to be deeper, contain more
fine particles and are more fertile (Whittaker, 1975). Growth of
vegetation on soils developed from transported materials may differ
from that on adjacent soils developed from bedrock (Pritchett, 1979).

Differences in topography, drainage and parent material has often
produced, within a given area, a very complex pattern of soil and
vegetation. This complexity makes futile any attempts to implicate
specific physiographic characteristics with nutrient flux. While the

compiled nutrient export coefficients for forested watersheds exhibit
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a wide range of conditions across North America (Table 1), the range
of nutrient flux values is quite narrow (Figure 5a and 5b).

One (non-physiographic) factor which does tentatively stand out
as influencing nutrient load is climate. Areas of the country that
exhibit warm climates with high rainfall (such as the pacific north-
west and southeastern piedmont regions) are also associated with high

productivity, high runoff and high nutrient export.

Ecological Succession

The relationship between ecological succession and ecosystem
stability to nutrient cycling and loading is somewhat controversial.
One suggested hypothesis is that as ecosystems mature, the ability to
conserve nutrients increases (Odum, 1969). Nutrient losses from dis-
turbed or early successional systems should therefore by higher than
that from mature systems. Since inputs equal outputs at climax, it is
inferred that losses will exceed inputs until climax is reached. To
support this hypothesis, extensive work at a number of gauged forested
watersheds have demonstrated that nutrient losses are progressively
reduced as biomass increases (Likens et al., 1970; Marks and Bormann,
1972; Pierce et al., 1972; Woodwell, 1974; Likens et al., 1977).

The particular mechanism(s) responsible for nutrient losses is
nutrient-specific. Phosphorus losses are controlled more by solu-
bility than are nitrogen losses. Beginning successional systems have
less canopy and the potential for water runoff and phosphorus loss is
greater than for more mature forests. Nitrogen is influenced to a

greater extent by biologial interactions (i.e., vegetation type,



55

soil nitrifiers, etc.) and is usually more often growth limiting in
terrestrial habitats and exhibits more variation than phosphorus.

A number of investigators have observed that as forest ecosystems
approach steady-state, tannins and their derivatives, which

inhibit nitrifying bacteria, accumulate in the soil. As a result,
ammonium is not oxidized to nitrate as readily in the climax as in
earlier successional stages and nitrogen solubility in general is
reduced with lower losses to streamflow (Rice and Pancholy, 1972,
1973; Todd et al., 1975). Consequently, climax vegetation can either
inhibit the nitrification process (Rice and Pancholy, 1973) or the
vegetation can better utilize NH4-N more efficiently than previous
seral stages (Todd et al., 1975).

A second hypothesis proposes that '"changes in nutrient losses
through ecosystem development are an inverse function of the amount
of each element bound up in the total biomass increment of an eco-
system" (Leak and Martin, 1975; Vitousek and Reiners, 1975; Vitousek,
1977). Ecosystems accumulate nutrients during the middle stages of
succession, but losses increase to equal outputs upon maturity.
Stated differently: intermediate successional ecosystems will have
lower nutrient losses to streamwater than either very young or very
old (mature) ecosystems.

Woodmansee (1978) offers a third alternative hypothesis. He
infers that the long term balance of nutrient capital (steady-state)
in undisturbed systems may not ever be reached on an ecosystem scale.
Minor but continuous perturbations caused by natural events (i.e.,

blowdown, insect infestations, landslides, etc.) can cause a mosiac
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of successional stages (Martin, 1979), and nutrient accumulation will
vary accordingly. As a result, nutrient output is continuously
variable depending on the number or extent of natural or man-made
disturbances.

For comparison of these three hypotheses, refer to Figure 4.
From this diagram, disagreement on nutrient accumulation and output
in later stages of ecological succession is apparent. A1l three
groups of investigators do agree that in the initial stages of
succession, nutrient accumulation increases while output decreases.
It is proposed here, however, that nutrient output differences
among the three hypotheses (or between early and mature ecosystems),
are within the range of nutrient export coefficients presented in
Figure 5. This is because the compiled nutrient export coefficients
(Table 1) not only represent a wide cross-section of physiographic and

climatic conditions but also a wide range of successional stages.

Disturbed Forested Systems

Aside from the previously discussed factors which influence
nutrient flux, forest perturbations can also increase the nutrient
yield. These perturbations range from encroachment of agricultural
and urban land to timber harvest, forest fire and fertilization.

The impact of agricultural and urban land use on nutrient flux will be
discussed in the following two chapters. The potential effects of the

latter disturbances will be the focus of the remainder of this chapter.
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(&)

We,



58

Timber Harvest

Watersheds with ongoing timber harvest tend to have higher
nutrient export than do undisturbed systems. This is because deforesta-
tion: 1) blocks the nutrient uptake pathway from the available
nutrient and organic matter compartments to the vegetation (see Figure
3), 2) increases the nutrient pool by contribution of dead organic
material (slash), 3) raises the forest floor temperature through
increased exposure to sunlight, 4) increases the frequency of drying
and wetting, 5) reduces evapotranspiration rates and interception
capacity and 6) increases microbial activity (respiration rate and
bacteria numbers) (Birch, 1958; Likens et al., 1970; Pierce et al.,
1970, 1972; Bormann et al., 1974; Likens et al., 1977).

Increased biological decomposition is the principal factor
responsible for increases in nitrogen export. Nitrifying bacteria of

the genera Nitrosomonus and Nitrobacter increased up to 18 and 34-fold,

respectively, in the soils of disturbed (clearcut) watershed when
compared to populations in undisturbed forest soils (Likens et al.,
1970, 1977).

In contrast, phosphorus export is reportedly not as sensitive to
harvest operations as is nitrogen. Dissolved phosphorus export tends
to remain at either pre-harvest levels or exhibits only slight increases
during the first few years (Aubertin and Patric, 1974; Fredriksen et al.,
1975; Likens et al., 1977; Swank and Douglass, 1977). Bormann et al.
(1974) reported that particulate phosphorus output rose sharply a
couple of years after clearcut as biotic control and erodability

weakened.
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The output of nutrients is also dependent on the extent and method
of harvest and on the proximity of the harvest operation to tributaries.
Many logging operations use undisturbed buffer strips along forest
streams to absorb the impact of excess runoff. Humus layer thickness,
however, may also be a factor in nutrient yield (Fredriksen et al.,
1975) since the thicker the layer, the higher the organic content
and the greater the potential for mineralization and nutrient loss

to streamwater.

Forest Fire

Forest fire has a greater potential for degrading water quality
than timber harvest alone. Elimination of the overstory blocks
nutrient uptake pathways, and reduces evapotranspiration and rainfall
interception capacity. Incineration of litter and humus layers con-
verts the forest floor into a readily soluble, nutrient-rich form
much faster than do natural decay processes. It also decreases
infiltration capacity and water storage, increases soil weathering
and enhances nutrient runoff potential (Wright, 1976).

The effects of forest fires on the physical, chemical and
biological properties of soils and vegetation are variable and directly
related to the type and severity of the burn. Materials consumed in
a controlled burn are often confined to the understory vegetation
and forest floor debris and only a small part of the total may be
destroyed. A severe wildfire may destroy a much larger percentage
of the standing biomass and organic matter (Wells, 1971). Unfor-

tunately, information on the effects of fire on water quality is
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limited and research results are sometimes conflicting. Many studies
have examined the combined effects of forest fire with timber harvest
and/or fertilization, making it difficult to determine actual cause-

effect relationships.

From a study in northeastern Minnesota, Wright (1976) observed
that, compared to natural background levels, runoff and phosphorus
export increased 60% and 93% respectively, after a fire. In a clear-
cut and slash-burned Douglas-fir forest in Oregon, inorganic phos-
phorus loads increased four times that of the control area to
approximately 0.6 kg/ha/yr. Total loss of nitrogen amounted to
2.2 kg/ha/yr for the first two years after burning before dropping
toward control levels of 0.05 kg/ha/yr (Frederiksen, 1970). However,
during the two years following a similar treatment in Oregon's coast
range, nitrate-nitrogen export increased from 4 to 15 kg/ha/yr

(Brown et al., 1973).

Forest Fertilization

With a steadily decreasing production base and an increasing
demand for wood products, management practices on forest lands have
been intensified. As a consequence, the use of forest fertilization to
increase timber growth rates is becoming more widespread.

Since nitrogen is the most common growth-limiting element on
terrestrial systems, especially in the pacific northwest, fertilization
with granular urea (46% N) or ammonium nitrate has been intensified
(Fredriksen et al., 1975). Phosphorus fertilizers have not been

as extensively used and are normally applied to tree plantations near
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the time of planting. Phosphorus has seen limited use, however, on
stagnated stands of slash pines on the phosphorus deficient wet
savanna soils of the coastal plain (Pritchett and Smith, 1970, 1974).

Application methods include spray irrigation and manual dispersal
but most operations require aerial techniques using either helicopters
or fixed wing aircraft. Large headwater streams are intentionally
avoided but application to the forest floor often includes and impacts
upon smaller tributaries. According to Moore (1975), urea application
to Douglas-fir stands pose little threat to water quality unless
there is direct application to stream channels. This does not rule
out the possibility of groundwater contamination and eventual
impaction on surface waters further downslope. In this situation,
ammonium nitrate has a greater pollution potential than urea because
of the mobility of the nitrate ion. While essentially no leaching
of phosphorus occurs from most forested systems, exceptions have been
noted where soluble phosphates have been applied to acid organic
soils or acid quartzitic sands low in iron and aluminum (Hymphrys
and Pritchett, 1971).

Fertilizer materials undergo a number of transformations when
applied to soils and the proportional increase in nutrient flux will
depend on 1) the type and form of fertilizer used, 2) rate and time
of applications, 3) vegetative type and root uptake efficiency, 4)
the soil's physical and chemical properties (i.e., ion exchange
capacity), and 5) climate (Hornbeck and Pierce, 1972; Pritchett, 1979).
According to available published accounts, stream nutrient levels

were only temporarily elevated immediately following fertilization,
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did not approach toxic levels, revealed no significant impact on
aquatic organisms and were usually associated with direct application
to surface water. Since only a small fraction of the forested water-
shed is fertilized in a given year, the evidence does not implicate
forest fertilization in significant eutrophication of lakes or streams
(Moore, 1970; Norris and Moore, 1971; Hornbeck and Pierce, 1972;
Malueg et al., 1972; Moore, 1974, 1985; Fredriksen et al., 1975;

Stay et al., 1978; Tiedemann et al., 1978).
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CHAPTER IV
AGRICULTURAL LAND USE

Introduction

While forested regions represent areas with a) well-developed
and long-lived overlying canopies and b) well-defined underlying suc-
cessions of natural soil horizons, agricultural areas are artificial
products of human manipulation. Agricultural soils are generally more
productive (at least initially) than many existing forest soils and
have been further modified by cultivation, 1iming and fertilization.
The short-lived vegetation (crops) have a much lower leaf-area index
than forest products which allows for less rainfall interception capa-
city and an increased potential for water runoff. The elimination of
crops through harvesting disrupts the plant-soil nutrient cycle,
promotes plant residue decomposition and exposes the land surface to
accelerated weathering, water runoff and soil erosion. The end result
is generally an increase in nutrient export in comparison to undis-
burbed conditions.

Aside from the more obvious effects of climate and topography,
other factors such as soil type, fertilization rate, tillage practices
and crop type can have significant influence on nutruent export.
Non-crop activities such as pasture, feedlot operations and manure
storage facilities can also cause elevated nutrient loads from accumu-

lated animal wastes and loss of vegetative cover. The remainder of

68
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this chapter contains a discussion of how these factors cause

increases or fluctuations in nutrient export.

Soil Influences

With 1imited vegetative cover and lack of a protective litter of
humus layer, the exposed soils are subject to high weathering and
erosion rates. In spite of continued efforts by soil conservationists
with improved cropping and land and soil management, over 4.0 billion
metric tons of sediment are eroded from agricultural areas in the U.S.
each year, of which approximately half washes into lakes and streams
(Holeman, 1968; Burwell et al., 1974). From the Maumee River alone,
over 866,000 metric tons of sediment discharges into Lake Erie annually,
composed mostly of fine clay-sized particles carrying a high nutrient
load (Nelson et al., 1978).

Aside from the influence of parent geology (see Chapter III),
drainage water nutrient levels are also dependent on both soil type
and texture. Soil type can be broadly classified as either organic
or mineral while texture refers to the degree of coarseness of a

material (i.e., fine, medium, coarse).

Organic Soils
The level of organic matter needed to classify a soil as organic
is highly variable. Depending on climate and soil structure, the level
of organic material is a function of the steady-state between added
and native plant residues and their rate of decomposition. According

to the Soil Survey Staff (1975), "organic soils are those soils which
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are saturated with water for long periods or are artificially drained,
and excluding live roots, have:

1. 18% or more organic carbon if the mineral fraction is

60% or more clay,

2. 12% or more organic carbon if the mineral fraction has

no clay, or

3. have a proportional content of organic carbon between

12% and 18% if the clay content of the mineral fraction
is between 0% and 60%.

Soils are also classified as organic if they are never saturated with
water for more than a few days and have 20% or more organic carbon."
Because of their chemical nature, organic soils are high in

nitrogen and phosphorus. Reinhorn and Arnimelech (1974) reported

that soil containing only 1% organic carbon contained approximately
ten metric tons of nitrogen per hectare in the top 90 cm. It is
suspected by this investigator that phosphorus levels would be approxi-
mately one order of magnitude less.

As virgin soils are cultivated for crop production, a marked re-
duction (20-50%) in the soil's organic content occurs. Depletion of
organic soil material through oxidation, mineralization and leaching
lasts about 10-20 years depending on the soil's organic content and
depth, crop type, irrigation practices and climate (Reinhorn and
Arnimelech, 1974). This breakdown process results in the release
of large quantities of mineral nutrients, often to overland runoff.

In addition to nutrient release through decomposition, organic
colloids also tend to have a low capacity for nutrient adsorption,

particularly for phosphorus. The adsorption that does occur depends
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on the amounts of associated soil cations (Fe, Al, Mg, Ca), soil com-
position, depth, and the nature of underlying mineral material (Kilmer
1974; Duxbury and Peverly, 1978; Miller, 1979).

With a finite capacity for phosphate fixation, the importance of
fertilization rates must not be underestimated. Fertilized agricul-
tural watersheds with organic soils such as mucks and peats can yield
higher amounts of nutrients than mineral soils to stormwater
(Mackenzie and Viets, 1974; Nielsen and Mackenzie, 1977; Duxbury and

Peverly, 1978; Miller, 1979).

Mineral Soils

Mineral soils are a mixture of rocks and the end products of the
weathering process, and their texture is a key determinant of both
water adsorbtion capacity and nutrient interactions. The basic
textural classes are: clay, silty clay, sandy clay, silty clay loam,
clay loam, sandy clay loam, silt, silt loam, loam, sandy loam, loamy
sand and sand.

Clay particles are microscopic in size. When dry, they adsorb
large amounts of water, swell when wet, are highly plastic and are
slowly permeable. As clay content increases the cation content also
tends to increase causing stronger reactions with anions than coarser
materials and often resulting in lower soluble nutrient levels in
drainage water. Conversely, clay particles are preferentially eroded
by size and because of the greater affinity for dissolved salts (such
as P04-P) to the finer fractions, are a potential source of sediment
nutrients (Schneider and Erickson, 1972; Loehr, 1974; Lake and

Morrison, 1977).
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Table 2 : Trophic Classification Scheme for Soils*

Nutrient export in g/mz-yr

Inorganic Total Phosphate

Nitrogen Phosphorus Phosphorus
Oligotrophic 0.5 0.02 0.01
Mesotrophic 0.5-2.5 0.02-0.05 0.01-0.025
Polytrophic 2.5 0.05 0.025

*Modified from Vollenweider, 1968, p. 105.

From the integration of considerable Great Lakes Basin data, the
International Reference Group on Great Lakes Pollution from Land Use
Activities (1975) developed a more comprehensive approach and related
annual phosphorus loads to both management practice and land form.
Land form was based on soil texture (i.e., fine, medium, coarse)
and slope (Table 3).

The above authors hasten to warn the readers that "from a manage-
ment perspective, the relative differences of numbers are more important
than the absolute values." Unique characteristics of individual land
areas may result in significantly different area loads. In addition,
extrapolation of this information beyond the Great Lakes area is of
Timited value.

Based on the amount of variability, and previous classification
attempts, it is likely that broad classification schemes relating
soil type to nutrient flux are currently not possible. According

to Logan (1977), the current state-of-the-art does not allow prediction
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beyond the observation that total nutrient content in both soil and
drainage water tends to be higher for clay and organic soils than in

the coarser sands.

Fertilizer Effects - Commercial and Manure

With rising return per dollar invested in fertilizer, the use of
fertilizers in this country has substantially increased since the
second World War. In 1974 alone, 8.2 million metric tons of nitrogen
and 4.5 million metric tons of P,0g were applied in the U.S. (Baldwin
et al., 1977).

Fertilizers are generally applied either as animal manure or as a
commercial grade product. The nutrient content of commercial fertilizers
varies between 0-82% for nitrogen and 42% for PZOS (Robertson, pers.
comm. ). Modern commercial varieties such as ammonium nitrate (NH4N03),
triple superphosphate (Ca(H2P04)2), monoammonium phosphate (NH4H2P04)
and diammonium phosphate ((NH4)2HPO4) are completely water soluble.
When added to the soil they react with mineral and organic constituents
and a high percentage is rendered insoluble.

In contrast to commercial fertilizers, fresh manure contains
50-90% moisture, 0.2-6% total nitrogen and 0.6-2.5% total phosphorus
on a dry weight basis (Frere, 1976). Most of the nitrogen and phos-
phorus is in the organic form and must first undergo microbial break-
down and mineralization into more soluble and available forms. This
breakdown, in turn, is dependent on manure composition at the time
of application since fresh, fermented or anaerobic liquids are all

commonly used.
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Because of strong reactions with the soil, approximately 5-30%
of the phosphorus and 50-60% of the nitrogen applied as (commercial/
manure) fertilizer is recovered by the current crop (Hensler et al.,
1970; Lin, 1972; Loehr, 1974; Gambrell et al., 1975b; Frere, 1976;
Logan, 1977). Losses from the remaining nutrient reservoir from a
variety of pathways are high. The bulk of applied phosphorus is lost
by soil erosion (Burwell et al., 1977; Young and Holt, 1977; Alberts
et al., 1978; McDowell et al., 1978; Menzel et al., 1978). Nitrogen
losses of a similar magnitude can occur from both erosion and leaching.
Volatilization losses, however, are also significant.

Loehr (1974) estimated 5-10% of any commercial ammonia applied
was lost through volatilization while Frere (1976) estimated up to
50% of the total collectable manure nitrogen was lost through volatili-
zation during storage and before soil incorporation. From "in field"
studies, Lauer et al. (1976) observed average losses at 85% of the
total ammoniacal manure nitrogen content at the time of spreading.

Ammonia volatilization can have a significant impact on minerali-
zation processes since it decreases the potential for NO; formation
and release into water supplies. This is partially reinforced from
early studies by Hensler et al. (1970) who observed higher nitrogen
(and phosphorus) losses from fresh manure applications as compared to
fermented and anaerobic liquid.

Efforts to find a direct relationship between applied nutrients
and nutrient export in drainage waters have been hindered by extra-
neous nutrient sources and interactions. Besides the nutrients sup-

plied by the native soil reservoir, crop residue and detritus, in situ



n
erg

rat

rits

rn;

T0ss

nity



77

biological transformations make direct relationships difficult

to interpret. Comprehensive input-output budgeting hinges on the
delicate balance between optimum plant needs and nutrient avail-
ability from the total nutrient pool.

Similarly, application of optimum fertilizer amounts also depends
on "available nutrient" levels in the soil (concentrations weak
enough for root extraction) and plant uptake capacity. Optimum
rates "ideally" stimulate early plant growth and produce thicker
foliage with higher rainfall interception capacity, transpiration
rate and soil moisture deficit. Al1 these factors interact to reduce
runoff and nutrient export.

In nutrient budgeting studies with optimum fertilization rates,
losses were generally less than 5% and 20% for applied phosphorus and
nitrogen, respectively, It is assumed that a significant amount
of the nutrient loss also included nutrients from the soil-nutrient
pool (Moe et al., 1968; Blurek and Heald, 1974; Gambrell et al.,
1975b; Kissel et al., 1978; Nelson et al., 1978; Nicholaichuk and
Read, 1978).

Even at optimum fertilization rates, a number of investigators
have indicated that the magnitude of nutrient losses appeared to be a
function of the timing of the fertilizer inputs. Manure applied to
frozen ground, especially when thaw and rainfall occurred simultaneously,
was favorable to high nutrient export (Minshall et al., 1970;

Hensler et al., 1970; Klausner et al., 1974, 1976; Young and Mutchler,
1976).

An examination of fertilizer additions beyond the recommended
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rate have been observed to cause increases in nutrient runoff rates.
Heavily fertilized watersheds tend to lose 2-3 times more nitrogen
and phosphorus than do watersheds subject to recommended rates of
fertilization (Schuman et al., 1973a, b; Kilmer et al., 1974; Burwell
et al., 1977).

Conversely, while fertilizer overuse is uneconomical and enhances
nutrient losses, under use can result in a more costly food supply
and increased erosion of valuable land (Viets, 1971). Under certain
conditions, water, sediment, and nutrient losses from plots receiving
less than optimal fertilization can be greater than optimum fertilized
plots, reflecting the influence of a good crop canopy (Gambrell et al.,

1975b; Frere, 1976; Smith et al., 1979).

Tillage Practices

Conventional tillage methods, in which crop residues are removed
at harvest, and the ground is left fallow during non-growing periods,
are a prime cause of high nutrient export. Conversely, conservation
tillage methods ideally have conservation of soil, water and energy
as the primary objective. These methods will reduce the export of
nutrients.

Among the conservation tillage methods are practices that in-
crease soil incorporation of fertilizers. Deep plowing is reportedly
superior to disking (Holt at al., 1970; Romkens et al., 1973; Timmons
et al., 1973; Baker et al., 1978), and at times nutrient losses from
deep plowed fields approach those from unfertilized plots (Timmons et

al., 1973). Deep mixing tillage incorporates organic matter from
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plant residues into the soil and promotes a more favorable soil structure.
This increases the cation exchange capacity in the upper soil horizons
thus retaining greater concentrations of P04-P and N03-N (Klausner et al.,
1974; Rogers et al., 1976).

Runoff and subsequent soil and nutrient loss is also reduced by
tillage systems that leave a residue cover on the soil surface (i.e.,
no-ti11). With large amounts of surface residue remaining during
critical erosion periods from late fall through early spring, soil
nutrient loss is reduced during the period when crop canopy is not
significant (Lake and Morrison, 1977; Laflen et al., 1978).

Variations in efficiency have been noted. Moldenhauer et al.
(1971) demonstrated that no-till planting (crop residues undisturbed on
soil surface until planting), though superior to conventional tillage
in controlling soil losses, was not nearly as effective as ridge
planting (residues remain undisturbed until cultivating time).

Unfortunately, no-till methods do not proportionately reduce
nutrient solution and sediment phases. McDowell et al., (1978)
indicated that total nutrient losses from no-till plots were 10-16%
of nitrogen and phosphorus losses from conventional tillage, respec-
tively. Solution phosphorus concentrations, however, were increased in
part because of a) limited sorption of fertilizer phosphorus by the
soil resulting from decreased fertilizer incorporation, b) release
of phosphorus from crop residues, and c) greater phosphate carrying
capacity of sediments in runoff from no-till.

Other water and soil conservation tillage measures, such as

contour planting and terracing, may be used in conjunction with the
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above and other practices to further reduce nutrient loss. While
both can substantially decrease losses, terracing has been observed
to reduce sediment nitrogen and phosphorus loads by 2/3 that of con-

tour methods (Schuman et al., 1973; Alberts et al., 1978).

Crop Types

While tillage practices undoubtedly influence nutrient loss,
especially during nongrowing seasons, vegetative type (and its asso-
ciated density-ground cover percentage) is also a major factor con-
trolling runoff and nutrient loss (Loehr, 1974). Watersheds or plots
sown with high density, non-row crops such as wheat, millet, rye and
other small grains a) protect the soil surface from rainfall impact
energy, b) maintain the integrity of the upper soil layers, and
c) do not promote sheet or rill runoff. As a consequence, water
runoff and sediment (and total) concentrations from non row crops
are lower than row crops. This results in low export of nutrient
loads.

On the other hand, row crops, such as corn or soybeans, do not
protect the soil surface as efficiently as non row crops and promote
channelization and erosion. Export of nutrients from row cropped
watersheds will be much higher than export from non row crop water-
sheds, especially if soil and water conservation practices are under-
used.

Data collected for both row and non row crops types support this
phenomena (Tables 4 and 5, respectively). Frequency distributions
(Figures 6 and 7) constructed from this data indicate a median phos-

phorus and nitrogen export value for non row crops 1/3 and 2/3 that
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of the phosphorus and nitrogen export from row crops, respectively.
Note also the much higher degree of variation (range, standard devia-
tion, etc.) exhibited by the row crops in comparison to the non row

crops.

Pasture and Range Land

A major component and accepted practice of livestock production
is the use of pasture and rangeland. Both dairy farming and sheep
production are mainly range and pasture operations as are production
of feeder calves and a substantial portion of swine production (Sutton,
1976). While both operations share the same function, range generally
consists of less productive vegetation with a sparser distribution of
grazers than does pasture land. Common features of both are manure
accumulation and nutrient runoff from animal waste contaminants.

The hydrologic characteristics of pastured watersheds are notice-
ably different than those for undistrubed land. Murai et al. (1975)
noted that when a forest was converted to grazing land, the compactness
of the top soil was 10% higher, the non-capillary porosity and perco-
lation rate was less than 50% of previous rates, and the final rainfall
infiltration capacity was 20-25% of the original (forest) conditions.
Soil compaction was attributed primarily to cattle trampling and
rolling farm machinery. With less rainfall infiltration, runoff and
nutrient export increases.

The temporal extent of grazing is also a key issue determining
nutrient export. In a comparison between rotational and continuous

grazed pastures, Chichester et al. (1979) indicated that not only was
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soil compaction and animal waste accumulation increased, but the
decrease in vegetative cover combined to increase the volume of
surface runoff. This produced a chemical transport many times greater
than that from summer-grazed watersheds. A similar study in Oklahoma
examining continuous versus rotational grazing produced comparable
results (Menzel et al., 1978).

A more recent grassland management practice is the use of
fertilizers to increase forage yields and quality. As with other
practices using fertilizers, some risk of nutrient loss with surface
runoff can be expected. In comparisons between paired fertilized
and unfertilized, rotation and continuously grazed watersheds,
fertilization increased surface runoff nutrient loads, but over longer
time periods it was suspected of also increasing plant cover. The
increase in plant cover would presumably decrease runoff volume and
soil erosion resulting in subsequent decreases in nutrient loss
(0OIness et al., 1980).

A11 approved studies (selected according to the sampling design
criteria in Chapter II) focusing on phosphorus and nitrogen export
from pastured and grazed watersheds were compiled and are presented
in Table 6. When the information was available, characteristics
such as continuous and rotational grazing, fertilization and animal
type and density were also noted. From this table, frequency
distributions were constructed and are presented for phosphorus and
nitrogen in Figures 8a and 8b, respectively. Note that the median
values for nutrient export from grazed and pastured lands are very

similar to those presented for non row crops.
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As an example of some of the causative factors determining the
magnitude of nutrient export, the reader is referred to Figure 8a,
representing phosphorus export. The values on the left represent
phosphorus export from those watersheds grazed primarily in summer
or on a rotational basis, while those on the right represent export
from watersheds with either continuous grazing or forage fertiliza-
tion. This cause-effect relationship emphasizes the need for proper
examination and selection of the coefficients for extrapolation

purposes.

Feedlot and Manure Storage

In many areas of the country, significant changes have taken
place in livestock production operations. Whereas livestock production
was once an operation requiring large tracts of land, centralization
is now the trend. Specialization has removed cattle from pasture
and grassland resulting in confinement of large numbers of animals
in small areas. While livestock production is expected to increase,
actual operation numbers and sizes are decreasing thus concentrating
livestock density (Loehr, 1970).

Livestock operations have produced other changes related to-
nutrient budgets. At one time the grain and roughage produced on
the farm was used for feed and the manure generated was returned to
the land. Now with centralized operations, feed is often imported
and even if land is available for manure spreading, the practice becomes,
from a profit standpoint, a questionable one in comparison with the use

of available commercial fertilizers. Thus an increasing number of
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livestock producers are faced with the disposal of highly concentrated
low volume waste flows in confined areas from either the feedlot or
manure storage facility.

While various chemical parameters such as the nutrient content
of the accumulated manure will vary depending on the age, weight
and animal type (see Table 7 for comparison), most studies to date
have focused on beef or dairy cattle. Loehr and Agnew (1967) found
that waste production averages approximately 6% of the animal's body
weight per day. Reddell et al. (1971) reported that about two tons
per year of a semicomposted manure with a 50% moisture content
accumulated for each head of cattle in their study feedlot. Much of
the total waste generated decomposes on the feedlot surface or is
removed by cleaning operations, however, a small proportion (2-10%)
may leave the feedlot in surface runoff (Madden and Dornbush, 1971;
McCalla et al., 1972; Loehr, 1974; Gilbertson et al., 1975). Under
the improper conditions the animal wastes could cause problems com-
parable to the discharge of untreated municipal sewage.

From an examination of the approved nutrient export data from
a number of feedlot/manure storage studies, total nutrient loads were
observed to be 2-3 orders of magnitude greater than in runoff draining
other agricultural activities (Table 8). Nutrient export variability
was also much higher (Figures 9a and 9b).

The most dominant influence of runoff water quality and vari-
ability has been linked to the intensity, duration, amount and seasonal
distribution of rainfall and snowmelt events. Gilbertson et al. (1975)

reported that slurries of undecomposed manure flowed from their
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experimental lot when winter thaws occurred. Dornbush and Madden
(1973) observed that although snowmelt runoff accounted for only
27% of the total runoff it carried 33% and 45% of the annual losses
of phosphate and nitrogen, respectively.

Edwards et al. (1972) speculated that potential pollution problems
in the humid, eastern 1/3 of the U.S. were likely to differ materially
from those in the arid west. From an analysis of multi-state data,
Clarke et al. (1975) concluded that feedlots in drier areas have less
runoff (and nutrient export) from the same amount of precipitation
than those in wetter, more humid regions. It is this investigator's
suspicion that the more humid conditions a) decrease the water storage
capacity causing proportionately more runoff during rainfall events,
and b) create more reduced conditions thereby decreasing oxidation-
volatilization of animal wastes. With greater accumulation of animal
wastes and increased runoff, the potential for greater nutrient export
in the humid east is high.

In addition to climatic variation, a number of other factors
are suspected of influencing the quantity and quality of runoff.

These include:

1. The percent of impervious surfaces: If the percent
of paved surfaces is high, the infiltration rate will
be low and the runoff and nutrient export will be
high. Unsurfaced lots have a soil-manure matrix and
indentations fromcattle hooves serve as miniature
retention basins (Loehr, 1970; Coote and Hore, 1978).

2. Enclosed vs. open facilities (with roofs): If the
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facility is enclosed with a roof, rainfall impact
energy will be reduced, and runoff and nutrient ex-
port will be decreased. (The higher the roof area/
feedlot area ratio, the lower the runoff) (Loehr,
1970; Dornbush and Madden, 1973; Coote and Hore,
1978).

3. Animal density: If the animal density is high, the
nutrient export can also be high (McCalla et al.,
1972; Dornbush and Madden, 1973; Clarke et al.,
1975).

4. Detention Basin: If a settling pond or detention
basin is present, nutrient export will be decreased

(Loehr, 1970; Coote and Hore, 1978).

Watershed Size and Proximity to Lakes and Streams

It should be noted that nearly all the nutrient export coefficients
compiled in the tables for row, non row, pasture and feedlot activities
were derived from studies dealing with small watersheds. Small water-
sheds, such as microplots (<0.5 hectares), provide less opportunity
for redeposition of suspended sediment (and nutrients) than do large
watersheds. Even though a severe storm will scour considerable
amounts of deposited nutrients from streambeds--thus probably balancing
any loading inequalities between large and small basins--some investi-
gators feel that in the short term, small runoff plots or small water-
sheds tend to overestimate the mass of nutrients removed by surface

runoff.
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In addition, Schuman et al. (1973) demonstrated that water samples
for all runoff events taken adjacent to the outflow of an agricultural
watershed contained considerably more inorganic phosphorus in solution
than did samples taken 70-230 meters downstream. This reduction in
solution phosphorus was attributed to the adsorption of phosphorus
by the additional suspended soil material entering the stream from
gully erosion. This decrease in solution phosphorus in the runoff
was accompanied by an increase in phosphorus on the sediment trans-
ported. Thus total phosphorus loss measured at the two sites agreed
relatively well.

Since a major fraction of the nutrients in agricultural runoff
is attached to sediments or particulate matter, a significant portion
may be filtered from the runoff water by vegetation and soil or settle
out during overland flow or in intermittent stream channels (Haith
et al., 1976). Similarly, soluble nutrients may be removed from the
runoff by vegetation, a phenomenon that is used to some advantage
in overland runoff treatment systems for wastewater (Reed, 1972;

Pound and Crites, 1973; Burton, 1978).

The magnitude of nutrient export from large watersheds with a
diverse mixture of agricultural activities may not be easily determined.
This is because nutrient flux produced in one portion of the watershed
may be reduced in another area through biological uptake or redeposition
of sediments. For large basins consisting of a mosaic of agricultural
activities (or for those watersheds far removed from lakes or tribu-
taries), export coefficients from Table 9, entitled "Mixed Agriculture"

are offered as a comparison to nutrient flux values describing particular
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activities.

These tables consist of nutrient export values derived primarily
from a number of different agricultural activities. In many cases,
one activity, such as continuous corn or grazing land dominates. In
others, a small percentage of the watershed is urbanized. Many
studies included forested land use. While this mixture of land uses
(and climates) makes meaningful comparisons with other watersheds
difficult, it is felt that these nutrient coefficients more realistically
reflect conditions resulting from the sediment/solution attenuation
phenomenon discussed above.

In support of this, it can be observed that both the median
phosphorus export value and the range for mixed agricultural watersheds
(Figure 10a) are more similar to those for non row crops and pasture
than with row crops and feedlots. For nitrogen flux, however, the
median and range more closely parallel flux values from row crops. A
possible reason for this is that many of the mixed agricultural water-
sheds have significant amounts of land devoted to leguminous crops
(i.e., soybeans, whitebeans) which fix atmospheric nitrogen. The
possibility of leaching of the nitrogen enriched soils, and increasing
streamwater nitrogen concentrations, is high. Although lack of data
does not allow statistical comparison, mixed agricultural watersheds
with nitrogen-fixing crops do appear to have higher proportionate
water soluble N03—N export than do watersheds planted in non-

leguminous crops (see Appendix Table A6b).
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CHAPTER V
URBAN LAND USE

Introduction

Prior to the mid 1960's, the water quality aspects of urban storm-
water studies were generally ignored. This was partially because
attention was directed primarily toward the effects of flooding in
urban areas. The previously overwhelming emphasis on point source
pollution also concealed the impact of diffuse runoff on water quality.
Much of this neglect could be attributed to the "dilution is the
solution to pollution" philosophy which formed the doctrinal basis for
the design of many combined sewer systems in U.S. cities during the
first half of this century (Moreau, 1975).

Recent water quality legislation and expanding urban populations
have increased public awareness of pollution problems associated with
urban stormwater. Gibson et al. (1975) cited a U.S. News and World
Report (1972) article that listed approximately 65% of the nation's
population as living in metropolitan areas occupying less than 5% of
the land. As this trend toward urbanization continues, it is estimated
that almost 90% of the nation's population will reside in the urban
areas by 1990 (Ward, 1972). With these projections for rapid future
growth, both the areas concerned with urban runoff and the attitudes
toward contamination problems will likewise continue to expand

(Landon, 1977).
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The phenomenon of urban runoff begins with the accumulation of
contaminants on urban substrates. These substrates include vegetation,
automobiles, houses, shopping centers, streets and industries. Both
rainfall impact energy and water runoff dislodges and removes some of
these contaminants in solution and in suspension, and transports them
into gutters and through storm sewers to the nearest natural or man-made
watercourse. Since the nature of these contaminants is highly
diverse (and potentially nutrient-rich), the impact of this waste source
on water quality can be significant.

To more fully consider the cause and effect relationships
determining pollutant loadings, consideration must be given to their
respective components. To the degree that concentrations are similar,
variations in pollutant loadings can be attributable to differences in
runoff volume. Likewise, to the degree that the amounts of runoff
are similar, pollutant loading variations can be attributed to
concentration differences (Konrad et al., 1978).

This dualistic approach to analysis of urban stormwater pollution
allows the analyst to separate the many interacting factors into two
major categories. The first of these categories includes the hydraulic
factors that determines the relative amounts of runoff (e.g., the
percentage of impervious cover and nature of the drainage system).

The second category is composed of those particular land use/cover
activities within the watershed that affect concentration. These
include both long and short term events such as highway corridors and
construction activities, respectively.

The remainder of this chapter will discuss both the hydraulic
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factors and land use activities as they relate to nutrient load

variability.

Hydraulic Characteristics

The majority of U.S. cities have expanded laterally during the
past two decades. As urban development takes place, the response of
a watershed to the rainfall input departs from its natural conditions.
Due to the increase of impervious areas, the infiltration capacity and
rate are sharply reduced. As a result, runoff becomes less dependent
on evapo-transpiration and infiltration into the soil (Kao et al., 1973).
According to Hollis (1975), the net effects of urbanization "are that
a higher proportion of rainfall is translated into runoff, this
runoff occurs more quickly and flood flows are therefore higher and
'flashier' than was the case in the catchment before urbanization"

(see Chapter 2 for additional information).

In comparisons between urban and natural (undisturbed) basins with
similar basin length-slope rations, Yoshino (1975) and Ikuse et al.,
(1975) note that the lag times of quickflow from urban areas are
1/7 - 1/4 the lag times of the quickflow from the natural basins,
respectively. Additionally, the urbanized basins have between 1.5
and 2 times the volume of stormwater runoff of the natural basins.

Accordingly, differences in runoff volume (and infiltration) are
related to the percentage of impervious surfaces within the urbanized
basin. This is, in turn, dependent on the particular type of urban

activity present. Typical land use activities include:
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Land Use Description
1. industrial factories, mills
2. commercial/business offices, stores, malls
3. high density residential cooperatives, apartment complexes
4. medium density residential subdivisions
5. Tlow density residential large-lot developments
6. public lands parks, playgrounds, cemetaries

From a study within the predominantly residential Occoquan and
Bull Run watersheds in the Washington D.C. area, Grizzard et al.
(1977) determined the percent impervious surface area for the monitored

land activity as:

Land Use Percentage
Commercial/Office 89-96
High rise residential 47-65
Townhouse/garden apartments 39-48
Medium density single family 34-42
Low density single family 14-19
Rural/agricultural 0-5

Grizzard et al. (1977) observed that when the impervious surface
area percentage was used to characterize the land use categories,
general trends became evident. For individual rainfall events, nutrient
loading rates generally increased with increasing percentages of
impervious surface area. In a comparison of northern Florida water-
sheds in contrasting land use, Burton et al. (1977) notes similar
trends. Not only did the urban watershed (containing two large

regional shopping centers, a major highway, commercial office buildings,
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schools, and apartments) have 9.4 times the concentration and 16 times
the phosphorus load of a forested-agricultural watershed, but concen-
tration and phosphorus load were also 1.25 and 2 times, respectively,
that of the suburban watershed (with low density, residential sub-
divisions, a school and a riding stable). Konrad et al. (1978)
attributes analogous findings in Wisconsin's urbanized Menominee River
basin to the "easy washoff and transport of pollutants in curb and
gutter storm sewer systems, and the more intensive scour and transport
capacities of larger volumes of water."

Conversely, Mattraw and Sherwood (1977) suggest a number of
possible explanations for the low nutrient export values exhibited by
their residential watershed. These suggestions include:

a. Roofs did not have gutters. Most of the roof runoff was
incorporated in sod lawns overlying quartz sand with good
permeability.

b. Streets did not have curbs. Drainage water was routed
along the road edge and through grassy swale.

c. Low runoff. Only 5-10% of the total rainfall ran off

because of flat terrain and high permeability.

Land Use/Cover Activities--Nutrient Sources

Nutrient contaminants in urban stormwater are derived from a number
of different sources and activities. Given similar hydrologic
response, these sources can influence the concentration and cause
significant variations in total nutrient export. Origins of nutrient

contaminants include atmospheric deposition from precipitation and



118

dryfall, street surface residues, soil erosion from construction

activities and non-storm event related storm sewer contaminants.

Atmospheric Deposition
Industry and motor vehicles are the primary sources of air
pollutants and are most heavily concentrated in urban areas. Although
Andren and Lindberg (1977) indicate considerable complexity in relating
atmospheric quality to source, urban atmospheric inputs of nutrients
can be somewhat higher than those for forests (Uttormark et al., 1974;
Reckhow et al., 1980). These increases can be attributed primarily
to combustion emissions since:
a. Aviation and automotive fuels are known to contain
organophosphorus additives to reduce corrosion (Simpson
and Hemens, 1978) and to control pre-ignition and spark
plug fouling (Klausener and Lee, 1974).
b. Fly ash from oil-fired boilers is estimated to contain
0.9% phosphorus as P205, and open-hearth furnaces contain
up to 0.3% phosphorus pentoxide (Delumyea and Petel,
1977).
c. Approximately 1.2 million kilograms of phosphorus are
combusted in fuel each year (Uttormark et al., 1974).
d. Automotive and industrial emissions are believed to be the
major source of NOX, (Robinson and Robins, 1970; Bennett
and Linstedt, 1978), and
3. Photo-oxidation and hydrolysis reactions in an atmosphere

containing hydrocarbons and oxides of nitrogen apparently
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are a major source of nitrites, nitrates and nitric
acid in precipitation (Likens, 1972; Likens et al.,
1977).

Not only can atmospheric loads be significantly higher in urban
areas, but nutrient utilization is essentially eliminated due to the
limited vegetation. This contributes to proportionally higher stream-
water concentrations. Betson (1978) suggests that efforts to minimize
atmospheric pollution will lead to improved water quality generally,

and particularly in urban areas.

Street Surface Residues
City and suburban streets and highways act as very effective
collectors of dust, dirt and other residues from many activities
within an urban area. These materials, which are washed from roads
and other impervious surfaces during stormwater runoff events, include:

a. Exhaust and petroleum depositions due to motor vehicles:
(including many of the elements listed in the above section
on atmospheric deposition).

b. Materials from the road pavement itself: The type
(asphalt, cement) and condition of road surface will
determine the products of decomposition and aggregate
materials (Bennett and Linstedt, 1978).

c. Chemicals from ice control: One special additive to
highway salts has been nutritious phosphate, used to
inhibit corrosion (Hanes, 1970). It has been estimated

that approximately 9 million tons of salt and other
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deicing chemicals are purchased annually for snow
removal purposes (Richardson et al., 1974).

d. Organic vegetation residues, debris, dirt and dust from
animal and human activities: In the Washington, D.C.
area, an analysis of "pure" materials was undertaken
to aid in establishing the origin of pollutants found
in roadway deposits. The conclusion was that "Phosphorus
was most likely derived from area soils and roadway abrasion.
Nitrogen was contributed by soils and plant materials
carried onto the roadway by motor vehicles" (Shaeen,

1975).

Erosion
Urbanization typically causes accelerated erosion primarily as a
result of construction activities. According to Field et al. (1977),
these activities potentially raise sediment yields by two or three

4105 kg/hasyr. Studies

orders of magnitude from 102-103 kg/ha/yr to 10
by Burton et al. (1976) for highway construction and those by Daniel
et al. (1979) for residential construction sites, also confirm similar
increases for nitrogen and phosphorus loads. Total phosphorus and
nitrogen loads for the latter study average 13.6 and 31.6 kg/ha/yr,

respectively (primarily associated with high sediment loads).

Non-Event, Storm Sewer Contaminants

In addition to nutrient loads associated with stormwater, storm

sewers can also contribute to water pollution between rainfall events.
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From an urban study in Lubbock, Texas which focused on dry weather
flows, Gibson et al. (1975) observed substantial pollutant concentrations
between runoff events resulting from a number of factors. These
included runoff from firefighting operations, exterior cleaning of
commercial areas, industrial spills and their associated clean-up,
illegal discharge of waste waters and waste products, industrial
maintenance operations and excessive Tawn watering. Litter, trash and
discarded grass and leaves can also accumulate and decay in storm
sewers and thus contribute to the nutrient load of subsequent

sewer flows (Cowen and Lee, 1973; Prasad et al., 1980). Additional
considerations potentially leading to increased nutrient concentrations
(and loads) are the concentration and type of household pets (Landon,
1977), excessive lawn fertilization (E11is and Childs, 1973; Prasad

et al., 1980), and faulty septic tank-drain fields (Burton et al.,
1977; Konrad et al., 1978).

Data Presentation

The nutrient export coefficients for urban land use are presented
in Table 10. The range of nutrient loads is relatively wide and
reflects the full extent of conditions exhibited from low density
residential to industrial activities. This distribution is graphically
presented for phosphorus and nitrogen in Figures 1la and b. Note that
the median values are comparatively low. This is primarily because
the bulk of the export coefficients are derived from studies of

suburban-residential watersheds which produce low nutrient export.
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CHAPTER VI
COMPARISON OF NUTRIENT EXPORT FROM VARIOUS LAND USES

The Phosphorus and Nitrogen Export Coefficients

Summary Tables - Text and Appendix

In Chapter 2, criteria employed in the identification of the
export coefficients collected for this study are described. To a
great extent, these criteria reflect the importance of good experimental
design in the collection of nutrient flux data for the determination
of export coefficients. Chapters 3 through 5 include an examination
of land use features that contribute to nutrient load variability.

The compiled nutrient export coefficients have been tabulated along

with many of these land use features in Tables 1 through 10. These
tables allow the reader to observe or match the appropriate characteris-
tics with those of an application watershed a) for present nutrient
export and water quality prediction purposes, and b) to predict

future changes in water quality and proposed land use changes.

To provide the reader with a more complete record of the variability
and magnitude of the chemical fractions composing both phosphorus and
nitrogen export (i.e., sediment phosphorus, N03-N), a breakdown of
these chemical fractions is included in the Appendix. These tables
include all the nutrient runoff coefficients presented in the text
plus some information from studies which did not focus on total

nutrient loads. To reduce repetition, most of the watershed

127
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characteristics are eliminated if the particular study is adequately

described in the text tables.

Frequency Distribution

The effects of watershed characteristics and climatic conditions
on nutrient export can be observed from a study of the loading
coefficients in the above tables. However, this variability can be
more properly assessed through examination of the data in frequency
distributions or histograms. The histograms allow the analyst to
more readily note the magnitude of the cross sectional variability
resulting from different characteristics among watersheds that
determine nutrient export. Accordingly, histograms describing
nutrient export from the above land uses have been developed and are
presented in Figures 5 through 11.

Summary statistics describing these distributions such as the
mean, median, standard deviation and interquartile range are also
presented. If the data set has a skewed distribution, statistics like
the mean and standard deviation can be misleading. For highly skewed
distributions, the mean and standard deviation may be overly influenced
by an extreme data point, and they will not summarize the rest of the
data well. For this reason, some statisticians suggest that certain
"robust" statistics be used when the shape of the distribution is
either non-normal or uncertain.

Two such robust statistics that should be considered in place of
the mean and standard deviation are the median and interquartile range

(Mosteller and Tukey, 1977; Reckhow, 1980). Both the median and the
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interquartile range are functions of order statistics; that is, they
are based on an ordering of the data points from low to high values.
With this arrangement, the median is the middle value (i.e., at the
50% level), and the interquartile range is the difference between the

value at the 75% level and the value at the 25% level.

Box Plots

In addition to the tables and histograms, another useful graphical
technique for displaying batches of data is the box plot. This tech-
nique is based on order statistics (ordering the data points from low
to high value) and the plot itself is constructed from five values
from the (ordered) data set. These values are: 1) the median;
2) the minimum value; 3) the maximum value; 4) the 25 percentile
value; and 5) the 75 percentile value (see Figure 12).

Visual comparisons of box plots may be enhanced by the incorpora-
tion of the statistical significance of the median into the plot.
This is achieved by notching the box at a desired confidence level.
For example, if the 95% confidence level notches around two medians
do not overlap in the display, the medians are roughly significantly
different at the 95% confidence level (see McGill et al., 1978; and
Reckhow, 1980 for details on confidence 1limits and other aspects of
box-plot construction).

In addition to the above information, the box plots can also
include the following (Reckhow, 1980):

1. the interquartile range;

2. the sample range;
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3. an indication of skew (from a comparison of the symmetry

above and below the median); and

4. the size of the data set.

The box plots of the nutrient export coefficients from different
land uses can be compared in Figures 13a and b. Note that the nutrient
export medians and associated variability for each land use are
readily apparent.

The range of nutrient flux values from forested watersheds is
quite narrow and the median values for nitrogen and phosphorus are
significantly lower than for all other land uses except pasture. A
major factor determining the magnitude of phosphorus flux appears to
be total annual water flow. Areas of the country with high annual
rainfall (and a high percentage of storm events) tend to have high
stormwater flow and high phosphorus flux. Variations in the
magnitude of nitrogen export from undisturbed forests are more difficult
to interpret. Since nitrogen is often the most limiting nutrient
(for terrestrial plant growth), it is a more sensitive indicator of
biological activity than phosphorus. Because of this sensitivity,
readily observable relationships between nitrogen flux and climatic or
physiographic factors may be overshadowed by subtle local differences
in the supply and demand for nitrogen by growing vegetation.

Watersheds dominated by agricultural activities demonstrate
both significantly higher median nitrogen and phosphorus export and
wider export variability (with the exception of pastureland) than
undisturbed forested watersheds. The general trend within agricultural

watersheds indicates that as the soil surface is increasingly disturbed
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and "exposed to the elements," and increasing amounts of fertilizer
nutrients are added, the potential for soil erosion and nutrient
export increases. Accordingly, nutrient output from pastureland is
not significantly different than output from undisturbed forests.
This is primarily because pastures and grazing lands generally have
a continuous (if somewhat reduced) annual vegetative cover which 1)
reduces the kenetic energy of rainfall impact, and 2) incorporates
nitrogen and phosphorus as vegetative biomass.

In contrast to pastureland, row-cropped watersheds undergo
considerably more disturbance of the soil surface, and the soil is
left barren (fallow) for longer periods than for even the most severely
grazed watersheds. The inputs of nutrients from fertilizers are
also generally higher than those for pastures. In addition, the
planting of crops in rows promotes rapid water runoff (through channel-
ization) and high soil erosion, which cause large quantities of
nitrogen and phosphorus to be exported with sediments and particulate
matter. Because of these and other interacting factors, total
nutrient export from row crops is both high and extremely variable.

Nitrogen and phosphorus export from non row cropped watersheds is
not significantly different from either row cropped or pastured water-
sheds. However, the median and range of nutrient export is lower and
narrower, respectively, than nutrient export from row cropped water-
sheds. Although both fertilizer inputs and length of fallow periods
for non row crops are similar to conditions for row crops, plant
density (leaf-area index) is usually much higher for non row crops.
Therefore, channelization is not a major problem with this activity,

and stormwater flux and nutrient export are subsequently reduced.
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Feedlot and manure storage activities not only exhibit sig-
nificantly higher median nutrient export coefficients but in comparison
with other land uses, the range of nutrient export is also the most
variable. This is because the feedlot or manure storage area is
typically devoid of vegetation, the underlying soil is continuously
exposed and saturated with nutrients, and the nutrient pool from
animal wastes is often inexhaustible. The potential for nutrient
flux is therefore very high, especially during storm and snowmelt
events.

The box plots displaying nutrient export from mixed agricultural
watersheds are difficult to interpret since this general category
includes not only varying percentages of all agricultural activities
(i.e., pasture, feedlots, etc.), but often small proportions of forest
land (i.e., farm woodlots). Phosphorus export from mixed agricultural
watersheds is not significantly different from any of the above
described agricultural activities. This probably reflects the
"homogenized" nature of the various agricultural activities within the
watersheds and the lack of influence of any one of these activities
on phosphorus flux. Nitrogen flux, however, is significantly higher
than export from both pasture and non row crops. This is possibly
because of the high percentage of leguminous crops in these mixed
agricultural watersheds which could increase streamwater nitrate
concentrations, and hence, total nitrogen export.

The box plots representing urban land use activities reflect a
mixture of watershed conditions ranging from low density housing to

commercial and industrial sites. The low median export coefficients
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are representative of the large percentage of values derived from
suburban and residential watersheds. The wide range of the data
results from the few high values obtained from the industrial and

commercial sites.

Nutrient Export Variability: Cross Sectional Versus Longitudinal

The information presented thus far has demonstrated that a number
of interrelated factors contribute toward variability in nutrient
loads. Nutrient load variability contributes toward prediction
uncertainty. This uncertainty arises from both measurement and/or
estimation error, and natural variability. Natural variability includes
both cross-sectional variability, which in part represents various
conditions 1in the nutrient export coefficient watersheds (and can
be observed in the frequency distribution and box plots), and
longitudinal variability which reflects variability in export from a
single watershed over time.

To illustrate longitudinal variability, phosphorus export from
two similar adjacent corn-cropped watersheds, one with seven years
of identical fertilization rates and the other with five, were com-
bined to create the histogram in Figure 14. Since variation in
precipitation runoff is the probable key cause of longitudinal
variability, a histogram of water runoff rates was also developed and
presented in Figure 15. Note the high degree of similarity between
the two distributions.

In most situations, it is likely that longitudinal variability

is smaller in magnitude than cross-sectional variability, since the
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causative factors for longitudinal variability are relatively
homogeneous (in comparison to the causative and cumulative factors

for cross-sectional export coefficient variability). Unfortunately,
there is little multi-year data on nutrient export in single watersheds,
so when needed, the estimation of longitudinal nutrient export

variability is necessarily subjective.



CHAPTER VII
AN APPLICATION OF NUTRIENT EXPORT COEFFICIENTS

Introduction

Nutrient loading coefficients, which are associated with watershed
land uses, have potentially meaningful application for lake water
quality management planning by quantitative investigators. This is
because many in situ water quality studies are often technically,
financially and practically prohibitive to conduct. Planning for
proper lake quality management necessitates the prediction of the
impact of projected land use on Take quality. Projected or
anticipated land use changes, however, cannot be measured. Instead,
the information must be extrapolated from other similar watersheds,
possibly from the nutrient export coefficients compiled in the previous
chapters.

The prediction of quantitative water quality impacts associated
with land use changes requires the use of mathematical models. Models
have a wide scope of application. However, there are many important
restrictions, requirements and tasks associated with model application.
One of the most important tasks that the analyst performs in applying
modeling methodology to the planning process is selecting the nutrient
export coefficients.

Two things must be considered for selecting nutrient export

coefficients for effective planning. The first is based on the

140
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premise that planning decisions must be based upon reliable information.
In the context of this study, the selected export coefficients must
carefully match those characteristics of the application lake watershed.
Not only must the analyst have comprehensive knowledge of the appli-
cation lake watershed but he/she must also be aware of those conditions
which influence the candidate export coefficients in the literature.
This implies that either experience in the application of loading
estimates, and/or a thorough knowledge of the ecological mechanisms
described in the previous chapters, is a valuable attribute.
The second consideration vital to the planning process is that
the reliability of the prediction be estimated. Water quality
modelers determine prediction reliability by incorporating uncertainty
analysis into the modeling methodology. Assignment of "high," "most
likely," and "Tow" export coefficients represents the uncertainty that
the analyst has in his/her estimate of nutrient loading. (The high and
Tow values selected for an application lake watershed are often not
as high or low as some of the candidate export coefficients presented
in the previous tables. This is because conditions in the application
watershed are more certain and may not be equivalent to the extreme
conditions that are presented by the range of candidate coefficients.)
According to Reckhow et al. (1980), loading uncertainty may be
caused by either variability or bias. "Variability results from
1) natural fluctuations in a characteristic (i.e., streamflow or
concentration) or from 2) uncertainty inherent in a statistic
summarizing a set of data. Bias results from a number of causes, all

associated with the fact that the estimate may not be representative



142

of the characteristics that it was selected to estimate."

He further argues that while "modelers and biologists prefer
objective measures of uncertainty, such as the calculated variability
in a data set, both the 1) limited available data, and the 2) obviously
unmeasurable nature of future projections favor (or necessitates)
subjective estimates. Given this subjectivity, and the inexperience
of most planners and analysts with nutrient loading estimation, there

may be uncertainty in the uncertainty estimates."

Application Lake Watershed

To demonstrate to the reader the usefulness of the compiled
nutrient export coefficients and their inherent temporal and spatial
variability and subjective application, a hypothetical watershed has
been constructed with a wide cross-section of land uses and soil/
substrate types (Figure 16). The 5900 ha watershed consists of
60.1% agriculture, 34% forest and 5.9% urban land uses, all of which
drains into 1475 ha Beau Lac from a number of large and small
tributaries (Table 11). Soil types range from sandy loams in the
upper portions of the watershed to silt and clay loams in the "lowlands"
and sand-sandy loams surrounding the lake.

Forest land use consists of mixed deciduous hardwoods and pine.
The vegetation is well established secondary to tertiary growth
between 30-100 years old and uniformly distributed throughout the
watershed.

Agricultural land is primarily in corn (65%) with non row

crops (25%) and some pasture-grazing activities (10%) also present.
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Both conventional and soil conservation practices are equally utilized
and evenly distributed throughout the basin. Al1 cropland except
wheat is fallow during the months of November through April, and
feedlot activities are less than 1% of total agricultural activities.
Urban 1and use is composed of medium density, full-time
residential housing (64.3%) on the eastern and northern shores of
the lake. Commercial activities (21.4%) consist of shopping malls,
parking lots and other related uses with high impervious surfaces.
Industry (14.3%) is comprised of 1ight manufacturing (tubing

fabricators, electrical components) and warehouses.

Table 11: Land Use Areas in the Beau Lac Watershed

Land Use Area (ha) Percent of Total
Forest 2000 33.9
Row Crops

corn 2280 38.6
Non-Row Crops

wheat 350 5.9

hay 350 5.9

alfalfa 200 3.4
Pasture

continuous 100 1.7

rotational 250 4.2
Feedlot 20 .3
Urban

residential 225 3.8

commercial 75 1.3

industrial 50 .8

TOTAL 5900 100.1
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Total population within the urbanized area is 1820. A11 homes,
businesses and industries are sewered and connected to a sewage treatment
facility which uses a trickling filter process. Sewage effluent is
directed to a major tributary leading into the lake. Because of the
high nutrient load, the lake periodically experiences nuisance blooms
of algae. On the advice of a consulting firm, the town is considering
the addition of phosphate removal capability (with a 90% efficiency
rate) to correct the situation. Of major consideration to the city
council is how effective this measure will be in reducing total

nutrient loads.

Climatic Variability

Climate (i.e., annual variation in precipitation runoff) is often
a major determinant of longitudinal variability of nutrient loads.
Longitudinal variability is demonstrated in the Beau Lac Watershed
through application of nutrient loading estimates which will reflect
two years of rainfall extremes. In other words, "high," "most likely,"
and "Tow" nutrient loading estimates for the first year will reflect
the range of nutrient loads predicted for below normal annual
precipitation amounts. The range of loading estimates predicted for
the second year will reflect above normal annual precipitation
amounts. For this example, it is assumed that the Beau Lac Watershed
is within the southern Great Lakes Basin and exhibits similar climatic
conditions.

To arrive at a best guess of typical rainfall-runoff-nutrient

load relationships for this geographic area, a ratio of dry to wet



146

year estimates determined by Lake and Morrison (1977) for three sub-
watersheds in Ohio's Maumee River Basin will be applied to the
application watershed. From their two-year study, a 60% increase

in rainfall from 70 cm (dry year) to 112 cm (wet year) increased
water runoff, total phosphorus and nitrogen export by 2.5, 4.7 and
5.7 times, respectively.

In order to apply Lake and Morrison's water runoff-nutrient
export relationship to the Beau Lac Watershed, "high," "most likely,"
and "low" nitrogen and phosphorus loading estimates will first be
(subjectively) determined for the dry year using coefficients from
the appropriate land use tables. Nutrient loading estimates for
the wet year will be determined by multiplication of dry year
estimates by the approximate increase in nutrient load observed
by Lake and Morrison between dry and wet years. For example, wet
year phosphorus load = “4.7 times dry year phosphorus load.

The difference in runoff between the two years is not only
reflected in the magnitude of the unit area nutrient export but can

also be observed in the lake's limnological characteristics (Table 12).

Selection of Nutrient Loading Coefficients
The location of land use activities relative to tributaries
and lakes is not often considered in nutrient budgeting studies.
However, the spatial distribution of land uses is likely to have an
impact on stream quality.
Uttormark et al. (1974) indicated that agricultural lands

immediately bordering a lake or stream are likely to contribute much
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Table 12: Beau Lac Summary Statistics

Variable Estimate
dry year wet year
A, = Lake surface area 14.75 10%n2 14.75 105
z = Mean depth 6.5m 7.2m
V = Lake volume 95.88 10°m° 106.20 10%n°
Q = Total inflow volume 10.14 ]07m3/yr 22.33 ]07m3/yr
T = Hydraulic detention time .95 yr .48 yr
qg = Areal water 1load 6.85 m/yr 15.11 m/yr

greater quantities of nutrients in runoff to the lake than are more
distant lands. Uptake of soluble nutrients and filtering of sediment
fractions by intercepting vegetation are often cited as phenomena
responsible for reducing the total loads from more removed, non-
riparian habitat (see Chapter 4).

In addition, most of the agricultural nutrient loading estimates
for specific agricultural activities (i.e., row crops), were determined
from small runoff plots. Small plots are likely to yield high export
values for certain situations. These values will consist of both
high solution fractions and high sediment fractions and will tend to
be higher than those reported for larger watersheds (several hectares
in size). Multiplication of each agricultural activity by the appro-
priate nutrient export coefficient can grossly over estimate total
nutrient export. Thus, small watershed export coefficients are most

applicable to agricultural activities adjacent to a surface water
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body (tributary streams or the lake).

While admittedly subjective, it is assumed that only 25% of the
total agricultural activities in the watershed are adjacent (i.e.,
within 300 m) to either the lake itself or one of its tributaries.
Accordingly, loading coefficients for this fraction of agricultural
land will be derived from those tables describing specific activities
(i.e., row crops) while the remaining 75% will be extrapolated from
the tables compiled for mixed agricultural watersheds. In contrast,
nutrient export coefficients for urban activities will be unmodified
since 100% of this land use is adjacent to either the lake or tributaries.

The per capita phosphorus load from the sewage treatment facility
was estimated from data compiled by Reckhow et al. (1980). They
estimate per capita loads at about 1.1 kg phosphorus/capita/yr.

For a population of 1820 full-time residents, this is approximately
2000 kg P/yr. For simplicity, other sources of nutrient loading
(i.e., precipitation, groundwater, and lake sediments) will not be

included.

Results
"High," "most 1ikely" and "low" nutrient export coefficients
selected for each land use are presented for both wet and dry years in
Tables 13a and 13b. Total overland nutrient export to the lake is
presented in Tables 14a and 14b. As can be observed from the tables,
the range of both the unit area and total mass loads are relatively
narrow within the same year. Estimates between years are significantly

different, however, reflecting the initial assumptions made concerning
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Table 13a: Phosphorus Export Coefficients for High and Low Precipita-
tion Years. (kg/ha/yr)
Area High Mid Low

Land Use (ha) (a) (b)* (a) (b) (a) (b)
Forest 2000. .06 .35 .04 .20 .02 .09
Row Crops

corn 590. 1.1 5.0 .5 2.5 36 1.7
Non-Row Crops

wheat 87.5 .7 3.5 .5 2.5 .3 1.5

hay 87.5 .53 2.5 .3 1.6 .2 .9

alfalfa 50. .6 2.8 .4 1.9 .3 1.2
Pasture

continuous 25 9 4.0 .7 3.5 .6 2.8

rotational 62.5 3 1.4 .2 1.0 .13 .6
Feedlot 5. 63.0 300.0 32. 150.0 10.9 50.0
Mixed agriculture 2662.5 .64 3.0 .34 1.6 .19 .9
Urban

residential 225 .4 2.0 .21 1.0 1 .5

commercial 75 .9 4.0 .5 2.5 .21 1.0

industrial 50 1.1 5.0 .64 3.0 .32 1.5
*a = dry precipitation year per unit area loading rate

b

wet precipitation year per unit area loading rate
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Table 13b: Nitrogen Export Coefficients for High and Low Precipitation
Years. (kg/ha/yr)

Area High Mid Low

Land Use (ha) (a) (b)* (a) (b) (a) (b)
Forest 2000 .63 3.6 .50 2.8 .35 2.0
Row Crops

corn 590 5.25 30.0 2.6 15.0 1.1 6.0
Non-Row Crops

wheat 87.5 1.75 10.0 1.05 6.0 .53 3.0

hay 87.5 .79 4.5 .62 3.5 .35 2.0

alfalfa 50 2.45 14.0 1.14 6.5 .53 3.0
Pasture

continuous 25 2.10 12.0 1.4 8.0 .7 4.0

rotational 62.5 .9 5.0 .61 3.5 .44 2.5
Feedlot 5. 175.0 1000.0 87.5 500.0 43.75 250.0
Mixed agriculture 2662.5 4.4 25.0 3.5 20.0 1.8 10.0
Urban

residential 225 1.4 8.0 .79 4.5 44 2.5

commercial 75 2.1 12.0 1.4 8.0 .7 4.0

industrial 50 2.3 13.0 1.6 9.0 .9 5.0
*a = dry precipitation year per unit area loading rate

b

wet precipitation year per unit area loading rate
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Table 14a: Total Phosphorus Export for High and Low Precipitation Years

(kg/yr)
High Mid Low

Land Use (a) (b)* (a) (b) (a) (b)
Forest 120.0 700.0 80.0 400.0 40.0 180.0
Row Crops

corn 649.0 2950.0 295.0 1475.0 212.4 1003.0
Non-Row Crops

wheat 61.3 306.3 43.8 218.8 26.3 131.3

hay 46.4 218.8 26.3 140.0 17.5 78.8

alfalfa 30.0 140.0 20.0 95.0 15.0 60.0
Pasture

continuous 22.5 100.0 17.5 87.5 15.0 70.0

rotational 18.8 87.5 12.5 62.5 8.1 37.5
Feedlot 315.0 1500.0 160.0 750.0 53.0 250.0
Mixed Agricultural 1704.0 7987.5 905.3 4260.0 505.9 2396.3
Urban

residential 90.0 450.0 47.3 225.0 24.8 112.5

commercial 67.5 300.0 37.5 187.5 15.8 75.0

industrial 55.0 250.0 32.0 150.0 16.0 75.0
TOTAL 3179.5 14990.1 1677.2 8051.3 949.8 4669.4
Average Phosphorus
Loading Rate
(kg/ha/yr) .54 2.54 .28 1.36 .16 .76
*a = dry precipitation year per unit area loading rate

b = wet precipitation year per unit area loading rate
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Table 14b: Total Nitrogen Export for High and Low Precipitation Years.

(kg/yr)
High Mid Low

Land Use (a) (b)* (a) (b) (a) (b)
Forest 1260.0 7200.0 1000.0 5600.0 700.0 4000.0
Row Crops

corn 3097.5 17700.0 1534.0 8850.0 649.0 3540.0
Non-Row Crops

wheat 153.1 870.0 91.9 525.0 49.0 262.5

hay 69.1 393.8 54.3 306.0 30.6 175.0

alfalfa 122.5 700.0 57.0 325.0 36.5 150.0
Pasture

continuous 52.5 300.0 35.0 200.0 17.5 100.0

rotational 56.3 312.5 38.1 218.8 27.5 156.3
Feedlot 875.0 5000.0 437.5 2500.0 218.8 1250.0
Mi xed
Agricultural 11715.0 66562.5 9318.8 53250.0 4792.5 26625.0
Urban

residential 315.0 1800.0 177.8 1012.5 99.0 52.5

commercial 157.5 900.0 105.0 600.0 52.5 300.0

industrial 115.0 650.0 80.0 450.0 45.0 250.0
TOTAL 17988.5 102388.8 12929.4 73837.6 6708.8 37371.3
Average
Nitrogen
Loading Rate
(kg/ha/yr) 3.05 17.35 2.19 12.51 1.14 6.33
*a = dry precipitation year per unit area loading rate

b = wet precipitation year per unit area loading rate
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water runoff-nutrient load relationships.

The average N:P mass load ratio of 7.5 for both years indicates
potential nitrogen limitation within the lake. Phosphorus, however, is
the more manageable of the two nutrients and reduction of its input
will eventually cause phosphorus limitation and control of nuisance
conditions.

The most easily controlled phosphorus source in the application
watershed is from the sewage treatment plant. From the information
presented in Table 15a, inputs from sewage treatment effluent range
from 40-70% of the total load for dry or low precipitation years
and 12-30% for wet years.

To determine the impact of both total (non point source and
sewage treatment plant) and reduced (non point source and 90% P
removal) loads on the lake, a general loading reference, such as the
criteria proposed by Vollenweider (1975), was used. He defined
maximum acceptable specific loadings as levels which would result in
a steady-state in-lake phosphorus concentration of 10 ug/1. In-lake
values of twice that amount, 20 ug/1, were judged to be excessive
or dangerous. Although somewhat arbitrary, and negligent of other
causative factors such as alkalinity (King, 1970, 1972, 1979), the
values of 10 and 20 ug-P/1 appear to be reasonable and are supported
by general limnological experience (Vollenweider, 1976). One must be
aware, however, that certain limnological conditions can occur which
cause exceptions to the model and proposed acceptable-excessive
classification system.

Using subscripts to indicate in-lake concentrations associated
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with given loading rates, "maximum acceptable" and "excessive"
specific loadings are given by (Vollenweider, 1975):
Lyg = 0.01 (10 + qs) (12a)
Log = 0.02 (10 + qs) (12b)

For comparison, both total and reduced annual phosphorus mass
loads for wet and dry years are expressed as a loading per unit lake
surface area per year and are presented in Table 15b. These areal
loading estimates are then compared to Vollenweider's "acceptable-
excessive" loading rates using the Beau Lac summary statistics in
Table 12 and graphically presented in Figure 17.

From the diagram in Figure 17, the wide variation in phosphorus
loading resulting from rainfall differences is readily apparent.

"Most likely" wet year (total and reduced) phosphorus load estimates
are well above excessive loading limits while dry year estimates
straddle acceptable loading criteria for the in situ limnological
conditions.

Phosphorus reduction for dry year conditions necessitates
reclassification of the lake from meso- to oligotrophic. In contrast,
the trophic status of "most likely" wet year loads remains unchanged.
If it is assumed that normal (precipitation) year values fall somewhere
between these two extremes, phosphorus removal strategies may well
reduce nuisance algae conditions.

In concluding this section, it should be apparent that nutrient
load estimation and subsequent lake response prediction depends heavily
on the proper selection of nutrient export coefficients. This selection

process must involve a careful match between those export coefficients
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Table 15: Total Phosphorus Mass Loading from Nonpoint Source (NPS),
Sewage Treatment Plant (STP) and with 90% Phosphorus Removal

a) kg phosphorus/watershed/yr
Dry Year Wet Year
1ow mid high 1ow mid high

NPS 950 1677 3189 4469 8051 14,990
STP 2000 2000 2000 2000 2000 2,000
Total 2950 3677 5189 6569 10051 16,990
with 90% removal 1150 1877 3389 4669 8251 15,190
(b) g phosphorus/mz lake surface

NPS .06 1 .22 .30 .55 1.02
Total (NPS + STP) .20 .25 .35 .44 .68 1.15
with 90% removal .08 .13 .23 .32 .56 1.03
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reported in the tables with both watershed surface conditions (i.e.,
land use) and climate (i.e., annual rainfall).

The above example demonstrates that a eutrophication control
strategy relying on point source reduction alone will result in mixed
success. If rainfall remains unseasonably high or if high rainfall
intensity causes intermittent "plugs" of diffuse nutrients to enter
the lake, the end result may be either continuous or periodic nuisance

algae blooms.



157

Je7 neag 404 sajewt}sa buipeo| snaoydsoyd ybLy pue A(ayL| 3sow Mo /| aunbLj

K1oy1|
ybiy jsow Mo|
T ' .
a1ydosjob1/p 11"
(109 K1p) 378V 14300V .
(4084 jom) 378V 1d 309V )
(4pek £1p) JA1SS30X 3

(1084 fom) JAISSIOX3

a1ydosyny

.

Jh-owy b
ONIQVOT SNHOHdSOHd

1
—m—
-
—

—_
N



CHAPTER VIII
SUMMARY AND CONCLUSIONS

The major focus of this thesis is non point nutrient flux from
quickflow (stornwater flow), and the ecological mechanisms within
a watershed which influence nutrient variability. Because many of
these mechanisms and watershed perturbations are land use specific,
the hypothesis, which is central to this study, is that a relationship
exists between land use and nutrient flux. To properly characterize
the variable nature of diffuse nutrient export, and test this
hypothesis:

1. elements of sampling design theory were described,

2. literature studies conforming to the described sampling
design criteria were screened and compiled according to
land use,

3. biogeochemical factors influencing nutrient flux within
each land use were examined, and

4. compiled nutrient coefficients were applied to a

hypothetical watershed and the results interpreted.

Sampling Design

The major components of sampling design best describing both
temporal and spatial variability of quickflow and diffuse nutrient

flux include:

158
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Parameters sampled:

Nitrogen and phosphorus are the two nutrients most commonly
accepted as affecting the lake eutrophication process. Of
these two nutrients, phosphorus is generally the most
limiting factor for plant growth, and most effectively con-
trolled using existing engineering technology and land use
management.

Both nitrogen and phosphorus are collectable in basically

two forms: particulate and solution. The soluble inorganic
forms are generally readily available for plant utilization.
However, there is a high degree of uncertainty concerning
what (or when) fractions of particulate inorganic and organic
forms are biologically available. Because of the unpredicta-
bility of bioavailability, the collection of total (soluble
and particulate) nutrient fractions is advised.

Sampling frequency:

The frequency of sampling nutrient flux associated with
quickflow is a function of the 1) hydroldgic response of the
watershed; 2) effect on the precision of the nutrient

budget estimate, and 3) associated cost of sampling. Often
sampling frequency is based on a random design. Uncertainty
can sometimes be reduced and accuracy and precision increased
if a stratified random sampling program is employed. The
underlying assumption is that the population can be more
accurately represented as the sum of sub-populations. The

two strata associated with hyrdologic data collection are
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1) rainfall and snowmelt induced high flow events, and 2)
Tow flow (baseflow) conditions. If sample size is increased
in the high flow stratum, a more precise and accurate estimate
of the population average can be obtained. According to
Reckhow (1978), more samples should be taken in a stratum
if the stratum is: 1) more variable, 2) larger, and/or
3) less costly to sample.
Sample collection and flux estimation methods:
a) Concentration samples:
Concentration samples are determined by a variety of
field collection techniques. Manual (grab) methods
are easiest but may not be efficient because storm events
which transport a high percentage of the total load are
often missed. To correct this problem, automatic samplers
should be used. The collection process can be implemented
at either equal time intervals or on a flow-weighted
basis. Flow-weighted sampling often yields a more precise
concentration estimate because high concentrations associated
with first flush can be more equitably represented than
sampling at equal time intervals.
b) Flow estimation:
Flow estimation is determined by one of three methods:
1) continuous flow measurement (i.e., USGS stream
gauging stations), 2) instantaneous flow measurement at
time of concentration sampling, and 3) an annual flow

regression equation developed by the USGS. If USGS
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stations are not available, the third alternative is
probably the most precise for a given cost.
c) Flux estimation:
To estimate flux, a number of mathematical techniques
are available. Each is appropriate under certain
conditions. The technique chosen depends upon the
intended use, fit of the data to the equations, and
simplicity of the mathematics.
Temporal extent of sampling:
The temporal extent of sampling depends on long-range
variability. Seasonal periods of high rainfall or snowmelt
runoff creates greater variance in nutrient concentrations
and loads than do low runoff or baseflow periods. For a
given confidence level (precision) and a margin of error
(accuracy), the temporal extent of sampling must include
these high and low runoff periods. Therefore, a more infor-
mative approach is to sample and report data in yearly
increments.
Sampling location and watershed design:
The sampling location is determined by the desired (site-
specific) representativeness of the sample and research
objective. If the objective is to determine nutrient export
from a particular land use, then the watershed under study

must be exclusive of other land use types.
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Comparison of Nutrient Export Coefficients from Differing Land Uses

Local climate and conditions within the watershed contribute to

longitudinal and cross sectional variability, and are major influences

of the "characteristics and comparative magnitude" of nutrient flux

in quickflow and tributary outflow. These influences are analysed

and categorized within the context of three land uses: forest,

agricultural and urban.

1.

Forest watersheds

In forested systems, the median nutrient export values are

significantly lower than for all other land uses except

pasture. In addition, the nutrient export variability is

small, making it difficult to specify any one factor as

the determinant of loading in a particular watershed. Much

of the variation among coefficients is probably within the

range of experimental or sampling error. To determine if

cause-effect relationships existed between certain physio-

graphic and climatic characteristics, the following factors

are examined:

a)

b)

Geology:

While the hypothesis of geologic influences on water
quality make theoretical sense (e.g., high phosphorus
apatite rocks contribute to high phosphorus loads),

little information on specific effects is currently avail-
able to verify this phenomenon.

Vegetation type:

Certain vegetation types cause reduced water flow (e.g.,

pines have high evapotranspiration rates and interception
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e)
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capacity) and increased nutrient concentrations (i.e.,
nitrogen fixers). Both can reduce or increase nutrient
flux.

Ecological succession:

Three popular hypotheses currently exist linking ecological
succession with nutrient accumulation and output. However,
the collected data contains a mixture of seral stages and
many other causative factors, which complicate any con-
clusive argument.

Climate:

A major factor influencing phosphorus flux appears to

be climate. Areas of the country that exhibit warm
climates with high rainfall (such as the pacific northwest
and the southeastern piedmont regions) are also associated
with high productivity, high runoff and high phosphorus
export.

Disturbed forests:

Disturbances within forested watersheds produce increased
nutrient flux. Of the three types of disturbances
examined, timber harvest operations appear to produce the

highest nutrient export.

Agricultural watersheds

Agricultural watersheds are shown to have both significantly

higher median nutrient export and wider export variability

(with the exception of pastureland) than undisturbed forested

watersheds. In general, as the soil surface is increasingly
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disturbed and "exposed to the elements," and increasing

amounts of fertilizer nutrients are added, the potential for

soil erosion and nutrient export increases. Major factors

and activities which influence nutrient flux include soil

type, management practices, crop type, pasture and grazing

operations, animal feedlots and manure storage facilities.

a) Soils and management practices

i) Soils
Because cropland soils are left fallow for long time
periods (i.e., late fall through early spring), the
potential for erosion and nutrient flux is high. Of
the many soil types, clays and organic soils contri-
bute significantly to high nutrient yields from
quickflow.
ii) Fertilizers
The type of fertilizer is not as important to nutrient
flux as the time of application. If fertilizers are
applied during snowmelt or high rainfall/runoff
periods, nutrient export can be high. Excessive
fertilization (applied above the recommended rate) will
cause increases in nutrient flux. Under-fertilization
can also cause similar increases (from soil erosion)
since the crop canopy is often reduced which exposes
the soil surface for longer time periods.
iii) Tillage practices

Conventional tillage methods, in which the ground
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is left fallow during non-growing periods and crop
residues are removed at harvest, cause soil erosion
and high nutrient export. Conservation tillage methods,
such as no-till, contour planting or terracing, signifi-
cantly reduce water, soil and nutrient export.
Crop type
Nitrogen and phosphorus export from row and non row cropped
watersheds is significantly higher than nutrient export
from forested watersheds and significantly lower than
export from animal feedlot and manure storage facilities.
However, the median and range of nutrient export from
non row cropped watersheds is lower and narrower than
export from row cropped watersheds. Although management
practices for the two crop types are often similar,
plant density is usually much higher for non row crops.
This reduces channelization, water loss, soil erosion and
nutrient export.
Pasture and grazing land
Nutrient output from pastureland is not significantly
different than output from undisturbed forests. This is
because the vegetative cover retains water, soil and
nutrients. Of the two general management practices--
continuous and rotational--the former will result in
higher nutrient export. This occurs primarily because
soil compaction and waste loads are increased and

protective vegetation is decreased. Fertilization of
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pastures can also increase nutrient export.

d) Feedlot and manure storage
The nutrient export coefficients for feedlot and manure
storage facilities are significantly higher and exhibit
the greatest variability of all land use activities. While
conditions are highly variable, the feedlot or manure
storage area is typically devoid of vegetation, the under-
lying soil is saturated with nutrients, and the nutrient
pool from animal wastes is often inexhaustible. High
nutrient export can be expected if the, 1) percentage of
paved surfaces is high, 2) roof area/feedlot area ratio
is low, 3) animal density is high, and 4) no detention
basin is present.

e) Mixed agricultural activities
This general category includes varying percentages of all
agricultural activities including some forest land. As
a result, phosphorus export from this mixed land use is
not significantly different from any of the above
described agricultural activities (except feedlots).
Nitrogen flux, however, is significantly higher than both
export from both pasture and non row crops, possibly
because of the greater occurance of nitrogen fixing crops
in these mixed watersheds.

3. Urban watersheds
Nutrient export from urban watersheds is not significantly

different than export from most agricultural watersheds.
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Variations in nutrient export, however, are also large.

This results from two basic considerations, a) hydraulic

factors which influence runoff volume, and b) land use/

cover activities which influence concentration.

a) Hydraulic Factors
Major hydraulic factors include the percentage of
impervious cover and nature of the drainage system (i.e.,
slope and detention basins). As the percentage of
impervious surfaces increase, infiltration capacity is
reduced, runoff and surface scour is increased, and nutrient
flux is also increased. Therefore, commercial areas
tend to have higher loads than residential areas.

b) Land Use/Cover Activities
Many local sources or activities increase stormwater
nutrient concentrations. These include i) atmospheric
emissions, ii) street surface residues (i.e., ice control
chemicals, pavement materials, dirt), iii) erosion from
construction sites, and iv) non-event, storm sewer
contaminants (i.e., industrial spills, illegal discharges

of waste waters).

Application of Nutrient Export Coefficients

The nutrient loading coefficients have meaningful application in
the water quality planning arena. Planning implies the prediction of
future impacts of land use on water quality and requires the use of

mathematical models. Projected or anticipated land use changes cannot
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be measured. Therefore, the information necessary for model inputs
must be extrapolated from other similar watersheds such as the nutrient
export coefficients compiled in the previous tables.

Two considerations are necessary for selecting nutrient export
coefficients. The first is that the selected coefficients must
carefully match those characteristics of the application lake watershed.
The second consideration is that the reliability (or uncertainty) of the
prediction be estimated. Assignment of "high," "most 1ikely" and "Tow"
export coefficients represents the uncertainty that the analyst has in
the nutrient loading estimate. "While modelers and biologists prefer
objective measures of uncertainty, both the limited available data, and
the unmeasurable nature of future projections necessitates subjective
estimates" (Reckhow et al., 1980).

To demonstrate the transferability of the compiled nutrient
loading coefficients and subjectivity associated with the application
process, a hypothetical lake watershed is constructed with a wide
range of land uses and two years of annual rainfall. The resulting lake
trophic status and lake rehabilitation strategy success are dependent
not only on the selection of "high," "most 1ikely" and "low" annual
nutrient flux estimates, but also on the year (wet or dry) the estimates
were based on. Considering the uncertainty associated with this
example, and the previous record of improper use of literature export
coefficients, two important conclusions are apparent:

1. For lake management purposes, the use of nutrient loading

estimates for predicting present, and future water quality

conditions with changing land use, is highly subjective.
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To reduce application uncertainty, the user or analyst of
these coefficients must be familiar with the biogeochemical
processes which influence nutrient flux. Only after care-
ful consideration of watershed and climatic conditions should
any attempt be made to match these conditions with literature
derived export coefficients.

As watersheds become increasingly removed from natural
undisturbed conditions and undergo increasing human
perturbations, the ecological mechanisms controlling

nutrient flux become more complex and less understood.

Qur ability to accurately predict present or future inter-
actions within the drainage basin and resulting lake
response, likewise becomes less precise and more uncertain.
Given these circumstances, there is a need to acknowledge

our inability to "solve" all water quality planning problems
with "inflated" confidence. A real effort must also be

made to acquaint the public with these limitations so as

not to jeopardize our future creditability as water quality

planners.
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