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ABSTRACT

NEW ESTIMATION METHODS FOR PANEL DATA MODELS
By

Valentin Verdier

This dissertation is composed of three chapters that develop new estimation methods for several models
of panel data. The first and third chapters are mainly concerned with understanding and aproximating the
structure of optimal instruments for estimating dynamic panel data models with cross-sectional dependence
in the case of the first chapter, and non-linear panel data models with strictly exogeneous covariates in the
case of the third chapter. The second chapter is concerned with additional restrictions that can be used to
estimate non-linear dynamic panel data models.

The first chapter considers the estimation of dynamic panel data models when data are suspected to
exhibit cross-sectional dependence. A new estimator is defined that uses cross-sectional dependence for
efficiency while being robust to the misspecification of the form of the cross-sectional dependence. I show
that using cross-sectional dependence for estimation is important to obtain an estimator that is more accu-
rate than existing estimators. This new estimator also uses nuisance parameters parsimoniously so that it
exhibits good small sample properties even when the number of available moment conditions is large. As an
empirical application, I estimate the effect of attending private school on student achievement using a value
added model.

The second chapter considers the instrumental variable estimation of non-linear models of panel data
with multiplicative unobserved effects where instrumental variables are predetermined as opposed to strictly
exogenous. Existing estimators for these models suffer from a weak instrumental variable problem, which
can cause them to be too inaccurate to be reliable. In this chapter I present additional sets of restrictions that
can be used for more precise estimation. Monte Carlo simulations show that using these additional moment
conditions improves the precision of the estimators significantly and hence should facilitate the use of these
models.

In the third chapter I study the efficiency of the Poisson Fixed Effects estimator. The Poisson fixed
effects estimator is a conditional maximum likelihood estimator and as such is consistent under specific

distributional assumptions. It has also been shown to be consistent under significantly weaker restrictions



on the conditional mean function only. I show that the Poisson Fixed Effects estimator is asymptotically
efficient in the class of estimators that are consistent under restrictions on the conditional mean function, as
long as the assumptions of equal conditional mean and variance and zero conditional serial correlation are
satisfied. I then define another estimator that is optimal under more general conditions. I use Monte Carlo
simulations to investigate the small-sample performance of this new estimator compared to the Poisson fixed

effects estimator.
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CHAPTER 1

ESTIMATION OF DYNAMIC PANEL DATA MODELS WITH CROSS-SECTIONAL
DEPENDENCE

1.1 Introduction

In some econometric studies of panel data, researchers might want to account for the presence of feedback
between the dependent variable and explanatory variables, i.e. for current values of the dependent variable
to affect future values of the explanatory variables or even for both dependent and independent variables to
be jointly determined. The simplest example of such models is the dynamic panel data model where lagged
values of the dependent variable are used as covariates. In such cases, explanatory variables can not be
treated as strictly exogenous. In virtually all panel data applications, researchers also want to control for
unobserved heterogeneity that affects the dependent variable but might also be correlated with the covariates.

The presence of both non strictly exogenous covariates and unobserved heterogeneity in panel data
models causes many estimation methods to be invalid (see for instance Wooldridge (2010)). In the con-
text of cross-sectionally independent data, a valid estimator for dynamic panel data models that relies on
first differencing and instrumental variables has been defined in early work by Anderson and Hsiao (1981)
Anderson and Hsiao (1981). Additionally, an asymptotically efficient estimator is found in Arellano and
Bond (1991)1. In the rest of the paper, we refer to this estimator as the AB estimator. These estimators
often suffer from having a large variance because the instrumental variables that they use are weak.2 In
addition, inference for the AB estimator is often unsatisfactory when the number of time periods in the data
set is relatively large because of problems due to using many moment conditions, as studied in Alvarez and
Arellano (2003) or Windmeijer (2005) for the case of cross-sectional independence.

In this paper, we consider the estimation of panel data models with covariates that are not strictly ex-

ogenous when data also exhibit cross-sectional dependence. We will define a new estimator that is more

IThe Arellano and Bond estimator is asymptotically efficient in the class of estimators using linear functions of the instruments.

2To address this problem, papers such as Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1998)
considered using for estimation additional assumptions such as homoscedasticity, uncorrelation of the transitory shocks, or restric-
tions on initial conditions. Another approach to obtain efficiency gains by using additional assumptions can be found in the literature
on First Difference Quasi-Maximum Likelihood estimation, as in Hsiao et al. (2002) for instance which relies on assumptions of
homoscedasticity and serial uncorrelation. We do not consider these estimators here since we am interested in estimators that are
consistent under the only assumption of mean independence of the transitory shock, without any other assumption holding.



efficient than the AB estimator and for which inference is significantly better in small samples. The main
reason why our estimator is more efficient than previous estimators that were defined for data with cross-
sectional independence is that it makes use of cross-sectional dependence to obtain stronger instruments.

In order to obtain an estimator with not only good properties in terms of point estimation, but also
good properties for inference, we use an auxiliary model for optimal instruments. Optimal instruments are
instruments that, once interacted with corresponding moment functions, provide an optimal set of exactly
identifying moment conditions so that the resulting estimator achieves the asymptotic efficiency bound for
estimating unknown parameters from the assumption of mean independence of the transitory shocks. Op-
timal instruments for estimating dynamic panel data models without cross-sectional dependence are found
in Chamberlain (1992a) and they can be generalized to the case of cross-sectional dependence. In this pa-
per, we propose auxiliary assumptions sufficient to model optimal instruments for panel data models with
covariates that are not strictly exogenous and cross-sectional dependence. The advantage of such an ap-
proach is that it provides a systematic way of weighting many moment conditions while making use of few
nuisance parameters. As a result, our estimator exhibits good small sample properties and inference while
being robust to the misspecification of our model of optimal instruments.

Arellano (2003) and Alvarez and Arellano (2004) have previously considered modeling optimal instru-
ments for dynamic panel data models in the special case of cross-sectional independence. We show that
cross-sectional dependence can be particularly useful to obtain more accurate estimators. Previous work on
dynamic panel data models that has considered cross-sectional dependence has not made use of this depen-
dence to obtain stronger instruments. Mutl (2006), for instance, studied a GMM estimator based on the same
moment conditions as in Anderson and Hsiao (1981) or Arellano and Bond (1991) and only uses an optimal
weighting matrix based on a specific model of spatial dependence. Elhorst (2005) and Su and Yang (2013)
generalized maximum likelihood estimators as in Hsiao et al. (2002) to the case of cross-sectional depen-
dence but these estimators are not robust to heteroscedasticity, serial correlation of the transitory shocks or
misspecification of the cross-sectional dependence.

In Section 1.2, we present the simplest example of the models we consider, the dynamic panel data
model without covariates for data with cross-sectional dependence. In Section 1.3, we define our estimator
and compare it to existing estimators. In Section 1.4, we generalize our estimator to general models with
non strictly exogenous covariates. In Section 1.5, we present Monte-Carlo evidence that the efficiency gains

from using cross-sectional dependence for estimation can be significant and that the estimator we propose



has superior small sample properties compared to existing estimators. In Section 1.6, we apply our estimator
to the estimation of the effect of attending private school on student achievement using a value-added model

and taking into account the possibility that student achievements are correlated within schools.

1.2 Dynamic Panel Data Models with Cross-Sectional Dependence

1.2.1 The Model

3

Throughout the paper we will consider large n, fixed T asymptotics.” Consider first the model for any

observation i from a sample of n observations and any time period ¢ from a fixed number T of time periods:

Vit = PoYit—1 +citupt=1,....T (1.2.1)
E(”it|Yt—l):0t:1""vT (1.2.2)

/) /

/
where Y; = [Y{,,....Y,;] and Y = [y;0,...,y;z] are random vectors that stack values of y;; across time and

nt
observations and c; are time constant unobserved effects, also called unobserved heterogeneity. We also
assume that py 7 1 so that py is identified from differenced equations as seen in the next subsection.

In the case where there is no cross-sectional dependence, (1.2.1) and (1.2.2) correspond to the linear
dynamic model for panel data as presented in Arellano and Bond (1991) for instance. When there is cross-
sectional dependence, (1.2.1) and (1.2.2) impose the restriction that cross-sectional dependence does not
cause Y; | to be endogenous.

For instance if contemporaneous spatial lags were omitted variables in (1.2.1), then (1.2.2) would be
violated. Some papers such as Cizek et al. (2011), Elhorst (2005), Su and Yang (2013) and Baltagi et al.
(2014) have considered models with both dynamic effects and contemporaneous spatial lag effects. Since
estimators for such models rely on correct specification of the form of cross-sectional dependence, we do not

consider them here and concentrate on models where cross-sectional dependence of some unknown form is

present in the residuals.? Lagged values of the dependent variable of neighboring observations could also be

3Using a parsimonious number of nuisance parameters seems to grant the estimator we propose good properties with relatively
large numbers of time periods but a formal derivation of results under large N, large T asymptotics is left for future research.

“It is also important to note that, with cross-sectional dependence, it is not likely for E(u;|Y;_1) = 0 to hold without
(1.2.2) holding. If (1.2.2) is not satisfied, it is likely that both estimators for cross-sectionally independent data such as the
Arellano and Bond estimator and the alternative estimator proposed in this chapter will be inconsistent. For instance sup-
pose for simplicity that n = 2 and E(uys|Y;—1) = &+ Biy1—1 + B2yz—1 # 0 so that B; # 0 or By # 0. Then E(uy|Yy;—1) =
o+ Biyir—1 + BoE(yar—1|Y1,—1) and it likely that E(yy—|Y};—1) be a function of yjg,...,y1,—» in addition to yj;—; so that, in
general, & + B1y1,—1 # —B2E(y2—1|Y1,-1) and E (uy,[y1,-1) #O.



included in the model as covariates to control for dynamic cross-sectional effects. We will discuss models
with covariates in Section 1.4.
The objective of the next section is to characterize estimators for p) that are consistent when (1.2.1) and

(1.2.2) hold under general conditions on the form of cross-sectional dependence in ¢; and u;;.

1.2.2 Consistent Estimation

The presence of unobserved heterogeneity rules out estimating p by a regression. Because (1.2.1) and
(1.2.2) form a dynamic model, fixed effects estimation is also ruled out because explanatory variables are
not strictly exogenous.

To estimate p(), we will consider a first difference transformation. All of the derivations in this paper can
be generalized to other transformations, such as the forward filtering transformation presented in Arellano

and Bover (1995) for instance, which can be useful in the case of unbalanced panels. Define:
mi(p) = Ayjy — pAy;; 1Vt =2,...,T (1.2.3)
where A is the first difference operator. Therefore, mj; (pg) = uj —u;;_1 and (1.2.1) and (1.2.2) imply:
E(mj(po)|Y;—2) =0Vt =2,....,T (1.2.4)

Define m;(p) = [mj;(p)];=2,....T to be the column vector with m;; | 1 (p) as its 1" element. Sometimes

we will also shorten notation by writing m; = m;(p), mjy = mj;(pg) and AY_q ; = [Ay;; _1l;=2 . T

Define:

Zi=Zp,--Zir] (1.2.5)

to be a matrix containing instruments for each time period so that Z; is a function of ¥; _, and therefore
E(Zimit(po)) = 0 and E(Z;m;(pg)) = Zthl E(Zizmjy(pg)) = 0.5
Define Z to be some weighting matrix. Define p an estimator for p() as:
n / n
p = argminp () Zimi(p)) E Y. Zimi(p) (1.2.6)
i=1 i=1
Consider first the case where cross-sectional dependence is captured by a large group of clusters with

fixed numbers of observations so that observations within a cluster might be related but observations across

SNote that we need to assume pg # 1 for E(Z;m;(p)) = 0 to hold for p = py only since if py = 1 then E(Z;m;(p)) =0Vp.



clusters are independent. Standard results on asymptotic properties of GMM estimators with clustering,
found in White (2001) for instance, imply that p will be consistent for py and asymptotically normal as the
number of clusters grows unboundedly under standard regularity conditions.

For more general forms of cross-sectional dependence, Conley (1999), Jenish and Prucha (2009), Jenish
and Prucha (2012) consider different sets of regularity conditions that guarantee that p is consistent and
asymptotically normal as long as E(Z;m;(pg)) = 0.

In this paper, we will assume that either set of regularity conditions holds so that the probability limits
D = plim(L X1 ZAY_ | ;) and T = plimy ¥ Y7, Zimim;Z; exist and are finite, D D # 0, p 5 py

and, as n — o0:0

Vi(p—po) 4 N(O,V) (12.7)

/ !/ /
V=(DED) " 'D EZYED(D ED)~! (1.2.8)

In the next sections we consider efficient feasible GMM estimation where the matrix of instruments
Z; and an estimator of the weighting matrix E are chosen so that the resulting estimator of p() is efficient
under some auxiliary assumptions. It is important to note that all of the estimators we propose will be
asymptotically equivalent to estimators of the type defined by (1.2.6) so that they will be consistent as long

as (1.2.1) and (1.2.2) hold, independently of whether the auxiliary models we specify are true or not.

1.3 Efficient Estimation under Clustering

In this section, we consider an auxiliary model for deriving optimal instruments that assumes that every
observation belongs to one of a large number of clusters. Observations are treated as correlated within
clusters but independent across clusters. While clustering only represents a specific form of cross-sectional
dependence, it might be a good approximation for more general forms of dependence in many applications.
In addition, the method outlined in this section for the special case of clustering can easily be extended
to other forms of cross-sectional dependence. Therefore we restrict our attention in this paper to auxiliary
models that make use of the clustering assumption.

For simplicity we will consider in this section the case where each observation belongs to the same

cluster across all time periods but the results in this section can be generalized to clusters changing over

5Note that in the case of clustering we consider {ng},—1 . G to be a set of fixed values, where ng denotes the number of
observations in cluster g and G the number of clusters. Then +/n-asymptotic normality or v/G-asymptotic normality are equivalent
since n/min{ng} < G < n/max{ng}.



time as shown in Section 1.6. Previous work that estimated dynamic models of panel data with clustered
sampling generally used estimators developed for i.i.d. data such as the ones found in Anderson and Hsiao
(1981), Arellano and Bond (1991), or Ahn and Schmidt (1995), and adjusted inference by using clustered
standard errors. Such an analysis can be found for instance in de Brauw and Giles (2008) where farming
households are treated as clustered by village or Andrabi et al. (2011) where students are clustered by
school”. Topalova and Khandelwal (2010) and Balasubramanian and Sivadasan (2010) consider the case
where firms are clustered by industry.

In this section, we show that there is much to gain in terms of efficiency by using a different estimator that
takes into account correlation within cluster but is robust to misspecification of the form of this correlation.
We will consider the case where the data is composed of a large number of clusters indexed by g =1, ..., G,
each with a fixed number of observations denoted ng so that asymptotics will be performed for G — oo.

In the first subsection, we present the special case of two time periods since in this case the problem

reduces to estimating pp from only one differenced equation using instrumental variables.

1.3.1 Special Case of Independent Disturbances and 7' = 2

For this simple special case, we derive an efficient estimator for the case where {u;; } i=1,...,n,t=1,2 are inde-
pendent both cross-sectionally and across time, where 7 = 2 and where we have conditional homoscedas-
ticity so that:

Var(u;|Y,_y) =02Vt =1,2 (13.1)

When T = 2, there is only one differenced equation that can be used for estimation:
Ayjp = poAyi1 +Aujp (1.3.2)

for which the available instruments are ¥j. Under the assumption of independence of disturbances and ho-
moscedasticity, Au; is also cross-sectionally independent and homoscedastic, so the optimal instrument for
the differenced equation is the best prediction of Ay;; based on all the available instruments, i.e. E(Ay;1|Yp).

To find E(Ay;1 |Yp), note that under (1.2.1) and (1.2.2), y;1 = poy;o +¢; +u;1 so that E(Ay;1|Yy) = (Pg —

1)yio + E(c;|Yp). Therefore the quality of the prediction of Ay;; based on the instruments will depend on

7We will show in Section 1.6 however that the clustering used in Andrabi et al. (2011) is not appropriate to obtain robust
standard errors due to observations moving across clusters during the period of observation. We will show robust standard errors
that take this factor into consideration.



the quality of the prediction of ¢; based on the instruments. In many applications, it is very likely that agents
that belong to the same cluster will have levels of unobserved heterogeneity that are related. For instance,
farmers that live in the same village might farm plots with with similar soil quality or develop similar
farming practices over time. Firms that operate in the same industry might also face similar constraints
such as for instance regulation or access to skilled labor force. Similarly, households that live in the same
district might have been selected based on common characteristics such as wealth, income, family status or
values. Therefore, in many applications, we can expect that using information from other observations in
the same cluster in addition to one’s own previous outcomes can provide a better predictor for one’s level of
unobserved heterogeneity.

For this simple case, we could derive an optimal predictor for c; by using the assumption that for any

observation i belonging to cluster g we have:
ci=cgte; (1.3.3)

where {cg}o—1 . G forms a sequence of i.i.d. random variables, {e;};—j ., is an iid. sequence of
zero-mean random variables with e; being mean independent of {y jO} i conditional on y;q. Then for any
observation i in cluster g we have E(c;|Yy) = E(cg|Yy) + E(e;j|yjo)- To obtain a parsimonious model for
the optimal instruments, we can postulate that conditional expectations are linear and that each observation
within a cluster contributes in the same way to predict cg. Then for any observation in cluster g, E(c;|Yy) =
o+ BO% Y j€gYjo T YYio where ng denotes the number of observations in cluster g.

Therefore the optimal instrument for (1.3.2) for an observation in cluster g is 2 = (pg — 1)y;o + @ +
ﬁo% Yjegyjo + Yoyio- A feasible version of this optimal instrument can be obtained from a consistent
preliminary estimator of pg, denote it p, since consistent estimators for g, By, ) can be obtained from a
pooled regression of y;; — py;;_1 on an intercept, % Yjcgy 70 and y;. Using the information contained in
past outcomes for other observations in the cluster will presumably yield a much better predictor of ¢; and
hence a much better instrument, which can lead to sizable gains in efficiency. Even though we derived this
efficient estimator by using very strong auxiliary assumption, it is consistent as long as (1.2.1) and (1.2.2)
hold and one can use inference that is robust to all of our auxiliary assumptions being violated as shown in

the next sub-section.



1.3.2 General Case

In this sub-section, we consider efficient estimation with 7 being any fixed integer equal or greater than two
and disturbances being potentially correlated within clusters. Here we will generalize the idea developed
in the previous sub-section of using other observations from a cluster to predict one’s level of unobserved

heterogeneity. We will start with the same auxiliary assumption of clustering as in the previous subsection:

Auxiliary Assumption 1: Clusters of observations are independent and identically distributed.

With Auxiliary Assumption 1, we can derive the optimal estimator for py by generalizing the work on
optimal instruments for cross-sectionally independent data in Chamberlain (1992a) to the case of cluster-
sampling.

In this section we will index observations by cluster so that for any i, g; denotes the cluster to which
observation i belongs and jg denotes the jth observation of cluster g so that for any observation i in g,
there is j such that jo =i and {{xjg}jzl,...,ng}g:l,...,G = {xj}i=1,...» for any sequence of variables

/
{xi}i=1,... n- Consider stacking all observations by cluster and define mtg(p) = [mlg’t(p), s Mnge t(P)]

! / / . !
m8(p) = [m5 (p),...,m5 (p)] . mf =mf(pg) and m8 = m8(py). Similarly, define uf = [ g ts-wsingg i)
/ !/ / / / ! / /
ug:[uff ,...,ué%] ,cg:[clg,...,cngg] y}g:[ﬂg,t"“?y”ggﬂ ,Ytg:[yg ,...,yf] ,andAYf1 :[Ayff 7~--7A)’§f1] .
Appendix A.1.1 shows that the optimal estimator for p() is defined by:

G
Y. 75 i (Popt) =0 (13.4)
g=1

where ngt = L*g/(q)g)—l/Z where ®8 = [Cov(m;g,mfl|Y’§ax{t7s}_2)];:5:::::;, ()~ 1/2 is the upper di-
agonal matrix such that (%)~ 1/2 (@8)~1/2 = (08)~1, 1*¢ = [Lfgl]t:27...7T and ¥ = E((®f)~1/2AY% | |v8 )
where (¢§)—1/2 is the (1 —1)" ng X ng(T — 1) matrix composing (CDg)*l/z.

One could estimate these optimal instruments non-parametrically by using series of instruments that
include lagged values of the dependent variable for an observation but also lagged values of the dependent
variable for neighboring observations. A similar estimator has been studied for the case of cross-sectionally
independent data in Donald et al. (2009) for static models and Hahn (1997) for dynamic models. How-
ever such an approach would not be practical here since there are too many possible terms to consider as

instruments. Also, it would involve using many nuisance parameters which can cause poor small sample

properties for the estimator, as is discussed later. Instead, we propose two auxiliary auxiliary assumptions



that will allow us to model optimal instruments and drastically reduce the number of nuisance parameters
needed. The resulting estimator will be consistent as long as (1.2.1) and (1.2.2) hold and efficient when
these auxiliary assumptions are satisfied. Because the estimator we propose makes use of few nuisance
parameters, it will have good small sample properties even when the auxiliary assumptions do not hold, as
evidenced in Section 1.5.

The second auxiliary assumption we will use is the assumption of conditional homoscedasticity as well

as conditional serial uncorrelation and conditional equi-correlation within clusters:

Auxiliary Assumption 2a: Foranyi,je g, t,s=1,...T,t > s:
Cov(ujs,uig|c8, Y ):GZifi: j,t=s
it Ujs|C 1 g u Js
=100 ifi#jt=s

= 0 otherwise

Under Auxiliary Assumption 2a, Appendix A.1.2 shows that the optimal instrument for m$, ZO p,,
now a linear function of {E (Ayf_l [Yi—s)}1=2,....T,s=2,...+- This corresponds to the intuition developed
in the previous section where we found that, for the special case T = 2, optimal instruments were simply
E(AYp).

From (1.2.1) and (1.2.2):

ﬂMimLQ:mrl%lﬁs+ZpEﬁms (1.3.5)
g 1o ps‘1
= (po— D)pg s+ ﬁb‘(cgm_s) (1.3.6)
Under Auxiliary Assumption 1:

s—1

E(&yF 1 |Yi—s) = (po— 1)p§ ' s+ ff&)E(cgmg_s) (1.3.7)

Therefore in order to obtain a model for optimal instruments, one needs to make additional assumptions

so that there exists a parametric model for the mean of unobserved heterogeneity conditional on lagged
values of the dependent variable. In order to keep the number of nuisance parameters low, it is useful to use

the assumption that unobserved heterogeneity follows the simple cluster correlation structure:

Corr(cj,cj) =Ttcifi#j,i,j€g (1.3.8)

= 0 otherwise (1.3.9)



Also we use the assumption that disturbances {utg }tzl,...,T are independent from unobserved hetero-
geneity, that both have a joint normal distribution and that the initial values of the dependent variable are in

the stationary state associated with (1.2.1), i.e.:

(1.3.10)

where ﬂg is independent of ¢§ and {uf }t=1,....7 follows normal distribution with zero mean, variance
equal to 63 /(1— pg) and has a within cluster correlation of 7,.3 Let the variance-covariance matrix of u‘tg

fort =1,...,T be denoted by Zﬁ:

1
Ty 1
=g | " (13.11)
Ty Ty 1
Let the variance-covariance matrix of ¢& be denoted by 2§ :
1
(7
8 =02| (1.3.12)
Te ... To 1
The last auxiliary assumption of our model for optimal instruments is:
Auxiliary Assumption 3a: Suppose that for any cluster g = 1,...,G:
cg Ue lng Z§
Y0 ( 1—p0“Clng | T=pg =€ (1—p0)220+ l_pgzu ) (1.3.13)
us 0 0 0 I ©%8

8The auxiliary assumption of stationary initial conditions can easily be generalized, at the expense of introducing three addi-

tional nuisance parameters, by assuming:
¥§ = o+ Bt +ig
ﬁg‘cg ~ N(OviO)
Var(ﬁio) = 60
Corr('zio:ﬁjo) =Ty lfl # jbulgi = gj
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where 2§ and Zﬁ have been defined previously and lng is a column vector of ones of dimension ng x 1.

Note that E(c8|V%) = E(cg]yg,cg—i—uf,...,cg +uf). Define V¥ as:

b
1 y8 1 g 1 8
8§ = by Yo+ D
\% T—pgy =€ (1—P0)2 c lfp% u (1.3.14)
0 0 Ir ®%5
Under Auxiliary Assumption 3a:
c8
%
/
o8 +uf | ~N(us ABVEAS) (1.3.15)
8 + u‘%_

Hclng c8
where u8 = A8 ﬁ Helpg | and A8 is the deterministic matrix of ones and zeros so that A8 yg =
0 us
8
%
8+ u‘f

8+ ugT_
Therefore, using the properties of the multivariate normal distribution, E(c8|Y;) can be obtained as a

linear function of y‘g, 8+ u‘g{, w8+ u[g with coefficients given by the elements of V&. The exact form of
E(c8|Y;) under Auxiliary Assumptions 1, 2a, 3a is given in Appendix A.1.3.
Only five nuisance parameters compose V& and can be consistently estimated if a consistent preliminary

estimator of p( is available, denote it p. Let ry(p) = y;; — py;;—1. Consistent estimators for the nuisance
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parameters in V are:

o 11 1Ly 2
(o :Eﬁ; ; ;mit(p)

=2i=1
U U T (R (R A A I/ A 5 5
Ty = 25T _1n Z Z P Z ][l#Jagi:gj]mit(P)mjt(P)
2 1 U AN, (5N
6 T(T—l)nt;lsg‘”; [t # s]ris(P)ris(P) — Q¢

Let ®8 be the consistent estimator for the variance-covariance matrix ®8 = Var(m8(pg)) composed of
6y and 2, from the formula derived in Appendix A.1.2. Let 8~ 1/2 be the upper-diagonal matrix such that
. /4 . s g— .
$81/2981/2 = $8~1. Denote <I>tg 12 the 1" ng x ng(T — 1) matrix composing $8—1/2 Let ﬂtgc be
a consistent estimator of E(c8|Y;) from the formula given in the Appendix A.1.3.

A consistent estimator for the optimal instrument for m8(p) under (1.2.1) and (1.2.2) and Assumptions

1, 2a, 3a is:
(p— 1o+ A5 0
58 _ 18~ 1/2 £8—1/2 £g—1/2
28 = & s @S [ps—1/
T —D 1-pT=1  gc " ~gC
pT 2(P—1)yg+ 1p_p' ,ug (p—l)y§_2+u§_2
(1.3.16)
and the estimator obtained from using this instrument matrix is defined by:
G A
Y 25 ,mE(p*) =0 (1.3.17)
g=1
So that:
G 58
"= 2z (1.3.18)
Yo1Zop™y
G 58
ZgzlzoptA”
=po o 33 (1.3.19)
Yo—1ZoptB”

/ ! / / / /
where Ay8 = [Ay§ ,...,Ay‘%] ,Ay‘il = [Ayf’l7 ,...,Ay‘%_l] and Auf = [Aus ,...,Auz ] .

12



Let Z opt to be the random vector defined as in (1.3.16) but where p, Gu, Gg, Ty, Tc, fic are replaced
by plim(p), plim(62), plim(62), plim(%y), plim(%:), plim(fic). When (1.2.1), (1.2.2) and Auxiliary As-

sumption 1 hold, p* is asymptotically normal:

VG(p* — pg) % N(0,Vp) (13.20)

A )T Var(ZS ) (1.321)

Vp :E( opt

opt
Standard errors for p* that are consistent as long as (1.2.1), (1.2.2) and Auxiliary Assumption 1 hold are
given by:

Z o | Z 8 mS(p*)2)1/2 (13.22)

The estimator defined by (1.3.17) is consistent and asymptotically normal even when the Auxiliary
Assumption 1 of cluster sampling is not satisfied, as long as some regularity conditions hold on the strength
of cross-sectional dependence. As in section 1.2.2, cross-sectional dependence has to be weak enough so

that asymptotic theorems can be applied:

1 8. p
D 28y uf 50 (1.3.23)
g=1
18 e g »
G Y Zypthy° | S a (1.3.24)
L Z 78 Aud 4, N(o,v) (1.3.25)
5 3.
VG =
where a = plim( ZG 1Z§pt 1) #0andv = plzm(%(ZG 1Z(‘g;ptAu )2). In this case:
VG(p* —pg) % NO,a2v) (13.26)

N | and non-parametric estimators for plzm( (ZG 78 Au8)?)

a can simply be estimated by G yo g=1%opt

g=1 Opl
as well as statistical tests with general forms of spatial dependence are available and have been discussed in
Conley (1999), Bester et al. (2011b), Kim and Sun (2011) and Bester et al. (2011a).

In situations where available preliminary estimators might have poor small sample properties, one can

also use an iterated version of the feasible optimal estimator. Denote 78

opt (P) to be the value of the estimated

optimal instruments for a preliminary estimator (previously denoted p) evaluated at p. The iterated optimal

estimator is defined by:

G
Z pzter m® (Piter) =0 (1.3.27)
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This estimator has the same /n-asymptotic properties as the two step estimator defined by (1.3.17) but

its small sample properties will not depend on the small sample properties of a preliminary estimator.

1.3.3 Comparison to Existing Estimators

The estimator defined by (1.3.17) can be rewritten as p™* that satisfies the equation:

G
Y w8 (7)ZE8m8 (p*) =0 (1.3.28)
g=1

where ) = [62, %y, 62, i, Bc], Z8 is the matrix containing all valid instruments for m$:

- ¢ -
Ing @Y
0 Iy
78 = S (13.29)
g
0 0 Ing®Yp_,
and wé* () is the row vector function such that w&* ()28 = 25 ot
The Arellano and Bond estimator can also be written as exactly identified from:
& 8
Y Wi pZEm8 (pap) =0 (1.3.30)
g=1
where:
g L / 1o & . g
Wi p = .ZI(AY_UZZ-)(-ZI Zim;(p)m;(p) Z;) 'S (1.3.31)
= 1=

where p is a preliminary consistent estimator and S8 is the matrix of zeros and ones such that S8Z8m8(p) =

Yicg Z;m;(p) where:

Yio

0 Yy
Z; = (1.3.32)

0 .. 0 Yro
In the presence of cross-sectional dependence, it is likely that our estimator will perform better than the
Arellano and Bond estimator even when some of the Auxiliary Assumptions 1, 2a, 3a are violated because

our estimator gives non-zero weights to moment conditions obtained from using instruments from neigh-

boring observations. As discussed in previous sections, these instruments may have significant predictive
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power for the covariates in the differenced equations so that these additional moment conditions might be
useful to improve the accuracy of the estimator.

In addition, our estimator relies on the estimation of only five nuisance parameters to compute weights
for all ng x T x (T —1)/2 moment conditions available per cluster, whereas the Arellano and Bond estimator
relies on the estimation of 7 x (T — 1) /2 weights. When T is relatively large, estimating that many nuisance
parameters causes the Arellano and Bond estimator to suffer from poor small sample properties in terms of
bias, precision and inference, which was studied in the context of cross-sectional independence in Alvarez
and Arellano (2003) and Windmeijer (2005). Because our estimator makes use of few nuisance parameters,
it will have good properties in finite samples even when T is relatively large. A formal derivation of the
asymptotic properties of our estimator when both n and 7" grow unboundedly is left for future research.

As a result of both using non-zero weights for useful moment conditions and using nuisance parame-
ters parsimoniously, the results from Monte Carlo simulations presented in Section 1.5 show that our es-
timator has significantly better small sample properties than the Arellano and Bond estimator in terms of
efficiency and quality of inference, particularly in cases with cross-sectional dependence but also without
cross-sectional dependence.

So-called system GMM estimators presented in Ahn and Schmidt (1995), Arellano and Bover (1995),
and Blundell and Bond (1998) are similar to the Arellano and Bond estimator but use additional moment
conditions based on additional assumptions of homoscedasticity, no serial correlation, or stationary initial
conditions. Since our estimator is only based on the mean independence of transitory shocks conditional
on past outcomes, it is more robust than the estimators presented in Ahn and Schmidt (1995), Arellano and

Bover (1995) or Blundell and Bond (1998).

1.4 Models with Covariates

Similar auxiliary assumptions as in the previous section can be listed to model optimal instruments for
models with covariates. In this section we consider a model that allows for some of the covariates to be

strictly exogenous (w;;) and some of the covariates to be sequentially exogenous or contemporaneously
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endogenous (x;j;):

vie =xiBo+wirro+cituyt=1,...,T (14.1)

E(uy|Z:,W) =0 (1.4.2)

where W = [W},...,Wy] and W; = w;q,...,w;7 and Z; = [z;1,...,2;] and for every random variable xz(t]) in
Xj, either xl(tJ ) or xl(tjll is in zit.g xl(tj ) is said to be sequentially exogenous if it is in z;;. If xz(tjll only is in

Zjt» x{t is said to be contemporaneously endogenous. Such a model specification is flexible enough to allow
for complex interactions between unobserved factors and covariates of interest, an example will be given in
Section 1.6. The estimation method presented in this section can be generalized to the case where neither
xj; nor x;;_1 are part of z;; but where some other instruments are available, which is also treated in the
example given in Section 1.6. As a notational matter, we generalize the notation from the previous section
by denoting by x& the vector [x; e ...,xngg]/ for any sequence of variables {x;};,—1 ..

A consistent estimator of ), }p is obtained from the differenced equation:
Ayir = Axj Bo +Awi Yo +Aujp t = 1,...,T (1.4.3)
E(Aui|Z—1,W) =0 (1.4.4)
To model optimal instruments for estimating fy and 7y from (1.4.3) and (1.4.4), we will make use of
the same auxiliary assumption of clustering, i.e. we maintain the use of Auxiliary Assumption la. We also

generalize Auxiliary Assumption 2a so that homoscedasticity and serial correlation are specified conditional

on the relevant instruments:

Auxiliary Assumption 2b: Foranyi,jc g t,s=1,....,T,t > s:

Cov(ujp,ujs|c8,Z§ W8) = of ifi=j,t =s
. 2ps
=140, ifi# j,t=s
=0ift>s

As in the previous section, this assumption guarantees that the optimal instruments will be known lin-

ear functions of {E(Ax; |25, W8 )}t s=1,....T, s<t—1 and W; (up to the unknown nuisance parameters o2

9Note that a special case of this model is the dynamic model we considered in the previous section where x;; = y;;—1, Xir = Zit,
and w;; ¥ = 0. In most applications, even if x;; includes other covariates than lagged values of the dependent variable, it is expected
that y;;_ will be included in x;; in order to identify the effect of x; on y; separately from the dynamic effects in y;; and x;;.
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and 7). Therefore, we need to generalize Auxiliary Assumption 3a to obtain a parsimonious model for

{E(Axj |Z§,Wg)},’s:17._.7T)S§,_1. To do so, we can model z; as a VAR process conditional on W&:

Auxiliary Assumption 3b: Suppose that for any observationi =1, ...,n:

it =Tz 1 +win +di+vi (1.4.5)
and:
d8 pa(W8) || %
| WE~NC g (W) |5 |2z, g (1.4.6)
V8 0 0 0 I,
/ !
where v& = [vgf N

In particular applications, one will impose auxiliary restrictions on p;(.), uZO(.), Zfl, ZdZ()’ Xz Zv 80
that they can be estimated with few enough nuisance parameters.

Auxiliary Assumption 3b implies:

s—1
E(zy|Z8 (W8 =T2;_s+ Y T"(wy_n+E(d;|Z7_,W$3)) (1.4.7)
r=0
and:
E(d;|Z8,W8) = E(d;|z§,W8,d8 +14,....d% +}) (1.4.8)

which can be derived from Auxiliary Assumption 3b as was done in the previous section. For any co-
() () ()

it ° it it—1
E (xl(tj )\Zf ,W&) Vs <t and hence E(Ax;;|Z ,W8&) Vs <t —1 as a function of the nuisance parameters in

variate x.’’, either x>/ is in z;; or x is in z;;, therefore Auxiliary Assumption 3b yields a model for
Auxiliary Assumption 3b.

Therefore, under (1.4.1), (1.4.2) and Auxiliary Assumptions 1a, 2b and 3b, one can find a parametric
model for the optimal instruments for estimating fy and yy. A feasible version of these instruments can be
obtained from a preliminary estimator of (f3), ) as in the previous section. One can also use an iterated

version of this feasible estimator in order to obtain an estimator with better performances in small samples.
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1.5 Monte Carlo Simulations

In this section, we will study the small sample properties of the estimator we propose using Monte Carlo
simulations. Consider the simple data generating process for a model with cluster correlation and without

covariates:

ng ~ Poisson(a) + 1
Cg ~ FC
V818 ~ Normal (sig(c%), Zo(c%))

ylg|cg’y§_17"‘7y§ NNOVmal(Cg +pylg_17zu(cg7ylg_1’"'7yg))

We compare the properties of three estimators of p: The estimator defined in Arellano and Bond (1991)
which we call the AB estimator, the estimator defined by (1.3.27), which we denote by Estimator 1 and
the estimator defined by (1.3.27) but with estimated within-cluster correlations replaced by zero which
we denote by Estimator 2.10" A5 a benchmark for comparison, we also show the results from using an
unfeasible optimal estimator (UO) which is optimal in the class of estimators that use linear functions of the
instruments. This estimator weights optimally all available moment conditions that use linear instruments

using the true unobserved optimal weights so that it is defined by:

ZG: w8Z8m8 (o) =0 (1.5.1)
g=1
w8 — A8 (W)~ (1.5.2)
A8 :E(zgi)"f) (1.5.3)
w8 = E<nggmgng/) (1.5.4)

When Auxiliary Assumptions 1, 2a, 3a hold, the UO estimator is the same as the estimator defined by
(1.3.4) and will be efficient in the class of estimators using any function of the instruments. When these
assumptions hold, Estimator 1 and the unfeasible optimal estimator will also be asymptotically equivalent

so that, for small samples, the difference in their performances is due to the extra noise in Estimator 1

1011 most of the scenarios we simulate, transitory shocks will be homoscedastic, serially uncorrelated and the dependent variable
will be stationary so that additional moment conditions presented in Arellano and Bover 1995, Ahn and Schmidt 1995 or Blundell
and Bond 1998 hold. We do not present estimators that use these moment conditions however since we are interested in studying
the properties of estimators that are robust to these moment conditions being false.
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due to estimating the nuisance parameters needed. When Auxiliary Assumptions 2a or 3a are violated, the
unfeasible optimal estimator is asymptotically more efficient than Estimator 1.

Estimator 1 is asymptotically more efficient than the AB estimator or than Estimator 2 when there exists
cross-sectional dependence and Auxiliary Assumptions 1, 2a, 3a hold. When Auxiliary Assumptions 1, 2a,
3a hold and there is no cross-sectional dependence, the AB Estimator, Estimator 1 and Estimator 2 have
the same asymptotic variance. When Auxiliary Assumptions 2a or 3a are violated and there is no cross-
sectional dependence, the AB estimator has a smaller asymptotic variance than Estimator 1 and 2 but, in
finite samples, Estimator 1 or Estimator 2 might still have better properties than the AB estimator because
they make use of less nuisance parameters. When Auxiliary Assumptions 2a or 3a are violated and there
is cross-sectional dependence, which of the AB estimator or Estimator 1 has smallest asymptotic variance
depends on the data generating process but we expect Estimator 1 to perform better since, by making use of
instruments from other observations in the cluster, it should use a weighted sum of moment conditions that
is closer to optimal that the sum used for the AB estimator.

For inference for the AB estimator, we will consider GMM robust standard errors with clustered standard
errors with and without the finite sample correction proposed by Windmeijer (2005). For inference for
Estimators 1 and 2, we use the standard errors defined in (1.3.22) that only require (1.2.1), (1.2.2) and
Auxiliary Assumption 1 to hold in order to be consistent.

We will study the small sample properties of the estimators in three different scenarios: within clus-
ter equi-correlation, cross-sectional independence and general within cluster correlation with unobserved
heterogeneity that does not have a Normal distribution. Scenario 1 and 2 will correspond to Auxiliary As-
sumptions 1, 2a, 3a holding. In Scenario 1 there is cross-sectional dependence and in Scenario 2 there is no

cross-sectional dependence. Scenario 3 corresponds to only Auxiliary Assumption 1 holding.
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More precisely, Scenario 1 uses the following parameterization:

1
05 1
F: = Normal(0,
05 ... 05 1
1
05 1
Zu(cghytg_lr"vyg):
0.5 05 1
8
c
Ho(c®) =
0 1—po
1
ZO(Cg) = _pzzu(cg7ytg_1>"'7y(g)>
0
Scenario 2 uses:
1
0 1
Fe = Normal (0, )
0 0 1
1
0 1
Zu(cgh);fflvayg):
0 0 1
8
c
() =
Ho 1—po
1
ZO(Cg) = l_pzzu(cg>yf_17'“7yg)
0
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And Scenario 3 uses:

1
05 1
F. = LogNormal (0, )
05 ... 05 1
_ , }
Uipr—1

0.5u; t qujyp—1 U5
1! It int—1
Zu(cgay§_17"'7y§): 2

2
_0'5ui1t—luingt—l O'Suingflt_luingt_] uingtfl_
8
C
Ho(c®) =
0 1—po
1
g 1 05 1
Lo(ct) = 2
05 ... 05 1

All Monte Carlo results were obtained using 1,000 replications. Because Estimators 1 and 2 are iterated
versions of our estimator, we present results from simulations conditional on Estimators 1 and 2 converging.
Table 1.1 shows the number of observations where all estimators converged, which represents all or almost
all draws except when T =5, G = 100 and p = 0.8. In this case Estimator 1 or Estimator 2 did not converge
in 15%-22% of the replications depending on the scenario. In particular applications, convergence of the
iterated Estimators 1 and 2 will depend on the particular numerical algorithm chosen and properties of
the data. For instance in the application presented in Section 1.6, convergence was achieved in just a few
iterations even though 7' = 3.

Table 1.2, 1.3 and 1.4 show the results for the four estimators considered in terms of bias, standard de-
viation and root mean squared error for a value of p of 0.8. Table 1.2 shows results for the case where there
is equi-correlation within clusters (Scenario 1), Table 1.3 the case where there is no cross-sectional corre-
lation (Scenario 2) and Table 1.4 the case where there is heteroscedasticity and cross-sectional correlation
(Scenario 3). The first conclusion from these three tables is that Estimator 1 and 2 exhibit virtually no bias
compared to the AB estimator. Estimator 1 also has significantly smaller standard deviations when there is

cross-sectional correlation (Scenarios 1 and 3). Both of these features of our estimator result in significantly
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smaller values for mean squared error. The smaller standard deviations of our estimator are due to the use
of instruments from other observations in the cluster that are relevant in the presence of cross-sectional de-
pendence. The low bias is attributable to our estimators using very few nuisance parameters compared to
the AB estimator. The improvement of Estimator 1 over the AB estimator is particularly striking when T
is large and G is small, which is when the AB estimator uses the most nuisance parameters compared to
the sample size. When there is no within cluster correlation (Scenario 2), Estimators 1 and 2 have standard
deviations only slightly lower than the AB estimator so that the decrease in rmse of Estimators 1 and 2 com-
pared to the AB estimator is mostly due to the elimination of the bias. In Scenario 3 where the unfeasible
optimal estimator is asymptotically more efficient than Estimator 1, Estimator 1 performs very closely to the
unfeasible optimal estimator, which shows that the approximation of the optimal weighted sum of moment
conditions used by Estimator 1 is good in this case.

Table 1.5, Table 1.6 and Table 1.7 show results in terms of bias in standard errors (captured by the ratio
of the mean of the standard errors over the standard deviations of the estimators), coverage of the 95%
confidence interval and average length of 95% confidence intervals. All three tables show that standard
errors for the AB estimator without the Windmeijer correction are seriously downward biased, particularly
when T is large, resulting is very low coverage of 95% confidence intervals (as low as 48%). The Windmeijer
correction yields unbiased standard errors for the AB estimator but the resulting confidence intervals still
have low coverage because of the bias in the AB estimator of p. The standard errors for Estimators 1 and 2
are unbiased and the resulting confidence intervals have the correct coverage of 95%. Because our estimators
have smaller standard deviations that the AB estimator, the average length of their 95% confidence intervals
is also smaller than that of the AB estimator so that our estimators have confidence intervals that are both
tighter and have the correct coverage.

Tables 1.8-1.13 show the same results for py = 0.5. Estimators 1 and 2 show similar improvements over
the AB estimator but slightly less markedly since, with this lower level of persistence, the instruments used
by the AB estimator are not as weak as when p = 0.8 so that there is less to gain compared to the unfeasible

optimal estimator.
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Table 1.1: Number of replications where all estimators converged (out of 1,000)

p=0.8 p=0.5
Scenario 1  Scenario 2  Scenario 3 Scenario 1  Scenario 2  Scenario 3

T=5

G=100 802 854 781 1000 999 1000

G=200 906 935 867 1000 1000 1000

G=400 977 976 942 1000 1000 1000
T=10

G=100 998 992 989 1000 999 1000

G=200 1000 999 1000 1000 1000 1000

G=400 1000 1000 1000 1000 1000 1000
T=15

G=100 1000 999 1000 1000 999 1000

G=200 1000 1000 1000 1000 1000 1000

G=400 995 1000 1000 1000 1000 1000
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Table 1.2: Bias and RMSE, p = .8, equi-correlation within clusters

Unfeasible  Arellano and
Optimal Bond Estimator 1 ~ Estimator 2
Estimator Estimator

T=5
G=100 bias —0.031 —0.158 —0.037 —0.045
sd 0.121 0.176 0.137 0.191
rmse 0.125 0.236 0.142 0.196
G=200 bias —0.018 —0.087 —0.018 —0.025
sd 0.089 0.127 0.093 0.134
rmse 0.091 0.154 0.095 0.136
G=400 bias —0.001 —0.033 —0.002 0.000
sd 0.064 0.092 0.065 0.097
rmse 0.064 0.098 0.065 0.097

T=10
G=100 bias 0.001 —0.060 0.001 0.001
sd 0.047 0.067 0.048 0.068
rmse 0.047 0.090 0.048 0.068
G=200 bias —0.001 —0.033 —0.001 —0.003
sd 0.034 0.048 0.034 0.047
rmse 0.034 0.058 0.034 0.047
G=400 bias 0.001 —0.016 0.001 0.000
sd 0.024 0.035 0.024 0.034
rmse 0.024 0.038 0.024 0.034

T=15
G=100 bias —0.001 —0.041 —0.000 —0.003
sd 0.028 0.038 0.028 0.037
rmse 0.028 0.056 0.028 0.037
G=200 bias 0.000 —0.022 0.000 —0.001
sd 0.018 0.027 0.018 0.026
rmse 0.018 0.034 0.018 0.026
G=400 bias 0.000 —0.010 0.000 0.000
sd 0.013 0.019 0.013 0.018
rmse 0.013 0.021 0.013 0.018
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Table 1.3: Bias and RMSE, p = .8, no correlation within clusters

Unfeasible  Arellano and
Optimal Bond Estimator 1 ~ Estimator 2
Estimator Estimator

T=5
G=100 bias —0.028 —0.097 —0.030 —0.034
sd 0.121 0.119 0.135 0.127
rmse 0.124 0.153 0.138 0.131
G=200 bias —0.013 —0.046 —0.013 —0.014
sd 0.093 0.091 0.097 0.094
rmse 0.093 0.102 0.098 0.095
G=400 bias —0.001 —0.020 —0.001 —0.002
sd 0.063 0.063 0.066 0.065
rmse 0.063 0.066 0.066 0.065

T=10
G=100 bias 0.000 —0.033 0.000 —0.000
sd 0.046 0.050 0.047 0.047
rmse 0.046 0.060 0.047 0.047
G=200 bias —0.001 —0.018 —0.001 —0.002
sd 0.033 0.035 0.033 0.033
rmse 0.033 0.039 0.033 0.033
G=400 bias 0.001 —0.008 0.001 0.001
sd 0.024 0.025 0.024 0.024
rmse 0.024 0.026 0.024 0.024

T=15
G=100 bias —0.001 —0.023 —0.001 —0.001
sd 0.028 0.031 0.028 0.028
rmse 0.028 0.038 0.028 0.028
G=200 bias 0.000 —0.011 0.000 0.000
sd 0.018 0.020 0.018 0.018
rmse 0.018 0.023 0.018 0.018
G=400 bias 0.000 —0.005 0.000 0.000
sd 0.013 0.013 0.013 0.013
rmse 0.013 0.014 0.013 0.013
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Table 1.4: Bias and RMSE, p = .8, heteroscedasticity and correlation within clusters

Unfeasible  Arellano and

Optimal Bond Estimator 1 ~ Estimator 2
Estimator Estimator

T=5
G=100 bias —0.027 —0.226 —0.065 —0.049
sd 0.183 0.218 0.271 0.367
rmse 0.185 0.314 0.279 0.370
G=200 bias —0.025 —0.140 —0.027 —0.033
sd 0.125 0.166 0.135 0.203
rmse 0.128 0.217 0.137 0.206
G=400 bias —0.007 —0.069 —0.008 —0.010
sd 0.084 0.121 0.085 0.131
rmse 0.085 0.139 0.086 0.131

T=10
G=100 bias 0.001 —0.075 —0.000 0.000
sd 0.055 0.075 0.056 0.074
rmse 0.055 0.106 0.056 0.074
G=200 bias 0.000 —0.042 0.000 —0.000
sd 0.039 0.055 0.039 0.054
rmse 0.039 0.069 0.039 0.054
G=400 bias 0.001 —0.019 0.001 0.001
sd 0.027 0.039 0.027 0.038
rmse 0.027 0.043 0.027 0.038

T=15
G=100 bias —0.001 —0.046 —0.000 —0.002
sd 0.031 0.041 0.030 0.040
rmse 0.031 0.062 0.030 0.040
G=200 bias 0.001 —0.024 0.001 0.000
sd 0.020 0.029 0.020 0.028
rmse 0.020 0.037 0.020 0.028
G=400 bias 0.001 —0.012 0.000 0.000
sd 0.015 0.021 0.014 0.020
rmse 0.015 0.024 0.014 0.020
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Table 1.5: Inference, p = .8, equi-correlation within clusters

Unfeasible  Arellano and AB w/
Optimal Bond Windmeijer  Estimator 1  Estimator 2
Estimator Estimator correction

T=5
G=100 ratio 1.121 0.788 1.051 1.016 1.002
coverage 0.969 0.763 0.895 0.964 0.959
length 0.539 0.550 0.749 0.552 0.760
G=200 ratio 1.063 0.834 1.045 1.024 0.978
coverage 0.956 0.796 0.917 0.951 0.956
length 0.375 0.417 0.525 0.376 0.518
G=400 ratio 1.073 0.863 1.029 1.042 0.977
coverage 0.976 0.888 0.939 0.969 0.954
length 0.268 0.313 0.376 0.268 0.372

T=10
G=100 ratio 0.987 0.661 1.004 0.962 0.943
coverage 0.948 0.653 0.873 0.952 0.949
length 0.184 0.176 0.270 0.184 0.254
G=200 ratio 0.983 0.734 1.003 0.975 0.961
coverage 0.949 0.760 0.905 0.949 0.944
length 0.130 0.139 0.194 0.130 0.179
G=400 ratio 0.974 0.766 0.975 0.968 0.943
coverage 0.953 0.835 0.922 0.952 0.939
length 0.092 0.104 0.134 0.091 0.127

T=15
G=100 ratio 0.941 0.561 1.015 0.939 0.983
coverage 0.941 0.480 0.815 0.943 0.948
length 0.105 0.084 0.140 0.105 0.144
G=200 ratio 1.025 0.688 1.053 1.022 1.006
coverage 0.961 0.696 0.916 0.958 0.951
length 0.074 0.072 0.110 0.074 0.102
G=400 ratio 1.012 0.763 1.024 1.013 1.006
coverage 0.952 0.823 0.925 0.957 0.944
length 0.052 0.057 0.078 0.052 0.072
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Table 1.6: Inference, p = .8, no correlation within clusters

Unfeasible  Arellano and AB w/
Optimal Bond Windmeijer  Estimator 1  Estimator 2
Estimator Estimator correction

T=5
G=100 ratio 1.140 1.042 1.142 1.013 1.060
coverage 0.978 0.883 0.923 0.959 0.960
length 0.548 0.491 0.558 0.542 0.533
G=200 ratio 1.038 1.000 1.053 0.984 1.004
coverage 0.961 0.909 0.932 0.954 0.948
length 0.379 0.359 0.383 0.377 0.372
G=400 ratio 1.082 1.052 1.073 1.040 1.041
coverage 0.975 0.947 0.951 0.968 0.965
length 0.269 0.262 0.271 0.268 0.267

T=10
G=100 ratio 1.006 0.820 1.007 0.974 0.975
coverage 0.958 0.836 0.910 0.951 0.952
length 0.185 0.163 0.204 0.182 0.182
G=200 ratio 0.990 0.890 0.971 0.981 0.979
coverage 0.950 0.884 0.918 0.951 0.949
length 0.130 0.122 0.142 0.129 0.129
G=400 ratio 0.976 0.920 0.975 0.964 0.965
coverage 0.952 0.914 0.932 0.950 0.950
length 0.092 0.089 0.097 0.091 0.091

T=15
G=100 ratio 0.949 0.686 0.959 0.935 0.937
coverage 0.948 0.730 0.866 0.943 0.944
length 0.106 0.084 0.105 0.105 0.105
G=200 ratio 1.027 0.846 1.021 1.022 1.020
coverage 0.962 0.860 0.925 0.957 0.958
length 0.074 0.066 0.082 0.074 0.074
G=400 ratio 1.011 0.935 1.033 1.008 1.009
coverage 0.952 0.902 0.945 0.955 0.956
length 0.052 0.050 0.058 0.052 0.052
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Table 1.7: Inference, p = .8, heteroscedasticity and correlation within clusters

Unfeasible  Arellano and AB w/

Optimal Bond Windmeijer  Estimator 1  Estimator 2
Estimator Estimator correction

T=5
G=100 ratio 1.027 0.773 1.088 0.834 0.812
coverage 0.963 0.666 0.872 0.949 0.940
length 0.747 0.669 0.943 0.897 1.181
G=200 ratio 1.028 0.801 1.033 0.943 0.854
coverage 0.945 0.736 0.884 0.955 0.934
length 0.507 0.523 0.680 0.501 0.684
G=400 ratio 1.078 0.845 1.027 1.036 0.919
coverage 0.969 0.831 0.901 0.960 0.947
length 0.358 0.402 0.491 0.348 0.474

T=10
G=100 ratio 0.973 0.652 1.009 0.937 0.954
coverage 0.948 0.608 0.857 0.942 0.954
length 0.214 0.193 0.301 0.208 0.280
G=200 ratio 0.968 0.711 0.982 0.951 0.936
coverage 0.934 0.729 0.899 0.932 0.929
length 0.150 0.155 0.218 0.146 0.199
G=400 ratio 0.980 0.772 0.988 0.968 0.942
coverage 0.953 0.829 0.926 0.947 0.943
length 0.106 0.117 0.152 0.103 0.141

T=15
G=100 ratio 0.955 0.537 1.002 0.939 0.965
coverage 0.940 0.478 0.800 0.940 0.951
length 0.117 0.088 0.149 0.113 0.152
G=200 ratio 1.016 0.681 1.028 1.006 0.996
coverage 0.964 0.700 0.897 0.952 0.947
length 0.082 0.077 0.118 0.079 0.109
G=400 ratio 0.977 0.746 1.004 0.988 0.978
coverage 0.945 0.810 0.914 0.943 0.945
length 0.058 0.061 0.085 0.056 0.077
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Table 1.8: Bias and RMSE, p = .5, equi-correlation within clusters

Unfeasible  Arellano and
Optimal Bond Estimator 1 ~ Estimator 2
Estimator Estimator

T=5
G=100 bias —0.001 —0.022 0.000 0.002
sd 0.063 0.087 0.063 0.085
rmse 0.063 0.090 0.063 0.085
G=200 bias —0.002 —0.015 —0.002 —0.004
sd 0.045 0.064 0.045 0.064
rmse 0.045 0.066 0.045 0.064
G=400 bias —0.000 —0.006 0.000 0.000
sd 0.031 0.044 0.031 0.044
rmse 0.031 0.045 0.031 0.044

T=10
G=100 bias 0.001 —0.015 0.001 0.002
sd 0.029 0.041 0.029 0.040
rmse 0.029 0.044 0.029 0.040
G=200 bias —0.001 —0.008 —0.000 —0.001
sd 0.