
IIHI'IIH I If!“
3 129

MSU
LIBRARIES

.-_.

{I I u IIIIIIII ”
094 3219

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

AUG 1 0 2001

9116 03:

THE DESIGN OF

C-TESTABLE ARITHMETIC UNITS

By

Sin-Min Chang

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering and Systems Science

ABSTRACT

THE DESIGN OF

C-TESTABLE ARITHNIETIC UNITS

By

Sin-Min Chang

Due to the regular and iterative structure of iterative logic arrays ([LAs), this

thesis presents the C-testable designs that can be tested with a test set of constant

length regardless of the circuit size. The concept of C-testability developed for ILAs is

applied to the design of C-testable array multipliers and dividers. The results show that

the proposed design of n-by-n C-testable multipliers can be fully tested with 16 test

patterns, while the n-by-n restoring and nonrestoring array dividers can be tested with

40 and 20 test patterns respectively. Algorithms that generate the test patterns and

expected outputs are also provided.

Table of Contents

LIST OF TABLES

LIST OF FIGURES

I. INTRODUCTION

II. BACKGROUND

2.1. The Testing of Iterative Logic Array.

2.1.1. L-testable ILAs.

2.1.2. C-testable ILAs.

2.1.3. 2-D ILAs.

2.2. Previous Works.

2.2.1. Graph Labeling.

2.2.2. Design of C-testable CPM.

2.3. Problem Description.

III. DESIGN AND TEST OF C-TESTABLE ARRAY MULTIPLIERS

3.1. Carry-Propagate Array Multiplier (CPM).

3.1.1. Graph Labeling.

3.1.2. Test Pattern Generation.

 3.1.3. Design Evaluation.

3.2. Carry-Save Array Multiplier (CSM).

iii

10

17

18

19

21

26

28

28

39

43

47

48

3.2.1. Graph Labeling.

3.2.2. Test Pattern Generation.

3.2.3. Design of an Alternative C-testable CSM.

3.3. Baugh-Wooley Array Multiplier (BWM).

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

3.3.1. Design of C-testable MBWM.

3.3.2. Test Pattern Generation.

 IV. Design of C-testable Array Dividers.

4.1. Non-Restoring Array Divider.

4.1.1. Graph Labeling.

4.1.2. Test Pattern Generation.

 4.2. Restoring Array Divider.

4.2.1. Graph Labeling.

4.2.2. Design for C-testability

4.2.3. Test Pattern Generation

 V. Conclusions.

LIST OF REFERENCES

64

64

69

77

77

77

85

9O

94

100

100

- 104

LIST OF TABLES

1. 1-D ILA with primary outputs Z,- and x’.

 2. 1-D ILA with a primary output W.

3. (a) A Cell with Function of Table 2.

 (b) The Fault Pair Diagram of (a).

 4. The testing of a ILA with input patterns (101) and (001).

5. A Fault Pair Diagram of Table l.

6. A 1-D ILA with primary outputs S,- and W.

7. A Schematic Circuit Diagram of 4—by-4 Carry-Propagate

Array Multiplier [9].

8(a). Labeling L for Carry-Propagate Array Multiplier [9].

 8(b). Labeling L’ for Carry-Propagate Array Multiplier [9].

9. Four Basic Cells of a CPM.

10. Labeling for (a) a 4-by-4 CPM; (b) a 5-by-5 CPM;

 (c) A Schematic Diagram of a 4-by-4 modified CPM.

11. A 4-by-4 CSM : (a) Schematic Circuit Diagram;

(b) Four Basic Cells; (c) Labeling; and (d) Modified CSM.

12. Schematic Circuit Diagram : (a) A 5-by-5 CSM_B [6];

and (b) A S-by-S Modified CSM_B.

15

16

22

23

24

3O

35

49

6O

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

. Eight Basic Cells of a MRSD.

A Schematic Circuit Diagram of a

5-by-5 Baugh-Wooley Array Multiplier [6].

 A Schematic Circuit Diagram of a S-by-S MCSM_C. -

A Schematic Circuit Diagram of a S-by-S MBWM.

The Bottom Row of MBWM in Figure 15.

A Schematic Circuit Diagram of a 4-by-4 NRD [9].

 The Basic building block of a NRD.

Four Basic Cells of a NRD.

The application of labels to a NRD.

(a) D=1 (b) D=0

A Schematic Circuit Diagram of C-testable MNRD.

A Schematic Circuit Diagram of Restoring Array Divider.

 A Basic Cell of a RSD.

The Modified CS Cell of a MRSD.

A Schematic Circuit Diagram of a 4-by-4 MRSD.

iv

68

74

78

79

81

83

87

91

92

93

96

101

LIST OF FIGURES

1. 1-1) ILA with primary outputs 2“,. and x’.

2. 1-D ILA with a primary output W.

3. (a) A Cell with Function of Table 2.

(b) The Fault Pair Diagram of (a).

 4. The testing of a ILA with input patterns (101) and (001).

5. A Fault Pair Diagram of Table 1.

6. A 1-D ILA with primary outputs s;- and W.

7. A Schematic Circuit Diagram of 4-by-4 Carry-Propagate

Array Multiplier [9].

 8(a). Labeling L for Carry-Propagate Array Multiplier [9].

8(b). Labeling L’ for Carry-Propagate Array Multiplier [9]. -- --

9. Four Basic Cells of a CPM.

10. Labeling for (a) a 4-by-4 CPM; (b) a 5-by-5 CPM;

(c) A Schematic Diagram of a 4-by-4 modified CPM.

11. A 4-by-4 CSM : (a) Schematic Circuit Diagram;

(b) Four Basic Cells; (c) Labeling; and (d) Modified CSM.

12. Schematic Circuit Diagram : (a) A 5-by-5 CSM_B [6];

and (b) A S-by-S Modified CSM_B.

13

15

16

22

23

24

30

35

49

60

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

. Eight Basic Cells of a MRSD.

A Schematic Circuit Diagram of a

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO S-by-S Baugh-Wooley Array Multiplier [6].

A Schematic Circuit Diagram of a 5-by-5 MCSM_C.

A Schematic Circuit Diagram of a 5-by-5 MBWM.

The Bottom Row of MBWM in Figure 15.

 A Schematic Circuit Diagram of a 4-by-4 NRD [9].

The Basic building block of a NRD.

Four Basic Cells of a NRD.

The application of labels to a NRD.

(a) D=1 (b) D=0

A Schematic Circuit Diagram of C-testable MNRD.

A Schematic Circuit Diagram of Restoring Array Divider.

A Basic Cell of a RSD.

The Modified CS Cell of a MRSD.

A Schematic Circuit Diagram of a 4~by-4 MRSD.

66

68

74

78

79

81

83

87

91

92

93

96

101

I. Introduction

Rapid advances in semiconductor fabrication technology have made possible

the implementation of digital circuits with a very large number of devices on a single

chip. The complexity is coupled with an increase in the ratio of logic to pins which

drastically reduces the controllability and observability of the logic on the chip [1].

As a result, testing of such high-complexity circuits is very difficult. One of the

important issues associated with circuit testing is fault detection. In general,

fault detection is carried out by applying a sequence of test inputs and observing the

resulting outputs. The major cost of testing includes the generation of test sequences

and their application. To reduce the cost of testing, it is necessary to minimize the

length of the test sequence [2].

An Iterative logic array (ILA) consists of several identical cells with identical

interconnections between cells. Due to its regular and iterative structure, designs of

C—testable ILAs that can be examined with a test set of constant length irrespective

of the circuit size, have been presented [3-5]. Recently, array multipliers of reason-

able size have been implemented on a single VLSI (Very Large Scale Integrated) cir-

cuit chip [6,7]. The concept of C-testability has been applied to the design of C-

testable array multipliers [8].

The aim of this thesis is to present the designs of C-testable arithmetic units,

such as array multipliers and array dividers, and their test generation procedures. In the

next chapter, the testing of ILAs and previous work related to the C-testable designs

are discussed. The inherent drawbacks in the previous work are also pointed out. In

Chapter III and IV, the design and test generation of C-testable array multipliers and

dividers are proposed. Finally, the conclusions and future research directions are given

in Chapter V.

IL Background

2.1. The Testing of Iterative Logic Array

An iterative logic array (ILA) consists of several identical cells with identical

interconnections between cells. This type of circuit configuration offers the advantages

of structural regularity, like, ease of circuit and logic design, ease of placement and

routing [10]. In a l-D ILA, the cells are organized in a row, such as ripple-carry

adders, while in a 2-D ILA the cells are organized in a matrix of rows and columns,

such as array multipliers. In each direction of signal flow, more than one signal line is

allowed.

As the complexity of the VLSI system increases, the reliability issue becomes

more important than ever before. The method to make sure that a combinational circuit

is functionally correct is to apply all the possible inputs and examine the corresponding

output signals. However, it is impossible to do so on a large system. For example, if

the number of input lines is 32, then the number of test patterns to detect the per-

manent faults is 232 . This requires too much time for testing and too much memory

space to store the test patterns. Moreover, the ILAs have the characteristics of unlim-

ited expansion making the testing of ILAs highly interesting.

The test procedure is to apply test patterns to the accessible input terminals of

the array, referred to as primary inputs, and to observe the results at the accessible out-

put terminals, refered to as primary outputs. The observed results are verified by com-

paring them with the expected results. These accessible terminals are usually the boun-

daries of the array.

Faults in an ILA may occur either in the intercell connection, or in the array

cells. The former is covered by either the input or output fault of the corresponding

cell; the latter assumes that the faulty cell can change its truth table permanently in

any arbitrary way as long as it remains a combinational circuit. However, it is assumed

that there is no bridging fault between cells [8]. In practice, there are two fault-models

at the my level [10]: Single Cell Fault Model (SCFM) and Multiple Cell Fault Model

(MCFM). The former indicates only one cell out of the whole array can be faulty, and

the latter means an arbitrary number of cells can be faulty.

Basically, an ILA can be tested exhaustively using the truth table of a whole

array. The size of the test set is exponential to the number of cells. In recent years,

two categories of ILAs that simplify their testing have been studied: C-testable and L-

testable ILAs. The former is an ILA which can be tested with a constant test size

irrespective of the number of cells in the ILA, and the latter is an ILA that requires a

test size linear to the number of cells.

2.1.1. L—testable ILAs.

The test problems of ILAs under SCFM were first studied by Kautz [3]. Con-

sider a 1-D ILA, as shown in Figure 1. Each cell receives an input .1: from its left-hand

neighbor and an external input 2. It generates an external output 2 and transmits an

output it to its right-hand neighbor. The controllable inputs of the array consist of the

x-input to the leftmost cell and the z-inputs to all cells. All i-outputs and the f—output

of the rightmost cell are observable. We assume that the z-input of cell i, or z,-, is

independent to the z-input of cell j, or 2], for i r: j. Kautz [3] characterized the follow-

ing necessary and sufficient conditions for L-testibility of a general ILA under SCFM.

Condition 1: A complete set of test must be applied to the input terminals of any

cells in the array.

Condition 2: For each test, any effect of the fault must be propagated to an observ-

able output.

More specifically, consider the 1-D ILA of Figure 2. Each cell receives three

inputs, x,- , z,- and, z,-’, and produces an output, W}. Suppose the cells are connected in

such a way that the output of a cell is fed to its right as shown. Since the only primary

output of such an ILA is the output of the rightmost cell, a fault may not be detected

unless it can be propagated to the primary output.

1
3

1
4

J—i

.4

——)r

—> we

__9

——>
F
i
g
u
r
e

1
.
I
D
I
L
A

w
i
t
h
p
r
i
m
a
r
y
o
u
t
p
u
t
s
2
,
a
n
d

x
’
.

.
3
3
&
8
F
E
E

.
5
3
5
.
a
;

.
N
2
:
5

In general, the cell behavior can be described by a truth table. For example,

Table 1(a), which is the carry output of a full adder, describes the cells in Figure 2.

Table 1(a) consists of columns for input 1:,- and rows for_both z,- and zi’. Each entry

represents the output of the cell operation. For notational simplicity, we denote

WFW(x,-,z,-,z,-’), where xi = WM, i=1, 3, , n, x=W0, and Wn=W. Suppose there is a

faulty cell in this array and its function is changed so that W(0,0,0) becomes 1. This is

illustrated in Table 1. Suppose the operation W(0,0,0) is examined.

Table 1(a). Truth Table for Figure 2.

22

00

01

10

11

0
—
0
0
0
0

D
—
I
H
h
-
A
o
.
‘

Table 1(b). Truth Table for a Faulty Cell in Figure 2.

x

22’ 0 1

00 l O

01 0 1

10 0 1

11 l 1

Case 1: Cell #1 is faulty.

Consider a test pattern of x=0, (zl, zl’)=(0,0), and (2}, zj')=(0,1), j=2,....,n. For

a fault-free ILA, a logical 0 is expected at the primary output W. When the pattern is

applied to the faulty Cell #1, its output is changed from 0 to 1. This incorrect output

will be propagated from Cell #2 to the rightmost cell. As a result, a logical 1 will

appear at the primary output and conflict with the correct output 0. This concludes

that, if the above test pattern is applied to the ILA under SCFM, a logic 1 at the pri-

mary output detects that one cell is faulty.

Case 2: The Cell #i, i at 1, is faulty.

Consider a test pattern of x=0, (zi, z;’)=(0,0), and (2], zj’)=(0,1), for lSan and

jsti. Similar to Case 1, a logical 0 is expected at the primary output of a fault-free ILA.

When the above pattern is applied to the array, a correct output 0 will be pr0pagated

from the fault-free Cell #1 to #i—l and an incorrect output produced by the faulty Cell

#i will be propagated to the primary output. This concludes that, if the test pattern is

applied to the ILA under SCFM, a logical l at the primary output indicates that one

cell is faulty.

From above arguments, it is obvious that the examination of the operation

W(0,0,0) requires n test patterns. Since it is necessary to examine all the possible

operations of each cell, the number of test patterns required is thus proportional to n

10

(the length of the ILA). This concludes that the ILA of Figure 2 with cell function

described by Table 1(a) is L-testable.

2.1.2. C-testable ILAs.

The concept of C-testability was first defined by Friedman [4]. He provided

the following necessary and sufficient conditions for the C-testability of a 1-D ILA

under SCFM:

Condition 1: In each test, all input combinations can be applied to every qth cell in

the array by a single test.

Condition 2: The input sequence should be able to propagate the effect of the fault to

an observable output.

According to Condition 1, the input patterns for each cell of an ILA must

occur in a periodic manner. According to Condition 2, the function of the basic cell

must be able to propagate the fault effect from its input to its output. These conditions

can be studied more specifically with the following example. Consider the ILA of Fig-

ure 2 with cell function described in Table 2, which is the summation of a full adder.

11

Table 2. Truth Table for Cells in a C-testable ILA.

x

22’ 0 l

00 0 1

01 1 O

10 l 0

ll 0 1

Figure 3(b) shows a fault pair diagram generated from a cell of Figure 3(a)

with a function in Table 2. The state j/k represents a fault that changes the correct data

j into k, where j and k are either 1 or 0. The parentheses indicates the input pair (z,z’).

If the current state is 1/0, and if the input pair (z,z’)=(0,1) is applied, from Table 2, the

W-output becomes 1 (0) when x-input is 0 (1). This concludes that the next state is

0/ 1. On the other hand, if the current state is 1/0 and if the input pair (z,z’)=(0,0), from

Table 2, the W—output becomes 0 (1) when x—input is 0 (1), i.e., the next state is 1/0, or

the state is not changed.

It is obvious that the fault pair diagram of Figure 3(b) is strongly connected.

By [4], the ILA is C-testable. Alternatively, the C-testability can be also examined as

follow.

If a test pattern of x=1 and (z,-, z{)=(0,1) for all i, as shown in Figure 4(a), is

applied to an ILA with cells of Figure 3(a), then the outputs of the odd and even num-

bered cells are 0 and 1, respectively. Any single fault will generate an incorrect result

12

(a)

(0!) (10)

too)

(00)

(l l)

m)

(or) (10)

(b)

Figure 3. (a) A Cell with Fuction of Table 2;

(b) The Fault Pair Diagram of (a).

(
a
)

3

(
b
)

F
i
g
u
r
e

4
.
T
h
e

t
e
s
t
i
n
g
o
f
a
I
L
A

w
i
t
h
i
n
p
u
t
p
a
t
t
e
r
n
s
(
1
0
1
)
a
n
d

(
0
0
1
)
.

13

14

at the primary output. For example, if a stuck-at-O fault occurs at the output of Cell

#2, then an incorrect output 0 is produced at the output of Cell #2 and further pro-

pagated to the primary output. This incorrect output conflicts with the expected output.

In other words, the test pattern can simultaneously test any single stuck-at—O (or stuck-

at-l) fault at the output of any even (odd) numbered cells. In fact, if an additional test

pattern of 1:20 and (2,, zi’)=(0,1), as shown in Figure 4(b), is also applied, then we can

completely test both operations W(0,0,1) and W(1,0,1) in each cell of the ILA. This

concludes that only 2 test patterns are required to test the ILA for these two opera-

tions, irrespective of the circuit size. If all the input combinations can be applied in

this way, the ILA is thus C-testable.

As mentioned before, the ILA of Figure 2 with the cell function described by

Table 1 is not C-testable. This can be studied by its fault pair diagram in Figure 5.

Since both states 0/1 and 1/0 can be changed to the state 0/0 for input (z,z’)=(0,0), or

to the state In for input (z,z’)=(l,1), which are not distinguishable faults. As a result,

the ILA is not C-testable.

The problem arises as to whether or not the L-testable ILA of Figure 2 can

be modified to be C-testable. Consider the ILA of Figure 6 which is modified from

Figure 2. Each cell produces an additional output S, where the output S,- is described

in Table 2. In fact, both functions described in Tables 1 and 2 are respectively the

carry and sum outputs of a full adder (FA). Figure 6 is known as a ripple—carry adder

15

(or) (10)

(or) (10)

Figure 5. A Fault Pair Diagram of Table 1.

16

-
o
u
s
e
”
.

.
3
e
a
w
5
&
8
D
E
E

e
s
,
5
.
a

_
<

17

(RCA). Since all the faults can be propagated out and observed from the additional

primary outputs S}, the ILA of Figure 6 is thus C-testable. Therefore, Ripple carry

adder is C-testable [9].

2.1.3. 2—D ILAs.

For 2-D ILA testing, various schemes have been recently proposed

[10,11]. Basically, the 2-D ILA is partitioned into several l-D rows and each row is

treated as a 1-D ILA. Therefore, the C-testability developed for 1-D ILAs can be

applied to 2-D ILAs.

Array multipliers and dividers are two special and simple forms of 2-D ILAs.

It is known that an array multiplier is simply constructed by matrix of full adders with

corresponding AND gates, the design methodology for C-testability of an array multi-

plier would be similar to that of a RCA, i.e., applying all the possible input combina-

tions to every cell. Unfortunately, some array multipliers may not allow for the appli-

cation of the complete set of input patterns to its basic cells. The conventional

Carry-Propagate Array Multipliers (CPM), Carry—Save Array Multipliers (CSM), and

Baugh-Wooley Array Multipliers (BWM) are, therefore, not C-testable [8].

Similarly, because array dividers do not allow for the application of the com-

plete set of test patterns, neither the restoring array divider, nor the non-restoring array

divider, is C-testable [9].

18

2.2. Previous Work.

Recently, the concept of C-testability developed for ILAs has been applied to

the design of C-testable array multipliers [8]. Shen and Ferguson have shown that the

testing of an array multiplier must involve the exhaustive testing of every cell by

applying all possible input patterns and observing the outputs. In other words, for

each cell consisting of an AND gate and a full adder, all possible 24 input patterns

must be applied.

The significance of the design methodology of [8] is that they took advan-

tage of the iterative structure in an array multiplier; the test sequence generated for

exhaustively testing a cell can be applied to exhaustively test entire array. Conse-

quently, the test length can be substantially reduced, and all cells can be simultane-

ously tested because of the repetitive nature of hardware. However, the only draw-

back in [8] is that no systematic test pattern generation procedure was provided.

In order to systematically generate the test sequence for C-testable itera-

tive array structures, Chatterjee and Abraham [9] have proposed a test generation

methodology using graph labeling scheme. A data-flow graph based model is formu-

lated in which labels representing binary vectors are assigned to the branches of the

data-flow graph. The labels are shown to satisfy a set of constraints imposed by cell

function and interconnection topology. As a result, complex test generation problems

can be solved by manipulating a set of symbolic labels with ease and efficiency [9].

19

2.2.1. Graph Labeling

Consider two sets of labels illustrated in Table 3 [9], which represent different

sequence of 1’s and 0’s.

Table 3. Labels defined in [9].

v1 v2 V3 V4 C1 C2 C3 C4

0 o o o o o o o

o o 1 1 1 1 o o

o r o 1 1 o 1 o

o 1 1 o 1 o o 1

1 o o 1 o 1 1 o

1 o 1 o o 1 o 1

1 1 o o o o 1 1

1 1 1 r 1 1 1 1

The combinations of the vectors V1, V2, and V3 contain all 23 possible binary 3-bit

values. V4 is the bitwise sum of V1, V2, and V3 over GF(2). Two functions are defined

as

8(vaj9VD=V56VJ$Vk ; (1)

and

flVianV0=VM+Vin+WVt (2)

20

The function g is the bitwise summation over GF(2) of the vectors Vi, V], and Vk,

while the function f is the bitwise carry produced in the above summation. The

Cm vectors are computed by evaluating f(V,-,VJ-,Vk) and the V", vectors are by

8(VbVj,V,,), where iatjatkwn, and l S ij,k,m S 4.

Let A, B, C, X, and Y be vectors that represent any of 8 vectors Vl-V4, and

C1-C4. A mapping VM is defined as VM(A,B,C)=XY if X=g(A,B,C) and

=f(A,B,C). It is represented simply by ABC->YX.

The vectors Vi’s and Cj’s are treated as labels. A data flow graph

representation of the circuit is used. Each node of this graph represents a circuit

module and interconnection between the modules is represented by directed arcs

between the above nodes. The objective is to keep track of the data in each branch

by the following way :

1) each branch is assigned an unique label; and

2) the labels on the input and output branches of a node are consistent

with the corresponding cell function.

21

2.2.2. Design of a C-testable CPM.

Consider the 4-by-4 Carry-Propagate array multiplier (CPM) [9], as shown

in Figure 7. Each cell has 3 inputs, x, y, and z, and 2 outputs, sum bit u=xyz

and carry bit v=xy+xz+yz. The input x is the AND aibj, where ai’s and bj’s are the

multiplier and multiplicand bits, respectively.

In [9], a label L consisting of two sets of vectors L1=(V1,C1,V4) and

L2=(V4,C4,Vl) is applied to a CPM, as shown in Figure 8(a). The mapping,

V1C1V4'->V4C4 ,

describes that a carry vector V4 is propagated from the rightmost cell to the leftmost

cell of the first row. In order to reproduce the label L1 in the third row, an

appropriate label L2 is chosen for the second row such that the carry assigned in the

rightmost cell of the second row can be propagated to the leftmost cell and the

labels L1 and L; are periodically reproduced in every other row. This is referred

to as two-row periodic propagation (TRPP).

Since the labels on the input and output branches of a graph node must be

consistent with the corresponding cell function, the carry vector of the leftmost cell in

the first row must be identical to the required vector in the y input of the leftmost cell

in the second row. On the other hand, the sum output of each cell in the first row is

22

0 o 0

0 ‘39. “the “090aibj 8 ’|%.
.

Figure 7. A Schematic Circuit Diagram of 4-by-4

Carry-Propagate Array Multiplier [9].

23

V1

Figure 8(a). Labeling L for Carry-Propagate Array Multiplier [9].

Table 4(8). Application of L to CPM [9]

0

l

l

l

l

l

1

0

24

D

9 5
3

V1

 O

I

Av
cl.

0 e e. o ..

Figure 8(b). Labeling L’ for Carry-Propagate Array Multiplier [9].

Table 40)). Application of L’ to CPM [9]

fed to the y input of the corresponding cells in the second row. Therefore, the vectors

must be chosen so that both carry and sum outputs have the same label. Unfor-

tunately, producing such labels is virtually impossible for this application.

However, with an additional XOR gate, the labels can be perfectly

applied as shown in Figure 8. More specifically, the leftmost cell in the first row pro-

duces the carry vector V4 and the sum vector C4. The carry vector is expected to be

fed into the y input of the leftmost cell in the second row where an input vector C4 is

expected. Although vectors V4 and C4 are not identical, C4 is bitwise complement

of V4 except when (V1,V2,V3)=(000) and (111). Therefore, an additional two-input

XOR gate can be used to make the applied label consistent, as shown in Figure 8,

where an extra control signal TEST is needed. The signal TEST is set to a logical

0 during the normal operation and is set to 1 when the corresponding values of V4

and C4 are different during the test mode.

The use of label L, however, is not enough to apply all possible input com-

binations. As the application of L to array illustrated in Table 4(a), all input combina-

tions are applied except (001) and (110) in Vector 1. Therefore, another label L’

consisting of L1’=(V1,C4,V4) and Lq’=(V4,C1,V1) is applied. This label is applied in

the same manner as L except that the labels LI’ and L2’ are periodically reproduced in

every other diagonal column, as shown in Figure 8(b) [9]. This is referred to

as two-column periodic propagation (TCPP).

26

With the application of such labels, the modified Carry-propagate array multi-

plier has been shown to be C-testable [9].

2.3. Problem Description.

In this thesis, the following three problems will be discussed.

(1) Designs of C-testable Array Multipliers.

(2)

Although the C-testable CPM design of [9] can significantly reduce the time and

cost of testing, it is not free of penalty. The extra XOR gates may slightly

degrade the speed performance. Alleviating the performance degradation is desir-

able. In addition, the graph labeling scheme for both CSM and BWM were not

discussed in [9]. However, these array multipliers are the most commonly used.

Therefore, the design of C-testable CSM and BWM is proposed.

Designs of C-testable array dividers.

An array divider design has been presented and claimed to be C-testable in [9].

However, due to the difficulty of fault propagation, the design of the non-

restoring array divider proposed in [9] is, in fact, not C-testable. The design of

C-testable array divider is studied.

27

(3) Design Methodologies.

Since the methodology of generating test patterns and expected outputs has not

been precisely stated and provided in the existing literature, the algorithms that

generate test patterns and expected outputs for arithmetic units are thus investi-

gated.

III. Design and Test of C-testable Array Multipliers

3.1. Carry-Propagate Array Multipliers (CPM).

According to graph labeling scheme, the following properties have been sum-

marized [9].

Property 1: Any combination of three vectors V,Cij or CiVJCk, lSichs4,

i¢j$k, does not contain the 3-bit combinations 010 and 101.

Property 2: Th6 SCI Of VCCLOI'S ViCiVi (CiV‘CJ) and IIS dual VJCiVi (CJV‘Ci)

together contain all possible combinations of 3-bit values.

Property 3: The set of vectors Vii/jV,‘ and CiCJC,‘ where 1$ij,ks4 and i¢j¢k, cover

all the possible 3-bit combinations.

Our. goal is to find a set of labels that can completely apply all possible

input combinations to each cell. While the labels in Property 1 cannot apply all

input combinations, the labels in Property 2 will result a performance degradation.

Therefore, we shall consider the labels that are comprised of either all vectors of

{V1,V2,V3,V4}, 01' all VCCIOI'S {C1,C2,C3,C4}.

28

-29-

3.1.1. Graph Labeling.

Consider the corresponding mappings,

vij, -—> Cme ; and (3)

C,C,C,, -—) VmCm , (4)

where i¢j¢km, and l Sij,k,ms 4,'which represent the functions of the basic cell

in a CPM. Consider also the application of the labels that are propagated in the

fashion of combining TRPP and TCPP, i.e., two vectors are periodically propagated

in one direction and the other two are in the other direction. More specifically, let

Mi’s, i=1,..,4, represent the four basic cells of a CPM, as shown in Figure 9. Each

cell is labeled by L;=(L,-1,LQ,L,3). The objective is to generate a set of labels so that

they can be propagated to the entire array repetitively. According to their intercon-

nection topology and the mappings (3) and (4), we shall solve the following

mappings,

ererLrs “9 523142 i (5)

larlazlas "* Lrsloz ; (6)

161162163 *9 L431’22 ; and (7)

L41L42L43 "" [’33le - (3)

This results the following theorem.

3O

Figure 9. Four Basic Cells of a CPM.

31

Theorem 1.

The following set of labels is a solution of the mapping (5)-(8) :

L1=(L11L12L13)=(V1:V2:V3);

la=(larl22L23)=(C2,C1’C4)i

(9)

lg=(lorlozlos)=(c4»C3:C2)i

L4=(L41’L42»L43)=(V3»V4:V1)-

Lemmal.

Consider four distinct indices i, j, k, and m, lSij,k,ms4, for labels V and C,

and the mapping: xyz --> vu, where x, y, and z belong to either all V’s or all

C’s, i.e., (x,y,z)=(V,-,Vj,V,,) or (Ci,CJ-,C,,), then we get the following properties.

(a) The indices of the vectors for u and v are the same, i.e.,

iff u=V,,,, then v=C,,,, and ifi‘ u=C,,,, then v=Vm.

(b) If any one of x, y, and z is Ck and u=C,,, or v=Vm,

then the others belong to {Ci,CJ-}, and

(b’) If any one of x, y, and z is V,‘ and u=Vm or v=C,,,,

then the others belong to {Vng}.

32

(c) If one of x, y, and z is Vi, then u¢Vi, and v¢C,-, and

(c’) If one of x, y, and z is C;, then u¢C,-, and v¢V,-.

(d) If v=C,,, or u=V,,,, then none of x, y, and z is Vm, and

(d’) If v=V,,, or u=C,,,, then none of x, y, and z is in Cm.

Proof : The above results can be simply obtained from the mappings ViVJ-Vk——>Cmvm

aha cock-411mg in (3) and (4).

Proof of Theorem 1 :

If Ll=(V1,V2,V3), by equations (3) and (5), we get L23=C4 and L42=V4.

Further, by equation (8) and Lemma 1(a), L12=V2 results in L33=C2. Simi-

larly, since L13=V3, by equation (6) and. Lemma 1(a), we conclude that

lqz=C3. On the other hand, since L23=C4 and L13=V3, by equation (6) and

Lemma 1(b), Lu and L2 are identical to Cl and C2. Similarly, since L12=V2

and L42=V4, by equation (8) and Lemma 1(b’), L41 and L43 are identical to V1

and V3. Moreover, by equation (7) and Lemma 1(c’), L33=C2 gives [InstCz

and forces [Q2=C1 and L21=C2. Again equation (7) and Lemma 1(a),

W1 implies L43=V1 and further forces L41=V3. Consequently, from the

results, 15241, 162%,, and [43=C2, we conclude that L31=C4 by equation

(7) and Lemma 1(b’).

33

Corollary 1.1.

Given a label L1 consisting of either all V;, or all C,, the rest of labels can

be generated in the same fashion as discussed in Theorem 1.

Proof : Consider an index set {1,2,3,4}. Given a label L1=(V,-,Vj,Vk). If we perrnute

the indices ij,k, and m, i.e., assign i to 1, j to 2, k to 3, and m to 4, then we

get the labels

L1=(V,-,Vj,V,,), L,=(C-,C,-,C,,,), L,=(C,,,,C,,,Cj), and L4=(V,.,V,,,,V,,). (10)

Similarly, If L1=(Ci’Cj’Ck) then

IQ=(VjstVm): lG=(anVbV:i)9 and L4=(Ci:CnvClt)° (11)

Corollary 1.2.

There exist 24 possible sets of such labels.

Proof : Since label Ll takes three indices out from a set of four, this implies that there

exist 12 possible sets. Furthermore, since L1 can take either all V,, or all C,-,

this results in a total of 24 sets.

In fact, each set of labels in Corollary 1.2 contains the same 8 combina-

tions for the 3-bit input, but in a different sequence.

34

Figures 10(a) and 10(b) respectively illustrate the applications of label (9) to

a 4-by-4 and a 5-by-5 CPM. The labels are perfectly applied and periodically pro-

pagated through the cells of the entire array except those in the carry propagation

stage, i.e., the leftmost cells of each row, referred to as left-boundary cells.

Although the labels applied to the left-boundary cells are not exactly the same as

expected, they have the same elements in the label but in different sequence. More

specifically, the label of the leftmost cell in the second row of Figure 10(a) was

expected to be (x,y,z)=(V3,V4,V1) and now is changed to (V4,V3,V1), referred to as

Vector 6. Similarly, in the leftmost cell of the third row, the label (C2,C2,C4) is

changed to (C1,C2,C4), referred to as Vector 5. Table 5 describes the input combina-

tions of these four vectors. Each pair contains the all possible 8 input combinations

in different sequence.

Table 5. Input Combinations of Boundary Cells.

Vector 4 Vector 6 Vector 2 Vector 5

(V3’V4’Vl) (V4’V3’Vl) (C2’C1’C4) (CI’CZ’C4)

1 000 000 000 000

2 110 110 110 110

3 010 100 010 100

4 100 010 011 101

5 011 101 100 010

6 101 011 101 011

7 001 001 001 001

8 111 111 111 111

35

C. v‘ cl V‘ V:

QQQCW

QQQz.

QQQ:2

V: c, CI 15': C:

QQQQfi

QQQQ.3°

QQQQH'

'"QQQ.-

(a)

C| V:

(b)

Figure 10. Labeling for (a) a 4-by-4 CPM; (b) a 5-by-5 CPM;

(c) A Schematic Diagram of a 4-by-4 modified CPM.

36

(c) ' QN 0:5 0*

Figure 10. (Continued)

37

The problem arises as to whether or not the application of such labels meets

the constraints, referred to as external constraints, imposed by cell functions and

interconnection topology.

As the interconnection topology shown in Figure 7, the x-direction input of

each cell is the output of a 2-input AND gate. The inputs, a,- and bi of the AND gate,

must meet the following constraints: all cells in the same diagonal column are

required to apply the same ai, and all cells in the same row have the same bj. There-

fore, both vectors 1 and 3 have the same value of a,-, so do vectors 2 and 4; and both

vectors 1 and 2 have the same value of bj, so do vectors 3 and 4. More specifically,

(ai,bj)=(1,l) if the output of AND gate is a logical 1; otherwise (ai,bj)=(0,0), (0,1), or

(1,0) depending upon the external constraints and the corresponding data of L“.

Table 6 describes the application of the labels of equation (9) to the array and get the

suitable ai’s and bj’s.

38

Table 6. Application of Labels Li’s to the array.

Vectorl Vector 2 Vector 3 Vector 4

aibj V1V2 V3 aibj C2C1C4 aibj- C4C3 C2 aibj V3 V4 V1

* 000 * 000 * 000 * 000

01001 11110 01001 11110

* 010 * 010 * 010 * 010

10011 10011 11100 11100

11100 11100 10011 10011

11101 11101 11101 11101

11110 01001 11110 01001

11111 11111 11111 11111

Remark: "*" denotes that aibj can be either 00, 01,or 10.

From Table 6 and Table 5, we may find that both a,- and bj can be applied

consistently to meet the external constraints for all cells in the array except those

left-boundary cells. Since Vector 4 is substituted by Vector 6 and Vector 2 by Vector

5 for those boundary cells, applying the suitable ai and bi of Vector 4 to the

corresponding left-boundary cells will produce a Vector (V3,V3,Vl) which is not Vector

6. Similarly, applying the suitable a,- and bi of Vector 2 to the corresponding left-

boundary cells will not produce the Vector 5. Therefore, the problem can be solved by

adding an XOR gate as shown in Figure 10(c) with a control signal.

39

In order to exhaustively test all the cells of a CPM, all the possible inputs

should be examined. Table 7 describes the input combinations derived from Table 6.

Table 7. Input Combinations for MCPM.

Test__# Vectorl Vector 2 Vector 3 Vector 4

(abxy) (abxy) (abxy) (abxy)

1. 0000 0000 0000 0000

2. 0100 0100 0100 0100

3. 1000 1000 1000 1000

4. 0101 1110 0101 1110

5. 0010 0010 0010 0010

6. 0110 0110 0110 0110

7. 1010 1010 1010 1010

8. 1011 1011 1100 1100

9. 1100 1100 1011 1011

10. 1101 1101 1101' 1101

11. 1110 0101 1110 0101

12. 1111 1111 1111 1111

Table 7 shows that all input combinations are applied to the basic cell except

(ai,bj,y,z)=0001, 1001, 0011, and 0111. As discussed in [8] and Lemma 2, the pat-

terns (0001) and (1001) can never appear at the inputs to a cell under normal Opera-

tion.

Lemma 2. [8]

The input vectors (1001) and (0001) can never appear at the input to any cell

in the CPM.

40

Proof : Suppose that the input pattern (1001) is applied to the cell at the ith diagonal

column and the jth row, say, Cell(i,;). (1001) represents that ai=1, bj=0 and the

z-input is l. The z-input of Cell(ij) is nothing but the carry output u of

Cell(i-l,i). Since the external constraint, bj=0, results in a zero at the x-input

of Cell(i-1,i), both 2 and y-inputs must be 1 to produce the carry output u=1.

Similarly, the z-input of Cell(k,1) must be 1 for all k, where ISkSi. However,

the z-input of Cell(1,/) is fed a logical 0 as shown in Figure 7. Therefore, the

input pattern (1001) will never appear during normal operation. Similarly, the

pattern (0001) will never appear during normal operation.

In order to apply all possible input combinations, the cell is modified in

such a way that the carry output of the input (0001) is changed from logical 0 to 1

[8]. As a result, the use of the combination (0001) can apply the combinations (0011)

and (0111) to the array. Therefore, the following input combinations are added to

Table 7.

Table 7(a). Input Combinations for MCPM.

13. 0001 0011 0001 0011

14. 0011 0001 0011 0001

15. 0001 0001 0111 0111

16. 0111 0111 0001 0001

41

According to Theorem 1, a set of test vectors can be obtained in Table 7, i.e.,

assign column a of Vector i to be Lil, column b of Vector i to be Liz, and LB can be

generated by column y and z of Vector i. The entries in column y and z are input data.

If the tester can apply those labels on the accessible inputs, then the test vectors in

Table 7 can be propagated to the entire array repetitively. Therefore, the following

theorem results.

Theorem 2.

The MCPM is C-testable with a test length of 16.

Lemma 3.

A Basic FA/AND cell of CPM shown in Figure 7 can be tested with 16 pat-

terns.

Proof : A 4-input circuit can be exhaustively tested by all its input combinations, i.e.,

24:16 test patterns.

Lemma 4.

The four basic cells of CPM shown in Figure 9 can be tested with 16 patterns.

Proof : From the generation of Table 7, each basic cell can be exhaustively tested by

those 16 patterns.

42

Proof of Theorem 2 :

The MCPM is C-testable if, for any size n, a n-by-n MCPM can be tested

with 16 patterns. Let Mac be the four basic cells of CPM, as shown in Figure

9, and TS be the 16 test vectors of Table 7. A p-by-q MCPM represents a

MCPM having p rows and q columns. Without loss of generality, both p and

q are assumed to be even. Therefore, a p—by-q MCPM can be tessellated by

Mac’s. Consider a 2-by-(2k) MCPM which is constructed by k MBC’s, say

MR1, MR2, ..., MRb From Figure 9, the inputs of MR], j=2...k, are the same as

those of MR1. Therefore, all MRJ- can be tested by the same test set TS. Simi-

larly, a (2r)-by-2 MCPM can be constructed by r MBC’s, say MCI, MCZ, ...,

MC, From Figure 9, the inputs of MC;, i=2...r, are the same as those of MCI.

Therefore, all MC; can be tested by the same test set TS. Since, by Lemma 4,

each Mac can be tested by the test set TS, a n-by-n MCPM that can be parti-

tioned into m2 Mac’s, where n=2m, can then be tested by the same test set

T8. 80, MCPM is C-testable with a test length of 16.

43

3.1.2. Test Pattern Generation.

Consider a 4-by-4 modified carry propagate array multiplier (MCPM), as

shown in Figure 10(c). The c’s and d’s inputs and control signals are connected to

logical 0 during multiplication. However, it is assumed that during testing these

inputs are available as primary inputs to the array. Two control signals TESTl and

TESTZ are connected to the even and odd numbered rows, respectively.

According to the input combinations of Table 7, Algorithm 1 describes the

process of generating the test patterns and the corresponding expected outputs

for a C-testable MCPM. The main idea of Algorithm 1 is that the test sequence

designed by Theorem 1 for testing the four basic CPM cells can be applied to the

entire array. Therefore, the test vectors that exhaustively test the four basic cells of

CPM can be propagated to all the other cells. Algorithm 1 simply apply those test vec-

tors in Table 7 into an MCPM repetitively.

Algorithm 1:

Vector_i=(ia,ib,ic,id), i=1,..,4.

ia : a-input, ib : b-input, ic : y-input, id : z-input.

The Test patterns to be generated are:

a(i), b(i), c(i), d(i),i =0...n, TESTl, TEST2.

The expected product p(i), i=0...2n+l.

n is odd. *}

*
i
i
fi
-
i
-
F
;

{* Step 1. (Test Patterns) *}

For i=0 to n-l by 2

do Begin

a(i):=la; a(i+1):=2a;

b(i):=-lb; b(i+l):=3b;

c(i):=1c; c(i+1):=2c;

d(i):=ld; d(i+1):=3d;

End;

{* (consider the leftmost cell of the second row) *}

If ((ld XOR 4d)=lc) Then x_input:=0. Else x_input:=1;

If (a(n)*b(l)=x_input) Then TEST1:=O Else TESTl:=l;

{* (consider the leftmost cell of the third row) *}

If ((4c XOR 2d)=3c) Then x_input:=0 Else x__input:=l;

If (a(n)*b(2)=x_input) Then TEST2z=O Else T'EST2:=1;

{* Step 2: (Expected Results) *}

For i=0 to n-l By 2

do Begin

p(i):=4c; p(i+l):=2c;

End;

For i=n+l To 2n+l By 2

do Begin

p(i):=2c; p(i+l):=1c;

End;

45

The test patterns and expected outputs for a 4-by-4 MCPM are generated as

shown in Table 8.

Table 8. Test Patterns and Expected Outputs for a MCPM.

TEST Expected

Test_# a b c d 12 Output

1 0000 0000 0000 0000 00 00000000

2 0000 1111 0000 0000 00 00000000

3 1111 0000 0000 0000 00 00000000

4 1010 1111 1010 1111 0 0 10101111

5 0000 0000 1111 0000 11 01111111

6 0000 1111 1111 0000 11 01111111

7 1111 0000 1111 0000 11 01111111

8 1111 1010 1111 0101 l 1 01111010

9 1111 0101 0000 1010 1 1 10000101

10 1111 1111 0000 1111 11 10000000

11 0101 1111 0101 0000 0 0 01010000

12 1111 '1111 1111 1111 00 11111111

13 0000 0000 1010 1111 0 0 10101111

14 0000 0000 0101 1111 l 1 11010000

15 0000 1010 0000 1111 01 10000101

16 0000 0101 1111 1111 10 11111010

Remarks 3 3403020100) b=(b3bszbo) c=(03026160) d=(dod1dzds)

By applying all the test patterns in Table 8, Table 9 illustrates that all the

input combinations can be applied to each cell of the array. This shows that, the test

patterns in Table 8 can detect any single fault that occurs at any place of the array.

e1

e2

.3

05

07

000

000

000

110

100

100

100

010

000.

0100

110

0101

100

0010

100

0110

100

1010

101

1100

Table 9. Input Combinations for each cell in a 4-by-4 CPM.

3
3
%

0100

0100

1000

1000

110

0101

1110

100

0010

0010

100

0110

0110

100

1010

1010

010

1011

1100

0000

0100

0100

0100

0100

1000

1000

1000

1000

1110

0101

1110

0101

0010

0010

0010

0010

0110

0110

0110

0110

1010

1010

1010

1010

1011

1100

1011

1100

0000

0000

0100

0100

0100

1000

1000

1000

0101

1110

0101

0010

0010

0010

0110

0110

0110

1010

1010

1010

1011

1100

1011

0000

0000

0100

0100

1000

1000

1110

0101

0010

0010

0110

0110

1010

1010

1011

1100

0000

0100

1000

0101

0010

0110

1010

1011

39

101

310

011

.11

001

.12

111

’13

011

.16

111

.15

011

#16

111

010

1011

011

1101

001

1110

111

1111

011

0001

111

0011

111

0111

011

0001

101

1100

1011

011

1101

1101

001

1110

0101

111

1111

1111

011

0001

0011

111

0011

0001

011

0001

0111

111

0111

0001

1100

1011

1100

1011

1101

1101

1101

1101

0101

1110

0101

1110

1111

1111

1111

1111

0011

0001

-0011

0001

0001

0011

0001

0011

0001

0111

0001

0111

0111

0001

0111

0001

1100

1011

1100

1101

1101

1101

1110

0101

1110

1111

1111

1111

0001

0011

0001

0011

0001

0011

0001

0111

0001

0111

0001

0111

1100

1011

1101

1101

0101

1110

1111

1111

0011

0001

0001

0011

0001

0111

0111

0001

1100

1101

1110

1111

0001

0011

0001

0111

47

3.1.3. Design Evaluation.

In the design of MCPM, the cells are modified as follows. Each left-

boundary cell only consists of a full adder, i.e., the corresponding AND gate is

separated from the cell and this AND gate is connected to an XOR gate with a con-

trol signal. The remaining cells are designed in such a way that each cell retains the

same operation as in the original design, but produces a logical I carry output when

the input combination is (1000).

The extra hardware in an n—by-n MCPM are those (n-l)’s XOR gates.

Unlike the XOR gates located at the critical path in the design of MCPM in [9], the

XOR gates in the proposed MCPM design will not degrade the speed performance.

48

3.2. Carry-Save Array Multipliers (CSM)

A 4-by-4 Carry-Save array multiplier (CSM) is illustrated in Figure 11(a)

[3]. It has been shown that the CSM is not C-testable [8]. Therefore, in this section,

the design of C-testable CSM is studied and the graph labeling scheme is also applied

to generate test patterns.

3.2.1. Graph Labeling

Consider the four basic cells, Mi, 1:1 to 4, as shown in Figure 11(b).

According to the interconnection topology in Figure 11(b) and the mappings (3) and

(4), we should solve the following mappings (12)-(15) for Lij’s, l Sijs 4.

L11L12L13 —’ [42141 3 (12)

[mimics -’ £42141 : (13)

[61162163 "" [4121/21 ; and (14)

L41L42L43 —" lalei - (15)

Similar to Theorem 1, the following Theorem and Corollary result.

(a) o o . o

(b)

Figure 11. A 4-by-4 CSM : (a) Schematic Circuit Diagram;

(‘0) Four Basic Cells; (c) Labeling; and (d) Modified CSM.

50

V:
C:

V:Cl
(C)

CoC, do

V! c; d‘ v

c, ‘3 v . a.

6 C' C “b
v 0*. 0A

C.’ . a

C C

(d) .

Cg' . -

i C' C .C

Cf . fl

0 e g,
.V

e
c" C CC

I)

O

51

Theorem 3.

The following set of labels is a solution of the mappings (12)-(15) :

L1=(L11,L12»L13)=(V1:V2»V3) 3

[’Z=(IQI’L22’L23)=(C2’C1’C4) ;

(16)

134161162163)=(C3»C4:C1) 3

L4=(L41:L42,L43)=(V4»V3»V2) -

Proof : Similar to the proof of Theorem 1, with the mappings (12)-(15), we can obtain

the labels at (16).

Corollary 3.1.

There exist 24 possible sets of such labels.

Proof : Similar to Corollary 1.2, label L1 takes three indices out from a set of four,

this implies that there exist 12 possible sets. Furthermore, since L1 can take

either all V,-, or all Ci, this results in a total of 24 sets.

52

If the labels (16) are employed, they can be perfectly applied to the array

without any extra hardware, as shown in Figure 11(c). Similar to the construction of

Table 6, the application of such labels to CSM under the external constraints, is illus-

trated in Table 10.

Table 10. Application of Li’s to CSM.

Vectorl Vector 2 Vector 3 Vector 4

V1V2V3 a,- bi C2C1C4 a,- bj C3 C4 C1 (1,- bj V4 V3 V2 (1; bj

000 * 000 * 000 * 000 *

00111 11001 00111 11001

01010 01010 10111 10111

01111 01111 01111 01111

100 * 100 * 100 * 100'*

10111 10111 01010 0101

11001 00111 11001 00111

11111 11111 11111 11111

Like the design of MCPM, the carry output of (0100) can be changed to 1 in

order to reproduce the patterns (1100) and (1110) internally because the input combi-

nations (0100) and (0101) would never appear in the CSM. This can be proved by the

following lemma.

53

Lemma 5.

The input vectors (0100) and (0101) can never appear at the input to any cell

in the CSM.

Proof: By Lemma 2, the input vectors (1001) and (0001) can never appear in CPM.

Since the input vector (c,d,a,b) in the CSM is equivalent to a vector (b,a,c,d)

in the CPM, hence, by Lemma 2, (0101) and (0100) can never appear at the

input to any cell in the CSM.

Similar to Table 7, the input combinations for a MCSM derived from Table

10 are shown in Table 11.

54

Table 11. Input Combinations for a MCSM.

Test_# Vectorl Vector 2 Vector 3 Vector 4

(cdab) (cdab) (cdab) (cdab)

1. 0000 0000 0000 0000

2. 0001 0001 0001 0001

3. 0010 0010 0010 0010

4. 0011 1101 0011 1101

5. 0110 0110 1011 1011

6. 0111 0111 0111 0111

7. 1000 1000 1000 1000

8. 1001 1001 1001 1001

9. 1010 1010 1010 1010

10. 1011 1011 0110 0110

11. 1101 0011 1101 0011

12. 1111 1111 1111 1111

13. 0100 1100 0100 1100

14. 1100 0100 1100 0100

15. 0100 1110 0100 1110

16. 1110 0100 1110 0100

In order to apply the test vectors in Table 10, those terminals assigned a logi-

cal 0 in a CSM should become accessible. Figure 11(d) is a 4-by-4 modified CSM

(MCSM). The following lemmas and theorem can be concluded.

Lemma 6.

The basic FA/AND cell of a CSM can be tested with 16 tests.

Proof : A 4-input combinational circuit can be examined by all its input patterns, i.e.,

16 tests.

55

Lemma 7.

The basic CSM cells in Figure 11(b) can be tested with 16 tests.

Proof : From the generation of Table 11, each basic cell can be exhaustively tested by

those 16 patterns.

Theorem 4.

The MCSM is C-testable with a test length of 16.

Proof : Similar to the proof of Theorem 2, if MBC is defined as the four basic cells of

CSM and TS is the 16 test vectors in Table 11, then an n-by-n MCSM can be

partitioned into or2 Mac’s, where n=2m. Since, by Lemma 7, each Mac can

then be tested by the test set TS, an n-by-n MCSM can be tested by the same

test set TS. So, the MCSM is C-testable with a test length of 16.

56

3.2.2. Test Pattern Generation.

Consider the 4~by-4 modified Carry-Save array multiplier (MCSM), as

shown in Figure 11(d). The c’, c, d, and e are connected to logical 0 during

multiplication. However, it is assumed that during testing, these inputs are available

as primary inputs to the array.

Similar to Algorithm 1, Algorithm 2 generates both test patterns and

expected outputs for a MCSM from Table 11. Table 12 illustrates the test patterns and

expected outputs for a 4-by-4 MCSM.

Algorithm 2:

{* Vector_i=(ic,id,ia,ib), i=1,..,4.

57‘

* ic : c-input, id : d-input, ia : a—input, ib : b-input.

* The Test patterns to be generated are:

* a(i), b(i), c(i), c’(i), d(i), where i=0...n, e. n is an odd number.

* The expected product is p(i), where i=0...2n+1. *}

{* Step 1. (Test Patterns)

For i=0 to n by 2

do Begin

a(i):=1a; a(i+1):=2a;

b(i):=1b; b(i+l):=3b;

c’(i):=4c; c’(i+1):=2c;

c(i):=1c; c(i+l):=2c;

d(i):=ld; d(i+1):=2d;

End;

e:=a(0)"'b(0);

{* Step 2: (Expected Results)

For i=0 to 11 By 2

do Begin

p(i):=4c; p(i+l):=2c;

End;

For i=n+1 To 2n+1 By 2

do Begin

p(i):=4c; p(i+l):=3c;

End;

*}

If (Test_#=13 OR Test_#=15) Then

For i=n+2 To 2n+l do paw—(5;

If (Test_#=14 OR Test_#=16) Then

For i=n+1 To 2n+1 do p(i):=p(_0;

Test #

1
°
9
’
?
“

9
‘
1
“

P
‘
S
”

h
’
r
‘

1111

0101

1111

1111

1111

1111

1010

1111

0000

0000

1010

0101

Remark 2 a=(03020100) b=(b3b2blbo) C=(C3C2C1C0)

C’=(C3’C2’C1’C0’) d=(d3d2d1do)

0000

0000

1111

0101

0000

1111

1111

1111

1010

0000

1111

1111

0000

1111

0000

58

C

0000

0000

0000

1010

0000

0000

1111

1111

1111

1111

0101

1111

1010

0101

1010

0101

0101

1111

1111

1111

1111

1111

O
O
O
O
O
H
O
H
O
O
O
H
O
H
O
O
O

Table 12. Test Patterns and Expected Outputs for MCSM.

IExpecuxl

Results

00000000

00000000

00000000

01011111

11110101

00000000

11111111

11111111

11111111

00001010

10100000

11111111

10011111

01000000

10011111

01000000

59

3.2.3. Design of an Alternative C-testable CSM.

Consider an alternative Carry-Save Array Multiplier for multiplying two 5-

bit unsigned binary numbers, as shown in Figure 12(a) [4], referred to as CSM_B.

The interconnection tapology shows that each a; is fed to the topmost cell and the

cells in the next diagonal column. Each 17,- is fed to the cells in a row and the leftmost

cell of its next row. Under the external constrains, the CSM_B is modified as shown

in Figure 12(b). Control signals, d’s, SI, 52, S3, and e, are for producing the

sequence of input combinations in Table 10. During normal multiplication, the signals

d’s, SI, 52, S3, and e are all set to logical 0. Each cell in the t0p row constructed

by two AND gates and a full-adder is now modified by inserting an XOR gate

between the AND gate and the basic cell as shown in Figure 12(b). Either signal 51

or $2 is XORed with the output of this AND gate. The signal SI (52) is applied to the

odd (even) numbered cells of the tap row. The left-boundary cells are modified by

adding an XOR gate with two inputs: S3 and bi. In addition, a signal e=aob1 is applied

as the initial carry of the carry propagate stage. According to Table 11, Algorithm 3

generates both test patterns and expected outputs for a MCSM_B. Table 13 illustrates

the generated test patterns and expected outputs for a S-by-S MCSM_B. Applying the

test patterns of Table 13 to the MCSM_B allows us to conclude that the MCSM_B is

C-testable with a test length of 16.

0 O 0 dibo o 405'}

(a)

4.0,

.7

”400

C C

(b)

' d. b. S“
x. “0

fl

Q‘

2.

"0.1.1....

:1 ‘1 ‘0 53 ‘1 ’0

z,

2..

’3

Q . 1- u..-

i. 1.3.....
Figure 12. Schematic Circuit Diagram : (a) A S-by-S CSM_B [6]; i

and (b) A S-by-S Modified CSM_B.

61

Algorithm 3:

{* Vector_i=(ic,id,ia,ib), i=1,..,4.

* ic : c-input, id : d-input, ia : a-input, ib : b-input.

* The test patterns to be generated are:

* a(i), b(i), d(i), where i=0...n, e, sl, 32, 53.

* The expected result is p(i), where i=1...2n+1.

* n is even. *}

{* Step 1. (Test Patterns) *}

For i=0 to n by 2

do Begin

d(i):=ld; d(i+1):=2d;

a(i):=1a; a(i+1):=2a;

b(i+1):=lb; b(i+2):=3b;

End;

e:=a(0)*b(1);

If (2c=1 OR 4c=1) 'lhen a(n):=1 Else a(n):=0;

If (1a=1 AND 2a=0) Then a(n):=l;

For k==0 to 1

do Begin

b(0):=k;

If (1a*b(0)=1c) Then s1:=0 Else sl:=l;

If (2a*b(0)==1d) Then s2:=0 Else s2:=1;

If (a(n)*b(1)=4c) Then s3:=0 Else s3:=1;

If (a(n)*(b(0) XOR s3)=2c) Then k=l;

End;

If (1d=2d=1 AND 1a=0) Then b(0):=1;

{* Step 2: (Expected Results) *}

For i=0 to it By 2

do Begin

p(i):=4c; p(i+l):=2c;

End;

For i=n+1 to 2n+1 By 2

do Begin

p(i):=4c; p(i+l):=3c;

End;

If (Test_#=13 OR Test_#=15) Then

62

For i=n+2 To 2n do p(i):=[7(_z)_;

If (Test_#=14 OR Test_#= 16) Then—

For i=n+1 To 2n do p(i):=p(z');

Table 13. Test Patterns and Expected Outputs for a 5-by-5 MCSM_B.

Expected

T881 # a b d S1 52 S3 RCSUItS

1. 00000 00000 0000 0 0 0 0000000000

2. 00000 11110 0000 0 0 0 0000000000

3. 01111 00000 0000 0 0 0 0000000000

4. 10101 11111 1010 0 0 0 1010111110

5. 11111 10101 1111 1 1 1 0111101010

6. 01111 11110 1111 0 0 0 0000000000

7. 10000 00000 0000 1 1 1 0111111110

8. 10000 11111 0000 1 l 0 0111111110

9. 11111 00000 0000 1 1 1 0111111110

10. 11111 01010 0000 l 1 1 1000010100

11. 01010 11110 0101 1 0 0 0101000000

12. 11111 11111 1111 0 0 0 1111111110

13. 10000 00000 1111 0 1 1 1100111110

14. 00000 00001 1111 1 0 0 1010000000

15. 11010 00000 1111 0 1 1 1100111110

16. 10101 00000 1111 1 0 0 1010000000

Remark : a=(a4a3agalao) b=(b4b3bzbtbo) d=(d3d’zd1do)

Theorem 5.

The MCSM_B is C-testable with 16 test patterns.

Proof : The only difference between the MCSM_B and MCSM is in their primary

inputs of the boundary cells. For simplicity of discussion, the gates that pro-

duce the outputs X5, Y1, and Zk, as shown in Figure 12, are denoted to as cell

X5, Y1, and 2*, respectively. Since the control signals 51, S2 and 5;, are set to

63

zero during the normal operation, the possible input combinations for the cells

X3, Y1, and Z,‘ are:

for X,- : (Sl,a,-,b0)=(000),(001),(010),(0ll);

Y, : (Sznj.bo>=(000).(oo1).(010).(011);

z, : (ambb53)=(000),(010),(100),(110).

Since it has been shown that the MCSM is C-testable (Theorem 6), hence,

the only problem remained is whether or not the above combinations can be

included when the 16 patterns are applied. With the selected control signals,

SI, 52, and S3, and the application of the test set in Table 11, the following

table illustrates the combinations applied in the cells Xi, YJ- and Zk. The table

shows that the above combinations are indeed included.

Xi Yj Zo Z1,3... Z2,4...

SI 0" b0 Sz aj b0 an b0 S3 an bk S3 an bk S3

1. 000 000 000 000 000

2. 000 000 000 010 010

3. 010 010 000 000 000

4. 001 011 110 110 110

5. 111 111 111 101 111

6. 010 010 000 010 010

7. 100 100 101 101 101

8. 101 101 110 110 110

9. 110 110 101 101 101

10. 110 110 101 111 101

11. 110 000 000 010 010

12. 011 011 110 110 110

13. 000 100 101 101 101

14. 101 001 010 000 000

15. 010 100 101 101 101

16. 100 010 100 100 100

3.3. Baugh-Wooley Array Multiplier (BWM)

A 5-by-5 Baugh-Wooley Array Multiplier (BWM) is illustrated in Figure 13.

It has been shown that the BWM is not C-testable [8].

3.3.1. Design of C-testable MBWM

A MCSM_C can be constructed from a MCSM_B if the cells in the second

row from the bottom, or the (n-1)th row of an n-by-n MCSM_B, is modified as shown

in Figure 14, where each a,‘ is replaced by an XOR gate having two inputs a,‘ and S4.

When S4 is 0, the MCSM_C is functionally equivalent to a MCSM_B. Therefore,

the test patterns of Table 13 can applied all the input combinations in Table 11 to

every cell of the array and detect any single fault in MCSM_C. However, in order to

detect the possible faults in the added XOR gates, the control signal 5,, is assigned as

shown in Table 14, where 5., is set to logical 0 except for Test_#l, #3, #5 and

Test_#8. With the application of the test patterns of Table 14, it can be concluded that

MCSM_C is C-testable.

Lemma 8.

MCSM_C is C-testable with a test length of 16.

Proof : The MCSM_C is modified from MCSM_B as shown in Figure 14. Similar to

the proof of Theorem 5, it is found that all the possible combinations of the

a, b, For-“.i-O.1.2.Juli.j)-M.fl

05653 osiSJ

4.3. «be 9'» on. ‘o‘b

‘- 0

@‘Q’Q‘C’C‘Q -1. l, v .. v

Figure 13. A Schematic Circuit Diagram of a 5-by-5 Baugh-Wooley Array Multiplier [61-

xi

(
7
‘

j I 2.1....

i8 1.3.»...

Figure 14. A Schematic Circuit Diagram of a 5-by-5 MCSM_C.

cells on Wb

are indeed included when the control signal 5,, is appropriately selected and

applied. Since the MCSM_B is C-testable with a test length of 16, so is the

MCSM_C.

67

W, : (b4,a,oS4)=(001),(01 1),(101),(1 1 1),

Table 14. Test Patterns and Expected Outputs for a MCSM_C.

Expected

Test_# a b d SI 52 S3 S4 Results

1. 00000 00000 0000 0 0 0 1 0000000000

2. 00000 11111 0000 0 0 0 0 0000000000

3. 01111 00000 0000 0 0 0 1 0000000000

4. 10101 11111 1010 0 0 0 0 1010111111

5. 11111 10101 1111 l 1 1 1 1111101011

6. 01111 11110 1111 0 0 0 0 1000000000

7. 10000 - 00000 0000 1 1 1 0 0111111110

8. 10000 11111 0000 1 1 0 1 1111111110

9. 11111 00000 0000 1 1 1 0 0111111110

10. 11111 01010 0000 l 1 1 0 1000010100

11. 01010 11110 0101 1 0 0 0 0101000000

12. 11111 11111 1111 0 0 0 0 1111111111

13. 10000 00000 1111 0 1 1 0 1100111110

14. 00000 00000 1111 l 0 0 0 1010000000

15. 11010 00000 1111 0 1 l 0 1100111110

16. 00101 00000 1111 1 0 0 0 1010000000

Remark 3 a=(a4a3aza1ao) b=(b4b3b2b1bo) d=(d3d2d1‘10)

'Ihe MCSM_C can be further modified by adding extra cells, as shown in

Figure 15. During the normal operation, the control signals d, SI, 52, S3, 55, and S6 are

68

h " 30 0" b. 3! 7‘ X3 ’1 X.

2|

O O O

1.0.12.— 2‘

_ O O O.,,,

a. E 2:

at. ‘I‘l'.

OWO O O... s.

1 0;

O O O O O O' 22

SS ‘0 so be

a t

Figure 15. A schematic Circuit Diagram of a 5-by-5 MBWM.

69-

set to logical 0 and the signal 5,, is set to logical 1. It is obvious that, with the above

assignments, the circuit of Figure 15 is functionally equivalent to the Baugh-Wooley

Array Multiplier of Figure 13. This circuit is referred to as modified BWM, or

MBWM.

Theorem 6.

The MBWM is C-testable with a test length of 16.

Proof: The MBWM is modified from MCSM_C by adding extra cells as shown in

Figure 15. With the appropriate selection of control signals, the 16 test pat-

tern can be applied to test the extra cells. Therefore, the MBWM is C-testable

with a test length of 16.

3.3.2. Test Pattern Generation.

The testing problem of the MBWM can be separated into two parts, one is

for the testing of MCSM and the other is for those additional cells. In order to reduce

the number of test patterns, one may overlap the testing of the two parts together.

Algorithm 4 generates both test patterns and expected outputs for a MBWM from

Table 11. The method used here is to apply the 16 test vectors in Table 11 into this

array by controlling the primary inputs. Also, the input patterns should cover all the

possible input combinations of the boundary cells. Table 15 illustrates the test patterns

and expected outputs for a 5-by-5 MBWM.

70

Algorithm 4 :
x
i
i
-
e
x
i
t
"
;

{It

Vector_i=(ic,id,ia,ib), i=1,..,4.

ic : c-input, id : d-input, ia : a-input, ib : b-input.

The Test patterns to be generated are:

a(i), b(i), d(i), i=0,...,n, (s6,..,s1)

The expected product is p(i), i=0,...,2n+1.

The function inv(arg) returns a value which is the complement of "arg".

n is even. *}

Step 1. (Test Patterns) *}

For i=0 to n by 2

do Begin

a(i):=1a; a(i+1):=2a;

b(i+1):=1b; b(i+2):=3b;

d(i):=ld; d(i+1):=2d;

End;

If (2c==1 OR 4c=1) Then a(n):=1 Else a(n):=0;

If (la-1 AND 2a=0) Then a(n):=l;

For k=0 to 1

do Begin

b(0):=k;

If (a(l)*b(0)=cl) Then sl:=0 Else sl:=1;

If (a(2)*b(0)=c2) Then s2:=0 Else s2:=1;

If (a(n)*b(1)=c4) Then s3:=0 Else 53z=1;

If (a(n)*(b(0) XOR s3)=2c) Then k=1;

End;

If (1d=2d=1 AND 1a=0) Then b(0):=l;

s4:= W* 5'1' * .5 * 53';

If (d2¢a(n)) Then sS:=1 Else s5:=0;

If (a2*b2 at b(n)) Then s6:=1 Else s6:=0;

If (s1*s2*s3=1 AND s5=0) Then s4:=1;

If (sl*s2*sS=1 AND s3=0) Then s4:=1;

71

{* Step 2: (Expected Results) *}

P(0)==a(0)*b(0);

For i=1 to n-l by 2

do Begin

p(i):=4c; p(i+ l):=2c;

End; —

For i=n to Zn by 2

do Begin

p(i):=3c; p(i+l):=4c;

End;

If (a(n)¢2c OR b(n)¢2c) Then p(2n):=,7(2_n‘)‘;

If (d2*a2*b2=1) Then

p(2n+1):= inv(a(n))*inv(b(n))

Else

If (2d=0 AND 2a*2b=0) Then

p(2n+1):= inv(inv(a(n))*inv(b(n)))

Else

p(2n+1):=0; -

If (Test_#=14,16) Then For i=0 to n-l do p(n+1+i):= p(n+l+t);

If (Test_#=l3,15) Then For i=0 to n-l do p(n+2+i):= p(n+2+z);

If (s4=l AND 35=0) Then

Begin

For i=n to 2n+1 Do p(i):=0;

End;

If (s4=1 AND s5=1) Then

Begin

awe-EL
p(2n):=p(2n);

p(2n+1):=p(2n+1);

End;

72-

Table 15. Test Patterns and Expected Outputs for a 5-by-5 MBWM.

Expected

Test # a b (1 SI - 56 Results

1. 00000 00000 0000 000100 0000000000

2. 00000 11110 0000 000001 1100000000

3. 01111 00000 0000 000100 0000000000

4. 10101 11111 1010 000001 0010101111

5. 11111 10101 1111 111101 0000001011

6. 01111 11110 1111 000010 0100000000

7. 10000 00000 0000 111010 1111111110

8. 10000 11111 0000 110111 0011101110

9. 11111 00000 0000 111010 1111111110

10. 11111 01010 0000 111011 0000000100

11. 01010 11110 0101 100000 0001010000

12. 11111 11111 1111 000000 0111111111

13. 10000 00000 1111 01100 0 0101001110

14. 00000 00001 1111 10 0 010 1010010000

15. 11010 00000 1111 01 10 0 0 0101001110

16. 10101 00000 1111 1 0 0 0 1 0 1010010000

Remark : a=(a4a3azalao) b=(b4b3b2b1bo) d=(d3d2dldo)

Table 16 illustrates the input combinations for each cell in a 5-by-5 MBWM.

It is obvious that, similar to the design of MCSM, all possible input combinations have

been applied to each cell. However, the following combinations are not applied.

Cell 1 : (000), (011), (101), (111) ;

Cell 2 : (000), (001), (010), (011) ;

Cell 3 : (010), (001).

where Cell 1, Cell 2, and Cell 3 are the cells labeled in the Figure 16.

01

O4

101

05

101

06

101

O7

100

08

101

110

000

100

100

110

000

001

110

001

101

100

111

010

100

001

110

73

Table 16. Input Combinations for each cell in a 5-by—5 MBWM.

0000

0010 0010

000 000

0001

0001 0001

000 000

0010

0000 0000

000 000

1101

1101 0011

001 110

0110

1001 1001

101 101

0111

0111 0111

011 011

1000

1000 1000

100 100

1001

1011 1011

010 010

0000

0000

0010

000

0001

0001

0001

000

0010

0010

0000

000

1101

0011

1101

001

1011

0110

1001

101

0111

0111

0111

011

1000

1000

1000

100

1001

1001

1011

010

0000

0000

0000

0010

000

0001

0001

0001

0001

000

0010

0010

0010

0000

000

1101

0011

1101

0011

110

0110

1011

0110

1001

110

0111

0111

0111

0111

011

1000

1000

1000

1000

100

1001

1001

1001

1011

000

0000

0000

0000

0001

0001

0001

0010

0010

0010

0011

1101

0011

0110

1011

0110

0111

0111

0111

1000

1000

1000

1001

1001

1001

0000

0000

0001

0001

0010

0010

1101

0011

0110

1011

0111

0111

1000

1000

1001

1001

0000

0001

0010

0011

0110

0111

1000

1001

O9

100

#10

101

911

101

013

101

014

015

101

016

111

010

100

100

101

001

111

010

111

110

011

010

111

110

011

1010

100

0110

101

0011

110

1111

111

1100

011

0100

111

1110

011

0100

111

1010

1010

100

1011

0110

101

0011

1101

001

1111

1111

111

1100

0100

111

0100

1100

011

1110

0100

111

0100

1110

011

1010

1010

1010

100

0110

1011

0110

101

0011

1101

0011

110

1111

1111

1111

111

1100

0100

1100

011

0100

1100

0100

110

1110

0100

1110

011

0100

1110

0100

110

1010

1010

1010

1010

100

1011

0110

1011

0110

101

0011

1101

0011

1101

001

1111

1111

1111

1111

111

1100

0100

1100

0100

110

0100

1100

0100

1100

010

1110

0100

1110

0100

110

0100

1110

0100

1110

010

1010

1010

1010

1011

0110

1011

1101

0011

1101

1111

1111

1111

0100

1100

0100

1100

0100

1100

0100

1110

0100

1110

0100

1110

P
H

0
0

D
-
‘
r
J

0
0

1011

0110

0011

1101

1111

1111

1100

0100

0100

1100

1110

0100

0100

1110

1011

1101

1111

0100

1100

0100

1110

74

'7 z;

00¢“
1

e1

0 o o a 0 0' e2

Figure 16. The Bottom Row of MBWM in Figure 15.

75

Consider all the possible combinations of a4 and b4.

04 b4 Input Combinations

0 0 1 1 0

0 l l 0 0

1 0 0 1 0

1 1 0 0 1

Because of the external constrain, all the possible input combinations are demonstrated

in the above table. Therefore, input combinations (000), (011), (101), and (111) do not

occur in Cell 1 during the normal operation.

Since the top input of Cell 2 is always 1 during normal operation, this implies

that input combinations (000), (001), (010), and (011) do not occur in Cell 2 during

the normal operation.

Finally, consider the interconnection of Cell 3 as shown in Figure 16. Also

consider the following truth table for the sum bit of Cell 1.

a4 b4 sum

0 0 0

0 1 1

1 0 1

1 1 1

In other words, both 04 and b4 must be zeros if the sum bit of the Cell 1 is zero. Sup-

pose that (010) can occur in Cell 3, Le. the top input of Cell 3, or the sum output of

Cell 1, is logical 0. This results in both a4 and 17., being 0. Therefore, the inputs 26 and

W3 of Figure 15 are also logical 0 and the cell would never produce a logical 1 in its

carry-out bit. This implies that (010) does not occur in Cell 3 during normal operation.

76

Similarly, it can be easily found that (001) will never occur in Cell 3.

The above arguments show that the possible input combinations of those

extra cell are indeed included when the 16 test patterns are applied.

IV. Design of C-testable Array Dividers

4.1. Non-Restoring Array Divider.

A 4—by-4 Non-restoring array divider (NRD) is illustrated in Figure 17. This

divider receives a 7-bit dividend, 4-bit divisor, and produces a 4-bit quotient and a 4-

bit remainder. In this section, the design of C-testable NRD is presented. The graph

labeling scheme is also applied to generate test patterns.

The basic building block of a non-restoring divider is a controllable

adder/subtractor (CAS) [6], as shown in Figure 18, where

=XYQZD, and

P=(Y$D)X+(YOD)Z+XZ.

When D=0, the cell is merely a full adder, i.e., S is the sum of X, Y, and Z and P is

the carry. On the other hand, when D=1, the cell becomes a full adder with inputs X,

Z and 17. Consequently, the labeling scheme developed for full-adder—based array mul-

tipliers is also suitable for NRD.

4.1.1. Graph Labeling.

Because of the regularity of the NRD, the four basic CAS cells, M;, i=1 to 4,

as shown in Figure 19 can be found. According to the interconnection topology of the

77

_
.

e
n

.,

F
i
g
u
r
e

1
7
.
A

S
c
h
e
m
a
t
i
c

C
i
r
c
u
i
t
D
i
a
g
r
a
m
o
f
a
4
-
b
y
-
4
N
R
D

[
9
]
.

78

79

Y x

D x xx

\

P < FA

v

S

S=XOY$ZOD

=(YOD)X+(Y$D)Z+XZ

Figure 18. The Basic building block of a NRD.

80

four basic cells, the mappings

L11L12L13 "" [13162 ;

[41102113 —’ L13L42 ;

(17)

141162163 “> 143er 3

L41L42L43 "> LGBLD ;

where 161:1’21’ L41=L11 :

can be obtained. we shall solve the mappings for Lij’s, i=1,2,3,4 and j=1,2,3, where 2'

indicates the cell type and j represents the input.

Theorem 7.

The following set of labels is a solution of mapping (17) :

L1=(L11L12’L13)=(V19D:V2.V3) ;

[q=(lq11/22»I/23)=(C19135254) ;

(13)

a=<ale2143>=<clevyrca> ; and

L4=(L41L42»L43)=(V19D»C3:V4)~

Proof : Similar to the proof of Theorem 1, with the mappings (17), we can solve for

the labels in (18).

81

141 bn L11 L12

D \ ! : : F——_¥___"

M2 M1

L
L13

[fi
13

< j‘ .15

\41 L42 [m £62

___;14__D ,T___>M__.T

M, M3 [6

’43 L“ 3

< 1‘ 1E

Figure 19. Four Basic Cells of a NRD.

82

Figure 20 shows the application of the labels in (18) to a 4-by-4 NRD. In

Table 17, the test#1-8 and test#11-18 illustrate the input combinations generated

directly from the label set (18). They contain all possible input combinations except

the patterns { (010),(101) } (for D=0) and { (001),(110) } (for D=1) in both L3 and

L4. Therefore, the tests #9, #10, #19, and #20 are added.

Tabel 17. Input combinations for an MNRD.

Test# D L1 L2 L3 L4

0x2) (YXZ) (YXZ) (YXZ)

1. 0 000 000 000 000

2. 0 001 110 110 001

3. 0 010 100 111 011

4. 0 011 101 100 000

5. 0 100 010 011 111

6. 0 101 011 000 100

7. 0 110 001 001 100

8. 0 111 111 111 111

9. 0 010 010 010 010

10. 0 101 101 101 101

11. l 100 100 100 100

12. 1 101 010 010 101

13. 1 110 000 011 111

14. 1 111 001 000 100

15. 1 000 110 111 011

16. 1 001 111 100 000

17. l 010 101 101 000

18. l 011 011 011 011

19. 1 001 001 001 001

20. l 110 110 110 110

=
1

|
(
a
)

 w

1
’

C
l

”
4

V
C
3

C
V
\
V

C

1
l

4
l

3

\
y

D
=
1

 \/

V
4

‘
C
3

V
4

C
3

V
4

D
=
1

 \/ \/

V
3

‘
C
4

V
3

C
4

V
3

D
=
1

C
3

V
4

1
I

F
i
g
u
r
e
2
0
.
T
h
e

a
p
p
l
i
c
a
t
i
o
n
o
f
l
a
b
e
l
s

t
o
a
N
R
D
.

(
a
)
D
=
1

(
b
)
D
=
0

I
-
.
.

I
V.

83

C
C

V
C

D
=
0

‘
2

l
\
l
/
V
Z

l
\
c
h

V
1
J
I
V
Z

V
3

1
V
3

C
‘

V
3

\
1
/

C
‘

V
‘

V
‘

C
3

C
1

V
4

V
‘
A
L
C
3

D
=
0

.
D
=
0

C
3

V
4

I
C
3

é
V
4
1

I
C
1

C
2

V
1

V
2

C
1

C
2

V
1
J
3
9

.
D
=
O

V
3

‘
C
4

V
3

V
3

1
]

C
’
l

V
4

V
1

C
3
\

C
l

V
4

V
1

C
3

V/

 J/

Q/

C
3

W
A

i
n
“
?

F
i
g
u
r
e

2
0
.
(
C
o
n
t
i
n
u
e
d
)

84

85

4.1.2. Test Pattern Generation.

It has been shown in Table 17 that all possible input combinations can be

applied to exhaustively test the four basic CAS cells of Figure 18. Since an NRD is

constructed by these four basic cells, the labels (18) can be propagated to the entire

NRD. However, Figures 20(a) and 20(b) show that the P-output of the leftmost cell in

the first row is fed to the D-input of the leftmost cell in the second row, and then the

D-output of the rightmost cell in the second row is fed to the Z-input of the same cell.

This implies that the label applied to the P-output of the leftmost cell in the first row

must be the same as the label applied to the Z-input of the rightmost cell in the second

row. In practice, the application of labels (18) may not meet this requirement. There-

fore, in order to consistently apply the labels two XOR gates are added to the NRD in

each row, as shown in Figure 21. Two extra control lines, Testl and Test2, are

needed in this design. During the normal operation, both Testl and Test2 are at logical

0. However, during the test mode, if the size of the divider is even, labels V3 (or I73)

and V4 (or 174) are respectively assigned to Testl and Test2 for D=0 (or D=1).

Theorem 8.

The modified NRD of Figure 21 is C-testable with a test length of 20.

Proof : Similar to the proof of Theorem 2, if Mac is defined as the four basic cells of

NRD and TS is the 20 test vectors in Table 17, then an n-by-n MNRD can be

partitioned into m2 MBC’s, where n=2m. Since each MBC can be tested by the

86

test set TS, an n-by-n MNRD can then be tested by the same test set TS. So,

the MNRD is C-testable with a test length of 20.

According to input combinations of Table 17, Algorithm 5 generates the test

patterns and expected outputs for a MNRD. Table 18 shows the test patterns and

expected outputs for a 4~by-4 MNRD.

T
e
s
t
l

L
T
e
s
t
2

T
e
s
t
l

l
1

.
1
-
.

_
.

.
_

_

.
_

I
a

_
—
—

-
-
.
_
_

\JV

 \V

T
e
s
t
2
“

1

\l/

l

I
‘
.
L

l

e
.

F
'

1
1

F
i
g
u
r
e

2
1
.
A

S
c
h
e
m
a
t
i
c
C
i
r
c
u
i
t
D
i
a
g
r
a
m
o
f
C
-
t
e
s
t
a
b
l
e
M
N
R
D
.

87

88

Algorithm 5:

Consider the following four vectors: Vector i: (ia,ib,ic), i=1....4.

ia : y-input, ib : x-input, ic : z-input.

This algorithm is to generate the input test patterns during test mode.

The test patterns to be generated are :

n(i), d(i), i=0,...,2N+1, Testl, Test2, D

The expect values are :

q(i), r(i), i=0,...,N

N+1 is even *}

*
a
t
a
-
a
-
x
-
x
-
a
t
"
;

For i=0 to N

do Begin

Ifi is even Then

Begin.

n(N+i):=la; n(N-i):=la;

d(N-i):=1b; q(N-i):=4c;

r(N+i):=la; r(N-i):=1a;

End

Else

Begin

n(N+i):=4a; n(N-i):=2a;

d(N-i):=2b; q(N-i):=1c;

r(N+i):=2a; r(N-i):=4a;

End

End;

Test1:=(lc XOR D);

Test2:=(4c XOR D);

89

Table 18. Test Patterns and Expected Outputs for a 4-by-4 MNRD.

Tesflt

S
p
m
s
e
w
e
w
w
r

11.

12.

l3.

14.

15.

16.

17.

l8.

19.

20.

n

0000000

1010000

0101111

0101010

1010101

1010000

0101010

1111111

1111111

0000000

0000000

1010000

0101111

0101010

1010101

1010000

0101010

1111111

0000000

1111111

d

0000

1010

1010

1010

0101

0101

0101

1111

0000

1111

1111

1111

0101

0101

1010

1010

1010

0000

0000

1111

Thstl

H
O
O
H
O
H
O
r
—
O
H
H
O
v
—
I
O
H
O
H
O
H
O

Tesfil

H
O
O
H
H
O
H
O
O
H
H
O
H
O
O
H
O
H
H
O

r

0000000

0000101

1111010

0101010

1010101

0000101

0101010

1111111

1111111

0000000

0000000

0000101

1111010

0101010

1010101

0000101

0101010

1111111

0000000

1111111

Remark 3 n=(no "1 ”2 "3 "4 "5 "6) d=(do d1 dz d3)

"=(’o ’1 "2 '3 "4 ’5 ’6) 4=(40 41 (12 43)

1111

0101

1010

0101

1010

1111

1111

1111

0101

1010

0101

1010

1111

1111

4.2. Restoring Array Divider.

A Restoring Array Divider (RSD), as shown in Figure 22, is constructed by

the identical building blocks, controllable subtractors (CSs) in Figure 23. The functions

of each basic building block are

=(xoYeZ)D'+XD ;

and P=YZ+X_Z+)?Y .

It is obvious that the RSD is not C-testable because when D=1, S=X, any fault that

occurs at either inputs Y or Z cannot be propagated to its output. In order to propagate

the fault, the basic CS cell is modified as shown in Figure 24, where the cell functions

become

S=(XOYOZ)D-+XD ,

P=YZ+Y2+fY, (19)

and B=AYZ .

The modified CS (MCS) cell of Figure 24 receives an extra input A and pro-

duces an extra output B. Any fault that occurs at either input Y or Z can be pro-

pagated to the output B.

F
i
g
u
r
e

2
2
.
A

S
c
h
e
m
a
t
i
c

C
i
r
c
u
i
t
D
i
a
g
r
a
m
o
f
R
e
s
t
o
r
i
n
g
A
r
r
a
y
D
i
v
i
d
e
r
.

91

92

Y x

D _ ... - ._ .._... _. _. ..

cs

P < 9—— Z

\Y

s

=(XOYOZ)5+XD

P=YZ+XZ+YY

Figure 23. A Basic Cell of a RSD.

93

Y X A

D _ _ -

MCS

P{—— <____._..__ z

.4

s B Y

S=XYOZD

P=(Y$D)X+(Y$D)Z+XZ

B=AYZ

Figure 24. The Modified CS Cell of a MRSD.

94

4.2.1. Graph Labeling.

The MCS cell functions (19) can be described by the following mapping :

YXAZD ---> PSB, (20)

where P=f(f, Y, Z),

S=D—g(X, Y. Z)+DX.

and B=g(A, Y, Z).

Consider the case of D=1, the mapping (20) can be simplified as

YXAZ --.> psn, ' (21)

where P=f(}?, Y, Z),

S=X,

and B=g(A, Y, Z).

The function of f and g have been defined in (1) and (2).

95

Consider also the eight MCS cells of Figure 25. Each cell is labeled by

Li=(L,-1,LQ,L,~3L,-4). Based on the topological interconnection of these cells, we shall

solve for Lij’s from the following mappings :

L11L12L13L14 ""> L84L52L53:

[ml/22143524 ""> [44L82L83’

[41162143164 ""> Lott/721473,

L41L42L43L44 “"> L54L62L63’

(22)

L51L52L53L54 ----> Lulozles:

L61L62L63L64 ----> 1,341,121,,»

141142143144 ““> bquths’

L81L82L83L84 “"> L14L42L43’

and L11=LQI=L31=L4p

L51=L61=L71=L8l°

96

L54 M4 L44

c , 5
\L61 ‘Laila L31

143 1

<—-—1-

1

[mil/53

Figure 25. Eight Basic Cells of a MRSD.

97

Theorem 9.

Proof :

The set of labels,

L1=<L11.le.Ln.Ln>=(Vl.52.C1$K.v2).

Lz=<lmLei/23144)=<V1.172.C46K.V3).

lo=(1411621/33L34)=(V1,@»C39K»V7):

L4=(L41,L42,L43,L44)=(V1,17'2,V20K,V3),

L5=(L51,L52’L53:L54)=(C1:52529K:C4)»

L6=(L61’L62’L63’L64)=(C1:172,V4$K:V1):

[n=(L71L721’731/74)=(C1:C-3-2»C49K:C4)a

and Lav-(Lamaswaclflaws/1)

is a solution of the mappings (22) with the cell function (21), where K is

either 1 or 0.

Similar to the proof of Theorem 7, this can be simply proved by solving (22)

under D=1.

Similarly consider the case of D=0, the mapping (20) can be simplified as

YXAZ ---> PSB, (23)

where 1340?, Y, Z),

S=g(X. Y. Z).

and B=g(A, Y, Z).

98

The following Theorem can be concluded.

Theorem 10.

The set of labels,

L1=L3=(V12C_3’C39K:V4) .

LZ=L4=(V1,172,V2$K,V3) ,

L5=lo=(Cr:52:C29K»C4) , and

L6=L8=(C1,17-4,V4$K2C3) a

is a solution of the mapping (22) with the cell function (23), where K is either

1 or 0.

Proof : Similar to the proof of Theorem 7, this can be simply proved by solving map-

pings (22) under D=0.

In summary, Theorems 11 and 12 describe the labels applied to a MRSD for

both D=1 and 0, respectively. Table 19 illustrates the input combinations of the MCS

cells of Figure 25, where Li=(L,-1,L,~2,L,3,L,-4). In Table 19, while Test #1-#8 and #11-

#18 are the input combinations derived directly from Theorem 12 for D=0, Test #21-

#28 and #31438 are those derived from Theorem 11 for D=1. Similar to Table 17, in

order to apply all possible input combinations, Tests #9, #10, #19 #20, #29, #30, #39,

and#40areadded.

Tbsut

1
9
9
°
:
q
P
‘
S
*
:
“
'
?
’
F
°
:
‘

23.

e
e
e
a
s
s
a
s
:

U t
o
)

s
e
a
s
a
e
x
.

C
7

fl
a
u
n
t
-
t
h
a
n
.
n
o
r
—
u
n
-
u
-
o
H
r
-
o
t
—
s
H
1
—
M
H
H
O
O
O
O
O
O
O
O
O
O
O
C
O
O
O
O
O
C
O
O

L1

(530»

0100

0101

0011

0100

1011

1100

1010

1011

0010

1101

0110

0111

0001

0110

1001

1110

1000

1001

1111

0100

0010

0111

1000

1101

1011

1111

0011

1110

0110

0101

1010

1111

1001

0010

1101

0001

1100

t,

(bafip)

0100

0101

0010

0011

1100

1101

1010

1011

0010

1101

0110

0111

0000

0001

1110

1111

1000

1001

0000

1111

0100

0101

0000

1100

1010

1011

0000

1111

0001

1100

0110

0111

0010

1110

1000

1001

0010

1101

0011

1110

99

La

(bafip)

0100

0101

0011

0100

1011

1100

1010

1011

0010

1101

0110

0111

0001

0110

1001

1110

1000

1001

0000

1111

0100

0000

0111

1010

1111

1011

0000

1111

0011

1110

0110

0010

0101

1000

1101

1001

0010

1101

0001

1100

a

om)

0100

0101

0010

0011

1100

1101

1010

1011

0010

1101

0110

0111

0000

0001

1110

1111

1000

1001

0000

1111

0100

0101

0010

1100

1010

1011

0000

1111

0001

1100

0110

0111

0000

1110

1000

1001

0010

1101

0011

1110

L5

(bafin

0100

1010

1100

1101

0010

0011

0101

1011

0010

1101

0110

1000

1110

1111

0000

0001

0111

1001

0000

1111

0100

1010

1100

0010

0101

1011

0000

1111

0001

1100

0110

1000

1110

0000

0111

1001

0010

1101

0011

1110

Table 19. Input Combinations for MRSD.

L6

(bafifi

0100

1010

1011

1100

0011

0100

0101

1011

0010

1101

0110

1000

1001

1110

0001

0110

0111

1001

0000

1111

0100

1110

1010

0111

0001

1011

0000

1111

0011

1110

0110

1100

1000

0101

0011

1001

0010

1101

0001

1100

1.7

(bafin

'0100

1010

1100

1101

0010

0011

0101

1011

0010

1101

0110

1000

1110

1111

0001

0111

1001

1111

0100

1000

1100

0111

1011

1111

0001

1100

0110

1010

1110

0010

0101

1001

0010

1101

0011

1110

L3

(bafin

0100

1010

1011

1100

0011

0100

0101

1011

0010

1101

0110

1000

1001

1110

0001

0110

0111

1001

1111

0100

1110

1000

0111

0001

1011

1111

0011

1110

0110

1100

1010

0101

0011

1001

0010

1101

0001

1100

100

4.2.2. Design for C-testability.

Figure 26 shows the Modified 4-by-4 Restoring Array Divider (MRSD). Simi-

lar to Figure 21, additional XOR gates and control lines, Testl and Test2, are needed.

During the normal operation, Testl, Test2 and 2’s are all assigned to logic 0, and ter-

minals a’s, b’s and ro-rz are discarded.

4.2.3. Test Pattern Generation.

According to Table 19, Algorithm 6 generates the test patterns and expected

outputs for a MRSD. Table 20 illustrates the test patterns and expected outputs for a

4-by-4 MRSD. Therefore, the following Theorem results.

Theorem 11.

The MRSD of Figure 26 is C-testable with a test length of 40.

Proof : Similar to the proof of Theorem 2, if Mac is defined as the eight basic cells of

RSD and TS is the 40 test vectors in Table 19, then an n-by-n MRSD can be

partitioned into pq Mac’s, where n=2p=4q. Since each MBC can be tested by

the test set TS, an n-by-n MRSD can then be tested by the same test set TS.

So, the MRSD is C-testable with a test length of 40.

’
\

—
A

d
"
s

“
5

w
l

\
11

l
T
e
s
t
z

’
\
4
3

~

E
e
”
r
*
s
”
r
m
fi

i
n
i
b
:
\
\
\
J
I
\

I
i
6

6

T
e
s
t
2

F
i
g
u
r
e

2
6
.
A

S
c
h
e
m
a
t
i
c

C
i
r
c
u
i
t
D
i
a
g
r
a
m
o
f
a
4
-
b
y
-
4
M
R
S
D
.

W
M
“

M
'

“
8

“
I

a
.

l
~
h
t
t
w
h
h
h

101

102

Algorithm 6 :

{* Consider the following eight vectors: Mi: (ib,ia,if,ip), i=1....4

* ib : Y-input, ia : X-input, if : A-input, ip : Z-input.

* The test patterns to be generated are :

* a(i), d(i), i=0,...,2N, Testl, Test2

* The expect values are :

* q(i), r(i), b(i), i=0,...2N

* N+l is the multiple of 4 *}

For i=0 to N

do Begin

k = i mod 4

Case k

0: d(N-i):=4b;

a(N-i):=4f;

l: d(N-i):=5b;

a(N-i):=5f;

2: d(N-i):=4b;

a(N-i):=4f;

3: d(N-i):=5b;

a(N-i):=5f;

End; —

Test1=(4p XOR D);

Test2=(3p XOR D);

For i=0 to N

do Begin

k = i mod 4

Case k

0: b(N+i):=4f;

r(N-i)==4a;

1: b(N+i):=5f;

r(N—i):=1a;

2: b(N+i):=4f;

r(N—i):=2a;

3: b(N+i):=5f;

r(N-i):=3a;

End;

n(N-i):=4a;

a(N+i):=4f;

n(N-i):=5a;

a(N+i):=3f;

n(N-i):=4a;

a(N+i):=2f;

n(N-i):=5a;

a(N+i):= 1f;

b(N-i):=4f;

Q(N-i)==1p;

b(N-i):=lf;

<1(N-i)==2p;

b(N-i):=2f;

q(N-i):=3p:

b(N-i):=3f;

<1(N-i)==4p;

n(N+i):=4a;

z(i):=4p;

n(N+i):=3a;

z(i):=3p;

n(N+i):=2a;

z(i):=2p;

n(N+i):=la;

z(i):= 1p;

r(N+i):=4a;

r(N+i):=5a;

r(N+i):=4a;

r(N+i):=5a;

-
1

P
P
3
9
S
‘
P
P
P
F
‘
E

M
g
r
-
I
H
O
-
‘
I
-
‘
H
H
O
-
‘
I
-
‘
H
H

*
‘

.
3
°

9
°
r
'
S
’
l
i
e

3
*
9
’
1
9

r
‘

F
>

F
g
fi
g
f
i
fi
g
l
fi
f
i
’
fi
fi
.

32.

33.

35.

37.

38.

39.

t
a
n
t
a
m
o
u
n
t
-
A
n
s
w
-
t
—
u
-
n
H
o
—
1
—
1
—
r
u
t
-
I
1
—
H
u
n
o
o
c
c
c
c
o
c
o
o
c
o
c
o
o
o
c
c
o
c
U

Table 20. Test Patterns and Expected Outputs of a 4-by-4 MRSD.

n

1111111

0101111

1010000

1010101

0101010

0101111

1010000

0000000

0000000

1111111

1111111

0101111

1010000

1010101

0101010

0101111

1010000

0000000

0000000

1111111

1111111

0101010

1010101

0101010

1010101

0000000

0000000

1111111

0000000

1111111

1111111

0101010

1010101

0101010

1010101

0000000

0000000

1111111

0000000

1111111

d'

0000

1010

1010

1010

0101

0101

0101

1111

0000

1111

0000

1010

1010

1010

0101

0101

0101

1111

0000

1111

0000

1010

1010

0101

0101

1111

0000

1111

0000

1111

0000

1010

1010

0101

0101

1111

0000

1111

0000

1111

a

0000000

1010000

0101111

0101010

1010101

1010000

0101111

1111111

1111111

0000000

1111111

0101111

1010000

1010101

0101010

0101111

1010000

0000000

0000000

1111111

0000000

1010001

0101101

1010100

0101110

1111111

0000000

1111111

0000101

0000101

1111111

0101110

1010010

0101011

1010001

0000000

1111111

0000000

1111010

1111010

103

Z

1111

0101

1010

0101

1010

1111

1111

1111

0101

1010

0101

1010

1111

1111

1010

0101

0101

1111

1111

1111

0000

0000

1010

0101

0000

0101

1111

0000

1111

1111

0000

Testl

0

H
o
c
w
o
w
r
—
H
O
H
H
Q
O
h
-
O
H
u
—
H
O
v
—
n
t
—
n
O
H
O
H
Q
H
Q
r
—
Q
H
O
r
—
O
t
—
O
I
—
O
t
—

Test2

0

H
o
o
k
-
a
o
o
h
-
O
H
r
—
H
Q
O
H
O
O
H
O
H
H
H
O
H
O
Q
H
O
H
H
O
H
O
u
-
a
o
o
r
—
O
v
—
r
—

r

1111111

1111010

0000101

1010101

0101010

1111010

0000101

0000000

0000000

1111111

1111111

1111010

0000101

1010101

0101010

1111010

0000101

0000000

0000000

1111111

1111111

0101010

1010101

0101010

1010101

0000000

0000000

1111111

0000000

1111111

1111111

0101010

1010101

0101010

1010101

0000000

0000000

1111111

0000000

1111111

Z-(Zo 21 12 z3)'=("o "1 '2 '3 '4 '5 '6) #010 ‘11 42 43)

b-(bo b1 b2 53 b4 55 be)

4

1111

0101

1010

0101

1010

1111

1111

1111

0101

1010

0101

1010

1111

1111

1010

0101

0101

1111

1111

1111

0000

0000

1010

0101

0000

0101

1111

0000

1111

1111

0000

Remark: n-(nomnzn3n4n5nad-(dodld2dg)as(aoa1a2a3a4a5a6)

b

0000000

0000101

1111010

0101010

1010101

0000101

1111010

1111111

1111111

0000000

1111111

1111010

0000101

1010101

0101010

1111010

0000101

0000000

0000000

1111111

0000000

0010101

1011010

1000101

1101010

1111111

0000000

1111111

1010000

1010000

1111111

1101010

0100101

0111010

0010101

0000000

1111111

0000000

0101111

0101111

V. Conclusions

Based on the fault model that a faulty cell can permanently change its truth

table in any arbitary way as long as it remains a combinational circuit, the design of

C-testable array multipliers and dividers are presented. The proposed design of C-

testable Array Multipliers can be tested with 16 test patterns, and the designs of Non-

restoring Array Divider and Restoring Array Divider are tested with 20 and 40 pat-

terns, respectively. The schematic designs and the algorithm generating test patterns

are also provided. The study shows that the test patterns and expected outputs can be

systematically generated by using the graph labeling scheme. By using of graph label-

ing scheme, a set of test vectors with repetition nature can be obtained. This drastically

simplify the test generation procedure.

It has been shown that the proposed design of Carry-Propagate Array Multi-

plier is better than that of [9] in the performance of speed because the XOR gates are

removed from the critical path. The proposed design of Baugh-Wooley Array Multi-

plier is better than that of [8] in the number of test patterns required, i.e., it only

requires 16 patterns of the proposed design, but 55 patterns in [8]. In addition, the pro-

posed design can systematically generate the patterns by a circuit with limited size.

Also, the proposed design of MRSD is C-testable, but that of [9] is not.

Although the C-testable design requires a test set of constant length irrespec-

104

105

tive of the circuit size, and the test cost can be significantly reduced, it is not free of

penalty. Extra XOR gates and control signals are needed to produce the C-testability.

In practice, the extra hardware for XOR gates may not be the burdem of the design.

However, the most important and critical problem is the extra control signals. This

study has shown that the number of extra control signals may be as many as triple that

of the circuit size. It is impractical to increase the number of pins in the design of

arithmetic units to produce C-testability because the number of pins of an IC package

is limited.

From Algorithms 1-6, the test patterns are generated by a set of vectors that

are derived from the labels of the basic four or eight cells. These test vectors can be

generated internally and repetitively. This leads to an excellent platform for the

developement of the BIST (Built-in Self Test) design of C-testable arithmetic units.

[11

[2]

[31

[4]

[5]

[61

[71

[31

[91

LIST OF REFERENCES

Abraham, 1A., and V.K. Agarwal, "Test generation for digital systems," in

Fault-tolerant Computing, Theory and Techniques, edited by D.K. Pradhan,

Prentice-Hall, Englewood Cliffs, NJ., 1986.

Lala, P.K., Fault Tolerant & Fault Testable Hardware Design, Prentice-Hall, 1985.

Kautz, W.H., "Testing for faults in cellular logic arrays," Proc. 8th Symp. Switch-

ing Automata Theory, 1967, pp.l6l-174.

Friedman, A.D., "Easily testable iterative systems," IEEE Trans. on Computers,

Vol.C-22, pp.1061-1064, Dec. 1973.

Parthasarathy, R., and SM. Reddy, "A testable design of iterative logic arrays,"

IEEE Trans. on Circuits and Systems, Vol.CAS-28, pp.2037-1045. Nov. 1981.

Hwang, K., Computer Arithmetic, Principles, Architecture, and Design. Wiley,

New York, 1979.

Waser, 8., "High speed monolithic multipliers for real-time digital signal process-

ing," Conrputer, pp.19-28, Oct. 1978.

Shen, LR, and FJ. Ferguson, "The design of easily testable array multipliers,"

IEEE Trans. on Computers, Vol.C-33, No.6, pp.554—560, June 1984.

Chatterjee, A., and J.A. Abraham, "Test generation for arithmetic unit by graph

labeling," Proc. of 17th Fault-Tolerant Computing Symp., Pittsburgh, PA,

pp.284~289, July 1987.

[10] Patel, LH. "Testing in two dimensional iterative logic arrays" Fault-Tolerent

Computing, IEEE, 1986, pp. 76-81

[11] Elhuni, H. "C-testability of two—dimensional iterative array" IEEE Trans. on

Computer-Aided Design, VOL CAD-5 No.4, pp.573-581, Oct. 1986

106

nICHIan STATE UNIV. LIBRARIES

1|lWM"llHIHHNIUIWIIHHIHI“NIH“HIIUWI
31293010943219

