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ABSTRACT

OPTIMAL CONTROL SYSTEM DESIGN:

THE PREDICTIVE SAMPLING PROBLEM

By

Uhi Ahn

The principal contributions of this thesis are the

formulation and solution of the optimal predictive sampling

criterion for a sampled-data control system and the develop-

ment of the optimal control system design methodology for the

optimal predictive sampling problem.

The system performance index is formulated with a

control performance index that measures actual performance of

the control rather than error due to the sample and hold device

as in the formulation of previous adaptive sampling criteria.

The control performance index measures control performance over

both the sampling interval over which the control is held con-

stant and a future interval where the control is permitted to

be continuous. Thus, only one sampling interval at a time is

chosen and is based on the estimate of this performance index

which in turn is based on past measurement of outputs of the

system and knowledge of system inputs, system dynamics, and

disturbance, initial conditions, and measurement noise statis-

tics. A cost of implementation is included in the system.per-

formance index and is a specified constant if the predictive
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sampling criterion is being used to perform control on a

specified set of hardware and is a function of the length

of the sampling interval if the objective is to design and

select the computer hardware, computational algorithms,

and computer software to implement the predictive sampling

criterion.

The results of the optimal adaptive sampled-data

control with predictive sampling criterion shows that the

optimal predictive sampling criterion is indeed adaptive for

on-line control if future performance can be precisely predicted

as in the deterministic system but is periodic if future per-,

formance cannot be predicted as in the stochastic systems

Mbreover, the optimal predictive sampling criterion performs a

control function because the control performance is improved

over that of the continuous-time control for the deterministic

system.

Optimal control system design methodology is further

refined in this thesis. This optimal control system design is

broken down into the optimal control design where the para-

meters of the control performance index are optimally tuned so

that the resulting control meets the control performance objec-

tives, and the optimal system design where the hardware to be

implemented is optimally determined. The optimal system de-

sign procedure determines a precise cost of implementation as

a function of the computational algorithms, computer software

implementing that algorithm, and the hardware and then deter-

mines the optimal selection of hardware, computational algorithm,

and computer software by a tradeoff of control performance
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and cost of implementation. Thus, optimal control system

design really completes the design problem for an optimal

control system because it not only tunes the control

performance index to obtain acceptable control but also

determines a precise cost of implementation and then

selects a hardware, computational algorithm, and software

option based on the control performance and cost specifi-

cations.

An example problem.is chosen and is the linear

second-order type two system which has been used extensively

in the past research related to the optimal sampling problem.

The control performance for the optimal sampled-data

control with predictive sampling criterion is compared to

the periodic sampled-data control and continuous control.

The actual hardware cost for optimal predictive sampling

problem.is developed for this particular system. The para-

'meters of the control performance index are then tuned for

this system based on control objectives. A particular hard-

ware, algorithm, and computer software option is then

selected for this system.based on a tradeoff of performance

and cost.
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CHAPTER 1. INTRODUCTION

1.1 Historical Development

Periodic sampling criteria have often been used be-

cause of the ease of design and analysis using transform

techniques. Adaptive sampling criteria [1-11] have been

developed to vary the sampling rate in proportion to the rate

of change of some output or error signal. The first attempt

at placing an analytic framework under the design of sampling

criteria was made by Hsia [7]. In this work a large class of

adaptive sampling rules was derived analytically from a con-

tinuous time integral performance index which measured the

squared error introduced by sampling the error or output sig-

nals of a feedback control system. The performance index was

augmented by a cost for sampling which was inversely propor-

tional to the sampling interval length and represented the

costs for measuring, transmitting and storing the sample.

The formulation of the optimal control problem has al-

ways included a control performance measure but has seldom

included cost of implementation. Thus, the optimal control

design is either impractical or must be modified to incorp-

orate practical constraints imposed by costs of implementing

the optimal control. An optimal control system design formu-

lation [12] would directly impose the cost of implementation

1
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constraints by adding appropriate cost terms to the control

performance index as in the formulation of these adaptive

sampling criteria [7]. Practical control system.design

could thus be obtained directly. Although almost every

aspect of control system design could be included in this

formulation, the only aspects that have been investigated are

the control and sampling problem [12] and the optimal sampling

problem [13]. The number and the lengths of sampling inter-

vals and the levels of each control element over each inter-

val were therefore the variables optimized.

The control and sampling problem and the classical

optimal sampling problem were chosen for investigation using

this optimal control system design formulation [12] because

the previous work on sampling in control systems [1-16]

suggested such formulations. The classical formulation of the

optimal sampling problem has a performance index that measures

both the errors in sampled signals caused by the sampling cri-

terion and the costs for implementing this criterion. The

control law was specified and the sampling times were not con-

sidered control variables but rather design parameters that

could be used to make the sampled-data control better approx-

imate a continuous-time control. The optimal sampling problem

was developed more carefully and then solved by Van Wieren and

Schlueter [13]. In this work, the length of each sampling

interval and the number of sampling times were selected to-

gether rather than selecting sampling intervals sequentially

as in adaptive sampling. The system.performance index for this
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classical optimal aperiodic sampling problem [13] was defined

over the entire control interval rather than just one sampl-

ing interval and the cost of implementation was not just

chosen to have a convenient form but was chosen to model the

actual costs of implementing an aperiodic sampling criterion.

Furthermore, the model of the system dynamics, input disturb-

ances, initial conditions, and control inputs were all assumed

known and were used to make the system performance index

dependent on this information.

The formulation of the optimal control and sampling

problem used a performance index that strictly measured con-

trol performance. The control law was not specified so that

both a sampling interval sequence and a control vector sequence,

which specified the level of each piecewise constant control

signal and the length of the sampling interval over which it

is held, were chosen optimally. This optimal sampled-data

control problem [12] was formulated to obtain an optimal con-

trol with a sampling criterion that could provide better con-

trol performance than an optimal control with any periodic or

arbitrary aperiodic criterion.

An efficient computational algorithm was developed for

this optimal sampled-data control problem for the special case

where the optimal control sequence can be determined as a

unique function of the particular sampling intervals sequence

chosen. For this special case, the performance index can be

determined as a function of this sampling interval sequence.

The optimal sampling interval sequence can be found by minimiz-

ing this derived performance index. The optimal sampled-data
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control problem.oould thus be separated into the problem of

finding an optimal control law for any sampling interval

sequence and a problem.of determining the optimal sampling

criterion for this optimal control law. Thus, the optimal

sampled-data control problem can be considered an optimal

control and sampling problem when the Optimal control can be

determined as a function of the sampling interval sequence.

This algorithm was applied to compute the optimal

sampled-data control law for the regulator problem with con-

strained [14], state dependent [15], and adaptive sampling

[16] criteria. The excellent control performance obtained

with very few control changes indicates that the computer

‘memory and computer-communication system.required to store and

transmit the control can be significantly reduced if the

sampling intervals are determined optimally rather than speci-

fied a priori.

This control and sampling problem was not formulated

with a cost of implementation term in the performance index

because it was formulated as a traditional optimal control

problem. Although the sampling intervals sequence were con-

sidered control variables, the number of samples was not con-

sidered a control variable and was specified since the theory

indicated the solution when both the number and lengths of

sampling intervals is optimized is trivial (i.e. Nson and 379).

Recent result on observability and controllability

of sampled-data control system [17,18] have shown that the

observability and controllability of the continuous system
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can only be preserved in general if the number and the

lengths of the sampling intervals are control variables.

Thus, this theory suggests selection of a sampling rule may

provide the same kind of performance improvement that the

selection of a control law can. This hypothesis was shown to

be true in the recent papers that established

(1) that the selection of an optimal sampling rule

can proceed as an independent optimization problem from the

determination of an optimal control if the optimal control

can be uniquely specified for any sequence of sampling time

chosen [12]; and

(2) that the selection of an optimal aperiodic sampl-

ing criterion can cause a remarkable reduction in data require-

ments to achieve the same performance value as observed using

periodic sampling [12]. These results were established for

the sampled-data control problem.where the levels of each

piecewise constant control element over each sampling interval

and the number and lengths of the sampling intervals were the

control variables to be optimized in order to specify the

optimal control law.

1.2 Optimal Control System Design

Since the number and lengths of sampling intervals are

control variables and since the solution to the optimal con-

trol and sampling problem approximates the continuous-time

control when there is no cost of implementation and no upper

bound on the number of samples [12, Theorem 3], a cost of

implementation should be included along with a control performance
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index in any general formulation of the control system design

problem. Since the actuators, sensors, communication links,

and computer hardware and software depend on the number and

lengths of these sampling intervals and determine the cost of

implementation as a function of these control variables,

this hardware and software that go into implementing a con-

trol law along with the number and lengths of sampling inter-

vals must be considered part of the control system design

rather than part of plant being controlled as in the tradi-

tional optimal control formulation.

These results suggest the control system.design formm:

lation which differs from traditional optimal control in the

following two ways:

(1) A performance index is used that attempts to pre-

cisely model both the control performance and the cost of

implementation objectives for a particular application;

(2) Sensors, actuators, communication links, and com-

puter hardware and software as well as the number and lengths

of sampling intervals will be considered part of the control

system to be designed.

Optimal control system design has been developed as a

method of problem formulation and a design methodology not

only because of the above theoretical considerations but also

because

(1) the traditional optimal control formulation pro-

duced control laws that either could not be implemented or had

to be significantly modified because the formulation ignored



the cost of implementation;

(2) many important aspects of the control system design

problem could not be adequately formulated using the tradi—

tional optimal control formulations. Examples include

(a) the selection from.different control struc-

tures that range from completely centralized to completely

decentralized.

(b) the selection of different control laws

which range from the linear quadratic Gaussian (LQG) solution

to the classical single input single output (SISO) feedback

one,

(c) the cost versus performance tradeoff for

using a particular input or output in the control law, and

(d) the selection from among different analog or

digital hardware alternatives for actuators, sensors, communi-

cation links, and computer hardware;

(3) the optimal control system design formulation can

lead to improved design procedures and improved system evalu-

ation methodologies. An excellent example of the possible

improvement in design methodology and evaluation procedures is

found in [12,13] where optimal periodic, optimal aperiodic,

and optimal adaptive sampling criteria were designed based on

minimization of a system cost which is composed of a cost of

implementation and the control performance measure. The opti-

‘mal sampling criterion could then be selected based on the

criterion (optimal periodic, optimal aperiodic or optimal

adaptive) with the lowest system cost;
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(4) the optimal control system design formulation is

the proper framework for developing a procedure for computer

aided design of control systems which could include a control

structure, control law, and the hardware-software combination.

1.3 Optimal Aperiodic Sampling Problem for Control

The recent results on controllability and observ-

ability [17,18], that indicated the lengths and number of

sampling intervals are control variables, and the control and

sampling problem, which indicated a dramatic 50:1 reduction

in data requirements were possible for the optimal sampled-

data control with optimal aperiodic sampling over the optimal

periodic sampled-data control with the same control perform-

ance index value, suggested that a study of optimal aperiodic

sampling for control be performed where the control law is

specified and the number and lengths of sampling intervals are

optimized. The system performance index measures the control

performance and the actual costs of implementation for a

sampled-data control law with Optimal aperiodic sampling. In

this optimal aperiodic sampling problem, the number and lengths

of each sampling interval were optimized together based on a

performance index defined over a specified control interval.

This problem extends work on optimal sampling for the optimal

tracking [12] and regulator [l4-l6] problems, but in this case

(1) the control sequence which specifies the level of

each control element over each sampling interval will not be

optimized;



9

(2) the control sequence will be determined based on

the values Of a specified continuous-time control law at the

sampling times.

Since the control sequence is uniquely specified by

the sampling interval sequence, the theory of optimal sampled-

data control indicates the optimal sampling problem can be

treated as separate Optimization problem from the determina-

tion Of the continuous-time control law. The Optimal number

and lengths of sampling intervals is determined by using a

nonlinear programming algorithm.to determine the Optimal

sampling interval sequence for each number of sampling inter-

vals Of interest and then plotting these Optimized system per-

formance index values to determine the Optimal number of

samples graphically.

The results Of this study of Optimal aperiodic sampl-

ing indicate that

(l) selecting an Optimal aperiodic sampling criterion

for a nonoptimal continuous-time control can dramatically

improve control performance over that Of the unsampled con-

tinuous-time control;

(2) Optimal aperiodic sampling can increase the speed

of response over that of the unsampled continuous-time control;

(3) the selection Of the Optimal sampling criterion

from.among optimal periodic, Optimal aperiodic, and optimal

adaptive depends on the terms included in the control perform-

ance and cost Of implementation;

(4) the control performance improvement due to Optimal
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aperiodic sampling is due to effective use of the delay

cause by the sample and hold device to meet the Objectives

measured by the control performance index;

(5) the Optimal aperiodic sampling interval sequence

depends on the specific control performance, cost of imple-

‘mentation, system.dynamics, inputs, and initial conditions for

the system considered.

The aperiodic sampling problem [13] considered input

uncertainty and random initial conditions, but did not con-

sider the case where measurement noise was present. The Opti-

mal aperiodic sampled-data stochastic control problem extends

these results to that case. The Optimal stochastic control

law is a piecewise constant vector control that is held over

sampling intervals. The level Of the control over any inter-

val is specified by a gain matrix multiplied by the estimate Of

the state at the sampling time at the beginning Of the parti-

cular sampling interval considered. The gain matrix may be

the gain Of the optimal or non-Optimal continuous-time control

law at that particular sampling time or the gain matrix Of the

Optimal sampled-data control law [14] for the particular

sampling interval sequence.

The control sequence that specifies the Optimal

sampled-data stochastic control law with Optimal aperiodic

sampling is closed loop because the level Of the control over

any interval depends on the state estimate which depends on

the sampled measurements Of the output at previous sampling

times. The sampling interval sequence for this Optimal sampled-

data stochastic control with Optimal aperiodic sampling is Open
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loop because the optimal number and lengths of sampling

intervals are determined based on the average performance

over all sample functions Observed on the system and is not

based on actual measurements and the actual sample functions

Of the processes Observed on that system.aver a particular

interval.

1.4 Optimal Predictive Sampling Problem

An Optimal predictive sampling problem will be formu-

lated in this thesis in order to produce a control law that

has both a closed loop control sequence and a closed loop

sampling interval sequence. The control law is identical to

that used for the Optimal sampled-data stochastic control

problem with Optimal aperiodic sampling but restricted to the

case where the gain matrix is specified by a continuous-time

Optimal or specified non-optimal control law at the particular

sampling time.

The performance index will be defined over the control

interval but is separated into a measure of control perform-

ance over the sampling interval to be Optimized, the control

performance over the remainder Of the control interval after

this sampling interval and a cost of implementation that

‘measures hardware cost for implementing this predictive sampl-

ing criterion. This system performance index is optimized to

produce a sampling interval. A sampling interval sequence is

thus Obtained by iteratively solving this predictive sampling

problem,
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The sampling criterion is predictive because the con-

trol performance terms are predicted based on measurements Of

the system.autput at all previous sampling times, knowledge

Of system dynamics, control inputs, and the statistics Of

the input disturbances, initial conditions and measurement

noises. The predictive sampling problem assumes that the con-

tinuous-time control law is specified and may be Optimal or

suboptimal. Thus, the selection of the control is specified

by the specified continuous-time control and the sampling

times and is not selected optimally for the sampling times

sequence as for the control and sampling problem.

1.5 Important Results and Contributions

The main contributions of this thesis will be

(1) to formulate and solve the Optimal predictive

sampling problem;

(2) to extend the Optimal control system.design

methodologY; and

(3) to apply this methodology to the Optimal predic-

tive sampling problem,

In Chapter 2, the Optimal predictive sampling problem

for control is formulated for a linear time invariant system

‘with a known input and disturbance statistics and a specified

continuous-time control law. This control law is based on a

state estimate which is in turn based on sampled noisy measure-

ments Of the outputs at previous sampling times. The system

performance index chosen measures control performance and

cost of implementation. The control performance index proposed
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measures performance over the next sampling interval where

this control is held constant and over a future interval

where the control is permitted to be continuous-time. The

value Of this control performance can be estimated for any

sampling interval length based on the sampled output measure-

ments Obtained at previous sampling times and the knowledge

Of system.inputs, system dynamics, and disturbance, initial

condition, and measurement noise statistics. The cost Of

implementation measures the precise cost Of implementation

as a function of computer hardware, computational algorithms,

and computer software for computing the Optimal sampling in-

terval on-line.

In Chapter 3, optimal control system design methodol-

ogy is developed as a formal procedure for the predictive

sampling problem. Optimal control system design is shown to

consist of a two step Off-line procedure; Optimal control

design, which determines the control performance index Optim-

ally, and Optimal system design, which determines the cost Of

implementation and the Optimal selection of hardware to be

implemented by a tradeoff of control performance and cost of

implementation. Traditional Optimal control design problem

corresponds tO this Optimal control design problem but ignored

the Optimal selection Of computational algorithm, computer

software, and computer-communication-instrumentation hardware

which corresponds to this optimal system design problem.

In Chapter 4, Optimal control design for predictive

sampling problem is developed in detail for a particular
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example problem. It is shown that the sampled-data control

with a predictive sampling criterion outperforms the periodic

sampled-data control with the same number of control changes

and even outperforms the continuous-time control if the

system is deterministic. It is also shown that the best

predictive sampling criterion for the stochastic control sys-

tem.is periodic which indicates that the selection Of sampling

intervals cannot improve control performance when the future

control performance as a function of this sampling interval

cannot be accurately predicted. Thus, the optimal predictive

sampling does perform a control function for the deterministic

control system by holding a control with a larger absolute

magnitude than the continuous-time control; thus improving

speed of response and terminal error.

In Chapter 5, optimal system design for the predic-

tive sampling problem is developed in detail for the same

deterministic example problem chosen in Chapter 4. Cost of

implementation is developed only for the hardware cost term

in the cost Of implementation because the hardware is dedi-

cated for this problem and because communication and instru-

mentation hardware are assumed chosen. An appealing computer

hardware cost function is Obtained by Optimizing computer

algorithms, computer software and computer hardwares. Optimal

selection of hardware is also performed using two distinct

‘methods that tradeoff control performance against cost of

implementation. Control performance Obtained from Optimal

predictive sampling criterion with this optimally selected
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hardware is dramatically improved are the control perform-

ances for periodic sampled-data control and for continuous

control.

Conclusions are then presented in Chapter 6.



CHAPTER 2. PROBLEM FORMULATION

Consider a computer control system where the plant

can be modeled as a linear, time-invariant, observable and

controllable stochastic system

30:) - A 350:) + §_ 20:) + 110:) (1)

where x.is an n-dimensional state vector, u’is an r-

dimensional control vector, and w is an n-dimensional dis-

turbance vector.

E {g(t)} - 9n

E {3(t) w’(r)} - E 6(t-t)

(2)

where 5(-) is the impulse function, and E and ’ indicate ex-

pectation and transpose Operations respectively. The initial

time toe(-w,w) is fixed and the initial state is random and

satisfies

E {5(t°)} B 2(t0)

E {(§_(to) - 2(to)) (5(to) - 2(to))’} =- 2(to) (3)

E (50:0) w’(t)} - 9m ta(t°,tf)

The system is Observed by measuring the outputs y(t)

2(t) ' Q §(t) (4)

at (N-l) sampling times {ti}§;1 where the sampling intervals

0 s Tm 5 Ti 5 Tmax <5)

N-l

g(To,T1,....,TN_1) - i-o Ti - (tf - to) = 0 (6)
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where N satisfies

Nmin _<_ N 5 Nmax (7)

The output measurements are corrupted with noise

fli such that

‘51 - Z(ti) +‘gi i=1,2, ....... ,N-l (8)

where $1 is an m-dimensional noise vector that satisfies

E {ii} - gm_

E {ii ivy-11:61.1

E {21210} - te(to.tf) (9)0
—mn

E {5‘11 §’(to)} - 9m

where aij is the Kronecker delta function.

The control 2(t) is assumed to be a piecewise constant

vector function whose elements change value only at the

sampling times {ti}§;1 such that

2(t) ' 2(t a £1) tetti’ti‘l'l) (10)

and can depend on the previous measurements

:Ei - (gi,zé, ...... ,gi) for i=1,2, ........ ,N-l

The Optimal predictive sampling for control problem

can be stated formally as follows:

Given the linear system (1,4,8) with disturbances (2),

measurement noise (9), and initial conditions (3), and given

a control law (10) Of the form

2.0:) .. {Bi " P-(ti) ' 9. -;£<ti’ti) teEti’ti-I-l)
A (11)

131:) - 9 51th:) ts[ti+1,ti+Ai)
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where h(t) is the input to be tracked and £(t/ti) is the

estimate of x(t) after measurement 51 is made, i.e.

act/q) = E {yo/11}

+ " + " + .
Hit/ti) = E {(§_(t) - 35(t/ti)) (50:) - §(t/ti)) /_Z_i}

where the initial conditions are

5(to/to) =- yto)

into/to) - 111:0)

Determine the Optimal sampling interval T: that satisfies (5)

and minimizes a system.performance index:

S(Ti) - J(T1) + qC(Ti) (12)

where J(T1) is the control performance and C(Ti) is the cost

Of implementation, and where the control performance has the

form:

J(Ti) - 1/2 E{( a [(h_(ti+Ai) - 1(ti+Ai))’ g Q1_(ti+Ai) - z(ti+Ai))

+ t1+A1 . .
f {(116) - 202)) Q (110:) - 102)) + 3 (t) E; u(t)} dt]

t
1+1

(13)

‘1‘”

+ ft {Quit} - NOV 9. (bit) - 209) + 1130:) 32m} dt)

1

'/_Z_i}

Mauices E and Q are positive semidefinite symmetric, R is

positive definite symmetric matrix, a is positive constant, and

the expectation operator E is conditioned on measurements 21.

The first term.measures the terminal squared error and the

second and third terms measure the tracking and the control
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square error over the time interval [ti'ti+1) and [ti+l'ti+Ai)

respectively. The parameter a weights future performance over

[ti+l'ti+Ai) against that of the immediate sampling interval

[t1,t1+1). The parameter Ai represents the length Of the

interval over which the control performance is predicted and

this parameter (A1) can be chosen to be constant (Ai-A) or can

be chosen based on a fixed terminal time and thus A1 = tf - ti‘

This control performance index can be expressed as a

function Of Ti as follows:

J(Ti) - 1/2 O[(h_(ti+A1) - g grim/thy g (l_1_(ti+Ai) - 9321:ng

up)

+ Tr {g’ _P_‘_ Q 1(ti-i-Ai/tpn

ti'mi " + " +
+ 1/2 aft [aim - g £(t/ti))’ g @(t) - g §(t/ti))

1&1

+ Tr {_c_’ 9, 9 much}

, : + (14)

+ (110:) - 31:51-1th 3, (110:) - g §(t/ti))] dt

1: A A

+ 1/2 réfltqgt) - _C_ gt/t’p)’ 9, (131:) - gage/:1»

+ '1‘: {g’ Q g y_(t/t1')}] dt

+ 1/2 ritgep - g 21:11:»; 5 cacti) - gag/1:13)]

by stbstituting (4), (11), and taking expectation term by term.

The conditional mean §(t/tI) and variance 2(t/tI)

satisfy:
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£0:th a i<tvti) £(tI/ti) + .1: 30:3) 3; d1 [_Mti) - 2331:17th

i

t8[tetra>

git/:9 - yum) ism/c1) + I: gm) 2 [11(1) - 2 amp] d:

1&1

“um;'51“? (15)

2(t/ti) - anti) Kai/t1”) {(1:11) + 1: 10m) 11 9:11;») at

i

ta[ti,ti+Ai)

Ablock diagram of the system is shown in Figure 2-1. It

should be noted that the value Of performance J(Ti) is pre-

dicted based on measurements _Z_1 that includes measurement _z_i

at t1 and the assumption that grit-{MIL Z<tilti)’ system model

(1,4,8), control (11), and statistics (2,3,9) are all given.

Once T: is determined by minimizing S(Ti) with respect

to T1 satisfying (5), the computer must wait until ti+1 - t1 +

T: occurs. At t1+1 the computer triggers sampling Of measure-

ment _z_i+1 and then computes

3219141,ti+1) " iii-“fillti) "' git-(3+1) [5(t1+1) ’ 9- g<ti+1lti.”

Y.(ti+1/ti+1) " X<t1+1/ti) " 5am) 9- Y.“1+1/ti) (15)

stag - Y-(t1+1/.13 9.19. zeal/t? 9: + 11*.

The ocuputer is then ready to begin the cycle again by computing

T:+1 by using a search algorithm that requires repeated evalu-

ation of control (11), control performance J(Ti) (l4), and the

cost of implementation for several values of Ti+1 where in

this case T1+1 - Ti’ ti+1 - ti’ ti+2 = ti+l in these equations.
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Initial Settings:

X(O),i 2(0) 9' H i! to: tf

 

 

i - O

 

 

 

1
Given Tmin and Tmax’

Optimize sampling interval IICOmpute Perform-

e.—

 

 

Ti using DSC algorithm. ance Index S(Ti)

  
'with search step size*AT using Simpsons

to find t - t + T Rule with step
1+1 i i size 6

    

NO ‘ Solve state

stop equation 2

- and x(t/ti)

V(t/ti) using Runge-

Ye: Kutta formula   
 

Compute state estimate

x<ti+llti+l) and variance Random Gaussian

V<ti+llti+l) using Kalman generator to get

2.

filter equation r+1

cpl.

 

    
 

 

FIGURE 2-2 Flow chart of computational procedure for solving

the predictive sampling problem,
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The control (11) can be a state variable feedback one since

x(tilti) must be available at ti so that J(Ti) can be pre-

dicted. The control law (11) must be closed lOOp in order to

reduce the effects of disturbances, system parameter variation,

and measurement noise. The predictor equations (15,16) are

derived in [19-21]. The flow chart Of the computational pro-

cedure for solving this predictive sampling problem.over the

control interval [to, tf] is shown in Figure 2.2.

This control performance index has the same form as

that used in the aperiodic sampling problem except that the

performance is only defined over [ti’ti+Ai) rather than [to,tf)

and can only be Optimized over Ti rather than (N,TO,T1,....,

TN_1). The problem is formulated so that the control per-

formance over [ti+l’ti+Ai) can be neglected if a is zero. In

this case, the optimal sampling interval T: would depend

strictly on the control performance over [ti’ti+l)’ the cost

Of hardware capable Of computing t1+1 - t1 + T: in an interval

less than Ti, and the cost Of communication and instrumenta-

tion hardware that could handle a sampling rate f1 - l/TI.

If a is not zero then the Optimal sampling interval T: must be

chosen based on: i

(a) the control performance over [ti'ti+l) that

generally increases with T1;

(b) the control performance over [ti+1,ti+Ai) which

is generally a convex function Of Ti; and

(c) the cost Of implementation that is a constant if

the hardware is already selected and the adaptive sampling
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criterion is being implemented on-line. The cost of imple-

mentation is a decreasing function Of Ti if its selection

will be based on this performance versus cost tradeoff.

This would be the case for an Optimal system design of the

control and the hardware to implement it.

It should be noted that in the predictive sampling

problem the control performance is averaged over all sample

functions of 3(t) and {gi}§;i and the performance is condi-

tioned on knowing past measurements E1 of the output. These

differences between the aperiodic sampling problem [13] and

the predictive sampling problem being formulated here are in-

tentional because the Optimal sampling interval T: is to be

computed on-line after measurement 5i is taken rather than

Off-line without any measurements at all as in the aperiodic

sampling problem.

Observability and controllability of the sampled-data

system [17,18] need not be assumed to assure the existence of

T: for each 1. However, if the Optimal adaptive sampling

criterion is to provide acceptable control performance for

this Optimal adaptively sampled control system, sampled-data

controllability and Observability can be assured if and only

if the continuous-time system.is controllable and observable

when the number and lengths Of sampling intervals are control

variables which can be chosen [17,18]. Sampled-data controll-

ability and Observability can be obtained with only q(order

Of minimal polynomial of the system) sampling times or more

if these sampling times are taken so that no information on
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or control over the controllable and observable continuous-

time system is lost by choice of these sampling times. If

tf is sufficient long or the adaptive sampling problem has

no specified terminal time, then at least q sampling inter-

vals will eventually be Obtained and thus the system will

become sampled-data controllable and observable if these

optimal sampling intervals do not cause loss of information

about or control over the system. The optimal sequence of

adaptive sampling intervals should not cause either loss of

information or control because the control performance index

would be degraded if such loss of control or information were

to occur and these sampling intervals are chosen to minimize

control performance. Thus, the optimal adaptively sampled

control system should be sampled-data observable and con-

trollable for all time after the initial q sampling intervals

are taken.

The cost of implementation can now be discussed since

the application of this predictive sampling problem has been

discussed. The cost of implementation in the optimal systems

control and sampling problem should include the hardware cost

which measures the cost Of additional instrumentation, com-

munication and computer hardwares required to implement a

criterion, the computation cost which measure the cost for

designing or tunning a sampling criterion in order to

achieve its best possible performance, and the communication

cost which measure the cost for communication on a time shared

communication link for the data from the computer to actuator

and from sensor to the computer. Thus, the cost of
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implementation has the form:

2

The hardware cost (C1) is constant if the sampling

criterion has been implemented on an existing Or specified

set Of hardwares as in the on-line Optimal systems control

problem, However, if the instrumentation, computer and com-

‘munication hardware which is to be implemented as a part of

the control system will depend on the sampling criterion

selected, this hardware cost will depend on Ti' Although

the functional form of this cost term may vary for different

applications, the hardware cost would generally be a monotonic-

ally decreasing function Of the sampling interval Ti and

monotonically increasing function of the on-line memory and

computational requirements for a particular criterion.

Since the Optimal predictive sampling problem is on-

line control problem the hardwares for computer, communication

and instrumentation should be purchased or dedicated due to

the variable and yet unknown sampling rate. Therefore, the

cost of implementation for the Optimal predictive sampling

measures only the hardware cost (Cl). Thus, the computation

cost (C2) for the time shared use of computer facilities to

compute If for each N and the communication cost (C3) for the

time shared use of the communication link to transmit

{3&1} ,t:+l}l::;l

aperiodic sampling problem need not be included in the cost of

used in the cost of implementation for the

implementation for the predictive sampling problem, The cost

terms C2 and C3 were developed for the optimal aperiodic
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sampling problem in a recent paper [13].

The hardware cost (C1) in this cost of implementation

will have one of the following two forms:

C1(Ti) = f0(Ti) + f1(Ti) + f2(Ti) (18)

or

Clai) " f0(Tmin) + fl(Tmin) + f2(Tmin) (19)

where fo(-) is the computer hardware cost, f1(-) is the com-

'munication hardware cost, and f2(-) is the instrumentation

hardware cost, respectively. The first form would be used

when the hardware to be used has not been selected and would

be implemented based on selection of T:. The second form

would be used when the hardware has already been selected and

has the capability Of sampling at a maximum rate of f - l/Tmin

samples per second.

The functions fk(') used in both expressions would be

identical and would actually measure the minimum hardware

cost required to implement a sampling criterion with sampling

rate fi - l/Ti samples per second. The hardware cost function

will be developed in detail in Chapter 5.



CHAPTER 3. OPTIMAL CONTROL SYSTEM DESIGN(OCSD)

METHODOLOGY

The purpose of this chapter is to discuss and extend

the optimal control system.design (OCSD) methodology [12]

and relate the concepts to the optimal predictive sampling

problem, The design methodology assumes that the plant to be

controlled and the statistics of disturbances and measurement

noise have both been modeled and the control performance and

the cost of implementation Objectives have been clearly

stated. It should be noted that this chapter is concerned

with:

(l) the Optimal control design (OCD) problem.which

selects the parameters (a,Ai) and matrices (9,3,2) that

specifies the control performance index. Given the parameters

and matrices to be determined in this step, an Optimal

sampling interval Tij can be computed that minimizes the con-

trol performance index (14) subject to the constraint (5)

for a particular set of Operating conditions

hd(t) t€[t0’ti]

23(t) tSEtorti] (20)

i

{ikj}k-1

where j specifies the particular set of inputs h(t) and sample

functions of the processes {ik}R=1 and‘wflt) with statistics

' 28



29

(2,9) that produce the sampled measurement sample function,

gij - (553.5%, ..... ,_z_j’_j). The determination of TL. is called

the optimal control (OC) problem and the determination of

the parameters and matrices will be called the optimal con-

trol design (OCD) problem, This terminology is used to

differentiate these two aspects of modern control theory from

the extension proposed in the optimal system design (OSD)

problem.

(2) the optimal system.design (OSD) problem where the

control performance and cost of implementation objectives are

used in conjunction with a list of Options for computational

algorithms and computer-communication-instrumentation hardware.

i) to determine the cost of implementation C(Ti)

as a function Of the sampling interval by determining the

best computer algorithm-hardware option for each sampling

interval Ti;

ii) to optimally select computational algorithms,

software implementation of these algorithms, and computer-

communication-instrumentation hardware based on an Optimal

tradeoff of control performance and the cost of implementation

over a number of sampling intervals (1) and operating condi-

tions (j).

The Optimal control design (OCD) and Optimal system

design (OSD) problem is a two-step off-line procedure for

selecting the control performance and the cost of implementa-

tion, and for performing an optimal tradeoff of control per-

formance and cost Of implementation that not only determines
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the hardware to be implemented but also the optimal control

(selection of T:) which it implements. This two-step design

problem is called the optimal control system design (OCSD)

problem. Since the OCSD is performed Off-line and determines

the control performance index and the hardware to be used,

the Optimal control (OC) problem (which determines the Opti-

mal sampling interval for a particular set of measurements

from the system, the control performance index determined in

the OCSD problem, and the hardware selected based on the

OCSD problem) can thus minimize a system performance index

that includes control performance index and a constant cost

Of implementation specified by the OCSD problem.rather than a

control performance alone. This view of the OC problem

suggests it uses the same performance index used in the OCSD

problem but with a fixed cost Of implementation because the

hardware is specified.

The traditional 0CD problem has ignored the optimal

selection of computational algorithm, computer software, and

computer- comrmmication-instrumentation hardware. This

research is thus aimed at providing a foundation for incorp-

orating these aspects into the OCSD methodology. This OCSD

‘methodology can be applied to far more general control prob-

lems than the Optimal predictive sampling problem and will be

applied to such problems in the future.

The OCD and OSD subproblems will now be discussed in

detail in the next two subsections.
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3.1 Optimal Control Design (OCD) Problem

The OCD determines the parameters (a,Ai) and matrices

(3,3,2) assuming cost of implementation for all controls are

zero and that no constraints must be placed on Tmin due to

hardware constraints. These matrices and parameters thus can

be determined based on the control objectives and specifica-

tions for the particular system to be controlled. These

matrices and parameters are determined using the same intera-

tive procedure used to design an optimal closed loop control

law [22]. Specifically, this design procedure requires that

the parameters (a,Ai) and matrices (Q,§,§) be modified until

the performance of the system with closed loop optimal

sampling sequence {Tij}N_1 satisfies all system design Objec-

tives and specifications as determined from the simulation of

Optimal system state trajectory x(t) and sampled-data control

(11) for that optimal sampling interval sequence {T:j}§=1.

The parameter a is a positive constant and is used to

weight the future performance over [ti+1’ti+Ai) with respect

to the performance over [ti'ti+l)‘ This weighting is desir-

able because the selection Of Ti has a dramatic effect on

performance at any instant in interval [ti+Ti,ti+Ai) because

it determines x(ti+Ti) and thus x(t) and‘u(t) over [ti+Ti'ti+

A1), butTi has no effect on the performance at any time

instant in [ti’ti+Ti) because the control £1 = 2(ti) is com-

pletely specified there. _Thus, a should be large enough so

that the future control performance over [ti+l’ ti+Ai)

dominates the selection of the Optimal sampling time interval
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T: if the sampling criterion is to be adaptive.

It can be easily seen that the selection of the

sampling interval depends completely on the control perform-

ance over [ti'ti+l) in the optimal predictive sampling prob-

lem.if O-O. Since this performance index would generally be

a strict monotone increasing function of T1 for Ti 3 Tmin’

when Tmin is sufficiently small, the sampling criterion would

in most cases be periodic with sampling period T: = Tmin'

Thus, if future performance is neglected (a-O) by the design

Objectives the on-line predictive sampling problem gives a

periodic sampling criterion at a sampling rate that is the

maximum allowed by the computation algorithm, computer soft-

ware, and computer-communication-instrumentation hardware

Option selected in the off-line system design problem.

If a is greater than zero and large enough, the future

performance over [ti+Ti’ti+Ai)’ which measures terminal error,

speed Of response, and overshoot, will dominate selection of

Tij' Since this future performance index keeps changing as

index 1 increases, the sampling intervals Tij will produce an

adaptive sampling criterion. The sampling interval Tij is

selected so that the speed of response is increased and the

settling time and terminal error are reduced, but not so long

that the control performance over [ti+l' ti+Ai) becomes large.

If a was chosen equal to zero in this OCD problem, it

is clear that the designer had made a choice of implementing

hardware, computer algorithms, and software knowing that a

periodic rather than adaptive sampling criterion would result.
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Thus, the selection of a is a selection of control structure

for the predictive sampling problem not only because it

dictates the hardware, algorithms and software implemented

but also because of it will be shown later that adaptive

sampling is a closed loop sampling process where periodic

sampling is an Open loop sampling process.

The parameter A1 is used to determine the future

performance time interval and is dependent on the desired

speed of response in the control Objectives and is determined

using the same iterative procedure used to determine the

matrices (g,§,§) and parameter a. The parameter Ai obviously

does not affect the control performance if a is zero.

Two options are possible in selection of A1. In the

first case, Ai - tf - ti where tf is a known fixed terminal

time and the sampling interval [ti’ti+l) is chosen to effect

control performance over [ti,tf]. In the second case, A1 is

constant (Ai-A) whether tf is known fixed terminal time or

unknown and the selection of sampling interval [ti'ti+1) is

based on performance over a fixed interval [ti'ti+A)’ The

length of this interval will thus also determine how adaptive

this predictive sampling criterion will be.

The effects of selecting parameters (a,Ai) and

matrices (Q,§,§) will be discussed for a specific example in

the next chapter. Although the selection of a and A1 on the

adaptability of the sampling criterion is clear, the effects

Of selection of Q, R and §.on the adaptability and perform-

ance is not clear and will be shown to be contrary to intuition

in some cases.
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3.2 Optimal System Design (OSD) Problem

The control performance index, determined in the

OCD problem, will be used in the optimal system design (OSD)

problem which first develops a cost of implementation as a

function of Ti and then selects the computational algorithm,

computer software, and computer-communication-instrumentation

hardware through an optimal tradeoff between control perform-

ance and cost of implementation for several Operating condi-

tions. The OCD and OSD problems are apparently treated as

completely separate. However, these problems are not really

separable because a choice of 1min in OCD problem affects the

control performance that can be obtained tuning the para-

meters of the control performance index and also because Tmin

is the minimum computation time of the hardware, algorithm,

and computer software Option selected in the OSD problem.

Since the hardware and the associated Tmin value are chosen in

the OSD problem by a tradeoff between cost of implementation

and a control performance index, whose parameters are chosen

in the OCD problem and depends on Tmin’ the OCSD problem

requires the OCD and OSD problem be considered iteratively

until hardware and associated Tmin satisfied both control

performance and cost of implementation objectives.

The following procedure for determining the cost of

implementation C(Ti) assumes the communication and instrumenta-

tion hardware has been specified and that only the computer

hardware, computational algorithm, and computer software need

be selected:



35

(1) Enumerate the computational algorithm options (p).

(2) Enumerate the computer hardware options (8) for

each computational algorithm option (p). The cost of the

computer hardware, C for each hardware and computationals, .

algorithm.option (s,p)pmust be noted.

(3) Optimize the computer programming to minimize CPU

time, IS,P(T1), for each hardware-computer algorithm.option

(s,p) to compute Ti - Ti'

(4) Determine the set of feasible computer hardware-

computational algorithm options for each Ti' i.e.

9(Ti) - {(s,p) : Ts,p(Ti) 5 Ti} (21)

where this condition requires the CPU time, rs p(Ti)’ for any

feasible computer-computational algorithm option be able to

T].

* * *

compute T1 in less than Ti seconds for each T1 = TiEETmin’ max

(5) Determine the cost of implementation function

_ ‘min

O‘Ti’ <s.p>en<r,> {03,p} (22’

where the lowest possible cost option is selected for each Ti'

The second step in this OSD problem is to select the

hardware option to be implemented for the predictive sampling

criterion and the parameter q selected to weight cost of

implementation against control performance. This selection

of hardware procedure is

(1) repeatedly optimizing system performance

S(Ti) - J(Ti) + qC(Ti) (23)

i
for several operating conditions (hj(t),‘wj(t), {ikj}k=1) for

j-l,2,....,M and several sampling intervals i=0,l,....,N-1
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for each operating condition to obtain a set of Optimal

sampling intervals

M }N"].
*

The control performance index is determined in the OCD

problem and the cost of implementation index is determined

in the first part of the OSD problem.

(2) select the hardware based on the maximum

cost over the optimal set of solutions P

* *

C - C T .mix ( 13)

(25)

Tijsr

where F includes optimal sampling intervals chosen for

different operating conditions (j) and different sampling

intervals (1). It will in general be necessary to repeat

this OSD procedure for several values of parameter q until

the hardware and control variables meet the control pera

formance and cost of implementation objectives.



CHAPTER 4. OPTIMAL CONTROL DESIGN (OCD) FOR

- PREDICTIVE SAMPLING PROBLEM

The objectives of this chapter are

(l) to investigate the effects of changing parameters

(a,A1) and matrices (Q,§,§) on the control performance

achieved with predictive sampling on a particular example

system;

L (2) to determine a set of parameters (a,Ai) and

matrices (Q,§,§) that provide the best control performance

possible with predictive sampling for each operating condition;

(3) to show that the sampled-data control with predic-

tive sampling can outperform the periodic sampled-data with

the same number of control changes and even outperform the

continuous time control law if the system is deterministic so

that the performance of selecting any particular sampling

interval can be accurately predicted;

(4) to show that the best predictive sampling criterion

is a periodic sampling criterion for a stochastic system be-

cause future performance due to selection of a sampling inter-

val can not be accurately predicted. The parameters (a,Ai)

and matrices (9,3,2) selected to provide the best control per—

formance with predictive sampling for a stochastic system will

be shown to result in a periodic sampling criterion.

37
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The effects of changing parameters (a,Ai) and

elements of matrices (9,5,E) for an error feedback control

of a second order system.is given in Section 4.1. The

selection of parameters and matrices for both deterministic

and stochastic inputs and the resulting performance of the

sampled-data control with a predictive sampling criterion is

given in Section 4.2. These results are obviously dependent

on the example system.and error feedback control law used,

but the qualitative behavior should hold for a great many

systems with error feedback controls.

4.1 Effects of Changes in Performance Index Parameters

The example system used in this section is a second-

order type two system which has been used extensively in the

literature [1-13] on evaluating performance of adaptive and

aperiodic sampling criteria. This particular system is

chosen not only because of the extensive results obtained on

it with different sampling criteria but also because it is un-

stable without feedback and thus provides an excellent basis

for determining the performance of a sampling criterion. The

system to be considered is deterministic (w(t) - 9, ii 8 Q)

X t 0 1 t 2
.l( ) - xl( ) + cgn u(t)

yl(t) 1 0 xl(t)

y2(t) 0 1 X2(t)

with initial conditions

and is written by

(26



39

- (27)

x2(0) O

The control law is specified as a closed form as

h (t ) - x (t ) te[t ,t. )

The system is said to be a "fast" responding when “n = 10

and "medium" responding when on = 5 for C - 0.5 in both

cases. These are two of the specific cases considered in

[13] for evaluation of Optimal aperiodic sampling. A block

diagram.of the system.is shown below.

 

 

hct) uct) Izcwns+ «f; (t)
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The control objectives for the optimal predictive

sampling problem are:

(l) to increase speed of response;

(2) to reduce terminal error;

(3) to reduce overshoot.

A general form for a control performance index that can meet

these objectives is:
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( ) /2 h1(ti+Ai)-x1(ti+Ai) ’ F11 o h1(ti+Ai)-x1(ti+Ai)

J'T =*a

1 h2(ti+Ai)-x2(ti+Ai) o o h2(ti+Ai)-x2(ti+Ai)

+A
. i

t - t ’ 0 (t - t

”’2 {1:102:10 [Q31 [11f ”10 “+Ruz(t)}dt
(t)- (t) (t)- (t

‘1‘": h2 "2 h2 "2 (29)

ti'Fri .

"‘ 1’2] {Wu-XI“) [Q11 0] fits-XI“) + 31120;) m:

ti h2(t)’32(t) 0 Q2 h2(t)*X2(t

where h2(t) - dh1(t)/dt. The off diagonal terms in Q and E

are assumed zero for ease of analysis. The coefficient F22

for the error rate at the end of the control interval,

(h2(ti+Ai) - x2(ti+Ai)' is also set to zero because this

error derivative would not seem to effect the speed of res-

ponse, overshoot, or terminal error for a sampled-data

control with a predictive sampling criterion. Q11 is set

equal to 0.1 arbitrarily and R is set equal to 0.02 again

arbitrarily because Q11 and R weight the same signal

(h1<t> - x1<t)>.

The initial time and terminal time are set equal

to zero and one respectively and A1 = tf - ti is set as the

time remaining in the control interval [0,1] unless other-

wise specified.

The sampling interval constraint

Imin 5 Ti 5 Tmax

are chosen to place very little restriction on the choice of

sampling intervals for the OCD problem because in this chapter
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the objective is to determine the maximum improvement in con-

trol performance which can be achieved through selection of

sampling intervals optimally. In Chapter 5, the minimum

sampling interval Tmin will be selected when the hardware

to be implemented is selected in the OSD problem based on a

tradeoff of control performance and cost of implementation.

The minimum sampling period is chosen as 0.02 in this section

because it is smaller than one would expect to select for a

system with fast (wn = 10) or medium (wn = 5) speed of res-

ponse. Tmax is chosen as 0.6 seconds for the medium system

(wn - S) and 0.3 seconds for the fast system (wn = 10) which

is the Nyquist sampling period for such systems when the sys-

tem.is assumed bandlimited to w .
n

The input h1(t) is selected as a step input

{1 :30

h1<t> - <30)
0 t < 0

rather than a stochastic disturbance because the general

effects of the parameter changes a, F11, and later Ai - A

can be more easily determined for the deterministic step in-

put than a ramp, parabolic, or stochastic input.

Since the system, control law, performance index,

and sampling constraints have been defined, the effects of

changes parameter a, P1]. and A1 can be determined. The

effect of increasing a is to increase T; as shown in Figure

4-l(a) if a is less than five and then any further increase in

*

a has no effect on To. This can be understood by analyzing
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the shape of the two components of performance index J(Ti),

i. e.

‘51
(31)

+ 0.02 u2(ti)} dt

J1‘13.) " “’2 Fll[h1(ti+Ai) " "1(ti+“1)32

ti+Ai 2 2
+ a/z f {0.1 [h1(t) - x1(t)] + Q22 [h2(t) - x2(t)]

t1+T1 (32)

+ 0.02 u2(t)} dt

The comment J0(TO) is a unnotone increasing function of T0 when

T0 is sufficiently small because the integrand is non-

negative and is a decreasing function of the integration

argument when T0 is sufficiently small. 31(To) is a convex

function as can be seen from Figure 4-1(b) when a is very

large. Thus, when a is above five J(To) closely approximates

J1(T0) and the Optimal T; is unaffected by changes in a.

However, when a is less than five, a decrease in a makes

J0(Ti) relatively more important in determining T3 and since

JO(TO) is monotonically increasing T3 should decrease as a

decreases as Observed.

The effects of increasing F11 when a is greater than

five is to decrease T; as shown in Figure 4-2. This can be

explained by noting that the longer control

u<c0) = h1<t0> - x1<t0> (33)

is held, the larger the overshoot of trajectory x1(t) and
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thus the larger the error (h1(tf) - xl(tf)). Thus, in-

creasing F11 will more heavily weight this terminal error and

thus control performance index increase faster as To

increases. Although this analysis of the effects of changing

a and F11 was only performed for i=0, it will be shown to

hold for every i by Observing Figures 4-3 and 4-4.

The output response xl(t) of the system is plotted for

the medium.(wn - 5) and fast (an - 10) systems in Figure 4-3

and 4-4 respectively for the predictive sampling criterion

obtained using various values of a and F11. Sampling

instants are shown by special symbols on the trajectory.

The results indicate that speed of response and overshoot

all increase as a is increased or F11 is decreased on both the

fast and medium systems. i

The speed of response and overshoot increase as T:

(0 increases and F11 decreases) since the difference between

the absolute magnitude of the sampled-data control

u(t) - h1(t) - x1(t) te[ti,ti+l) (34)

and the absolute magnitude of the continuous control in-

creases with (t - t1) and has the effect of accelerating the

reduction in error (h1(ti) - xl(ti))' Thus, increasing a

and decreasing F11 increase T: and thus increase speed Of

response and the overshoot which occurs due to this faster

reduction Of error.

Another measure of performance for a sampled-data

control is cumulative control performance



46

Jc<T3.TI......T§_1> =- 1/2 {zap =- g<cf>r itch) - gap]

N-l (,3 (35)
+ 2 J T

1-0 0 i

whflflzmemnmes the control performance over each sampling

interval in [to,tf] and the error energy at the terminal time

tf. The performance over intervals [tj'tj+Tj)' j=i+l, i+2,....,

N-l, depend on the selection of {Tj}§_o and thus this measure

of performance can be used to compare periodic, Optimal

aperiodic, and optimal predictive sampling criteria.

The matrix Ebis not identical to E used in the predic-

tive sampling performance index. This matrix is chosen as

0.05 0.0

-[0.0 0.0]

in this study so that terminal error is not considered as a

n
u
n

major factor in assessing performance of a sampling criterion.

Table 4-1 tabulates the cumulative control performance Jc(T0,

T1,....,TN_1) and the terminal error (h1(tf) - x1(tf)) for

(l) predictive sampling, (2) periodic sampling with the same

number of sampling times as predictive, and (3) periodic

sampling criterion with a sampling period of 0.01 (N=100)

which approximates the performance of the continuous control.

The cumulative control performance and terminal error

for predictive sampling on the fast system is always con-

siderably better than for periodic sampling but always worse

than the continuous control. The lowest cumulative control

performance and terminal error occurs when a-l and F11=0.l

and the cumulative performance obtained closely approximate

the cumulative performance of the continuous control.
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The results for the medium system indicate the pre-

dictive sampling has lower cumulative control performance

and terminal error than periodic sampling except when

.a-200 and F11-0.l because in this case the sampling inter-

vals are so large that the error is not sampled at its peak

overshoot and does not reduce this overshoot as quickly as

it would Otherwise. This seems to be an isolated situation

where predictive sampling does not fully take advantage of

the control Opportunity because it is based on a single

interval performance measure. The lowest value of cumulative

control performance for predictive sampling for this medium

system is Obtained when a-l and F11=0.l which for this case

is lower than that Obtained for the continuous control. The

lowest terminal error is obtained when cal and Fll-S, but

terminal error in this case is not a good measure of perfomm-

ance because the control interval is short with respect to

the settling time for this medium system.

The effects Of setting Ai - tf-ti or setting Ai - A

for several values of A will now be investigated for the

medium system (wn'5). The values of a and Fllare set equal

to 200 and 0.0 or 0.01 respectively because the sampling

intervals are large and the effects of Ai are more easily

seen. The first case considered is 0-200 and F11=O.O, and

the results, shown in Figure 4-5, indicate that curves

J(T0,A) z J1(TO,A) increase with A and this effect occurs be-

cause the integrand is non-negative and the integration

interval for J1(T0,A) is (A - To). The decrease in J(TO,A)
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for small T0 for any A is thus due to a decrease in the in-

tegration interval. However, when To becomes large, the

overshoot becomes larger as T0 increases and the curves be-

gin to increase. This increase in J(T0,A) with T0 is more

pronounced for larger A which is due to the fact that as A

increases more Of the interval where overshoot is experienced

is included in [tO+T0,t0+A]. The optimal sampling interval

T3 thus increases as A decreases because the performance

index has less concern for overshoot due to holding the

sampling interval too long. The trajectory x1(t), shown in

Figure 4-6, indicates the sampling interval T: increase for

all i as A decreases indicating the above analysis for i=0

holds for every interval.

The second case considered in this subsection is

included to indicate the effects of changing A when terminal

error is weighted slightly (Fll-O.l and 08200). The curves,

J(T0,A) = J1(T0,A), plotted in Figure 4-7 are quite different

from.the first case where terminal error was omitted from the

performance index because the terminal error can be very

large or be very sensitive to changes in To for particular

values of A. The error for A=O.44 has much larger values than

for A80.22, 0.88 or 1.0 and thus the J1(TO,O.44) curve is much

larger than the others there. The optimal sampling interval

T3(0.44) is thus quite small in order to optimally tradeoff

the reduction in the integral part Of performance index

J1(T0,0.44) with To and the rapid increase in terminal error

(h1(0.44) - x1(0.44)) with T0' The performance curves
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J(T0,0.22) for F11-0.0 and F11-0.l are identical when To

is small because the terminal error (h1(0.22) - x1(0.22))

is zero for the continuous control and is thus small when

To is small. However, as T0 becomes large this terminal

error increases rapidly and J1(To,0.22) increases rapidly

when F11-0.l but increases only slightly when F11=0.0. The

Optimal sampling interval T;(0.22) does decrease when

terminal error is weighted in the performance index. The

change in the curves J(To,0.88) and J(TO,1.0) and the change

in Optimal sampling intervals T;(0.88) and T3(l.0) are both

quite small due to inclusion of terminal error in the per-

formance index. The speed of response is again proportional

to T3(A) as it was when F11=0.0 but in this case T;(A) is not

inversely proportional to A but is dependent on the magnitude

of the terminal error and its sensitivity to changes To.

Thus, T;(0.44) is smallest followed by rgco.22), 03(1.o) and

T;(O.88). Since the speed of response and {T:(A)}§;i are

proportional to T3(A), the analysis of the effects of para-

meter change in the first interval hold for all other inter-

vals as shown in Figure 4-8.

Another set of trajectories xl(t), which indicate the

effects of changing A, is run when a is reduced from.200 to 1

thus reducing T:(A) and the speed of response but improving

cumulative control performance Jc(T3(A), TI(A),....,T;_1(A))

and terminal error as shown in Figure 4-9 and Table 4-2. The

performance and the trajectories x1(t) show comparatively

little change as a function of A for these values of a and
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F11. However, the smallest T;(A) is still A=0.44 and the

slowest speed of response occurs for A=0.44 indicating the

sampling interval sequence {T:(A)}§;3 still depends on the

magnitude of the terminal error (h1(ti+A) - xl(ti+A)) and

thus on A just as when a-200 and F11-0.l.

The analysis of A variations for the fast system is

identical to that for the medium.system. In this case, the

lowest cumulative control performance occurs when a-l,

F11-0.l and A-0.ll as shown in Table 4-3.

The speed of response can be increased by adjusting

a, A and Flllqll as indicated above but fast speed of res-

ponse results in a large peak overshoot in the transient

response. The peak overshoot of the output response can be

reduced by (l) reducing a, (2) reducing F11/Q11, (3) increas-

ing A, and possibly (4) increasing Q22. The effect of chang-

ing Q22 is investigated because 022 weights the tracking

error rate and could possibly reduce the peak overshoot by

minimizing this error rate. F22 is not considered because

the error rate at the terminal time would not appear to have

any effect on these control Objectives.

Results from.Figure 4-10 indicate

(1) increasing Q22 does increase damping and reduce

speed of response;

(2) the effect Of changing Q22 is very similar to

changes in a, A, or Ell/Q11 because changing each of these

parameters also will increase speed of response at the expenses

of greater overshoot;
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(3) The major difference between the effects of adjust-

ing a,A, and Fll/Qll and the effects of changing 022 is that Q22

causes the sampling rate to be proportional to acceleration

rather than velocity as with a,A, and Fll/Qll'

Since a sampling criterion that samples at a rate prOpor-

tional to acceleration for an error feedback control system is

contrary to intuition and since tradeoff between speed of res-

ponse and overshoot can be achieved through adjustment of a,A,

and Fll/Qll’ Q22 is set equal to zero.

4.2. Selection of Control Performance Parameters

The previous section discussed the effects of changing

performance index parameters a,A, Fll/Qll' and Q22 on the con-

trol performance of a predictive sampling criterion with an

error feedback control law for a second order example system.

The next step is to select or tune these parameters to achieve

acceptable control performance from the predictive sampling

criterion and this error continuous-time feedback control law

for a particular operating condition. This task is performed

in the OCD problem as described previously in Chapter 3.

Optimal control design will be performed for both a

deterministic and stochastic operating condition. The perform-

ance Objectives are to

(1) make the adaptive sampled-data control with the

predictive sampling criterion outperform the periodic sampled-

data control and the continuous-time control based on the

cumulative performance measure JC(T0, T1,....,TN_1);

(2) make the sampling criterion perform control of the

system based on predicted performance.
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The results obtained in Table 4-1 for the medium.snd

fast deterministic systems with a step input indicate cal

and F11=O.l provides the best control performance according

to the above Objectives since the adaptive sampled-data con-

trol outperforms the periodic sampled-data control with the

same number of control changes. MOreover, for the medium

system.where the minimum time interval constraint Tmin=0.02

is smaller than that of the fast system in the sense of

settling time, the adaptive sampled-data control outperforms

the continuous-time control. The adaptive sampled-data

control evaluated with Tmin=0.02 for the fast system.does not

outperform the continuous-time control because the minimum

time interval constraint is relatively large compared to the

settling time and thus by the particular choice of Tmin=0.02

penalizes the faster speed of response and larger overshoot

Obtained with the adaptive sampled-data control law. If

Tmin'o'OI' the adaptive sampled-data control will outperform

the continuous-time control as shown from results in Chapter 5,

since the fast system predictive sampling problem would then

be a perfect time-scaled version of the medium system.pre-

dictive sampling problem in the sense of settling time.

The cumulative control performance is not affected by

changes in A when 0-1 and F11=O.l and thus a choice of A based

on maximizing improvement over a periodic sampled-data and

continuous-time control is not attractive. A can be chosen

based on maximizing the effective control exercised by a pre-

dictive sampling criterion which triggers the sample and hold
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mechanism on the continuous-time control. The predictive

sampling criterion performs more control (holds sampled

control error longer for large control error values) when

A-0.22 or A-0.88 increasing the speed of response for both

positive or negative control error for the medium system as

seen from.Figure 4-9 and Table 4-2 and the cumulative control

performance is lowest when A-0.88. Thus, A-0.88 is chosen

for the medium.system.

These set of performance index parameters will provide

good performance on the deterministic system for a range of

operating conditions. As evidence of this, the cumulative

performance of the continuous, periodic, and adaptive

sampled-data controls was plotted versus tf for the medium

system with a parabolic input rather than a step input. The

parabolic input was chosen because the type two example system

(26) will have a non zero constant error (hl(t) - x1(t)) as t

becomes large. The results shown in Figure 4-11 indicate the

cumulative control performance has a large initial increase

due to control for the initial transient and then increases

with constant rate as tf increases. The adaptive sampled-

data control outperforms periodic and continuous for each tf

when the control performance for each control over a control

interval [0,tf] are compared.

The selection of predictive control performance para-

meters for the deterministic fast system is 081, F11=0.1, and

A-0.ll from Table 4-3. This system and control performance

selected here will be used in following chapter to solve the

OSD problem.
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The Optimal control design, just performed for the

deterministic case, is now repeated for a stochastic system.

In order to obtain a meaningful comparison between determin-

istic and stochastic cases, the input h(t) is replaced by a

white noise process w(t) as shown below.

_ 0 0i

w(t) u(t) Zrmns + w: y(t1)+ 21

I %l- ' 32 f

" + + .--A c 1 _---

x1951/ t1))4 033155;: I,

The state model for this example is

 

 

 

   

 

       

    

321(1)" '0 1‘ 'xluz)‘ cmsnl 'w1(t)'

- + u(t) +

hx2(t)d .0 0‘ L-x2(t)-l _mn_ _w2(t)-

. _ , (35)

Fw1(t) 21:11:111

- w(t)

12m. -

Z(ti) " Y(ti) + ‘91 [1 0] §<t1) + $1

”21(‘1’ t1) t5 [t1 ' ti+l)

(37)

u(t) = A
+

-x1(t/ti) ts[ti+l,ti+Ai)
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0

E {35110) gap} - 10:0)
(38)

4§2m3 2cm;

E {x(t) g’(t)} - oz

2§w£ m;

E {01 0;} = w

The system.chosen is the fast system (c-0.5 and wn-lO). The

initial state covariance V(t0) is set to a null matrix so

that the initial state is assumed to be perfectly known.

The performance index for this system is

J(Ti) - a/2 F11 [slidiwi/t’i') + vnuimi/cpj

t M A A

+ an I 1 humid/1:1) + vile/up] + 0.02 sin/11)} dt
11
{Fri

(39)

+-1/2 f {0'1[x1(t/ti)'+'V11(t/51>J +-0.02 xi(ti/ti)} dt

t
1

The cmnlative control performance over the interval [0,1]

* * * N'l *

Jc(TO,T1,....,TN_1) - 1:0 JO(T1) (40)

was computed for several adaptive sampled controls with predic-

tive sampling criteria determined based on performance index

(39) with several combinations of parameters 0, F11, and A.

The cumulative control performance for periodic sampled-data

controls were computed for comparison with the performance Of

the associated adaptive sampled-data control. The periodic

sampled-data control was in each case computed with the same

number of sampling intervals and the same sample functions
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Q:j(t),{gij}§_1) as used with the adaptive sampling criterion

and both were constrained to a [0,1] control interval.

The standard deviation 0 was chosen as 0.033 to make

the state x1(t) have a maximum.excursion (3 standard

deviations) of t 0.1. The covariance of the measurement noise

was chosen as 0.001 so that the maximum measurement excursion

is ten percent of the actual output value. Thus, the system

is a random prOCESS‘With transient behavior and is thus an

excellent test case for the performance of an adaptive sampling

criterion which optimally selects the next sampling interval

based on performance prediction which is in turn based on

measurements of x1(t) at the last sampling time ti’ This

sampling criterion is closed loop since the selection of the

sampling interval is chosen based on measurements of a system

with random disturbances and measurement noise.

The results obtained with adaptive and its associated

periodic sampled-data controls, where the predictive sampling

criteria are computed based on different combinations of per-

formance index parameters, are shown in Table 4-4(a). The

results obtained with sample function 31(t) and {wil}§=l

indicate the adaptive sampled-data control will in general be

inferior to the companion periodic sampled-data control with

the same number of control changes. The two parameter combina-

tions, (0=l, F11=5, A=O.ll) and (081, F11=0.l, A=O.ll), where

adaptive outperformed periodic were rerun with other sample

functions for processes w(t) and {11}§-1- In these cases, the

periodic outperformed adaptive as shown in Table 4-4(b).
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TABLE 4-4 Cumulative Control Performance for Variation in

0, A, and F11 on Fast Stochastic System with

. ~ . N

. 5.31”??? .1"919.119.“. 33".?) . 1“? 11.13.1111. . ._
 

 

 

 

 

 

 

 

 

 

 

Number Cumulative Performance(Jc)

0 F11 A of

p'Samples Predictive Periodic

0.5 0.1 0.05 43 0.000449 0.000409

0.05 5.0 0.05 26 0.000584 0.000550

1.0 0.1 0.11 13 0.001659 0.001732

1.0 0.1 0.22 22 0.000815 0.000638

1.0 5.0 0.05 26 0.000607 0.000566

1.0 5.0 0.11 13 0.001679 0.001770

1.0 5.0 0.22 25 0.000613 0.000547

5.0 0.1 0.11 13 0.001656 0.001463

5.0 5.0 0.11 16 0.002083 0.001684

0.01 5.0 0.11 50 0.000198 0.000198

(a)

. Sample Number Cumulative Performance(Jc)

Parameters Function of

(j) Samples Predictive Periodic

l 13 1 10.001659 0.001732

0 8 1.0

2 l6 . (0.001013 0.000784

A - 0.11

3 15 0.002299 0.001868

4 12 0.001168 0.001133

1 0 ..1... .13........01001679. ,.0.001770..

0 - .

, 2 ..16. 40.001033 0-000799

A - 0.11

13.4, .15 . .0.002299 0.001868

4 12 0.001183 0.001156
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The results also show that when 0 becomes small the

adaptive criterion approaches the performance of the periodic.

The following analysis indicates that when 0-0, the adaptive

criterion is periodic with period Tmin' The predictive

sampling problem when 080 and Tmax is sufficiently small is

min J(Ti) - 'min 1/2 I i [x(t/ti)’

TiEEImin’Tmax] TiEETmin’Tmax]

Q ugh/ti)

+ mg x(t/t‘p} + 31s,) 3 20-1)] .11-

Since the integrand at any t is non-negative and not a function

of Ti’ the function J(Ti) = J0(Ti) is a monotone increasing

function of T1 with a minimum at T: a Tmin‘ Since Imin has

hopefully been chosen sufficiently small to cause no restric-

tion in control performance, the optimal periodic sampling

criterion could be determined by increasing Tmin until the

cumulative control performance

Jc(Tmin) . Jcitmin’rmin'°"°’1min) (42)

N' *
a z J<T) *-

1-0 0 i ITi Tmin

*

begins to increase significantly to obtain Tmin‘ This optimal

periodic criterion is based strictly on control performance.

An OCSD could also be performed based on minimizing

S(Tmin) - Jc(rmin) + q C(Tmin) (43)

where C(Tmin) is the cost of implementing the periodic sampled-

data control system with sampling period Tmin' The optimal

*

sampling interval Tmin would be based on a cost versus
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performance tradeoff which would not only specify the

sampled-data control law but also the hardware required to

implement it.

The results of this subsection indicate that the

optimal predictive sampling criterion for the stochastic con-

trol system.based on a design objective that attempts to make

a sampled-data control with a predictive sampling criterion

perform as well as or better than periodic is periodic. The

results indicate a non-periodic adaptive sampling criterion

may outperform the periodic with the same number of sampling

intervals for some sample functions, but that on the average

a periodic sampling criterion is best for a completely sto-

chastic system.

4.3' Summary

The results of this chapter indicate an optimal predic-

tive sampling criterion outperforms periodic for deterministic

systems where future performance can be accurately predicted.

In this case, predictive sampling can dramatically outperform

the periodic sampled-data control and can ever outperfomm the

continuous-time control being sampled. Thus, predictive

sampling performs a control function by holding a control with

a larger absolute magnitude than the continuous-time control

thus improving speed of response and terminal error but in-

creasing overshoot.

The results on stochastic systems indicates the best

predictive sampling criterion is a periodic one that in a
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sense makes no prediction at all. This result can be ex-

plained because the predicted performance is based on an

average performance and the predicted state and its co-

variance may not accurately describe the particular sample

function of the state. Thus, the predicted optimal sampling

interval may not perform anywhere near the intended control

on the particular sample function x(t) being Observed at

that instant. Thus, the optimal predictive sampling criterion

will outperform the periodic sampling criterion for some

sample functions x(t) but will be outperformed by a periodic

sampling criterion on the average.



CHAPTER 5. OPTIMAL SYSTEM DESIGN (OSD) FOR

PREDICTIVE SAMPLING PROBLEM '

The purpose of this chapter is to determine the cost

of implementation and to select the optimal hardware for the

adaptive sampling criterion. Therefore, this chapter

illustrates the OSD problem for the predictive sampling prob-

lem, The discussions for the cost of implementation will be

made by developing the computer hardware cost} The communi-

cation and instrumentation hardwares are not included in this

thesis and are a subject for future research. The steps used

to determine the cost of implementation and the selection Of

computer hardware will be performed in Sections 5.1 to 5.4

and Section 5.5 respectively of this chapter for system (26)

with continuous control (27) and a closed loop bandwidth on.

5.1 Selection of Algorithm

The first step in this procedure for developing a

cost of implementation C(Ti) is to select the algorithms which

could solve the following optimization problem

scri) - min {JCTQ +qC (1111111)}. (44)

Ti€[Tmin’Tmax]

The cost of implementation for this on-line 0C problem is

specified since the hardware required has been assumed selected

in this OSD problem based on a performance measure

73
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S(Ti) = J(Ti) + q C(11) (45)

which is optimized over several intervals i-Q,l,....,N-1

and several operating condition j=l,2,....,M to obtain r =

{{Tij}§;0}?;l' The minimum sampling interval

*

Tmin = Ti? {11,} <46)

the associated cost of implementation C(Tmin) and the hardware

S(Tmin) - {s : C - C8(Tmin)} for the OC problem are then deter-

mined based on determining Tmin from.(46) because

:1“ c010 - we (47)
Tijer

and because C(Ti) will be a monotone decreasing function. It

is Obvious that the cost of feasible hardware Options, com-

puter algorithms, and the efficient programming of these

algorithms will all affect the shape and magnitude of C(Ti).

Since Tmin is unknown because the hardware has not been

selected, a value of Tmin must be guessed at this point in

order to evaluate the performance of algorithms and hardware

options. Tmin is temporarily chosen to be a

A

Tmin = 0.005 (210/01n (48)

which provides a rate two hundred times the system bandwidth

which is much faster than one would ever need to sample, and

is smaller than the minimum.time needed to compute the optimi-

zation problem (44) by the fastest computer-algorithm.option.

The value for amin. is chosen temporarily because Tmin

can only be determined after C(Ti) is determined. The use

of 1min < Tmin rather than actual Tmin to determine C(Ti)
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introduces some error in the determination of the CPU time

Tsp(T:j) require to compute Tij - T1 for a particular camp

puter hardware and algorithm Option and thus the cost C(Ti).

This error is not significant and is in the direction which

would choose a slightly more capable computer than might

actually be necessary which leaves some room.for later modi-

fication or expansion of capability. The maximum sampling

period is determined by the stability consideration as in

the OCD problem and is

Tm - fi/wn ‘ (49)

which is a rate twice the bandwidth and thus much slower

than one would generally wish to sample.

The optimization problem is a univariate search

over a relatively small closed bounded interval. Since the

Optimization to determine T: must be performed on-line in

less than T: seconds and since each function evaluation

requires relatively extensive computation due to integration

of differential equations (26) and the performance index,

the algorithms used should require very few function evalu-

ations. Four possible optimization algorithms are feasible

for this problem [23]; Fibonacci (p-l), Golden Section (p=2),

Powell (p-3), and Davies, Swann and Campey (DSC) (p=4). The

Powell algorithm was never evaluated because it was better

suited to multivariate search and because it was not as well

suited to a search over a small bounded interval. The

Fibonacci and Golden Section algorithms are suited to opti-

mization over a small bounded interval but require more
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function evaluations than a DSC algorithm if S(Ti) is convex

and has a unique minimum. Thus, for the case where S(Ti) is

convex as shown in Figures 4-l,2,5, the DSC algorithm (p-4)

will be used. This decision is made for all hardware

options (0) since the best algorithm is independent of the

computer used.

Uniform.search steps are used in the DSC algorithm

rather than acceleration steps in order to reduce the number

of function evaluations needed for a small bounded search

interval. The uniform steps in the search are continued until

the decrease in the performance index terminates and an

increase is noted on the last search step. A minimum T: is

thus known to have occurred in the last two intervals. A

single quadratic interpolation is performed to obtain T:

because the number of function evaluations is to be minimized

and because sufficient accuracy is obtained if the uniform

search step size is small enough. Minimizing function evalu-

ations reduces 18P(T:) and will reduce both C(Ti) for each Ti

and Tmin' A

The search is initiated at Imin rather than Tmax in

order to cause the CPU time rsp(T:) required to compute T:

to be an increasing function of T: - Ti rather than a decreas-

ing function of Ti. Since the constraint

* * *

9(Ti) - {(s,p): TSP(T1) 5 Ti} (50)

requires that the computation be completed on any computer

* *

before trigger at that sampling instant t1+1 - ti + Ti is
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necessary, the resulting cost of implementation

*

C(T ) - ‘mi {0 }

i (8.p)63(T:) SP (51)

will be defined for smaller values of T: resulting in a

lower value of Imin' Thus, the choice of algorithm and the

direction of search for this algorithm will ultimately

effect the value of Tmin and the magnitude and shape of this

cost of implementation.

5.2 Hardware Options

The second step in this procedure is to determine a

set of computers that can handle this problem. .Attention was

restricted to minicomputers with

(l) at least 4K.words of memory size which is enough

memory for this particular problem;

(2) FORTRAN capability in order to make programming

easy;

(3) 16 bit word size in order to obtain the accuracy

required to compute T:.

It was assumed that multiplication and division

operations would be implemented using software since multipli-

cation and division hardware options were not always available

on every computer. The computation times for addition and

subtraction were assumed the same and the computation times

for multiplication and division were assumed to be eight

times per word as large as for addition and subtraction per

word on all computers considered [24],
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TABLE 5-1 .Selected Minicomputersand Specifications

 

Memory Addition

 

8 Manufacturer MOdel Size Time per C2§§

(words) word(usec) (C)

(11) .

1 Digital Equipment PDP-ll/45 32K 0.3 38,000

2 Microdata Express I 32K 0.405 20,000

3 Data General 5/100 BR 0.6 9,200

4 Digital Computer D-6l6 4K 0.66 7,260

5 Data General NOVA 3/12 4K 0.7 3,600

6 Digital Computer MOD-5 4K 0.8 3,075

Controls

7 Interdata 6/16 4K 1.0 2,900

8 Interdata 5/16 4K 1.2 2,100

9 Digital Equipment PDP-ll/03 4K 3.5 1,995
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11(8) = 12(8)

(52)

Y3(8) = 74(8) = 8 71(8)

where Yl’ 72, Y3. and Y4 are addition time, subtraction time,

multiplication time, and division time per word respectively

for the computer 3.

A set of computers which met those specifications was

determined from.the 1976 DATAPRO REPORTS [25] and is shown in

Table 5-1 with the actual cost and computation time for addi-

tion for each selected computer shown. MOre specific data

should be required for a practical control problem.auch as

the proper hardware or software Options for each of these

mathematical operations. It is conceivable that the proper

hardware or software option for any operation on a particular

computer may be selected as part of the design of the optimal

sampling interval in order to achieve a minimum cost of

implementation C(Ti) for each Ti'

5.3 Optimization of Software

The third step of this procedure is to Optimize the

computer programming to minimize CPU time 18P(T:) for each

hardware-computer algorithm option (s,p) to compute T: for

the OC problem” Since the computational algorithm was chosen

to be DSC algorithm.(p-4), the only consideration to Optimize

the computer programming is to minimize Ts(T:)' However, the

subscript p is retained because in general the algorithm may

not be selected at this point.

*

The computation time Tsp(Ti) for each computer s=1,2,....

9 and algorithm.p-l,2,3,4 is approximately
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4

Sp(1:) -k21 kacri> vk<s> fietrminrmax] (53)

where Kpl’ sz, Kp3' and KP4 are the total number of addi-

tions, subtractions, multiplications, and divisions respect-

*

ively to cempute T1 for each T1 for algorithm p. The equa-

tion (53) can be rewritten as

Tap“? ' [Kplap + Km“? + 8 mp3”; + KP4(T:))]

11(s> (54)

= Kp<ri> 11(8)

by substituting (52).

The total number of any particular operation depends on

the number of function evaluations NP(T:) to compute T: a T1

for pth algorithm.and the total number of integration steps

* * * *

NO(T1) and N1(T1) required to compute J0(Ti) and J1(Ti) res-

pectively. Thus, the number of operations of any particular

kind for the pth algorithm.can be expressed as

* * * *

ka(Ti) " M01. “0 “1’ + Mlk N1 “1’ + M2k Np(Ti) + "31.

(55)

k - l,2,3,4

*

where Ti - Ti' m is the integer index for function evaluation

and *

* N (Ti)

N£p<Ti) - mil szm. z - 0,1 (56)

Constant MOk and Mlk are the integer number of operations of

type k for each integration step in J0(Ti) and J1(Ti) respect-

ively. ‘MZk is the integer number of operations of type k
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which must be performed for each function evaluation but is

independent of the number of integration steps per function

evaluation. Finally, M3k is the number of operations of

type k required to compute T: but not in the NP(T:) function

evaluations required to Obtain T: - Ti' NOpm and N1pm are

the integer number of integration steps for themth function

evaluation required to compute J0(Ti) and J1(Ti) respectively

for algorithm p and thus N0p(T:) and N1p(T:) are the total

number of integration steps for all function evaluations

required to compute T: - T1 with algorithm p.

The total number of equivalent additions KP(T:) is a

simple notation which conveys the essential structure and in-

formation in expression (54). This number KP(T:) can be ex-

pressed as

* * * *

KP(T1) - M0 N0p(Ti) + M1 Nlp(Ti) +‘M2 NP(T1) +1M3 (57)

where

.- + .+ '=M5 M11 + M32 8 (MZJ3 M34) 3 0,1,2,3

Thus,minimizing the computation time implies minimizing

* * *

Nb<Ti), N0p(Ti)' and Nlp(Ti) as well as minimizing the con-

stants M0, M1,'M2, and‘MB'by reducing the operations in the

*

computer programming. Since NP(T1) is a decreasing function

f h if 1 T d N T* d N 1*O t e un orm step a ze A , an Op( i) an 1p( 1) are

decreasing function of AT and the integration step size 0 be-

cause NOpm and Nlpm are decreasing function of a, the choice

of AT and 0 effect the magnitude and shape of the cost of.

*

implementation C(Ti), the accuracy of computation of J(Ti),
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and the accuracy of the solution T: and thus should be in-

cluded in the OSD problem. The details of selecting AT and e

depend on the particular example problem chosen and thus are

considered in the next subsection.

5.4 Development of Cost of Implementation

This section will discuss the fourth and fifth steps of

the procedure to find the cost of implementation, which are

the determination of the set of feasible computer hardware-

computational algorithm options for each Ti and the deter-

mination of the cost of implementation for each Ti'

The cost of implementation is obtained from.the deter-

ministic system (26) of Chapter 4 where wn-lO. The output

dimension (m) is set equal to one rather than two as in

Chapter 4 because Q 2 was set equal to zero in the OCD prob-

lem. The system description is repeated here for convenience

250:) ' at) + u(t)
o o 100

y<t> - x10) (58>

h(t ) - (t ) t < t < t

h(t) - x1(t) t:1+1 5 t 5 ti + A

From Chapter 4, the parameters and matrices in the control

performance index (29) are 01180.1, R-0.02, F11-0.l, 0-1,

and A-0.11.

Now the cost of implementation for this example problem

will be developed based on the following information:

(1) The optimization algorithm is selected to be the DSC

algorithm.with a uniform step size and forward search steps
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fromTmin toward Tmax' Tmax is chosen to be 0.11 because

A-0.ll is less than Nyquist sampling period (0.3) for this

system, Fmin is temporarily chosen to be 0.003 by (48).

(2) The hardware options are selected and listed in

Table 5-1 with addition time per word 71(3) and hardware

cost C8 for each hardware option.

(3) The computer programming is optimized to minimize

each type of operation and the number of operations {{Mjk}§-0}

:_1 are counted. The total number of equivalent additions

becomes

1* - 449 1* + 497 N 1* 4 1* + 9 N
KP-4( 1) “04‘ 1) 14‘ 1) + 13 “4‘ 1) c

'+ 117 (60)

where the variable Nc is associated with the number of uni-

form search steps for [ti + Tmin’t + T ] and is obtained
i max

from

No - min (N ; AT -= (Tmax - Tmin) / N 3 ATM) (61)

where N is a positive integer number and ATmax is maximum.

allowable constraint of AT. Since the number of uniform

search steps Nc is a positive integer value, Nc and AT are

determined simultaneously if ATmax were specified.

The determinations of N4(T:), No4(T:), N14(T:), ATmax’

and the maximum integration step size Emax will now be des-

cribed for DSC algorithmr

The number of function evaluations N4(T:) for the DSC

algorithm.(p-4) is

*

j + 3 T s[T +(j-l)AT,T +jAT]
N (T*) - ‘ i min min

N + 1
c Tie[Tmifi+(Nc-1)AT,T ]
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because (j+2) uniform step function evaluations are needed

to evaluate J(Tmifi+(j-1)AT), J(Tmifi+jAT), and J(Tmifi+(j+l)AT)

for quadratic interpolation formula for the optimal sampling

solution

, ATth'rmm-Dm - J<Tm+(j+l)AD] (63)

 '1: - (Tmin+5.11) +

2[J(Tum+(j-1) AT)-2J(Tmin+j111‘)+.1('l:min+(j+1) 01)]

when T: is in the interval [Tmin+(j'l)AT’Tmin+jAT]' Another

function evaluation is required to evaluate J(T:). For the

case where j-Nc, only (j+l) uniform step function evaluations

are required to determine J<Tmin+<Nc'2)AT)’ J<Tmin+(Nc-1)AT)’

and J<Tmin+NcAT) for quadratic interpolation formula

AT[J(1'II[111+(Nc-2) AT) - J(Tmn+NcAT)] (64)

 

A*

T . +0N-J)AT+
'14mm c 2[J(T, +0162) AT)-2J(T . +(Nc-1)A‘I)+J(Tmale/1D]

' *

when Ti is in the interval [Tmin+(Nc'1)AT'Tma§]' An additional

function evaluation is needed to evaluate J(Ti) for this case.

Simpson's integration formula [26,27] is used for inte-

gration to evaluate the control performance index and thus the

number of integration steps, N04m and Nl4m’ for a function

evaluation must be a positive even integer. Since the total

*

number of function evaluations is N4(T1) and since the DSC

*

algorithm selected performs (N4(Ti)-l) uniform search steps of

step size AT and a quadratic interpolation, the total numbers

* *

of integration steps, N04(Ti) and N14(Ti), for the DSC algorithm

*

for all function evaluagions N4(Ti) are

* N4(Ti)

N2(Ti) = Z sz’ 2 - 0,1 (65)
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where the number of integration steps required to evaluate

J0(Tminf(mrl)AT) and Jl(Imin+(m'1)AT) are

Tmin+(m- 1) AT

 

 

 

 

min (2 L0 ; 60m - 2 L0 5 emax) m=l,...,N4-l

N -

04m . T .‘+(N -3)AT -

min (2 L s 8 min 4 5 emax) m N4

A-csmin+<m-nm s em> min-u
min (2 L1 ; elm - 2L1 N4'1

N - a
14m .A-(T . +(N -.4) AT) a

mi“ (2 L1 3 elN' 31111 4 5 an“) m N4
4 1

respectively. L0 and L1 are integer values, N4 = N4(T:), and

emax is maximum allowable integration step size in these

expressions. 02m represents the integration step size for the

evaluation of J£(Tmin+(msl)AT) and is chosen to make the posi-

tive even.number of integration steps (Ni4m) as small as poss-

2m must not exceed emax? This

number of integration steps, N24m for m < N4, is precisely

ible with the constraint that 0

determined by (66) and (67) because the integration time inter-

val [O’Imin+(m'1)AT] to evaluate J0(Thdn+(m-1)AT) and the inter-

val [Tmifi+(mrl)AT,A] to evaluate J1(Tmin+(m-1)AT) is known if

AT is known. The number of integration steps, N24N4’ to

evaluate J£(T:) is not precisely determined before T: is

obtained by computer. Thus, the equations (66) and (67) for

m.- N4 were assumed to have the maximum number of integration

steps to evaluate J2(T:) which is the number of integration

steps to compute J0(Tmin+(N4-3)AT) when i=0 and is the number

of integration steps to compute J1<Imin+(Np'4)AT) when i=1.
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The maximum uniform search step size is determined by

the error formula [26] of the quadratic interpolation

* 0*

J(Ti) - 1(11) 5 1/6 J"'(t) (ATmax)3 (68)

* 0*

where Ti and T1 are actual Optimal sampling time interval

and computed optimal time interval respectively, and where t

is in the interval [Tmin+(N4-4)ATmax’Imin+(N4'2)AImax] which

0*

is the interval for quadratic interpolation to find Ti if

ax“ AT is

desired to be large in order to reduce N4(T:) and Nc and thus

uniform search step size is chosen to be ATm

also to reduce No4(T:) and N14(T:) but not too large so that

the control performance index error (J(T:) - J(T:)) and

solution error (T: - Ti) do not become large. ATmax is thus

chosen to be 0.05 because the control performance index is a

smooth and nearly quadratic so that the third derivatives of

J(t) will be very small. The performance error (68) and

solution error (T: - T?) should be very small when ATmax-0.05.

Thus, from (61) Nc-B and AT=0.035667 seconds.

The maximum integration step size emax is also desired

to be large in order to reduce N04m and Nl4m and thus to

reduce N04(T:) and N14(T:) but not so large that the integra—

tion error becomes significant. Control performance J(T0)

for the first interval (To) is shown as a function of emax

for To - 0.03, 0.05, 0.08, and 0.11 seconds in Figure 5-1.

Since the first significant change in J(T0) is when a is
max

0.025 seconds for T0 = 0.05 seconds, emax is selected to be

0.025 seconds so that the integration error incurred by Emax

can be assured to be small enough for all T0 5 0.11. This
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selection of emax holds for all Ti because this integration

error for the first interval is more significant than other

intervals in this example problem”

The total number of equivalent additions K4(T:) for this

DSC algorithm is shown for each T: = T1 in Table 5-2 from

(60) with AT-0.035667 and sum-0.025. Thus, 186:) is known

for each computer option from (54) and is shown in Table 5-3.

The set of feasible computer options for each Ti can be found

by

S(Ti) = {s : Ts(Ti) 3 Ti} (69)

and the results are shown in Table 5~4.

Finally, the cost of implementation can be formulated

as a piecewise constant monotone decreasing function of Ti

as shown in Figure 5-2 by choosing the computer for each Ti

which has a minimum cost among the feasible set of computers,

or

c 1: ) - ' {c 1
< i ”3111) s (70)

The resultant cost of implementation is appealing because it

decreases very fast during the short time interval

[0.0045,0.0105] and it is almost constant with very small

change in cost over [0.0105,0.ll]. This cost of implementa-

tion will now be used to find an optimal selection of hard-

ware in the next section.

5.5 Optimal Selection of Hardware

This section will describe the optimal selection of

hardware by a tradeoff of the control performance index and
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1 *
TABLE 5-2 Total Number of Equivalent Additions to Find Ti

. 931.118. DSC. 41.8.0???“ .591? 9.3911 .Ti.-. . . . . A A .
 

 

* * * * *

3 _ . _ Ti N4(Ti.) No4<Ti> .Nl4<Ti) K4(Ti)

1 .003 - .038667 4 12 18 15,014

2 .038667 - .074333 5 20 16 17,746

3 .074333 - .1l 5 22 14 17,650

 

*

TABLE 5-3 lComputation Time for Each Computer for Each Ti

 

.805 (118%)
 

 

J :1:
.3 .405. .6 w ,66 .7 .3* 1,0 112 3:5

1 0838367 .00450 .00608 .00901 .00991 .01051 .01201 .01501 .01802 .05255

2 '9332333 .00532 .00719 .01065 .01171 .01242 .01420 .01775 .02130 .06211

3 .074333-

11 .00530 .00715 .01059 .01165 .01236 .01412 .01765 .02118 .06178
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cost of implementation which have been determined in Chapter

4 and the previous section of Chapter 5 respectively. The

selection of hardware is the second stage of the OSD problem

which completes the OCSD problem described in Chapter 3.

The system performance index to be minimized for the

optimal selection of computer hardware problem

s01) -= mi) + 4 C(11) (71)

includes cost of implementation with weighting factor q. The

selection of hardware requires the minimization of (71) for

several operating conditions (j) and several sampling inter-

vals (i) for some q to obtain a set of Optimal sampling

intervals

1' -_-. (11:3. }’j‘_1}§;}, (72)

and then select the hardware based on the maximum cost over

the optimal set of solutions P

0* - 55s.. «1%) (73)

Tijef

Conceptually, q is a conversion parameter from.the actual comp

puter cost to the equivalent control performance value and thus

can be determined by inverse of actual dollar benefit of the

performance improvement. However, the selection of q is

difficult to obtain because its choice determines the hardware

selected based on (71,72). If q can not be obtained easily,

the following alternative procedures make determination of

hardware, the associated hardware cost C(Tmin), and Tmin

easier.

The particular value of Tmin chosen will not only deter-

‘mine the hardware
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S(T ) = {s : C8 = C(Tmin)} (74)
min

implemented but also the cumulative control performance index

evaluated for that Tmin over a set of intervals i a 0,1,...,

N-l and operating conditions j a 1,2,...,M

A ‘M * * *

JC(Tmin) I 121 ch(T0j,T1j, ..... ,TN-1'j,Tmin)

M (75)

N']. *

Z J (T )}
~1

i=0 0 ij

where Tij satisfies

*

Tmin 5 Tij 5 Tmax

Since C(Tmin) decreases very rapidly for Tmin < a and Jc(rmin)

increases very rapidly for Tmin > b, there is a feasible region

for Tmin

Imi
n 0 [a,b] (76)

Obviously a good design using the OSD methodology would choose

a q to obtain a Tmine[a,b] because otherwise the cost would be

excessive or the control performance would be seriously degraded.

The particular choice of :min in this region or the choice of q

that will produce the same 2min in the initial procedure, would

be based on the designers Objectives. If the designer wanted

the lowest possible cost of implementation consistent with good

control performance the hardware 8*(b)‘W1th cost C(b) would be

selected. If the designers objective is to minimize control

performance consistent with acceptable cost of implementation

*

the hardware 3 (a) with cost C(a) would be implemented.
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This procedure to determine the optimal hardware

will now be applied to the example problem.which is the

deterministic fast system (58,59) with control performance

index (29) where 0-1, F -0.1, A-O.ll, and 02280, and a
11

cost of implementation shown in Figure 5-2. The minimum of

feasible region for Tmin’ "a", can easily be selected to be

0.0105 seconds from.Figure 5-2 because the cost of imple-

mentation is a rapidly decreasing function up to 0.0105

seconds and then a slowly decreasing function from.that point.

The maximum of feasible region for Tmin' "b", is chosen to

be 0.053 from Figure 5-3 which is the cumulative control per-

formance (75) with respect to Tmin with F-0.05 for an operat-

ing condition, h(t) - l, for the OC problem. This figure

shows that the cumulative control performance is a slowly

increasing before Tmin-0.053 and a rapidly increasing after

Tmin-0.053. This feasible region for Tmin [0.0105,0.053] is

obtained based on just the unit step operating condition

(h(t)-1) because the results for other operating conditions

(h(t)-t, h(t)-t2) are very similar to that for the unit step

input.

Thus, the optimal choice of Tmin is in the range of

0.0105 and 0.053, and corresponding optimal computer hardwares

are Data General NOVA 3/12, Digital Computer Controls MOD-5,

Interdata 6/16, and Interdata 5/16 from Table 5-4. The

choice from.these four optimal computers is quite arbitrary

and is dependent solely on the designers priorities. Data

General NOVA 3/12 will be chosen if the control performance is
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considered to be more important than the hardware cost.

The Interdata 5/16 will be chosen if the computer cost is

considered more important than the control performance.

An arbitrary choice of computer hardware, the Data

General NOVA 3/12, for implementation is made for this

example control problem. The state trajectories for the

sampled-data control with predictive sampling and this hard-

ware compared to the periodic and continuous control are shown

in Figure 5-4. The sampled-data control with predictive

sampling and this computer appears to significantly outperform

both the periodic sampled-data and continuous-time controls.

The precise values of the cumulative control performance in-

dex for predictive sampling with different values of Tmin

for unit step input are shown in Table 5-5 with the cumulative

control performance of the periodic sampling criterion

(constrained to have the same number of sampling times as

predictive sampling) and continuous control. The cumulative

control performance and terminal error for the sampled-data

control with optimal predictive sampling are dramatically

improved over those of the periodic sampled-data control.

Mbreover, the sampled-data control with predictive sampling

criterion for :mi 3 0.012 outperforms the continuous control
n

which is the control being adaptively sampled by the predic-

tive sampling criterion. These results confirm the hypothesis

(page A? ) in Chapter 4 for the fast system that Tmin was

chosen too large so that the sampled-data control with pre-

dictive sampling did not outperform the continuous control

being sampled.
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The results thus indicate a predictive sampling

criterion does perform control because it enhances the

control performance over that of the continuous control for

both the fast and medium systems when Imin’ 0, F11/Q11, and

A are chosen properly. Mbreover, the predictive sampling

criterion seems practical because it can be implemented with

fairly inexpensive minicomputers. The exact minicomputer

chosen is shown to depend on the designers priorities on

performance and cost.
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CHAPTER 6. CONCLUSIONS

This thesis has two principal contributions:

(1) the formulation and solution of the optimal

predictive sampling criterion for a sampled-data control

system;

(2) the development of the optimal control system

design methodology for the optimal predictive sampling prob-

lem-

The optimal sampled-data control problem with

predictive sampling criterion was motivated by the following

past developments:

(1) periodic sampling criterion which is commonly

used because of the ease of design and analysis using trans-

form.technique;

(2) adaptive sampling criteria [1-11] , where the

sampling rate is varied in proportion to the change of

error rate. The objective of these criteria, as indicated

by the performance index used to derive the sampling rules,

is to make the sampled-data control approximate a continuous-

time control;

(3) optimal aperiodic sampling criterion [12,13]

where the system performance index measures the control per-

formance rather than the error introduced by sample and hold

100





101

device as in the adaptive sampling described above. This sys-

tem.performance index was also included an actual cost of

implementation. This system.performance index was minimized

with respect to the number and the lengths of each sampling

interval to obtain an optimal aperiodic sampling criterion.

These previous results are extended in this thesis by

formulating and solving the optimal predictive sampling prob-

lem. The system performance index is formulated with a con-

trol performance index that measures actual performance of

the control as in the formulation of optimal aperiodic sampl-

ing criterion rather than error due to the sample and hold

device as in the formulation of the adaptive sampling criteria.

The control performance index measures control performance

over both the sampling interval over which the control is held

constant and over a future interval where the control

is permitted to be continuous. Thus, only one sampling

interval at a time is chosen and is based on the estimate of

this performance index which in turn is based on past measure-

ment of outputs of the system.and knowledge of system inputs,

system dynamics, and disturbance, initial conditions, and

measurement noise statistics. A cost of implementation is

included and is a specified constant if the predictive

sampling criterion is being used to perform control on a

specified set of hardware and is a function of the length of

the sampling interval if the objective is to design and select

the computer hardware, computation algorithms, and computer

software to implement the predictive sampling criterion.
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The results of the optimal adaptive sampled-data

control with predictive sampling criterion shows that the

Optimal predictive sampling criterion is indeed adaptive for

on-line control if future performance can be precisely pre-

dicted as in the deterministic case but is periodic if future

performance cannot be predicted as in the stochastic case.

These results agree with the results for optimal aperiodic

sampling criterion which indicated that the optimal sampling

criterion is aperiodic for the deterministic system and is

periodic for the stochastic system. MOreover, the adaptive

sampling criterion and aperiodic sampling criterion both per-

form.a control function because it has been shown in both

cases that the control performance is improved over that of

the continuous-thme control. The results on the optimal pre-

dictive sampling problem complete a theoretical foundation for

optimal sampling applied to control systems. Optimal predic-

tive sampling could also be applied to estimation and identi-

fication problems in both control and communication systems.

Optimal control system design methodology has been

further refined in this thesis. This optimal control system

design (OCSD) is broken down into the conventional optimal

control design (OCD) where the parameters of control perform»

ance index are optimally tuned so that the resulting control

meet the control performance objectives, and the optimal

system design (OSD) where the hardware to be implemented is

optimally determined. The optimal system design procedure,

which has been proposed, determines a precise cost of
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implementation as a function of the computational algorithms,

computer software implementing that algorithm. and the hard-

ware and then determines the optimal selection of hardware,

computational algorithm, and computer software by a tradeoff

of control performance and cost of implementation. Thus,

optimal control system.design really completes the design

problem of the optimal control system because it not only

tunes the control performance index to Obtain acceptable con-

trol but also determines a precise cost of implementation and

then selects a computer hardware, computation algorithm, and

software option based on the control performance and cost

specifications of the designer. The results obtained where

restricted to a cost of implementation based solely on come

puter hardware cost and did not consider communication and

instrumentation costs. MOreover, this optimal control system

design was only performed for the predictive sampling problem.

Therefore, a development of the communication and instrumenta-

tion hardware cost for predictive sampling and a development

of the optimal control system design for more general control

problem was left for future research.
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