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ABSTRACT

FIELD-INDUCED FLUCTUATION CORRELATIONS

AND THE EFFECTS OF VAN DER WAALS INTERACTIONS

ON THE PROPERTIES OF PAIRS OF ATOMS AND MOLECULES AT LONG RANGE

By

James E . Bohr

One contribution to pair properties during molecular collisions

comes from the van der Waals interactions between the fluctuating

charge distributions of the collision partners. Application of an

external field to a molecular pair changes the van der Waals

interaction energy in two ways. First, the field alters the

response of each molecule to the nonuniform, fluctuating field of

its neighbor. Second, the applied field induces new correlations

between the fluctuating charge moments on each molecular center.

Such field-induced fluctuation correlations have not been included

in earlier models of the van der Waals contribution to pair dipoles

and pair polarizabilities. Using a reaction field model that

includes these effects, general equations are derived for the van

der Waals dipole and polarizability of a molecular pair interacting

at long range, where overlap and exchange effects are negligible.

The van der Waals dipole and polarizability each depend on an

imaginary-frequency integral consisting of two or more terms; each
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term involves the product of either a linear or nonlinear response

tensor for one molecule and a nonlinear response tensor for the

neighboring molecule. Symmetry-adapted expressions for the van der

Waals contribution to the dipole moments of some specific systems

are derived in this model. In particular, the long-range van der

Waals dipole of a pair of dissimilar atoms, an atom-centrosymmetric

linear molecule pair, and a pair of centrosymmetric linear molecules

are investigated. The leading contributions vary as R_7 in the

intermolecular separation R and depend upon products of the dipole

polarizability aa8(im) of one molecule with the dipole-quadrupole

hyperpolarizability B (0,iw) of the other, integrated over

a8,Y6

imaginary frequencies. Because the B tensor is not well known as a

function of frequency, approximations are developed for the

integrals in terms of the static aaB polarizability, the static

BaB,Y6 hyperpolarizability, and the van der Waals energy

coefficients C6 and C8 (both isotropic and anisotropic components

for atom-molecule and molecule-molecule pairs). These

approximations agree well with accurate perturbation results for the

model systems H...HC (where HC is a hydrogen-like atom scaled by a

factor a) and H...He. Applied to He...H2, He...N2, H2...H2, and

N2...N2,

leading van der Waals contribution to the dipole moment of each of

the approximations provide the first direct results for the

these systems. For some symmetry components of the long-range

dipoles, van der Waals effects are greater than induction

contributions; both need to be included in fitting collision-induced

rototranslational spectra.
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CHAPTER 1. INTRODUCTION

A. Foundations .of Molecular Interactions

Forces of attraction and repulsion are known to exist between

molecular systems. These stem from electromagnetic interactions

and, at small intermolecular separations, electron exchange effects.

Although gravitational forces are also present, these are extremely

weak and may be ignored. For the purposes of this dissertation,

magnetic effects will be neglected, and the focus will be entirely

on the electrical forces of interaction between molecules.

It is useful to separate the electrical forces of interaction

into short-range and long-range contributions. When the distance-

between centers is small, overlap of the electronic wavefunctions of

the individual molecules is significant. The interaction force in

this region may be either attractive or repulsive, but at very small

separations the force becomes entirely repulsive and behaves

exponentially. Long-range forces vary as R—n in the separation R,

where n is a positive integer. Electron exchange is negligible at

long range, so for the purposes of numerical calculation the

electrons may be assigned exclusively to one or the other of the

interacting molecules. This means that for calculation purposes the

total system wavefunction does not need to be antisymmetrized with

respect to exchange of electrons, and a perturbation scheme may be

employed in which the unperturbed wavefunction is a simple product

of the wavefunctions of the isolated molecules. At long range then,

the forces between a pair of molecules can be related to the
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properties of the individual molecules. At

relating short-range interactions to

properties, because in this region electron

and the total wavefunction must be fully

range.

present no theory exists

individual molecular

exchange is significant,

antisymmetrized at short

The long-range interaction energy of a molecular pair can be

divided further into several contributing types. When the free

(0) (0)
molecules are in states wn and v%

gives as the energy of the pair

, standard perturbation theory

 

AB = E(o) + E(o) + <w(o) W(O)IH'Iw(O)W (o)>

”1 n2 “1w“2

I<¢;:)¢¢(é)lfi'lw(0)¢(o)>>l2

_ z!
+ . . . (1-1)

(E€O) 0)) + (E100) _ E(o))

J1 1 J2 “

where H' is the perturbed part of the Hamiltonian and where 2'

(0)
indicates a summation over all states w.

The first-order term in Eq. (1.1) is the electrostatic energy AE

except wn

n

2

e1

wio) (o) W(O)-

J2 “1

and results from the interaction between the permanent electric

moments (charge, dipole, quadrupole, etc.) of both molecules. While

it is true that the charge distribution of each molecule is modified

by the presence of the other, this is not included in the

electrostatic energy; only the permanent moments of the free

The second-order term in Eq. (1.1)molecules contribute to AE

includes both the induction energy and the dispersion or van der
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Waals energy. The induction energy AEind arises from the

interaction between the induced electric moments of each molecule

and the permanent moments of its partner. It is produced from the

matrix elements of H' that are diagonal in n or n

1 2’

(o) ¢(O)IH' (o) w(o)>>I2

 

 

_ d l<vn1 Iv-

AEln = - .

J1;“1 (ESQ) — E(O))

J1 n1

“111:1”!!!¢(O)IH'Iw(O)ww§:)>|2

_ . (1.2)

J2;“2 (ESQ) — E(O))

J2 “2

Both the electrostatic and induction effects can be explained

through the use of classical electrodynamics. The remainder of the

second-order term in Eq. (1.1) constitutes the van der Waals energy

vdW_

 

AE

o o o 2l<lp(o) 113%,.“ > w(. )>l

n J J
AEvdW = _ g 1 2 (1 3)

J1n1 (Ego)_ 3(0)) + <E§°o) - E(o))

#n J1 n2

J2 2

AEde results from the correlation in the fluctuating charge

distributions of the interacting molecules. It is a purely quantum

mechanical effect: A region of space at a particular temperature T

is permeated with a quantized radiation field characteristic of that

temperature. This photon field will interact with any molecule that

is present, inducing instantaneous multipoles in the molecule. The
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instantaneous multipoles arise from electron-photon interactions in

which excited electronic states are mixed into the ground electronic

state, with simultaneous changes in the state of the photon field.

For sufficiently low temperatures, the photon field can be

considered to be in a vacuum state in which virtual photons may be

produced; for atoms and molecules, the electron-photon interaction

at room temperature is essentially the same as the interaction at

zero temperature. In other words, at ordinary temperatures the van

der Waals interaction between molecular systems results when the

electrons interact with virtual photons that are produced from the

vacuum state; effects of the real photons are negligible, because

their energy is too low to induce electronic transitions.

Using second-order quantum-mechanical perturbation theory,

London was able to describe the attractive long-range van der Waals

force between two atoms, showing that it arises from a correlation

in the fluctuations of the electronic coordinates [1,2]. He based

his theory on the assumption that an electron in a particular atom

perceives the instantaneous rather than the average position of the

electrons in a neighboring atom. Modeling the neighboring atom as

an instantaneous dipole, London solved the Schrodinger equation to

second order in the perturbation, expressing the energy reduction

caused by two-electron correlations in terms of one-electron

excitations.

The exact theoretical treatment of van der Waals interactions

requires the quantization of both matter and electromagnetic fields.

The coupled electron-photon system should thus be treated using

quantum electrodynamics. Then the total Hamiltonian is comprised of
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an electron contribution He a photon contribution H and an1! phi

electron-photon interaction Hin The van der Waals energy betweent'

two molecules becomes a fourth-order perturbation, due to the

interaction of two electrons with two photons (two electron-photon

interactions on each center). Quantum electrodynamics gives

directly the proper effects of retardation on the van der Waals pair

energy at very large separations. The field of a fluctuating

multipole requires a finite propagation time R/c (where R is the

distance between molecules and c is the speed of light) before it

reaches and polarizes a neighboring molecule. At very long range

this propagation time is nonnegligible; this leads to weaker

correlations and a smaller energy change. Both the retarded and

nonretarded behaviors arise naturally from a quantum electrodynamic

treatment of interacting molecules.

The nonrelativistic London formalism assumes a static Coulomb

interaction potential between the electrons. It does not account

for field propagation, and therefore cannot explain retardation

effects at very large separations. Retardation can be incorporated

by using time-dependent perturbation theory. Casimir and Polder

used this approach in their investigation of retardation [3]. They

introduced the randomly fluctuating vector potential of the

electromagnetic radiation into the Schrodinger equation and

calculated the energy of interaction between two atoms to fourth

order in the perturbation. The interaction energy was found to vary

as R—7 for very large separations R, instead of following the usual

R.6 behavior.
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Quantum electrodynamics replaces electrons and photons by

quasi-particles. Following an analysis by Langbein [73], if one

assumes the electron system to be essentially in its ground state

and averaged over all instantaneous excitations, electric and

magnetic susceptibilities may be defined and Maxwell's equations

retrieved. This assumption not only reduces the quantum theoretical

effort but also allows the van der Waals energy to be expressed in

terms of the susceptibilities of the interacting molecules.

Assuming instead that the photon system is essentially in its ground

state, the electric and magnetic interaction potentials may be

introduced and Schrodinger's equation for the interacting molecules

retrieved.

In this dissertation, the first step away from the quantum

electrodynamic procedure is taken, but not the second. The

electrons are assumed to be essentially in the ground state;

fluctuating multipoles arise from the absorption and emission of

photons by the electrons. It is the correlation of these

fluctuating multipoles that gives rise to the van der Waals

interaction between molecules. The quantized photon field is not

treated explicity here, but it should be understood that the

fluctuations in the electronic charge distributions are due to

electron-photon interactions.

How are the fluctuating multipoles correlated? The parameters

that couple photons and molecules are the molecular

susceptibilities. The susceptibilities are complex functions whose

real parts describe the polarization of the molecule, and whose

imaginary parts describe the energy dissipation from the molecule to
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7

the photon field and from the photon field to the molecule. The

fluctuation-dissipation theorem as derived by Callen and Welton [A]

states that the correlation function of the fluctuating multipoles

is proportional to the imaginary part of the susceptibility.

The model for molecular interactions that is formulated in this

dissertation is essentially a reaction field model based on the

concept of fluctuating molecular charge distributions. These

fluctuations are due to the interaction of electrons with a photon

field, and give rise to instantaneous multipole moments. The

instantaneous moments of one molecule set up a field and field

gradients which propagate to a second molecule, inducing multipoles

in it. These induced moments produce a reaction field and reaction

field gradients that act back at the first molecule, lowering its

energy. This energy change is determined by taking a time average

over the coupled fluctuations, as computed by use of the

fluctuation-dissipation theorem. The same scenario holds for the

second molecule as well, and the total van der Waals energy for the

pair is obtained by adding the energy reductions for each molecule.

Treatments of the van der Waals interaction energy which employ the

reaction field model may be found in Refs. [71-73]. The

intermolecular separation, though large enough that overlap and

exchange can be ignored, is assumed to be small compared to the

characteristic wavelengths of the radiation associated with the

fields. Under these conditions a multipole expansion in the

fluctuating and induced moments can be used in describing the fields

and field gradients.
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B. Collision-induced Properties

Collisions between molecules in compressed gases and liquids

cause distortions in the charge distributions of the.colliding

partners, giving rise to changes in molecular dipole moments [5].

These transient dipoles are responsible for the collision induced

absorption and emission spectra of such nondipolar species as H2

[6], N2 [6—9], 02 [6-8], CH“ [10], and SF6 [11,12], and the

absorption by mixtures of inert gases [13,14], H with He [15-18],

2

and H2 with N2 [19]. The spectra can provide information on the

pair and cluster dynamics of these systems, if the interaction-

induced dipoles are known as functions of intermolecular separation

and relative orientation. High-resolution, gas-phase spectroscopic

measurements have recently become accurate enough [16-18] that it is

necessary to include the van der Waals contribution to collision-

induced dipoles in order that theoretical and experimental results

can reach agreement.

The polarizabilities of molecules in compressed gases and

liquids are also affected by intermolecular interactions, as

evidenced by the dielectric and optical properties of bulk samples.

Dielectric virial coefficients [20—2A], virial coefficients for the

DC Kerr effect [25,26], birefringent response of fluids on the

subpicosecond time scale [27,28], and intensities of collision-

induced Rayleigh and Raman light scattering [29—41] all depend on

the transient changes in polarizabilities that occur when molecules

collide. Calculations of these changes are needed to evaluate local

field factors or effective polarizabilities of molecules in dense
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media [AZ-45]. Also, information about intermolecular dynamics in

liquids can be obtained from line shape analyses of light scattering

spectra, if the polarizabilities of the interacting molecules are

known [A6].

When the separation between a pair of molecules is large enough

that overlap and exchange effects are negligible, the collision-

induced dipole and polarizability come entirely from classical

polarization (induction effects) and from van der Waals

interactions. Previous reaction field models have attributed the

van der Waals contribution to polarizabilities [A7-51] and dipole

moments [52—5A] to hyperpolarization of each molecule by the field

and field gradients arising from the fluctuating charge distribution

of the other. The van der Waals dipole has also been evaluated by

considering the changes in the reaction field at one molecule due to

the application of an external field to the second molecule [55].

These changes result from the nonlinear polarization of the second

molecule by the simultaneous action of the external field and the

nonuniform field due to the fluctuating charge distribution of the

first molecule.

Hunt and Bohr have shown that an additional physical effect

contributes to van der Waals dipoles [56] and polarizabilities [57].

The external field not only combines with the fluctuating molecular

field to produce nonlinear polarization, it also alters the

correlations between the fluctuating moments of each molecule taken

singly. For example, application of an external field to a

centrosymmetric molecule introduces correlations between the

fluctuating dipole and quadrupole moments that are absent in the
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unperturbed molecule. Such field-induced fluctuation correlations

were not included in earlier models, though the effects are

implicitly present in calculations of the van der Waals contribution

to dipole moments using two-center, third-order perturbation theory

[58-60] and to polarizabilities using two-center, fourth-order

perturbation theory [61,62].

- This dissertation will focus on the long-range van der Waals

contribution to dipoles and polarizabilities as formulated in a

reaction field model which includes field-induced fluctuation

correlations. The van der Waals interaction energy for two

nonoverlapping molecules in the presence of a uniform, static

external field is derived and then differentiated once with respect

to the field to determine the van der Waals dipole, and

differentiated twice to give the van der Waals polarizability.

At short range, overlap and exchange contributions to pair

dipoles and polarizabilities are significant [51,63-68], and the van

der Waals contribution is damped by overlap [69,70]. The present

model does not include these effects. The long-range induction and

van der Waals contributions to dipoles and polarizabilities are

additive to second order in the molecular interaction. To a first

approximation, the van der Waals and overlap/exchange contributions

to pair dipoles and polarizabilities may also be treated as

additive.
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C. Overview of Dissertation

Chapter 2 of the dissertation is devoted to the derivation of

general equations for the van der Waals contribution to the long-

range energy, dipole moment, and polarizability of a pair of

molecules. In Chapter 3, the collision-induced dipole moment is

examined in detail for a number of different interacting systems.

For a pair of dissimilar S state atoms, the only source of a long-

range dipole is the van der Waals interaction, giving a dipole which

varies as R.7 in the interatomic separation R. When an atom

interacts with a diatomic molecule, or when two diatomics interact,

there is an induction contribution to the collision-induced dipole

as well. Induction and van der Waals interactions are both studied'

in Chapter 3 for these systems. The resulting equations for the van

der Waals contribution to the dipoles of all of these pairs depend

on integrals over imaginary frequencies of products of certain

susceptibility tensors for the individual atoms or molecules. Since

these tensors are not readily known functions of frequency, an

approximation technique is needed to find numerical results for real

systems. A constant-ratio approximation is used in Chapter A to

relate these integrals to static susceptibilities and the van der

Waals energy coefficients Cn' Then, values are found for the

collision-induced van der Waals dipole moment for the pairs H...H ,

C

H...He, He...H He...N2, H ...H and N ...N For the latter four

2’ 2 2 2 2'

systems, the van der Waals effect is compared with the induction

contribution to the total dipole. Finally, Chapter 5 provides a

discussion of results with recommendations for further work.
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Energy

Charge

Dipole

Quadrupole

1

1

hartree

. ' :1 3, '1 31- .

. "

“0.529177 3

5.A8580 x 10'”

unified amu (u)_

219,u7u.51 cm"

~627.5 kcal/mol

n.8032u x 10‘10

statcoul

~2.5A Debye (D)

10.5%??? 910719.11.

9.10953 x 10'31kg

A.359828 x 10‘1

‘2.6 x 106 J/mol

9c~1.6 x 10‘1

~8.A8 x 10‘3OCm

~n.5 x 1o‘"° OmZ
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CHAPTER 2. THE EFFECTS OF FIELD-INDUCED FLUCTUATION CORRELATIONS

As discussed in the Introduction, pair properties are induced

and/or changed during collisions between molecules. When the

intermolecular separation is large enough that overlap and exchange

effects can be neglected, these collision-induced properties result

entirely from classical polarization and van der Waals interactions.

In previous models of pair dipoles [52-55] and pair polarizabilities

[A7-51], the van der Waals contribution has been attributed to the

hyperpolarization of each molecule by an applied field and by the

field and field gradients due to the fluctuating charge

distributions of the other molecule.

In this chapter field-induced fluctuation correlations are

shown to have an effect on van der Waals pair properties. These

effects have not been included in earlier models. The derivations

which follow are carried out under the assumption that the

interacting molecules are well separated, so that overlap and

exchange effects are negligible. This means that a multipole

expansion can be used to characterize the molecular electric fields.

Retardation effects are not considered in this work; the molecules

are sufficiently close together that the signal propagation between

them is essentially instantaneous.

IA
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A. van der Waals Interaction Energy

In this section, an expression for the van der Waals

interaction energy AEAB of two molecules A and B in the presence of

a uniform, static applied electric field E will be developed. This

interaction energy is attributable to correlations of the

fluctuating charge distributions of the two molecules. The

fluctuating field of one molecule polarizes the other; this induced

polarization gives rise to a reaction field which acts back on the

first molecule, resulting in an energy shift for the system. The

effect of the external field is incorporated in the susceptibility

tensors of each molecule. As the theory is developed and the

dependence of these tensors on the external field is explicitly

determined, the manner in which the field induces correlations in

the molecular charge fluctuations will become apparent.

The fluctuating charge distribution of molecule A induces time

dependent moments in molecule B. When the separation between the

molecules is sufficiently large that the multipole expansion is

valid, the w-frequency component of the dipole moment induced in B

by A (in the presence of the static applied field E) is [7A-76]

1

(w) = fig...) {31.1) + g fig...) i
B B

'

BIND (w)"
"
1

+ %§ EB(E,w) E E"B(w)

+ (i) 93%..) oft.) + (—> sz<§,w> ; 13'

where §B(w) is the w-frequency component of the field at B due to

the fluctuating multipoles of A, E'B(w) is the field gradient, and
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B
H

(w) is the gradient of the field gradient. §B(w) is the w-

"
"
1

frequency component of the time derivative of the magnetic field at

B due to A, and E'B(w) is the gradient of BB(w). The susceptibility

tensor gB(§,w) is the dipole polarizability of B in the presence of

the static applied field E, AB(§,m) is the dipole-quadrupole

polarizability, and §B(§,w) is the dipole-octopole polarizability.

g'B(§,w) is a gyration polarizability that determines the optical

rotation of an isotropic medium [7A].

Similarly, the quadrupole induced in B by the fluctuating

charge distribution of A is

.B B B(§.w) 3 51%)

H 2 U

|

C
U

I
I
O

— (5 313%..) ~31.» + . (2.2)

In this equation gB(§,w) is the quadrupole polarizability of B in

the presence of the static applied field E,

The octopole induced in B by the fluctuating charge

distribution of A is

B B B

LIMA») - 1:2 (5.1») -: (w) + . (2.3)

Provided that the intermolecular separation is small compared

to the characteristic wavelengths of the radiation associated with

{8(m), the field and field gradients at B are related to the

A

fluctuating dipole EEL’ fluctuating quadrupole 2FL’ and fluctuating

octopole 2A of molecule A by

FL



 



5 (w) = 3mg) Liam) + 33- 3mm) 39:} (w)

1 (LI) - A

+ T? I (3) : QFL(w) + "' , (2.4)

13%) = — T(3)(R) 1214“!) —l3g('”<3) 392m) - , (2.5)

and

9%) = gqu) - 1am) + . (2.6)

In Eqs. (2.4) through (2.6), 3 is the vector from an origin in

molecule B to an origin in molecule A; the propagator tensors are

(2) _
TaB (5) — Va Vs (a ),

T(3)(R)=V v v (R ),
aBY —- a B Y

and

(u) _ —1

TaBY6® ‘ Va VB VY V5 (R ) ’

where Greek subscripts designate the vector or tensor components x,

y, and 2. At this level of approximation, §B(w) and its gradient

vanish, simplifying Eqs. (2.1) and (2.2).

The moments induced in molecule B by molecule A give rise to a

reaction field which acts on A:

 





l8

1 (u) . B - oo-+—53 (5) ; 2mm.) , (2.7)

a reaction field gradient:

,A _ (3) . _ _ I(it) ; .,,
E (w) — Z (5) ”IND(m) (5) gBND(w) + , (2.8)

and a gradient of the reaction field gradient:

A B

(m) = g‘ )(5) . Emu”) + . (2.9)

The resulting change in the energy of molecule A is found by

averaging the instantaneous energy shift over the configurations of

the charge distribution of A:

A 1 A A - ,A
AB = - —2— < uFL(t) ' E (t) >3 l6< 9FLUZ) 'E (t) )5

1 A - "A
— 30 < gFL(t) :g (t) >s - ~~- , (2.10)

where the subscript s on the angular brackets denotes the average of

the symmetrized contracted product of the terms within.

Substituting frequency Fourier representations for EA(t), F'A(t),

§"A(t), £§L(t)’ g:L(t) and g:L(t), and using Eqs. (2.1) - (2.9)

gives the shift in energy as a sum of terms

AB = E AE: (2.11)
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where AEfi varies as R-n in the intermolecular separation. The

contributions through order R_8 are

A32 = — %.f° dw If” dw' exp ['i(w + w')t]

<5§L(w)-1_~‘2)(5)-[5B(5,w) + gB(5,wv)i-g(2)(5)-5§L(w1)> , (2.12)

AF? = ‘ % I“; a.) I“; w exp t—irw + (mm

x [<5§L(w)-g(2)(5)-[5B<5,w) + B(5, 1.11)] 5(3)(5)3AgFLw )>s

(3O
J

"
9

— <5§L(w)-g(2)(5)-[5B(5,w) + A (F,... >101; W5)“W )> s], (2.13)

(3)

(1i)

and

AEg=—gfm dwf dw' exp[1(w+w)t]

x [% <5§L(m)-5(3)(5>3[gB(_F_,w) + (B (F_.m 1)]135‘ )(5)-5§L(wv)>

+ <u§L(m)-T(2’(F) [5B(F, 1.1) + _B(F,w)15‘” )(5)-5§L(mv)>s

A

11 (FM) + 5B(_F_.w')]-'£ (5)19£L(‘“')>s

>

A E V

"
a
A

m

”
T
,

x
v

0

fl

u
>

a
A

l
m

E V

+

|
l
3
>

w

(5,m')i'

|
|
’
—
]

A I

(5);9FL(A) )>3

1))C
l
>

A N v U
)

A

(a); (5mg (5,...) + gB(§,w')] .

"
"
3

o A '

(fi);gFL(w )>S

A W v U
3

A

«1A (11):; (5mg (5,...) + gB(§.w')]-“£ 3)(5);9‘F‘L(mv)>]. (2.111)

C
A
I
—
a
m
l
—
a
w
]
—
-
w
|
—
-

m
l
—
a

A
/
\

I
T
:

'
1
1

r

In Eqs. (2.13) and (2.1”), the subscript 5 denotes the symmetrized

contracted tensor product. For example,

(”(5)[9B (F, 1.1) + q B(F, 1.1 1)] 'r‘3)(5)1A9FLw )>s

ALF(1..)o;(2)(5) [91B (F,w) + aB(F, u)1m(”F

(3)

<E§<(w) T

F
‘

(R)°Q:L‘(L1)')>

(2)
4.

<0;Lm:(')T (R)u:L((1))>. (2.15)

M
I
A
m
i
d

(fl)'[gB (53w) + gB(E3w')]°:
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If the applied field is absent, and if molecule B is

centrosymmetric, then §B(§=O,w) = O and the second term of Eq.

(2.13) will vanish. If molecule A is centrosymmetric, the first

term of Eq. (2.13) also vanishes in the absence of an applied field,

because the fluctuating dipole moment of A is then uncorrelated with

its fluctuating quadrupole moment.

If A and B are 8 state atoms, then in the absence of the

applied field the only nonzero terms of Eq. (2.1M) are the first and

sixth terms. This is due to the fact that for isotropic systems

both §(E=0,m) and A(§=O,w) vanish, eliminating terms two through

four, and also because octopolar fluctuations are uncorrelated with

dipolar fluctuations for isotropic systems, eliminating the fifth

term.

Application of the external field E distorts the charge

distributions of molecules A and B, introducing additional

interaction effects. One effect arises from changes in the response

of molecule B to the nonuniform local field of A. For example, the

applied field alters the susceptibility tensors of B such that

AB(§,m) is no longer equal to zero for a centrosymmetric molecule B.

Thus the field gradient from the fluctuating dipole of A induces a

dipole in B, and the field from the fluctuating dipole of A induces

a quadrupole in B. Both of these induced moments produce reaction

7 (seefields at A, with resulting energy shifts proportional to R—

the second term of Eq. (2.13)). Earlier models of the van der Waals

contributions to collision-induced dipoles [52-55] and

polarizabilities [N7-51] have included these types of effects as a
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net hyperpolarization of molecule B by the simultaneous action of

the applied field E and the fluctuating local field of molecule A.

In addition, the applied field modifies the correlations

between the spontaneous quantum mechanical charge fluctuations on

each center. By the fluctuation-dissipation theorem [u,77]

go”.Ln.) uBY “(1.0+ uQY new ) uaY FL(1.1»

= 2; aag(§,w) coth[2kT] 6(w+w') . (2.16)

gm:FL(1.1) ABBY. FL(1.1 1) + GBY FL(1.11) ufiYFLm»

= 2—:YA'1BY(F,1.1) coth[2—kT] 60mm) , (2.17)

%<e:: FL(1.1) 915. “(.11 ) + 915, FL(1.11 ) 9:3,no.»

2" cagYY6(F,m) coth[2—k——T] 6(m+u)') , (2.18)

and

i <1): FL(1.1) 12“ (m') + (2“ (.11) 11“ (1.1))
2 8Y6, FL 8Y6, FL 0, FL

= EBa.A"eY(s(B1“’) coth[2—kT] 6(w+w') . (2.19)

where 2A"(§Jw) is the imaginary part of the dipole polarizability of

A in the presence of the applied fieldYE, éA"(E,w) is the imaginary

part of the dipole-quadrupole polarizability of A, gA"(§,m) is the

imaginary part of the quadrupole polarizability, and EA"(§,w) is the

imaginary part of the dipole-octopole polarizability. Note that

both sides of Eq. (2.17) will vanish in the absence of an applied

field for a centrosymmetric molecule A, since in that case 5A(§f0,w)

= 0. If A is an S state atom and the external field is absent, then

§A(§f0,w) = 0 also, and both sides of Eq. (2.19) will vanish. This
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is the manner in which the applied field induces correlations in the

fluctuating moments: it alters molecular susceptibilities, endowing

nonzero values on response tensors which would ordinarily vanish in

the absence of the field; gA(F,m) and gA(§Jw) also differ from their

zero-field values.

The fluctuation-dissipation relations given in Eqs. (2.16) -

(2.19) can be used to simplify Eqs. (2.12) - (2.1M) for AEé, AE$,

and AEg. After integration over w' we have

A 11 1» 11a
AE6 = — 3? f4 du) coth[2—k—-T]B

F(2)(5) [aB(Y5...) + aBY(5. -a)] 19(5) a§11(5,a) , (2.20)

A h w hm

A137 = ' m f_ss dd)BCOth['2—kT]

[T(”(5) [aB(Y5,a) + aBY(5, ~a)i T(3)(5) Afs‘sg (5.1.1)

T(2) (3) ,,
(5) [AsYs(5.a) + ABYs(5, 1.1—)1 TYss(5) a:s(5,a)] . (2.21)

and

A 1) 111.)
A138 = - 1—2; I: (in) coth[2—kT]

1 (3) _ (3) A"
x [2aT1(5) £ch6 (5.1.1) + chs (5, 1.1)] Tss(5)sa (5, w)

1YYEY2) (A ) A"
+ g (5) [Es Y6€(E,w) +BFs Yss(5, —a)1 FYs€s(5) ass (5.1.1)

—1§T‘33(5) [ABY s(5 (u) + ABY s(5. 1.1-)1 T<3YY)Y(B_)AA11 OY(5,a)

1 (2) + _ (’3) Y;

- g-Tas (3) [AB 6(F’ w) BABYYY6(F, w)] TY6€¢(§)€AA a(F’w)

1 (2) _ (A ) ,,
+301T (5) [asY(5,a) + asY(5, 1.1)] TY6€¢(§)6FA56.1.01a(§_,w)

1 T(3) B _ (3 ) ,,
3 FssY(5) [aYs(5,a) + aYs(5, 1.)] 151(5) (3"w)as(§_,w)] . (2.22)
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(a repeated Greek subscript a represents an implicit summation over

A A A A

a - X, y, and 2). Since A "(F.w), A "(5,m), g "(F.w), and g "(5,w)

are all odd functions of w, only the even, real parts

5B1(5,a1), 5B1(5,a), gB1(5,a), and 5B115,a) of the 13 molecule

polarizabilities can contribute to the integrals in Eqs. (2.20)

(2.22) [73].

Adding the energy shift AEB of molecule B, noting that 2(2)(j§)

= 5(2)(5) and 5“”(5) = 5“”(5) but 5(3)(-5) = — 5‘3)(5), and again

noting that the real and imaginary parts of the susceptibilities are

respectively even and odd functions of w gives

(2)

l4

_ {3% (1-PAB)f:dw Tm“) AB8,;(5110) T(§)(B)A“aa(F—'“’)°°th[2—kT]

+ % (1+PBB)f°_° (111 [TT(131))1(3)8C81,52(5"”)
Tégifl) a¢a(B’w)

+ %_TT(2)(R) BE Y65(£ w) TB6)¢(B)AAasa (51w)

2 35:21 1221251111
‘1§T1(2)(5) AsYs(5,a) 1§§§¢<2> A2,, (F1 w>1°°th[gTT] (2'23)

for the van der Waals energy shift of the AB pair through order R-8.

AB

The permutation operator P interchanges the molecule labels A and

B, while leaving the sign of B unchanged.

AEAB should be computed as the Cauchy principal value of the

integrals in Eq. (2.23), since the field-dependent susceptibilities

vanish at m=0, and zero-frequency fluctuations cannot contribute to

the van der Waals energy shift. The poles of the susceptibilities

g(F,w), A(F, m), C (E, w) and E(F,m) all lie in the lower half-plane in

w, by causality [73,77]. Therefore the integrands in Eq. (2.23) are
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analytic functions of w in the upper half-plane, except at the poles

of cothfng] lying on the imaginary axis at wn = 2winkT/h.

Integrating along a contour running from -R to -e on the negative

real axis, around a small semicircle r = e exp(ie) in the upper

half-plane to +5, along the positive real axis to +R, and then

around a large semicircle r = R exp(ie) yields in the limits R + m

and e + O

AEAB = — kT 21'1 15:)(5) aBY (5,11n ) 11T2)(5) a§s(5,an)

+ 2§—T (1 — FAB) :1 2T2)(5) AsYs(5,an ) TY§:(5) a“a (5.1%)

— 5;: (1 + FAB) :1 [1553(3) ch“(5,”w ) T§3;(§_) ass(5,n,w)

+ 2TT2)(5) Es Y5€(5,111)“) TTs)s(5)AAsas (Ewan)

-: 13%(5) AsY s(5,nu) ) Té3iT5)AA”s,(5.11“)

-%TTT2)(5) As Ys(5,an) T252155) A:¢’a(§,wn)] , (2.211)

where the sum over n runs from O to m, with the prime on the

summation indicating that the n = 0 term is multiplied by %

The sum in Eq. (2.2”) can be used directly to compute the van

der Waals energies of interacting rigid rotors or oscillators. If

the spacing between the poles wn is small relative to the frequency

range over which the susceptibilities change appreciably for

imaginary m, then the infinite summations in the above equation can

be converted to integrals [73]. This requirement is fulfilled for

atomic and molecular systems at ordinary temperatures, and Eq.

(2.2“) becomes
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AFAB = - é— fwdm TT2)(R)BasY(5, iw) TT2)(5)Aass(5,1a)
1T 0 C18 —

+ %%; (1 - FAB) IZdw TT2)(5)BAs s(5, iw) 6TT3)(5)Aa“(531a)

_ h w (3) . (3) A .
E? (1 + FAB) fodw [TTssY(5) chs (5,1m) Ts€¢(§) ass(5,1a)

+ T(2) (A) .
5 (R) Es YéeTE-iw) TYde¢(§)A¢aAaTE’lm)

T(3) (3) .
—TGBY(§) AEY 5(F, iw) T6:¢(§)€A: “(£31w)

--11T2) . (u ) .
3 (5) AsYs(5,1a) TYss(5) AA¢s(5,1a)] . (2.25)

Application of the external field E shifts the poles of the

susceptibilities from their zero-field locations, causing large

changes in them near resonant frequencies. Along the imaginary w

axis the changes are smaller and g(§,im), A(§,iw), g(§,iw), and

§(_, iw) may be expanded in Taylor series [74]. Specializing to

centrosymmetric systems, these expansions are

ass(5.iw) = aas(iw) + é-YGBY6(im,0,O) FY Fs + ... , (2.26)

Ad’sY(5,iu) = Ba5,BYTO’A“) 56 + ... , (2.27)

Css Ys(5_,1w) = Cae,YaTA“) + é-Pes’as’Ys(O,O,iw) Fst + ... , (2.28)

and

Ba sYs(5_,1a) = Ea’sYs(iw) + % Qae¢,BY6(0’O’iM) Fst + ... , (2.29)

to second-order in the applied field E. The expressions on the

right-hand sides of Eqs. (2.26) — (2.29) are given in terms of the

response tensors in the absence of the applied field. In Eq.





26

(2.26), the dipole indices Y and 6 are associated with the static

field (w = 0) and the index 8 with the frequency im; in Eq. (2.27),

the dipole index 6 is associated with the static field and the

quadrupole indices BY with the frequency im; in Eq. (2.28), the

dipole indices 5 and ¢ are associated with the static field and the

quadrupole indices Y5 with the frequency iw; and in Eq. (2.29), the

dipole indices 5 and ¢ are associated with the static field and the

octopole indices 8Y6 with the frequency iw. When the Taylor series

are substituted into Eq. (2.25), the van der Waals energy for a pair

of centrosymmetric molecules A and B interacting at long range in

the presence of a static applied field is

AB 5 m (2) (2)
AE =_ZTOdMTaB

' %— (1+PAB) fmOdw Ta

n

(R) a:a(iw)

(2) .
(5) YEYE:(iw,,0, 0) TY (5) a:a(1m) FE F¢

(R) a:Y(iw) TY

(2)Y

+ %; (1-PAB) IZdw TT2)(5) 38¢ Y6(o, iw) TT§E(5) a :a(iw) F¢

— (1+2AB) 12cm [TEEY(5) ch “(111) $3353(1 (1(1))

1% T;:)(B) EEYYGEUw) TT::¢(5)2a (111)]

_ i617 (1+pAB) fmdw [% T5335) Fm BY “(0, 0,111) TéiiQ) agafim)

+12 T523511c ’86 (1(1)) Té3;(fl):aY (11,, 0,0)

+ %TTT2)(5) anYYéeTO’O’iw) TT6::(5):aa(1w)

+1§TTT2)(5) E8mum) TT::¢(5) Y¢W(1w,o,o)

J? TT§Y(5> :gn BY(o,111) 5:355) BM €¢(O,iw)

—1§T(2)(§) Ben Y5(o,111)TT::¢Y(5)a:A 16¢(0'im)]Fn FY , (2.30)

-8 . .
to second-order in E and to order R in the intermolecular

separation R.
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B. van der Waals Pair Dipole

The van der Waals contribution to the dipole induced by the

interaction of two molecules A and B is

AB _ BAEAB

Evdw ‘ a5 5_= o
 (2.31)

where AEAB is the van der Waals interaction energy for the AB pair

in the presence of a static, uniform, externally applied electric

field E. This energy was derived in the previous section and given

by Eq. (2.25) for interacting molecules of unspecified symmetry; our

attention will be restricted to the first two terms of that

equation, which gives the van der Waals energy through order R_7.

As in Section A, aa8(§}iw) and Aa,BY(E’lw) can be expanded in

Taylor series. To first-order in the applied field 5 these

expansions for general noncentrosymmetric molecules are

aaB(E}im) = aaBTiw) + BaBY(iw’O) FY + ... (2.32)

A .BYTE’lw) = Aa,BY(lw) + B (O,im) F + ... , (2.33)

o 6d6,BY

where g(iw). §(im,0), 5(iw), and §(O,im) are the molecular response

tensors in the absence of the applied field. These expansions

differ from Eqs. (2.26) and (2.27) in that the latter equations are
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specialized to centrosymmetric systems, for which E and 5 vanish.

In Eq. (2.32), the dipole index Y is associated with the (a) = 0)

static field and the index 8 with the frequency it»); in Eq. (2.33) ,

the dipole index 6 is associated with the static field and the

quadrupole indices BY with the frequency in. When these expansions

.are substituted into the first two terms of Eq. (2.25), application

of Eq. (2.31) results in

AB h w [T(2) (2)

AYYde =-§; lo d1 (5) BEY¢(11,,o) TY (5) 1E(11)

+TTEA(5)aEY(1m) TTEA(5)ATTSAe¢(11,0)

"ETT<2>(R)BBET Y5(o, iw) TTEA(5)Aaa(1w)

--ETTTEA(5) AEY6(1w) TTEE(R)AB:¢(iw10)

+-§TTTEA(5) BEY¢(11,,0) TT3A(5)AA“(11)

+-E TEEA(5)1EY(11) TTEA(5) BA¢,::(0,11)] <2 34>

for the van der Waals contribution to the collision-induced dipole

through order R-7. This equation holds for any pair of molecules of

arbitrary symmetry interacting at long range.

The molecular systems investigated in this dissertation possess

centrosymmetric or greater symmetry. Then the tensors 5 and B

vanish, and Eq. (2.3”) simplifies to

AB h w (2) (3) .
“¢,vdw =.§; To dw [Ta (5) aEY(iw) TY 8(5) BAa¢5 (0.1w)

-TTEA(5) BE¢ Y6(o, iw) TT3A(5)Aa(11)] . (2.35)
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This equation provides the starting point for the anlaysee in

Chapter 3, where the van der Waals pair dipoles of some specific

systems are studied.
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C. van der Waals Pair Polarizability

The van der Waals contribution to the collision-induced

polarizability of two molecules A and B interacting at long range is

given by

AB aBAEAB

Ac‘ocs,vc1w = ' araap 5 = o
(2.36)

B . . . .

where AEA is the van der Waals interaction energy for the AB pair

in the presence of a static, uniform, externally applied electric

field E. Using Eq. (2.30) derived in Section A for AEAB in Eq.

(2.36) yields for the van der Waals polarizability of a pair of

centrosymmetric molecules

(1 + pAB) I: dm [TT2A(5)BY (im,0,0) TTEA(5) aEE<1m)
A n

An = -—
nA,vdw 2n syn1

A 3 TigiTfiA 2:1 By 5 (0 0 1w) TTEE(5)A1EE(11)

+ E WEETQE)c E (11) TE3E<5> YEEEA(111,0,0)

+ ESTTTE)(5) 0EnA Yoe (0,0, iw) TTEAE(5) aAa(iw)

+ :5 T:§)(5) :E vseTABA T$52¢TBAAQYmTiw10 0)

_ 9 TEEE(5) BEn BY(o,1111) TEEE<5)AB ¢(O'A”A

“2TTimTBA BBn, vaTB’i‘AA T§52¢<E> BEE :Eto,111)] . (2.37)

If A and B are both S state atoms, then the response tensors

appearing in Eq. (2.37) are isotropic and can be expressed as

weighted sums of Kronecker-delta products that satisfy the symmetry

constraints for index contraction or interchange. Thus
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a (im) = 0(iw) 6 (2-38)
d8 a B

The quadrupole polarizability CaB YE(iw) is unaffected by

interchange of a with B or Y With 6, and Caa,Y6(lw) = CaB,YY(lw) =

0; therefore

CEB’YE(iw) = %-C(iw) [3 (6 5
uY 86 + 6

6a6 BY) — 2 5as 6Y6] . (2.39)

The hyperpolarizability B (O,im) is unaffected by interchange of

dB,Y6

the quadrupole indices Y and 6, and Bus YY(O,im) = 0:

- -.l - _
(0,1w) - u B(O,Iw) [3 (6E 6 + 5 5 ) 2 GEE 5YE]

BaB,Y6 Y 86 a6 BY

The dipole-octopole polarizability E vanishes for isotropic systems.

The hyperpolarizability Ya YE(im,0,0) is symmetric upon interchange

B

of a with 8 or Y with 6, but it is not symmetric under exchange of a

with Y, a with 6, 8 with Y, or 8 with 6, unless the frequencies

associated with these indices are also exchanged. This means that

two independent constants are necessary to specify I(iw,0,0), when

only one constant is needed to fix the static hyperpolarizability

:(0,0,0). Thus

(iw,0,0) = Yxxzz(im,0,0) 508 6Y6

1 . _ .
+ E-[YZZZZ(1m,O,O) Yxxzz(m,o,o)](5EY 58E + GEE 58y) . (2.u1)

YaBYé
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The tensor PaB,Y6,e¢(O’O’iw) is symmetric with respect to

interchange of a with 8, Y with 6, a with ¢, and the pairs Y6 with

so. These constraints together with the contractions

(0,0,iw) = (0,0,iw) = O and the relation

PaB,YY,e¢ PaB,Y6,ee

(0,0,iw) =-§ P (0,0,iw) imply
PXX:YY:ZZ XX,YZ»YZ

(0,0,iw) = %T P(0,0,iw)

3

4

(6

+—(

1

Pa8,Y6,e¢ [E'éas 6Y6 595

6&8 6Y6 66¢ + 668 6Y¢ 65E

aY 686 55¢ + 6a

)

6 GBY 68¢

as 68¢ 6Y6 6a¢ 585 6Y6)

(daY 685 66¢ + 6aY 58¢ 552

a6 68¢ 6Y5

as 68Y 66¢ + 5&5 686 6Y¢

+ +

O
)

Q
a
h
»

a6 688 6Y¢ + 6

+ 6

+ 655 5BY 55s + 555 686 5YE)] (2.u2)

Lastly, Q (0,0,iw) is unaffected by interchange of B with Y,
aBY,Ge¢

or by exchange of 6, e, and ¢ with each other. The tensor vanishes

upon contraction of any pair of indices from the group 6, e, and ¢;

therefore

1. =_ ’0’. _2
QaBY'5€¢(o,o,1w> 12 Q(0 15) [ (5&8 5Y6 555

+ 6a8 6Y5 555 + 6&8 6Y¢ 665

+ 6 + 6

aY 686 65¢ aY 688 66¢

+ 5aY 68¢ 658 + 6&6 68Y 66¢

+ Gas 6BY 56¢ + 60¢ SBY 665)

+ 5 (6&6 686 6Y¢ + 6&6 68¢ 6Y5

+ due 686 6Y¢ + 6&9 68¢ 6Y6



 



3h

+ 5a¢ 686 5Ye + 5a¢ 5BE 6Y6)] (2.u3)

When Eqs. (2.38) - (2.“3) are used in Eq. (2.37), together with

the propagator products

T(2) T(2) 2 -8

a8 aY = (3 RB RY + 68Y R ) R . (2.”h)

(3) (3) _ 2 —1o
TaBY Tags - (36 RY R5 + 18 5Y6 R ) R , (2.u5)

and

(2) (u) _ _ 2 —10
Tag TamS — (108 RY R5 36 5Y6 R ) R , (2.46)

the van der Waals contributions to the xx and zz components of the

pair polarizability for a pair of S state atoms separated along the

z axis by a distance R become

AB h AB —6 m
AaXX,VdW — E (1+1) )R fodw [BY

+ __(1+PAB

1T

B . B . A .

XXZZ(im,0,0)+Yzzzz(iw,O,O)] a (1w)

—8 m B . B . A

)R fodm [[12Yxxzz(lm,0,0)+3Yzzzz
(lw,o,0)] 0 (1w)

+ g; PB(0,O,iw) aA(iw) - 6 aB(iw) QA(O,0,iw)

+.% BB(O,im) BA(O,iw)] , (2.u7)
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AB 71 AB -6 m B . B . A .
A —' (1+P )R fodu) [ZYXXZZ(1w’O'O)+uYZZZZ(lw,O’O)J Cl. (1(1))

azz,vdw = 2n

- m B . . .

+ 2-(1+PAB)R 8 fodm [[6Yxxzz(iw,0,O)+9Y:ZZZ(1w,0,O)] CA(1w)

153
11 PB(O,O,iw) 5A(16) + 12 58(16) QA(O,O,im)

_6_38
2 B

+  

(0,16) BA(0,iw)] . (2.u8)

These equations are identical through order R_6 to the

expressions derived by Hunt, Zilles, and Bohr [U9]. Eqs. (2.47) and

(2.”8) are thus equivalent to the results of two-center, fourth-

order perturbation theory for Au through order R_6 [62].
vdw

Although a proof has not yet been formulated, indications are that

the R-8 terms are equivalent to the perturbation theory results as

well.

The effects of field-induced fluctuation correlations are

present at order R_6 in Eqs. (2.47) and (2.48), but become

particularly clear at order R_8. Specifically, the terms involving

products of the dipole-quadrupole susceptibilities BA(O,iw) and

BB(O,iw) cannot be interpreted as changes in the polarizability of

atom A or atom B, nor can they be explained by earlier

hyperpolarization models. These terms represent the concerted

effect of the external field acting at the two centers. The

external field induces a correlation between the fluctuating dipole

and quadrupole of one atom, and combines with the fluctuating field

of that atom to produce a net nonlinear polarization of the other

atom.
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CHAPTER 3. COLLISION-INDUCED VAN DER WAALS DIPOLES FOR SPECIFIC

SYSTEMS

In Chapter 2, an expression was derived for the long-range van

der Waals contribution to the dipole moment of two interacting

molecules, using a new reaction field model which includes field-

induced fluctuation correlations. This expression, specialized to

molecules of centrosymmetric or greater symmetry, is given by Eq.

(2.35). In the present chapter, Eq. (2.35) will be examined in

detail for some specific systems. First, in Section A we consider

the long-range van der Waals dipole for a pair of dissimilar S state

atoms. Then, in Section B, the case of an S state atom interacting

with a centrosymmetric linear molecule will be investigated.‘

Section C covers the interaction of two centrosymmetric linear

molecules. For the latter two systems, long-range induction also

contributes to the collision-induced dipole, because a

centrosymmetric linear molecule possesses nonzero permanent

quadrupole and hexadecapole moments. These induction effects are

also presented in Sections B and C.

A. van der Waals Dipole for a Heteroatom Pair

Consider two dissimilar S state atoms labeled A and B,

separated by a distance R, with the vector 3 pointing from atom B to

atom A. The dipole polarizability g(iw) and the dipole-quadrupole

hyperpolarizability §(O,iw) of an S state atom are isotropic tensors

given by

36
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a (im) = a(im) 6GB . (3.1)
dB

(0,111)) = B(0,iu)) [§(
1

BaB,Y(S u 56Y685 + GQGGBY) 25685Y5] ' (3'2)

Substitution of Eqs. (3.1) and (3.2) into Eq. (2.35) leads to

AB ’6»

u¢,vdw _ 2? fo d“ [T

_ (2)

TaB

(2)

aY

(3)

aY¢

(3) aA(iw)] . (3.3)

(5) 58(16) T (3) BA(O.iw)

(3)B .

(B) B (0,1w) Ta8¢

The propagator products in the expression above take the form

(2) (3) _ _ '8
TaB (R) TGBY(R) - 18 RY R . (3.“)

Using Eq. (3.“) in Eq. (3.3), and specifying the interatomic

separation R to be along the z axis (R = R2 and RX = Ry = 0) gives

to order R-7

“:?vdw = :5 R'7 I: dw [aA(iw) BB(0,iw) — BA(O,iw) aB(iw)] . (3.5)

This expression is shown in Appendix A to be equivalent to the

results of Craig and Thirunamachandran [60] from two-center, third-

order perturbation theory. From Eq. (3.5) the dipole moment

coefficient D is

7

D = Eh I: dw [aA(iw) BB(O,iw) — BA(O.iw) aB(iw)] . (3.6)
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B. van der Waals Dipole for an Atom and a Centrosymmetric Linear

Molecule

Consider an S state atom A interacting at long range with a

centrosymmetric linear molecule B. Define a vector 5_that lies along

the symmetry axis of the molecule B (taken to be the z axis of a

body fixed frame), and a vector_3 originating from the midpoint of

molecule B and pointing to the nucleus of atom A; a and R are the

corresponding unit vectors.

The dipole polarizability g(im) of molecule B can be expressed

in terms of the orientation of its symmetry axis with respect to the

laboratory frame as [7D]

aa6(iw) = a,(im) 6&8 + [5"(16) — qL(iw)] 3a 38 , (3.7)

where 3a is the direction cosine between the a axis of the

laboratory frame and the symmetry axis of the molecular frame, and

where the subscripts H and l_denote components along and at right

angles to the symmetry axis:

a"(iw) = azz(iw) . (3.8)

qL(iw) = axx(iw) = ayy(iw) . (3.9)
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Similarly, the dipole-quadrupole hyperpolarizability §(O,iw) of

molecule B is

BaB’YG(0,iw) = B(o,im) [% (GGYGBG + 55553Y) - %-5GB5YG]

+ 82a(0,iw) (3 Bars - Gas) 6Y6

+ Bab(0,iw) (3 rYrG - 6Y6) 6a8

+ 820(0,iw) [3 BaeY — 5a,) 585 + (3 ra“6 555) 58Y]

+ BZd(O.im) [3 FBFY - 58Y) 555 + (3 r835 686) 557]

+ Bu(0,im) [35 353393? - 5 (3&3 6Y6 + BaeY 586

+ 9595 53v + BBBY 555 + 9395 day

+ 9$35 6&8) + 5636v5 + 6aY685 + 56558Y] ' (3'10)

where B, B and B14 are linear combinations of the five

2a-d’

independent components of B(O,iw) for molecule B:

B(o.i6) = $§ (B , (3.11)+28 +28 +8 +UB )

zz,zz xz,xz zx,xz xx,zz xx,xx

82a(0.iw) = - —- (B . (3.12)+8 +8 -38 -HB )

zz,zz xz,xz zx,xz xx,zz xx,xx

26B 16B ) , (3.13)B2b(0,1w) = -— (3B
xx,zz+ xx,xx

—AB -AB +
zz,zz xz,xz zx,xz

B2c(o’iw) = fi2 (3Bzz,zz_quz,xz+1OBzx,xz_9Bxx,zz-1ZBxx,xx) ’ (3‘1”)

1- = __./ - - ‘82d(0,1w) “2 ‘3Bzz,z:+1OBX2,XZ “Bzx,xz ngx,zz 128xx,xx
) , (3.15)
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. 1

Bu(0,1w) = 76 (3B ) . (3.16)-U8 -UB -28 +28

zz,zz xz,xz zx,xz xx,zz xx,xx

Each tensor component Be on the right-hand side of Eqs. (3.11) -

B,Y6

(3.16) is understood to represent B (O,iw). The frequency-
a8,Y6

dependent B tensor lacks the symmetry of the static B tensor with

respect to interchange of the two dipole indices, and so differs in

form from the B tensor as given in Ref. [7A]; it has one additional

independent component. Appendix B provides a detailed analysis of

the frequency—dependent B tensor for a linear molecule.

Use of Eqs. (3.1) and (3.2) for atom A and Eqs. (3.7) and

(3.10) for molecule B in Eq. (2.35), together with the propagator

products

(2) (3) _ _ -8
Tea (3) TaBYCB) - 18 RY R (3.17)

and

(2) (3) _ _ -10
Tm6 (5) Toma) — 12 RBRYRé R

3 -8
+ [6 138%S - 3 RY685 — 3 R568Y] R . (3.18)

and noting that aura = 1 leads to

AB i1 .. _ B . A . ~8
u¢,vdw = ? f0 dw [ 9 qL(iw) 8 (0,1m) R¢ R

B . B . A . A A -10
_ 2 [a“(1w) - al(1m)] B (0,1w) ra rB Ra RB R¢ R

+ g [55(16) — qE(iw)] BA(0.16) ra r¢ Ra 3'8

8
_.% [55(16) - qE(im)] BA(O,iw) R¢ R-

8

+ 9 8B(O.iw) aA(iw) R¢ R-
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'i

‘ .

.

‘1.. a'.

 



bl

+ u ng(0,iw) aA(iw) (3 fig 28 - 5a8) Ra R8 R¢ R—10

+ 2 ng(o,iw) aA(iw) (3 rd r¢ — 5a¢) Ra R'8

+ 8 Bgc(0,im) aA(iw) (3 fig 28 - 5&8) Ra RB R¢ R_10

- 2 B§C(o,im) aA(iw) (3 Ba e¢ - 555) Ru 3‘8

+ 12 Bgd(0,iw) aA(iw) (3 ea r¢ - 5a¢) Ra R—8

+ 1A0 BE(O,im) aA(im) ha 28 rY r¢ Ra RB RY R_1O

- 6O BE(O,iw) aA(iw) 9a 98 Ru R8 R¢ R_10

— 60 BE(o,im) aA(im) 3a B¢ Ru 3‘8

+ 12 Bi(o,iw) aA(iw) R¢ R_8] (3.19)

7
for the van der Waals dipole moment to order R_ .

The form of Eq. (3.19) is not convenient for analysis.

Alternatively, the pair dipole for the interaction of an atom and a

centrosymmetric linear molecule may be written as a first-rank

spherical tensor by coupling spherical harmonic functions of 3 and R

in the following way [9,16,78]:

NW

W313) = —1/2
2 D (r,R) vm(3) YM_m(R) C(AL1;m,M-m) , (3.20)

(3) 1,L,m ‘L A L

where r'is the vector connecting the atoms of the diatomic molecule

and R is the vector from the center of the diatomic to the atom,

with 3 and R the corresponding unit vectors. The functions DAL(r’R)

are expansion coefficients which must be determined and C(AL1;m,M-m)

is a Clebsch-Gordan coefficient; M is the spherical tensor index of

E_in the laboratory frame, and can take the values M = — 1, 0, 1

(the laboratory z axis corresponds to M = O). Spectroscopic
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lineshape analyses [16-18] for collision-induced absorption

generally employ functions 3 of the form in Eq. (3.20).

We now wish to determine the van der Waals contribution to the

DAL coefficients. In so doing the focus will be on the dependence

of these functions on the separation R, with r held fixed at its

equilibrium or vibrationally averaged value. Let VDWz designate the

entire right hand side of Eq. (3.19) with ¢ = z. Specifying the

undetermined coefficients to be the long-range van der Waals

contribution to the AB interaction dipole, and equating VDWz to Eq.

(3.20) with M = O we have

An vdW m A -m ‘

-—-T7§ Z DAL (r,R) YA(r) YL (R) C(AL1;m,-m) = VDWz (3.21)

(3) A.L.m

01"

1111 vdW

_—_T72 DAL (r,R) C(AL1;m,-m)

(3)

m - -m ‘ *

= f dnr I 59R VDwZ [YA(r) YL (R)] . (3.22)

A

The factors that depend on r and R in VDWZ can be expanded in

spherical harmonics; Appendix C presents the method. When these

vdW

expansions are used in Eq. (3.22) the DAL coefficients that survive

are

D3?” = 9 2 3‘7 I: dw [GA(iw) 8B(O,iw) — BA(0,iw) &B(im)] , (3.23)

DZ?” = - ——31/2§R'7 1;...
5(2)



 



M3

. [A aA(iw) [3ng(0,iw) + B:c(o, iw) + 105201(0, 16)]

— BA(O,iw) taE(iw) — q:(iw)]] , (3.2u)

1/2

DE§W= ”(3) 5371: dw [2 aA(iw) [B§b(o,iw) + 2Bgc(0,im)]

- BA (0,15) [53(15) - afi(iw)i] . (3.25)

and

ngw= - 16 §»B'7 f: dw aA(iw) BE(0,16) . (3.26)

In Eq. (3.23) we have introduced for the first time the

isotropically averaged part of the molecular dipole polarizability,

given by

Em.) = % [6”(16) + 2555113)] . (3.27)

Because the molecule B has nonvanishing permanent quadrupole

and hexadecapole moments, induction effects also contribute to the

long-range dipole of the AB pair. The permanent multipoles of B

produce a field that polarizes A, and the moments induced in A give

rise to a static reaction field that acts back at B (back-

induction). The induction dipole that results from these effects

can be expressed to order R_7 as

AB _ —la T(3) B

Lla,ind _ 3aATaBY(B) 0BY

_1_ (5)

105 “A TaBYGe(-) °sv5e
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uh

)B (2 A (3) B
- a'LTaB (5)11. TBY5 (R) 0Y5
l

3

— % (51,3, - cf] Té§)(3)Ao1 T(3)(R)B0613a 2 . (3.28)

The quadrupole and hexadecapole moments of B appearing in Eq.

(3.28) can be written as [7M]

9 o
n

N
I
—
-

9 m p m

(3.29)

and

l—-¢ [105 r r r F
aBYG 21 a B Y 5

- 15 (9 86 6Y6 ra Y 86 + ra r(s GBY

B Y 565 re ”5 5GY I PY r5 6&8)

+ 3 (5&8 6Y6 + 561 586 + 5&6 5BY)] , (3.30)

where the center of symmetry of the B molecule is taken as the

origin for the charge moments, with e = O and ¢ = ¢ .

zz zzzz

Using Eqs. (3.29) and (3.30) in Eq. (3.28) gives

u:?ind = --1§AaT(3)(R)BGBrB rY

21$T§Z§55<R)B¢ rq5 1311 f5 92

-%aB Nam)Aa Té$)(R) ()5 f-Y 1353

-% [afi - oi] Té$)(R)Aa 1mm)Be 13 2813 . (3.31)

The propagator tensors and tensor products appearing in the

above equation are given by



 



(3)

TaBY

(5) = [- 15 RaRBRY

2
+ 3 (Ra GBY + RB 6aY + RY 5&6) R ] R , (3.32)

(5) _ _

QBY5€(B) — [ 9H5 RaRBRYRéRe

+ 105 (RQRBRY 6

T

+ +RaRBRG 6Y8 RaR

+ R R

a

66 RE 6

+ RuRYRG 688 + RaRYRe 686 6 BY

+ RBRYRG Gas + RBRYRE 6a6 + RBR6R€ Ga

2

8 Y6

R 6

a

Y

+ RYRGRE 6&8) R

- 15 (Ra + R 6 6 + R 6

GBY 66: a 86 Ye a Be 6Y6

R8 saY 66s + RB 6&5 6Y8 + RB 6a 6

R" . (3.33)

(3)

8Y6

+ (6 R 6

a

(B) = [— 12 RaRYRG

- 3 RY 6

(2)
TaB (5) T

— 3 R6 5 ) R2] R"10 . (3.3M)
Y6 a5 aY

Substitution of Eqs. (3.32) - (3.3“) into Eq. (3.31) leads to

AB “ 15 A B A -7

“a,ind ' 2 a 9 rs rY Ra Ra RY R

A B . -5
3 a O ra rB R R

--% aA OB Ra R_5

315 A B A A —11
+ 8 a Q r8 rY 6 rE Ra RB RY R6 Re R

~3—gaA¢B (19823.36 RBRYRG R‘9

— 105 aA p8 r R R R R_9

c
"

m

1

4 Q m 4



 



15 A B A A '7

+ _2 a ¢ rd r8 RB R

+ 12 aA ¢B R R—7
8 a

B A B A A -10

+ 6 ai_a 9 r8 rY Ra RB RY R

B A B A A ‘8

+ R R3 qL a G ra r8 8

- 3 aE_aA eB Ra R_8

B B A B A A A A -10

+ 6 [an - di} a 0 rd r8 rY r6 RB RY R5 R (3.35)

for the induction contribution to the dipole moment to order R—7.

The induction contribution can also be expressed in terms of

spherical harmonics, as in Eq. (3.20). Let INDz denote the right-

hand side of Eq. (3.35) with a = z. In direct analogy with Eq.

(3.22) we can write

Mn ind _
-———T7§ DAL (r,R) C(AL1,m, m)

(3)

m(m x‘m(R>]* , (3.36)= I er f dQR INDz [yA

where the DiEd coefficients need to be determined. When INDz is

expanded in spherical harmonics (see Appendix C), use of Eq. (3.36)

gives for the induction coefficients to order R—7

ind _ 6 B _ B A B —7
D01 —-§ [an dL] a O R , (3.37)

ind _ _ 3 1/2 B B A B -7
D21 - -§ (2) [2aH + BL} a O R , (3.38)

ind _ 1/2 A B ‘4 N 1/2 B B A B '7

D23 — (3) a O R + 35 (3) [3a” + WTL] a O R . (3.39)
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ind__2_u B_B AB-7
Du3 — 35 Ca)! a1} a O R . (3.40)

and

Digd = (5)”2 aA @B R_6 . (3.41)

The polarizabilities aA, a3, and aE_in Eqs. (3.37) - (3.41)

refer to the static, zero-frequency values. Adding the van der

Waals coefficients in Eqs. (3.23) - (3.26) to the corresponding

induction coefficients from Eqs. (3.37) - (3.”1) gives the exact

long-range dipole coefficients through order R-7 for an S state atom

interacting with a centrosymmetric linear molecule in a fixed

configuration.





L18

C. van der Waals Dipole for a Pair of Centrosymmetric Linear

Molecules

Consider the interaction between two centrosymmetric linear

molecules A and B. Let_r_1 denote the vector that lies along the

symmetry axis of molecule A, and let :2 be the vector that lies

along the symmetry axis of the B molecule. Let R be the vector from

the midpoint of B to the midpoint of A. The dipole polarizability g

and the dipole-quadrupole hyperpolarizability g for a

centrosymmetric linear molecule have been given in Section B by Eqs.

(3.7) and (3.10). First using Eq. (3.10) for both-A and B in Eq.

(2.35) results in

uiBde = g; f: dm [g- TA2A(R)BaBY(im) T(3)(R) BA(o, iw)

+ Té:)(fi):a Y(iw)Tig:(fl):BAb(o, im) (3 R R1E - 55$)

+ 2 T(2)(R)BB(1BY(iw) TY§;(R)3B C(o, im) (3 RYa R16 - 5&6)

+ 2TT:2A(R)BaBY(iw) Ti3§(fi)2BAd(o, im) (3 R16 R1¢ — 55¢)

35 TE2A(R)BaBY(1a) TA3A(R) BA(0, im) R R R R

T(2)

+

(R) aBY(1a) TA3A(R) BA(o, iw) R R
15¢ —— 1a 15

- 1010T32A(R)BaBY(iw) T;3§(R) BA(o, iw) R16 RY¢

- 5 Té:A(R)Ba Y(1a) TY§:(R)AB(0, im) R1 R18

+ 2TTA2A(R)Ba8Y(iw) T;3;(R) BA(o, iw)

- 3TA2A(R)BB (0,1w) TA3A(R)Aa(1w)

- TA2A(R)B32b(0,111) (3 RZY 926 - Y) TA3A(R)Aa(iw)

2TA2A(R)2B32(0 im) (3 R2BR2Y— Y) TA3A(R)Aa(iw)

— 2 TE:8)(R)B82d(0,111)) (3 r2¢ BZY - ::Y)TT(3)(R)Aaea(iw)

T(2) A A (3 ) .
— 35 (R) BB(O, iw) r28 r2Y r26r2¢ TY6€(R) a:a(lw)
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M9

T(3)(2) B . A .
+ 10 Tue (R) BMAO’lw) r28 r2Y TY¢(R)€aAO‘(111))

+ 10 TA2A(R) RB(o, iw) R2Y R2¢ TéY:(R)Aa (im)

+ 5TA2A(R) BB(0, 1a)Rwfi25TA3A(R)Aa(im)

- 2TTA22A(R)BB (0,1w) TA3A(R) aA(iw)] . (3.u2)

Next, using Eq. (3.7) in Eq. (3.“2) leads to

AB _ R I: w[_ T(2)

u¢,vdw3' 3T 2 Tue

T(2)
2 Tue (R) [a”(iw) - qi(iw)] Ta ¢(R) BA (0, iw) FZBr2Y

TA2A(R) aB(1a) TA3A(R)AB2b(o,1a) (3 A9166 Ye - 166)

TE:)(R) [aH(iw) - a3(1a)1 bTfig;(R)2BAb(0,111)

A A3 B16215 ' 552A232

T(2) B . (3)
(R) qL(1w) T 86¢(_R) B

T(2)

(R) af(1a) TA3A(R)AB (0.1m)

(3)¢

+
+

+
+ (0,101)) (3 Ar1af‘16 ‘ 5‘25)

(3)
(R) B:c(0,1(11)

F2Y

A

2c

AT15¢ —
(R) [aBR1a) - afi(1a)T+

A A3 21a215 ' BaaA Wzsr

T(2) B . (3) A A
(R) al(1w) Ta86(R)2B d(O, im) (3 Ar16r1¢ - 56¢)

T(2)
(R) [a“(iw) —af(1a)] dTé3§(R) 82d(0.im)

+
+

2 A3 21a:1¢ ' ¢A223221

T(2) (3) . A A A A
(R) aE(iw) T865(R) B2(0, 1w) rYarYdrYEr14>

(3) A .
Y6€<E> Bu<0yl€0>

+

35STABNR)Tafiua)-ag11H T+

“ 21a21521221¢223221

T(2) (3) A . A 1
‘ (R) afijim) T85¢(B) Bu(0,1w) r1a216

0TA2A(R) [a BR1a) - afig1a)1 TA3A(R)AB (0, im) R
Y5¢— 1(11216 r228 FZY

T(2) (3)
aBGAB) B3(0, iw) rYGrA1¢

(3)

B(R)aL(111)T

- 1OOTA28A(R) [afi(1a) — aB(1a)J TaY6(R) BA(011w) R16R1¢R28R2Y

T(2) (3)
TB¢ (R) al(iw) T86€(R) B3(0, iw) rYdr1E

T(2) (3)
(R) [aB,(1a) — a251a)] TY5€(R) Bfi(o,1a) R15R16R28R2Y
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+

(2) B . (3) A .

TaB (R) ql(1m) Ta8¢(3) Bu(0,1w)

+

(2) B . B . (3) A
2 TGB (R) [al“lw) - aiflw)] TaY¢(R) BA“(0, 1m) r28r2Y

- 2TA§A(R)BB (o, 11) TA3A(R) af51m)

- 2 T;:A(R) BB(O,iw) TEB:(R) [a”(iw) — afig1w)3 RTaR1E

- T;:A(R) 82b(0,iw) (3 R2YR26 — m) T<3>(R) “1AANA

RENE) ngAo'i‘AA (3 923926 "111A TBBEABA

x £afi(1:) - aA(iw)] FTGRTE

- 2TA2A(R)BB2c(o, iw) (3 R2BR23 - BY) TA3)(R) BJEiw)

- 2TA2A(R) BB(0,11) (3 R2BR2Y - M1 TZZEAR)

x [aH(i:) — Rfi(1w)3 RmR1e

- 2TA2A(R)BB2d(0,111) (3 F2¢F2Y - 6¢Y)TT(3)(R) QLAiw)

_ 2T(2)(R)BBd(0,111,) (3;. f. _6 )TT(3)(R)

2¢ 2Y $7 BYE -

x [0”(iw) - qfi(iw)] B10?

T.(2)

16

(R) BB(0, iw) r28r2Yr25r2¢ TaY6(B) qlfim)

- 353BTEZA(R) BBT(0,111) R2BR2YR26R2¢TT3§:(R)

x [13(11) - 1A51R)J RR16

1 0TA2A(R)BB”(0, im) R2BR2T T;3;(R) aA(1w)

1 oTA2A(R)BB(0,111)R2BR2Y T32;(R) [afi(iw) - 13(1R)J FTGRTE

+ 10T::)(R) Bu(0,iw) 923?2¢TTA33A(R) 1J51m)

+ 10 T;:)(R) Rfi(o,1m) R2YR2¢ TE3:(R) [aA(1w) — Rj(1m)1 FTaRTe

+ 5 T;:)(R) Bfi(o,1w) R2TR26 Té3§(R) RA(1R)

1 5 T;:)(R) Bfi(o,1m) R2YR25TTY§:(R) [1”(11) — RA51R)J FTQRTE

- 2 T;:)(R) Bfi(o,1m) TA3A(R) qf(1w)

- 2 T;:)(R) Bfi(o,1w) T:::(R) £a,(1w) - qfifiw)] RTaRTE] . (3.u3)

The propagator products in the above expression take the forms:



 
 



Sl

T(2) (3) —8

Tue {3) TaBYAB) = — 18 RY R , (3.44)

T(2) (3) _ _ -10
(R) TaYdAfi) — 12 R2 RY R6 R

-8
+ [6 R8 336 - 3 RY 326 — 3 R6 523] R . (3.u5>

and

T(2) (3) _ -12
(R) TY 6(R)= 45 Ba RB RY R6 R8 R

+ [1: BY R6 Re 6a8 + 9 Rd RB RY G58

—10

+ 9 Ra R8 R6 6Y5 + 9 Ra R8 R8 6Y6] R

-8

_ [3 RY 6&8656 + 3 R6 SaBGYe + 3 Re dadeG] R ' (3.46)

Using Eqs. (3.44) - (3.46) in Eq. (3.43) and noting that fi1afi1a =

FZaFZa = 1 gives as the van der Waals dipole for this system

“:Bvdw = E-IZ dw [6 {a3_ng + EB B20} R¢ R_8

— [a3 + SqEJ [% BA - 2 82d + 2 B3] R¢ R-8

- 6 {BED afi_+ Bic éA} R¢ R‘8

+ % BB — 2 Bid + 2 Bi] [afi + 5&2; R¢ 3—8

- 6 aE_[B2b — 320] RTaRT¢Ra R'8

— 2 [afi + Sci} [3 32d — 5 Bfi] B1ar1¢Ra R8

1
R R '8
2a 2¢ a ,

— [g-BB - 3 Bib - 2 Bic — 2 Bid + 7 Bi] [afl- 2:2

x BTGFT¢RQ R—8

B A .

2b ' B2cJ “l-rzaA2¢Ba B

B B A A A A

+ 2 [3 82d - 5 54] [an + Sal} r2ar2¢Ra R
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B _ B A A _ A A A A A _8

2 [“11 all [3 225 + 3 320 A0 B4] 21a21322a22¢Be B

B B A _ A A A A A A _

[01” 01L] [6 B20 6 32d + 35 B4] r1ar1¢22a22833 R

B B A A A A A A -

2 [an “13 [3 B2c 5 B4J ’1a21522a2232¢ B

B -8

+
+

+
+

+
+

B B A A A A A A

2 [3 32b + 3 B20 10 B4] [an “1.3 r1ar1¢r2a228R8 R

B _ B B A _ A . 2 2 2 —8

20 6 B2d A 35 B4J [an “13 r1J1522Jz¢BB

2 [3 3‘20 — 5 RE] [113, -

[6 B

GA] R R R R R R‘
J. 1a 18 2a 28 ¢

B B A 1 A . . A - -

7o [“11 “13 B4 21a21521121¢22a2232Y R

70 BB [BB ' “:3 21a21sM2a2522V22¢BY R8

12 aE_[B2b + 2 820- 5 Bu] RTGRATBRaRBR¢ R10

- [a?T- RE} [6 BA - 9 BAD — 8 B20 — 8 82d + 23 Bfi]

* 22a 223Ba282¢ B10

[6 BB — 9 BB - 8 330 - 8 32d + 23 BE] [afi — a3}

x 21a218RaRBR¢ R‘0

12 [82b + 2 520- 5 Bi] q: 22a228RaR8R¢ R30

[afi — a3; [18 B20 - 24 BAd + 115 82]

2 21a 21¢22B22YRaRBRYAR10
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-10

+

A

4 “1 22J2822Y22¢BaBsBY B

-10
385 [a,,- qEJ BA M1“1BR1YR1¢R20R25RBRYR6 R

—10

1H0 BB
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1aflmzaa2zs2mfim%2
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-12

21J1B22Y2252aRBRY25:¢ R

A
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—12
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4
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.

1J1B2Y2A25 a B Y 5 ¢

525 [all‘ 2L2 B4 21J1B21Y21¢226 2252aRBRY252e B

B A A2

525 B4 [“4 “LA 21J1B 22Y 225 22s22¢BaBsBYBsBe 2

x F R R R R R R

B -12

.
.
.

A2] (3.47)

to order R-7. The frequency dependence of the d and B tensor

components on the right-hand side of Eq. (3.”7) is to be understood.

The dipole moment for a pair of linear molecules may also be

expressed in terms of spherical harmonics as

3/2 -

(Mn) M-m

M(r‘ 1_ IR) = __ X D (22 )r2 9R) Ym :(1‘1 ) Yr: 2(222) Y (R)

—1 2 (3)1/2 A1A2AL 1 A2 L

x C(A1A21;m1m2m) C(AL1;m,M-m) , (3.48)

where the summation is carried out over the indices A1, A2, A, L,

m m and m. The vectors r ,_§2, and_§ are as previously defined,

1’ 2’ —1

C(A1A2A;m1m2m) and C(AL1;m,M-m) are Clebsch-Gordan coefficients, and

M is the spherical tensor index of E in the lab-fixed frame. The

functions DA1A2ALA21’22’R) are undetermined expansion coefficients;

they will be found from Eq. (3.H7).

Fixing r1 and r2 at their equilibrium or vibrationally averaged

values allows us to focus on the R dependence of the DA A AL

1 2





5h

coefficients. Designate by VDwz the right hand side of Eq. (3.47)

with ¢ = z. Equating VDWZ to the M = O instance of Eq. (3.“8) gives

)3/2 vdW(Mn

1/2 2 DA1A AL
<—?;;——— A 2 (r1,r2,R) C(A1A2A;m1m2m) C(AL1;m,-m)

= I an I an I an VDw [Ym‘(2 ) Ym2(9 > i'm(§)]* (3 A9)
r r R z A 1 A 2 L ’ '

1 2 1 2

where the coefficients have been specialized to the van der Waals

contribution to the interaction dipole.

For a pair of interacting centrosymmetric linear molecules, the

DA A AL coefficients possess the following symmetry relation upon

1 2

interchange of the indices A1 and A2:

A+1 AB

D = (-1) P D , (3.50)

A2A1AL A1A2AL

where FAB interchanges the molecule labels A and B. When VDWz is

expressed in terms of spherical harmonics (see Appendix C) and

substituted into-Eq. (3.“9), the following coefficients result:

vdW h_ _ w —B —A _ —A -B —7
90001 - 9 n f0 dw [B a B a J R , (3.51)

vdW _ g_ 1/2 3. w A A A —B
02021 - 1o (2) w f0 dw [u (3B2b + 82c + 1OB2d) a

‘ (“fi ‘ Bf) éB] R_7 . (3.52)

vdW 1/2 h w A A B B

IO dw [(a,,— aL) (32c + B )
) 2d

u 1

D2201 "§ Cg 'F
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vdW

2221

vdW

D11221

DvdW

D2023

vdW

2223

vdW

2233

vdW

22u3

vdw

uou3

vdW

u223

Dvdw
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A A B B -7

— (B2c + 82d) (a,,— aJ)] R .

6 1 1/2 h w A
0—) E'fo dm [(an al) 82d

A B -7

* 82a (“n ' “12] R .

2<-—)1/2 fi-x: dw [<aA - aA) <68B — 233 + 733 >
5 35 H 1- 2b 2c 2d

B B -7

— (632b - 2320+ 732d) (an - ql)] R .

8 1 1/2 h w A B _ B -7
§'(79 E-fo dw Bu (a|‘ aJ) R ,

u ( )1/2 E fw d [( A _ A) 2B

5 3 ? o w “U %L

_ A A -B -7
2 (82b + 2320) a ] R ,

8 2 1/2 h w A A A B B

§'(76§) F f0 d“ [(sz _ 2820 + 282d) (an ‘ “4)

_ A _ A B _ B B -7

(an “1) (B2B 2B20 + 22d)] R ’

--3 <—3)‘/2 h-x“ dw [(53A + 832d) (a5 - a8)
5 15 n 0 2b .L

A A B B2 -7
+ (an - 94) (5132b + 882d)] R ,

3 (—3)”2‘E f: dm [(513A + ABA + 2AB2d) (a8 — B)
5 35 2b 20 11 9L

_ A _ B B d-7
(an 3L) (5B2b + uBZc + 2M82d)] R ,

16 E-f dw B a8 R 7 ,

—5 <—3)”2 3 f d BA ( B - B) 3‘7
15 21 w u “H %L '

— 3 (111/2 2 f d BA < B - B) R'7
3 3 w u “n 91. ’

.55)

.58)

.61)

.63)
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0:223 =%(12)”21Th I: don 52 (01?.- 01:) 13—7 , (3.611)

132225 = 11 (3)”2—h I: du) [(012, — a2) (ng + 252C)

— (132b + 21320) (6?, — 62)] R‘7 , (3.65)

1312225 2 (7—5)”2 h I“ did 32 (a, (If) 3'7 , (3.66)

9:225 — -§ (2)”2 :1 I“; a... 62 (6%- (1:) 3‘7 , (3.67)

and

0:225 = i2 (3241/23? d... 132 (a?! — 6:)11'7 . (3.68)

Again, the frequency dependence of the a and B tensor components in

Eqs. (3.51) — (3.68) is to be understood.

Induction effects also contribute to the long-range dipole

moment of a pair of centrosymmetric linear molecules. The permanent

quadrupole and hexadecapole moments of each molecule produce fields

which polarize the other molecule. Additionally, the permanent

quadrupole of each molecule sets up a gradient of a field gradient

that polarizes its partner. The moments that are induced in the

molecules from these fields and field gradients themselves give rise

to static reaction fields which produce back-induction effects at

each center. The combination of all these effects results in an

induction dipole that may be written as

B

Y6

AB A T(3)1

“a,ind ' §aaeT316(R) OY



 



1. B T(3)
+ 3 (1018 TBY5(E) 915

-..l. A T(5)

105 “as Tsvae¢(-j ¢Y66¢

+ _1_ dB T(5) A

1 5 a8 BYGe¢ —- Y6€¢

_ _l A (5)

U5 Ea,8Y6 TBY6£¢(B)508¢

_1 B (5) A¢

+ AS Ea,BY6 Tsvss¢(5) 96¢

l A T(2) T(3)
+ 3 aaBT (R) dB T65 ¢(§) 0A;¢

.1 B (2) A: T(3)
3 “GB TBY (3) aY H¢(§) , (3.69)

through order R_7. Expressions for the dipole polarizability, the

quadrupole moment and the hexadecapole moment have been given by

Eqs. (3.7), (3.29) and (3.30) of the previous section; the

propagator tensors and tensor products that occur in the above

equation were also given in that section by Eqs. (3.32) - (3.3“). A

quantity that appears for the first time in Eq. (3.69) is the

dipole-octopole polarizability Ea 8Y6(1m). For a linear molecule,

the E tensor has two independent components and can be written (see

Appendix B)

. _ _l . .

(1w) - 1M [Ez,zzz(lw) + 2 Ex,xxx(lw)] [35 r103.813Y 136

- 5 (rarB 6Y6 + rarY 686 + rmr(S 68Y

+ rBrY 6&6 + rBr6 GaY + rYr(S 6&8)

+ 6&8 6Y6 + 561 586 + 6&6 68Y]

Ea,BY6

 

1 . u A A

- 63 [3 Ez,zzz(1w) - 8 Ex,xxx(lw)] [(3 1”(1138 _ Gas) 6Y6

+ (3 Igozf‘Y _ GaY) 686 + (3 rafié _ 6&6) GBY]

5 . . A A _

+ 126 [3 Ez,zzz(lw) _ 8 E:x, xxx(1w)] [(3 r'Br‘Y éBY) Gad

+ (3 92rd — 625) GaY + (3 rYrG - 6Y2) 6&8]
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Making use of Eqs. (3.7). (3.29), (3.30). (3.32) — (3.3”), and

(3.70) in Eq. (3.69) leads ultimately to
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for the induction contribution to the long-range dipole moment to

order R_7.

The induction dipole can also be expressed in terms of

spherical harmonics, as in Eq. (3.118). Letting INDz denote the

right-hand side of Eq. (3.71) with a = z, we can write in direct

analogy with Eq. (3.119)

(4w)3/2 ind

1/2 A1A2AL
-(-3)—- A (r1,r2,R) C(A1A2A;m1m2m) C(AL1;m,-m)

m

1 -
= f d9r f dflrz f an INDz [YA1(r

"12 A -m A *

1 ) 152012) XL (12)] . (3.72)1

where the coefficients have now been specialized to the induction

contribution to the long-range dipole moment. Expressing INDz in

terms of spherical harmonics (see Appendix C) and substituting into

Eq. (3.72) results in

ind _ _ 6 A _ A -B A _ B _ B -A B —7
D0001 - g [[a“ a‘L] a O [01H 01] a G) ] R . (3.73)

ind 1 1/2 ' A A —B A
132021 = g (2) [3 [201” + aJ_ a e

1 B B A A B —7
- E [01” - 01] [an- 01] O ] R 1 (3.714)

ind _ _.3_ .1 1/2 A _ A B _ B A
D2201 - 35 (5) [[au aL} [a,, 9L] 0

_ B _ B A _ A B —7
[an 011—] [01“ 1.] O ] R , (3.75)

ind _ §_ .1 1/2 A _ A B _ B A

2211 ‘ 35 (5) [[“H Bl} [an “L; o

B B A A B -7

+ [an - a1} Ea” — a1; a 1 R , (3.76)
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Du2u3
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(3.77)
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(3.86)
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ind _ 21/2 A _ A B —6

D2245 - (7) [[3Ez,zzz 8Ex,xxxJ O R
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_ [3Ez,zzz - 8Ex,xxxJ O R

_ 2 A A B _ B A -7
7 [301” + ROLL] [01H 01] O R

2 B B A A B -
+ 7 [301” + 11011 £01,, — “l3 e R 7] , (3.87)

' d 1/2 A -B —6
933% - — (5) <1 a R , (3.88)

ind 71/2 1 A B _ B -6

”112115 ' 2 (E) [3 ° [“N “1.3 R

1 A A B —6

7 [EZ,ZZZ + 2EX,XXXJ 9 R

2 A A B B A -7
+ fi§ Ea“ - a1} [all_ a1} 9 R ] , (3.89)

ind _gg1/2 A B_B —6
“255 — 3 (5) [¢ [a], a1} R

+ [EA + 23“ ] SE B‘6
z,zzz x,xxx

_ 2 A _ A B _ B A -7
7 [an “1.3 [an 011-] e R ] , (3.90)

and

ind _ 131/2 A B _ B —6
Du265 - 2 (R) [<1> ta“ “1.3 R

- 2 [EA A 198 B'6
z,zzz X,XXX

+ % [afi - afifl Cafi - qEJ GA R_7] . (3.91)

In Eqs. (3.73) - (3.91), the u and E susceptibility tensor

components take their static values. The exact long-range dipole

coefficients through order R_7 for the interaction of two

centrosymmetric linear molecules are obtained by adding the van der

Waals coefficients given by Eqs. (3.51) - (3.68) to the

corresponding induction coefficients from Eqs. (3.73) - (3.91).



  



CHAPTER A. APPLICATION OF A CONSTANT—RATIO APPROXIMATION

In order to determine dipole coefficients directly from the

equations derived in Chapter 3, it is necessary to have accurate

values of the B tensors as functions of imaginary frequencies.

Calculations of E(0,iw) are now practicable, but results are not yet

available. In this chapter, simple approximation methods are

described which provide estimates of the van der Waals effects in

Eqs. (3.6), (3.23) - (3.26), and (3.51) — (3.68). Numerical results

are found in Section A for the atom-atom systems H...H; and H...He,

in Section B for the atom-diatom systems He...H and He...N and in

2 2’

2...H2 and N2...N2. The

estimates for the van der Waals dipole coefficients of the latter

Section C for the diatom-diatom systems H

four systems are also compared with accurate values of their

induction coefficients in Sections B and C.

A. van der Waals Dipoles of H...HC and H...He

The dipole coefficient D for two interacting S state atoms is7

given by Eq. (3.6). If the ratio BX(O,im)/ax(im) is approximated by

a frequency-independent quantity IX, then Eq. (3.6) can be expressed

in terms of the C6 van der Waals energy coefficient [79]

c6 = 351” dw 01A(iw) aB(iw) (11.1)
n o

as

6h
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D 2 3 c [13 - IA] . (u.2)

As a first approximation, we choose for Ix the ratio of the

integrals of BX(O,im) and ax(iw) over all frequencies:

IX = I: dm BX(O,iw) / I: dw ax(iw) . (u.3)

We assume that IX has the same relation to the static a and B values

as in the Unsbld approximation. For an atom or centrosymmetric

molecule in the ground state, the Unsbld approximation gives

2 2 2
ua8(im) - E <0Iuau8|0> fl/(Q + m ) (A.A)

and

. _ 2_ 2 2 2 2 2
BaB’Y6(0.lw) — 52 (3n + m )/(9 + w ) [<oluauBeY5|o>

- <0|“a“slo> (0'9Y6|O>] , (u.5)

where Q is the average excitation frequency of the species. Using

these expressions in Eq. (A.3) and carrying out the integrations

leads to

xx = 28X/3ax , (u.6)



 



where Bx and ax are respectively the static dipole-quadrupole

hyperpolarizability and static dipole polarizability of X. Using

Eq. (u.6) in Eq. (u.2) yields

D = 2 c [BB/a8 — BA/aA] , (4.7)
7 6

in agreement with the earlier result of Galatry and Gharbi [53,5A].

Accurate values for both D7 and the B tensor are not available

for many systems. In a series of large—basis perturbation

calculations, Byers Brown and Whisnant evaluated D7 for a model

system consisting of a hydrogren atom A and an atom B with a

hydrogenic wavefunction scaled by a factor c [58]. The

wavefunctions of these two systems can be expressed in atomic units

as

11A = (91/2 exp E-r] , (11.8)

and

3

WE = (fr—W2 exp {—ch . (4.9)

The accurate results for D7 are listed in Table 4.1 for comparison

with the approximations. The polarizability a; and

hyperpolarizability BC of the scaled atom HC are related to a and B

of the hydrogen atom by

a = g a (4.10)
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B =C B . ((4-11)

Eq. (U.7) thus becomes

—u
D7 = 2 C6 B (c - 1) / a . (4.12)

For the hydrogen atom, a = g and B = - 2%; in atomic units.

Values of D as computed using Eq. (H.12) are given in Table ”.1 for
7

c = 1.0 - 2.0; the error in this approximation ranges from 15% for

small ; to 12% for large c. For large c, Eq. (4.12) gives a slight

improvement over the Unsbld approximation of Byers Brown and

Whisnant [58].

The approximation of Ix in Eq. (A.3) does not take into account

the frequency-dependent weighting of B tensor values for one atom by

the a polarizability of the other, as found in the exact expression

of Eq. (3.6). This suggests that Ix might be estimated more closely

by the Unsold approximation for the ratio

on B 00

IA = f0 dw BA(O,iw) a (it) / f0 dw aA(im) aB(iw) . (n.13)

Employing the Unsold approximations given by Eqs. (4.“) and (u.5) in

Eq. (H.13) and carrying out the integrations leads to

[2 +-————13———] . (u.1u)
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. . . B . A B .

with a Similar result for I . USing I and I together in Eq. (4.2)

yields

A

1- -B— [2 + —‘———11. (21.15)
BB 1

(1 + QA/QB) GA (1 + QB/QA)

_B[2+

(1

D7 = 66 [

Specializing to the pair H...HC, Eq. (4.15) becomes

D7 = c6 B (§_u - 1) [2 + ;2(1 + c2)-2] / a . (4.16)

As Table 4.1 shows, Eq. (4.16) provides good estimates for D7,

underestimating the accurate results by only 4.3 - 4.5% over the

entire range of c values.

As a second test of the approximations, consider the

interaction of hydrogen with helium. The accurate value of D7 is

120 a.u. for H+He_ [59]. With the values (all in a.u.) eHe = 1.383

[80], BHe = — 6.587 [81], and C6(H...He) = 2.82 e 0.01 [82], Eq.

(4.7) yields D7 = 107 a.u., while a direct Unsold approximation

gives D7 = 108 a.u. [59]. An improved estimate may be based on Eq.

(4.15). Substituting the ratio of ionization potentials IH/IHe =

0.553 for QH/QHe in Eq. (4.15) yields D7 = 122 a.u. (~2% error).



 



Table 4.1

The long—range dipole coefficients D

interacting with a hydrogen-like atom scaled by a factor Q.

system is polarized H+H -

for a hydrogen atom

The

 

 

 

C’

; C6 [58] D

Perturbation Unsbld Eq. Eq.

results [58] approx. (4.12 (4.16

[58]

1.0 6.499027 0 O O

1.1 4.862103 85.65 72.84 72.95 81.99

1.2 3.703157 106.29 90.31 90.75 101.73

1.3 2.865143 102.87 87.29 88.13 98.43

1.4 2.247960 91.48 77.51 78.71 87.51

1.5 1.785978 78.49 66.39 67.84 75.06

1.6 1.435108 66.29 55.97 57.56 63.38

1.7 1.165113 55.64 46.90 48.55 53.18

1.8 0.9548598 46.65 39.25 40.89 44.58

1.9 0.7893366 39.17 32.91 34.50 37 42

2.0 0.6577167 33.00 27.68 29.19 31.52
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B. van der Waals Dipoles of He...H2 and He...N2

As in the atom-atom case, a constant-ratio approximation may be

vdW

used to connect the DAL coefficients given by Eqs. (3.23) - (3.26)

to van der Waals energy coefficients for the interaction of an 8

state atom with a centrosymmetric linear molecule. For such a

system the van der Waals energy can be expanded to order R-8 as

d1: 2 —6
AE" (mar) = - [02 + 06 P2(coser)] R

2 4 -8

- [03 + C8 P2(coser) + 08 Pu(coser)] R , (4.17)

where R is the vector from the midpoint of the molecule to the atom,

Or is the angle between this vector and the molecular symmetry axis

(coser = F ' R), and P2 is the 2th Legendre polynomial. The energy

. . 0 2 O 2 4 .

coeffiCients C6, C6, C8’ 08, and C8 are expressed in terms of the

susceptibilities of the separated species as

02 = 3 g I: du) 01A(iu)) 5’30...) . (4.18)

c2 = 5-1“ dm aA(iw) [aB(iw) - aB(iw)] (A 19)
6 n o 11 l— ' '

c2 = 15 %-f: dw [CA(iw) &B(iw) + 03(iw) aA(iw)] , (4.20)

c2 547” d [7 CA(i ) [aB(i ) - 0113(1)]
8 711 o w “’ 11 “’ .L ‘*’

B , B , B . A .
+ 3 [5C22,zz(lw) + ucxz,xz(lw) - 8CXX,XX(1w)] a (1w)

B . B . A .
+ 3 [3Ez,zzz(lw) — 8Ex,xxx(lw)] a (1w)] , (4.21)
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and

u L; h a) B . _ B . B . A .

C8 = 7-;~f0 dw [3 [2C2z,zz(lw) 4CXZ’XZ(1w) + Cxx,xx(1w)] a (1m)

+ 5123mm.) + zai’xxxum Jam] . (4.22)

A susceptibility that appears for the first time in these

expressions is the quadrupole polarizability C (iw). For the
a8,Y6

atom A

A . A . 1 1
= — + _—CaB,Y6(1w) c (14)) [2 (<s(W (586 5&6 (SBY) 3 due 515] . (4.23)

For the molecule B

-B . _ 1 B . B . B .

C (1w) — 10 [sz’zz(lw) + 8CXZ’Xz(lw) + 8CXX,XX(1w)] , (4.24)

with the full C tensor given by Buckingham [74].

In order to construct approximations to the Dde coefficients

AL

which are analogous to the atom-atom case, the Unsold approximations

for the C and E tensors are required. For centrosymmetric molecules

these are

. _ 2 _ Q

Cas’Yshm) — E [<oloaBBY6|o> <019a310><0101510>1 —(92+ (”2) , (4.25)

and

. 2 (2

Emmsu‘”) ‘ 11 (0140191311510) 2—2' (4°26)
(Q + w )
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We assume that the component of the B hyperpolarizability that

transforms as a spherical tensor of rank 2 will be best approximated

in terms of components of g, g, and E of the same spherical tensor

vdw . . A A
rank. If DAL can be approx1mated in terms of either C6 or C8' the

former is preferred, because more reliable values of the cg energy

coefficients are available. The resulting approximations are

 

B A
vdW ; o -7 B_ _ §_

D01 — 2 c6 R [_B A , (4.27)

(1 a

vdw - 1 1/2 2 —7 BA
1321 = -5— (2) c6 R [Cl—A

B B B
(38 + B + 10B )

4 2b B 208 2d 1 , (4.28)

(a - a )
H .L

B B
(8 2B ) A

vdw : 8_ 1/2 2 —7 2b 2c _ _B_
1323 —15(3) 0611 [2 B B A] , (4.29)

(an _ (1L) 0.

and

vdw : _ 2‘2 4 —7 B
Du3 — 3 Ca R Bu

B B B B B -1

x [3 (zczz,zz — xz,xz + xx,xx) + 5 (£2,222 + x,xxx ] (”'30)

All susceptibilities appearing in Eqs. (4.27) - (4.30) take their

. B B

static values; at zero frequency B = .

xz,xz zx,xz

The susceptibilities and van der Waals energy coefficients are

known for the He...H2 system and are given in Table 4.2, so we can

dW

determine the DIL coefficients from Eqs. (4.27) ' (4.30). Fixing



 



   - _. 444.1%.

1 “.711. Dgfiqn-JQJSFRTWT, uh- r. «sn‘flizml‘ :91qu 1M ‘ 1

than '9: 23-5-1“. . _.. . .,._ . _1 _ ‘n‘. 2'" .__ '3' . ‘

02;" - . 1.46 0'7 , -. _ -. (4.33)

and

vdW -7
D43 0.01 R . (4.34)

A positive value for the net dipole moment corresponds to the

2 C

For comparison, the long-range induction dipole coefficients

polarity He+H

for the He...H2 system are

03’1“ - 1.37 3‘7 , (4.35)

0:?d - - 9.29 3'7 , (4.36)

D230 - 1.094 R'” + 4.68 3'7 , (4.33)

0,13“ = — 0.78 3'7 , (4.38)

and
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Bind = o 87 R‘ (4 39)“5 . . .

These dipole coefficients are expected to increase by ~ 10% if

the internuclear separation in the H molecule is increased to its

2

ground-state vibrational average of 1.449 a.u.; an exception is

Dfigd, which increases 25% when the vibrationally averaged value of

the hexadecapole is used in place of the value in Table 4.2.

The constant-ratio approximations suggest that van der Waals

interactions affect D and D significantly for He. ..H01 21 at long

2

vdW

range. In fact, D01 is roughly fifty times Dad in magnitude. The

D23 coefficient is dominated by the quadrupole-induced dipole, which

is proportional to B_u. The van der Waals contribution to D43 is

very small compared with the induction contribution, though both

vary as R-7 at lowest order. Dispersion effects on the total

collision-induced dipole moment are small relative to induction

effects, but still appreciable. When the intermolecular vector R

points along the z axis of the H molecule, the long-range van der

2

Waals term in the dipole “z is 13% of the induction term for

collinear 1-Ie...H2 at R = 7 a.u., and is 19% of the induction term

for the T-shaped geometry at this distance. At R = 5 a.u., the van

der Waals contribution increases to 33% of the induction term in “z

for the collinear configuration and 50% for the T-shape. However,

overlap damping of both the induction and dispersion dipoles reduces

DXEW and Dizd below their asymptotic forms at this intermolecular

distance, and short-range exchange effects predominate in the _ag

initio collision-induced dipole for R less than the collision

diameter of 5.7 a.u. [68,90]. We may conclude that van der Waals
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effects on the dipole moment of this system are most significant

when the D01 term can be distinguished from the D23 term, as in

spectroscopic lineshape studies. Selection rules for transitions of

the atom-diatom complex differ for the D01 and D23 terms [16].

Given the accuracy of the approximations in Section A to the D7

coefficient for H...H; and H...He pairs, together with the accuracy

of a similar approximation for the van der Waals contributions to

the pair polarizabilities of H and He atoms [49], the error in D317)

(the coefficient of R—7

25%. The value D61!) ; — 71 a.u. determined here agrees with the

result of a valence-bond calculation by Berns e_t a1. [90] within

this error margin. The valence-bond result, D617) ; - 62 a.u., was

in D01) is expected to fall between 15% and

obtained from a numerical fit of the calculated dispersion dipole

between R = 7 a.u. and 10 a.u. For comparison, we may assume that

the van der Waals dipole of He...H2 corresponds to a shift in the

center of the electronic charge distribution of each system by a

distance (5 = 28' Then, if (S is determined by balancing the

dispersion energy gain vs. the energy required for polarization, the

computed dispersion dipole coefficient for He.. .H is D(7)= —2 01 48.5

a.u. [17,18], or - 44.5 a.u. using the molecular properties from

Table 4.2. Meyer and Frommhold fit the collision-induced roto-

translational absorption spectra of He...H2, yielding an effective

value of D317) = - 81 a.u. [17,18]; but their fitting procedure

incorporates not only the leading R_7 terms, but also all higher-

order induction and dispersion effects in the range R = 7 a.u. to 10

a.u. A direct ab initio calculation of DEW based on Eq. (3.23)
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would be valuable both in assessing the different numerical results

and in providing a test of approximations analogous to Eq. (4.27).

. vdW vdW vdW .

The estimates of D21 , 023 , and D43 in terms of the

anisotropic C2 and cg energy coefficients are probably susceptible

to larger errors than the isotropically averaged ngw. However, the

charge shift model described above gives Dé:) = 8 a.u. [17,18] or

9.9 a.u. using the properties in Table 4.2, in good agreement with

the value of 10.53 a.u. from Eq. (4.32). Experimental results for

these coefficients are not available; numerical noise prevented the

recovery of an effective value of D;:) from the most recent fit of

the collision-induced absorption spectra [17,18], and the fit of D23

reflects the quadrupole-induced dipole predominantly.

The susceptibilities and van der Waals energy coefficients are

known for the He...N2 system as well and are given in Table 4.3, so

we can also determine the DAL coefficients for this pair. However,

as can be seen from the table, a discrepancy in both sign and order

of magnitude occurs for the susceptibility component B4 as computed

using the ab initio results of Jameson and Fowler [87] and of

Dykstra [86]. It is therefore pointless to compute ngw (its

vdW

contribution is small in any case). The remaining DAL coefficients

are, in the constant-ratio approximation,

3‘?” = — 130.0 (— 113.96) R”, (4.40)

02‘1”“ = 17.41 (28.28) R_7 , (4.41)



 



    

and flu? ssmparisbn. the langrrange.1ngucsion dipolsheberfteiants

Eon the He...N2 system are

03',” g — 8.42 3‘7 , -- (4.43)

0:?“ = 50.53 8'7 , (4.44)

0:533“ = — 2.61 13‘” - 25.19 6‘7 , (4.45)

D1130 = 4.81 3‘7 , (4.46)

and

Digd = — 23.10 2'6. (4.47)

The approximation results show a significant contribution from

the van der Waals interaction to the coefficients D and D2 for1

33W is about fifteen times D;?d in

01

He...N at long range; D

2

magnitude. Again, the D23 coefficient is dominated by the

quadrupole—induced dipole, which is proportional to B_u. We note

that here the van der Waals and induction contributions to each

dipole coefficient enter with the same sign and so enhance one
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another, while these contributions were of opposite sign in the

He...H2 system.

(7)
As with the earlier approximations, the error in D01 should

fall between 15% and 25% if the static B tensor is accurately known.

However, the two calculations of Dde01 using values from Refs. [86]

and [87] for the B tensor components give results that differ by

nearly 15%, and this increases the likely error. The difference

between the two results for ngw is greater, but the values should

indicate the magnitude of this coefficient. The two results for

Dggw differ so much that the usefulness of the estimate is

questionable. More reliable values of the static B tensor

components would improve the estimates based on Eqs. (4.27) — (4.30)

for He...N direct_ab initio calculations based on Eqs. (3.23) -23

(3.26) would be even more valuable.
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Table 4.2

Molecular properties and van der Waals energy coefficients used in

calculating D for the He...H system. The internuclear distance

AL 2

in the H2 molecule is held fixed at its equilibrium value of 1.4

a.u. All values are given in atomic units.

Property Value Property Value

3 8
He a 1.383 b sz’zz 5.927

B —6.587 c 4.2423
xz,xz

c 4.944g
c xx,xx h

H 0 0.4568 E 3.932 d z,zzz h

6 0.2826 E 1.76
e x,xxx

a” 6.380

a_,_ 4.578e He... 02 3.9043

_ f 2 i
Bzz,zz 92.12 C6 0.445

B -56.92f c“ 0.3081
xz,xz 8

f
Bxx,zz 30.54 f

-62.24

xx,xx

a) Ref. 80; b) Ref. 81; c) Ref. 83; d) Ref. 84; e) Ref. 85;

f) Refs. 86 and 87; g) Ref. 88; h) Ref. 89; i) Computed using

isotropic Cn coefficients from Ref. 88 and anisotropy factors

from Ref. 89.
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Table 4.3
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Molecular properties and van der Waals energy coefficients used in

calculating D for the He...N2 system. The internuclear distance

in the N2 molecule is held fixed at its vibrationally averaged value

of 2.07 a.u.

Property

He a

Q
9

F
:

zz,zz

xz,xz

xx,zz

XX,XX

U
J
U
J
U
J
C
U
U
J
I
W
C
D
C
D
U
J

N
N
N

0
0
0
’

1
:
:

a) Ref. 80; b) Ref. 81; 0)

Value

1.383a N

-6.587b

—1.o9C He...N

-7.47d

14.718e

10.065e

-174f (—17o.55g)

f 8
—102 (—105.35 )

67f (61.233)

—119.5f (-97.768)

—132.4f (-122.9og)

f 8
2.95 (8.54 )

-7.21f (—12.428)

—7.21f (—12.428)

-1.13f (0.1873)

87; g) Ref. 86; h) Ref. 93.

All values are given in atomic units.

Property

E
z,zzz

X,XXX

O
O

O
\
I
\
)
O
’
\
O

Value

22.04h

16.67h

9.795h

1.103h

Ref. 94; d) Ref. 95; e) Ref. 96; f) Ref.
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C. van der Waals Dipoles of H2...H2 and N2...N2

We now apply the constant-ratio approximation technique to the

vdW

)1AZAL

interaction of two centrosymmetric linear molecules. The dipole

coefficients given by Eqs. (3.51) - (3.68) for the

coefficients will be connected to the van der Waals energy

coefficients for this system; the energy can be expanded as

A142m

vdW -n m m

AEn (R,01,¢1,02,¢2) ~ R Z Cn PA1(cose1) PA2(c0502)

x ccs[m(¢1-¢2)] . (4.48)

where the summation is over )1, )2, and m. The particular energy

coefficients to be used in the approximation are

0200 = 3 2 f: 0.1 5’41...) £13111.) , (4.49)

0200 —4 f” d [A(i ) — A(1 )3 73(1) (4 50)6 - '11 O U.) a“ (1) OJ— (L) (1 (1) y .

0220 = 2— 7: 01. [82(16) — 63316)] [65(11.) — ai(iw)] , (4.51)

cum—347% [3t20A (1)—4cA (- )+cA (' )1
8 — 7 n o w zz,zz m xz,xz 1w xx,xx 1m

+ 5 [3222204) + 2E:,xxx(iw)]] 850.1) , (4.52)



   

 

6m "40': (88.8)“ —
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420 _ 4 h w A . _ A . A .
08 — 165'? f0 dw [66 [zczz’zz(1w) "sz,xz(1w) + Cxx,xx(1w)]

+ 95 [E zz(1..) + 22“ (16)J] [65(16) — 62516)] . (4.53)
A

2,2 x,xxx

The Unsbld approximations for the a, B, C, and E tensors were

given earlier by Eqs. (4.4), (4.5), (4.25), and (4.26). Using these

equations together with Eqs. (4.49) - (4.53) results in the

 

 

approximations

de : 000 -7 1. _ E—

a a

(38 + B + 10BA ) ‘B

Dvdw ;.l (2)1/2 C200 R-7 [4 20 20 2d -.§_] (u 55)

2021 5
6

A A
_B ’

(01“ — (11L)

(1

B
B

A
A

DVGW :‘_§ [1)1/2 C220 3-7 [(B20 + 2d) _ (820 20)] (4 56)

2201 - 15 5 6 ( B - B) ( A _ A)
.

a” aL “11 BI

BB
BA

WW :5. 11/2 220 -7 20
2d

2211 ' 5 (5) C6 R [( B _ ) + ( A _ )1 . (4 57)

a”
a;

0'“
(IX—L

B
B

B

Dde ; 11_ (1‘4” 022° 4'7[W2221 15 35 6
( B B

a” al)

A
A

A

(6B2b 2820 + 7B2d)1 (4 58)

(“11‘ 8i)

vdW ~ 1/2 420 —7 A

D4221 - 4 (7) 08 R Bu

x [66 (204 A . CA ) . 95 (EA A )]_1

zz,zz xz,xz xx,xx z,zzz x,xxx ’

(4.59)
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(BA + 23A

 

 

..B )

vdw ; 8 1/2 200 -7 §_ _ 2b 2c

D2023 "T5 (3) C6 R [-3 2 “"A"“K“‘] . (4.60)

°‘ (“11‘ ‘1)

A A

Dvdw ; lg (_2_)1/2 C22o R-7 [(82b 2320 + 252d)

2223 15 105 6 ——?_K':—7f—‘-_—'

B B a)! “4)

_ (82b ' 2820 + 282d)] (4 61)

( B — B) ’ '
“11 “J.

A A

Dvdw ; _._4 (_2)1/2 C22o R—7 [(5326 + 832d)

2233 15 15 6 ( A _ A)

B B a" a4-
(SB2b + 832d)

* "'—-—-‘—---] . (4.62)

(GB - (18)

ll .L

A A A

DVdW ; _B.(_§)1/2 C22o R—7 [(5B2b + 4320 + 2”132(1)

2243 15 35 6 A A
(a - a )

B B Q ‘L
_ (5132b + 4520 + 2482d)] (4 63)

( B - B) ' '
“11 G;

vdW : 5_6 400 -7 A
Du0u3 — 3 08 R Bu

A A A A A -1

x [3 (”322,22 - 4cm,xz + cxx’xx) + 5 (£22,222 + 2Ex,xxx)] ,

(4.64)

vdw ; 2 14 1/2 420 —7 A
D4223 - g (7) C8 R Bu

A A A A A -1

x [66 (ZCZZ'ZZ - uCXZ-XZ + CXX.XX) + 95 (Ez,zzz + 2Ex,xxx)] ’
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vdw : _fi _1_1/2 420 —7 A

D4233 ‘ 3 (3) C8 A B4

A A A A A —1

x [66 (zczz,zz sz,xz + xx,xx + 95 (Ez,zzz + 2Ex,xxx)] ’

(4.66)

vdW ; 5 1/2 420 —7 A
Du2u3 — —3- (77) C8 R Bu

x [66 (2c - A + A + 95 (EA A )]"1 .
zz,zz xz,xz xx,xx z,zzz x,xxx

(4.67)

B B A A

DvdW : .8. (3)1/2 C22o R—7 [(B2b + 2B2c) _ (B2b + 2B20)] (4 68)

2245'37 6 B_B (A_A ' ‘
(a,l qL) a” a4)

vdW ; 2o g1/2 420 —7 A

D4245 '_3' (11) C8 A B4

x [66 (2cA - 4cA + cA ) + 95 (EA + 25A )]_1 .
zz,zz xz,xz xx,xx z,zzz x,xxx

(4.69)

vdW ; _140 51/2 420 —7 A

4255 ' 3 (3) Ca A B4

x [66 (2cA — 4 A + A + 95 (EA + 213A )]‘1 ,
zz,zz xz,xz xx,xx z,zzz x,xxx

(4.70)

and

vdW ; 700 261/2 420 —7 A

D4265 ‘ 3 (33) Ce A Bu

x [66 (2cA - A + A )+ 95 (EA + 215A )]‘1
zz,zz xz,xz xx,xx z,zzz x,xxx

(4.71)

The susceptibilities that appear in Eqs. (4.54) - (4.71) are

l t d t f n where BB — BBeva ua e a zero reque 0y. xz,xz ' zx,xz'
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Susceptibilities and van der Waals energy coefficients are

given in Table 4.4 for the H2...H2 system, so the dipole

coefficients can be determined from Eqs. (4.54) — (4.71) . We use

the vibrationally averaged separation <r> = 1.449 a.u. in the ground

state as the representative value for the internuclear distance in

the H2 molecule; the values in Table 4.4 are given for this

distance. The B tensor components were interpolated graphically to

r = <r> from the data of Dykstra [86]. who gives values over a range

of internuclear separations. Values for the E tensor components are

unavailable at the vibrationally averaged distance, but since they

only affect terms of A = 4 symmetry (which are small), they may be

estimated from their values at the equilibrium separation without

introducing significant error. The change in the B and C tensor

components upon increasing r from req to <r> averages to 7.05%.

Using this as a correction factor to the Mulder gt El; values [89]

gives €2,222 = 4.21 and Ex,xxx = 1.88.

Results for the van der Waals dipole coefficients are compared

with the induction coefficients in Table 4.5 for H2...H2. The van

der Waals contribution to D2211 is four times the induction

is about 60% of D1nd2021. Van der Waals effects

. . vdW

contribution, D2021

are very slight for the remaining coefficients. The induction

coefficients show an appreciable contribution from back-induction,

7 (to lowest order).even though these enter only at order R-

Interpretations of collision-induced spectra typically include only

the effects of quadrupole and hexadecapole induced dipole moments;

addition of back-induction terms may improve the agreement between

theory and experiment.
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In Table 4.6 are listed the susceptibilities and van der Waals

energy coefficients for the N2...N2 system. As discussed in Section

B of this chapter, the large discrepancy in the B4 values from Refs.

[86] and [87] precludes computation of the dipole coefficients that

depend on them. The remaining van der Waals dipole coefficients are

listed in Table 4.7 (values in parentheses were determined using the

results from Ref. [86] for the B tensor components), along with all

of the induction dipole coefficients. Inclusion of back-induction

effects is again seen to make an appreciable contribution.

Lastly, using the values in Table 4.4 for H and in Table 4.6
2

for N2, along with the result C200(H2...N2) = 29.28 a.u. [93], we

may determine Dggg1 for the H2...N2 system from Eq. (4.54). We find

vdW _ '7
D0001 — 169.4 (217.3) R , (4.72)

where the result in parentheses is based on the B tensor values from

Ref. [86]. For comparison, the induction dipole coefficient is

7
And = - 46.20 R_ . (4.73)

D0001

From these results it is clear the the van der Waals

contribution to the D dipole coefficient is much greater than

0001

the induction contribution.
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Table 4.4

Molecular properties and van der Waals energy coefficients used in

calculating DA1A2AL for the H2...H2 system. The internuclear

distance in each H2 molecule is held fixed at its ground-state

vibrationally averaged value of 1.449 a.u. All values are given in

atomic units.

Property Value Property Value

a e

H2 9 0.4847b H2 sz,zz 6.357e

0 0.3532 sz,xz 4.512e

a" 6.713 cxx xx 5.227

6L 4.736c Ez ZZZ 4.21f

B —1oo.31d E 1.88f
zz,zz d X, XXX

sz xz —61.44

' d 000 g
Bxx'zz 32.63 H2...H2 06 12.078

d 200 h
Bxx'xx 66.20 06 1.233

B -77.10d 0:20 0.398h

d 400 h
B2b 0.482 08 1.38

d 420 h
B20 4.02 ca 0.57

_ d
32d 4.02 d

Bu ~o.1o1

a) Ref. 83; b) Ref. 84; c) Ref. 91;

d) interpolated for r = <r> from data in Ref. 86; e) Ref. 88;

f) estimated for r = <r> from values in Ref. 89 (see text);

g Ref. 92; h) Ref. 93.V



 



Table 4.5

Comparison of van der Waals and induction contributions to the

D
A1A2AL

coefficients for the H2...H2 system. The internuclear

distance in each H2 molecule is held fixed at its vibrationally

average value of 1.449 a.u. All values are given in atomic units.

 

A1 A2 A Xfrzit DA::2)L

2 0 2 1 — 27.24 R'7 40.192 R_7

2 2 1 1 — 0.58 R_7 0.145 R"7

4 2 2 1 — 8.12 x 10‘Ll R-7 0.049 R_7

2 0 2 3 — 6.46 R‘7 — 4.529 R'A — 19.88 8'7

2 2 3 3 1.36 R-7 0.700 B'A — 3.828 R’7

4 0 4 3 — 0.07 3‘7 3.545 R‘7

4 2 2 3 - 1.11 x 10‘” R‘7 0.007 R_7

4 2 3 3 5.17 x 10'” B‘7 ~ 0.031 3‘7

4 2 4 3 — 1.12 x 10‘3 8‘7 0.068 R_7

4 o 4 5 o — 4.258 3'6

4 2 4 5 - 9.13 x 10'A 3'7 - 0.23 R_6 + 0.055 3‘7

4 2 5 5 4.62 x 10’3 B'7 2.36 R‘6 - 0.280 R'7

4 2 6 5 — 0.02 B'7 — 6.24 R'6 + 0.961 R"7
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Table 4.6

Molecular properties and van der Waals energy coefficients used in

calculating DA1A2AL for the N2...N2 system. The internuclear

distance in each N2 molecule is held fixed at its vibrationally

averaged value of 2.07 a.u. All values are given in atomic units.

Property Value Property Value

N2 0 -1.09a N2...N2 0200 73.88

¢ —7.47b 0:00 7.828

a“ 14.718C 0:20 2.678

@l 10.065c .

Bzz’zz —174d (~170.559)

sz,xz —102d (—105.35e)

Bxx,zz 67d (61.239)

Bxx xx -119.5d (—97.76e)

é ’ -132.4d (-122.9oe)

32b 2.95d (8.549)

B2c -7.21: (-12.42e)

52d —7.21 (—12.429)

Bu —1.13d (0.1876)

Ez'zzz 22.04:

EX'XXX 16.67

a) Ref. 94; b) Ref. 95; 0) Ref. 96; d) Ref. 87; e) Ref. 86; f) Ref.

93; 8) Ref. 97.
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Table 4.7

Comparison of van der Waals and induction contributions to the

DA1A21L coefficients for the N2...N2 system. The lnternuclear

distance in each N2 molecule is held fixed at its vibrationally

averaged value of 2.07 a.u. All values are given in atomic units.

 

A1 A 2 A A” D:211:2“. D232”

2 0 2 1 - 108.73 (- 187.61) 8‘7 - 423.05 8‘7

2 2 1 1 - 2.96 (- 5.10) 8'7 - 1.81 3'7

4 2 2 1 — - 0.61 3’7

2 o 2 3 — 46.73 (— 25.83) R'7 21.93 R'” + 207.21 8'7

2 2 3 3 4.80 (6.33) 8'7 - 3.70 13‘“ + 43.69 8‘7

A 0 4 3 — - 40.41 R_7

4 2 2 3 - - 0.08 8'7

4 2 3 3 - 0.39 8'7

4 2 4 3 - - 0.85 8‘7

4 0 4 5 0 194.03 8'6

4 2 4 5 - — 2.12 8'6 — 0.69 8'7

4 2 5 5 — - 49.12 8‘6 + 3.48 8‘7

4 2 6 5 - 76.30 3'6 — 11.97 R'7



 



CHAPTER 5. DISCUSSION AND CONCLUSIONS

One contribution to the collision-induced changes in the

energy, dipole moment, and polarizability of a molecular pair comes

from the van der Waals interactions between the colliding partners.

The van der Waals interaction arises from the correlations in the

fluctuating charge distributions of the two molecules, which at long

range can be characterized by a multipole expansion. The

correlations are then connected to the susceptibilities of the

individual molecules by use of the fluctuation-dissipation theorem.

Application of an external static field alters the response of

each molecule to the fluctuating field of its neighbor, and induces

new correlations between the fluctuating charge distributions on

each molecule. A reaction field model incorporating these effects

was developed in Chapter 2, and expressions for the long-range van

der Waals dipole and polarizability of a molecular pair were

derived. Field-induced fluctuation correlations have not been

included in earlier models of the van der Waals contribution to pair

dipoles and pair polarizabilities.

Previous methods of calculating dispersion dipoles [53-55] have

been based on use of the fluctuation-dissipation theorem. One

method [55] accounts for the polarization of molecule A bilinear in

the field due to the fluctuating multipoles of molecule B and the

external field E. The polarization of A sets up a reaction field at

B, producing a shift in energy that depends on the magnitude and

direction of E, The energy shift at A is found similarly, and the

van der Waals dipole is obtained by differentiation of the total

91
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interaction energy, as in Eq. (2.31). However, in calculating the

energy shift, the external field is restricted to a region around

molecule A and vanishes at molecule B. Thus the field-induced

fluctuation correlations included in this dissertation are not

present in the method of Ref. [55]. In a second method [53-55], the

van der Waals dipole induced in each molecule is computed directly

from its nonlinear polarization by the nonuniform field of the

fluctuating multipoles of the neighboring molecule, in the absence

of any external field. For a pair of S state atoms A and B, the

dipole induced in A is expressed in terms of an integral over the

frequency w of the product aB(w) BA(w,-w). But the hyper-

polarizability BA(w,-w) has poles in both the upper and lower w half

planes, which prevents a straightforward application of the residue

theorem to evaluate the integral (see Eqs. (2.23) - (2.25)). This

problem is avoided here, because the model gives an expression for

the interaction energy that depends upon the linear response of

each molecule, as modified by the presence of the external field.

For a pair of S state atoms, the van der Waals dipole given in

Refs. [53-55] is equivalent to Eq. (3.5) of the dissertation, but

the derivations differ in physical content. Symmetry-adapted

equations were derived in Sections B and C of Chapter 3 for the

leading induced dipole coefficients of collision systems comprising

an atom and a centrosymmetric linear molecule or a pair of

centrosymmetric linear molecules. These results are new, and

provide a basis for comparison of the van der Waals and induction

contributions to collision-induced dipole moments. Application of

an approximation technique, in which the dipole coefficients are
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expressed in terms of static susceptibilities and van der Waals

energy coefficients, was carried out in Chapter 4. Results for the

model systems H...H; and H...He show this approximation method gives

agreement with accurate perturbation calculations to within 15%.

Analogous approximations give numerical estimates to the van der

...HWaals dipole for the systems He...H2, He...N2, H 2, H N and2... 2,

N2...N2. When compared with the induction dipole, the dispersion

2

contribution is seen to be significant for certain symmetry

components, particularly D (for He...H2) and D (for H2...N2).
O1 0001

Given the high accuracy now possible in measurements of the roto-

translational absorption spectra of atom-diatom and diatom-diatom

complexes, it is necessary to account for van der Waals effects in

order to obtain agreement between theoretical and experimental

lineshape analyses.

This dissertation opens many avenues for future studies. The

van der Waals dipole moments of more systems may also be estimated,

as values for their susceptibility tensors and van der Waals

energies become available. Improved approximations could also be

developed, possibly using Pade approximants for the susceptibil-

ities, or combination rules to estimate the dipole of a system based

on the values for related systems. Ideally, direct ab initio

calculations based on the integral equations would give the best

results.

Eq. (2.37) gives results for the van der Waals contribution to

the polarizability of a pair of centrosymmetric molecules; Eqs.

(2.47) and (2.48) specialize this to an atom pair. The same

techniques that were used in deriving the van der Waals dipoles of
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Appendix A. Equivalence of Reaction Field and Perturbation Results

for Long-range Dipole Moment of Two S State Atoms

Craig and Thirunamachandran [60] have shown directly from two-

center, third-order perturbation theory that the van der Waals

dipole of interacting S state atoms A and B at long range is

A

048 .018

AB

uvdW

_.§

5 =
l
|
:
U
)

3‘7 f: dm [BB (16) a$Y(iw)] (A.1)
. A . _ —

aB,aB(lw) aYY(1w) B

in atomic units (h = 1). The dipole-quadrupole hyperpolarizability

E(iw) is defined as

 

 

 

60m mn no 60m mn no

B (16) — z [ “A “Y “A + “A “Y “A
‘ ———T‘ _TaB,Y6 m,n EnO(EmO 1 w) EnOAEmO + 1 w)

60m mn n0

+ a8 “6 Y

(EnO - 1hw)(EmO - ihw)

60m mn n0

+ a8 “6 “Y

(Bno + iRw)(BmO + £80)

uOm ~mn Lln0 uOm émn un0

+ (E6 -a§5m)E + (E(3 +a§hw)E ] (A'2)

n0 m0 n0 m0

The matrix element 022 is [58-60]

émn = < w I —-l 2e (r. r. - 1-6 r?) I w > (A-3)
as m 2 = 30 JB 3 as J n

95
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for an atom with ne electrons. Matrix elements of the quadrupole

mn . . . . . ~mn

operator 9&8 used in this dissertation are three times Qas'

Ignoring damping, which is negligible at imaginary frequencies,

Ba8,Y6(O’lw) 18 [98-100]

(0,16) = 3 B (m) . (A.4)
BaB,Y6 Y6,a8

Then from the relations

13 (on—£13m» (A)68.03 , w — 2 ,1w .5

(A.6)aYY(im) = 3 a(iw) ,

it follows that Eq. (A.1) is equivalent to Eq. (3.5).
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Appendix B. Frequency-dependent B and E Tensors for Linear Molecules

We seek expressions for the frequency-dependent B and E tensors

for a linear molecule, in terms of the orientation of the molecule

with respect to the laboratory frame of reference. Beginning with

the B tensor, we can in general write

BaB,Y6(o’iw) = a0!i aBj aYk a51 Bij,kl(o’im) , (8.1)

where a, B, Y, and 6 are the space-fixed laboratory axes, and i, j,

k, and l are molecular axes; the aai are direction cosines between

the two frames.

g is a fourth-rank tensor with 81 cartesian components (for

simplicity only the subscripts ij,kl are written):

xx,xx xx,xy xx,xz xx,yx xx,yy xx,yz xx,zx xx,zy xx,zz

xy,xx xy,xy xy,xz xy,yx xy,yy xy,yz xy,zx xy,zy xy,zz

xz,xx xz,xy xz,xz xz,yx xz,yy xz,yz xz,zx xz,zy xz,zz

yx,xx yx,xy yx,xz yx,yx yx,yy yx,yz yx,zx yx,zy yx,zz

yy,xx YY3XY YY:XZ yy,yx YY’YY YY»YZ YY:ZX YY:ZY YY,ZZ

yz,xx yz,xy yz,xz yz,yx yz,yy yz,yz yz,zx yz,zy yz,zz

zx,xx zx,xy zx,xz zx,yx zx,yy zx,yz zx,zx zx,zy zx,zz

zy,xx zy,xy zy,xz zy,yx zy,yy zy,yz zy,zx zy,zy zy,zz

zz,xx zz,xy zz,xz zz,yx zz,yy zz,yz zz,zx zz,zy zz,zz

For an axially symmetric molecule, components with a single x, y, or

z vanish, leaving

xx,xx xx,yy xx,zz

xy,xy xy,yx
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xz,xz xz,zx

yx,xy yx,yx

yy,xx YYvyy yy,zz

yz,yz yz,zy

zx,xz zx,zx

zy,yz zy,zy

zz,xx zz,yy zz,zz

The B tensor is symmetric with respect to interchange of quadrupole

indices, so

xy,xy = eryX . yx,xy = yx,yx ,

xz,xz = xz,zx , zx,xz = zx,zx , (B.2)

yz,yz = yz,zy , zy,yz = ZY.ZY 9

leaving the following representative components:

xx,xx yy,xx zz,xx xy,xy yx,xy xz,xz zx,xz

xx,yy yy,yy zz,yy yz,yz ZY.YZ

xx,zz yy,zz zz,zz

Because the molecule is symmetric about its 2 axis, rotating the x

axis onto the y axis and the y axis onto the -x axis leaves 2

unchanged. Thus

xy,xy = yx,yx , xx,xx = YY3YY :

xz,xz = yz,yz , zx,xz = zy,yz ,

yy,xx = xx,yy , zz,xx = zz,yy , (B.3)

xx,zz = yy,zz ,

leaving the following representative components:

xx,xx (= YY,YY)

zz,xx (= zz,yy)

xy,xy (= xy,yx = yx,xy = yx,yx)

 



 



xx,yy (=

xz,xz (=

zx,xz (=

xx,zz (=

zz,zz

We note that B

yy,xx )

xz,zx =

zx,zx

yy,zz )

88,77 =

zz,xx + zz,yy + zz,zz

and

xx,xx + xx,yy + xx,zz

99

y2.zy = yz,yz)

zy,zy = zy,yZ)

0. So

= 0 => zz,xx = - %~zz,zz , (8.4)

= 0 => xx,yy = - xx,xx - xx,zz . (8.5)

We consider now an arbitrary rotation of the x and y axes about the

z axis. The unit vectors in the new primed coordinate system can be

expressed as

X'

y!

z!

where 0

= x 0030 + y sino

= - x sin¢ + y 0050

=Z

is the rotation angle. We have from Eq. (8.1)

xy,xy = xx' yx' xx' yx' x'x',x'x'

+
xx' yx'

xx' yx'

xx' yx'

XX' yy'

XX' yy'

XX' yy'

XX' YY'

xy' yx'

xy' yx'

xy' yx'

xx'

xy'

xy'

xx'

xx'

xy'

xy'

xx'

xx'

xy'

yy'

YX'

yy'

YX'

YY'

yX'

yy'

yX'

yy'

yX'

x'x'

x'x'

.X'y'

’yix'

’ylx'

V ’yly'

,x'x'

,X‘y'

,yVXI



 



+ xy' YX'

+ xy' yy'

+ xy' yy'

+ xy' yy'

+ xy' yy'

Just as in the

y' vanish, leaving

yy'

yX'

yy'

YX'

yy'

unprimed system, those components with a single x' or

xy,xy = xx' yx' xx' yx' x'x',x'x'

+ xx' yx'

+ XX' YY'

+ XX' YY'

+ xy' YX'

+ xy' YX'

+ xy' yy'

+ xy' yy'

xy'

xx'

X'X'

x'y'

x'y'

.y'y'

.x'y'

’y'x'

The same rotation and index interchange properties hold, so we have

stxy =

[XXI yx' XX' YX' + XY' yyv xy' ny] x'x',x'x'

+ [xx' yx' XY' yy' + XY' yy' xx' yX'J x'x'.y'y'

+ [xx‘ yy' xx' 77' + XX' yy' xy' yx'

+ xy' YX' XXI yyv + xy' YX' xy' yx'] vav’xvyv .

Now the direction cosines are

xx' = 0030 , xy'

YX' = 3109 . yy'

Thus

2

xy,xy = [2 cos 0

= -sin¢ ,

= 0030 .

2 2

sin 0] x'x',x'x' — [2 cos 0 sin2¢] x'x',y'y'

+ [cosuo - 2 00520 sin2¢ + sinuo] x'y',x'y'
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Setting 6 = 45° (any value of 0 leads to the same result, as it

must) gives

xy,xy - é-x'x',x'x' -‘% X'X',Y'Y'

= x'x',x'x' + % x'x',z'z'

= xx,xx + é—xx,zz . (8.6)

Using the 21 nonzero components in Eq. (8.1) gives

aB,Yd = ax Bx Yx dx xx,xx + ay By Yx dx yy,xx + az Bz Yx dx zz,xx

+ ax By Yx dy xy,xy + ay Bx Yx dy yx,xy

+ ax Bz Yx dz xz,xz + az Bx Yx dz zx,xz

+ ax By Yy dx xy,yx + ay Bx Yy 6x yx,yx

+ ax BX YY 5y xx,yy + ay BY YY 5y YY,YY + dz 82 YY 5V zz,yy

+ ay 82 Yy dz yz,yz + az By Yy dz zy,yz

+ ax Bz Yz dx xz,zx + oz Bx Yz dx zx,zx

+ ay 82 Yz dy yz,zy + az By Yz dy zy,zy

+ ax Bx Yz dz xx,zz + ay By Yz dz yy,zz + az Bz Yz dz zz,zz .

Making use of Eqs. (8.2) through (8.6) gives

aB,Yd = ax Bx Yx dx xx,xx - ay By Yx dx (xx,xx + xx,zz)

1

-'§ az Bz Yx dx zz,zz

+ ax By Yx dy (xx,xx +-% xx,zz)

+ my Bx Yx dy (xx,xx + é-xx,zz)

+ ax Bz Yx dz xz,xz + az Bx Yx dz zx,xz

+ ax By Yy dx (xx,xx + % xx,zz)

+ ay Bx Yy dx (xx,xx + é—xx,zz)

- ax Bx Yy dy (xx,xx + xx,zz) + ay By Yy dy xx,xx

- é-az Bz Yy dy zz,zz

+ ay 82 Yy dz xz,xz + az By Yy dz zx,xz

+ ax Bz Yz dx xz,xz + az Bx Yz dx zx,xz
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+ oy Bz Yz dy xz,xz + oz By Yz dy zx,xz

+ ox Bx Yz dz xx,zz + oy By Yz dz xx,zz

+ oz Bz Yz dz zz,zz

xx,xx [ox Bx Yx dx — oy By Yx dx - ox Bx Yy dy + oy By Yy dy

+ ox By Yx dy + oy Bx Yx dy + ox By Yy dx + oy Bx Yy dx]

+ xx,zz [ox Bx Yz dz + oy By Yz dz - oy By Yx dx - ox Bx Yy dy

+ é-(ox By Yx dy + oy Bx Yx dy + ox By Yy dx + oy Bx Yy dx)]

+ xz,xz [ox Bz Yx dz + oy Bz Yy dz + ox Bz Yz dx + oy Bz Yz dy]

+ zx,xz [oz Bx Yx dz + oz By Yy dz + oz Bx Yz dx + oz By Yz dy]

+ zz,zz [oz Bz Yz dz - % oz Bz Yx dx - é-oz Bz Yy dy] . (8.7)

We must now cast this equation into the same form as Buckingham

[74]. Working in reverse from Buckingham's expression for BoB,Yd one

can easily verify that the terms involving the components xx,xx and

xx,zz and zz,zz are in agreement. (Note that oz = Fo etc.) Thus

Buckingham's equation remains unchanged for those components. The

affected components are xz,xz and zx,xz. In the static case these

are equal to each other; in the frequency dependent case they are

not. Looking at the xz,xz term of Eq. (8.7), we can write

xz,xz [Bz Yz (ox dx + oy dy) + 82 dz (ox Yx + oy Yy)]

= xz,xz [- 2 oz 82 Yz dz

+ 82 Yz (ox dx + oy dy + oz dz)

+ 82 dz (ox Yx + oy Yy + oz Yz)]

= xz,xz [- 2 oz 82 Yz dz + 82 Yz 6o + 82 dz 6o. .1

= xz’xz [5 (667 688 + 666 68)!) — T: (SOLE 6Y6

— 2—12£(3 oz Bz — 8&8) dYG + (3 Y2 dz - dYé) sag]

- 5% [(3 oz Yz — 6oY) (586 + (3 oz dz — dod) GBY]

+ 2—15 [(3 82 72 — 8m) 8&5 + (3 82 dz - (586) 8a,]
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- 2 oz 82 Yz dz

2

+ 7—(oz 82 6Yd + oz Yz 586 + oz dz dBY

+ 82 Yz 6od + 82 dz 5oY + Yz dz 6&8)

6 6 + 6
(608 6Y6 + oY Bd od 587)]

_ _E

35

Similarly the zx,xz term can be expressed as

zx,xz [oz Y2 (Bx dx + By dy) + oz dz (BX YX + By YY)]

= zx,xz [ - 2 oz 82 Yz dz

+ oz Yz (Bx dx + By dy + Bz dz)

+ oz dz (Bx Yx + By Yy + 82 Yz)]

= zx,xz [ - 2 oz 82 Y2 62 + oz Yz 686 + oz dz dBY]

= zx’xz [5 (567 686 + 6&6 587) ' 1% 6GB 578

- 5% [(3 oz 82 - dag) 6Yd + (3 Y2 dz - 6Y6) 6GB]

+-§% [(3 oz Yz - daY) 6Bd + (3 oz dz - God) dBY]

— 5% [(3 82 Yz - dBY) God + (3 82 dz — 586) daY]

— 2 oz Bz Yz dz

+ é-(oz 82 6Yd + oz Yz d86 + oz dz dBY

+ 82 Yz daé + B2 dz doY + Yz dz 5oB)

2

35 (6o8 6Yd + 5oY 686 + 6od 687)]

Putting these results together gives finally the following equation

for the frequency-dependent 8 tensor of a linear molecule:

_3 (B + 28 + 28 + B + 48 )

zz,zz xz,xz zx,xz xx,zz xx,xx

+ 6

8&8’86(0,iw) =

.
.
.
;

15

3 _ _

x [4 (587585 66587) 2 6&86Y6]

—-—g (B + B + B — 3B - 4B

21 zz,zz xz,xz zx,xz xx,zz xx,xx

x (3 Po rB- dag) dY6

+ —1-(3B — 4B — 48 + 268 + 168 )
42 zz,zz xz,xz zx,xz xx,zz xx,xx

x (3 r7 r6- 6Y6) 6&8

1

+ 42 (3822,22 quz,xz + 10Bzx,xz 98xx,zz 128xx,xx)



   
‘A‘vau’A“A"I".
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x [(3 I86) 187 _ 567) 686 + (3 [a 66 — 6&6) 687]

+ 42 (3Bzz,zz + 10sz,xz — uBzx,xz — 9Bxx,zz _ 128xx,xx)

x [(3 98 [Y — 687) 6&6 + (3 F8 F6 ' 686) GoY]

+ 7% (3Bzz,zz - quz,xz — uBzx,xz - 2Bxx,zz + 2Bxx,xx)

x [35 1“"61 rq8 1[7 [8 ' 5 (9o IQ8 576 + r16 r81 686

A A A A + A A

+ ra rd dBY + rB rY God r8 r6 GoY

+ rY r5 6&6) + daBdYG + 6aY685 + 566587] , (8.8)

where the frequency dependence of each 8 component on the right side

of the equation is understood.

We now consider the E tensor. Just as in Eq. (8.1) we can

write

(10)) = a a (iw) . (8.9)
Eo,BY6 oi 83 37k adl Ei,jkl

E is also a fourth-rank tensor with 81 cartesian components. For an

axially symmetric molecule, components with a single x, y, or z

vanish, leaving

x,xxx x,xyy x,xzz

x,yxy x,yyx

x,zxz x,zzx

Y.XXY Y,XYX

y.YXX Y»YYY y,yzz

y,zyz Y,ZZY

z,xxz z,xzx

z,yyz z,yzy

z,zxx z,zyy z,zzz

The E tensor is symmetric with respect to interchange of any two

octopole indices, so



 
-'.':-:. ’-.-'=J 50 .

 



lOS

x,xyy = x,yxy = x,yyx v

x,xzz = x,zxz = x,zzx

y,xxy = y,xyx = y,yxx , (8.10)

Y»YZZ = y,zyz = y,zzy .

z,xxz = z,xzx = z,zxx ,

Zuyyz = Z,YZY = Z,zyy ,

leaving the following representative components:

x,xxx x,xyy x,xzz

Y:XXY y,yyy y,yzz

z,xxz z,yyz z,zzz

Because the molecule is symmetric about its 2 axis, rotating the x

axis onto the y axis and the y axis onto the -x axis leaves E

unchanged. Thus

x,xxx = y,yyy .

x,xyy = y,yxx (= y,xxy) , (13.11)

x,xzz = y,yzz ,

z,xxz = z,yyz ,

leaving the following representative components:

x,xxx (= Y.YYY)

x,xyy (= x,yxy = x,yyx = y,xxy = y,xyx = y,yxx)

x,xzz (= x,zxz = x,zzx = y,zzy = y,zyz = y,yzz)

z,xxz (= z,xzx = z,zxx = z,zyy = z,yzy = z,yyz)

z,zzz

I We now consider an arbitrary rotation of the x and y axes about the

z axis. The unit vectors in the new, primed coordinate system can

be written

x' = x cos¢ + y sin¢
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where ¢ is th e angle of rotation . Us'in8 E q . (B .9) , and n ot'ing th at

component 3

w‘

1th a 31ngle x
v, y!

or z' va

n'

ish just as in th e unPP'1med

3ys tem , we hav e

X ,XW xx' X
X!

YX' yX'
X'

,X'
Xv x!

+
x
X'

+ x xx'x' YY'

+ X xx'

x' yz'

+ x xy'x' yx'

+ x xy'

x' YY'

xz' YX'

4.
xx' xz' y2'

+
xz'

+ xz xx' y
V

+
x

xx'

yx'

2' Z+ x xy' y '

z!

+ x xy' yy'2' z+ X xz' y '

z' x

+ x xz' y '
z!

xz' yy'
Z!

we no ti ce that xz'

YY'

YZ'

H“

x!

.X'
y! y!

.X'
z! z!

.Y'
x! y!

.y'
y! X'

.Z'
X' Z'

.Z'
Z' X!

.X'
X! y'

,X'
y! X!

.y'
X! X!

.y'
y! y!

.Y'
z! Z!

.2'
y! 2'

.2'
z! y!

.X'
x! Z'

.X'
z! x!

.Y'
y! Z'

.y'
Z! Y'

,Z'
X! X'

,2'
y! y!

.Z' 2'2
1

= O . Th e ab 0ve reduc es to
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x,xyy = xx' xx' yx' yx' x',x'x'x'

+ xx' xx' yy' yy' x',x'y'y'

+ xx' xy' YX' YY' x',y'X'y'

+ xx' xy' yy' yx' x',y'y'x‘

+ xy' xx' yx' yy' y‘,x'x'y'

+ xy' xx' yy' yx' y',x'y'x'

+ xy' xy' yx' YX' Y'.Y'X'x'

+ xy' xy' yy' yy' y1,y'y'Y'

x,xyy = [xx' xx' yx' yx' + xy' xy' yy' yy'] x',x'x'x'

+ [XX' xx' yy' yy' + XX' xy' yx' yy'

+ xx' XY' yy' yx' + xy' xx' yx' yy'

+ xy' xx' yy' yx' + xy' xy' yx' yx'] x',x'y'y' .

The direction cosines are

xx' = cos¢ , xy' = — sin¢ ,

yx' = sin¢ , yy' cos¢ .

Thus

x,xyy = 2 cosz¢ sin2¢ x',x'x'x'

+ [cosuo - 4 coszo sin2¢ + sinu¢1 x',x'y'y' .

Letting ¢ = 45°, we have

x,xyy = % x',x'xlxl _ % x',x'y'y'

01"

1

x,xyy =-§ x,xxx, (8.12)

leaving as representative components:

x,xxx (= Y»YYY = 3 x,xyy = 3 x,yxy = 3 x,yyx

= 3 y,xxy = 3 y,xyx = 3 y.yxx)

x,xzz (= x,zxz = x,zzx = y,zzy = y,zyz = y,yzz)

z,xxz (= z,xzx = z,zxx = z,zyy = z,yzy = z,yyz)
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z,zzz

Now, Ea,BYY = 0. So

z,xxz + z,yyz + z,zzz = 0 => z,xxz = - % z,zzz , (8.13)

and

11
x,xxx + x,xyy + x,xzz = 0 => x,xzz = - g-x,xxx . (8.14)

Using the 21 nonzero components in Eq. (8.9) gives

a,BYd = ax Bx Yx dx x,xxx + ax Bx Yy dy x,xyy + ax Bx Yz dz x,xzz

+ ax By Yx dy x,yxy + ax By Yy dx x,yyx

+ ax Bz Yx dz x,zxz + ax Bz Yz dx x,zzx

+ ay Bx Yx dy y,xxy + ay Bx Yy dx y,xyx

+ my By Yx dx y,yxx + ay By Yy dy y,yyy + ay By Yz dz y,yzz

+ ay Bz Yy dz y,zyz + ay 82 Yz dy y,zzy

+ az Bx Yx dz z,xxz + az Bx Yz dx z,xzx

+ az By Yy dz z,yyz + az By Yz dy z,yzy

+ a2 82 Yx dx z,zxx + oz 82 Yy dy z,zyy + a2 82 Y2 dz z,zzz .

Making use of Eqs. (8.10) - (8.1”) gives

a,BYd = ax Bx Yx dx x,xxx +~l ax Bx Yy dy x,xxx - B-ax Bx Yz dz

3 3

x,xxx

1 1

+‘g ax By Yx dy x,xxx +-§ ax By Yy dx x,xxx

-'% ax Bz Yx dz x,xxx - % ax Bz Yz dx x,xxx

+'% ay Bx Yx dy x,xxx + % ay 8x Yy dx x,xxx

+.% ay By Yx dx x,xxx + ay By Yy dy x,xxx - g-ay By Y2 dz x,xxx

— g-ay Bz Yy dz x,xxx - % ay 82 Yz dy x,xxx

- é—az Bx Yx dz z,zzz - %-a2 Bx Yz dx 2,222

1

— E'GZ By Yy dz z,zzz - é-az By Yz dy z,zzz

— é-az Bz Yx dx z,zzz - % a2 82 Yy dy z,zzz + a2 62 Yz dz z,zzz
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a,BYd = x,xxx [ax Bx Yx dx + % (ax Bx Yy dy + ax By Yx dy + ax By Yy

dx

+ ay Bx Yx dy + my Bx Yy dx + my By Yx dx)

—-% (ax Bx Yz dz + ax Bz Yx dz + ax Bz Yz dx

+ ay By Yz dz + ay 82 Yy dz + ay Bz Yz dy) + ay By Yy dy]

+ z,zzz [az Bz Yz dz - é-(az Bx Yx dz + a2 Bx Yz dx + az By Yy dz

+ az By Yz dy + az Bz Yx dx + a2 82 Yy dy)] . (8.15)

This equation must now be expressed in terms of the orientation of

the molecular symmetry 2 axis with respect to the lab frame. Note

that Fa = az, etc. Looking first at the z,zzz term in Eq. (8.15),

we have

z,zzz [az Bz Yz dz - é-(az Bx Yx dz + a2 Bx Yz dx + az By Yy dz

+ a2 By Y2 dy + az Bz Yx dx + az Bz Yy dy)]

= z,zzz [% a2 Bz Yz dz - % (az Bx Yx dz + az By Yy dz + a2 Bz Yz dz)

-‘% (az Bx Yz dx + az By Yz dy + a2 82 Y2 dz)

- % (a2 82 Yx dx + az Bz Yy dy + a2 Bz Yz dz)]

=zzzz[§rarBrYrd-lrarBd -lf"arYd ~lrardd]
’ 2 2 Y6 2 Bd 2 BY

(8.16)

Next, the x,xxx term of Eq. (8.15) is

x,xxx [ax Bx Yx dx + é-(ax Bx Yy dy + ax By Yx dy + ax By Yy dx

+ ay Bx Yx dy + my Bx Yy dx + ay By Yx dx)

--5 (ax Bx Y2 dz + ax Bz Yx dz + ax Bz Yz dx

3

+ ay By Yz dz + ay 82 Yy dz + ay 82 Yz dy) + my By Yy dy]
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= x,xxx [g—(ax Bx Yx dx + ax Bx Yy dy + ax Bx Yz dz)

4
.

Bx Yx dx + ax By Yx dy + ax Bz Yx dz)A Q X

+ (ax Bx Yx dx + ax By Yy dx + ax Bz Yz dx)

Bx Yx dy + ay By Yy dy + ay Bz Yz dy)

A Q ‘
<
:

Bx Yy dx + ay By Yy dy + ay Bz Yy dz)6
‘

'
~
<

By Yx dx + ay By Yy dy + ay By Yz dz)A Q ‘
<

A Q N Bx Yz dz + my By Yz dz + az Bz Yz dz)

Bz Yx dz + ay 82 Yy dz + oz 82 Yz dz)A Q X

82 Yz dx + ay 82 Yz dy + az Bz Yz dz)A Q N

+ m
w
l
m
w
l
m

(
.
0
a
n
w
|
—
-
w
|
—
-

b
o
t
—
d
w
i
g

(
”
'
_
.

az Bz Yz dz]

1

d 3 36+?“x‘5x‘ssv

+

|

Q X .
<

X o
;

= x,xxx [l-ax Bx dY

3

1 1 1

+§ay5y561r+3aywdsd+3o‘ygy6Yd

5 _ 2 _ 2
E—Yz dz 6aB 3 82 dz 6aY 3 82 Y2 Gad

+ 5 dz Bz Yz dz]

1 1 1

— x,xxx [g-éaB dY5 + 3 6ad 686 + 3 add dBY

_ 2 - 2 _ 2
3 Y2 dz 6aB 3 82 dz 6aY 3 82 Yz 5ad

1 1 _ l

g az dz dBY g-az Yz d86 3 a2 82 6Yd

+ 5 oz Bz Yz dz]

1 1 1

=X'XXX [§ 6018 6Yd+§6aY GBd+§6ad BY

-2» ~ -5» . _2- ~
3 rY rd 6aB 3 r8 rd 6aY 3 r6 rY dad

— g-ra rd dBY 3 re rY 68d 3 rd rB dY6

+590. 913m 95]. (13.17)

Finally, we can express the frequency-dependent E tensor for a

linear molecule in terms of the orientations of its symmetry axis as

. _ l . - . . .
Ea’smum) — 3 Ehxxxm) [15 rd rB rY rd
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dB Yd + GGY 686

 

a BYd(iw) = 1? [Ez,zzz(iw) + 2 Ex,xxx(iw)] [35 1"‘01 1$8 FY F‘d

' 5(901 PB 6Y6 ’"a 91! dd J" P01 96 68Y

+ 98 9Y ad 9B 96 6dY l’AY f:6 6&8)

+ 6a8 6Yd + 6(W 686 + 5ad 6BY]

_ %§ [3 Ez,zzz(iw) — 8 Ex,xxx(iw)] [(3 fa faB — 608) 6Yd

+ (3 901 r11r ' 6w) 686 + (3 Fa f‘d _ 601d) 68v]

+ 126 [3 Ez,zzz(iw) _ 8 Ex,xxx(iw)] [(3 1QB l’AY — SBY) 6ad

+ (3 98 96 - 586) 5w + (3 FY 96 — 5195013] . (8.18)
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Appendix C. Expanding a Function in Spherical Harmonics

We want to determine the symmetry-adapted expressions for the

dipole coefficients using the Cartesian expansions in Eqs. (3.19)

and (3.u7) for VDWZ, and in Eqs. (3.35) and (3.71) for INDZ. These

depend upon several different types of products of the unit vectors

9 and R. This appendix will show a method to express these factors

in terms of spherical harmonics; we then can easily find DISH and

D1nd from Eqs. (3.22) and (3.36), and Dde and Dind from Eqs.
AL )1A2AL )1AZAL

(3.“9) and (3.72). One type of Cartesian term is simply 82. We can

write

R2 = R coseR ,

where OR is the angle that the vector B_makes with the space—fixed z

axis. Now

10(9) = (un)‘1/2
O

o A _ §_ 1/2
Y1(R) — (Mn coseR ,

SO

Mn

Rz ' 1/2

0 o A

R Y (F) Y (R) . (0.1)

(3) O 1
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A more complex example is the factor 98 az RB' This can be

expanded in spherical harmonics as

a(A, L) Ym(r) Y;m(R) C(AL1; m, -m) . (C.2)

where the a(),L) must be determined. We consider first A = 2 and L

= 1 (A > 2 or L > 1 need not be considered). We integrate Eq. (C.2)

" X-

with [yg(?) Y?(R)] , where

o . 1/2 2

Y2(r) = (m) (3 cos Or, - 1)

o‘_31/2 2
Y1(R) — (Mn) cos OR .

The right hand side of Eq. (C.2) is just a(2,1) C(211;00), while the

left hand side becomes

0. 0‘ *
fan fdQRrBrZRB [Y2(r) 11102)]

1/2

_ (15) - - 2 _
— -—§;—-— f er f dQR r8 r2 R8 (3 cos er 1) coseR

—iflfanse(3fir~—1)Idafifia (c3)
‘ 8n r B 2 z 2 R B z ' '

The first integral in the above, I er rBrzrzrz, is the 8222

component of an isotropic fourth rank tensor, with all indices

interchangeable:





11”

f d9 r r r r = A (dasdY6 + 6aYéBd + GadéBY)

We compute A from

A A A A _ 2n fl . U
f er rzrzrzr — 3 A — f0 d¢ f0 Sine cos 0 d0

_ 2 _ UN
— 2n 5 — 5

So

I an 1 a a a - 3 A 5 — 51 5 (c u)
r PB 2 z z - Bz _ 5 Bz ' '

The next integral is

A A = '

f er rBrz A GBZ

with

2w fl . 2 2 4n
' = = I — = _A f0 dd f0 San cos 9 d0 2n 3 3

Thus

I d9 6 9 = 31-5 = I an fi i (c 5)
r B z 3 82 R B z ' '

Using Eqs. (C.u) and (C.5) in Eq. (C.3) results in

A A o . o “ *
f amp I dQR r8 r2 RB [Y2 (r) Y1 (3)]

1/2

_ ilél___ . £1 - £1 £1
‘ 8n [3 5 68z 3 6Bz] 3 682 R
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 _ (15)”2 . 16H

‘ 2

= —§"—1/—2 R = a(2,1) c(211;oo)

3(15)

1 8n

=> a(2,1) =——,—o————R (c.6)
C(211,00) 3(151/2

Is there a contribution from A = 2, L = O in Eq. (C.2)? No, since

C(201;m,-m) = 0. There may be a contribution from A = 1, L = 1.

c *

Integrating with [Yj’fifl Y?(R)] , the left hand side of Eq. (C.2)

becomes

A A O A 0 A *

f er f an r8 r2 RB [Y1(r) Y1(R)]

3 A A

fl; f er f dQR rB rZ RB coser 0030

3 A A A A A

W I er PB P2 {‘2 f dQR RB RZ R .

R

But the first integral vanishes no matter how B is chosen. Thus

there is no contribution from A = 1, L = 1. Similarly, the A = 1, L

= O instance makes no contribution. What about A = O, L = 1?

. . o A o A * .
Integrating With [Yo(r) Y1(R)] gives

- A 0. 0‘ *
fdnrfanr r R [Y0(r) Y1(R)]

 

8 z B

(3)“2 . -
= ——E;—— f er f dQR PB rz RB COSGR

1/2 . A
_ (3) A A

- ”n f er PB r'z f dQR RB R2 R

ALL/3.111, .in, R
_ Mn 3 82 3 82

= JET/7 R = a(O,1) C(O11;OO)

3(3)

-> (O1)~——-1——--—lil——R (C7)
‘ a ' ~c(o11;00) 1/2 ' ‘

3(3)



il'-H. (.:,? ‘-

1 new) noiaudt1$nnfi ,¢_‘

   
a;

' ‘..

- «'1

par zfia'TT J! ' ('c“;I

-

'. ..'; _l'.‘ ..'.l-I;

...
- . - (8.. - J51 artisslaxll “ns'.*

'

1
..'v,l.”' .- _-

utmoosd
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Finally, there is no contribution from A = O, L = 0 since

C(001;m,-m) = 0. Using Eqs. (C.6) and (C.7) in Eq. (C.2) gives

1 -

n n R = z a(2,1) YEW») Y1m(R) C(211;m,-m)

m=-1

o- 0‘
+ a(0,1) Y0(r) Y1(R) C(011;OO)

1

1 8n m A -m A
2 —_—— -— R Y (r) Y (R) C(211;m,-m)
=_1 C(211,00) 3(1,5)1/2 2 1

1 Mn 0 A O A

+m 'W R Yo(f‘) Y1(R) C(011;00) o (C.8)

Using this method, expansions of all the Cartesian terms were

carried out. These were then inserted into the expressions for VDWz

and INDZ, which were used in Eqs. (3.22). (3.36), (3.N9), and (3.72)

to yield the symmetry-adapted dipole coefficients D and D .

AL A1A2AL
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Appendix D. Clebsch-Gordan Coefficients

Clebsch-Gordan coefficients are used in combining states of

different angular momentum. Suppose that we want to add two

commuting angular momentag1 and £2. The product ket

|J1sz1m2> = IJ1m1>132m2> . (D.1)

where |j1m1> and |j2m2> are eigenvectors of if and g: respectively,

constitutes a basis in the product space. From this basis, we can

construct a new basis which comprises the eigenvectors of Jz and i?,

where g_is the total angular momentum of the combined system. The

transformation equation is

|J1J2JM> = Z |J1J2m1m2> <3132m1m2 JM) , (D.2)

where the summation is carried out over m and m for fixed values

1 2’

of j1 and 32. The ket [j1j2JM> is the new basis, and the

transformation coefficients <j1j JM> are the Clebsch—Gordan

2m1m2

coefficients. Several different notations are used for these

coefficients; the one used in the dissertation is C(j1j2J;m1m A2).

general formula for calculating Clebsch-Gordan coefficients is [101]

C(j1j2J;m1m2)

= [(J+j1-jz)!(J-j1+j2)!(j1+j2-J)!(J+m1+m2)!(J-m1-m2)!]1/2

. . . . —1/2
x [(J+J1+j2+1)1(J1—m1)!(J1+m1)!(J2'm2)!(.]2+m2)!]



      

-
.
.
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-
.

.
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k+'J +m

x zk(—1) 2 2 (2.1+1)”2 (J+12+m1—k)!(j1-m1+k)!

-1
.' ' _ I — — 1 1 ' _' — — lx [(J J1+J2 k).(J+m1m2 k).k.(k+\]132 m1 [112).] , (13.3)

where the summation is over all k for which the factorials in the

denominator are nonnegative. This equation may be simplified for

the case m = m = 0. Let 2g = j1 + j2 + J. Then [101]
1 2

C(j132J;OO) = 0

if 2g is odd, and

C(j132J;OO) = (—1)8+J (2.1+1)”2 A(j132J)g![(g-j1)!(g-j2)!(g-J)!]-1

(0.1)

if 2g is even, where

A(i J J) = [(J +3 -J)'(J +J-i )'(J +J-j )'/(i +1 +J+1)']‘/2
1 2 1 2 ° 1 2 ' 2 1 ' 1 2 ' '

(0.5)

Table D.1 lists values for several Clebsch-Gordan coefficients.
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Table D.1

Values of Clebsch-Gordan coefficients

 

31 32 J m1 m2 C(3.132‘1‘1'Hm2)

o 1 1 o o 1

2 1 1 o 0 (2)102

91/2
2 3 1 o o (35)

111/2
11 3 1 o o (3;)

u 5 1 o o (5)”2

181/2
6 5 1 o o (TIE

2 o 2 o o 1

2 2 o o o (1§)1/2

2 2 2 o o - ($1M

181/2
2 2 4 0 O ng)

1) 0 L1 0 o 1

11 2 2 o 0 ($41”

201/2
U 2 4 O 0 (7?)

11 2 6 o o (5)”2



 



#
:
N

 

3 1

(1‘69 ’8

1119’
11/2 -

‘3’.
3 1/2.

(:7)

(2%)1/2

(1_;)1/2

(.§_g9)1/2

6T%)1/2

“I 1/2

('3—3)
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Table D.1 (continued)

 

J1 32 J "11 m2 C(J1J'2J;m1m2)

o 1 1 1 —1 o

1 1 1 1 -1 (1§)1/2

2 1 1 1 —1 (173).)”2

2 3 1 1 —1 — (3—2)1/2

3 3 1 1 —1 (_1)1/2

L1 3 1 1 -1 (385)”2

L1 5 1 1 —1 - (5_2)”2

5 5 1 1 -1 (Tl—OM”

6 5 1 1 —1 (%)1/2

2 2 o 1 —1 — (%)V2

2 2 2 1 -1 (fi)”2

2 2 L1 1 -1 (3%)”2

L1 2 2 1 —1 - (.275)”2

L1 2 L1 1 -1 (Ti—u)”2

L1 2 6 1 -1 (33)”2
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