MSU RETURNING MATERIALS: Place in book drop to remove this checkout from LIBRARIES . “ your record. FINES W1” be charged if book is , returned after the date MAGiCE stamped below. JAN 11391999 OJ .‘ 1.. fr: 13"“ "‘1‘:!.‘ I if“? P #7:“. ”Jug. m 85-. "i D‘&. inr'LIE w J I). .. NAVY BEAN PRODUCTION SYSTEMS IN MICHIGAN BY Ghassan Al-Soboh A THESIS Submitted to Michigan State Univeristy in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Agricultural Engineering 1983 COPYRIGHT BY GHASSAN AL-SOBOH 1983 ABSTRACT NAVY BEAN PRODUCTION SYSTEM IN MICHIGAN BY Ghassan Al Soboh With the development of the new high-yielding upright navy bean variety (Swan Valley), it was believed that its productivity could be further improved by using different production management systems. Two navy bean varieties, Swan Valley (upright) and Fleetwood (standard), were tested to determine the yields and header losses under two different row spacings (70 cm and 35 cm) and two harvesting methods (conventional and direct). A mixed-integer linear programming (MILP) model was developed to come up with the appropriate decisions as to which navy bean variety to plant (Swan Valley or Fleetwood), planting system to follow (wide rows or narrow rows), harvesting method to apply (direct or conventional) and machinery set to use in the production. This study also considered the impact of having two mixed crop systems (navy bean-corn and navy bean-sugar beet) on the farmer's profit in Michigan. Mixed-integer linear programming models were developed to find the most profitable crop to produce under the fluctuation of the Ghassan A1 Soboh crops' market prices, the profit to be made under different percentages of a mixed—crop system, and the machinery set to contribute in each production system. The model results indicated that the upright navy bean variety, Swan Valley, planted in 70 cm rows spacing and harvested directly was more profitable than corn. While sugar beets were found to be the most profitable crop. Approved . Maj Pro essor a.» . Approved I .1441 @cg/ Department Chairman ACKNOWLEDGMENTS I thank my God who gave me the health and the power to accomplish this work successfully. I would like to thank Nuha, My loving wife, for her encouragement, support and patience during my study. I also would like to thank: S Ajit Srivastava, my academic advisor who put me on the right way to the right target, for providing encouragement, professional guidance, and his editorial help during writing this thesis. 5 Tom Burkhardt, who served on my guidance committee, for his willingness to take time to help clarify and edit this thesis. 5 James Kelly, who served on my guidance committee, for his willingness to take time to clarify the nature of the agricultural production in Michigan, and his effort to improve this thesis. 5 Al Rotz, for his help in providing the information about the machinery cost model. 5 Roy Black, for his comments on the linear programming model. LIST OF LIST OF LIST OF CHAPTER 1 TABLE OF CONTENTS TABLES O O O O O O O O O O O O O O O FIGURES O O O O O O O O O O O O O O O SYMBOLS O O O O O O O O O O O O O O 0 INTRODUCTION . . . . . . . . . . . . 1.1 Basis of the Problem . . . . . . 1.2 Literature Review . . . . . . . 1.2-1 Harvesting Practice-- Developments . . . . . 1. 2- 2 Machinery Selection Model Approaches . . . . . . . 1.3 Objectives . . . . . . . . . . . METHODOLWY O O O O O O O O O O O O 2.1 A Mixed- -Integer Linear Program- mine A roach (MILP) . . . . . 2.2 Assumptions . . . . . . 2 2—1 Tillage System . . . . . Weed Control . . . . 2- 2 2 3 Fertilizer Applications 2-4 Planting Systems . . . 2 5 2 6 System of Cropping . . . Insect and Disease Contro 2- 7 Harvesting Methods . . . all-0.0.0.00 2. ATA COLLECTION . . . . . . 1 Navy Bean Production . . 2 Corn Production . . . . 3 Sugar Beet Prdduction . 4 . 5 . Field Machi inery . . . Machiner Cost Model . 3.5- 1 Mogel Description 3. 5-2 Model Results . . 3.6 Power Requirements . . . 3.7 Prediétin the Number of L'.’ U’ m chi-0.0000000 ol—IooooooOoO O m. o O o O o 0 o 0 Days for F1eld Work . . AVY BEAN PRODUCTION MODEL . .1 Model Formulation . . . .2 Model Adjustments . . . .3 Model Results . . . . . .4 Sensitiv1ty Analysis . . . 1.4-1 Shadow Prices and Slack 4.4-2 The Cost of Forcing Nonoptimal Activities Into the Optimal Solution . . . 4.4-3 Range of Optimality . . . ii viii ix 9-5—5 101 103 CHAPTER 5 NAVY BEAN-CORN PRODUCTION MODEL 5.1 5.2 5.3 5. 4 5.5 6.5 TABLE OF CONTENTS (continued) Model Adjustments . . . . MOdel Results . . . . . . Sensitivity Analysis . . 514- 1 Shadow Prices and Slack 5.4-2 The Cost of Forcing in Nonoptimal Solution . . . 5.4-3 Range of Optimality . . . Testing Different Percentages of Model Formulation . . . . . S Bean and Corn in the Navy Bean- Cdrn Production Model . . . . . . - A Corn Production System . . 5 2 Model Adjustment . . . . . 5-3 Model Results . . . . . . 5 4 A 50 Percent Bean- 50 Percent Corn Production System . . . . . . . . . . 5.5-5 Model Results . .-. . . . U‘U'IU‘ coo 5.5-6 A 25 Percent Bean- 75 Percent Corn Production System . . 5.4-7 M0681 RESUltS o o o o o o BEANS - SUGAR BEET PRODUCTION MODEL Model Formulation . . . . . . Model Adjustment . . . . . . . Model Results . . . . . . . . SensitivityAnalysis . . . . . 6.4-1 Shadow Pr ces and Slacks . 6.4-2 The Cost of Forcing Nonoptima Activities into Optimal Solution . . . . . . . . 6. 4-3 Range of Optimality . . . Testing Different Percentages of Navy Beans and Sugar Beet in the Navy Bean-Sugar Beet Product1on "Odel- . C O C O C O O C O 6. 5- 1 A 75 Percent Sugar Beet - 25 Percent Navy Bean Production "Odel O O O O O 6.5- 2 Model Adjustment . . 6.5-4 A 50 Percent Sugar Beet - 50 Percent Navy Bean Production Model . . . . . . . iii Percent Bean- -25 Percent 1 106 106 122 123 123 123 125 126 129 129 132 133 133 138 138 140 143 143 160 162 162 162 166 168 171 171 175 175 177 TABLE OF CONTENTS (continued) CHAPTER 5-5 Model Results . . . . . . . . . . 181 5-6 A 25 Percent Sugar Beet - 75 Percent Navy Bean Production Model . . . . . . . . . . . . . . 181 6.5-6 Model Results . . . . . . . . . . 183 6. 6. 7 SUMMARY AND CONCLUSIONS . . . . . . . . . . . 186 7 O 1 summar I O O O O O O O O O O O O O O O 18 6 7.2 Conclusions . . . . . . . . . . . . . . 191 7.2-178cope and Limitation . . . . . . 193 7.2-2 Future Research Needs . . . . . . 194 REFERENCES 0 O O O O O O O O O O O O O O O O O O O O 195 APPENDIX A Mixed Integer Linear Programming Models For Solving Navy Bean Production Systems in Michigan . . . . . . . . . . A-1 APPENDIX B The Computer Results of the Mixed Integer Linear Programming Models . . . . . . . B-1 APPENDIX C Linear Programming Package by Harsh and BlaCk (1975) o o o o o o o o o o o 0 C-1 APPENDIX D Machinery Cost Computer Program by ROtZ (1981) o o o o o o o o o o o o o o 0-1 iv Table 2-1 2-3 2-4 2-5 3-10 3-11 3-12 3-13 3-14 LI ST OF TABLES Tillage Systems for Navy Beans Production in Michigan . . . . . . . . . . . . . . . Rates and Type of Herbicide Used for Controlling Weed in Navy Bean Fields Planted in Wide Rows . . . . . . . . Rates and Type of Herbicide Used for Controlling Weed in Navy Bean Fields Planted in Narrow Rows . . . . . . . . Rates and Type of Herbicide Used for Controlling Weed in Corn Fields . . . . . Rates and Type of Herbicide Used for Controlling Weed in Sugar Beet Fields . . . . . . . . Rates and Kinds of Fertilizers Used for Navy Bean, Corn, and Sugar Beet ' PrOdUCtion O O O O O O O O O O O O O O 0 Summary of Navy Bean Production Data . . Summary of the Yields Conducted over a Three-Year Period for Swan Valley and Fleetwood . . . . . . . . . . . . . . Summary of Corn Production Data . . . . . Summary of Sugar Beet Production Data . . Kinds and Sizes of Implements Used in the Models . . . . . . . . . . . . . . . Purchase Price of Selected Implements (In Dollars Per Unit) . . . . . . . . . . Purchase Price of the Implements Involved in Navy Bean, Corn, Sugar Beet Production . . . . . . . . . . . . Summary of the Selected Implement Costs (For Ten Year Period) . . . . . . . Power Requirement for Implements in Medium-Textured Soil . . . . . . . . . . Power Requirements for Selected Implements in Medium-Textured Soil and the Relevant Tractor Sizes . . . . . . . Machine Capacities (ha/hr) for Selected Implements . . . . . . . . . Predicted Portion of Days Suitable for Field Work in Saginaw at a 0.8 Level of Probability . . . . . . . . . . . . Number of Hours Assigned to Field Operations . . . . . . . . . . . . Calendar Days and Number of Available Hours for Field WOrk at 0.8 Probability Level for Bean Production . . . . . . . . Page 22 26 27 28 29 30 43 45 47 49 51 54 55 58 61 62 65 72 74 75 fl Table 3-15 3-16 3-17 4-1 4-3 4-4 6-5 LIST OF TABLES (continued) Calendar Days and Number of Available Hours for Field Work at 0.8 Probability Level for Corn Production . . . . . Calendar Days and Number of Available Hours for Field Work at 0.8 Probability Level for Sugar Beet Production . . . . The Estimated Life of Machines . . . . The Land Area that Can Be Covered by an Implement During Available Days and Time Required to Cover 200 Ha . . . . . . . Summary of the Adjusted Annual Cost of Tractors 1, 2, 3 Over Ten Year Period . Summary of the Final Solution of the Navy Bean Production System . . . . . Summary of the Shadow Prices and the Slacks for the Navy Bean Production Model . . . . . . . . . . . . . . . . . The Land Area that can be Covered by an Implement During the Available Workable Days and Time Required to Cover 200 Ha Summary of the Final Solution of the Navy Bean-Corn Production Model . . . . Summary of the Final Solution of the 75 Percent Navy Bean - 25 Percent Corn Production Model . . . . . . . . . . . Summary of the Final Solution of the 50 Percent Navy Bean - 50 Percent Corn Production Model . . . . . . . . . Summary of the Final Solution of the 25 Percent Navy Bean - 75 Percent Corn Production Model . . . . . . . . . . . The Land Area that can be Covered by an Implement During the Available WOrkable Days and Time Required to Cover 200 Ha Summary of the Adjusted Annual Cost of Tractors 1, 2, 3 Over Ten Year Period Summary of the Final Solution of the Navy Bean - Sugar Beet Production Model . . . . . . . . . . . . . . . . . Summary of the Shadow Prices and the Slacks Obtained from the Navy Bean- Sugar Beet Production Model . . . . . . Summary of the Final Solution of the 25 Percent Navy Bean - 75 Percent Sugar Beet Production Model . . . . . . vi Page 76 77 78 91 96 97 100 116 124 134 139 141 156 161 163 164 176 LIST OF TABLES (continued) 6-6 Summary of the Final Solution of the 50 Percent Navy Bean - 50 Percent Sugar Beet Production Model . . . . . . . . . 182 6-7 Summary of the Final Solution of the 75 Percent Navy Bean - 25 Percent Sugar Beet Production Model . . . . . . . . . 184 vii Figure LIST OF FIGURES Pulling operation of navy bean (conventional) harvesting method). . . . . . . . . . . . . Windrowing operation of navy bean (conventional harvesting method). . . . . . Direct harvesting method of navy bean. . . . Possible ways of matching tractor 1 (T1) and selected implements. . . . . . . . . . . Possible ways of matching tractor 2 (T2) and selected implements. . . . . . . . . . . Possible ways of matching tractor 3 (T3) and selected implements. . . . . . . . . . . Possible ways of matching tractor 4 (T4) and selected implements. . . . . . . . . . . . Summary of the profits under different percentage of navy bean - corn. . . . . . . Summary of the profits under different percentage of sugar beet - navy bean. . . . viii Page 38 39 40 67 68 69 70 142 186 armzmm..... _ r12... :. rt_._._.. = 5:: :x. 2.1;..2. Juno: ZO_._.ODOO¢Q z>az.u¢28 3.93.28 £92.32! 23.328 .2828 .282: .2932! 09. . 00.0.. m m a; 3.3.5. fig: 23:...- .. $3.395 w gay «.35... agg- m m 43¢» 333.32 A-4 0.. u g no 9820; ' 3:85 8 n .355: 3 a «29.5 a . .383: .- 9532; .8 8 gangsta. .- 8.22.8.8 .- 8.2.28.8 - .>.58.¢ .8 3 .>:u:o.¢.uo .‘ 03.5358 8 8.32.3.8 : 5.58.2.8 «- 5.58.5.8 68.30: .35:.8 2.32.8 42.2.8 . #:22- 2}. 923.8 3 1} 83¢ a. 35.8 - I} 32?: 8 8 ' ' ' ' ‘ ' | I ' 8 - | l - ' ‘ - b .2 0 Is 0 .3 o 8‘ O Ix . 89:25.6 . I to»: . c 80p<>=§ . u g . :0 80gb awn—O! 20.an-OO-s 2.0918(u- >>¢Z 2. 9.9.2 I . » 9.9.2 I .9. 9.9.2 B a... 9.9.2 I a... 9.9.2 .2. 9.9.2 .2 9.9.2 .2 9.9.2 . 2 9.9.2 . 2 9.9.2 .2 9.9.2 8 9.9.2 8 9.9.2 .0 9.9.2 .2. .2. .2. au><‘ gh<>=§ . C ambg‘ . C gh<>=§ . 5 gas . 89 gObSCb 8." 8.3.38! 38:81..- acopuccpfl «.3828 2.2.3.33 9.53:4...8 I 9.32.63.6- 8 93.5.8.8 .- 93:82. - ....58....8 .- .2584...- .- 9.5.598 8 9.3.23...- 3 ....58...8 : 5.53.6- .- algae .9.u...8 .32....- ..:.2.8 .22.: 2.2 928.8 2.... 3293 3.....8 - 1.... guide 02 fl . 4.. 9.1. "3.’33fl3.83=3 3: =30... — 3 .2 o .2 o o .2 o .2 o .u 0:922:30 . 6 Eng . c algkzhg . t 8.: . 80 802» u dug—O: ZO=U=aOnfi ZIOUInNIZ>¢8tns u... gonna); 8 a 2 u>¢§ .. . . §b(>;da . 8 .u . gn<>=§. . 3 o .3 O «30‘ .80 086.01:— I I 3 2 9.9.2 I .. 9.9.2 8 .2 9.9.2 8 3 9.9.2 8 .> 9.9.2 3 ac 9:936. 3 a . 01.030. ' 8 9.9.2 I 3. 9.9.2 8 . u 9.9.2 8 .0 3.980. . 8." is". 3:85 8 229.28 .5229 2.29.28 02.8.2.3..8 I 9.32.5.3...- .- 95.5.8.8 .- 9228.8 - ...=..8.¢.8 8 5.58.2.8 .- 9.22.2.8 8 92:22.8 2 .>.58...8 «- 558...: a 9.82 .- .32....8 .82....- ..:.2.8 . .32.... 2.: 3298 3 1). 82nd. 3.....8 - 9.} 32...: § h 8.3.88-«83'3833 338:... .2 o .2 o o .2. 2o asp—(>315 . c as . C zap—(>33 . s g .80 0803—. 2.3... 20.52.02 2.3.5.122. 2.3.3... 8 I 3 S 9.83.8 59.6.3.8 929.28 6 9.8.3. 3 . > 9.5.3. fl .C 3.012 a a m 2035 ' no 02332 ' .0 932.2 an .0 3.082 B .0 9:93. I ~v. O. .0 .0 n a... .- .0 «RP—(25.6 . s 8w>i Sbizhaa . I ' ILIII A-lo .0. u 4.. 9.3 .2.- I 3 COOS on a .3553 I a .3553 I . .3853 3 9.3.2.5... .8 I 9.33:5. . .- 8 9.35... .8 I 9.35... . .- .- 53.8.- .8 5.5.6.: . a. 9.3.2.98 9.3.2... .- .>.h§.$.8 .’.b§.5.' 08.8.. 3...: 8 31.: u. 3.... 8 3......- 2} 8....8 3 1.9. 8... .- 3...» 8 . 2.... a...» .- -..0..~..8 d on. O .P.. 3. O , o 3.. 8.. 203(2315 . 3 tabs . I 303123.16 . u as: . 80 080328» .060! 20:03608s ZIOUInsl2>¢8Iau A-ll 3 . 3.. :3 2.35.... . .. 5.35.3.8 . 8.. . .8 2.0553 Illii A-12 4.- m l.- c... 83 3.. in): I; 3.. 3.. DIG-.(Zbdau . 30.5 g . 80 gin gh(>.h.50 g 8- ..GOI 20.n9360-s has. u<°3al¢><8 0a.. u u E. .8... 83.. o .5553! . 38538 . 385.... 9.3... .. I 9.....3 .. I 9.3323. .- o. 9.35... .u 8 03...}...- u. 39.5.3.8 .. .u 8 83:38.. in. 9.385.... 8 9.3.2.... n. 33:3.8 . .. a. .8 . .o .. 9.53. 8 392...... .- «3.9.5.... .3 3.5.3... 3 2.5.3.... o. 8.... a 8....- o 3.3.. a 3.3 .n a 9.3 u b 39898998 Bflaaalasaaaaonpo... _ 9... 2.. 1. ‘3 .2- 93 £3 93 gh¢>3§ g .803 g flanking 30: g . .3 35¢» mg A-l4 0‘ c: an c. on . mg 8005' o‘ .9}... 385:! .V . .93.... «05(58 9‘ .98.... c0833“ a“ 02.»... m 3 02......» a. an a“ . 02.5.2.3. o 2 a V . 02.32... .m 3 .9 02.3.3..- 2 9‘ 292.253 .. .m 3 20.23.53 .. .a .- o‘ I .h. .1”. 3.5.... ,m 3 cl. 02:2,... 0 n— .“ 20.23.53 . ,m - 295253 . .o - o ‘ 02.30.. 2 o W . 399...... .m o o mwoaacw: .0. o 3.5.3:...3 o v2.3.5.3... o momma a 0‘ no... a v 0‘ 3.; m n 0‘ 2.... 3.; .n u 0..“ 02¢. - attx: .2. .2. .3. . .P.. .5. a .53 .3. .u d w>¢(2 G¢w>(¢u “CO.F(>:'JDQ 30¢ '8th 3L 30¢ mCOh(>;JDU . Cam: 304‘ . IO WKOhU(¢.—. u (a no3'333—osuflgg'3flaa'aaggaz«Nana‘s-«23332533o m u anOOZ 20:0:008‘ puma amaze. ms l2><2 # nu 'A-lS m... .23 .3“ .‘i ‘3 “Gobi .5 .5 322583.. 8.53.29. g'83-,SO.Q--=C-QQ~ .3 Eu . :5 :3 gh(>.pd804u3 mad. 80 g>2¢p o... 0.5 A-l6 o W .03.... .59.. an o‘ 2 .03.... .5552: 9“ .03.... 2085:: 0“ .03.... 20.0.3.3 oV .: .2 02:... m S I I 923.3. m on a“ 02.5.3.4: a 2 o“ 02:22.... m .- o‘ 02:22... u 2 o‘ 20:45:50.. .2 9“ 20:51:30.. .2 cm 02.3.... m 2 0‘ 32.—24... o n- on: 20:42:30 . m - 20:4>:.:u . a .- o W . 02.25... 0- . W. 280.03.... .m a .1 30.052... .3 . 2. mz.~..:2.. mu 9 ...u....~..:.... .- o .1 .0... m a 9W .1 to... a 0 0‘ . .5. 0...; m n 9W 2.... :3: .. a 02W 2. 324. u a: Jastxz 3.3393383333393—naflgzgnu:an--:===232-=3a in .u’ .02 8. :0 =- .- Q .n d . .n . .0 I . ago w>¢(1 W¢w>(¢a m23;(>;d30 30¢ mxwhz «at 30¢ m13h<>zaDU 01:.» WBOJL IU mZD—U<¢P awn—OS 20303008; bum: awODmi Om I2><2 i on A-17 mm :0 O. .9 .0 O ................................... . J 83.3...3 5.5 9:“ 20>: ‘3 n3~¢>= .50 8. .5 2.55.80: .5 gh¢3haa 3 0.5 b S3 33 g . a gun-(S.— ”3'332833393.00~ 0‘ O... I. .0..- g as 50 A-18 4..“ s .0 On: 3'39933‘3333333unggaunuoumuvu"nun . 0.. 8.. .u 0 ago .. a u>¢(1 .2 I m¢w>(¢tm .. a wco;(>: .DU .33: .. mm wpz .33 30: an on n- 2 = on n— ; O m¢3p<>z .3... Dow; .04m: 20.4.nu .0x<2 a a. 02:53.... m 2 02.32.... a 2 20:42:00.. .2 zoz<>:.:u¢ an- 02_.2<.. m .— 02..2<.. o n— .5:<>: 50 . m - 23...<>:.:0. a = on. on. om. 02.25... 2 3392...... m. .333352... a. .... 4.2.2.2.... m. 2.2.2.223... :- 3 .2... n o .1 5... a o .5. 3.; m n 3.... 2...; a a u 3.. 02¢. . m u 3 2 u— = o. o N - .u a .p a 0.. h Wis... I; mz.:u><2 x mm A-19 .5 «5:; E3 m¢0»<>_~aa 88 £3 wSO—<>:4a can: b» nan-=3.- ii 33 gas 80 gObUUEC§UCE7290CC CGE .0.0...0.00.0000...OOOOOOOOOOIOOO 0.. 1. C 4.655 ? CCECOFJCCSCKVSteal—03367 57:1. 5.34.. 4 1.1 1 19. (H. at 356.7. 1.: 7a.. .5 n‘ 2. 0%. 2.6.3. =.:.=. . u 11. 1. 6a.. - u 7. .1 . . s K C A L s EC.EEF.EEEEV_PLC_EEEEFL-LEEEF.EEC.EEF:¥.F.EZLF. EEC... nccccr..ccCCCCCCCCCCCCCCCCCCCCCCCCCC P.cc NIIIIIIIIIIIIIT.IIT.IY.IIIT.IY.T.T.IIIIII 7.17. ARRRRRRRRRPRRRQ.RRRRRRRRRRRRRRD\RRRR D.RR SPPPPPPD.PPPPPPPPFPPPPPPPPPPPPPPPPP 9 PD. 7. c . Iain/:3h5.:7¢.u..019~34-35~.3Q ..J1.23¢:._5753:.¢1~¢1~ 4:..6 R 1.111111.1112L22A~nc22n¢21v31viu 31:5 P U o V . DHHUHHHHUHH”HHUHHHHHUHHHHHUHHUHHUH ”UH AOOOOOOfiuOPJOOOOCOOnVOOOOOOOOCOOOOOCO COAU WRRRRRRRRRRRRRRRRRQRRRRRRRRRRRRRRR RRR O IVITIES 7.4.2....a...4.8795,.35.455.596.5060 C7::.7:..n..7=.5 .5.~5.~rulefi.nu.oaooc nu...n.~9.7£.5/.7755r.: .n..1.rnsoruh.nuna 3:57.. 1.5.59. 7. a.r.9..-..1.6..un.n.. GOO Loooooooooooooooooooo 0.3:... 53.4: 42.1.1.1... C6... 69.53.553.55. .5 a 1.5: 1.41.31.55.62? 83.3739 15.4333656 C9465678072 21. 211. 1.1.9 . 11...... OFT 4 .- P J h SSSSSSSSSSSSSSSSSSSS NIIIIIIIIIIIT.III 7.7.17.1 I G N45n£1¢¢2€1~4 R.5L4:.724:4 67 Q2215 1112669. n61.3‘v333‘ 4 c an 0 FYYYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTT FIIIiIIIIIIIIII 1.11.1... OVVVVVVVVVVVVVVVVVVVV IIIIIIIIIT.IIIIIT.IIII TTTTTTTTTTTTTTTTTTTTT SCCCCCCCCCCCCCCCCCCCC WAAAAAAAAAAAAAAAQAAAA SCLUTION HOLDS PRICE RANGE OVER UHICH OPTIFAL Cn.cc:.15b.uucf.5fdn.5 ...... r... CCOUSICGG4F525......2o. C 05.95.. 0...... C5 .55». 60 25.. . a T. a .5193. 55:5. .3 55.37 5r... .2 .9 R ooooaooooooooooo PDC . 0035. .3 1.4237565 NE 77 2.5.81.9-..17 .. U9 1.7 .16 c 25......1 at; 5:57 5‘54 150.. 1.. F... are; . C We Ca «Io. 0.3 .... Y.»— TD. ID- VU. .579. 95»....D 1.821. 4.1575-.. n 44¢O~1$648~65856.5=.=. C i le..1.77:.55 550. 5.5....13 3 70.534625:633751.05 15:.6425367929 75.3.5 422599;...49QG 51.65 .1. coco-00.00.00... :~O.1.60¥e71674477c 5. .5256: 7.3.7517R 6 3. 51.5»..I. .75—2.24.517... C. a 41.6. . .9. o 1.21. FRIC 211 u .1... 1.. o o 1 s . . . FCUNC YR TE .19 voea 331U8‘u6quzufiun. an... nu..-~ ”L 44 455.119.4221.... .4 .4 C ‘50 ....7895123236 1191.2 11.11.5625. 933.54 YYYYYYYYYYYYVYYY TTTTTTTTTTTTTTTT IIII {11111117.11 VVVV VVVV VVVV VVVV IIIIIIIIIIIIIIII TTTTTTTTTTTTTTTT CCCCCCCCCCCCCCCC A‘AA AAA! “A A AA‘AA The Optimal Solution of Navy Bean - Corn Production Model OBJECTIVE FUNCTICN n. F- rd 9. 2 SOLUTION IS an Gate-.0 CD? Dcooccfifiucgccoco COCOOO0.0:.J00.0005.30.0000003 Quandauchu”nugJOnUCn-gnsonbn.noah.¢~bonw fibfitr.nsrur~DonsopUfiurlLquuanun 99.54.9002 oooooooooooooooooooooooo can» 1.... 1 1.1 1. 1. 1. 0 A. 00.6 o o 003 g 6 9.41 1 S 0‘ 5 ssssssssssssssssssssssss IIIIIIITIIIIIIIIIIIleIII 345 67 8o. 3124.67363253013§5 111. .11222333. a a. #4 4 YYYYYYYYYYYYYYYYYYYYYYYV TTTTTTTTTTTTTTTTTTTTTTTT IIIIIII 11111111111111.1175 vvvvvvvvvvvvvvvvvvvvvvvv. TTTTTTTTTTTTTTTTTTTTTTTT CCCCCCCCCCCCCCCCCCCCCCCC AAAAAAAAAAAAAAAAAAAAAAAA 'SLAcxs 000040nufl-OOOHufiaaUflunuflbfiuflufi.~.:..3.Jn...fi.3Par... up .......an .....,¢n..fi.fio 0800....) 05.....uoaflu0Puc”.01.nuan...nJ.u..an.un-uru‘UnJ «ufizuny «.2 2.1.5:; OOOEQOOJOOODOOOODVOCRufivaguasJQ-ug. ....U AUHoJ-JAJS... 93......) 00300 500095389303OCCCO. .uCOOn.OCS.L?OO.. F .P.... .....OOOOIOOOIO...0.000.000.0000.0.0.0 concatenaonua, 2nd9908.70..5c....n...6..5..1¢~..q.ln,q..n.1...J.....L .7. 3 3 3 6.3 3 1 9.6 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS EEEEEEEEEEEEEEEEEE... ......E:E.Lr.EE—...EE...—:5?be 5E CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC XXIXXXXXXXXXXXXXXXX!XXXXXXXXXXXXXX!X¥X EEEEEEEEEEEEEEEEEEEEEEEEEEFEEEEEEEEEEE 50000500055003020507009C353.n.3agnJUUCCOQ 63 9065336049.“;qunv7C:.nUtunun.a.nu7 1.39.2... wrung.........:. :3. .r« 04789735535089 09530000EC9 00.-.? 9333.“: .....C U 55.351.431013005943103007085055...0520,0050C coco-cocoa...cocooooooooooooooooococo. 8 . 2 450C50803553205569.6059635703553 4 11.1 3 1. 2m: 1 9... 137.... 8 . 2o. .... 9.2 555 . . 11. 360 . . 1. 1 . . EEEEEEEEEE EEF.EEEEEEEEEEKEEEEEEEEE F.r..Er.E DCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCP. CCCC NIIIIIIIIIIIIIY.III1.1111112111111917.1.17.1. AR RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR RR PPPPP PPPPPPF PPPPPPPPPPPPPPD.PP PPPPD.D.PPP 11.2345 57 89 0123 4567 8: 5.1.234 5 5789 01234557 6 1.1111111112222222222 333333333 CES OHFW DUUHHHUHuuuuuuuuuuuuuu“HHUHHHHUUHHHHUUn- AOOGOOOOOOOOOOOOOOOOOOooooooooooaucooo00 “RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR IVITIES T7PJOfODAUwIflU C500000050 a-fiuc«uaoshvoa .H. C.“ fivEfiVpUZNI—flk L o o I o o o o o o A 912 F73365. H.314 130090 71523833994 21 NONOPT 58¢.SSSSSQ NIIIIIIIII I G N259901245 o1 11.1.265222 c R O FYYYYYYYYY TTTTTTTTT FIIIIIIIII OVVVVVVVVV 19171111191911 TTTTTTTTTT SCCCCCCCCC WAAAAAAAAA 04900051341 haze-100520.34. 0.37cadocnufiu9. 3L2 gsfi ..Ha? ivC‘ o o o o o o o o o 62 9 £259.27 San-1170678 4933474702 1 .1 .1 .1 .1 555555555 IIIIIIIII 751346792 233.33.31.34 YYYYYYYYY TTTTTTTTT III III III VVVVVVVVV III III III TTTTTTTTT CCCCCCCCC AAAAAAAAA pkxcc RANGE OVER uarcn OPTIMAL SOLUTION HOLDS t. 04:. .n 35:05.3{565 Uni. 5:2: . : .....L C 04.000000923022324 CS2. 1...? 4. .. I 07 33301106534331.1942.2644 .42 R ocoo-o-oou.oooooooooooooo 900000000092. 6775544778032 Nee 31 711.19.253.99550 . U34 05 1991133567. 5. 034 33.. Al.- 11q11.131 Pu Ba: . g 1.. 3 s . YR...» . 3.. TD. ID. VU04c 13024. 32555786 31234:. 39 n 44555552165555.3666566 3 C A 501770007454170021231714 402330000772312220? ...: .64. L... 40590 33074 65393859524943 F. 7a 334130211314 51.74 572.. 29 c OOOOOOOOOOOOOOOOOOOQOOOO I 1.022200555336256. 42780.. 9 R E41.10011710n.9884=.0...9c . P 5»... 1000:...778986622553: 0 . 3 .050254 . . .22112234 N 0 .000412 ......11 U 0 0001.. .- 0 9 999.1 8 . . . . . YR TE IN a V0 404 4 400068236925814 74.24 2 ”L4 444 4.211112223333444 C A 12345578901470.5592? 30135 1111222233344 44 YYYVYYYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTTTTTT 917171.111 191191.111 III 71711711119111 VVVVVVVVVVVVVVVVVVVVVVVV 11101.11 '17-. 111.1 711.117.317.91117171 TTT TTTTTTTTTTTTTTTTTTTT CCC CCCCCCCCCCCCCCCCCCCC AAAAAAAAAAAAAAAAAAAAAAAA The Optimal Solution of 75 Percent Navy Bean - 25 Percent Corn Produotion Model SSLVE Po OPTIMAL SOLUT START Lo 3:) ( :GM OBJECTIVE FUNCTION 4. C. ... 3 Z ... 80.n.g~..fiaoa.n.cp . 08n.n..fiu.noccfl.flufiu 00004.nbpbh..n.h: a 00000000006. coco-coco... 00..-:u:.r..La..1o. 555035.07 1. 7.377.341 6... 5 4 1 ION . cl S§.e.:\.sss.\.s SS UIvIIIIIIIvI 7.7.. 1:63 a p: ’27 039. 0.41 11 S IN SOL EYYYYY YYYYYY 17777777777..- 71111111111 IVVVVVVVVVVV VIIIIIIIIIvI .1777... 7777777 TCCCCCCCCCCC C‘AAAA‘A‘A AA A 537337321973000 6.019533545457000 his...134549027000 3.036518418151007 Icon-cocooooooo al- 006 . 506 797 01. 91 . 3 SSSSSSSSSSSSSSS 117.111 111111111 24 .... .6257 0589 134 .... 11 112223333 44 4 4 YYYYYYYYYYYYYYY TTTTTTTTTTTTTTT 11111111111111! VVVVVVVVVVVVVVV II I III III II I III TTTTTTTTTTTTTTT CCCCCCCCCCCCCCC AAAAAAAAAAAAAAA .... ...\0 .........s. .....r ...»;u... .l~. 4,... .. .. 1r: .. ... . . a .. o \ .. s .. . c. . 000000300. 3.43043 .7 .. ...... 5.0.. ........:...b....a...n .. .... 3:212... 0.000000000°000=.09.C0h: .39... ..n..\ 51.14.34: .350 4.34.000000u00340nu7053000.34.....nvfl.0:n......unun030 Icono-oooooeoooouooooooooocoo-coco. 3062000090.004.331.07 . ......033a..r.n.n.. 1.3....P.n...Ln.n. 34 1. ... 3 27 11 1 2 ...:a $258885 sscussssssssssSSSCuQXDSSSSSQuSSSQ. .§.ssssssssssssssssssSQ.SC.$.\.S¢.Q.S .3 $886.. 00 bLACKS LU Mu A On rslcss D A H s EEEEEEEEB 6.7.555 {CF—555555555555 ......qu .55 CCCCCCCCCCCCCCCCC CCCCCCP..CCCCCCCCCCC XXXXXXXXXXXXXXXYXXXXYXXXXXXYXYXXXVX EEEEEEEEEEEEEEEEE....EEEEEEEEEEECEE.LEE 90nvgooc00;.000000n..0060.....055700000000a O P. 0n508041083204:Loasn\6......1.1!.4... ..Ctvnuo,......n.u....nvc. IL 2475573503...0000300970....5070030530300 543.514310140000000040:70...7000250030 ooooooooooooooooooooooocooooooooooo 1. 2 4...». 04.nunfi.n..n..o.CnLfi.R.'..9.7fiJ.Ln...-C152......1. a. 111 1 I cl. 1.5 a 3.1—.41759—3. .3 .37 ...: 42.0.75 - 1771.16“. . . .1. 1 . . EpL—CEEEEF.EEFF.EE—LEEEEE...EEEEE.P.—true2......Er:r. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IIIgIIVIIIIIIIIIIIIIIII117.117.111.111 PRRRRRRRRRRRRRRRRRRR9xRP QRRRRD.RRP.D..PR PPPD.PPFPPPPPPPPPPPPPPPFPD.D.D.PP?PPPPP 12345678901234.3573? 0w..21.4=..678:. 0121.4 5 1111111111.2222222222333333 HHHUHUHHUHIHUHHHHUUUHUUU”HHUHUHHHUHH 0OOOOOOOOOOOOOOCO000000000 nooo FvoonuOAU RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 7575..fl.ru~CnUP.0.fi..n.n.rafi.fl.flL~Ufivl C1290.0990995030003055 I 6.39.. Rich; Sigrid. v.4...hunua3. uq :2 E7...50:29.255&300308.‘ Loo-00.000.00.000... #60137363574742121.91. H.99410999932322929:.2 195:.38590 O 229.205n 55a... 21211111a4121.ué 1‘ NONOPT SSSSSSSSSSSSSSSSSSS [1.11.1.1 7.119117111111171 I r... ”1.679C1346891.23457. .2 T....11.122222223333324“ A. C . 9. 0 F77 YYYY YYYYYYYYY.YYYY. TTTTTTTTTTTTTTTTTTT t. 11111111111111.3111... OVVVVVVVVVVVVVVVVVVV IIIII 11111111117117. TTTTTTTTTTTTTTTTTTTT SCCCCCCCCCCCCCCCCCCC 0AA RAAAAAAA AAAAAAA‘A c . PRICE RANGE OVER HHICH 0PTIR3L SOLUTIpN HOLDS f.£.r...5s..;_.. ...........::.r.. .— 3.3.42.9. .‘ . ....-. s»... ...: r. 339095000029996.935...C 6n..LA._.3E c gnocooanvooogn¢¢ao=ulfluo3403947.“. T. C403930939n.39..u7252.63: 33455 R 0.0.0.0000.000.000.600.000 PD3009000005016109fi.50705040 N67 3‘651581318610 U5.» .5543 597.72.40.15 0.7 59 . ...: 4 .1. 0.0 89 .9 7 7 4 10 a. ‘ 9 ... 1 2 .3 R;- 8 C. V... TD. ID V U055.1302¢:.315157= .3237 2.8:.0n..9 "I. 7455555787 75177377775 76 C A 69411104097705035747309355 39394.229334535633365550: 3a.»: 72554337042.931.50.22819295433 C. 4623854431.5737053549737294 c 00.00.00.000...0.0.0.0.... I 2122941553“743651941.893 5 R 581.12.1.725100393479466 1 P ....3. 1.. 15.512495537629175 . D . . . . 60515. . 94512243 7 N 013.. 7.7.4.1... U CG? 1 1. 2 . . O 99 . . . . B . . YR TE IN V0350096660061.147694923752057. ”L74777444 0.711572737364747 C A 123456789C12458257358o.1345 1111.11.n‘221~?u791.4 4 4 A. YYYYYYYYYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTTTTTTTT {IIIIIIIIIIIIIIIIIIIIIIII VVVVVVVVVVVVVVVVVVVVVVVVVV ILIIIIIIIIIIIIIIIIIIIIIIII TTTTTTTTTTTTTTTTTT?TTTTTTT CCCCCCCCCCCCCCCCCCCCCCCCCC “AA‘A“A‘AA‘AR R‘A‘AAAA‘AA The Optimal Solution of the 50 Percent Navy Bean - 50 Percent Corn Production Model SCLV‘ OPTIMAL SOLUTION Po START Lo .5. 1 .3 1v 2. p: 7. C.» ... an. E FUFCTIOH= OBJECTIV 00P.crsc.a.Cnufi-.r:uc CnUaUfiL.-.n...r..-u.cccc OnvfiUEfiJCCQQDCSAU Churcccr.500u.no:td 000.00.00.00 nUanUh.firn.fiyn ‘1‘. 1. c.3fibo.~ues.¢4 11.:..~=.4a03 0.7. 11 2 .... II he I TSSSSSSSSSSSS UIIIIII 111 1.11 SOL 1234567890112 111 IN S EYYYY YYYYYYYY 1777.... 77777777 7111111111111 IVVVVVVVVVVVV VIIIIII III 11.... ITTTTTTTTTTTT TCCCCCCCCCCCC CAORAAAAAAAAR R 3.2550 697460.00 0.3.7.77235540..00 J...972€=.814.3030 U2754725963030 00.00.000.000. 002 305 .389 01.. .32 2 553 5585 5535535 11111111111111 455147 03691345 1112223333 Q 46 4 YYYYYYYYYYYYYY TTTTTTTTTTTTTT 1111111111111 VVVVVVVVVVVVVV 11111111111111 TTTTTTTTTTTTTT CCCCCCCCCCCCCC AAAAAAAAAAAAAA 009.3.00333.05“.093070038.9.5.3;33.1.13U1..0. .331... 0330300900063080633003.3330333333303 0099anon-00.00300006003030333000391....03 0633 0053000930506505 30%.... Ca .3301: «5.303 cocoooooooooooeoooouooooooooooooooo 909093 Cgcccnunua, 43305023350« .910... 13.35 .3113? SLfiCKS D NW. A ou PRICES” D A H S 13319 11 46 ‘52 QuSSSSQuSSSSSSSSSSSSSS SSS 85¢. SSSQZDSnQSS SSSSSSSSSSSSSSSSQ.SQ~S SSSSSSSSSSSQccvSS Evin... pr.t_r.EEP.EEEf—EEP..CEC.~._r.E—r.f=L—..P.:.EEEF.7=CE cccCCCnVCPscccccccCCCCCCCPvCCCCCCC PzLC C xxxxxxxxxxxxv‘ xxxxxx Xv»! XXXXRXXVflxxxxx EEF.€.EF.EEf-EEEEEPLEEEE ...E—P_EEF.F=L.P.EEE—.ur..CE c.30030009530000000060330 67033003000 9026.00.00388000n..00.00100400.300.050...0050 247 3873503:.0000003073060700005.39» :UC 66331631016000000004007047000300000 oooeoeoooooooooooooooococo-cocoa... 1 2 4.50 00009000603567002362553 Q .11... 1 1 1.5 4.362772 3 57 894....CES . .212160 a . -1.-1 . . p...EE....Epp=p.EF.EEEEEEE‘.EEEEC.Esta-vFLEr_EF.P.EEP. ccccccccccccccccccccccccccccccccccc IIIIIIIIIIIIIIIIIIIvLIIIIIIIIIII7.1017. RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRP Q‘RRR 9.9.93.9.PPPPPPPPPPPPPPPPPPPPPPPPPPP.PPPP 1234567 8.7012345678931234 5678...? 12345 11111111112222222222333333 "HHHHUHHUHHHUUHHHUHHUHUH“HuHHn-U...-Hui" COO 00000000000000000000000000000000 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR ES IVITI T...7azncfl.cooc.ufCannabiughal 31.26.03.....«Lnba...fi.h.0906.00.}...0 0 CcaauCCnLCCfi§.03.U-Sfiu nFUnUQ. $.72.LISOLZaczhvnun.6fluCCnLn..2 Looooooooooooooooooo A. 4;...15 31.367.25.70 w.41»¢16gn .1 H.394In..u9093232c.10.192 7.....353599n 929.22:...¢:.?...4n4 111.111117.111¢.36 T. P 7.4.. 0 a.” 0 .. SSSSSSSSSSSSSSSS SSS M..IIIIIIIIIIIIIIII7.II .I P... N367 3...".235559 1.2457332 I1.1.1a..2nén¢ac2223331.1.436.4 C R 0 , FYYY YYYYYYY Yv-YYYYYYY TTTTTTTTTTTTTTTTTTT FIIIIIIIIIIIIIIIIIII OVVV VVVVVVV V VVVVV VVV IIIIIIIIIT.IIIIIIIII TTTTTTTTTTTT TTTTT TTT SCCCCCCCCCCCCCP.CCCCC WAAAAAIK AAAAAAAAAAAA PRICE RANGE OVER HHICH OPTIPAL SOLUTION HOLDS 36000..t8050n.0305c.147 9:...q...........n. E 0.80000090035006765$ 7003.33 c aowrongnenuqbOPJnuP..nuoa0—31.91...... ..CGn..42nu I 3 43000....339300 37.7955 c3..n.....451:. R 000.00.0000000000000000... P03200000000531614a052505343 N337 34551341.... .1518 U...4 5.34.3 1777 .5415 .....1 ...... . .... 4 2 5?. 0.9 .3. 1. 7 2 IO .7 .... 1. .... .... . ...; Rn: a... c YE TP ID. VU...n.9I3CZ49CIQI67 5...?7#3...:5..A....... U 7455555737 751.2737 .776 76 C a. 69.41110400774501c,74 5.00.365 8983422630536635765.10?346 7254.453700991500..3Q.1 .756433 E 45238544005737397é6.237294 c oooeo00.000000000000000... I 21220415534743644944423 3 R 581.12.172610039547 966 1 P 53. 1. 15512495647é.q76 . D. . . . 6951.: . .1251 a. 4.: N 013 ... 2.7. I... U 003 ... ... .... . . G 99. . . . a. .. . YR IF. I“! VOC60005663361376.953295.....29 ... 1 IL74777444 4711572737364747 I C A 123456739812458147.3691345 1.11.11.17.22: .334 4 h 4 YYYYYYYYYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTTTTTTTT IIIIIIIIIIIIIIIII III III III VVVVVVVVVVVVVVVVVVVVVVVVVV IIIIIIIIIIIIIIIIIIIIIII III TTTTTTTTTTTTTTTTTTTTTTTTTT CCPECCCCCCCCCCCCCCCCcccccc ‘A“‘A‘A“A‘A“AA AAA“AAA‘ B-lO The Optimal Solution of the 25 Percent Navy Bean - 75 Percent Corn Production Model Po SOLVE OPTIMAL SOLUTION ( START Lo- 33) OBJECTIVE FUNCTION: 0:59:305000 OOO.CD0.0.JOOO 0n:un.:.ua...030.bpu rucau.«..r.nsruaucca cocoa-.0000. flacgnéucofclll .35...er6001 12.32155 2.... 26 1. I 4 UTIGN IS IS IS IS IS IS IS IS IS IS 15 1:43“ E.L.?gqaca‘ . 11 8 IN SOL EYYYYYYYYYYY ITTT TTTTTTTT TIIIIIIIIIII IVVVVVVVVVVV VIIIIIIIII It. ITTTTTTTTTTT TCCC CCCCCCCC CAAA AAAAAAAA A 2808f63819300. 7231131581UCU 27 53531—553033 1854.:.Q5QO.$L.L7 000.000.0000. 031 503 279. 05 3.3 1 SSSSSSSSSSSSfi, IIIIII 11.11111 5825704791345. 112a‘23331u‘ .Q. “.4 YYYYYYYYYYVYY TTTTTTTTTTTTT 111111 1.111.111 VVVVVVVVVVVVV IIIIIIIIIIIII .TTTTTTTTTTTTT ccccccccccccc lAl‘A‘ A““A‘ SLacxs‘ aflvogofi.rJfiUa .....s.....3.nJr .«4nJ-....1LO.sauna......n..1.n ..n...:.fi..,!....n ... ... .n. ooooaarbaJ-w..a4A3530nJ-Qunu71.»...3c31bu0b~5fy~éfldfl¢ay..andfi.715... 000306000 CCL.~Ufl..bC-....UCD 350303.333. I... :u 6...-.. a ogoaarUfl‘JAt.P.0J430n5fi.‘nkocg‘hfiscpdawsnveal-nu? .55.... u 00000000000000.0000.cocoa...coco-so ODaAU.LflUaUPJaJ "...-7 .58....u01v 3.35»... K.3EP.PJWIJC11“ P323253»: . «U4 1. 0.. ab .37 11 1 :47 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 5.3853588359553555SSSSSSSSSSS 3555835 EEEEEEEEEEEEEEEEFUEEEEFEEEEEr.r..:...r.—Lc.E CCCCCCCCCCP6LCCCCCCCCCCCCCCCCCCCCCCC . xxxxxxxxyxxx XXV. X! XXYJXXXX x ‘2!" V» X’ v X XX EEEEEEEEEE:...LEEEEEEEEEFE.Er.EEr.EEr.r.r:LE 90900000350030LCJQCGQOEGESSCSOCGCOC D.D.CQLOnLPufibrv 29.x.gncnu0r.roru.-~1c»u4 n .or .1 1.P... run it... our»: 247557.723. 5.35.3..005943uruc703.537 :..fl.n...UnLr..... 3.5;...» 5‘1s81“1.10145000000.0‘.0070‘ 82.0 «US—ninth .c coco-00000000000000.0000one.cocoa-o 1 2 .459 COGCCOCCEUCEbZTEOC351553 “ 1‘11 1. To 17:... a 12.297.79. 3 '35:? D.C.a.:.n..:.:o . . 1.1.1163 ...1.1 .. EEEEEEEEEEEEEEEEEEEEEEEE....EE:.EEEEE....E ARRRRRRRRRRPRRRRRRRRRRRRRRRRRRQHRRRQ.R SPPPPPPPPPPFPP PPPPPPPPPPPPPPPPPPPFPP E C ‘ 11.23.452.799 5123456759.... 1234. 5 67.9 9 9.1.9.. 1.2:: R 11111111112 22222222 231.333.: P . U 0 DUHUUUUHHHHHHHUHUHHUHHUHUUUUHHHHHU UH IOOOOOOOOOOOOO0000000000000000000000 WRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 0 B-ll TIVITIES. 7200a..c.u.nun.fi.0n.n7.000nd1 . u22..flufl.30n.vcnah.nucogflufl.fi.c 31.3..UCPvfia P..fl.doop.afl..ogcanJ ..n. 7o.6.._.n.2?.2003.006.00.02 Loooooooooooooooooo A» .0 1027.1. .274 57 ...-1 a. Ouncfisadr ‘ 1 H3.410P.O..JO.1~0.322121.7~5 1.3-338.39....922220.2nbasau 6.154111112105136 , l1. NONOFT ssssssssssssssssss NI11111111111117.11 I 6 N57 c.3134 683.121.560.51... 11.112222222333333 a. 4 C R O FYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTT FIIIIIIIIIIIIIII III OVVVVVVVVVVVVVVVVVV IIIIIIIIIIII 7.1! III TTTTTTTTTTTTTTTTTTT SCCCCCCCCCCCCCCCCCC OAAAAAAAAAAAAAAAAAA C PRICE RANGE cvah HHICH OPTIMAL SOLUTION HOLDS 3600000 909.5. 320050.347: 103333 E 030000000.0602533604556147.00030 C 07000000002000050519...500423 T. 0.4000000301014072566613.7.9.33 R cocoa-0.00.070.coco-000.009. P002000000036306El...905020=.:u.40 N57 . 0407 ... .1581333510 U94. 1531.: 537736.410 09 4.9.2. 5 4 3 00 B9 .3 7 7 5 10 9 a) 9.. ... 1 ...... R5 3 9 . YE 70. 1P V U0 09 1302 4 932315 575. 1203.0....Sp....-.=. n 74.553.557.57 7551773737? E 76 C a. 594111040075045035741900.36o. 8o.88422900510268806574.99346 7255....6370090065352815906438. E 46235544005503? C5356160725c. C oooocooooooaoococo-cocoa... I 21220415534593365194429.3 E R 581.12.17254200393478166 2 P 53. 1. 1551458 ....6376...27$ . 3. . . .60910. 274515.143 N 013.0 7.7.5.1... U 009 C 1 1 1 . . G 0.9. o. . . . 5 - . . YR TE 1..- V 0060006565362017604020852062 ”L74777444 47 71572737364747 C A 1234557 893123456257047 9134 5 . 1111111222333344 4 4 YYYYYY v. YYYYYYYYYYYYYYYYYYYY .TTTTTTTTTTTTTTTTTTTTTTTTTTT 1111111111111 1111111111111 VVVVVVVVVVVVVVVVVVVVVVVVVVV 111111111111111111111111117. 77777777777777TTTTTT...TTTTTT CCCCCCCCCCCCCCCCCCCCCCC CCCC AIAAAAAA‘AAAAA AAAAAAAAAAAA! B-lZ The Optimal Solution of the Navy Bean - Sugar Beet Production Model 9 p b ST’PT Lo Po SOLV‘ ( fiPTIMfiL SOLUTION FUMETIom OBJECTIVE r.Cr.nzf...u..f..0...nt..opvn.Ce.ntf.aLr.flZuP.Cc 0.. up .P..UP.P.P..&OC“.PLE¢1.rU. ..L fl.fln.anefl.0 .. .r.q..n.r..u.fl.n.... .0fl....y.p..r.v. .6: ......n ......UnJfiunu r: .e .PtcafifunLPLCCrLrand... .. .....«..n.r.r.....c02 oooooooooooooooooooooooo .. er.fl.11a11 1 1 11.. 4.1GUQ6 n. «41.4 AL? 2 2.2.3 08 9 no It 1 I ma TSSSsssssssscvoasssssssssss U...11111111111111...17.111111 SOL 16.2; a 57 r. : . ..13? c......-.EC...J.OG 9.467 . 111112222333.4 444 1r 5 . szYYYYvIYYYYYYYYYYV VYYYYYY ITTTTTTTTTTTTTTTTTTT 777 IT 7.117.111.1111 111111111 1111.1 IVVVVVVVVVVVVVVVVVVVVVVVV VIIIIIIIIII11111111111117. ITTTTTTTTTTTTTTTTTTTTTTTT TCCCCCCCCCCCCCCCCCCCCCCCC CRAAAAAA‘AA‘AAAAIAAAAA‘AI‘ A SLACKS D N A C.- E c I R P H 0 D .A H S gas-v.5.fiufl... .6..fl.flJfi~0-¥¢Hu‘.PJ..¢F‘...qwafi...fl an.“ 7.”..fioo ... .Ac..v.a...uhn.a...% .A .. 4.4. fl .. ...... oan.nu.Jfi.aJ01.nvnugnl.fl..30.:coacc.an....J.J.Ufio.. ..Jaaa..7..-....4.n. ..-c a ..U. i... 0~Ueufisfo9= .0{.0n.eauq.u0nbnu.dn40nu«1.0.U0n.9021... .0... .Ch............. 91.}... .. OnbOBXUD.aflun.flvabcchqU.LabConsonant—.6.rUpLPRfJG. .36..flu..sn.. 1..-: ... Coo-OOOOOOOOIOOOOOOOO000.00.00.90.on 0090 00023.23 6.5090207 1.... 5:32. .916: 10.x... 1.1.; '17.... . 5 7 3 Q 3 15: 2. 3 1 4.913” ssssssSSSSSSSSSSSSSSSSQoSCHSQSGQSSoooQSSSS $60003 SSSSSS§.SSSSSSA\.SS.\.BJC.§VSS5.5:.Queuc..ss.\.SSec¢..¢g Q.S$Q. EEP=t—r.Epr.pp.—..EEEV.EF.E—LEF.CBEf.pr:.r_r..t_EEC3.......f.F.Ef.-L. .....“VE. CPXLCCCP.CCCCCP.P..CP.CP~CCCF.CCP.CC.LCCPVCCPmcc purunac xxxxxxxxxxxxxrxvrrxxxxxyxv XXXY.XV‘.Y.XV.V V” v. KY V EEEEP.EF:b.E—LEEf-t.EEEE—LF.EF:LE.LECLE._EEF:L.CFir—E 7.52.21 04 0050.3000501.C1CQ.P.1.0 00.,Ja .05...:.fi.0rbru..unb. 4.... a .03 n. on... OCE.CPo5rJ001vn-‘. ”V950 .Fb‘gflcfidruaw-n .CN..LF;--.rhfi. ~10 ....Acv a .1...- a 03 0.50.71Cnv031LFJPR .c. .e..D...Ufl.f.3non.nz{run ...s. .90.... .C 020... 7.35.9.3...‘300306070003.fi.00.JC.LCCC$C5.¢CCn..L 0.1.0.”. 00000000000000...ooooooooooooooooooo 0000 3 and :- fiscg109.c~fi.flufi F.7ACCBJ- .AI.EC.....1.~L.A 335..., nLn.?. 52:13; 3 .3 a. 2 .... .347... 3.3 1 1.7.5:. 2 1r .1... c. 2 22...... . 1 12:3. 11 1.631 . . . . . ... “.2 . £925....befilthP..EEEE...EE—Lr=r:p.r.EFL-....ptt.f.P_E—u.f.c..f.tbf_ ...—Crip- cccccccccccccccccccccCCCCCP..I.CCCCC.P.cc Ursa-FL 1.11111111111111111117 .IIIIIY.7 .111117.T.T. 1111 PRRRRFRRRRRRRRRRRRQRRRRQRRRRPAKRRRRRF RRFKR PPPPPPPPPPPPPPPPPPPPPppppppPPFPPPPPP D.D.-FD. 1234—? 5.7.0.7 s....1n43a.:7.57Q.9..P.1.€..1..¢ cartqlnis a ..1n...?44 are 7 «LC . . 11.1111111122222a..222231.33333 .31 ,34 "UHHu-u"HHHHHHHHHHHUHHUHHUHHGUH“Minimum-Uln- Hun.“ 0000000940000OOFJnuOOOOOCOOOfl.n.no00fi.CfluC00 Qnunuo RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR RAHRR B-13 IVITIES Tr...o.o..:_. n: ..O.7Au..r;.o.r ....r..r..: ......P ......Pvf... .4. noopbaaaab....fl..J.a.n...3~u..-........003a41..nu ‘21.... ..B. ..M.P.....:A..R.P.AQ 9.9... .CAUE.“ .JALQ. 1r....ns...o 84.1%.... .1.n!0.ur..ru.b$25.51 LooooooOODOOOQOOOOOOOOO ...a 51.4 1264.32...7921221724 Mali... $9 45 3.. .. 3:31.42? 1:53.141}... 0.1.4135.A...a:71.2n\52n.515..5 11 p.51 615119.1‘ 34 10“0PTI w SSS—\sSSaésssssssssssssss Mu! 7.11 IIIIII 7.111.117.1111! I I n4 No: .n‘Q—n.r~.:n. 1’4 4 :47ahvs. .17“. .../:7 ..u1osn—J .... 1......11.»‘57da... $9.31.... 1 ...; ... ..9 4 Q. a c R o FYYYYYYYVYYYYYVYYYYYYYY TTTTTTTTTTTTTTTTTTTTTT F1 117.117.111111111111111 nuvvvvvvvv vvvvvvvvvvvvvv IIII IIIolo'loI $7.111 olglolAIII TTTTTTTTTTTTTTTTTTTTTTT nbccccccccccrccccccccccc OAA‘AAAAAAAAAA‘AAA‘A“‘ c PRICE RANGE ovza HHICH OPTIFAL SOLUTION HOLDS rt 01.3.9.1... UCQ..Q.°.U.D1.1.C«. .n... A5,}? ......q. E 80330...0fi.530n..63..5555050.J.-. C 1001.033...}:00021.3..u5n..23711.1. T. 333W.fi.1...5.393. 33.53.011.33/c .P....A. 4.. .... R coo-cocooooooooooooooooo .P09000335303.675543770843. N26 7.9. 313355995751. U39 01 73 1131.559673 C 9 . 3n. 2 1.1.11.1... 25C 8 9 . . a... 9 .... R 5 c. YE . TD. ID. VU........13 ...... a 51.297 2...... 121.4 .367 202 4 5555 55317....5656666667 ... lCTI 0.60» .03 4124 9.311............o. 2.337 9.67. 0890.354292.563222392591214“ 01.9.7:.55543753356252196....7 03841.65.934251397157362 7.... oooooooooooooooooooooooo 0.0004311374269 9497962225 45031.6 .3107éOR 341.0 82592. «vagrant... 21738966225523“. nun. . 08...... . 1.55. .221122...3B ND 90.0 31.2 ......1... U0 000 3. o . 09 ......o. . E. . . . PRICE VOUSUGURE..55123§ 2591‘ 701.35.... ”I. A. 4. A.“ 43111222333h 4 4 44 C an. 1234.95 890L4335925892467 111.2a‘n4233 33 4 A. 4“ YYYv YYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTTTTTT IIIIIIIIIIILIIIIIIIIIITI VVVVVVVVVVVVVVVVVVVVVVVV IIIIIIIIIIiIIIIIIIIIIII TTTTTTTTTTTTTTTTTTTTTTTT CCCCCCCCCCCCCCCCCCCPuc CCC AAA“A AAAAAAAAAAA‘AAAAAA B-14 The Optimal Solution of the 25 Sugar Beet Production Model Percent Navy Bean - 75 Percent ‘3 o SOLVE STéRT L. .4 .s. I OPTIV§L SOLUTIOP OBJECTIVE FUNCTION forccccro Pat. ..!.nc....1.7f;.. ..«J....3L..nu.u..fi..flu°fla G.U.L.590.Ln.fiufiuocc..1c 1....c..1.3c.900°au .....v...u.a...r.:?.......3251...$.35271.5.tnd0.b€nu COC..~...ve.r HZ...» .n.n...£.1.=...w $.13: 4.05.01.007 0.00000000000000000000000. a; C .....Lc .C C .. .1. 9 .1 1.1.. 1CD... .35.... 1:65... 507 1.232.179. 25... 663 T. 071‘ on. =~ 3 1 ‘ .4... T. Tabs SSSSSC.SS§.SSSQ—SSSSSSSSSSS UIT. 1.1.11.1? .T.IIIY.IIIIIIIIIIIII Q0L . . 122.45.172.9n .1.3582.27....47913557 .. 11.1.1.1.....¢9..&33346.444 I" S EYYYYYYYYYYYYYYYYYYYYYYYYYY ITTTTTTTTTTTTTTTTTTTTTTTTTT TIIIIIIIIIIIIIIIIIIIIIIIIII IVVVVVVVVVVVVVVVVVVVVVVVVVV VIIIIIIY.IIIIIIIT.IIIIIIIIIIT. ....TTTTTTTTTTTTTTTTTTTTTTTTTT TCCCCC» .CCCCCCCCCCCCCCCCCCCC CAAAAAAAAAAAAAAAAAQAAAAAAAA A .Hcfia- ....va 5. ~a|.. a. so. u. .. .» ... an... UAJQ; ..A.aP.. ...... . .. ...... .. 5.: ..\.-Q - 5...... .. .71....»1.2.9....391q24.31.31.. . o r... I 3.b.u.hb...Ja .sdauvfl..UA.J..U.Jn...U. .7.J. a. -.. .n ..H...‘ I ”use... aOfi..UJC.U~b.:J.Uq «.2543. u.,U.J.U. .A..ua 3.14.1... .. 5.1.. o. .. ... .UgnUfi...J.u...sbfiu. afi.o...n....o6a 34...... ...»...fl. 3. ......L.-.h. 1.1.1.2.... .. 4. 0..0.00.00.00.000000000.QOOOOOOOOOOOIOO COGA-.~...Q. .rn..v:31.au.,r...s.fi,.. .1.n.1.ul: ....r..<.....+...01..... ...J... .. .. .. .. .. .... 5? a.:..1 4777 .l 1......A.... .n. 111.. S SSSSSSSSSSSSSSSSSSSSSSSSSSS “fifififlfififiSS$SSSSSSSSSSSSSSSSSSSSSSSSSSS r ....EEEC.E:... .E.LF.E...EEEFEECEEr ... .... r 5...... .r.....EE....r f... CrCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCflCCTCC XXXXX!XXXXXXXXXXXXXXXXXYXXXYYY!IrvXXV? EEF.EEEEEEEEC?......LEEEEEEEEEEE7.7.5:....E.»:..........:: can“;...UPUQUDOR.“.AUCO.UGUCCO3404....fi.....0qUEfi....L..-.«U.-uP......U...Po...~a On.53f:COCCC....G.GC..3.5L»...an ....2.C».=.c.fi.:.~ .. v.-.» .» ........-.... Gd.0.20.7.9..H.On.ufi.nuoc0f.cc.v.Cf»...nébqutl 32.30....1... ...... 5...... 74 039.4 .- 10508000. .OCOOCCSCCQ. 5.. 3:32.03. .03. .C ....OOOOOOOOO..OOOOOOOOIOOOOOOOOOOOOOO aCaUPUCaUO.ufisa..vn...un.q. . .a..q..r—.C:U.J1a..:..fi 1:...‘4 ...... "a. "c. .P. 1.9. 1. 52 1.435.. 71.6.7.4. 2 9.9!: ....d.=..“¢ . .. .1261... .... .2 1. 1.1113. 44.... c . . ...... - up]; . . S K c A L s F. c. [SEEEEEE—r.....c...—ELSEEEEEEEEEEE... 7.5.5:... .....rE. OCH“...CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC M II... TIIIIIIIIIIIIIIIIIIIIIII....JIT.IIMHM“M ARRRRRRRRRRRRRRRRRRRRRRRRRRRRPRRRR . PPPPPPPPPPPPPPPPPPPPPPPPPPPPFPP P PFFPPD. S . E ”c.1234: .4.73o,....1234 55739 n.123‘557:5..-.1234 567 .o R 1111111o111222fi‘n62222fi4‘~31-1.1u337.2. P WUHUHHUHHUWHHHHUHUUHHUHHUHHUHHUHHUHUHUH “OGCOGOOPJOOOOOOcoonooooofluabnuoooonvnufioocgoo HRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR S 15 TCF zit—TCIOI. .....n......ucp.......Urtr: 9.51515353005050......0C50 A .. .12....apan33r012 .EA .P....v...u...uc.....ou.. . fl.a.ca.cap.-.01..n tinycibfafun .r .....eb Loco-00.00.000.000... A1.19.Q.12u6 ...... 7. ’57.. $.2a‘2r‘flt12. V. .316 13.1.1311.....3.1.212¢....4 47 11.51.51.379723230.......2551 T1111.1222212122121.1.3:. . 1 ~0~cn €255.35SSS§~¢...\.S-\.SSSSSSS «H.111. 7.7.1.1.... IIv..T..1?.T.IT.III I 5 . N 4. 67.9 0.1.34 c..c....1...1.=.c. 59.24 Il..1.12r/.a..2a..2a.....3.\.1..fi..\.4 a. 4 C R 0 . FYYYYYYYYYYYYYYV.YYYTY TTTTTTTTT TTTTTTTTTTT FIIIIIIIIIIIIIIIIIIII OVVVVVVVVVVVVVVVVVVVV IIIIIIIIIIIIIIIIIIII TTTTTTTTTTTTTTTTTTTTT SCCCCCCCCCCCCCCCCCCCC 0AAAAAAAAAAAAAAAAAAAA C PRICE RANGE OVER UHICH OPTIMAL SOLUTION HOLDS F..-va..3.-: a. u~U~Ufi........JA|.....r.1UP........ :L..... .. .._.n..... E p..59...JCCrunUOUOCJCPZUA.«Un...LW....3.L»...1..UG c 9C.4.4a.......030603......u.U3....d.L....C\........UG T. a .J~ .q ...u.-u.ze~l..dfl..n.c.. .. ....os~.u3. b. .. .. ... .. .3... .9 . R ooooooooooooooo0000090000.. PDQ...JC.CDR.AJ.J~u . 91.1ch .led 51.0.1.2...3 5.. N25 77 3.4.3h 9.1.0.361... 3 U1.... -345... ta. p. 3...... .r ..- .. c c. 1:... .7 3.. 2,15. 11. ... 3. 9 .7 9 9 =1 9 .u 9 a. a) : ... w. .3. Du .C .n. n... 3. 2. 2. .... '3. TD. ID. VU1.AJ12..=.1.4 6.“ «...-3 .3. 1! a... '33:...)51 .1.../... ...v. ...... I 7 .............558787 7 7 7 d .5897 ... 9.033.436... 0333. .920535C33Jn: .... .1... 0.595349500CC:.33...9....c ..L...,Cn...u.....:.n. 398754750000..36323405030520 0.9.1.. Q 1.54 35.......UC..?.U1C36.30309? .. .53. ooooooooooooooooooooooocoo. 335041.17 531.0C5n.312.b14.524.924. 453017 . 372666...C=..3n.3= 312.... 20 0453...... 2.2536 ......33341.3...1....o. .... DC . C03... . 6f1r.....C114C2r.ZCIZ n. N... 0.41.... 0120.0.Cun..c.1n.c e... . U... 2...... 003.... ...... .L .. .... Dru... P. 09 ...cé. 9:... o c. G. c c. 9...... c.. n:- . . . - . . . . c - . . . . . PRICE V031: .....J«01.31.930.353?54513.”... 3-2.2.35 IL 7 7.77. 7 2 9.. 3 ... 4.7 T u, 1.23 4 54.7 396.123....82570 479 11.567 111111222333344444 YYYYYYYYVYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTTTTTTTTT IIIIIIIIIIIIIIIIIIII1.1.17.1.le VVVVVVVVVVVVVVVVVVVVVVVVVVV IIIIIIIIIIIIIIIIIIIIIIIIIII TTTTTTTTTTTTTTTTTTTTTTTTTT T . CCCCCCCCCCCCCCCCCCCCCCCCCCC AAAAAAAAAAA RAAAAAAAAAAR AA“..- B-16 t Navy Bean - 50 Percent The pptimal Solution of the SO Percen Sugar Beet Production Model SOLVE OPTIVJL SOLUTION Po START Lo - \ U ( oeaetrxva FUNCTION CC»; .Lruq.:u.n.o..ntfi: :3: 7:4 cry-3.76» UGnUO-L CCG..C«U.UCCC3P.C5¢ 279:1.6090COC Cruccnqaqu'Ln; 35. .1.9.37.2.3.2::$0.50....Cc_ 3......»fi..CC.Lr..n.suburllfirt “. .254 .U.L»L.br..u oooooooooooooooooooooooooo C. t.o.rhpu:ucp. . 1 1...; «illnbruns 3....-103133‘ 35b6,. 11.—59:71.31 50‘. Q7 4. 0.34.. as 3 . E 2 N 0 T. Tfiossssscus SSSSSQVSSSCVSSSSSSSS U731? .73-31.1 Y.I.lY.IIII.&IIIIIIIIII 1234 55... -c c Cl3=..:t147...3é9135 67 A 111112223333444 .44 S IN SOL EYYYYYYYYYYYYYYYYYYYYYYYYYY ITTTTTTTTTTTTTTTTTTTTTTTTTT TIIIT. IIIIIIIIIIIIIIIIIIIIII IVVVVVVVVVVVVVVVVVVVVVVVVVV VIIII III 1.1.1.111 IIIIIIIIT.IIII ITTTTTTTTTTTTTTTTTTTTTTTTTT TCCCCCCCCCCCCCCCCCCCCCCCCCC “AAAAAAAAAAAAAAAAAAAAAAAAAA ..Jnuo.J-Hv3.M.§UQvUflIOU.!~. UnUA.UQJ.OUQ|..Q..Al..0.-A.nQr.r,J.. .5 ..- ..I.. q—Ava up... ... ... .. c. ...I.... v rho-H.F.:UflLAu-o”vorvcfloor.flrdn.o..u Hafib-Hs- .1.3.o)~.s.l—‘... a. v. o. ...... .a .a .- .. Ha .- . 30.0243; 399.43.312J030360...J.U.Ufiu.‘:u. :43: .s...~ ......U. .. 29...: ..-. UnusucanCDCflXu. ......fiészuér.C.UCP...... ..-..~.u..»:~ .. ... 2... .. ... : Z. 00000cocoooooooocoooooooo00.00.00.000. 0C0...PXU.....Lpbps=.3994.h7uawp:. v1.0.9... . ... of: .133: 3.... . .. 34¢. 3 ‘. 1. c.6529: 1. 1. 1.. Add; ... .vs. cue stsscwsSSSQQSQuQJSSeJSSQHSSSSSC. .JeuSQosnEqbsscgnDetQu SSSSSsSSSSSSQ»Oosssc:\usssssssssssc.ssSe..SQ.S .P.—L.L....CEEFEEE—LE7.EEEEpt—L~CEEEC.€..F.E€_E_.F»......pr-étp..pL CC~6.CCCCP.CCCCCrcccchkcCF..CALC.LCCCP..P.rbCCCa ,C yXXXV.VJXXXXXY.XXXXXVrVLxx Xv. VIXVNKXY Xv..v‘ .(H Y Y xv.v.. EEEC.EE.LE.CEEEEEC.EEEE...€..EC=.=.tints—hunt:.F..r:.:r=.2.._ r.couc.n.nucc0nufl»fl.n.9..oc..bn..0c.nc0rofis.,u.u..LGn...v.2).-.cab.-.»4A.... fizUo ..1L.v..-..fivnubAU-nan..ro 0969‘...er ..bw .fi: .fiSJPsro-nzzf =.f:... .9 .....LA or .0. 04.53:..oqolaonUCP: .CthnUa...nU.ba 130.66....2..La...‘..C.Lrs.L. .P....Ihr. 7 4 agree“. b.1occa4flvruocgfiDCP.,Ur...DP:..c Sty-Zr... 3.0. t Info: ooooooooooooooooooooo09.00.00.000ooooo 19 a. c. 4a“.cn.ca.untn.n:L.Lh...2 .r.f: .57»;.....1.¢:.7:C:..p76..."... 3 .3 R 12 a. 1:? 34.3.5.7.7 Keg/3:2. .... ....F. :.cv....4...r.... 5:2. . 1 - 9. 15 - 9.19.1.3 4,31 . g u g .1. g .9. c p S K. c In L s EE.E.EEEEEEEEEEEFEEF.EEEEEFEEEEEFEEEEEFE DCCCCCCCCCCCCCCCCCCCCCCCCCCCFCCCCCCCCCC NIIIIIIIY.IT.III1111111....11.121.111.111....1111... 5R9 RRRRPRRRRRRRRRRRRRR RR? RRRRRRRR Ro.RPRR PPPPPPPPPPPPPPPPPPPPPPPFFPPPFFPPPFPO. PD. 8 . E c 10521?“ p: r: 73¢. “.1234-367 3.6. 5.41343 4.: 6718: «217:: “4:57 0C R 11111111 119—adaéaluszz.acanal.aé1_331u1x1.1.1....u u. ”I c DHHUHUHUUHHUHHHHHUUuIHulHnlUnIuHHlululuullnlnIulnhUnfl AuCaUfiuoooooocAUooOOOOOOOOAUCCOC.UCC.UC«U«J PJaua...nU~d WRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR -, 3-17 T.‘...,:.r;..q...1.,.1on.~r; .9... L. ..L.....L..... . 0.9.7251722. 03.9»...1—«LZZL.UC¢L~ISU«U A. .1.C...1..z.:.:3...izuuzfizufi........v1.C.Uab .90 CL ~L1.1.1..1»L2 .0... r..~latr.... ......» l.oooooooooooooooooooo A».u..........1.....c..r..77 C.7.:1.ao13...r.1.:£ M::.:71= 5.1.c13....3€:,1c 1c 47 11% 353579.?o....~2c.52:.2:....u1 .Ioo ....Lnu:$20.40Gui—1.21041o‘111u1ugd 1o OFT SSSSSSSSSSSSSSSSSSSS NT.T:1 IIIIIT. III III 7111711.. I G NQLEIQ . .A “.J=.éeo_.1.fisq=.7ar..n~a .5. I. .. .q .13.:.24»;at...r‘1..1o1o3.¢3 44 h C P 0 FYVIYV.YYYVIYYYVIYYYYYYYY TTTT.T.0TT¢ITTTTTTTTTTT FII‘IIIIIIIIIII.LIIIII OVVVVVVVVVVVVVVVVVVVV Y.II?$AIIIIIIIIYJIIIIII TTTTTTTTTTTTTTTTTTTTT Conway...»CCCCnbccccauccccccc mAAAAAAAAAAAA-AAA‘AA‘A HOLDS PRICE RANGE OVER HHICH OPTIMAL SOLUTION fiaCOfiaCfiuOfvrd.u.ua...Una.U7C.T..,«JC..XUD TIES... p... {concocopdC-firbaurUnan.3.531.233.0....1..uu.... C 90003030933 su.n....L.U,:CCnt= 39.28;: Cr. T. 9.86.9.2.useféaz.“1.26.U.U..u.:.bru. Earn». 2'». :as. . F ooooooooooooooooooooooooooo FDooUOCBOCQ .31164354952503 :2. .....25 77.4\45a..51...2611. 3 U3: . 4.4675: 595: 7.7 1... D 9 13 9 a: C: C. 1.... ... 5 9 9 9 at ..u. a. ... 9 q 9 a. 3 Ca ... R a .5 ”D .C Dc .3 O. YE TD. IP VU7:U13=.2454.-.? EU? 3:2.;7n.73121 1:. .p. 7 555.356.5757. 7 2 7. 3 55:1! 7 ACTI «L3 CCaUZS?Cf1JC.dC 297a ... . 5.2.435 . Xuln. fib:.r§...b h. 69,-? 3.3.5.3: ...J Bra-aunrfl CCGOnU .Ufit... .5 09875475059 Chan. 5n..cC4350 n. 052... r.w 595a154CCUCPJECICEC5.0203004...» C oooooooooooooooooo00.00.... T. 95034117533006053265152452,: R 43C817.37256550788377..21 Zn. P (4.0.39.1. 7:35:123 ply-3.01.9.8 1.1:..1336, C DO. . E.L.-... . 551. .2...11....n.2r.1n.1.2 n... NC 005 91.7.0 . C . O . O . ..u . 1......» C UC CCC CCCC .... C 0 .L [CC «. 0:. 0.6.3. 6 2.9.37 6. 6.. c. c. 6 can: ... 3. . . . . g . . . . . . - c . . YR TE Inn voosoonuvt1w1vfi.39u06.u«deb—301.07.....nsfaco.3~... UL 7 777 7 2 2 3 3 47 C SP 12‘.‘ 3.575935123—3 8147 393120. 1223,27 19‘111 IZGLnQSu-«utzb 4 4.“. 4 a. YYYYYYYYYYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTTTTTTTTT IIIIIIIIIIIIIIIIII IIIIIIIII VVVVVVVVVVVVVVVVVVVVVVVVVVV IIIIIIIIIIIIIIIIIT.‘IIIIIIIII TTTTTTTTTTTTTTTTTTTTTTTTTTT CCCCCCCCCCCCCCCCCCCCCCCCCCC AAAAAAAAAAAAAAAAAAAAAAAAAAA 9-18 n) i.- 3 H c r f. \ OLV I! C u The Optimal Solution of the 75 Percent Navy Bean - 25 Percent P. Sugar Beet Production Model OPTIMAL SOLUTION ( OBJECTIVE FUVCT START Lo «.2... .r: ...Ur.3.-.runL.LF)O.1:on.-." V1.2 r.t..L. :Uno. . 3...» 3.: 35:0,; .UO.-.ZL7£:.Erafirieuavcnu.JG «can .. KAIpJ. .un, «Fe-Ts? u..ua..a7a;..=.a7a..-.;1rcfi urn-QUJflJ. . I .q 21C:.r....l.c.u..\u.u.21.:.T.83a7.40nJ.LerL7. oooooooo0.0000000000000000 .J?.J.Uc...t:.:31 1.1. 1.1.1.355 35:35.55). .250 1 757 2 753 6... 7 99.1. 3 1,. O; I. ION TSSSSSSSSSSSSSSSSSSSSSSSSSS UIIIIIIIIIIIIIIIIIIIIIIIIII m S . .l....3a..;:70 c....13.....-..3=.7353913557 um 11111222533344“ 4 A. I S . . . ‘ EYYYYYYYYYYYVYYYYYYYYYYYYYY ITTTTTTTTTTTTTTTTTTTTTTTTTT TIIIIIIIIIIIIIIIIIIIIIIIIII IVVVVVVVVVVVVVVVVVVVVVVVVVV VIIIIIIIIVIIIIIIIIIIIIIIIIII ITTTTTTTTTTTTTTTTTTTT TTTTTT TCCCCCCCCCCCCCCCCCCCC CCCCCC “AAAAAAAA AAA ‘AAAAAAAA “AAKKA ArJflJ.......vr! AUDUQJPU“.....\I.¢~.o..|: .q.—Q&~.4~.4P.._.;-. ... .- ...—14a; 1...: ~ .~ . .. .... L .. 3:... a)...» «U.J-..Z..:J~UAJW:J9:....u7n:Jfi.q-.. . Jan. :33: . J. as... :u. 57”...» Z; «babe... .afi.aU.Unu:JflL.u.Jnanb=qu£fics 19159.- 3 than: 1dr? v.39 ...... t. : a» .P. nuts :90 WU.J..J-Ja.JGAUau..:JTaJ’DA...v.4. :u'.c.1...aq..~4.-..a.u..: 1.14... 2.... ..-; . ooooooooooooooooOOOOQoooooooooooooaooo .Ja L .. .nqu «a.~fia..a1v.hu.n.nasdfi.75.1..2n.....a.u? ......rquip .. .. It... a .331 4 3 4.9, 72.. 4.. 1. 1.. .1. a 22.1,. ... ....a. SSSSSSSSSSSSSSSSSSSSQSSSSSSSSSSSS$5883 359.55 S $55535553355339335 SSSSSSSSS $9.533 SEEP.FEEE.LEEEEE....E.:{Er.... ..Lc...:r:..:...E:3..EEE: . ....EE? CCCCC CCCCCCCCC» VCC CCC» .CCCCCOOCCCCCC c CC .... YXXXXXYXXXXX3XXKIVVXXYKXXXXYXVXYVXVYXX E.L.L... .LEEEEEE:.3555555:2r... ..Etc:L....E..tc:.=tr.r_7.55.... ..ZU G.Ufl..ur.PJqLccnurL..Ufi:U.rUfl: sp..4......u3..ur.«...q .fivt.nvn........Jgirl: . a z 1 2.1... t.....CCOCU.....C.-:.J..1..«LA ; : ..C1:.,.....=.=.C=2L5. .. .... a .. .. I; 054.3923»? aitXUaLfUAUaUOAIQ. sf..-.r....:;...cf: .2 ft...nu...vf..tea....~.....:..a . 7a. . ...».Unwnwloooau... 23.5935. ano.u..u=.z....L :5?5325...5. :4, LL ooooooooooooocoo.coo-0.000.000.0000... 1.. n. :. “fiofi..UaJa.«..azp:U.b.:....r...uf..edit-0..plastv:.€.=.a¢ap21,. 1. 3 a. 1.2 1 ...3. 3QC...171:L7:: 9. 3,: .....cc 4...: ....ac... l .2 1.11.11.34.21. . . . .1. . .2 S . . K c an L S EEEEEEEEEEEEEEEEEc.EEc.EE...EErzit—LE»....:tEEcE. OCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCC “IIIIIIIIIIIIIIIIIIIIIITITlIIIIIIIIIIIII-1 ARRRRRRRRRRRRRRRRRRRQRRRRRRPRRRQRRRRRFR SPPD PPFPPPPPPPFFPPPPD.D PPPPD.PPPPPPPPPP ..r .v. 9‘ c I1.21.4-... £312-57 C123 ‘56-, Q 6.54%.n42a4=.r—.7rfi—7. .1247?“ gar—.7. E 111111.1Qa119zéa49sase55246176313313).-:3133 NIPR DHHHUHHHHHHHUHUUHHHHHHHHHHUUUHHHHHHHHHH AOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOCOOOOO WRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR B-19 OVA .1. .1 V 90 T P . ...r t .o .....raol: 3 .....PL..snu.Ua.vp.erfs ABA .1or:§ .LSJCCqUP‘.rq:..sourvoea .PUG L . 3.1.2.: ...-.1..C2: .C:JG.Cf.nu.Ln r .r... .. .14 0&4 ..up Iliulonta .r..Cns.Ut.ILfis-..~ Loooooooooooooooooooo .. 1..........13c 1:77.67 striatirzlz ..H...1.:. I: .-....u.1.3:..1......2: 9.: ..v. 47. [1.5-353.931.)? 2n 3....” 7;: .355qu T1.1.1.11:42:2121.221.21.03... 0. CI. a... A. {230009SSQuSSSSSSQ~SeQSSCuS B.IIIIIIIIIIIIIIIIIIII T. G p: 4.37:..... $344.53.. 1e._1o4.~.wu. .....4. 1...: Ti 1.. .....32...22.2312331“.54 a. 4 C R AL FYYYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTT FIvLIIIIIIIIIIIIIIIIII OVVVVVVVVVVVVVVVVVVVV III?.IIIV&IIIIIIIIIIII TTTTTTTTTTTTTTTTTTTTT SCCCCCCCCCCCCCCCCCCCC GALAAAAAAAAAAAAAAAAAA C S SCLUTION HOL” CPTIVSL R HHICP CVE PRICE QEHCE :35 335» 330??» 321...... .0335: n.....a.-.»...r=...... E ...“~.u3...»un.:bnucccs. .... : J 330.22» .33.. 32...”. C a. or... 553403538. that...“ 3303; 3 5723.13. c T. 3.. 5,.-.n:Jn. .IJ..U..~«L.U£:L. .r :1: S or- .1‘. ..ur . .q..=..rt~... R cocooooooooooooooooone-coco P086..OCUCOCC. 911;. #.U74815330 3... N26 .7 70.. .454 ..617o 611 3 U3.» ..44 :55: 57...: v.7 C P o. 1:? .7 .o a. .7 11. C 0;. a, a, 9 9 .9 9. ... :. ... 3. c. a. a. a. R I. ...). 2.. 34. .4... 3... c VI.r. Tor ID. VU3CI3524541..ZE ...-0.330. 175?...122125: . 7 5555558787 7 7 7. 3 9:28? 7 01.39.3263 .333 3.U.u20505a....30.. .031... h .33 CatQOaSndcaufieooa.£095,F.2e..~...0fi..33 998754750000CCECZCQOEOOUCZC n.9341545fi..0.u.u£:c10335nu3009053 ooooooooooooooooooooooso... «Ceca.941175312.:Ur;u312625524035. a... .8017. 3726668: .539337121 23 16.3391. 2553493331.“19.21.39 AL ...... . ..LCC- .L.:1.CE...11¢ 0.251.313... . . N5 50...... 51.23. 9 . ..U. 0. 0.1.1.5 3 U..... 39?. 3F... 2: C 0 P. a; ...: ..L ... Pa. 999 3.2;. c.. ... c, G. c 9......9 ... o.- . o . ,. . c . _ . . . . . . . YR ...E In- VC339Unatazoqaoofinuésr.3491.5705991:» ”L 7 7.77. 7 7. 2 3 3 47 C A FFICE 1.234567593123557337358913567 111.111.27.219! 3!. Q‘Qa 4 YYYYYYYYYYYYYYYYYYYYYYYYYYY TTTTTTTTTTTTTTTTTTTTTTTTTTT IIIIIIIIIIIIIIIIIIIIIIIII-1.... VVVVVVVVVVVVVVVVVVVVVVVVVVV IIIIIIIVIIIIIvLIIIIIIIIIIIIII TTTTTTTTTTTTTTTTTTTTTTTTTTT CCCCCCCCCCP.CCCCCCCCCCCPlcccc AAAAA‘AAAAAAAAAknaAAAAAQAIAAAA‘ APPENDIX C Linear Programming Package by Harsh and Black (1975) Linear Program Package A linear programming package designed by Harsh and Black (1975) was used to solve the MILP models. In order to use this package one needs to provide the following requirements: 1. Matrix size (number of rows and columns) 2. Coefficient information 3. Row information 4. Objective values This package was adopted because it can handle modest size of linear programming where the objective is to maximize subject to series of constraints. In the MILP models, some constraints were added to force number of activities to be integer rather than functional number so that the LP package can handle it. ‘ Staff Paper.No. 75-10 AGRICULTURAL ECONOMICS LINEAR PROGRAM PACKAGE VERSION 2 -- APRIL 1975 BY - Stephen B. Harsh And J. Roy Black Iichigan State University INTRODUCTION .A linear programming package designed to handle modest-sized linear programming problems. ’The package will execute on a CDC-6500 computer. It is a particularly useful package for teaching and some research prob- lems because it is relatively simple to utilize from a user's viewpoint. The.objective of the package is to handle linear programming prob- lems of the following nature. . Maximize: n . ‘ (1) ‘z--.-' cx . - . 3.1- .13 Subject To: n (2) 1: a g... or 1 . .J-l 1’ :03 , Where: - .- i - l,2,...,m and J - 1,2,...,n To minimize Z, multiply cJ's by -1. The package requires that cj's a1 '3, and b1' 8 be inputted. Slack and artificial variables are automatica ly added. PACKAGE DESCRIPTION 222229.15: , _ Tb use the linear programming package, the user will have to supply the standard computer control cards (e.g., PNC, job card, password card, etc.) which will be followed by the data deck for the package. The -deck is as follows: , . CARD 1: Name and Job Description. A A - Alpha-numeric description of the linear programming problem (60 characters maximum) ‘ . CARD 2:. Options Used. .llegrlcrlfi;lgflpd Ihen A is equal to: ' O - No print; 1 - Print activities in solution. [hen B is equal to: ‘ ' A O 8 No print; 1 - Print shadow prices and slack values. 'hen C is equal to: - - ' O I No print; 1 - Print cost of forcing in nonoptimal activitie ihen D is equal to: ' O - No.print; 1 - Print initial LP matrix for verification purposes. ' Ihen E is equal to: 0 9 No print; 1 - Print price ranges. Ihen P (save and restore matrix option) is equal to: O - Neither save nor restore matrix; 1 - Save matrix from this analysis for adjustments in next analysis; 2 - Restore matrix from previous analysis for adjustments in this analysis; 3 I Both save matrix from this analysis for adjustments in next analysis and restore matrix from previous analysis for adjustments in this analysis. CARD 3: Matrix Size Card. l-g-l-g-l fl - Number of rows N - Number of columns cum 4 To CARD F-l: Coefficient Information. IT'I"""J""‘" I I Row number (integer value) J I Column number (integer value) A13 I Coefficient for row I and column J. (Decimal value. Decimal must be punched.) ' NOTE: Only need to enter nonzero A13 information. ‘ CARD F: End of Coefficient Information. (Blank Card) CARD F+l To G-l: Row Information. .l" I 'T ' El-"’""" "' E"; - -\"' " -| I I Row number (integer value) R I Restriction type (integer value) Restriction Code Type 1 . (LE) i 2 - (EQ):- 3 (GB) 1 Bi.I Bight-hand side value for row I. (Decimal value.. Decimal must be punched.) NOTE: A card is used for each row. CARD 6: End of Row Information. (Blank Card) CARD G+1 To H-l: Objective Values. l-“J'fl ----- era ------ I J I Column number (integer value) Cj I Objective value for column J. (Decimal value. Decimal must be punched.) NOTE: Only need to enter nonzero C3 information. CARD B: End of Objective Values Information. (Blank Card) CARD 8+1: Next Analysis Name and Job Description. F-_-,-I-----;....' A I Alpha-numeric description of linear programming problem. If STOP is coded in columns 1-4 of card, this will terminate operation of package. If not; code rest of deck for next analysis as for previous analysis starting with Card 2. ERROR INFORMATION The package checks for several input errors. 'hen one is found, it generally indicates the card at which the error occurs and nature of the error. The analysis is terminated when one is found. . Errors particularly common are indicating row or column values greater than matrix size or a wrong restriction type. OUTPUT OF ANALYSIS The output of the package includes the following: (1) C2) (3) List of data inputted. a) ‘ij 'b) b1 and restriction type c) c; Type of solution. a) Solution exists b) System is inconsistent c) System is unbounded If a optimal solution exists, the following information is printed: a) Value of objective function h) ’Activities in the optimal solution c) d) 8) Values of the restrictions Cost of forcing the nonbasis activities into the optimal solution . Price range over which the optimal solution held 000000 303 65 66 R6 100 PROGRAM LPCOMR (INPUTeOUTPUTI LINEAR PROGRAM WRITTEN BY STEVE HARSH AND ROY BLACKODEPTe OF AGR. ECON. MICHIGAN STATE UNIVERSITYoEAST LANSINGoMIo VIAoTHE BIG M-METHOD-SUBROUTINE RONSET SETS UP THE SLACK. SURPLUS AND ARTIFICIAL VARIABLES INCLUDING ATTACHING THE APPROPRIATE PRICESoSUBROUTINE LPSOL IS THE SIMPLES ALGORITHM ORIGINAL SIMPLEX METHOD USEDoARTIFICIAL VARIABLES HANDLED COMMON/ IDPM(600180)9RHS(60)oINACT¢6OIOISACOLtaoIOIRWTY(6019 1 OSJIIBC)02C¢1SO) ‘ DIMENSION-ACTIIBOIQPERSONlbI— DIMENSION JRPLIIBOIOJRPUIIBO)oOBJLIIBOIOOBJUIIBO) FORMATI/I READ-GSQJPERSONLIlctsl96.13.4— FORMATI6A495X0III IFIJeGTeOIGO To IRS PRINT 669IPERSONII301819603) FORMATIIHIOIXo///o| LINEAR PROGRAMMING ANALYSIS FOR '06A40/l/l’ DO 80 IsIOGO ' RPSIIIIOr IRWTY¢1380 INACTCIIcO ISACOLCIIIO DO 82 JIIOISO DPWIIOJ)IOO CONTINUE DO 84 JIIOISO JRPUIJIsO OBJLIJIIOO JRPLCJIIO OEJUIJIa9000OOOo ACTIJ)sOe OEJ‘JIIOe ZCIJ)IOQ READ»AOIORTIotOPTzoIOPTSOIOPTAOIOPTS FORMATIGIII READ SONOROWONOCOL FORMATC2I3I SUMIO ICARDIO READ 6OIJJOX. FORMATI2I30F1704) ICARDIICARD+I IFIXeEOeOeOOANOOIOEOOOOANOOJOEOOOIGO To IIO IFIIoLTeIeOReIoGToNOROUI CALL ERRIIaICARDoSUM) IFIJoLTeIoOReJoGToNOCOL) CALL ERRIIOICARDOSUMI 110 1:2 :90 191 130 AR 1:5 141 IRI 15% 160 4o 60 DPWIIOJ38X GO TO IOO JCOLINOCOL PEAD-ToIoIRHSTYORHSV FORMATIIJOIIOFISOSI ICARDIICARD+I IIII+IRHSTY+RHSV IFIIIoEOaOIGO TO I20 IFIIoLTeIeORoIoGToNOROWI CALL ERRI20ICARD0VUM) CALL ROUSETIIOJCDLOIRHSTYORHSVOICARDQSUM) GO TO IIZ READ 9OJOX .FORMATIISOFIGeBLw IFIX eEOeOeOOANDOJeEOOOIGO TO I30 ICAROIICAPD+I IPIJOLTeIeOReJeGTeNOCOLI CALL ERRISOICARDOSUMI OBJIJIIX GO TO I20 IFISUMOEOeOoOIGO-TO I25 PRINT 48 FORMATIJIH PROGRAM.TERMINATEDvFAULTY DATA) GO TO 1R5" IFIIOPTAoEOoOIGO TO I‘I PRINT I CALL LPDUMPINOROWONOCOLI CALL LPSCLCNOROWOJCOLOIOPTSOISOLTYONOITERvOBJVI IFIISOLTYOGTQOIGO TO I95 DO I60 IsIONOPOW DO 165 JIIOJCOL IFIINACTIIIeNEeJIGO TO I65 ACTIJIIRHSIII GO TO 160 CONTINUE CONTINUE truoenmowmo TO 1'73 PRINT 49 FORMATIITH OPTIMAL SOLUTION) PRINT I . FORMATIZOH OBJECTIVE FUNCTIONIOZXOFISOAI PRINT 60oOBJV PRINT I DO ITO JIIONOCOL IFIACTIJIOEOaOIGO TD ITO FORMAT(9H ACTIVITYOZXOISOZXOSH ISQFI504) PRINT SOOJOACTIJI I7U‘Cunrnwv: I75 IPIIOPTZeEOeOI GO TO I85 PRINT I PRINT I PRINT 52 R2 FORMATIBSH SHADOW PRICESOSURPLUSESQAND SLACKSI OO'IBO-IIIONOROW» JIISACOLIII IFIIRUTYIII eEOe 3IJIJ+I PRINT SAOIOZCIISACOLIIIIOACTIJI R4 FORMATIAH RONQZXOIAOZXOGH PRICEOZXoFISvoZXQTH EXCESSOZXQFlSoAI IRO CONTINUE IRS IFIICPTSOEOeOIGO—TO-I97 PRINT I PRINT I PRINT 56- RG FORMATIAIH COST OF FORCING.IN NONOPTIMAL ACTIVITIES) DO I90 JDIONOCOL IFIZCIJIOEOeOQOIGO TO-I90» PRINT SBOJOZCIJI n8 FORMATI9H ACTIVITYOZXOI303H ISQFISoAI 100 CONTINUE PRINT I' PRINT I I07 IFIIOPTSeEOoOIGO‘TO I95 00 70 IIIONOROU 213.90000000 KIIO' 22' 90000000 K230 DO TZ'JIIOJCOL IFIDPMIIOJI CEO. OeOIGO TO 72 XcZCIJI/DPMIIOJ) IFIXI’AOTZOTG 7a IF¢XoLEoZlIGO TO 72 KIIJ ZIQX GO TO 72- 76 IFIXOGEOZZIGO TO 72 KZIJ 221!" 72 CONTINUE JRPLIINACT‘IIIIKZ' OBJLIINACTIIIIIOBJIINACTIIII-ZZ JRPUIINACTIIIIIKI '70 «9' soc cos as R7 :6 106 In: C-lO OBJUIINACTIIIIIOBJIINACTIIII-ZI' CONTINUE PRINT 59 ‘ FORMATIGGH-PRICE RANGE OVER WHICH OPTIMAL SOLUTION HOLDS) PRINT I FORMATIZOXOIZH LOWER BOUNDOIOXOIZH UPPER BOUNDI PRINT 600 FORMATI I9XQ9H ACTIVITYOEXOGH PRICEOSXO9H ACTIVITYOSXOGH PRICE) PRINT 605 FORMATI9H ACTIVITYOZXOI4OZX0I402X0FI50492X9I40F150GI DO 86 JBIONOCOL IEIZCIJII 86087.86 PRINT BSVJOJRPLIJI*OBJLIJIFJRPUIJIOOBJUIJI“ CONTINUE CONTINUE GO TO 300‘ STOP END 10 r2 14 :5 SUBRO UTI SUM,SUM+NE ERRII Go To‘ ‘ TYPEOICAR ppzNT :320304I0ITYPE U.SUM, RETURN OICARD“ PRINT I :5 N 20ICARD INT 1e :5 N oICARD INT I50 ICARD :ETURN RMATI 40H I NPUT ERROR 0C OEFEICIENT MAT RIXO AT CA RDOZX OISI FORMA NPU T(3 FORMA ‘H‘t TI3 T p 3H NPU ERR ORMATI3ZH ILLET ERR32:3HS VECTOR GAL RES BJ FUNCT OAT CARD TRICTION T$°~.AT CA;2xr‘5r FE AT DOZX . OISI ROW ZXOIS I END“ C-IZ SUBRCUTINE LPSOLINOROWQNOCOLOIOPTSOISOLTYoNOITERcoaJV) COMMON/ IDPMIGOOIBOIORHSISOIoINACTISOIoISACOLIéoIOIRWTYISOIo 1 OBJ(180IOZCI180) DIMENSION-COLKEYIGOI ISOLTY81 PRINT 2I16 - BI 16 FORMATI 1X0 'START Lo Po SOLVE H Norfshs-x 200 NOITERINOITER-I-I JZCMXaO ZCMXSO. DO IOI JIIONOCOLvI 2800 DO 102 IIIONOROUOI KaINACTII} I02 ZaZ+IDPMIIOJIIOBJIKII 2090 FORMATIIERROR CHECK*I ZCIJIIZIOBJIJI IFIZCIJIIIOBOIOIOIOI 103 IFIZCIJIIZCMX)10401019101 1A4 ZCMXsZCIJI ' JZCNXsJ IO! CONTINUE IFIJZCNX eGTe OIGO TO IIO IFINOITEROGTaOIGO TO IIZ PRINT :0 ‘ IO‘FORNATCSH CHECKI RETURN I12 Xa-I9*IIO’*SII DO IIS IIICNOROUOI JIINACTIII , . IFIRHSIIIOEOeOoOI GO TO IIA IFIOBJIJI eEOa XIGO TO 600 I14 IFIIRUTYIIIeEOeIIGO TO IIS JsISACOLIII ZCIJIIZCIJI+X 115 CONTINUE OBJVaOe DO IZO'IIIQNOROUOI KSINACTIII 190 OBJVaoeJVIIRHSIII*OBJIKII ISOLTYSO- RETURN 600 PRINT 60 I13‘ I“! I“ 1C6 16¢ 30» 1:“ IO 16° I71 170 I76 I75 c-13. FORMATIBZH'THERE ARE NO FEASIBLE SOLUTIONS) RETURN IFINOITEReLToMXITERIGO TO I13 PRINT ZO’ FORMATIZBH NO ITERATIONS EQUAL MAXIMUM) RETURN RMIN89OOOOOOOOO NKRIO DO ISO IsIoNOROUoI IFIDPMIIoJZCMXIIISOOISOeISI ReQHSCIIIDPMCIoJZCMX) IPIR-RMINIISSOIS6OISO RMINIR NKRII GO TO I50 DO”I60‘JIIONOCOLOI RIIDPMINKROJIIDPMINKROJZCMXI stDPMCIoJIIDPMIIOJZCMXI IFIR2-RIII550I6°OISO‘ CONTINUE PRINT SOONKRQI FORMATIZAH-CYCLING HAS OCCURED ATQZXOIAQZXQIBI' RETURN CONTINUE IFINKROGEoIIGO TO I69 PRINT SOOJZCMX FORMATIZBH UNBOUNDED SOLUTION.ACTIVITY.2X¢I5) RETURN INACTINKRIIJZCMX DO 171 IIIoNOPOWOI COLKEYIIIIDPMIIOJZCMXI DO ITO JIIONOCOLOI DPMINKROJIsDPMCNKRoJI/COLKEYINKRI RHSINKRIIRHSINKRI/COLKEYINKRI DO I75 IIIONOROVOI IFII 0E0. NKRIGO TO 175 RHSCIIIRHSIIIIIRHSINKRI*COLKEYIIII IFICOLKEYIII aEOe OIGO TO I75 00 I76 JIIONOCOLOI IFIDPMINKRVUI eEOe OIGO-TO I76 DPMItoJ320PMIIoJl-(DPMINKROJI*COLKEYIIII CONTINUE CONTINUE GO TO 200 END C-14’ SUSROUTINE ROVSET¢IoJCOLoIRHSTYoRHSVoICARDcSUM) COMMON/ /OPM(60¢!80).RH$(60).INACTCSO)oISACOLCGO)oIRWTY¢60)c I OSJCISOIOZCIISO) JCOLIJCCL+I INACT(I)aJCOL ISACOLCI)IJCOL IQVTYCI)§IRHSTY RHStt)aRHSv IFIIRWTYIIIOLTeIeOReIRUTYIIIeGTIBICALL ERRCZolCAROoSUM) IF!RHS¢I)-LT.0.0I CALL ERRCZvICARDoSUM) OPVCIOJCOLIII IFIIRUTYCI) OCT. 1360 TO 202 OB’JIJCOL I'o‘e GO TO 140 202 OBJIJCOLII-¢9*¢10**SII IFIIRWTYttloEOoZIGO-TO'IIO“ JCOLIJCCL+I OPMCIOJCOLII-I , OBJIJCOLI'Oe IaO RETURN END IDA CARDS LISTED ON 14 PAGES APPENDIX D Machinery Cost Computer Program by Rotz (1981) Machinery Cost Computer Program This model was used to estimate the total annual cost of using the required implements in a crop production system. The input data required to execute the program varies depending upon the type of machine to be analyzed. These data include machine purchase price, age (row indicated new machine), power (in kw for tractor and combine usage), width (in m for implements), fuel type (1 = diesel, 2 I gasoline, 3 = petroleum gas, for tractor and combine usage), and speed (km/hr for implements). The computer output of Rotz model provides the following information: 1. Ownership cost . Repair and maintenance Fuel Total present value U‘ b w N e . Average annual cost MACHINERY COST COMPUTER PROGRAM C. Alan Rotz October, 1981 'The machinery cost program computes the total costs of own- ing and operating farm machines, tractors and trucks. It includes the cost of capital, interest, insurance, shelter, repairs, maintenance, fuel, lubrication and labor. Infla- tion is modeled for all costs with a separate rate used on Inachinery, fuel and labor. Income tax deductions are modeled .to include depreciation, interest, and operating costs along ‘with an investment credit of in percent of the initial machine cost. Tax deductions are subtracted from the sum of all other costs to give a total cost. This cost is given as a total present value cost and as an equivalent annual cost. Data Required bngrogram When provided the appropriate input data, the machinery cost program can be used to analyze the costs of farm machines, tractors or automobiles. It can also be used to analyze the costs of 'several machines or a full crop production sub- system when supplied with data for all required machines. Input data required by the program includes: Machine Numeric code shown in table below. Entry Type- of 15 branches of the program to read your own repair and depreciation factors. Entry less than 15 allows use of stored factors. Machine Age of machine in years. Zero indicates a Age- new machine. Wage Rate- Hourly charge for operator labor. New Price— Dollar cost of the machine purchased new. Power Rated power of tractor (PTO kilowatt) Rating- Annual Tractors - Average Annual use in hours. Use- -. Machines - Average Annual use in hectares. Fuel type- I. I Diesel 2. I Gasoline 3. I Liquid Petroleum Gas. Fuel Price per liter (decimal entered). Price- Machine Operating width of machine (meter). Width- ' Machine Operating speed of machine in the field Speed- (kilometer per hour). Hours per Requested for automotive only. Average operation year- of vehicle in hours per year. Kilometer Requested for automotive only. Average fuel per liter-_ consumption. Information Assumed by Program Some parameters for the cost analysis are set internally by the program. , These parameters include income tax informa- tion, inflation rates and loan information. The program assumes an income tax rate of 25 percent. All machines are depreciated for tax purposes over 5 years using the 1981, Accelerated Cost Recovery System. Three inflation rates are used to model a separate inflation on machinery, fuel and labor. Machinery costs are inflated .at the rate of 11 percent per year. Fuel inflation is set at as percent per year while labor is set at 9 percent per year. The program converts all future costs to present value based upon a discount rate. This discount rate is set at 12 per- cent per year. All machines are considered to be purchased with a loan with a 20 percent down payment. The term of the loan is set at 5 ‘ years with an interest rate of 12 percent per year. Additional information is assumed for the field efficiency, repair factors and remaining value factors. These values were set to appropriate values based upon informationn found in popular text books on farm machinery management. Impl ement Type B RC1 RC2 Rv1 Automotive 1 --- .055 1.8 .80 'Tractor 2 --- .025 1.6 .75 Combine, Sp. Eq 3 .70 .140 1.8 '.75 Moldboard Plow 4 .85 .610 1.3 .7! Disk Harrow 5 .80 .230 1.8 .70 Chisel Implements 6 .80 .230 1.8 .70 Row Planter 7 .65 .670 1.6 .70 Drill 8. .60 .210 1.6 .70 Sprayer 9 .60 .710 1.4 .70 Howet- 1.. 085 0410 103 070 Conditioner '” ' ‘Rotary mower- ll .85 .260 1.6 .70 Conditioner Forage Equipment 12 .70 .330 1.3 .70 Wagon 13 --- .300 1.6 .70 Blower 14 --- .240 1.3 .70 Use of Program . The machinery cost program is stored in a permanent file in the Cyber 750. It is in compiled form for economical access and use in a permanent file name ROTZMACHCOST. It can be used by attaching a work file to the permanent file and exe- cuting the work file. An example job is shown below. for Interactive Use For Batch Use (Log in) (PW card) CONNECT, INPUT, OUTPUT. (Job card) PROMPTION. (PW card) ATTACH,W,ROTZMACHCOST. ATTACH,W,ROTZMACHCOST. w. W. . 7/8/9 (data cards) (deta cards) 99.. ' srep (309 OUPI 6/7/8/9 Data'cards for the program can be given in any format, how- ever, the numbers on the cards must be in proper order. The proper order is dependent on the type of machine analyzed as given below. Two data cards are required for each machine analyzed unless the machine is purchased used. For a used machine a third data card is needed to give the purchase price and use on the machine. RVZ .84 .87 .88 .90 .90 .90 .90 .90 .90 .90 .90 .90 .90 .90 Form for Input Data The input data required to execute the program varies depending upon the type of machine to be analyzed. There are three major forms for the data to model the costs of either a tractor, farm machine, or truck. These data forms are listed below. raucx on AUTOMOBILE (Type 1) (1) Machine code, Name (2) New'cost, Age, km/yr, km/liter, Insurance cost (3, If used) Purchase price, kilometers on vehicle TRACTOR OR SELF-PROPELLED MACHINE (Typc.2 or 3) (1) Machine code, Name (2) New cost, Age, Power, Annual use, Fuel type (3, If used) Purchase price, Hours on machine INPLEMENTS ('1'ch 4 tOIS) (1) Machine code, Name (2) New cost, Age, Annual use, Width, Speed (3, If used) Purchase price, Hours on machine CHANGE OF PARAMETERS Data can also be used to change parameters which have been set internal in the program. Parameters can be changed by using code 90. or 95. as shown. 90. DATA Fuel price, wage rate, Work time ratio, Insurance & shelter rate, Income tax rate, Print level. 95. DATA Down payment, Interest rate, Discount rate, Machine Inflation, Labor Inflation END OF DATA Date is required to specify the end of a system of machines by assigning a code of 0. and a code of 99. should be specified at the end of all systems. ' eeeeeeeeeeeeeeeeaeaeeeeeeeqeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeee e HACHINERY COST PROGRAM C. ALAN ROTZ OIISIOI R D.R.!RI...IRIRRRIROARRIRRIRIIRRIRRIRRRRIIiiIRRRRRRRRRRIRIRRIRIRIRIIRRIIR PROGRAM SYSECON¢INPUT,OUTPUT,TAPESIINPUT.TAPEA-OUTPUT) CDHflON INECI NN.DPAY.IR.A,G.E,C,PP.UAGE.UTINE,TISR,TRI,PRNT REAL TOWN<200),TREP(ZOO).TPUEL(200).TLAE(ZOO)oAC(ZOO),PVC(ZOO) 0.2(200).IR ' l 5 TPVC-0.0 IIO IO READ (5,IOOIT.ZI.22 ircr.ro.o> co TO so xr(r.so.90) asap *.FP,VAGB,WTIMB,TISR.TRI.PRNT xrcr.ro.95) asap *.DPAY.1R.A.C.B.C xr co TO 10 1r(T.ro.99> are? I-IeI 2(1).z: cant Hscou (7.21.22.?OVN(I).TRSF(I).TFU£L(I).TLAB(I),AC(I).FVC(I)) so To 10 so wnxrs<6.:xo) waxrs(¢.120) URITB(6,130) watrr<6.1zo> DO 60 K-I,I wnxrr) 130 FORMAT(3!,"COST“,4!,"DVNSR8HIP",2!,"RBPA!R".6X,”FUBL", e38,“LABDR",SX,"TOTAL",4X,”AVBRAC£“,I,5!,"TYPB",6X.“CDSTS", e4!,"&flAIN.",26!,"PV",6!."ANNUAL") ~ ieo FORHAT<13.A10,6E10.0) :so , ronnarcax."rnzssur varur or svsrrn cosTs: s".rio.0) are! run . ausnourxus nscou (7.21.22.TOWN.TREP.TFUBL.TLAB.AC.PVC) common Intel NN,DPAY,IR.A.G.B.C.FF.VACE,VTIMS.TISR,TRI,PRNT REAL ucosr.nxtrv.nrc.xxs.xur.tason.acar,xn Diurnsxou s:15>.nt1.ncz<:5).av:<:s>.nvz<15).rrt¢3>.rra<3> C 09 C INITIAL INPUT DATA C DATA r:1..1...7..as..e..a..as..a..6..es..es..7,1.,1..:.l DATA act/.055..ozs,.14,.61..23..23..s7,.67..7:..41..ze..33. 4.3,.24,.OI DATA nczli.e.1.6.i.h.:.3.1.a.1.e.1.6.1.s.1.3.1.3.:.6.x.3.i.6.:.3. +1.! DATA av:1.e..7s..7s..7..7..7..7..7..7..7..7,.7..7..1..7I DATA av2/.ee,.a7..ee..9..9..9..9..9..9..9..9..9..9,.9..9I DATA ACRE/.15..22..21..21,.211 DATA PPLI.169..25..26I,PPHI.203,.41,.49!,NNIiO/,TRII.ZSI,VTIHBI.0I DATA TIBRI.Oil,Cl.iil.Al.121.3!.2!,CI.09I.DPAYI.2I.NMI5I,IRI.12I DATA rel.32!.wacs/q.zs/.Pnurlz.ol EEC-1.0 . TARO-DLDUSB-FVC-DPC-TDVN-TRBPeTFUBLeTTD-TLAB-0.0 1r (7.80.13) aran *.s.nc1CAp . o. . xrcx.:o.1)CAp - CAP + DPAYH xr(x.So.NN) CAP . CAP — RV*(1.+C)**NN c C OWNERSHIP COSTS TIS I TISR‘NCOST*(RV1(T)*RV2(T)"J+.5)*(1.+C)**I IP(T.BO.1)TIS I TIS + INS*(1.+C)**I TOWN I TOWN + (CAP+TIS)I(I.+A)**I c OPERATING COSTS ' TAR - NSDSTtnc1(T>*<<0LDUSS+USSt)Ixooo.)aracz an? . (TAR-TARO)*(1. c)*-1 TAno . TAR TBS? . Tax? + nap/<1.+A>ttx runnn g 1.:5trvznrt1.+a)a*x TPUSL . Truzn 4 FUELLI(1.+A)**I LABOR . 1.1awAcztUS2u<1.+c)utx xr(T.cT.a)LASon . o. TLAS - TLAB + LABOR/(1.+A)**I C INCOME TAX DEDUCTIONS D I 0.0 IP(I.LT.6) D I ACRP(I)'RVO NORT I ANA£1(0..NORT-PAY) IT I IR'HORT TD I TRI*(D+IT+TIS+RSP+PUELL+LADOR) IP(I.CO.I.AND.TRI.NE.O)TD I TD + .13RVO TTD I TTD + TDI(1.¢A)**I C TOTAL COST TOTAL I CAP+TIS+REP+PUELL+LAIOR-TD PVC I PVC + TOTALI(I.+A)'*I OPC I OPC +'(TOTAL-CAP+IT)I(1;+A)**I IP(PRNT.DO.I)WRITE(6.130)I.CAP.TIS.RCP.PUBLL.LABOR.TD.TOTAL 50. 'CONTINUE ' C PRESENT VALUE COSTS AC I PVC*(A*(I.+A)'*NN)I((I.+A)**NN-I.) .AOPC I OPC*(A*(1.+A)**NN)I((I.+A)“NN-I.) IP(PRNT.IO.I)WRITE(6.IIO) C PORNAT STATDNENTS 100 PORNAT(II.IC."PROJECTBD COSTS OP ".AIO.AIO.I) IIO PORNATCIX.IZ(6H------)) 130 PORNAT<1X."Y3AR".ZX.“CAPITAL”.ZX."INSURANCE",ZX"REPAIRS". +4!.”PUEL".SX."LABOR".33.“!NCONB TAX".ZX."TOTAL",I.163. of‘ SHELTER“.2X."& NAIN.“.3X.“& LUB.".12X.“DEDUCTIONS“) 130 PORNAT