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NORMALCY OF SUMS AND PRODUCTS
OF NORMAL FUNCTIONS AND REAL AND
COMPLEX HARMONIC NORMAL FUNCTIONS
By

David Winfield Bash Jr.

Let £ and g be normal functions from the unit disk into the
Riemann sphere. A normal function is a uniformly continuous function
when using the hyperbolic metric in the disk and the chordal metric
in the sphere. Necessary and sufficient conditions are established
for f+g to be normal and for fg to be normal. From these conditions
some simpler sufficient conditions for f4g to be normal and fg to be
normal are established. Also inequalities and quotients involving
normal functions are investigated. Employing the product results
several theorems concerning normal functions and Bers' pseudo-
analytic functions of the first kind are presented.

Real valued normal functions are investigated and used to
obtain information about normal functions in general. The logarithm
of a normal function, if continuous and single valued, is normal
and conditions guaranteeing that the exponential of a normal function
is normal are developed. Using the exponential function a necessary
and sufficient condition for a real harmonic function to be not
normal is proved and applied to show that if u and v are real har-
monic, normal and u-K < w < vHK , then w harmonic is normal. The
exponential function is also used to connect sums of real normal

functions and products of certain normal functions.
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A subclass of the class of normal functions is defined and
characterized. The functions of this subclass, called very normal,
are closed under additions and projections to the real and imaginary
axes and they are compared with uniformly normal functionms.

A type of sequence, called (A) sequence, is defined for an
arbitrary function f and it is shown that the complex valued harmonic
function f is not normal if and only if f has a special type of (A)
sequence. Also (A) sequences are used to obtain several other

properties of functions which are, in some sense, not normal.
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I. INTRODUCTION

Lehto and Virtanen [15, p. 47] defined the function f(z) to
be normal as follows: If f(z) is meromorphic in a simply connected
domain G, then f(z) is normal if and only if the family {£f(S(z))}
is normal in the sense of Montel where z' = S(z) denotes an arbitrary
one-one conformal mapping of G onto itself. Lappan in [13] essen-
tially defined a complex valued function f(z) to be normal in a
simply connected hyperbolic region G if and only if f(z) is uniformly
continuous using the hyperbolic metric in G and taking as the range
of f£(z) the Riemann sphere W with chordal metric. Let D be the unit
disk and C the unit circle.

DEFINITION 1.A. The hyperbolic distance, p(zl,zz), between

the points z, and z, in D is given by (1/2)log((l+u)/(l-u)) = tanh-lu,
where u = ‘zl-z2|/|1-2122l. (See [9, Chapter 15].)

Since the hyperbolic distance between points in a simply
connected hyperbolic domain G is defined to be the hyperbolic‘dis-
tance between their images in D under any conformal map from G onto
D, we shall usually have D as the domain of our functions. Now we
state more precisely Lappan's definition of a normal function.

DEFINITION 1.B. ([13, p. 156]. A complex valued function

f(z) in D is a normal function if and only if, for each pair of

sequences {zn} and {z&] of points in D such that p(zn,z;) - 0, the

convergence of {f(zn)} to a value ¢ in W implies the convergence of

{f(z&)} to a.



In the case of meromorphic functions the above definition
is equivalent to Lehto and Virtanen's definition of normality (also
see theorem 3.A). We now state a few definitions and theorems we
will use frequently in this thesis.

DEFINITION 1.C. (Lappan [12, p. 43].) Two sequences {zn}
and {zé} of points in D such that p(zn,z;) -+ 0 as n » » are called

close sequences.

DEFINITION 1.D. (Lappan [12, p. 44].) The meromorphic
function f£(z) in D is said to have property (D) on a sequence {zn}
of points in D if {f(zn)] converges and, for each complex number
6, there exists a sequence {z'} close to {z_ } such that f(z ) - &.

THEOREM 1.E. (Lappan (12, p. 45].) The meromorphic function

f(z) in D is not normal if and only if there exists a sequence of

points in D on which f(z) has property (D).

DEFINITION 1.F. (Lappan [12, p. 46].) A holomorphic

function f£(z) in D is said to be uniformly normal if, for each M,

there exists a finite number K such that, for each z, in D,
p(z,zo) < M implies |f(z)-f(zo)\ < K.

THEOREM 1.G. (Lappan [12, p. 46].) A uniformly normal

holomorphic function is a normal function.

DEFINITION l.H. By the cluster values of a function f(z)

on a sequence {zn} of points in D we mean those complex numbers «

for which there exists a subsequence {znf} of {zn} such that
k

f(z ) - a as k » =,
Tk

A function in a Hardy p-class, p > 0, or a function of
bounded characteristic can be written as a sum or product of two

normal functions, but sums and products of normal functions need



not be normal (see Lappan [11]). It would be desirable to know when
the sum or product of two or more normal functions is normal. The
basic results in this direction are: (1) if £(z) is normal and
meromorphic in D, g(z) a bounded holomorphic function in D, then
f(z)+g(z) is normal in D (Lehto and Virtanen [15, p. 53]); and

(2) if £(z) is normal and meromorphic in D, g(z) a holomorphic

function in D such that 0 < M1 < \g(z)‘ < M, < o, then f(z)g(z) is

2
normal in D (Lappan [11, p. 1887). The sum of two uniformly normal
functions is normal (Lappan [12, p. 46]) but the product of uniformly
normal functions may not be normal. For example, let f(z) = Log(l-z)
and let Bf(z) be a Blaschke product such that f(z)Bf(z) is not normal
(see Lappan [12, p. 48] and [11, p. 190]). 1In chapter two some
necessary and sufficient conditions for sums and products of normal
functions to be normal and sufficient conditions for functions bounded
by normal functions to be normal will be presented.

In an effort to obtain a better understanding of holomorphic
normal functions, chapter three investigates normal real valued
harmonic functions (we drop the property of being harmonic when
convenient) and their relationships to normal complex valued functions
and some simple expressions involving normal functions. Chapter
four develops a subclass of the class of normal functions which are
closed under addition, and chapter five investigates normalcy and
non-normalcy of real and complex harmonic functions through behavior

on close sequences.



II. SUMS AND PRODUCTS OF NORMAL FUNCTIONS

We start with some theorems on sums and products of normal
functions whose proofs employ Lappan's definition of normalcy through
convergence on close sequences.

THEOREM 2.1. Let f(z) and g(z) be normal functions in D.

Then f(z)+g(z) is normal in D if and only if for each sequence {zn}

in D such that f(zn) - o, g(zn) - ®, and {f(zn)+g(zn)} converges

to a complex value @ (possibly =), the sum {f(z;)+g(z;)} converges

to @ for each sequence {z'} close to {z }.

Proof. The necessity is obvious from the definition of
normal functions. For sufficiency, let {zn} be a sequence where
f(zn)+g(zn) - a. By considering appropriate subsequences, if
necessary, we may assume that f(zn) - B and g(zn) - v, B and vy
complex numbers. Let {z;} be close to {zn}. I1If B = = vy, then
f(z;)+g(zg) - o by the condition of the theorem. Otherwise g+y
is a well-defined complex number (possibly ) and by the normalcy
of f(z) and g(z) we get that g(z$)+g(z;) - Bt+y. Hence f(z)+g(z)
is normal.

Using theorem 2.1 we can prove several sufficient condi-
tions for f£(z)+g(z) to be normal in D where f(z) and g(z) are normal
in D.

COROLLARY 2.2. If f(z) and g(z) are normal in D and there

is a number M, 0 < M < ®, such that the sets {z:|f(z)| > M} and

{z:‘g(z)‘ > M} are disjoint; then f(z)+g(z) is normal in D.

4



Proof. The hypotheses of the condition of theorem 2.1 are
satisfied vacuously.

Let f(z) and g(z) be holomorphic functions in D which omit
the value zero, and let Qn(f) ={z: n< |f(z)\ < 2n},
Rn(f,g) = Qn(f) n {z: l-l/n% < |f(z)/g(z)‘ < 1+1/n%} and
Tn(f,g,p) = {z: |arg f(z)-arg g(z)\ < -y (n)} where p(n) is a non-
increasing function on the positive integers such that 0 < p(n) < 1.
For each z the arguments of f(z) and g(z) are chosen so as to have
the difference, in absolute values, less than or equal to w. Hence
the "arguments" in this chapter are not continuous functions of z.

COROLLARY 2.3. Let f(z) and g(z) be normal holomorphic

functions in D, each of which omits the value zero, and u(n) such

that (n sin pu(n))/(2 cos(w(n)/2)) increases to infinity mono-

tonically as n increases to infinity. If there is a positive

integer N such that n 2 N implies Rn(f,g) is contained in

Tn(f,g,u), then f(z)+g(z) is a normal holomorphic function in D.

Proof. It suffices to show that if {zm} is a sequence of
points in D and f(zm) - o, then f(zm)+g(zm) - o, Let ¢ > 0 be
given and let N satisfy the hypotheses, and let m > P 2 N and both

%-1)) > 1/¢.

(P sin w(P))/(2 cosw(P)/2)) > 1/¢ and P(1/(P
We may assume without loss of generality that z is in
Qm(f). Either z is in Rm, or \f(zm)/g(zm)| < 1-1/m%, or
lf(zm)/g(zm)‘ > 1+1/m%. If z is in R, then z is in Tm(f,g,p).
Since \g(zm)‘ > (1/2)m for m > 4, by computing the length of the
diagonal of the parallelogram of sides m and (1/2)m, with interior

angles u(m) and m-p(m), and noting that this diagonal is shorter

than |f(zm)+g(zm)|, we see that



‘f(zm)+g(zm)‘ > (m sin u(m))/(2 cos(W(m)/2)) > (P sin p(P))/ (2 cos (u(P))/2)

> 1/¢.

] m%-l
1f ‘f(zm)/g(zm)| < 1-1/m* = 3 then
m

)| < ((m%-l)/m%)‘g(zm)‘ <|g(z)|and |g(z )| > (m%/(m%-l))lf(zm)‘.
so |£(z )tz )| = |ez)| - £z )| =2 |f(zm)|(m%/(m%-1)-1) >
n(1/(ai-1)) > B/ (B5-1)) > 1/c. 1f £ ) /e )| = 141/m®, then

|£(z )+g(z )| > 1/e similarly.

We note that the % in the definition of Rn(f,g,p) could be
replaced by any number between zero and one to obtain a similar
result. In the proof we show that if f(zm) - o, then
f(zm)+g(zm) - ® also. In doing this, we use the érguments of f(z)
and g(z) only when \f(z)l and \g(z)\ are large and hence we don't
need to require that f(z) and g(z) be non-zero. If f(z) and g(z)
are meromorphic, we exclude those {zn} in D which are poles of f(z)
or g(z) and consider neighborhoods {Un} in D of {zn} such that
P < lf(z)‘ < @, g(z)i# o for all z in Un - {zn}, where P is as in
above proof. As before with given ¢ > 0, \f(z)+g(z)\ > 1/¢ for
every z in Un - {zn}. Since f(z) and g(z) are continuoué at zn,
\f(zn)+g(zn)\ > 1/¢.

There exist normal holomorphic functions f(z) and g(z)
whose sum is normal but the functions fail to satisfy the hypotheses
of corollary 2.3. Hence the hypotheses of corollary 2.3 are not
necessary. For example, let f(z) = (2+1)/(z-1), and
g(z) = (-1)(z+1)/(z-1) + z in D. Then f(z)+g(z) = z which is
normal; but, as evident, there is no positive integer N such that
n 2N implies Rn(f,g) is contained in Tn(f,g,p) for any u(n)

satisfying the hypotheses.



COROLLARY 2.4. Let f(z) and g(z) be normal holomorphic

functions in D. If there exist §, M, t, Rwhere 0 < § <m, l < t< 2,

0<M< o, 0 <R< 1 such that the set

{

is contained in {z: larg f(z)-arg g(z)| s 1 - 83}; then £(z)+g(z)

t M < ‘f(z)‘ <w}n {z: 1/t < |f(z)/g(z)| <t}n{z: R< \z| < 1}

N

is a normal holomorphic function in D.

COROLLARY 2.5. Let f(z) and g(z) be normal holomorphic

functions in D. If there exist §, M, Rwhere 0 < § <11, 0 <M< o,

0 € R < 1 such that the set

{z: M< |£(2)| <»}n {z: M< |g2)| <=} n {2: R< |z| <1} is con-
tained in {z: larg f(z)-arg g(z)l <sm - 8}; then f(2)+g(z) is a

normal holomorphic function in D.

As before, the arguments of f(z) and g(z) in corollaries 2.4
and 2.5 are chosen so as to have the difference, in absolute values,
less than or equal to . Then the corollaries 2.4 and 2.5 follow
easily from corollary 2.3.

THEOREM 2.6. Llet f(z), g(z), a(z), and b(z) be normal

holomorphic functions in D with a(z)f(z) and b(z)g(z) normal, a(z)

and b(z) uniformly bounded in D by A and B respectively. Let

Dn ={z: n< \f(z)‘ <o, n< \g(z)‘ < ®, |z| > 1-1/n} and

En = {z: |arg a(z)-arg b(z)l < B(n)}, where B(n) is a real valued

function on the positive integers such that u(n)-g(n) is non-in-

creasing, 0 < y(n)-B(n) < w, with u(n) and Tn(f,g,p) as in

corollary 2.3. If n sin(u(n)-g(n)) montonically increases to

infinity with n and there exists a positive integer N such that

D, N ® - E U TN(f,gsu))) is empty, then a(z)f(z) + b(z)g(z) is

a normal holomorphic function in D.




Proof. Let N* = max (AN,BN,N) and let z be in
{z: N* < |a(2)f(2)| < =, N* < |b(2)g(2)| < . |z| > 1-1/N%}. Then
z is in DN so z is not in D - (EN U TN(f,g,p)). Hence
‘arg a(z)f(z)-arg b(z)g(z)‘ <1 - WE)-B®W)) and we may complete

the proof by applying corollary 2.5 to a(z)f(z) and b(z)g(z) with

¥
M =N*, R = 1-1/N*, and § = u(N)-B(N). b3 g
'l‘.";.' £y
We can also get a necessary and sufficient condition for E
g
a product of normal functions to be normal by considering again 3 B
convergence on close sequences. %3
=y

THEOREM 2.7. let f(z) and g(z) be normal functions in D.

Then f(z)g(z) is normal in D if and only if for each sequence {z }

in D such that f(zn) - 0, g(zn) - o (or f(zn) -~ @, g(zn) - 0) and

{f(zn)g(zn)} converges to a complex value o (possibly =), the

product {f(z )g(z))} converges to o for each sequence {z;} close

to {z }.

Proof. The necessity is immediate. For sufficiency, let
{zn} be a sequence where f(zn)g(zn) - a. By considering appropriate
subsequences, if necessary, we may assume that f(zn) - B and
g(z ) = ¥, B and y complex numbers. Let {zg} be close to {zn}. 1f
B=0,vy=wo, or if g =w, y =0, we have f(z;)g(z;) - o from the
condition of the theorem. Otherwise By is a well defined complex
number (possibly o) and by the normalcy of f(z) and g(z),
f(z;)g(z;) - By also. Hence f(z)g(z) is normal in D.

The following corollary follows easily from theorem 2.7.

COROLLARY 2.8. Let f(z) and g(z) be normal functions in

D. If there exists finite positive constants Kf, Kg, Mf, Mg such

that the sets D; = {z: |£@z)| > K. lg@)| > Kg} and




D2 ={z: |f(z)| < Mf; ‘g(z)‘ < Mg} cover D (i.e. D = D1 U D2), then

f(z)g(z) is a normal function in D.

Also the hypotheses of the following theorem of Zinno [18,
pp- 160-161] vacuously satisfy the hypotheses of theorem 2.7.

THEOREM 2.A. Let f(z) and g(z) be two normal meromorphic

functions in D. Let a, and a& be zeros of f(z) and g(z) respectively

and let bv and b; be poles of f(z) and g(z) respectively. Suppose

that

(1) inf p(a_,b') >0 and inf p(a',b ) >0
v=1,2,. vV U v=1,2,. v Y
u=l,2,. u=l,2,.

(inf over an empty set is infinite)

and

(2) for any positive number p there exists a positive

number m such that
P

|£z)| < m for z in D - U U, ,p)

‘v=
[--]

\g(z)‘ < mp for z in D - U U(®',p)
v=

1
- -}

|£)| > 1/mp for z in D - U U(a_,p)
v=

in Ly
and
(-]
|g(z)‘ >1/m_ for z in D - U U(a',p)
p— - v=1 v

U(z,8) = {C: p(z.0) <&}

Then the product f(z)g(z) is a normal meromorphic function in D.

By excluding the possibility of sequences satisfying pro-
perty (D), we can get another condition to guarantee the sum of
two normal meromorphic functions to be normal and get some ideas
on what is sufficient for functions bounded by normal functions to

be normal. Again in the following theorem the arguments of the
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functions f£(z) and g(z) are chosen so as to have the difference in
absolute values less than or equal to .

THEOREM 2.9. Let f(z) and g(z) be two normal meromorphic

functions in D. Let & > O be arbitrary and for each sequence {zn}

for which f(zn) - @, f(zn) # o, g(zn) # ©, let there exist o(n),

@ non-increasing function on the positive integers, such that

0 <o <m and |f(zn)\sin a(n) =2 § for all n greater than some

positive integer N. If

1-1/|f(zn)| < ‘f(zn)/g(zn)‘ < 1+1/‘f(zn)l implies
\arg f(zn)-arg g(zn)\ < m-¢(n) for n >N, then

f(z)+g(z) is a normal meromorphic function in D.

Proof. It is clear that if {zn} is a sequence where {f(zn)}
has no unbounded subsequences and {f(zn)+g(zn)} converges, then {zn}
is not a sequence for which f(z)+g(z) has property (D). Hence let
{zn} be a sequence for which {f(zn)} diverges to « and
{f(zn)+g(zn)} converges to a finite complex value or diverges to .
Let {z;} be any sequence close to [zn} so that f(zé) - o also.

Fix n > N and consider the following cases.
Case I. f(z;) ¥ o,
(a.) 1If g(z;) = @, then |g(z;)+f(z;)\ = @,
(b.) If g(z[;) # @ and
1-1/|£)| < |£z))/g(z))| < 141/|£(z))|, then
|£z)+(z)| = |£(z))|sin a(n) 2 6 > 0 for n >N, the
& and N in the hypotheses of the theorem.
(c.) 1f g(z!) # and |£(z))/g(z))| 2 141/| £(z )|, then
\g(z&)‘ < (\f(z;)‘/(1+‘f(z;)\))‘f(z;)|. Hence
e+ ED] 2 [£E&)] - [e@E)] 2
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Il a-lgeD|/adieD D) = vVan/|se)) =
1/2 > 0 for n sufficiently large.
(d.) 1If g(z!) # = and |f(z[;)/g(zr;)\ < 1-1/\f(zr'1), then
dEEDI/dEED[-|£E)] s |gz!)]|. Hence
lteD+E)| 2 (eeE)]| - [fE)] 2
lEEDEED/(fED]-1)) = 1/a-1/[£E)]) =
1 >0 for n sufficiently large.

Case II. f(z;) = o,
(a.) 1If g(z)) # =, then lf(zr'l)-l-g(zr'l)\ = .
(b.) If g(zé) = o, then there exists a neighborhood
U containing z; such that f(z) # » and g(z) # » for

all z in U - {z;}. Then there exists {zn con-

,m}m=1

tained in U, z - z' as m - », where ‘f(z )‘ >m
n,m n n,m

and we may proceed as in case I. Thus there is no

sequence on which f(z)+g(z) has property (D).

We know that a meromorphic function bounded above (or below)

by a normal meromorphic function is the product and sum of normal
meromorphic functions. We can say more than this if the function
is appropriately bounded both above and below.

THEOREM 2.10. Let f(z), g(z), and h(z) be meromorphic

functions in D such that g(z) and h(z) are normal; and let K1 and

K, be constants such that \g(z)\-l(1 < |£@@)] < |h(z)\+i(2 for each
z in D. If lim inf \g(zn)| > Ky for each sequence {zn} in D for

n—

which h(zn) - o, then f(z) is normal in D.
Proof. Assume f(z) is not normal. Then there exists a
sequence {zn} such that f(z) has property (D) on {zn}. Then [zn}

has a subsequence {z_ } for which there exist sequences {z; } and
k
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{z: }, both close to {zn }, satisfying f(z; ) =0, f(z!' ) »®. But
k k k k

then lim inf ‘g(z' )‘ < K1 and h(z" ) - ». Since g(z) and h(z) are
n—< "k nk

normal, this means that lim inf \g(z )l < K, and h(z_ ) -» », in
n 1 n
n—e k k

violation of the hypotheses. Thus there is no sequence {zn} on
which f(z) has property (D), and the theorem is proved.

REMARK 2.11. Since there are non-normal functions of
bounded characteristic the condition above on sequences is needed.
For example, Bagemihl and Seidel (4, p. 7] construct a holomorphic
function f£(z) of bounded characteristic such that f(zn) =0 for
z = l-l/n2 and f(z;) - o where z; = (1/2)(zn+zn+1) and an ele-
mentary calculation shows that {zn} and {z;} are close. Hence f(z)
is not normal. Their function is B(z)/exp((-1-z)/(l-z)) where
B(z) = oﬁl(zn-z)/(l-znz). But |B(z)| < |£(2)| < |L/exp((-1-2)/(1-2))|,
and B(z; and 1/exp((-1-z)/(1-z)) are normal holomorphic functionms.
Since B(z;) - 0 and 1/exp((-1-z;)/(1-z;)) - o, there exists a
sequence, namely {z;}, not fullfilling the hypotheses of theorem 2.10.

COROLLARY 2.12. Let f(z) and h(z) be meromorphic functions

in D and ‘h(z)‘-K1 < ‘f(z)‘ < lh(z)‘+K2. Then f(z) is normal if
and only if h(z) is normal.

THEOREM 2.13. Llet f(z) = hl(z)/hz(z) be the quotient of

two_bounded holomorphic functions in D with no common zeros. 1f

f(z) is not normal, then there is a sequence {zn} of points in D

such that hl(zn) - 0 and hZ(Zn) - 0.

Proof. We prove the contrapositive. Let M1 2 |h1(z)|
and M, 2 \hz(z)|. Then ‘hl(z)/M2| < \f(z)‘ < lMl/hz(z)\ and
hl(z)/M2 and Ml/hz(z) are normal. Since there is no sequence [zn}

where hl(zn)/MZ - 0 and Mllhz(z) - ®, f(z) is normal by theorem 2.10.
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COROLLARY 2.14. Let h,(z) = B (2)exp(g, (),

hz(z) = Bz(z)exp(gz(z)) be holomorphic functions with Bl(z) and

Bz(z) Blaschke products; and M, 0 < M < ®, such that

-M < Re(g,(2)-g,(2)) <M. let L (8) = {z: |B (2)| < 6}, i=1,2.

If there exists §' such that

! t = 1 R . ] . ]
p(Ll(G ),L2(6 » inf {p(zl’ZZ)' z; in L1(6 ), z, in L2(6 ) }2n>0,
then f(z) = hl(z)/hz(z) is normal.
The following corollary gives a restatement of a result of
Cima [7, p. 769].

COROLLARY 2.15. Llet F(z) = Bl(z,an)/Bz(z,bn), Bl(z,an) and

B2(z,bn) are Blaschke products with zeros {an} and {bn} respectively.

If the cluster points of the zeros of Bl(z,an) and BZ(z’bn) are dis-

Jjoint, then F(z) is normal.

Theorem 2.7 may be applied to obtain some properties of
normal pseudoanalytic functions in D. The following material may
be found in detail in [5] and [6].

DEFINITION 2.B. [5, p. 18]. Let w(z) be a function from D
into the complex w-plane which possesses continuous partial deriv-
atives. If there exists a constant K such that ‘wz(z)\ < K\w(z)‘,

we say w(z) is approximately analytic.

Let D0 be a domain containing D.

DEFINITION 2.C. [6, p. 215]. Two continuous functions

F(z), G(z) defined in Do are said to form a generating pair if
Im{F?ETC(z)} > 0 for z in Do.

Every function w(z) defined in D admits the unique re-
Presentation w(z) = ¢(2)F(z)+¥ (2)G(z) with real functions ¢(z),

¥(z), (6, p. 216].
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DEFINITION 2.D. [6, p. 217]. The function

w(z) = ¢(2)F(z)¥ (2)G(z) is said to possess at the point z, in D

. d'F G w(z)
the (F,G)-derivative, denoted w(zo) or —A—ézz——- 2=2 if the limit
, w(z)-g(z )F (2)-¥ (2 )G(2) °
w(zo) = 1lim exists and is finite.

z= "0 z-2,
DEFINITION 2.E. [6, p. 2197. A function w(z) possessing
an (F,G)-derivative at all points of the domain D is called regular

(F,G) -pseudoanalytic of the first kind in D or simply pseudoanalytic

if there is no danger of confusion.

THEOREM 2.F. (5, p. 18]. Every pseudoanalytic function

is also approximately analytic.

DEFINITION 2.G. [5, p. 24]. We call two functions w(z)
and f(z) defined in D similar if there exists a function S (z)
which is continuous and different from zero on the closure of D
and such that f(z) = S(z)w(z) in D.

THEOREM 2.H. (5, p. 24-25]. SIMILARITY PRINCIPLE

Every approximately analytic function w(z) in D possesses a similar

function f(z) which is analytic in D.

THEOREM 2.16. 1f f(z) and w(z) are similar functions in

D, and if one of them is normal, then the other one is normal also.

Proof. Let S(z) be such that f(z) = S(z)w(z) where S(z)
is continuous non-zero on the closure of D. There exists an ﬁ
such that 1/M < ‘S(z)\ < M for all z in the closure of D. Hence
theorem 2.7 implies f(z) is normal if and only if w(z) is normal

since S(z) and 1/S(z) are normal in D.

COROLLARY 2.17. If w(z) is approximately analytic and

bounded (or bounded from zero) in D, then w(z) is normal in D.
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Proof. Let f£(z) be the analytic function in D similar to
w(z). Then f(z) = S(z)w(z) is bounded (or bounded from zero) in D.
Thus f(z) is normal and so is w(z) normal.

COROLLARY 2.18. If w(z) is a normal approximately analytic

function in D and has an asymptotic value o at { on C, then w(z)

has a Fatou value o at { on C.

Proof. Let I' be the Jordan arc in D U {{} on which w(z)
tends to the limit . Let f(z) be the analytic function similar
to w(z). Since S(z) in f(z) = S(z)w(z) is uniformly continuous
on DU C, S(z) tends to a limit, say B, (finite and non-zero) on
I" also. Hence f(z) tends to a limit, Ba, on I' and so has a Fatou
value By at { on C. S(z) also has B as a Fatou value at (. There-
fore, since w(z) = £(z)/S(z), w(z) has a Fatou value alat C.

We could show, with proofs similar to those above, that
normal approximately analytic functions have many of the pro-
perties related to Fatou values of normal analytic functions and
that normal pseudoanalytic functions have some of the same identity

and uniqueness properties as normal analytic functions.



III. REAL NORMAL FUNCTIONS

It is easy to see that some simple expressions of normal
functions are still normal functions. For example:

LEMMA 3.1. Let f(z) be a normal function in D into the

g-plane. If ¢(€) is a continuous function on the closure of £(D)

into the w-plane, then the function w(z) = ¢(f(z)) mapping D into

the w-plane is normal.

Proof. Let [zn} and {z;} be any two close sequences in D
and ¢(f(zn)) converge to some complex value ¢ in the w-plane.
Since f(z) is normal, the cluster values of f(z) on {zn} and {zé}
are identical and thence, since @(§) is continuous, ¢(f(z;)) - Q.

LEMMA 3.2. If u(z) and v(z) are real valued functions in

D, then f(z) = exp(u(z)+iv(z)) normal in D implies u{z) is normal
in D.
REMARK 3.3. An equivalent formulation of lemma 3.2 is

that f(z) normal implies log|f(z)| is normal.

Proof of Lemma 3.2. The mappings ¢, o0 the € = f(z) plane
to the non-negative real axis (including +4w) by ¢1(§) = \g‘ and

¢, on the non-negative real axis x = |§| to the closed real
numbers by ¢2(x) = log x are continuous. Hence u(z) = ¢2(¢1(f(z)))
is normal by lemma 3.1.

THEOREM 3.4. If u(z) and v(z) are real valued normal

functions in D such that v(z) is bounded, then f(z) = exp(u(z)+iv(z))

is normal in D.

16
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Proof. Since exp x is a continuous function whose domain
is the real line, exp(u(z)) is normal. 1If exp(iv(z)) is normal,
then f£(z) = exp(u(z))exp(iv(z)) is normal by corollary 2.8. Let
{zn} and {z;} be two close sequences in D and exp(iv(zn)) converge
to a complex value o. Let I denote the cluster values of {v(zn)}
and I' the cluster values of {v(z;)}. If x is in I, then
exp(ix) = @. Since v(z) is normal, I =1I', and thus exp(iv(z;)) -«
by x in I' implies exp(ix) = o. Therefore exp(iv(z)) is normal and
the theorem is proved.

The following example shows that the condition v(z) be
bounded is needed.

EXAMPLE 3.5. There exist u(z) and v(z) normal real valued

such that f(z) = exp(u(z)+iv(z)) is not normal. Let

v(z) = Re(1/(1-2z)) for z in D. Then v(z) is harmonic and normal

since v(z) > 1/2 for all z in D. Let z_ 1-1/2n 1w and
z; = 1-1/2n+)7, 0 < | < 2. Then v(zn) = 201 - o, v(z;) =
(2n+M)m = 4o, and by a simple computation p(zn,z;) =
(1/2) log (4nm+2M-1)/ (4rm-1) » 0 as n —» = independent of T. 1If
u(z) =1, then £(z) = exp(u(z)+iv(z)) is such that f(zn) = e and,
for | = 1/2, f(zé) = ie. Therefore f£(z) is not normal even though
u(z) and v(z) are normal and harmonic in D.

The condition on the boundedness may be dropped if we are
given some other appropriate information. Note we don't even

require v(z) to be normal.

THEOREM 3.6. Let u(z) be a real harmonic function in D

and v(z) its harmonic conjugate. Then f(z) = exp(u(z)+iv(z)) is

normal in D if and only if u(z) is normal in D.
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Proof. The "if" part was done by Lappan in (14, p. 110]
and the '"only if'" is lemma 3.2.

The following lemma is an obvious corollary to theorem 2.1
which we will refer to in the discussion on logarithms of normal
functions.

LEMMA 3.7. If u(z) and v(z) are real valued normal functions

in D, then f(z) u(z)+iv(z) is also normal in D.

THEOREM 3.8. 1If f(z) is a normal function in D such that

log f(z) is a well defined, single valued, continuous function in

D, then log f(z) is normal in D.

Proof. Let {zn} and {zé} be close sequences in D and
log f(zn) - @, o a complex number. Taking subsequences if necessary,
we assume f(zn) converges to some complex value a. If a =0 or =,
then o = 4wot+ib = ©» and log f(z;) - ® also since f(z;) - a by f(2)
normal. Hence, without loss of generality, we assume neither
f(zn) nor f(z;) tend to zero or infinity; so arg f(zn) and arg f(zé)
are defined for every n sufficiently large as well as any cluster
values of {arg f(zn)] or {arg f(zg)}. Assume log f(z;) tends to
some complex value . Then Rea = ReB since log‘f(z)‘ is normal
(lemma 3.2); and arg f(zn) - Imy, arg f(zé) - Imp. If
‘Ima‘ = ‘Ime\ = o, then @ = B = ®; so assume one is finite, say
|Ima\ < ®. Connect z, and z& by the hyperbolic straight line Fn;
the hyperbolic length of I, l(Fn), equals p(zn,z;) which converges
to zero as n —» w. Since f(z ) — a # 0 and f(z) is normal, there
exists an N such that n > N implies: If z is on Fn, then
|£(z)-a| < |a|/2 as well as |f(z$)-a| < |a|/2. As z on r,nzN,

travels from z to z;, arg f(z) changes continuously from
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arg f(zn) to arg f(z;). Since lf(z)-al < |a‘/2,
|arg f(z)-arg f(zn)\ < n/2 for any z on T - Since f(z;) -a#0
also, arg f(z;) - Imy. So @ =B and log f(z) is normal.

LEMMA 3.9. 1f f(z) has a normal logarithm with arg f(z)

bounded in D, then log|f(z)| and |£(z)| are normal in D.

Proof. Let {z_} and {z'} be close sequences and
log\f(zn)| - a, o a real number.

Case 1. \q\ =ew. If g = +o, then Re log f(zn) > M, any
preassigned real number M, for all n greater than some positive
integer N. Hence Re log f(z;) - ®as n-»wo, i.e. 1og‘f(z$)‘ - e,
The proof is similar if ¢ = -w.

Case 2. |o| <. Then assume log £(z ) - otip # ® since
arg f(z) is bounded. By log f(z) being normal, log f(z&) - o+if
and so 10g|f(z&)| - o. Therefore log\f(zy| is normal. But
log|f(z)| normal implies |f(z)| normal by lemma 3.1.

THEOREM 3.10. If f(z) has a normal logarithm with normal

-

arg f(z) bounded in D, then f(z) is normal in D.

Proof. The theorem is.just a corollary of lemma 3.9 and
theorem 3.4.

The function f(z) = ‘2+z‘exp(iRe(1/(1-z))) is not normal
in D but log f(z) = log|2+z|+iRe(1/(1-z)) is normal in D, from
example 3.5 and lemma 3.7. Hence theorem 3.10 needs the hypothesis
that arg f£(z) be bounded.

Let us now consider some applications of using exponentials
and logarithms in the study of real and complex vdlued normal

functions.
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LEMMA 3.13. Let u(z) be a harmonic real valued function

in D and let there exist two close sequences, {zn} and {z;}, such

that u(zn) - o, u(z;) - B, o and B unequal real numbers, as n = .

Then for each real value (including +4» and -»), there exists a

sequence {zi} close to a subsequence {zn } of {zn} such that
u(zi)-oég_gk-oeoa .

REMARK 3.14. As is evident from the reference to be cited
in the proof of lemma 3.13, we can require {zi} to be such that
u(zi) = § except for § = 4o or -=.

REMARK 3.15. Calling the above divergence property (Dh),
we have the following characterization of not normal real harmonic

functions: u(z) has property (Dh) in D if and only if u(z) is not

normal in D. We will elaborate on a variant of this in chapter five.

Proof of Lemma 3.13. Let v(z) be a harmonic conjugate to

u(z) and F(z) = exp(u(z)+iv(z)). F(z) is a holomorphic function
in D such that ‘F(zn)| - exp o and \F(z&)\ - exp B, exp o # exp B.

So there are close subsequences {z_ } and {z; } of {zn} and {zé}
P P
respectively where F(zn ) = a*, F(z; ) - e*, and a* # B*- By
P P
Lappan [12, p. 44] there is a sequence {wi} such that

P(Wi,zn ) = 0 and F(Wi) — exp § (exp(+w) = 4w, exp(-w) = 0). So
Py
u(wi) - §.

With lemma 3.13 we may prove a theorem with real harmonic

functions similar to theorem 2.10.

THEOREM 3.16. Let u(z), v(z), w(z) be real harmonic

functions in D such that v(z) and w(z) are normal, and let K1 and

K, be constants such that v(z)-l-l(1 < u(z) < w(z)+K2 for each z in

2
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D. If li:L:nf v(zn) > -o for each sequence {zn] of points in D

for which w(zn) — +4w, then u(z) is normal in D.
Proof. Assume u(z) is not normal in D. Then there exists
a sequence {zn} such that u(z) has property (Dh) on {zn}. Then

{z,} has a subsequence {z, } for which there exist sequences

{z' } and {z" } both close to {z_}, satisfying u(z' ) - -,
N ny n n

k k
u(z: ) = 4o. But then lim inf v(z' ) = <= and w(z" ) - +w.
k ke "k "k
Since v(z) and w(z) are normal, this means that lim inf v(z ) = -
k- k

and w(zn ) = 4w in violation of the hypotheses. Thus there is no
k

sequence {zn} on which u(z) has property (Dh), and the theorem
is proved.

Theorem 3.6 above shows the equivalence of the normality
of the sum of normal harmonic functions with the normality of the
product of non zero normal holomorphic functions. To this end
we prove the following theorem on the sum of two normal harmonic
functions.

THEOREM 3.17. Llet ul(z) and uz(z) be normal harmonic

functions in D. If there are K., K (Ki > 1) such that

) S
‘ui(z)|2 < Ki\ul(z)+u2(z)|2, (i=1, 2), for every z in D, then
ul(z)+u2(z) is normal in D.

LEMMA 3.18. Let v(z) be a harmonic conjugate to u(z)

and F(z) = exp(u(z)+iv(z)). Then

5" (] o ) 2+, @)
1HF@ |2 Hu@|? '

p(F(z)) =

# ip ik
i

T A I

G,

yre
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Proof of lemma 3.18. This computational fact follows from

the fact that a2 < 2(cosh a)-1.
We will also use the following theorems.
THEOREM 3.A. (Lehto and Virtamen [15, p. 56]). If f(z)

is a meromorphic function in D, then f(z) is a normal function if

and only if there exists a positive number G such that

l£' )] ¢
2
1+|f(z)\ 1-\2\

2

for each z in D.

rh

THEOREM 3.B. (Lappan [13, p. 157]). I

function in D, then u(z) is a normal function if and only if there

exists a positive number G such that

S @) e @

1+|u(z)|2 : 1-|z|

2

for each z in D.

Proof of Theorem 3.17. With F(z) = exp(ul(z)+u2(z)+iv(z))

where v(z) is a harmonic conjugate to ul(z)+u2(z), lemma 3.18 gives

|F'(2)] sj((ul(z)"‘uz (2))}()24—((ul(z)+u2 (z))y)2 .

14|F (2)| 2 14| uy (2)u, 2) |

Since \Aa-i-b)2+(c+d)2 s\/32+c2 +\/b2+d2 for a, b, ¢, d real,

IF' @] @R @), @) @)

1+\F(z)|2 1+|u1(z)+u2(z)|2

Then, it is easy to check that for Ki > 1,

1 K
5 < L — =1, 2.
I+{u, @)+, ()| 7 1+Hu, @)

u(z) is a harmonic

R,

[t S TL L Sy

Nog M ;

By

(gL

¥
-
[
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Since ul(z) and u2(z) are normal, there exist G, and G2 such that

1

_Ll‘iﬂ)_l_i < (K1G1+K G ) 1
1+|F (2) |

1-|2|?

for all z in D. Hence F(z) is normal and theorem 3.6 implies
ul(z)+u2(z) is normal in D.

REMARK 3.19. By proper modification of the above proof
we could show: 1If ui(z), i=l, 2,...,n, are normal harmonic functions
and if there exist Ki, i=l, 2,...,n, Ki > 1, such that

2 n n
|u.(z)\ < K.| T u.(z)\z, then ¥ wu.(z) is normal. Also, by using
i i j=1 j j=1 j

the Cauchy Riemann Differential Equations, with vi(z) a normal
harmonic conjugate to ui(z) and ui(z) not necessarily normal for i
in some subdet J of {1, 2,...,n}, we can show: If
n

2 2

|vi(z)\ < K, ‘ 2 u, (z)\ for i in J and \ui(z)l < Ki\ T u.(z)\
j=1 j=1 7
n

for 1 not in J, then &

jo1 3

The above remark hints at a relationship between the

(z) is normal.

normality of a harmonic function and the normality of its harmonic
conjugate. The next few resultsimake the relationship clearer.

THEOREM 3.20. Let u(z) and v(z) be harmonic conjugates

such that |v(z)\ 2 klu(z)‘, k a fixed positive constant, for each

z in D. If u(z) is normal in D, then v(z) is also normal in D.

Proof. \J&vx(z))2+(vy(z))2 = \f'(z)‘ and

\/(;x(z))2+(kuy(z))2 = k|£'(z)| where £(z) = u(z)+iv(z). Since
|vz)| 2 k|u(z)|, we have 1/(1+|v(z)\2) < 1/(1+|ku(z)|2). There-
Jorg @ +<v " fies @) i, (z)) s

14v(z) 2 k(14 ku (z) | © k(l-|z| %)

fore
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for each z in D, some constant G, since ku(z) is normal and because
of theorem 3.B. Hence v(z) is normal.

THEOREM 3.21. 1If u(z) and v(z) are harmonic conjugates

in D, and if u(z) is bounded in D, then v(z) is normal in D.
Proof. Since u(z) is normal, F(z) = exp(u(z)+iv(z)) is

normal. If v(z) is not normal, then there exist close sequences

{zn} and {z;} in D such that v(z ) = 0, v(z;) - mas n - o from

remark 3.15. Pick a subsequence {znk} of {zn} so that {F(znk)}

converges, say to the real number @. If o is so that 0 < ‘a‘ < @,

then ¢ = exp(B+i0) for some g (B = 10g\a‘). But

F(z; ) = exp(B+im) # o, a contradiction of F(z) normal. Hence
k

o =0 or », or u(zn ) - -®» or u(z ) = +». Since this contradicts
k "k

u(z) bounded, v(z) must be normal.

COROLLARY 3.22. If f(z) has an analytic logarithm in D

with arg f£(z) bounded, then f(z) is normal in D.
Proof. This corollary follows directly from theorems
3.21 and 3.10.

EXAMPLE 3.23. There exist normal holomorphic functions

with normal real part but not normal imaginary part. Let

f(z) = 1/(1-z) = u(z)+iv(z) for z in D. Since

£(D) = {w: Re w > 1/2}, £(z) and u(z) are normal in D. Consider
the inverse images of Imw = 0 and Imw = 1/2 from the range of
f(z) for z in D. The first is the interval (-1,1) while the
second is the circle of radius one, center 1l+i, intersect D.
Since the two inverse images are tangent, there exists a sequence
{Zn} contained in the first inverse image and a sequence {z;}

Contained in the second inverse image which are close but
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v(zn) =0, v(z;) = 1/2 for all n. Hence v(z) is not normal in D
while its conjugate u(z) is normal.

One could also obtain theorems concerning the boundary
values of normal harmonic functions of somewhat similar nature as
Lehto and Virtanen in [15, pp. 58-62] and Vdisdld in [17, pp. 29-30]
employing theorem 3.6, lemma 3.18, and the results of Lehto and

Virtanen.




IV. VERY NORMAL FUNCTIONS

DEFINITION 4.1. A complex, finite valued function f(z)
in D is called very normal if there exists a positive number M
such that, for each pair of points zy and z, in D,
|f(zl)-f(22)\ <Mop(z),z,).

THEOREM 4.2. 1f f(z) is very normal in D, then f(z) is

normal in D.
Proof. The theorem is obvious from the fact that
x(a,b) < la-b‘ and the definition of a normal function.

THEOREM 4.3. If f(z) is a continuous, complex, finite

valued function in D, then f(z) is very normal if and only if there

exists a positive number K such that

£e)-£)| . _K
z'-z ‘ l-lz‘

M(f(z)) = lim sup
z'-z

for each z in D.
Proof. Necessity. Fix z in D and let P be such that
|f(z')-f(z)| < P p(z',z) for each z' in D. Since

|z'-2|
1-1z|%) Atelz',2))

.1) p(z',2) =

where ¢(z',z) - 0 as z' = z, we have

Lf(z:)-f(z)‘ < > P for all
|2~z (-|z|?) atez', 2)

z' Sufficiently close to z so that l+¢(z',z) > 0. Hence, as z' - z,

26
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P P
M(f(z)) < <
1_‘2‘2 1-‘2‘

for each z in D.

K

Sufficiency. Let f(z) be continuous and M(f(z)) < ——r—r
1-|\z2

for each z in D. We have

2
(1"2‘2)M(f(2)) = lim sup \f(zl)_f(z)‘ 1; Ez
Z '—oz

and, from (4.1),

"Y-f(z

2 = 1 2
(1-|z| IM(£(z)) = lim sup p(z",2)

z'oz

From the hypothesis and LS < 2K , we get
1-\2\ 1_‘2‘2

f(z')-f(z

p(z.’z) < 2K.

lim sup
z'-z

Let zy and z, be points in D and let L be the hyperbolic geodesic
between zy and z,. For each z on L, there is a § = §(z) > 0 such
that p(z',z) < §(z) implies |f(z')-f(z)| < 4K p(z',2z). Since L

is compact, there exists a finite positive integer N and points

zi =z, zé,...,zﬁ = z,, zi on L for i=l, 2,...,N, such that
lf(zi)-f(Z;_1)| < 4K p(zi,zi_l), i=2,...,N. Since L is a geodesic,
we find \f(il)-f(zz)‘ < 4K p(zl,zz). Hence f(z) is very normal

in D.

COROLLARY 4.4. If f(z) is holomorphic in D, then f(z) is

very normal if and only if there exists a positive number A, such

that

|f'(z)| < T:?fr

for each z in D.

i et tar- ik 4 rau

Mmu,
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Proof. Since f(z) is holomorphic in D, \f'(z)l = M(f(2)).

From Lappan [12, p. 47] we see in the case of holomorphic
functions that the class of uniformly normal functions and the
class of very normal functions are the same. We now restate
Lappan's definition of a uniformly normal function, dropping the
requirement that the function be holomorphic.

DEFINITION 4.5. A complex, finite valued function f(z)

in D is said to be uniformly normal if, for each M > 0, there

exists a finite number K > 0 such that for each 24 in D,
p(z,zo) < M implies lf(z)-f(zo)| < K.
THEOREM 4.6. I1f f(z) is very normal in D, then f(z) is

uniformly normal in D.

Proof. Let f(z) be very normal and M, a positive constant,
given. If zy and z, are such that p(zl,zz) < M, then
lf(zl)-f(zz)‘ < PM where P is the constant of definition 4.1.
Letting K = PM for the K of definition 4.5, we see that f(z) is
uniformly normal.

Since any bounded discontinuous function in D is uniformly
normal but neither normal nor very normal, the converse of Theorem
4.6 certainly in not valid. Moreover, the function
f(z) = min(l,\jS?;TBB) defined in D is normal, uniformly normal,

but not very normal since

) z,0)-01 _
lim sup LJE%;;;}——L = o.
2-0

COROLLARY 4.7. If u(z) is a real harmonic function in D,

then u(z) is very normal if and only if there exists a positive

number K such that

g g

praha¥

-
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(5,2 "+, @)" < {57

for each z in D.

Proof. By an easy calculation, (ux(z))2+(uy(z))2 = M(f(2)).

THEOREM 4.8. The sum of two very normal functions is very

normal. f f(z) = u(z)+iv(z) where u(z) and v(z) are real functions

in D, then f(z) is very normal if and only if both u(z) and v(z)

are very normal.

Proof. The theorem follows by standard triangle inequality

arguments.

COROLLARY 4.9. f £(z) = u(z)+iv(z) is harmonic in D, then

f(z) is very normal if and only if there exists a positive number K

such that

\jéux(z))2+(Uy(Z))2+(vx(z))2+(vy(z))2 < T:%;T

for each z in D.

Proof. The sufficiency follows from M(f(z)) s

2 2
\j(;;(z)) +(uy(z)) +(vx(z))2+(vy(z))2 . For necessity, let
f(z) = u(z)+iv(z) be very normal in D. By theorem 4.8, both u(z)
and v(z) are very normal in D and hence by corollary 4.7 there

are constants Ku and Kv so that

(1, @) 2, @) 24, 20) vy @) <

o, @) 2 )2+ v (@) 2+, (2))? Suy
\(ux z (uy z ‘ v, (2 (vy z < 1—_5‘- .

The proof is completed by setting K = Ku+Kv°
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THEOREM 4.10. Let f(z) = u(z)+iv(z) be holomorphic in D.

The following are equivalent:

(1.) f£(z) is very normal
(2.) wu(z) is very normal
(3.) v(z) is very normal.

Proof. Since f(z) is holomorphic, we have that

Y,

|f"(z)| = Kux(z))z-i-(uy(z))2 =~Vé;x(z))2+(vy(z))2, and the theorem

follows directly from corollaries 4.7 and 4.4.

~

L

In theorem 4.10 it is clear that one can't replace the word

~y
<

"holomorphic" by "harmonic".

THEOREM 4.11. If log f(z) is very normal in D, then f(z)
is normal in D.

Proof. Let log f(z) be very normal in D and {zn} and {z;}
close sequences in D where f(zn) converges to some complex value «.
Since log f(z) = log \f(z)‘+1 arg f(z), where arg £(0) is fixed
and arg f(z) continuously defined, theorems 4.8 and 4.2 imply that
log ‘f(z)‘ and arg f£(z) are both very normal and normal. If ¢ is
zero or infinity then log |f(zn)| tends to - or +w respectively.
Since log |f(z)\ is normal, log ‘f(z;)\ tends to - or +w respec-
tively and hence f(z;) converges to ¢ also. Therefore we may
assume 0 < |o| < ®». Since log |£(z)| is normal, log |f(z;)| con-
verges to log ‘a‘ and hence ‘f(z;)\ - a. Also, from arg f(z) being
very normal, for every ¢ positive there exists a positive integer
N(g) such that n > N implies ‘arg f(zn) - arg f(z&)\ < ¢. Then as
n tends to infinity, {\f(zn)|} and {lf(z&)‘} have the same cluster
values and so do {arg f(zn)} and {arg f(z;)} have the same cluster

values. Thus f(z;) -+ o also and f(z) is normal.



V. (A) SEQUENCES FOR NOT NORMAL FUNCTIONS

In this chapter finite valued functions f(z) with range in
the plane are considered; f(z) could be real valued. Unless other-
wise specified, f(z) is harmonic means f(z) = u(z)+iv(z) and u(z)
and v(z) are real valued harmonic functions. Most of the early
material of this chapter can be generalized to functions with
range on the Riemann sphere with chordal metric replacing absolute
values.

DEFINITION 5.1. Let {z } be a sequence in D. Then {z }
is an (A) sequence for f(z) if there exists a sequence {z;} close

to {z_} such that lim sup |f(zn)-f(z;)| = ®
N

LEMMA 5.2. Let w = f(z) be harmonic in D and {zn} a

sequence in D such that lim f(zn) = o¢. If there is a sequence
n—ow
{z;} close to {zn} such that |f(z;)-a| >b (or lf(z;)l < 1/b if

o = o) for some fixed b > 0, then {zn] is an (A) sequence for f(z).
Proof. If o # », then either u(z;)ﬂL Rea or v(z;) + Ima.
Without loss of generality we assume that u(zé) 7~ Reg. Then

lemma 3.13 implies that there exists a sequence {z; } close to
k

{zn }, where {zn } is a subsequence of {zn}, such that u(z;k) - e,

Hence {zn} is an (A) sequence for f(z).
If @ = », the result follows immediately from the definition.

THEOREM 5.3. If f(z) is harmonic and not normal in D, then

there exists an (A) sequence for f(z).

31
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Proof. Since f(z) is harmonic and not normal, remark 3.15
implies the hypotheses of lemma 5.2 are fullfilled for some sequence
{zn} in D.

THEOREM 5.4. Llet f(z) be an arbitrary function in D and

{zn} a sequence in D on which f(z) converges to o # . If there

exists a sequence {zé] close to {zn} such that

lim sup |f(z;)—a| > 0, then f(z) is not normal.
n—o
Proof. The theorem follows immediately from the defini-
tion of a normal function.

COROLLARY 5.5. Let f(z) be harmonic in D. Then f(z) is

not normal if and only if there exists an (A) sequence for f(z),

denoted by {zn}, such that f(z) is bounded on {zn}.

Proof. The "if" part is a corollary of theorem 5.4 and
the "only if'" part is a corollary to theorem 5.3 and the fact
that f(z) is not normal.

EXAMPIE 5.6. The boundedness of f(z) on {z } in theorem

5.4 is needed, even if f(z) is real valued and harmonic in D. For

example, let £(z) = Re(1/(1-2)), z = l-exp(-n), and

*
n

z' = l-anexp(-n) where 0 < a <a <1, a - 1, and

n+1
(1-an)exp(n) - ® as n - ®. Then
p(zn,z;) = (1/2)log((Z-anexp(-n))/(Zan-anexp(-n))) - 0asn-o
so that {z } and {z'} are close sequences. Then

|f(zn)-f(z;)| = (l-an)exp(n) - ® as n = o. Hence {zn} is an (A)
sequence for f(z), but f(z) is normal since it is real valued,

harmonic, and bounded below.

* THEOREM 5.7. Let f(z) = u(z)+iv(z) be a harmonic function

in D and bounded on the sequence {zn}. Then {zn} is an (A)

peshaid
y
L

“‘rn
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sequence for f(z) if and only if

el D e @) e ) P ) e, @)
lim sup =

o 14| u(zn)+iv(zn)| 2

Proof. let {zn] be a sequence on which, we assume without
loss of generality, f(zn) - 0. Let Sn(z) = (z+zn)/(1+§nz). If
{zn} is an (A) sequence for f(z), then {gn(z)], where
gn(z) = f(Sn(z)), is a family of complex harmonic functions in

D with a subsequence {gn (z)} such that, in any neighborhood of
k

z =0, {gn (z)} assumes values arbitrarily large and arbitrarily

small for an infinite number of functions. Hence {gn(z)} is not
a normal family in any neighborhood of z = 0. So, with standard
normal family arguments found in Ahlfors [1, p. 169] along with

Lehto and Virtanen [15, pp. 54-55], we have

S®eg_ 00 ) +((reg_ 0)) ) >+ ((Ime_ (0)) ) *+((1mg (0)) )

o = lim sup >
o 1+g_(0)|
A-lz,| D) Ju, ), o) P+, 2 ) v, )’
= lim sup 2 : |
e I+ u(z ) +iv(z )|

Now assume {zn} is not an (A) sequence for £(z). With
{gn(z)} as above, there exists an ¢ so that {gn(z)} is bounded
on D= {z: lz| < ¢}. Hence {gn(z)} is a normal family in D_.

So, as before,

2 2 2 2
® > lim sup\/((Regn(O))x) +((Regn(0))y) +((1mgn(0))x) +((Imgn(0))y)

n-e 1+‘gn(0)‘2

2 2 2 2 2
e e 1l ) Jloy (o) Py (o) Py (e P )

o 14 u(z ) +v(z )| 2
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COROLIARY 5.8. let £(z) = u(z)+iv(z) be a harmonic function

in D. Then f(z) is normal if and only if there exists a constant

K such that

So @ @ entro @?

2 <
1+ u(z)+iv(z) | 1-|z|

for each z in D.
DEFINITION 5.9. A function f(z) defined in D is said to

be a R-normal function if the family F = {£(S(z))}, where z' = S(z)

is an arbitrary one-one conformal map of D onto D, has the property
that for every sequence {fn}, fn in F, there exists a subsequence
which either converges uniformly on every compact subset of D, or
else converges uniformly to infinity on every compact subset of D.
Every normal function that is harmonic, holomorphic, or
bounded is R-normal and every R-normal function is normal. See
Rung [16, p. 147 for an example of a normal function which is
not R-normal.
DEFINITION 5.10. Two sequences {zn] and {z;} of points
in D such that there exists a positive constant K where

lim sup p(zn,z;) < K are called essentially close sequences.
N—o

DEFINITION 5.11. Let {zn} be a sequence in D. Then {z }

is an (AE) sequence for f(z) if there exists a sequence {z;}

essentially close to {zn} such that lim sup ‘f(zn)-f(z;)| = .
n-—o

Naturally every (A) sequence for a function f(z) is also

an (AE) sequence for f(z).

THEOREM 5.12. Let f(z) be an arbitrary function in D.

If there exists an (AE) sequence for f(z), denoted by {zn}, with

————— e




35

f(z) bounded on {zn}, then f(z) is not R-normal.
Proof. Let {zn} be the (AE) sequence, with {z;} the

essentially close sequence such that lim sup |f(zn)-f(z;)| = o
N-—xo

and let K be the constant in the definition of essentially close
sequence. Without loss of generality we assume f(zn) - 0 and
f(z&) - ». Consider the sequence {gn(z')}, gn(z') = f(Sn(z')),
where Sn(z') = (z'+zn)/(1+£nz'). Let D, = {z: \z'| < tanh(K+1)}.
Since gn(O) - 0 and g(S;l(z;)) - o with S;l(zé) in Do for all n,
the sequence {gn(z')} contains no infinite subsequence which con-
verges uniformly to a finite valued function or to infinity on
DO. Therefore £(z) is not R-normal.

Let Fi(i=1,2) be simple continuous curves z, = zi(t)

(0 € t< 1) in D such that ‘zi(t)\ - 1las t - 1. The non-

Euclidean Frechet distance between Tl and Fz is

H(T,ry) = max( lim  su p(zl,rz), lim  sup p(z,,I'}))-
z,€r, |z1r-.1 z,€T, \zzf-.l

COROLIARY 5.13. Let rl and Fz be simple continuous curves

in D tending to the boundary such that j(rl,rz) is finite. If f(z)

is R-pormal in D and f(z) = « on Fl, then f(z) - ® on Pz-

Proof. 1If {zi} is any sequence on Fz tending to the
boundary of D, there exists a sequence {zi} on Fl and a finite
constant K such that p(zi,zi) < K for all n sufficiently large.
Since f(zi) - o and by theorem 5.12, we have f(zi) - .

COROLIARY 5.14. Let £(z) be a R-normal function in D.

If rl tends non-tangentially to exp(ig) on C with f£(z) - @ on

Fl, then exp(if) is a Fatou point of f(z) with a Fatou value =.

ki

.l"f 04 U} g -
. - b 1
P

i,

'
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COROLLARY 5.15. Let f(z) be a R-normal function in D.

If Fl tends non-tangentially to exp(if) on C with f(z) bounded

on Fl, then f(z) is bounded in every Stolz angle at exp(if).

Corollaries 5.13, 5.14, and 5.15 are analogues or gen-
eralizations to Theorem 3, Bagemihl and Seidel [5]; Theorem 1,
Rung [16]; and Theorem 4, Bagemihl [37], respectively.

THEOREM 5.16. If f(z) is defined in D and there exists

an (AE) sequence for f(z), then f(z) is neither uniformly normal

nor very normal.

Proof. The theorem follows immediately from definitions
4.5, 4.1, 5.11, and theorem 4.6.

THEOREM 5.17. If f(z) is not uniformly normal in D, then

there exists an (AE) sequence for f(z).

Proof. Let f(z) be not uniformly normal. Then there
exists K, 0 < K < ®», such that for each positive integer n one
can find z and z; in D where p(zn,z;) < K and \f(zn)-f(z;)| > n.
Hence {zn} is an (AE) sequence for f(z).

Naturally then theorems 5.16 and 5.17 yield the following:

COROLIARY 5.18. Let f(z) be defined in D. Then f(z) is

not uniformly normal if and only if there exists an (AE) sequence

for £(z).

Following the lead of Lange [10] and Gauthier [8], but
with cluster sets instead of range sets, we easily obtain some
results concerning the cluster sets along hyperbolic disks with
centers on (A) sequences. For a sequence {zn}, define the
sequence of disks {Az} by Az = A;(zn) = {z: p(z,zn) < ¢} for each

positive integer n.
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THEOREM 5.19. If {zn} is an (A) sequence for

f(z) = u(z)+iv(z) harmonic in D with f(z) bounded on {zn}, and

-} @®
for each ¢ > 0 letting C(f, U Afl(zn)) = C(f,Az) = n (0 f(Aﬁ(zn)) )
i=1 j=1 n=j

then C(f,Az) is either a line parallel to one of the axes for each

¢ sufficiently small or for every real number x, there are wl, w2 R

in C(£,A%) such that Re w, = x and Imw, = x. ”i .
Proof. Consider C(u,Ag) and C(V,Ag)- I1f either one, say Lo

C(u,Az), is a singleton for some €, then C(v,A:) will at least be 1 ;,E

a closed half line for every ¢ < €, since f(z) is continuous and Eg

&

{zn} is an (A) sequence for f(z). Lemma 3.13 and remark 3.15 how-
ever imply v(z) is not normal and C(V,A;) is the whole (closed)
real line. Therefore we have the first situation of the theorem's
conclusion.

The only other situation is if for every ¢ > O, neither
C(u,Az) nor C(v,A:) is a singleton. We know there exists a sub-

sequence {zn'} where f(zn ) - B = a+ib%o from hypotheses. From

k k
the "neither nor'" statement there exist {z; } and {z" 1} close
Kk "k
1 1
to {zn }, a subsequence of {zn }, where u(z; ) - c # a and
k k k
1 1
v(z; ) = d # b. Hence neither u(z) nor v(z) is normal and the
k
1

conclusion follows.

EXAMPLIE 5.20. There exists a harmonic function f(z) which

is not normal and, for some (A) sequence {zn} for £(z) and each g,

0< g <o, C(f,A;) properly contains just one line and so is not

the whole plane. Let f£(z) = Re(z)+iRe(exp(z)) with the upper half

plane H = {z: z = x+iy, x,y real, y > 0} as its domain and
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*

P (ZI’ZZ) as the hyperbolic distance between z, and z, in H. Let
rl and Fz be two distinct rays in the upper half plane perpendicular
to the real axis. Then, as [zn} on [, and {z'} on T, go to infinity

*
such that Imzn = Imz;, we have p (zn,z;) - 0 and {f(zn)}, {f(z;)}

have bounded disjoint cluster sets. Hence f(z) is not normal.

From the hyperbolic metric in H and Re(f(x+iy)) = x and using the g;

natural definition of an (A) sequence in H we see that {zn = 2nni} gl)“f

is an (A) sequence for f(z); i.e. C(x,Az) is the whole closed real % l

line for any ¢ > 0. Let w_ be in C(f,AE). This implies there Egti*
5

exists a sequence {z'}, z' = z'+iy' in A%, such that x' - Re w_.
n n n n n n o

Since -1 < cos y; <1, {Re(exp(zé))} has a cluster set contained

in {w: w = b exp(Re wo), -1 <b < 1}. Hence Im v obeys the in-
equalities -exp(Re wo) < Im w < exp(Re wo). One also could easily
choose y; so that Im v is any number in the closed interval from
-exp (Re wo) to exp(Re w ). Hence {w: w = a+i0, a real} is properly
contained in C(f,As) = {w: w = a+ib exp(a), a real, -1 <b < 1}

and this is properly contained in the closed plane. Clearly only
one line is contained in C(f,Ag).

There are many such functions with the properties of

example 5.20. For example, any function of the form

N

f(x+iy) =x + i T exp(c,x)(a,cos c,y + b ,sin c,y), where N is a
j=1 i j j i j

positive integer, aj and bj real and not all zero, and cj rational

with at least one non-zero, also satisfies example 5.20.

THEOREM 5.21. Let f(z) be harmonic and not normal in D.

Then, for each (A) sequence {zn} for £(z) with f(z) bounded on

{zn}, either C(f,Az) is a line for ¢ sufficiently small or
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C(f,Aﬁ) intersects every half plane.

Proof. The theorem is clear from the fact that exp(if)f(z)

is harmonic and not normal for all real @.
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