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ABSTRACT

ANALYSIS OF ECONOMIC TIME SERIES WITH LONG MEMORY

By

Hyung Seung Lee

This dissertation focuses on economic time series that follow a general

ARFIMA(p,d,q) process with 0< d <1, which is intermediate between short memory

(d =0) and unit root ((1 =1). Chapter 2 considers the unit root test proposed by

Kwiatkowski, Phillips, Schmidt and Shin (KPSS, 1992) against I(d) alternatives. We

show that the KPSS unit root test is consistent against stationary long memory

processes (d <l/2) but is not consistent against nonstationary long memory processes

(d >1/2). Therefore, the KPSS test only can distinguish short memory processes

(d=0), stationary long memory processes and nonstationary processes. Simulation

results are provided to support our asymptotic findings.

Chapter 3 considers the non-parametric estimation of the differencing

parameter in the ARFIMA(p,d,q) process using the Adjusted Minimum Distance

Estimator (AMDE) of Chung and Schmidt (1995). We compute the asymptotic bias

of the AMDE and the MDES that occur if we ignore short-run dynamics and estimate

the (0,d,0) model. Our computational results for the ARFIMA(1,d,O) and



ARFIMA(0,d,l) models show that the asymptotic bias is larger when the short-run

dynamics are stronger and when the number of ignored low-order autocorrelations is

smaller.

Chapter 4 considers the estimation of the cointegrating coeficient in the case

of fractional cointegration. We derive the asymptotic distribution of the OLS

estimator under fairly strong assumptions and find that its order in probability is T‘“,

for -1/2< d <3/2 except (1 = 1/2. Also we derive the asymptotic distribution of OLS in

difl‘erences and find that it is not consistent unless the error and the regressor are

uncorrelated. We provide simulation results that support our asymptotic findings.
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CHAPTER 1

INTRODUCTION
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Classical methods of time series analysis assume stationarity, so that the series

fluctuates around its mean level (or a trend) without changes in its autocovariance

structure over time. Stationary series are often assumed to follow an ARMA process,

which implies that the series has short memory in the sense that its autocorrelations

and impulse response weights decay at a geometric rate. Models which can deal with

time series that are more persistent than a short memory process have focused

primarily on the existence of a unit root process.

However, the classification of time series into either unit root or stationary

ARMA processes is too extreme and restrictive. Between these two types of

processes, a long memory process can be considered to cover intermediate cases

which are not well fit by either short memory or unit root models. In the data, when

the sample autocorrelations do not decay quickly for long lags and yet the low order

autocorrelations are not close to unity, we can suspect a long memory process. That

is, a long memory process displays autocorrelations that are too small at low orders

for a unit root, but too persistent at long lags for a stationary ARMA process.

There are many cases of long memory models in the physical sciences. Data

with hyperbolically decaying autocorrelations and impulse response weights were

firstly observed by Hurst (1951, 1956) and Mandelbrot and Wallis (1968) in

hydrology and climatology. In economics, many financial data, such as forward

premiums, interest rate differentials and inflation rates, have recently been found to

display long memory characteristics. Baillie (1995) provides a survey of the

application of long memory models in economics.
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There are several possible definitions of the concept of long memory. McLeod

and Hipel (1978) defined a stochastic process to be long memory if the

autocorrelation function is not summable; that is, with p,- = j-th autocorrelation,

T

(1) limp”, lejli finite.

j=-T

A more specific definition of long memory is that the process has autocorrelations that

decline hyperbolically at large lags:

(2) 7,. ~ MC“, (2» >0, 0< 0t <1), as k—)oo.

(Here at ~ bk means at /bk —> 1 as k —) 00.) In (1) above, It can be a constant, or more

generally it can be a function of k that is slowly varying at infinity (i.e., A(Ck)/A(k)

—>1, as k —> 00, for any c >0). Long memory can be defined equivalently in terms of

the behavior of the spectral density as one approaches the zero frequency. A long

memory process has infinite spectral density at zero frequency, as does a unit root

process; however, unlike a unit root process, the spectral density at zero of the first

difference of a long memory process vanishes.

Rosenblatt (1956) has defined long memory based on the dependence between

two points of a process. Mandelbrot and Van Ness (1968) and Mandelbrot (1970)

formalized Hurst’s empirical findings and defined fractional Gaussian noise which is

designed to account for the long run behavior of a long memory time series. Granger

and Joyeux (1980) and Hosking (1981) proposed an alternative long memory process,

the fractionally integrated process. Geweke and Porter-Hudak (1983) proved that the
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definition of fractional Gaussian noise by Mandelbrot and Van Ness and the

fractionally integrated process are equivalent.

We will consider in detail the fi'actionally integrated process of Granger

(1980), Granger and Joyeux (1980) and Hosking (1981). A time series {y} is a

fractionally integrated process of order (1, I(d), if

(3) (1- WE = 2.,

where L is the lag operator, d is the differencing parameter and {8,} is a white noise

process with zero mean and finite variance 0%. For any d > -1, y. is invertible (Odaki

(1993)) and (l-L)d can be expressed via the binomial expansion:

(4) (1- L)‘1 = it-ntfi) = £1:ij = F(-d,1;1;L),

i=0 1 i=0

where forj = 0, l, 2, ...,

 

d) = d(d—1)---(d—j+1)

(5A) (. .

J J!

  
_ F(j—d) _ k—l—d

(5B) TCj - F(j+l)F(—d) — 01:19 k 9

lw

Itx—le-tdt, x > 0,

0

(5C) F(x) = gamma function =<

oo, x=0,

F(l+x)

l x<0,

x 
(5D) F(a,b;c;z) = hypergeometric fimction
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: 1+3—b— +a(a+l)b(b+1)z2+

c-l c(c+l)-l-2

 

F__(_c)__ZF(a + j)F(b + j) zj .

I‘(a)1“(b) j—o NO + Dr(J + 1)

 

Therefore, the infinite AR representation is the following:

(6) yt = Z¢jyt_j +8t, where ¢j = —1Cj.

j=l

y. is a stationary process for d <1/2. Its infinite MA representation can be

expressed as follows:

(7) Yt = ZejSt—j ’

j=0

where

F(j+d)

I“(J'tl)1“((1)’

 
(8) Oj = = 0,1, 2,... .

Its variance-covariance structure is as follows:

2
(9) 0'3, = 08F(1—2d)
 

 

F2(l—d) ’

._I‘(j+d)l‘(1-d)_j k—l+d j=1
(10) pJ-l“(d)l‘(j—d+l)= LII—:— , ,2,3

Thus for -1< d <l/2, y is a stationary and invertible fractionally integrated process.

Since Oj represents the impact of SH on y, the cumulative impulse response (=0(1))

which is the total effect of a unit innovation can be obtained by summation of Oj:

Nd 0, d<0

ll 01 0 =1 ,0 OJ- =1° w———=( ) ( )= Z] 1mN_, £1 1mN—> I‘(l+d) {(13, d > O.



For more details, see Sowell (1990).

The AR weights, MA weights and autocorrelations all decay hyperbolically,

though at different hyperbolic rates:

(12A)TC“Aral—(1W—d_l asj —)<X),

(12B) Oj ~——jdlasj—)oo,

Nd)

(12C) pj ~Iq—(l-—d)j2d‘l asj —>oo.

I‘(d)

This is in contrast to the case of a stationary ARMA process, for which the

autocorrelations decrease rapidly (at an exponential rate rather than at the hyperbolic

rate for an I(d) process). Since 0,- is close to zero for large j as long as d <1, an I(d)

process with 1/2_<. (I <1 is still mean-reverting, even though it is not stationary. Baillie

(1995) showed this result using the cumulative impulse response functions of the first

difference of an I(d) process. For further details see Chung (1994b).

The spectral density at zero frequency is another measure of persistence in a

time series. The spectral density of an I(d) process is: for «S to Sat,

2
. —2d 2 _

(13) f(m)=38—1-e“°’| =E£|2sin(to/2)| 2“
21c 21c 

The spectral density at (0 =0 is infinite for (1 >0, finite for d =0, and zero for <1 <0.

More specifically, because sine) ~03 as (1) ->0, f(0) ~ ((52 /21t)(t) "2“ as a) —) 0. Thus

0, d<0,

(l4) f(0)={oo d>0



0, dS-l/2,

(15) f'(0)= -oo, -l/2<d<0,

w, d>Q

Therefore, the differencing parameter d is not identified by the level or derivative of

its spectral density at zero frequency (Sowell, 1992b).

An I(d) process can be extended to cover more general economic time series

models when 8. in (3) is allowed to follow a general stationary ARMA process. A

time series {y} is an autoregressive fractionally integrated moving average process of

order p, (1, q, or ARFIMA(p,d,q), if it satisfies:

(16) (1— my. = a. = <D(L)"<~>(L)u. [so ¢(L)e. = mm];

(17) <D(L)= l+¢1L+¢2L2+~+¢pr and O(L)=1+01L+02L2+~+0qu;

where all the roots of <D(L) and @(L) lie outside the unit circle, (I) and (9 have no

common roots, and {ut} is white noise. For -1< d <l/2 the ARFIMA(p,d,q) process is

stationary and invertible. For the general ARFIMA(p,d,q) process, Sowell (1992a)

and Chung (1994a) show how to compute the autocovariance and autocorrelation

functions. In a stationary and invertible ARFIMA(p,d,q) model the autocorrelations

decay at the same hyperbolic rate as in the corresponding I(d) process; the rate of

decay is independent of the ARMA parameters. Specifically, if pk“, k = 0, 1, ...,

represent the autocorrelations of the ARFIMA(p,d,q) process,

(1 8) p; ~ Ckz‘H, as k—)oo.

Here C¢0 is a constant that depends on the ARMA parameters.
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Since the ARFIMA process is an I(d) process with ARMA error or an ARMA

process with an I(d) error, its spectral density function is:

|®(e’i‘” )l2

f

|<D(e‘i‘” ){2 (0))

0' _
_§___ 1-

_ 21t|¢(e-im)|2

(19) f*(0))=

    

=E:|®(ee—im )lz

2n |¢(e—i(1)2)!

At zero frequency the spectral density is similar to the expression for the I(d) case:

2[2|l— COS((D)|]2d , -1t <(l)< 1t.

()(1)
Turn” awn—>0.

(9(1)

(20) f *(0)~ T;2——[

The asymptotic distribution for many statistics based on data generated by an

I(d) process will be established using a fimctional central limit theorem involving the

fi-actional Brownian motion of Mandelbrot and Van Ness (1968):

 (21) Wd(t)= I(r —s)dW(s),re[0,1],
l

F(d+ 1)0

where W(s) is the standard Brownian motion. To state this functional central limit

theorem, suppose that v. is an I(d) process and V. is its cumulation:

t

(22) V.=Zvj.

i=1



9

Thus (1— L)d vt = ut where u. is short memory. We follow Lee and Schmidt (1995)

in assuming the following (Assumption A):

(A1) v, is I(d) with |d| < 1/2.

(A2) 11, is iid N(0, 02“).

This assumption is somewhat stronger than others have made, and probably stronger

than necessary; see Sowell (1990), Lo (1991) and Hosking (1984).

Define the variance ofthe partial sum process as in Sowell (1990):

T

(23) 0% = Var(VT) = Vamzvj).

j=l

Then when v. follows Assumption A, Sowell ( 1990) shows that:

 (24) 0.2 = 0’2 F(1-2d) [r(l+d +T) _ f‘(1+d)]

T “ r(1+2d)r(1+d)r(t—d) r(T-d) F(-d)

and, as T—>oo,

0% 2 r(1-2d)

(25) T1+2d " C“ (1+ 2d)r(1+ d)r(1— d)
5.03.  

Furthermore, under Assumption A and using results of Davydov( 1970), Sowell (1990,

p.498) shows the following invariance principle, for re [0, 1]:

V
(26) [rT]

 

=>wd(f),

0T

or, equivalently,

‘1er}
=> (ode(r).
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The discussion above has focused on the case of a stationary long-memory

process, and specifically on the I(d) process with |d|<1/2. However, we will be

interested primarily in positive values of d, because an I(d) process with d <0 is anti-

persistent, which is not of empirical relevance. In some cases it may be useful,

theoretically and empirically, to consider nonstationary long memory processes. A

specific type ofnonstationary long memory process is the I(d) process with 1/2< (1 <1.

An I(d) process with 1/2< (1 <1 is nonstationary but still mean-reverting. This

contrasts with a stationary long memory process, which is stationary and mean-

reverting; also with a unit root process, which is nonstationary and not mean-

reverting. The discussion above applies to such series after differencing, since ‘3', is

I(d) with 1/2< (1 <1” is equivalent to “Ayt is I(d) with -1/2< (1 <0.”

In this dissertation we will investigate how we can distinguish among three

difl‘erent kinds of processes, namely short memory, long memory and unit root

processes. This is empirically relevant because for some data one can reject both the

null hypothesis of a unit root and the null hypothesis of short memory. It is possible

that such series may follow a long memory process, and we need to test this

possibility. Also we will review estimation of the differencing parameter which

determines the main stochastic properties of a long memory process. Lastly the case

that the error in a cointegrating relationship of unit root series is I(d) will be

considered.

The plan of this dissertation is as follows. In Chapter 2 we will check whether

the KPSS test, introduced by Kwiatkowski, Phillips, Schmidt and Shin (1992), is
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useful in distinguishing short memory, long memory and unit root processes. We will

show that the KPSS test can not consistently distinguish a unit root from a

nonstationary long memory process, since the order in probability of the KPSS

statistic is equivalent under these two processes. However, the KPSS statistic can

distinguish consistently between short memory, stationary long memory, and either

unit root or nonstationary long memory. We provide simulation results which support

our asymptotic results and we compare our results with other results of Diebold and

Rudebusch ( 1991) and Hassler and Walters (1994) for Dickey-Fuller type tests.

In Chapter 3 we will consider the problem of Minimum Distance Estimation

(MDE) of the differencing parameter of a fractionally integrated long memory

process. The simple MDE proposed by Tieslau, Schmidt and Baillie (1995), which

minimizes the difference between sample and population autocorrelations, is useful

because it does not require a distributional assumption and it is easy to compute,

which is also true in the Adjusted MDE of Chung and Schmidt (1995). Furthermore

in the general ARFIMA model it provides a way to estimate the differencing

parameter separately from the ARMA parameters which determine short-run

dynamics. However, such a non-parametric treatment of short-run dynamics will

cause asymptotic bias, and we investigate ways of decreasing the bias due to ignored

short-run dynamics. We investigate how the size of the bias is afl‘ected by the value

of d and of the ARMA parameters, the number of moment conditions used, and the

order of autocorrelations considered. Our computations show that, for certain

methods of expressing the moment conditions suggested by Chung and Schmidt
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(1995), the asymptotic bias becomes small when only high-order autocorrelations are

used or the short-run dynamics are not strong.

In Chapter 4 we consider the estimation of the cointegrating vector in the case

that the error in a cointegrating relationship is I(d) with 0< (1 <1, rather than in the

usual case with 1(0) errors. We find that OLS in this case is still consistent and its

order in probability depends on the value of (1. Specifically, for 0< (1 <1 OLS is

Op(T1'd). For comparison we also consider OLS in difi‘erences. We find that it is not

consistent if the errors and regressors are correlated, and it converges at the usual rate

T”2 for all values of de[0, 1]. We provide some simulation results that support these

asymptotic results.

Finally in Chapter 5 we summarize our results and make some suggestions for

firture research.



CHAPTER 2

CONSISTENCY OF THE KPSS UNIT ROOT TEST AGAINST

FRACTIONALLY INTEGRATED ALTERNATIVES

l3



l4

1. INTRODUCTION

Since Nelson and Plosser (1982), there has been an enormous body of

theoretical and empirical work seeking to distinguish whether economic time series

are trend stationary or have a unit root. This distinction is important for both

economic and statistical reasons. For a survey, see Diebold and Nerlove (1992).

There are two main approaches to this problem. The most traditional

approach is to test the null hypothesis of a unit root against the alternative hypothesis

of trend stationarity. For this problem, the Dickey-Fuller tests were introduced by

Dickey (1976), Fuller (1976), and Dickey and Fuller (1979). The standard Dickey-

Fuller tests are extended to allow general ARMA error processes by Said and Dickey

(1984), Phillips (1987) and Phillips and Perron (1988). Dejong, Nankervis, Savin and

Whiteman (1992) found that the standard Dickey-Fuller tests and the extensions of

Said-Dickey, Phillips-Perron, and Choi-Phillips (1991) have trouble distinguishing unit

root processes with substantial short-run dynamics fiom trend stationary alternatives.

Conversely, a more recent approach is to test the null hypothesis of stationarity

against the alternative of a unit root. Tests of the null of stationarity have been

suggested by Park and Choi (1988), Kwiatkowski, Phillips, Schmidt, and Shin (1992)

(hereafter, KPSS), Saikkonen and Luukkonen (1993) and Leybourne and McCabe

(1994). In this chapter we will consider the KPSS test, which is a test of the null

hypothesis of stationarity around a deterministic trend, and which controls for short-

run dynamics using a non-parametric correction similar to those used by Phillips and

Perron (1988) or Schmidt and Phillips (1992). Since many simulation results show
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that the traditional Dickey-Fuller tests are not reliable in the presence of MA errors

whose coefficient is not close to zero [for details see Agiakloglou and Newbold

(1992), Schwert (1989), Pantula (1991)], Saikkonen and Luukkonen (1993) and

Leyboume and McCabe (1994) suggest tests of the stationary null hypothesis that are

similar to KPSS, but which differ from KPSS in the way they deal with

autocorrelation under the null hypothesis.

The asymptotic analysis of the Dickey-Fuller type unit root tests, including

those extended versions which allow error autocorrelation, shows that those tests are

consistent against stationary alternatives. Also, the KPSS stationarity test is

consistent against unit root alternatives. Although the KPSS test was originally

intended as a test ofthe null of stationarity against the unit root alternative, it can also

be used as a test of the unit root null against the alternative of stationarity. This has

been suggested by Shin and Schmidt (1992) and Stock (1990). Shin and Schmidt

(1992) show that the KPSS unit root test is consistent against the alternative

hypothesis of stationarity.

A common empirical puzzle is what to conclude when one rejects both the null

of a unit root (e.g., using the Dickey-Fuller tests) and the null of stationarity (e.g.,

using the KPSS test). To understand this outcome, suppose that z. (t = 1, 2, ...) is the

series in question and that Z. is its cumulation (partial sum), i.e.,

t

Z; : ZZj .

j=l
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Then we follow Lee and Schmidt (1995) in saying that z. is a short memog process if

it satisfies the following two requirements (Assmtion B):

(B1) 02 =1imT_,,,o T'1E(Z%~) exists and is non-zero.

(132) W 6 [0,1], T‘1’22[,T]:> oW(r).

Here [rT] denotes the integer part of rT, => denotes weak convergence, and W(r) is

the standard Wiener process (Brownian motion). The concept of short memory is

important because the asymptotic analysis of the KPSS test actually assumes that

under the null the series is short memory, and the asymptotic analysis of unit root

tests actually assumes that under the null the first difference of the series is short

memory. Thus we can rationalize rejections of both null hypotheses by postulating

series that are not short memory either in levels or in first differences.

These arguments lead to the consideration of long memory processes that are

more persistent than a short memory process, but less persistent than a unit root

process. Accordingly, they are not short memory either in levels or in first

differences. The consideration of such long memory time series has mostly taken

place in the physical sciences. They have been applied extensively in hydrology

(Hurst, 1951, 1956) and have also been used to model data on temperatures and

growth of tree rings (Seater, 1993). The Beveridge wheat price index from 1500

through 1869 (Beveridge, 1921) and US. monthly consumer price index inflation

rates are examples of economic data that exhibit typical long memory features. There

are also studies of long memory in a spatial context; e. g., Whittle (1956) and Beran
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(1992). A good survey of long memory from the point of view of economics and

econometrics is given by Baillie (1995).

We will use the fiactionally integrated process defined by Granger (1980),

Granger and Joyeux (1980) and Hosking (1981), and considered by Lee and Schmidt

(1995), which is introduced in Chapter 1:

(1) (l—L)d}’t =3t

where L is the lag operator, (1 is the differencing parameter and {8.} is a short memory

process with zero mean and finite variance of.

There has been some recent research on tests related to the fractionally

integrated long memory process. Lo (1991) finds that his “rescaled range” test, for

which the null hypothesis is short memory, is consistent against I(d) processes with

de(-1/2, 1/2). Cheung (1993) investigated the finite sample performance of the GPH

test, the modified rescaled range test and two LM type tests of the null of short

memory against the alternative of fi'actional integration. Lee and Schmidt (1995)

show that the KPSS “stationarity” test is actually a test of the null hypothesis of short

memory, and that it is consistent against stationary long memory alternatives (I(d) for

-l/2< d <1/2 and d¢0). They also provide simulation results on the power of the

KPSS test. They found the power of the KPSS short memory test in finite samples to

be comparable to that of Lo’s rescaled range test. Their results suggest that the

KPSS test can be used to distinguish a short memory and stationary long memory

processes but a rather large sample size is required to do so reliably.
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There are several studies on the power of unit root tests against fractionally

integrated alternatives. Diebold and Rudebusch (1991) give Monte Carlo evidence of

the low power of the Dickey-Fuller test against fractionally integrated alternatives

with d >1/2; that is, nonstationary long memory alternatives. Sowell (1990) derives

the asymptotic distribution of the Dickey-Fuller tests under the hypothesis of an I(d)

process with 1/2< d <3/2 and shows the consistency of these tests against

nonstationary long memory alternatives. Hassler and Wolters (1994) show that the

Dickey-Fuller type tests, including the Said-Dickey and Phillips-Perron extensions,

have low power in finite samples against I(d) alternatives with 0< d <1, and especially

that the augmented Dickey-Fuller test works poorly.

The purpose of this chapter is to investigate whether the KPSS test is useful in

distinguishing short memory, long memory and unit root processes. Specifically, we

want to ask whether the KPSS test can distinguish the following four types of

processes: (i) short memory ((1 =0); (ii) stationary long memory (|d| <1/2, d¢0); (iii)

nonstationary long memory (l/2< (1 <1); and (iv) unit root ((1 =1). Asymptotics for

the KPSS statistic are previously known for cases (i), (ii) and (iv), but not for (iii).

Therefore we need to derive the asymptotic distribution of the KPSS statistic when

1/2< (1 <1.

In the following it will be shown that the asymptotic distribution of the KPSS

statistic in the case of a nonstationary long memory process (1/2< (1 <1) is difierent

from the other cases, but its order in probability is the same as in the case of a unit

root. Therefore, the KPSS unit root test is inconsistent against nonstationary long
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memory alternatives. More generally, the KPSS test can not consistently distinguish a

unit root fi'om a nonstationary long memory process. Using the KPSS statistic we can

only distinguish consistently between the following three cases: (i) short memory; (ii)

stationary long memory; and (iii) either nonstationary long memory or unit root.

Some Monte Carlo evidence on finite sample power is also provided. It is

generally in agreement with the asymptotic results.

2. THEORETICAL RESULTS

A. The KPSS Test Under Short Memory and Unit Root

We consider the data generating process:

(2) yt=d>+§t+et,t=l, 2, ..,,T

where {y.} is the observed series and {8.} is the deviation from deterministic linear

trend. Let e. be the residuals from a regression of y. on intercept and trend (t), and let

S. be the partial sum of the e.:

t

St: 261' .

j=1

Let 0'2 be the long-run variance of the at, as in (B1) above and let 52(8) be the

Newey-West estimator of oz:

(3) s2(e) = liez +32!st 3) i6 e
T t ’ t t-S'

t=1 T s=l t=s+l
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Here w(s, K) = 1-€—:—1, and E is chosen so that Z —->oo but €/T—>0 as T—-)oo. We will

later also consider the case that 2 =0, in which case the second term on the right hand

T

side of (3) is set to zero and s2 (O) = %Ze.2 .

t=1

The KPSS statistic is then defined as:

T

T4283

4 " g =__ti_
( ) n.( ) 93(3)

The KPSS statistic 1‘1”“) is defined similarly except that we set i=0 in (2), which

implies use ofthe residuals e. = yt — y in defining S. and 52(6).

Under the hypothesis that a. is a short-memory process, KPSS show that

T 1

T'ZZsf => jv2(t)2dt,

t=1 0

where V2(r) is a second-level Brownian bridge, as defined by KPSS, equation (16).

Also s2(€) is a consistent estimator of 02. Therefore,

Mt): j;V2(f)2dI-

Similar statements hold for 1111(3), with V2(r) replaced by the standard Brownian

bridge, V1(r)=W(r)-rW(l). For the purpose of the present chapter, the important

result is that 131(6) and 1].,(6) are 0,,(1) when a. is short memory.

Next consider the case that e. is a unit root process, in the sense that As. is

short-memory. In this case KPSS show that
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T l a 2

(5) T428.2 :>oZI[JW*(s)ds] da,

t=1 o o

where W*(s) is a demeaned and detrended Wiener process, as defined in Park and

Phillips (1988, p.474), and 02 is the long run variance of Ae.. Furthermore,

 

82(3) 1 1t

(6) —€—T—:>oz_([W (s)2ds.

This implies that

l a 2

I(IWYSXIS] da

(7) WWW) => ° °, .

IW‘(S)2ds

0

Therefore fi1(€) is 01) (T/ 8) when a. is a unit root process. Ifwe set §=0 in (2), then

fin“) is also Op (T/ E): in fact, we have the same result as in (7) except that W*(s) is

replaced by the demeaned Brownian motion, \_lV(s):

1

Ms) = W(s) [wean
o

The KPSS unit root test suggested by Shin and Schmidt (1992) sets I? = 0,

since the distribution in (7) is independent of the nuisance parameter 02 for all values

of E , including 6 = 0, under the unit root hypothesis. Then T'l{11(0) has the same

distribution as on the right hand side of (7) above, and 131(0) is OP(T) under the

hypothesis that a. is a unit root process.
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These results are easy to summarize. (1) When 6 = 0, fi,(0) and 1],,(0) are

0.,(1) if a. is short memory and OP(T) if a. has a unit root. (2) If I! -—> 00 but Z/T -—> 0

as T—)oo, {11(3) and 1],,(2) are 09(1) ifs. is short memory and Op(T/€) ifs. has a

unit root. Thus, in either case, the KPSS statistic distinguishes consistently (correctly

with probability one as T—>oo) between short memory and unit root processes.

B. Asymptotics and Consistency of the KPSS Unit Root Test Under I(d)

First we will show the consistency of the lower tail KPSS unit root test against

the stationary long memory alternative hypothesis (-l/2< d <1/2). Thus we suppose

that (1— L)dat =ut, with -1/2< d <1/2, and with Assumption B satisfied. Under

these assumptions, Lee and Schmidt (1995) derive the asymptotic distribution of the

KPSS statistics. In the level stationary case (e. = y. -y), from their Lemma 1,

Theorem 1 and Theorem 3:

T 1

(8A) T‘(Zd+‘>2s3 2 to: ] Bd(r)2dr, where 13,.(r) = Wd(r) - rWd(l);

t=1 0

r(1— 2d)
(8B) 52(0)—p——)o2 =Var(e )=oZ———— (8:0);

. ‘ “ {1"(1— <1)}2

82(3) 2
(8C) “ET—L)(Dd (€—)oo but €/T—>0 as T900).

Therefore, the asymptotic distributions of the KPSS statistics in the level stationary

case, when a. is I(d) with -1/2< d <l/2, are as follows:



23

21

(9A) fitttom:ngBdtrfdr «=0)
680

(9B) (—$2“(2):]Bd(r)2dr (€—)oobut€/T—)OaST—)oo)

0

Furthermore, f], has the same orders in probability as f1“, and its asymptotic

distribution is exactly the same as in (9) except that Bd(r) should be replaced by

Vcl (r), defined as:

(10) v,(r) = w,(r) + (21‘ - 3t2 )w,(1) + (—6r + 6r2 )jw,(s)ds.

Thus the KPSS statistics 1A1,1 and fit are OP(T2d) for 8 = 0 and 0.,( (T/€)2d) for

8 -—) 00 under the stationary long memory alternative, while they are respectively

Op(T) and Op( T/€ ) under the null hypothesis of a unit root.

This implies the following result.

THEOREM 1:

Suppose that a. is I(d) with de(-1/2, 1/2) and Assumption B is satisfied. Then

1 A ..

gum—ho, %n.(0)-P—>0 (2:0)

6 . (Z ..

¥np(€)—P—)O, ¥n1(€)——>O (£—>oobut €/T—>0 as T—->oo)

Proof: The KPSS test statistics (l,/T)fi,l and (€/T)f1,1 (also, (l/T)1':|t and (€/T)fi,)

are each Op(T2d'1) and O..( (T/K) 2d"), and 2d is less than 1 because |d|<1/2. I
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Theorem 1 implies that the lower tail KPSS unit root test is consistent against

the stationary long memory alternative hypothesis. However, as d approaches 1/2, the

order in probability of the KPSS statistic under the I(d) alternative approaches the

same order in probability as under the unit root null hypothesis. This suggests that

when dis close to 1/2 the power ofKPSS unit root test would be small. There is also

an issue of the continuity of the power of the KPSS test against I(d) alternatives as d

——)1/2.

We now turn to the main theoretical contribution of this chapter, which is the

derivation of the asymptotic distribution of the KPSS statistics when a. is a

nonstationary long memory process. Thus we wish to consider the case that a. is I(d)

with l/2< d <3/2.

Define d* =d-l, so that As. is I(d*) with Id“ I <1/2; that is, As. is a stationary

long memory process. We assume that Assumption A in Chapter 1 holds with v. =

As.. Then a. is the cumulation of the stationary I(d“) variables As., and we have the

invariance principle:

8 T
(11) fiaodmpm.

Note that this is really the same invariance principle as equation (27) in Chapter 1,

with d* replacing (1 because 1/2< d <3/2 and |d*| <l/2.

We will first consider the fiLl test. Thus we consider e. =yt —y=s, -E and

t

St = Zej . Then we can derive the following results.

j=1
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LEMMA 1

Suppose (I — L)d a. = ut for l/2< d <3/2, d*=d-l, and A8. satisfies Assumption

A in Chapter 1. Then

[ 'Tl
. 1

(l) Td*+3/2t_get :> mdeIWda(a)da,

0

(ii) T“13/2 81“] :wdsjwda(a)da, where Wd___.t_(a)= Wde(a)— JWda(b)db;

o

l r
2

T

(iii) $28.2 amiaJ‘thuMa] dr

t=1 00

Proof: See Appendix. I

THEOREM 2:

Under the same assumptions as in LEMMA 1,

. 1

(I) When 8= 0, then Tl++2d‘——S2(0) => (Ode {dee(a)2 d8}

(ii) When 6 —>oo and K /T—)0 as T—)oo, then

6—:—_21£:‘)P =9 (Ode {IWde(a)2 (18}.

Proof: See Appendix. I

Then we can prove the following theorem.
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THEOREM 3:

Under the same assumptions as in LEMMA 1,

(no).
1
 

 

  

e o o _

¥ p(0):> l (for 6—0)

l‘lnmzda
o

l r 2

, l llamda a.

-T-fi..(€)=> ° ‘1 (when €—>oo and €/T—>0 as T—)oo)

{Insets}
o

(2d*+4) T 2 -(2d*+4) T 2
T_ S T S

Proof: Since if] (0): E t and if] (E)= E t the

' T ” T-(2d*+l)82(0) T 1* €T’<2d*+l)s2(€)’

asymptotic distribution of the numerator is given by part (iii) ofLEMMA 1 and that of

each denominator is given by part (i) and (ii) of THEOREM 2. I

The analysis of f], is very similar. We just need the generalization ofLEMMA

1 for the case ofthe residuals from OLS of y. on constant and t, t = l, 2, ..., T.

LEMMA 3: Let e. be the residuals from an OLS regression of y. on (1, t),

t = 1, 2, ..., T. Then, under the same assumptions as in LEMMA 1,

l'

T—(d*+3/2)S[fl~] :> mdsIWJa(a)da ,

0
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l l

where W;a(a) = de(a) + (63 — 4)dee(b)db + (—123 + 6)!des(b)db .

0 0

Proof: See Appendix. I

Given LEMMA 3, it is easy to establish the same asymptotic results for the

KPSS fit statistic under the nonstationary long memory process as are given for fin

in THEOREM 2 and 3. All that is necessary is to replace the demeaned fi'actional

Brownian motion, &(a) , with the demeaned and detrended fi'actional Brownian

motion, W5. (a), in THEOREM 2 and 3.

Those theorems have several interesting implications. First, even though the

KPSS unit root test is consistent against stationary long memory alternatives, I(d) for

-1/2< d <1/2, the KPSS unit root test is not consistent against nonstationary long

memory alternatives, I(d) for 1/2< d <3/2, because the KPSS statistics have the same

orders in probability under both the null and alternative hypothesis. This is the main

theoretical result of this chapter. Second, Lee and Schmidt (1995) show that the

KPSS short memory test is consistent against a stationary long memory process (-1/2

< d <l/2), and here we can now see that it is also consistent against a nonstationary

long memory process (1/2< d <3/2). Below we will show higher power in finite

samples against nonstationary long memory alternatives than against stationary long

memory alternatives, as we should expect. Third, under the hypothesis of a non-

stationary long memory process, the orders in probability of the KPSS statistics are

independent of the value of (1, even although the form of their asymptotic distributions
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are affected by the value of d. This is in contrast to the case of a stationary long

memory process, where both the order in probability and the form of the asymptotic

distribution depends on (1. Also by way of contrast, the order in probability of the

Dickey-Fuller statistics depends on d for (1 <1 but not for 1< d <3/2; see Sowell

(1990)

3. SIMULATION RESULTS

In this section we provide simulation evidence on the power of the KPSS

stationarity (short memory) and unit root tests. The computations are done in

FORTRAN using the normal random number generator GASDEV/RAN3 of Press,

Flannery, Teukolsky and Vetterling (1989), as in Lee and Schmidt (1995). The data

on an I(d) process for d <l/2 are generated using the Levinson algorithm [Levinson

(1947), Durbin (1960), Whittle (1963), Brockwell and Davis (1991)]. For a

nonstationary long memory process (1/2< d <3/2) the data are generated by

cumulating I(d*) random variates, where d* =d-l. Given the I(d) process 8., data on

the observable series y. are generated according to equation (2) with d) = g = 0. The

value of d) and i do not matter for the power of any of the tests that we consider,

except that the fin test requires a = 0.

We have considered only positive values of (1 because we are primarily

interested in testing unit roots against nonstationary long memory processes. The lag

truncation parameters are chosen as (’0: 0, €4= integer [4(T/100)“4], and £12:

integer [ma/100)“) as in Schwert (1989), KPSS (1992) and Lee and Schmidt
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(1995). We consider sample sizes 50, 150, 250, 500 and 1000, and the number of

iterations is 10000. All of our tests are based on the 5% significance level.

Table 2.1 gives the powers of the 5% upper tail KPSS short memory tests against

the alternatives d =0.0, .1, .2, ..., .9, 1.0, and also (1 =.45 and .499. These are similar

to the values considered by Lee and Schmidt (1995), except that we add some cases

with (1 >1. Where they overlap, our results are very similar to those of Lee and

Schmidt. There are no surprise in these results, so we will not discuss them in detail.

Power increases with T for fixed d or with d for fixed T.

Table 2.2-1 gives the power of the lower-tail KPSS unit root test against I(d) for

05 d <1/2, and Table 2.3-1 does the same for the two-tailed KPSS unit root test.

Basically these results are as we would expect from our asymptotics and from the

previous limited simulations of Shin and Schmidt (1992). (i) The lower tail tests are

more powerful than the corresponding two-tailed tests. (ii) For a given (1, power

increases with T. This reflects the consistency of the tests against stationary long

memory alternatives. (iii) Power is largest when 6= 0 and smallest when 6: 6 12.

(There are a few exceptions, for small values of T, due to large size distortions.)

Again, this is consistent with the relevant asymptotics, which indicate that power

depends on 6/T, even asymptotically, for d <1/2. (iv) Power is larger when d is

farther fiom unity. (v) The power of flu and fit are similar.

Table 2.2-2 gives the power of the lower tail KPSS unit root test against I(d)

processes with l/ZS d <3/2, while Table 2.3-2 does the same for the two tailed test.

The most important result is that, with d fixed, power does not approach one as T



30

increases. This is a reflection of our theoretical result that the KPSS unit root test is

not consistent against nonstationary long memory processes. For example, for (1 =7

and 6 = 0, and for the one-tailed test, power grows from .169 with T = 50 to only

.256 with T = 1000, and would not be expected to approach one even for arbitrarily

large values of T.

Some other results in Tables 2.2-2 and 2.3-2 are as follows. (i) For the lower tail

test, power is always lower when 6 is larger, and is very small for 612 for T S 250.

This is due to the large size distortion of the test (too few rejections) for T S 250.

For example, the size of the lower tail test based on fiu(612) is zero for T = 50, and

still only .026 for T = 250. However, for the two tail test, power first decreases as

the number of lags grows (64 ), and then increases with more lags (61.2). Again, this

is due to large size distortions in the two tail test. (ii) The lower tail fin and f]. tests

have similar powers against I(d) for any d in the range (1/2, 3/2). However, the two

tail tests have similar powers only against I(d) with (1 <1. If d is greater than 1 there

is a distinct difference in the powers of two statistics. The flu test is generally more

powerful. (iii) For a given sample size and number of lags, power increases

monotonically with ll — d] for both the lower and two tail tests for (1 <1, and the lower

tail test has little power against (1 >1. The power oftwo tail test is asymmetric around

d =1, as in Diebold and Rudebusch (1991) and Lee (1994).

Lastly, our results can be compared with the previous results of other authors

for Dickey-Fuller type unit root tests against I(d) alternatives. These comparisons are

given in Table 2.4. Diebold and Rudebusch (1991) show that Dickey-Fuller test is not
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very powerful against I(d) alternatives for d >0.6. This is despite the fact that Sowell

has proved that the test is consistent against such alternatives. Lee (1994) gives the

power of Dickey-Fuller tests against I(d), and finds it to be small for d >1/2;

essentially, his results are the same as those of Diebold and Rudebusch. He also

found a discontinuity ofthe power fimction of the simple (no constants and no trends)

Dickey-Fuller tests at d =1/2. Hassler and Wolters (1994) show that the Phillips-

Perron and Dickey-Fuller tests have similar power against I(d) processes but the

augmented Dickey-Fuller test is not powerful; they argue that it is inconsistent. Our

results are not directly comparable with the others because our data is demeaned

while the others’ are not. However, two statements seem correct. First, the KPSS

unit root test has lower power than Dickey-Fuller tests (except the augmented

Dickey-Fuller tests) against nonstationary long memory processes. Second, the

unsurprising implication of all of these results is that it is very diflicult to distinguish

between a unit root and nonstationary long memory. This is unfortunate, because

these two types of series differ in fundamental ways, notably their degree of mean

reversion.

4. CONCLUSION

In this chapter we have asked whether the KPSS unit root test can be used to

distinguish long memory processes from unit root processes. We have shown that the

KPSS unit root test is consistent against stationary long memory alternatives, namely

I(d) processes for de(-l/2, 1/2); but it is not consistent against nonstationary long
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memory alternatives, I(d) for de(1/2, 3/2). This implies that the KPSS statistic can

not distinguish nonstationary long memory processes from unit root processes, even

though it can consistently distinguish between short memory processes, stationag

long memory processes, and nonstationary processes. Also, we have provided the

simulation results on power in finite samples. These support the relevance of our

asymptotic results.

Dickey-Fuller tests can consistently distinguish a unit root fi'om an I(d) process

with l/2< <1 <1, but not from an I(d) process with 1< d <3/2; see Sowell (1990). Thus

distinguishing a unit root from nonstationary long memory is a difficult and not

completely solved problem that is worthy offurther attention.
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TABLE 2.1

Power of KPSS Short Memory Test against I(d), de [0.0, 1.5)

 

fip Test fit Test
 

50 100 150 250 500 1000 50 100 150 250 500 1000
 

 

d=0.0

60

64

612

=.l

60

64

612

60

64

212

60

64

612

60

64

612

d=.45

60

64

612

d=.49

60

64

612

d=.499

60

64

612

=.5

60

64

612

.044

.036

.012

.124

.072

.020

.240

.123

.032

.387

.193

.047

.543

.278

.072

.613

.320

.088

.664

.357

.101

.659

.352

.095

.667

.356

.101 

.046

.044

.041

.053

.047

.033

.050

.046

.039

.165

.100

.055

.195

.119

.075

.216

.131

.085

.356

.182

.093

.402

.221

.121

.485

.265

.158

.542

.281

.139

.631

.351

.193

.730

.413

.251

.707

.384

.198

.801

.468

.255

.884

.549

.329

.773

.43 l

.224

.858

.531

.297

.930

.621

.381

.833

.466

.245

.893

.572

.324

.951

.669

.419

.826

.479

.250

.902

.589

.336

.959

.663

.416

.837

.476

.254

.901

.588

.333

.960

.680

.433

.052

.051

.049

.262

.169

.117

.592

.348

.211

.845

.555

.343

.958

.714

.455

.981

.775

.515

.989

.821

.556

.990

.819

.559

.991

.826

.570

.053

.051

.048

.323

.195

.141

.693

.418

.282

.928

.636

.425

.990

.797

.576

.997

.850

.645

.999

.887

.680

.999

.850

.697

.999

.898

.696  

.051

.041

.044

.140

.071

.049

.267

.121

.060

.418

.168

.064

.574

.235

.072

.639

.259

.077

.687

.293

.078

.700

.289

.083

.704

.306

.088

.052

.045

.034

.185

.098

.055

.380

.166

.086

.608

.267

.115

.775

.362

.154

.837

.417

.168

.880

.467

.192

.885

.470

.192

.888

.465

.187

.052

.048

.040

.215

.122

.071

.461

.224

.113

.714

.361

.159

.870

.490

.219

.921

.559

.257

.944

.599

.267

.949

.606

.275

.951

.616

.278

.053

.053

.044

.265

.145

.092

.577

.280

.149

.829

.444

.226

.941

.600

.316

.972

.661

.352

.986

.717

.389

.988

.721

.388

.984

.721

.392

.052

.050

.048

.331

.196

.121

.722

.407

.218

.932

.625

.345

.991

.794

.476

.051

.050

.050

.409

.226

.152

.839

.488

.295

.983

.735

.473

.999

.877

.626

.997 1.000

.848 .919

.536 .685

.999 1.000

.886 .945

.578 .737

.999 1.000

.893 .947

.597 .742

.999 1.000

.891

.593 .748

.951
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TABLE 2.1, CONTINUED

 

fin Test fi, Test
 

50 100 150 250 5001000 50 100 150 250 5001000
 

 

d=.51

60

64

612

60

64

612

60

64

£12

60

64

612

=9

60

64

612

d=.95

60

64

612

d=.99

60

64

612

d=l.0

60

64

612

d=l.l

60

64

612  

.688

.370

.103

.778

.437

.134

.848

.507

.171

.905

.586

.229

.935

.652

.286

.946

.676

.310

.960

.701

.341

.959

.712

.346

.975

.759

.421

.845

.493

.268

.908

.560

.315

.952

.643

.384

.978

.714

.455

.990

.776

.523

.992

.800

.548

.994

.823

.574

.994

.821

.583

.910

.602

.343

.962

.690

.439

.992

.833

.579

.999

.905

.713

.961

.689

.414

.987

.771

.509

.999 1.000

.900 .951

.661 .791

.981

.766

.491

.997 1.000 1.000

.835 .946 .975

.583 .737 .855

.992

.823

.553

.999 1.000 1.000

.891 .967 .991

.644 .806 .907

.996 1.000 1.000 1.000

.865 .928 .984 .995

.609 .713 .861 .938

.998 1.000 1.000 1.000

.892 .942 .990 .997

.636 .739 .884 .951

.999 1.000 1.000 1.000

.906 .948 .991 .998

.666 .751 .892 .962

.999 1.000 1.000 1.000

.913 .954 .992 .998

.669 .766 .898 .960

.997 1.000 1.000 1.000 1.000

.871

.648 .732 .808 .933 .974

.934 .967 .995 .999  

.711

.315

.086

.807

.379

.791

.872

.450

.121

.924

.511

.131

.953

.574

.150

.967

.606

. 169

.971

.623

.173

.973

.628

.177

.987

.685

.205

.901

.483

.196

.951

.556

.101

.976

.645

.283

.992

.714

.335

.954

.617

.282

.990

.723

.410

.999 1.000

.898 .953

.604 .752

.983

.709

.234

.998 1.000 1.000

.812 .949 .984

.340 .484 .681

.995 1.000 1.000 1.000

.792 .882 .978 .994

.392 .564 .776 .897

.999 1.000 1.000 1.000

.849 .928 .990 .998

.461 .636 .825 .936

.997 1.000 1.000 1.000 1.000

.771

.365 .514 .692 .876 .963

.892 .950 .9951.000

.998 1.000 1.000 1.000 1.000

.810 .908 .961

.400 .545 .717 .896 .972

.998 1.000

.999 1.000 1.000 1.000 1.000

.814 .922 .969 .998 1.000

.414 .561 .732 .905 .975

.999 1.000 1.000 1.000 1.000

.824 .925 .970 .998 1.000

.421 .570 .746 .911 .977

.999 1.000 1.000 1.000 1.000

.859 .946 .982 .999 1.000

.451 .616 .783 .933 .985
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TABLE 2.1, CONTINUED

 

fin Test r], Test
 

50 100 150 250 5001000 50 100 150 250 5001000
 

d=l.2

60

64

612

d=l.3

6O

64

612

d=l.4

60

64

612

d=l.45

60

64

612

d=l.499

60

64

612

.810

.851

.985 .999 1.000 1.000 1.000 1.000

.903 .960 .982 .9991.000

.504 .706 .784 .854 .952 .985

.991 1.000 1.000 1.000 1.000 1.000

.932 .970 .988 .9991.000

.598 .771 .828 .891 .967 .991

.995 1.000 1.000 1.000 1.000 1.000

.902 .958 .983 .994 1.000 1.000

.719 .846 .887 .931 .982 .995

.997 1.000 1.000 1.000 1.000 1.000

.933 .972 .991 .995 1.000 1.000

.805 .887 .925 .954 .989 .997

1.000 1.000 1.000 1.000 1.000 1.000

.991

.975

.997 .999 1.000 1.000 1.000

.988 .991 .993 9981.000  

.991 1.000 1.000 1.000 1.000 1.000

.685

.205 .451

.859 .946 .982 .9991.000

.616 .783 .933 .985

.996 1.000 1.000 1.000 1.000 1.000

.768 .917 .971

.265 .561

.992 1.000 1.000

.707 .856 .968 .995

.996 1.000 1.000 1.000 1.000 1.000

.809 .939 .983 .995 1.000 1.000

.304 .598 .744 .881 .979 .997

.998 1.000 1.000 1.000 1.000 1.000

.809 .939 .983 .995 1.000 1.000

.304 .598 .744 .881 .979 .997

.999 1.000 1.000 1.000 1.000 1.000

.834 .948 .986 .996 1.000 1.000

.353 .629 .774 .903 .984 .999
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TABLE 2.2-1

Power of KPSS Lower Tail Unit Root Test against I(d), de [0.0, 1/2)

 

fin Test it, Test

 

50 100 150 250 500 1000 50 100 150 250 500 1000
 

 

d=01)

60

64

612

=a1

60

64

612

60

64

612

60

64

612

60

64

612

(Fa45

60

64

612

(Pa49

60

64

612

d=.499

60

64

612  

.964

.623

.000

.890

.514

.000

.780

.425

.000

.640

.338

.000

.486

.260

.000

.412

.226

.000

.361

.201

.000

.365

.205

.000

.976

.695

.114

.896

.553

.087

.751

.449

.071

.579

.351

.051

.502

.304

.045

.435

.269

.041

.424

.266

.037

.996 L

.799

.156

000 L000 L000

.915 .964 .998

.395 .617 .851

.993 .999 L000

.816 .886 .975

.305 .504 .735

.945 .977 .997

.694 .761 .897

.234 .390 .602

.804 .867 .934

.558 .615 .748

.176 .294 .459

.637 .694 .757

.435 .478 .591

.127 .223 .346

.537 .587 .647

.372 .404 .509

.111 .182 .298

.474 .498 .554

.334 .358 .448

.102 .162 .260

.451 .503 .548

.319 .362 .443

.095 .161 .256

L000

L000

.954

L000

.989

.865

L000

.929

.725

.963

.798

.585

.806

.622

.432

.690

.525

.362

.608

.477

.328

.570

.452

.312  

.969

.286

.000

.903

.222

.000

.790

.170

.000

.656

.124

.000

.499

.091

.000

.435

.083

.000

.380

.073

.000

.374

.069

.000

.831 .890 .944 .982

.344 .537 .630 .824

.000 .006 .119 .386

.666 .730 .798 .877

.261 .406 .477 .658

.000 .005 .085 .263

.572 .617 .693 .777

.223 .343 .414 .569

.000 .004 .070 .225

.488 .551 .608 .680

.191 .307 .355 .502

.000 .004 .057 .191

.478 .533 .589 .661

.182 .297 .351 .481

.000 .004 .052 .186

.999 L000 L000 L000 L000

.708 .910 .969 L000 L000

.000 .013 .333 .815 .964

.990 .999 L000 L000 L000

.585 .808 .898 .990

.000 .010 .248 .667

.997

.878

.942 .977 .996 L000 L000

.467 .682 .784 .942

.000 .010 .173 .514

.975

.744

.996

.877

.574

.922

.714

.419

.832

.618

.355

.738

.537

.299

.719

.532

.297
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TABLE 2.2-2

Power of KPSS Lower Tail Unit Root Test against I(d), de [112, 3/2)

 

fin Test i], Test

 

50 100 150 250 500 1000 50 100 150 250 500 1000
 

 

612

d=.51

612

612

612

612

d=.95

60

64

612

d=.99

60

64

612

d=l.0

60

64

612  

.358

.197

.000

.338

.189

.000

.243

. 147

.000

.169

.112

.000

.108

.080

.000

.072

.059

.000

.063

.053

.000

.048

.043

.000

.048

.042

.000

.426

.259

.037

.397

.248

.035

.295

.195

.027

.190

.139

.021

.119

.099

.012

.074

.070

.009

.059

.059

.008

.050

.051

.006

.049

.049

.006

.450

.327

.097

.433

.310

.090

.298

.230

.063

.193

.166

.048

.126

.124

.037

.082

.088

.025

.061

.069

.021

.049

.059

.017

.045

.056

.016

.485

.346

.155

.465

.336

.155

.322

.252

.113

.207

.183

.084

.125

.125

.054

.075

.083

.037

.059

.068

.030

.050

.060

.028

.044

.055

.026

.535

.430

.252

.515

.420

.243

.347

.309

.180

.213

.212

.121

.129

.145

.082

.078

.093

.055

.058

.072

.042

.049

.066

.038

.045

.061

.036

.576

.454

.310

.549

.434

.293

.364

.315

.214

.223

.213

.148

.127

.134

.096

.078

.091

.064

.059

.071

.051

.045

.055

.040

.048

.059

.042  

.360

.073

.000

.350

.068

.000

.250

.046

.000

.169

.035

.000

.107

.026

.000

.068

.018

.000

.049

.013

.000

.043

.013

.000

.042

.011

.000

.499

. 186

.000

.456

.173

.000

.328

.130

.000

.209

.094

.000

. 122

.062

.000

.073

.041

.000

.056

.034

.000

.044

.028

.000

.040

.026

.000

.528

.291

.004

.510

.286

.004

.351

.209

.003

.212

.138

.002

.130

.100

.001

.076

.066

.001

.058

.055

.000

.044

.045

.001

.042

.043

.000

.590

.347

.057

.566

.339

.054

.379

.242

.038

.226

.160

.021

.130

.104

.015

.075

.072

.010

.060

.060

.007

.046

.049

.006

.044

.047

.007

.647

.481

.182

.634

.469

. 180

.430

.344

.125

.240

.220

.076

.144

.151

.052

.078

.095

.035

.055

.073

.025

.048

.067

.025

.041

.057

.019

.714

.523

.290

.687

.509

.283

.456

.359

.195

.256

.228

.125

.150

.151

.081

.077

.092

.047

.057

.072

.037

.049

.062

.033

.044

.056

.030
 

 





38

TABLE 2.2-2, CONTINUED

 

f1” Test fit Tea:

 

50 100 150 250 500 1000 50 100 150 250 500 1000
 

 

 

d=l.1

60

64

612

d=lL2

60

64

612

d=lL3

60

64

612

d=131

60

64

612

1&=L45

60

64

612

d=l.499

60

64

612

.030

.029

.000

.019

.021

.000

.011

.013

.000

.006

.007

.005

.004

.006

.000

.000

.001

.000

.028

.032

.005

.017

.022

.003

.008

.012

.001

.005

.007

.001

.004

.005

.001

.000

.000

.000

.029 .030

.038 .037

.010 .017

.017 .015

.025 .021

.006 .010

.012 .010

.019 .015

.006 .007

.006 .004

.009 .008

.002 .003

.003 .003

.005 .006

.001 .002

.001 .000

.001 .001

.000 .000

.028

.039

.023

.015

.024

.014

.010

.016

.009

.005

.009

.004

.003

.005

.003

.000

.000

.000

.029

.040

.028

.017

.023

.017

.010

.013

.010

.005

.008

.005

.003

.005

.003

.000

.001

.000

.022

.006

.000

.014

.005

.000

.008

.004

.000

.006

.003

.000

.004

.002

.000

.003

.002

.000

.026

.020

.000

.015

.013

.000

.009

.009

.000

.004

.005

.000

.003

.004

.000

.003

.004

.000

.026 .024

.030 .029

.000 .005

.013 .013

.018 .019

.000 .003

.010 .009

.015 .012

.000 .002

.005 .005

.008 .009

.000 .001

.004 .004

.006 .007

.000 .001

.004 .004

.007 .006

.000 .001

.025

.040

.013

.015

.025

.009

.008

.015

.005

.005

.009

.003

.005

.009

.003

.003

.007

.002

.025

.036

.019

.013

.021

.011

.008

.013

.007

.005

.008

.004

.003

.006

.003

.003

.004

.002
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TABLE 2.3-1

Power of KPSS Two Tail Unit Root Test against I(d), de [0.0, 1/2)

 

fin Test fi, Tea:

 

50 100 150 250 500 1000 50 100 150 250 500 1000
 

 

d=01)

60

64

612

60

64

612

60

64

612

60

64

612

60

64

612

(#245

60

64

612

(Fa49

60

64

612

d=.499

60

64

612  

.919

.456

.011

.808

.358

.017

.672

.276

.027

.518

.211

.042

.367

.150

.063

.301

.130

.019

.254

.108

.089

.257

.112

.084

.989

.679

.034

.940

.551

.024

.817

.421

.020

.649

.323

.017

.468

.239

.013

.391

.199

.014

.326

.169

.014

.318

.170

.014

.999 L000 L000

.843 .916 .991

.228 .469 .753

.975 .997 L000

.709 .800 .938

.164 .353 .608

.887 .946 .985

.571 .647 .819

.116 .256 .467

.712 .788 .877

.427 .493 .639

.082 .176 .332

.520 .586 .656

.312 .359 .471

.059 .125 .231

.426 .463 .537

.260 .291 .396

.049 .100 .194

.360 .390 .446

.231 .255 .335

.042 .089 .161

.335 .391 .434

.216 .251 .327

.040 .084 .163

L000

.998

.903

L000

.971

.771

.998

.862

.610

.932

.706

.452

.719

.508

.321

.582

.413

.255

.497

.362

.223

.465

.344

.211  

.932

.119

.472

.828

.090

.464

.689

.064

.484

.536

.045

.481

.379

.029

.501

.320

.027

.504

.271

.025

.510

.262

.022

.506

.894 .951 .987

.317 .549 .676

.019 .001 .082

.738 .820 .901

.220 .410 .505

.028 .002 .052

.553 .619 .707

.158 .287 .352

.045 .007 .034

.455 .507 .590

.127 .237 .301

.053 .010 .027

.381 .436 .497

.107 .202 .243

.065 .014 .020

.367 .423 .480

.106 .197 .236

.069 .013 .020

.530

.891

.379

.958

.730

.260

.802

.542

L67

.680

.454

.136

.579

.391

.114

.547

.366

.108

.998 L000 L000 L000 L000

.556 .833 .933 .998 L000

.006 .000 .169 .702 .922

.974 .994 L000 L000.L000

.423 .700 .825 .972 .991

.011 .004 .119 .790

.998 L000

.943

.632

.988

.800

.442

.870

.606

.302

.752

.507

.244

.639

.421

.203

.619

.416

.199
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TABLE 2.3-2

Power of KPSS Two Tail Unit Root Test against I(d), de [1I2, 3/2)

 

fin Test fit Test

 

50 100 150 250 5001000 50 100 150 250 500 1000
 

 

612

d=.51

60

64

612

=.6

60

64

612

60

64

612

60

64

612

60

64

612

d=.95

60

64

612

d=.99

60

64

612

d=l.0

60

64

612

.245

.110

.092

.237

.106

.093

.162

.079

.121

.105

.059

.155

.063

.038

.212

.046

.025

.267

.046

.023

.291

.050

.016

.324

.049

.017

.325 

.311

.163

.013

.291

.154

.015

.199

.115

.019

.121

.077

.029

.073

.052

.055

.047

.035

.088

.042

.027

.111

.050

.023

.135

.053

.024

.144

.344

.223

.040

.322

.211

.038

.206

.143

.025

.122

.098

.021

.077

.072

.028

.051

.047

.043

.047

.037

.053

.051

.030

.072

.051

.026

.076

.372

.239

.081

.358

.232

.082

.228

.163

.054

.135

.110

.038

.073

.070

.027

.047

.043

.030

.045

.034

.035

.049

.030

.043

.049

.027

.042

.422

.322

.160

.403

.311

.154

.251

.214

.106

.139

.135

.067

.076

.084

.045

.046

.052

.030

.041

.037

.024

.046

.032

.023

.049

.032

.025

.466

.343

.212

.439

.320

.197

.267

.217

.138

.146

.139

.091

.077

.082

.054

.049

.049

.033

.044

.037

.030

.044

.027

.025

.047

.029

.027  

.257

.026

.517

.251

.021

.521

.164

.012

.538

.105

.009

.573

.064

.007

.581

.046

.004

.604

.044

.003

.617

.047

.002

.622

.047

.002

.625

.364

.097

.066

.347

.098

.072

.233

.065

.091

.138

.046

.122

.076

.028

.156

.050

.017

.191

.047

.013

.219

.047

.013

.233

.047

.009

.239

.415

.193

.011

.403

.188

.015

.258

.133

.025

.144

.080

.039

.079

.052

.068

.051

.033

.094

.048

.026

.110

.048

.021

.127

.045

.018

.133

.480

.243

.022

.459

.236

.022

.283

.157

.016

.153

.095

.020

.078

.057

.027

.053

.038

.048

.048

.030

.060

.047

.022

.074

.051

.022

.076

.548

.369

.107

.526

.357

.104

.325

.245

.067

.166

.144

.037

.088

.091

.028

.051

.055

.030

.047

.038

.036

.050

.035

.040

.047

.029

.043

.613

.414

.191

.582

.397

.191

.354

.265

.122

.183

.155

.072

.097

.093

.046

.051

.048

.035

.046

.038

.034

.049

.033

.038

.053

.030

.043
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TABLE 2.3-2, CONTINUED

 

f1" Test fit Tea:

 

50 100 150 250 500 1000 50 100 150 250 500 1000
 

 

d=l.1

60

64

612

d=lJ2

60

64

612

d=lL3

60

64

612

d=111

60

64

612

d=l.45

60

64

612

d=l.499

60

64

612  

.082

.012

.403

.146

.006

.487

.249

.003

.582

.409

.003

.708

.556

.002

.796

.936

.000

.973

.086

.014

.213

.154

.009

.304

.248

.003

.415

.417

.002

.574

.551

.002

.698

.931

.000

.958

.084 .086

.017 .017

.129 .083

.150 .150

.011 .010

.213 .148

.252 .248

.008 .005

.321 .251

.417 .413

.003 .002

.500 .417

.554 .560

.001 .002

.628 .573

.928 .932

.000 .000

.942 .934

.085

.019

.047

.146

.010

.086

.250

.006

.175

.414

.003

.332

.553

.002

.477

.931

.000

.917

.081

.018

.042

.147

.011

.081

.253

.005

.166

.414

.003

.316

.561

.002

.462

.934

.000

.913  

.066

.001

.661

.100

.001

.684

.141

.001

.693

.190

.001

.722

.213

.001

.739

.242

.000

.747

.071

.008

.275

.104

.005

.332

.147

.003

.381

.197

.002

.422

.212

.002

.434

.239

.001

.465

.070 .072

.013 .014

.175 .113

.105 .098

.007 .007

.217 .143

.145 .141

.006 .006

.261 .185

.193 .195

.003 .006

.311 .239

.215 .218

.002 .006

.327 .259

.238 .237

.003 .000

.348 .283

.071

.018

.066

.103

.011

.096

.143

.006

.132

.190

.004

.179

.218

.004

.204

.234

.003

.222

.070

.020

.059

.102

.014

.086

.149

.019

.125

.191

.030

.162

.219

.036

.193

.241

.044

.210
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TABLE 2.4

Power Comparison with Dickey-Fuller Type Tests

 

(1) (2) (3) (4)Lowfi1L (5)Two fin
 

 

d T ‘r P 1: P to ADF PP 60 612 60 612

d=.45 100 .88 .86 .88 .87 .999 .111 .999 .502 .045 .391 .014

250 .99 .99 .99 .99 1.00 .336 1.00 .587 .182 .463 .100

=.6 100 .71 .71 .71 .71 .927 .069 .926 .295 .027 .199 .019

250 .90 .90 .90 .90 .999 .186 .996 .322 .113 .228 .054

=.9 100 .10 .10 .09 .09 .138 .038 .136 .074 .009 .047 .088

250 .14 .14 .13 .14 .199 .060 .173 .075 .037 .047 .030

d=l.0 100 .05 .05 .04 .04 .051 .045 .053 .049 .006 .053 .144

250 .06 .05 .05 .05 .046 .045 .050 .044 .026 .049 .042

d=l.3 100 .54 .22 .54 .21 -- -- -- .008 .010 .248 .415

250 .62 .25 .62 .25 -- -- -- .001 .007 .248 .251       
(1) Lee’s dissertation (1994): two tail D-F test (5%)

(2) Diebold and Rudebusch (1991): two tail D-F test (5%)

(3) Hassler and Wolters (1994): one-sided (5%)

To = t-type simple D-F test

ADF = t-type Augmented D-F test with lags (612)

PP = t-type Phillips-Perron test with lags (612)

(4) KPSS unit root test: lower tail (5%)

(5) KPSS unit root test: two tail (5%)
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APPENDIX

Proof ofLEMMA 1: Using equation (1 l),

1 [rT] 1 [rT] 8t r

d*+3/2 Zst = $21 d*+l/2) D md‘lwd'(a)da’
T H = T o

1 l
r

_. z . e—a>=1‘:zjt——)-I—lit1Td*+3/2 [rleTtle*+1/2 t T Td*+1/2 T =1 Td*+l/2

r l r l

D (Ode [fwde (a)da -' rIst(a)da] = CDdeI|:wda (a) -’ IWd *(b)db:|da

0 0 00

which proves parts (i) and (ii). For part (iii),

t 2 ..

2:54—_—'SZZ "——;[W:l :> (0‘11?! IW£(a)da dl' , by (11) 811d the

T t=1 =1 T o 0

continuous mapping theorem. I

Proof of THEOREM 2: For the proofwe use the following Lemmas. In each, we

make the same assumptions as in LEMMA 1 ofthe main text, and results are as T—>oo.

LEMMA 2.1:

1 T

WZSt-lAst —p—>0 .

t=1

1‘

Proof: Since Za._1As.= —(eT- 80- 2(A8t)2)

t=1

2 2
1_1_ 81 1 1 so

2+—Zst—12d*1Aet= d*+1/2 ““ d*+l/2 l+2d"‘ %Z(A3alt)
T 2T T 2 T T 2 T

_p_)0



been

where

Proc

sine

bec

usin

(Soy
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2 T

because [FE—:13] :>m§.Wd.(l)2, [-;:Z(Aet)2:l—£—>yo and so is 0,,(1),

t=1

where y,- is the j-th autocovariance of A81.

LEMMA 2.2:

1 T

71357, E aHAeHs —p—)0 for any nonnegative integer s.

t=1

Proof: LEMMA 2.1 is the special case of 5 =0. For any given positive integer s,

T T s—l T

Zst—IASHS = Zst+s—1A8t+s ’ Z ZA8t+jA8t+s ,

t=1 t=1 j=o t=1

smce 8H = SHH _(A8t+s—1 +Ast+$_2 + ...... + A8,). Then,

1 1 1 s— 1 T

—_Z(8t—2+2d*lA8t+S)= —tz:;(8t+S—1A8t+5)-T2+2d*—Z(TI_~
ZA8t+jA3t+s)l+2d*

T T j=0 t=1

_P_)(),

T

because Yflszst+s—lAat+s—p—’o by LEMMA 2.1 and

t=1

 

8-1 8—1
1

P x
Tl+2d‘j_o—Z(%t2::A8t+jA8t+s) 7 T1+2dt [ZYS-j] _) 0:

j=0

  

. s-1 8 r l-2d* s F (1* -

i=0 i=0 i=1

  
_[ I‘(l—2d*) 02] 1[I‘(1+d*+s)_I‘(l+d*)]

_ I‘(d*)I‘(l—d*) " 2d* F(1—d*+s) F(1-d*) ’

(Sowell, 1990).
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LEMMA 2.3:

1 5—1 T

772372 ZSHASH ——p—>O for any nonnegaitve integer s.

T '=0t=s+l

. 1 5—1 T l T

Proof. W2 ZeHAeH = 7523; Z[8t—sAst +8t—sA8t—l+......+st_sAst_s+1].

T j=0t=s+l T t=s+l

T

Then, $27127, Z:[t:t_,,Ast +3t—sA3t—1+......+et_sAst_s+2]—L—>O by LEMMA 2.2 and

t=s+l

l T

7:237 Z[e._,Ae,_,,,]—P—>o by LEMMA 2.1.

T t=s+l

LEMMA 2.4:

1 T 2 l 2
W Zetet-s => mdadeJa) d3 .

T t=s+l o

PIOO . W ZetSt-s — :I—‘EIZd—‘l 28t_s+WZ ZSt—s St-j ,

t=s+l t=s+1 j=0t=s+l

because at = 8H — (AeH + Aat_s+1+......+Aet). Also,

2 l

1 T 2 1 T 3t— 2 2
WEst—s =¥ Z (W) :mdajwdda) (18 and

t=s+l t=s+l o

1 8-1 T

W2 ZSHAeH—i—w by LEMMA 2.3.

T j=0t=s+l

LEMMA 2.5:
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For any nonnegative integer E ,

Z[1+2Z(1-——)]=€63—1
2

Proof:

1

€(€+1)

€+__1
  l)[(e+1)+2(e+(e—1)+......+2+1)]= [(e+1)+2—21—e(e+1)]=

«21+

We now will use Lemmas 2.1-2.5 to prove Theorem 2. First consider part (i), with

6 =0. Then,

1 T 1 T 2
s2(0)=—Z(st—§)T= %Zet—[—ZeJ and

Tt=l Tt=1

1 1 T s 2 1 T e 2
2 __ __t_ _ _ __t_

T2d‘+l S (O) — TZ(Td‘+l/2) (TZTd‘+1/2]

t=1

1 1 2

3 (Din: de*(a)2d8 —[det(b)db]

0 0

1

= (o (21. {Ififiafda}

0

2

l1 1 2 1 1

since I&(a)2da= [[wd.(a)- jwd.(b)db] da= fwd.(a)2da-[[wd.(b)db] .

0 O 0 00

For proving part (ii), from (3) and et = 8t — E,

T

s2(€)=%2(et—E)2+.i—Zw(s,e)z(st— eXets— s)
t=1 Ts=l t:s+l
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1T 1T 2 t 1 T _ _ _2

= —ZStz-(TIT 281) +22W(5,€){¥ 2(8t81_s—818-881—s—8 )}

s=l t=s+]

Thus,

 

T e 8 _s a E 58 _s 52

{321[(13:sz ' (12:sz — (12:sz +(T2+2d‘]]}

l

= (A)+2§w(s,€) x (B).

Part (A) is the same as s2 (0) above. For fixed 6 , (B) equals

T as l T e ' 1 T - - 2

z W—2 ‘(f )-—z ( f )+(———f)-
t=s+ t=s+ t=s+

   

1 T 1
From LEMMA 2.4,W 23.5.4, => w§.jwd.(a)2da,

t=s+l o

 

1 T at E _ 1 T at l T at

f 2 Td*+l/2 Td*+l/2 ’ f X T1114112 f 2 d*+l/2

t=s+l t=s+] t=s+l T

  

2
l

=m§.[jwd.(b)db] ,

0

ili X 5 H5 llii—s‘ld* 1/2 (1* 1/2 (1* 1/2 d"' 112

T t=s+lT + T + Tt=s+-lT + Tt=s+lT +

l 2

=> (031*[det(b)db] ,

0
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E 2 1 T 8 2 l 2
__ t

0t=s+l T

1 1 2

ThCl'CfOl'C, (B) :> (0‘2”! Wd.(a)2 — [de*(b)db] d8 .

0 0

Since 6 —>oo and (K /T)—>O, as T—)oo,

l
2

Z—:T—_21£2* => (oat! Wan-(8)2 - [IW‘p (b)db:| da , by the above argument and

o

LEMMA 2.5. I

Proof ofLEMMA 3: Let a) and E be the coeflicients of intercept and trend in the OLS

regression ofy on (1, t). Then

H =[ T 2‘ Niel§ —§ 2t th Ztst

and by the same algebra as in Lee and Schmidt (1994) we can show the following:

(lb 4’): (7:: +—'-)288t- T2-§2-Zt8t+op(l), then

A

M= (4 +3) li(__8t_) _Ei(i_§_t__) +_°£(_l)_
Td“+1/2 T T Td‘+1/2 T t=1 T Td"+l/2 Td‘+1/2

t=1

l 1

=> 0) d“ {4!W6. (a)da — 6! aWd. (a)da}

0 0
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l l a

= wd.{-2jwd.(a)da + 6j [jwd.(b)db]da},

0 0 0

l l l a

since Iawd.(a)da = JWd.(a)da—I[de.(b)db]da.

o o o o

, —6 T 12 T

Also, (§—§)=—228t+—;Zt2t+op(l),

T t=1 T t-l

  

( T \

,. Zet

£3,451 in_ +12 ii_‘3t_ +551
Td*—l/2 - T Td*+l/2 T t=1TTd'“+l/2 Td*—l/2

\ J

l 1

=> (0 d“ {-6de: (a)da +12IaWd.(a)da}

0 0

l l a

= md.{6IWd.(a)da - 12]. (de*(b)d ]} .

0 0 0

Th _ [YT] . _ [YT] . 1 *
en SITT] — t2::(8t -8t) - get — [rT](¢ — (b) — §[rTK[rT]+1)(E, —§),

1

   
Ser] -133] 8: _[rT]($-¢]_1[rTl(erl+l)[é-a]

Td*+3/2 — T t=1 Td*+l/2 T Td*+l/2 2 T T Td*—l/2

r l 1

=> (0 d“ IWd.(a)da — 1' 4J'Wd*(a)da — 6". aWd*(a)da

0 0 0

l l

— g 1'2 [-6IWd.(a)da + 12!aw”(a)da]}

0 0
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1'

= md.IW;.(a)da ,

0

which is similar to the result of Shin and Schmidt (1992, p.388).



CHAPTER 3

ASYMPTOTIC BIAS OF THE MDE

WHEN SHORT-RUN DYNAMICS ARE IGNORED

51
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1. INTRODUCTION

Suppose that an observed series {yr} follows an ARFIMA(p,d,q) process:

(1) (1—L)‘y. =2“ wast =9(L)u.,

where ¢(L)=1—¢1L—¢2L2—......—¢pr, 9(L) = 1+91L+92L2+......+eqL‘l, all ofthe

roots of ¢(L) and 9(L) lie outside the unit circle, (ML) and 9(L) have no common

roots, and {ut} is white noise. This is the same model and the same notation as in

Chapter 1. When at itself is white noise, y; is a fractionally integrated white noise, or

ARFIMA(O,d,O), process, also called an I(d) process. In the ARFIMA model, the

differencing parameter d determines the long run properties of the series, such as its

persistence and the persistence of its autocorrelations, while 9 and d) influence short-

run dynamics. In this chapter we will consider the estimation of d, with particular

attention to whether we can estimate d separately fiom the ARMA parameters that

determine short-run dynamics.

The first systematic treatment of estimation of d was by Geweke and Porter-

Hudak (1983), hereafter GPH, who suggested a simple semi-parametric two step

procedure for estimating d. Their estimator is based on a spectral regression and

linear filter theory. If {y.} follows the ARFIMA process (1), its spectral density is:

0'2

"2“ . 2 (D -d

fe((°)=§;{4sm (3)} fem),
 

2 .

(2) rye») = %|1— e‘m’

where f8 ((0) is the spectral density of at, which is finite, bounded away from zero and

continuous on the interval [-1t, 11:]. Taking logarithms,
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2

(3) 1°g{fy((°)}=1°g{%t—fe(0)}- <110g{4sin2 (—02))}+log{f—((——0))t:}

Then GPH suggested an OLS regression based on [(0) j), which denotes the

periodogram at the harmonic ordinate, a) j=27tj/T for j = l, ..., m, where T is the

sample size. The number of ordinates used is m = g(T), where g(T) —) 00 but g(T)/T

—-) 0 as T—) 00. The regression model is:

4 1 I — d1 4 ' 2 a)"() og{(co,-)}—a— og sm (—2—) +vj,

where a = constant and

[(0%)
vJ-=10g{f (00)}.

y J

This implies that E(Vj) = 0, var(vJ-) = 1:2/6, j = l, 2, ..., m, and that cov(v;, Vj) = 0, i¢j.

 

The GPH estimator, say d, is then defined as the OLS estimator of d in (4). GPH

show that d is consistent, for d <0, and Robinson (1990) shows consistency for 05 d

<1/2. Under the further condition limp”, {(log(T)2)/ g(T)} = 0, d is asymptotically

normal. However it is not JT -consistent; asymptotically its variance is of order m",

not 1". The important features of the GPH estimator is that we can disregard the last

term in (3), which involves the unknown short-run dynamics parameters (<b’s and 9’s),

because it is asymptotically nearly constant for sufliciently low fi'equencies.

However, the GPH estimator can be badly biased even for moderately large

sample sizes, especially when there is substantial autocorrelation in the a process.
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Agiakloglou, Newbold and Wohar (1993) show that the GPH estimator of (1 under

AR(1) or MA(1) errors with quite large short-run dynamics, is seriously biased when

m = T”. They conclude that tests based on the GPH estimator are significantly

misleading and we may need joint estimation of d and short-run dynamics. A further

difficulty is that the sampling distribution of the estimated ARMA parameters after (1

is replaced with the GPH estimator is currently unknown.

Maximum Likelihood Estimation (MLE) under the assumption ofnormality has

been suggested by a number of authors, apparently starting with Hosking (1984).

Sowell (1992) suggested the exact MLE of the general ARFIMA(p,d,q) process with

normal disturbances. This estimator maximizes the log likelihood function:

T 1 1 , -1

(5) logL = ——log(21t)-— —log|Q| ——Y (2 Y,

2 2 2

where Qij = yli—J'I ( with y,- = j-th order autocovariance of {y,}), and Y is the Txl

vector of observations. In the MLE any ARMA parameters in 0(L) and ¢(L) must be

estimated jointly with d. The exact MLE is computationally dificult, and probably

not feasible for sample sizes larger than 1000 or so, because of the need to invert the

TxT covariance matrix Q. Several approximate MLEs which do not require the

inversion of the covariance matrix 0 have been suggested. A conditional sum-of-

squares estimator (CSS) was proposed by Li and McLeod (1986). It truncates the

infinite sum in (l—L)d to a finite sum for estimation. Chung and Baillie (1993)

investigated the small sample performance of the CSS estimator and showed that for

the I(d) process the CSS estimator is very close to Sowell’s exact MLE, even for
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T<100. They show that the estimation of the mean can make a considerable

difference to the small sample bias. Fox and Taqqu (1986) and Dalhaus (1989) used

an approximation formula for the spectral density given by Whittle (1951, 1953),

where the autocovariance matrix is diagonalized by transforming the {y} process into

the frequency domain and the asymptotic properties of Toeplitz matrices and an

equicontinuity property of quadratic forms are used to show consistency and

asymptotic normality. The approximate log likelihood is as follows:

 

T—l T—l

(6) logL = Zlog{21t -f(mJ-)}+ :1“

j=l 1:21“1')

where I( (01-) is the periodogram and {(0) j) is a spectral density ofy as above.

The main focus of this chapter will be on minimum distance estimation (MDE).

Let

I

(7) p: [p1, p2, ..., pn]

be the vector of the first 11 population autocorrelations, and let {5 be the

corresponding vector of estimated (sample) autocorrelations. Tieslau, Schmidt, and

Baillie (1994), hereafter TSB, suggest minimizing the distance between p and I).

More precisely, let

(8) K =[d, 411, ..., ‘11,), 91, ...,Oq]'

so that p depends on 7». TSB suggest minimization of a criterion function

{fa—MM} W {fi-p(}t)}, where W is a positive definite matrix. This estimator is
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consistent, and it is JT-consistent for -l/2< d <l/4. A similar GMM estimator is

suggested by Dueker and Startz (1992).

Chung and Schmidt (1995) provide a modification of the TSB estimator,

“adjusted MDE” (AMDE), to achieve JT -consistency for -l/2< d <l/2, not just for -

l/2< d <1/4. Define the vector

I

(9) 5 = [5,, 82, 6“]

where 81:1—p1, 82 = p, —p2, ..., 8n = Pn-1“Pn- The information in 5 is the same

as in p and the MDE based on 8 is asymptotically the same as the MDE based on p.

However, Chung and Schmidt suggest an MDE based on (n-l) functions of mics of

elements of 8. More specifically, they consider ratios of the form

= a38/b38, j = 1, 2, ..., n-l,

where a,- and b, are vectors of known constants; they also allow general differentiable

functions of these ratios. Using results from Hosking (1995), they show that such an

MDE, which they call an AMDE, is JT -consistent for -1/2< d <l/2. Its asymptotic

variance does not depend on the choice of a,, bi, nor on which function of the ratios

(10) are taken. For d <1/4, the AMDE is less emcient than TSB’s MDE because it

does not use information on the levels of the 8’s (or p’s).

Now consider the problem of estimating the differencing parameter (1

separately from the ARMA parameters that determine short-run dynamics. Every

element of 8 (or p) depends on a non-trivial way on the ARMA parameters.

However, ratios like 8/qu (or pj/pH) depend only on d, in the limit as j —) 00. This
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suggests that we could ignore short-run dynamics by considering ratios of sufficiently

high-order autocorrelations, and this is easy to do in the AMDE of Chung and

Schmidt. Let n be the number of 8’s considered, and let I? be the number of elements

of 5 that are not considered, so that we consider only

(11) 511,3 E[5e+1a 8H2, ..., 86+n] -

We will consider the AMDE based on 6a,) , ignoring short-run dynamics; that is, the

AMDE assuming the I(d) or ARFMA(O,d,O) model. When the data are generated by

the ARFIMA(p,d,q) model, the AMDE based on the (0,d,0) model will yield

asymptotically biased (inconsistent) estimates. However, we expect this asymptotic

bias to be small when 6 is large. In this chapter we will calculate this asymptotic bias,

as a function of n, e and the parameters. The idea is to see whether approximately

unbiased estimates of d can be obtained, without the need to model short-run

dynamics. The idea of doing so using high-order autocorrelations obviously is similar

to the GPH idea of using the periodogram at low frequencies. Lobato and Robinson

(1993) used the same idea.

2. MOMENT CONDITIONS FOR MDE

In this section, we give the explicit form of the fimctions of 6 that are used in

the AMDE estimators that we will consider. To do so, we first need to give a little

more detail on the TSB and Chung-Schmidt procedures. Consider the case of an I(d)
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A

process; that is, a fi'actionally integrated white noise. The MDE of d, say d, is

defined as the value which minimizes the following criterion function:

I

(12) S(d)={F[13]— F[p(d)]} w {ml-How},

where p(d) = [p1(d), p2(d), ..., pn(d)] is a vector of population autocorrelations that

depends on the value of d, p is the corresponding vector of sample autocorrelations,

F is a m-dimensional vector oftransformation fimctions of the autocorrelations (m.<_n),

and W is a symmetric and positive-definite weighting matrix. The asymptotically

optimal weighting matrix is as follows:

(13) w = AV(F(p))'l = [P C P1".

Here P = 6F/6p (mxn). C is the asymptotic variance-covariance matrix of the

sample autocorrelations (nxn). For -1/2< d <1/4 it can be defined by Bartlett’s

formula,

00

(14) Ci,j = 203m +Ps_i ‘ZPiPsXPs+j +Ds—j ‘29jps), I: 1, 2, ..., 11,

s=l

from Hosking (1995, 1984) and Brockwell and Davis (1991). Define D = 6p/ 6d

(nxl). Then the asymptotic variance ofthe MDE d defined in (12) above is:

(15) AV(d) = {[D'P’WPDrlD’P’W(PCP')WPD[D'P’WPD]—l}.

When W = [PCP']_1, this simplifies to

(16) AV(d) = [D’P'(PCP')'1PD]-l.
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We can note that P cancels if it is nonsingular, which will be the case if n = m and the

elements of F are functionally independent. In this case the transformation F is

asymptotically irrelevant. However, F clearly matters when m < n.

This MDE is similar to the GMM estimator introduced by Hansen (1982). The

GM estimator of a parameter, say [3 (hxl), is based on conditions of the form:

E[gi(y,, [3)] = O, i = 1, 2, ..., k (h S k).

The GM estimator minimizes a criterion function:

min 8(3) = {§(3)'W i(B)}

’1‘

where 81(B)=::tzgi()’u B). Therefore, the above MDE of d is not a GM

=1

estimator because F(p) is not an average, but it still has the basic properties of a

GM estimator.

TSB (1995) introduced the simplest case of the MDE using the trivial

transformation F{p(d)} = p(d) , so that m = n. Then the criterion in equation (12) can

be simplified as:

(17) S(d)={b-p(d)}'w{a—p(d)}.

The optimal weighting matrix is W = C'1 since P = I. The asymptotic distribution of

w/T(d—d), for -1/2< d <1/4, is N(O, [D'CD]'1). For (1 =l/4, d converges to a

normal distribution, but at a rate of (T/lnT)”2; for 1/4< d <1/2, the MDE converges to

a non-normal asymptotic distribution at a rate of T‘l'z‘”. Thus for (1 21/4 convergence

is slower than the usual T”2 rate.
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These asymptotic results basically depend on the asymptotic distribution of p

(for details, see Hosking (1995)). However, even for de[1/4, 1/2), Hosking (1995)

has shown that the following normalized differences of the sample autocorrelations

are T -consistent and asymptotically normal:

 
(18) fi[5k-Pk _13£"Pe].

I‘m 1‘9:

Therefore, TSB (1995) suggested an MDE based on such normalized differences of

the sample autocorrelations, which is JT -consistent for the whole stationary and

invertible range (-1< d <1/2) ofthe long-memory process.

Also, Chung and Schmidt (1995) introduced an AMDE that is also JT -

consistent for the entire range -l< d <1/2. The MDE based on the quantity in (18) is

an AMDE. More generally, Chung and Schmidt rely on Hosking’s result that

differences of sample autocovariances are JT -consistent: s/T[(~?i — j? j) — (7i — 71)] is

asymptotically normal with variance given by Hosking (1995, equation (16)). Ratios

of difl‘erences of autocorrelations are fimctions of differences of autocovariances; for

example,(p3 — p2)/(l—p1) = (73 —72)/(yo ~71). With 8 as defined in (9) above,

the ratios r-J =a35/b38 given in (10) above are ratios of difl‘erences of

autocorrelations and provide the basis for a JT -consistent AMDE.

Chung and Schmidt (1995) provide several different but asymptotically

equivalent forms ofthe AMDE. They correspond to different choices of the constants

aj, bj, and different functions of the ratios rj. Formally, they also correspond to
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choices ofthe function F in (12) above. In all cases, if p (or 8) has n elements, F is of

dimension

(n-l). The formulas given earlier in this section depend on the matrix C, which is

defined only for d <1/4, but Hosking (1995) and Chung and Schmidt (1995) give the

necessary modifications that are well-defined for d in the entire range -1< d <l/2.

We will discuss three different specializations of F. Because we will be

interested in the general ARFIMA(p,d,q) process, we will take the parameter vector

as:

(19) k =[d, 411, ..., op, 91, ..., Oq]' =[d, @']'

as in (8) above, with ®=[¢1,...,¢p,01,...,Gq]’; hence we distinguish the

differencing parameter (1 from the ARMA parameters G).

The GLS estimator introduced by Chung and Schmidt (1995) is based on the

function F1 defined by:

(20) F}[p(d, ®)]=1-job,-(d, 9), j= (6+1), (6+2), (em).

where

5j(d, (9)—5,41“, ('9)

5N1, ®)+5j+1(d, 9) ’

 (21) b,-(d, ®)= with 6,-(4, ®)= pj-1(d, (9)—pad, 9).

Thus bM, 6)) =1p,--1(d, @1—2p,(d, ®)+p,-.1(d, @11/1p,-_1(d, ®)-p,-+l(d, on. As

in the previous section, 3 is the lowest-order autocorrelation used in the calculation;

(n+3 +1) is the highest-order autocorrelation used; and estimation is based on n

moment conditions, derived from n ratios of linear combinations of 8M1! as defined
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in (1 1) above. Chung and Schmidt (1995) consider only the case 3 = 0 (which is well

defined, with the convention p0 = 1). For this pure I(d) process without short-run

dynamics (i.e., 9:0), Fjllp(d, 0)]: 1— j~b ,.(d, O)=d for all j, and the MDE is

expressible as a GLS regression of F1 on a vector of ones. See Chung and Schmidt

(1995) for more detail. They refer to this as the GLS version ofthe AMDE.

A second possibility is to use the following transformation F2:

(22) F-2[p(d, (wk—fl, j=(e+1),(e+2),...,(e+n).

J-’l(d (’9)

For the pure I(d) process without short-run dynamics we have:

(23) Fj2[p(d)] = 9%:9.

A third possibility is similar to the second, but uses the same denominator for

each ratio. That is, the function F3 is defined by:

3 p(d 9)
(24) Fj,[p(d @)]=p—’——Md (9) j=<€+1),(e+2),...,(e+n).

pt

For the pure I(d) process without short-run dynamics we have:

1 d

Fflpmfl: k§1((k—3))'

There is presumably an emciency loss from ignoring low-order

autocorrelations, so that the asymptotic variances of the AMDE or the MDE grow

with K . However, larger values of I? are useful to avoid the asymptotic bias that
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results fi'om ignoring or misspecifying short-run dynamics. We now turn to the

calculation ofthis asymptotic bias.

3. CALCULATION OF ASYMPTOTIC BIAS

Suppose that {y,} follows an ARFIMA(p,d,q) process as in (1) above. Let

2t=[d, 4)], ..., ‘11,), 91, ..., Oq]'=[d, G’]' as above. We can apply the MDE or

AMDE estimators described in the previous section to obtain a consistent estimator of

2». However, we now consider the case that we assume (incorrectly) that {y.} follows

a pure I(d), or ARFIMA(O,d,O), process and we calculate the MDE or AMDE

estimator of d. This estimate will in general be inconsistent. Let d represent the

probability limit of the estimate d, so that the asymptotic bias is (d - do), where do is

the true (population) value of d. We wish to evaluate this asymptotic bias.

The MDE based on the assumed (O,d,0) model minimizes the criterion

fimction:

I

(26) min S(d)={Plfil-F[p(d, on} w {PIfi]-Flp(d, on}-

We can calculate d = plimd by invoking the general principle that 3 should minimize

A

in the population the same criterion that d minimizes in the sample. Since

plimp = p(do, 6)), d minimizes the criterion function:

I

(27) min 8(3) ={F[p(do, eon—PW, 0)]} w {Home 90)]— 11ml 01]}.
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Thus we can calculate d by a numerical minimization ofthe criterion (27), and from it

calculate the asymptotic bias (d - do). This will depend on the fimction F, the

weighting matrix W, the differencing parameter do, and the ARMA parameters 6).

The transformation F[p] = p defined the (ordinary) MDE of TSB. Suppose

that the MDE is based on (p g, ..., p 5+“) , where the standard case of TSB is K = 1.

For this MDE there is no reason to expect the asymptotic bias to decrease when E

increases, since every autocorrelation pj(d, 6)) depends on (1‘), no matter how large j is.

However, ratios like pj(d, ®)/pj-1(d, G) depend only on d, not on ('9, for suficiently

large j. Thus, for the AMDE based on the function F1 or the MDE based on F2 and F3

of the previous section, each of which involves ratios, we do expect the asymptotic

bias to decrease as 6 increases.

For the MDE based on F2 or F3, defined in equations (22) and (24) above, d

must be calculated by a numerical minimization. For the GLS version of the AMDE,

based on F1 defined in equation (20), there is a closed form (GLS) solution for d:

(28) E1 = i;,w Fl[p(do, @)]/[i;,w1,,],

where in is a vector of ones, of dimension 11.

Finally, we need to discuss the relevant form of the weighting matrix, W. The

optimal weighting matrix, (PCP')_1 above, depends on population quantities and

would typically be estimated using the results of some initial estimation. Since the

initial estimates will also generally be biased when short-run dynamics are

misspecified, there is some ambiguity in how we should handle the weighting matrix
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W in our bias calculations. Therefore we will consider three different cases

corresponding to different treatment of the weighting matrix. In Case 1, we use the

identity matrix as the weighting matrix, so W = I... In Case 2, we use the weighting

matrix in which P and C are evaluated using the true autocorrelations, p(do, @0).

This is unambiguous, but does not correspond to any feasible method of estimation

that misspecifies ('9 as zero. In Case 3, we assume that the weighting matrix is

evaluated in the sample based on the initial estimate 3 =5,/(1+(31), which would be

consistent if the (0,d,0) model were true. When the (p,d,q) model is true,

'5 —> d *Ep1(do, ®)/[1+p1(d0, (9)] and we evaluate P and C using d = (1*.

4. RESULTS

In this section, we provide the results of our calculations of the asymptotic

bias of the MDE of d, when we ignore short-run dynamics in the true

ARFIMA(p,do,q) process. We consider three forms of transformation fimctions F1,

F2, and F3, and three cases that differ in the evaluation of the weighting matrix, as

described at the end of last section. The minimization problem (27) that defined d

was solved (for the MDE based on F2 and F3) using the optimization procedure in

GAUSS 2.0. For simplicity we consider only ARFIMA(1,do,O) and ARFIMA(O,do,1)

processes, where just one short-run parameter exists (4) or 9).

Tables 3.1-1, 3.1-2 and 3.1-3 give the asymptotic bias of the AMDE and the

MDE for the case of an ARFIMA(1,d0,0) process, for three parameter values: (do =
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.2, ¢ = .4), (do: .2, d) = .8) and (do = .4, d) = .4). Tables 3.2-l and 3.2-2 do the same

for the case of an ARFIMA(O,do, 1) process, for two parameter values (do = .2, 9 =-.4)

and (do = .2, 9 = -.8). We consider numbers ofmoment conditions (r1) equal to 1, 3, 5

and 10. We consider lags (I! , equal to the lowest order autocorrelation used) equal to

0, 2, 3, 4, 5, 6, 7, 8, 10, 20 and 30. We consider the AMDE based on F1 and the

MDE based on F2, and F3, and three cases corresponding to the treatment of the

weighting matrix, as we discussed previously.

Table 3.1 and 3.2 give us some clear and interesting results. (1) For fixed 11,

the asymptotic bias of the AMDE or the MDE that ignore short-run dynamics

decreases and becomes close to zero as we use higher order of autocorrelations

(larger 6 ). This is as expected given the characteristics of autocorrelations of our

long memory process. This is our main result. It essentially implies that semi-

parametric estimation of d through the MDE principle is possible, if we choose an

appropriate form oftransformation function ofthe autocorrelations and use high order

autocorrelations. (2) The three different transformations (F1, F2, F3) show similar

results for larger values of e. This especially true for F2 and F3, for which the results

are quite similar even when K is not very large. The absolute bias for the estimator

based on F1 is generally larger than for F2 or F3. (3) The choice of method of

evaluating the weighting matrix (Case 1, 2 or 3) does not usually make much

difference. It matters more for F1 that for F2 or F3. (4) The asymptotic bias depends

more on the order of autocorrelations used (6) than on the number of moment
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conditions (11). Thus increasing n with fixed 6 does not decrease asymptotic bias very

much. Especially for large I? it has almost a negligible effect.

Tables 33-], 3.3-2 and 33-3 give the asymptotic bias for many values of do (=

-.49, -.4, -.3, -.2, -.1, .1, .2, .24, .25, .3, .4, .49) and two difl‘erent values ofn (= 1,

10), with d) = .4. For n =1 the estimation problem is “exactly identified” in the sense

that the number of moment conditions equals the number of parameters estimated.

Therefore the choice ofweighting matrix does not matter, and the results are the same

for Cases 1, 2 and 3. For n =10, however, the choice ofweighting matrix matters.

These results show that the asymptotic bias decreases as e increases, as

expected. The pattern of absolute bias as a function of d, holding constant n and é , is

complicated when 6 is small. For larger values of e (and both values of n), absolute

bias decreases as d increases.

Table 3.4 provides the opposite comparison as in Table 3. It gives the

asymptotic bias for many values of d) (= -.6, -.4, -.2, .2, .4, .6, .8, .9) for two difi‘erent

values of n (= 5, 10), with do = .2. Results are given only for two relatively large

values of e, (=20 and €=30. The asymptotic bias is generally larger in absolute

value when (I) is larger in absolute value, as we would expect. For large |1|)| (i.e.,

strong short-run dynamics), the asymptotic bias is discouragingly large even for

€=30. For example, for «1) =9 the asymptotic bias is about -0.1 or -O.2 with [=30

(and do = .2). This reflects the fact that any non-parametric treatment of short-run

dynamics will have problems if they are strong enough; it is intrinsically diflicult to

distinguish long-run properties ofthe model from very strong short-run dynamics.



68

5. CONCLUDING REMARKS

In this chapter we have considered the MDE including the adjusted MDE

(AMDE) estimator of Chung and Schmidt (1995) for the differencing parameter in the

general ARFIMA model. In applying the MDE, one can estimate the ARFIMA

model, which amounts to modeling short-run dynamics with an ARMA model; or one

can estimate the pure I(d) model, but not using low-order autocorrelations, which is a

non-parametric treatment of short-rim dynamics. This non-parametric treatment is

similar in spirit to the frequency-domain approach of Geweke and Porter-Hudak,

based on the periodogram at low frequencies only. We expect a non-parametric

treatment of short-run dynamics to have some cost in terms of efficiency, and Chung

and Schmidt’s results show that this is so. We also expect a non-parametric treatment

to lead to finite sample bias, especially when the nuisance parameters (ARMA

parameters) take on extreme values; i.e., when short-run dynamics are very strong. In

this chapter, we do not evaluate finite samples biases, but we evaluate the asymptotic

bias that results from ignoring a fixed number (6) of low-order autocorrelations. The

asymptotic bias is larger when short-run dynamics are stronger and when I? is smaller.

This is as expected. It supports the conjecture of Tieslau, Schmidt and Baillie (1995)

and Chung and Schmidt (1995) that a consistent nonparametric estimate of the

differencing parameter results from letting I! grow with the sample size. A rigorous

proof of this conjecture, and a derivation of the asymptotic properties of the estimate

when I grow with T, are important topics for future research.
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TABLE 3.1-1

Asymptotic Bias of MDE in ARFIMA(I,d.,0)

[do = 0.2, 9 = 0.4]

GLS (F1)
 

n=d. n=3 rr=5 n=10
 

 

o
o
-
q
O
\
L
n
-
h
c
a
r
o
<
=

“
9

10

20 30

Cbsel Chse21Case3

.5348 .5348 .5348

20466 20466 20466

22123 22123 22123

22851 22851 22851

22838 22838 22838

22410 22410 22410

21863 21863 21863

21371 21371 21371

20721 20721 20721

20115 20115 20115

20050 20050 20050 

(kweJ_Chse21Cama3

.2323 .4798 .4788

21813 20997 21307

22604 22376 22491

22699 22790 22770

22370 22561 22491

21881 22057 21990

21408 21536 21487

21027 21111 21079

20556 20588 20576

20104 20106 20105

20047 20047 20047 

Camal<kme2£Cama3

.0399 .4573 .4418

22137 21203 21668

22416 22401 22509

22266 22638 22541

21894 22314 22163

21471 21802 21672

21096 21321 21229

20806 20948 20888

20452 20506 20483

20096 20098 20097

20044 20045 20045

camel ChmaZACama3

20748 .4287 .3920

21467 21395 21825

21611 22292 22229

21432 22295 22032

21173 21889 21620

20912 21408 21205

20690 21006 20871

20520 20715 20630

20311 20387 20354

20079 20084 20082 20039 20040 20039
 

Ratios (F2)
 

n=1. rr=3 rr=5 n=10
 

o
o
~
4
<
m
U
i
s
s
t
a
t
o
c
>
9
§

10

20

30

Case. 1 Case.2 Case.3

.1861 .1861 .1861

21126 21126 21126

21355 21355 21355

21166 21166 21166

20864 20864 20864

20593 20593 20593

20403 20403 20403

20275 20275 20275

20142 20142 20142

20013 20013 20013

20000 20000 20000

Casel Case2.Chse3

.1372 .2209 .3642

21204 21072 21199

21184 21252 21207

20936 21005 20952

20665 20690 20674

20453 20434 20457

20308 20277 20329

20212 20172 20214

20115 20068 20115

20015 20000 20011

20002 .0000 .0000

(kweJ Chse2.Cama3

.1200 .2211 .3701

21113 21058 21159

21034 21181 21101

20790 20904 20830

20553 20593 20572

20375 20378 20383

20254 20234 20259

20171 20144 20180

20099 20057 20093

20016 20000 20009

20000 .0000 20001

CkweJ.Chse2mCasa3

.1101 .2213 .3627

20954 21053 21216

20847 21092 21072

-0628 20780 20755

20431 20494 20495

20290 20312 20318

20198 20182 20210

20139 20108 20144

20079 20040 20075

20018 20000 20008

20005 .0000 20001
 

Common Denominator Ratios (F3)
 

n=1. rr=3 n=5 n=10
 

  

casel CaseZ,Case3

.1861 .1861 .1861

21126 21126 21126

21355 21355 21355

21166 21166 21166

20864 20864 20864

20593 20593 20593

20403 20403 20403

20276 20276 20276

20142 20142 20142

20019 20019 20019

20007 20007 20007  

Casel Chse2,Chse3

.1449 .2072 .2378

21197 21128 21092

21236 21219 21419

20989 21008 21115

20706 20694 20757

20481 20470 20487

20326 20314 20319

20225 20168 20216

20120 20074 20115

20025 20000 20023

20011 .0000 .0000 

Camal(kwe21Cama3

.1244 .2055 .2394

21159 21106 21242

21118 21190 21600

20863 20923 21243

20605 20638 20792

20410 20398 20482

20279 20268 20194

20194 20185 20101

20106 20033 20099

20023 20000 20019

20010 .0000 20009 

(kmeJ.Chse2.CamL3

.1023 .2128 .2397

21031 21081 21384

20922 21112 21680

20683 20808 21371

20469 20520 20902

20316 20339 20531

20216 20224 20314

20152 20154 20195

20086 20056 20091

20021 20000 20010

20010 .0000 20001   
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TABLE 3.1-2

Asymptotic Bias of MDE in ARFIMA(I,d.,0)

[(1. = 0.2, 4) = 0.8]

GLS (F‘)
 

n=1. 1r=3 1r=5 n=10
 

 

N

.
.
.
-
i

O
O
O
O
Q
O
‘
U
I
t
h
O

N

30  

Camal Chm22.Chsa3

.8472 .8472 .8472

.6419 .6419 .6419

.5471 .5471 .5471

.4563 .4563 .4563

.3695 .3695 .3695

.2869 .2869 .2869

.2085 .2085 .2085

.1349 .1349 .1349

.0026 .0026 .0026

23129 23129 23129

22228 22228 22228  

(kweJ,C3562:Cama3

.7435 .8204 .8246

.5484 .5986 .5857

.4576 .5014 .4863

.3709 .4096 .3937

.3883 .3229 .3069

.2101 .2411 .2254

.1365 .1641 .1491

.0679 .0920 .0785

20534 20349 20462

23138 23136 23139 22085 22104 22092

Chsal Casa2,Chsa3

.6468 .8078 .8079

.4603 .5749 .5409

.3737 .4752 .4363

.2962 .3820 .3415

.2132 .2946 .2544

.1398 .2125 .1739

.0714 .1360 .0992

.0082 .0648 .0313

21016 20588 20861

23100 23112 23113

21947 21996 21964 

Case.1 Case.2 Case.3

.4300 .7908 .7780

.2659 .5428 .4557

.1909 .4390 .3413

.1209 .3430 .2422

.0558 .2540 .1544

20040 .1713 .0761

20583 .0952 .0060

21070 .0253 20554

21872 20934 21567

22174 22995 .2952

21641 21774 .1687
 

Ratios (F2)
 

n=1. 1r=3 IF=5 n=10
 

<
\

t
-
n
l

O
O
M
Q
Q
U
I
A
W
N
O

N

30

CkweJ.Cama24Cama3

.2783 .2783 .2783

.1623 .1623 .1623

.1062 .1062 .1062

.0549 .0549 .0549

.0094 .0094 .0094

20299 20299 20299

20628 20628 20628

20896 20896 20896

21261 21261 21261

21040 21040 21040

20371 20371 20371

Casal Cam221C3923

.2677 .2955 20841

.1269 .2256 20011

.0702 .1790 .0419

.0210 .1292 .0095

20210 .0783 20264

20561 .0288 20587

20843 20171 20860

21065 20575 21074

21344 21121 21348

-l.003 20856 21008

20394 20074 20404

(kweJ Cama2‘Cama3

.2616 .2955 21472

.1030 .2243 24822

.0455 .1778 20807

20022 .1284 20415

20415 .0782 20586

20731 .0292 20813

20979 20165 21020

21167 20570 21185

21379 21149 21385

20937 20816 20941

20363 20217 20373

Camal<kwe21€ama3

.2535 .2954 22293

.0697 .2235 28270

.0117 .1768 25908

20330 .1278 21879

20673 .0778 21184

20931 .0291 21142

21117 20166 21209

21245 20572 21283

21360 21143 21361

20799 20729 20804

20307 20184 20316
 

Common Denominator Ratios (19)
 

n=1. 1r=3 1r=5 n=10
 

  

Casal Chs62.Chsa3

.2783 .2783 .2783

.1623 .1623 .1623

.1062 .1062 .1062

.0549 .0549 .0549

.0094 .0094 .0094

20299 20299 20299

20628 20628 20628

20896 20896 20896

21261 21261 21261

21040 21040 21040

20371 20371 20371  

Cam&1 CamaZ1Cama3

.2617 .2968 .2890

.1318 .2209 .2513

.0764 .1122 .1928

.0275 .1030 .1235

20149 .0476 .0585

20508 20016 .0020

20801 20435 20445

21033 20778 20804

21331 21227 21260

21025 20953 21023

20412 20243 20407  

Case. 1 Case.2 Case.3

.2480 .2968 .2892

.1090 .2207 .2672

.0544 .1617 .2238

.0074 .1025 .1586

20324 .0472 .0906

20654 20021 .0293

20917 20442 20232

21120 20784 20653

21365 21221 21219

20972 20872 21000

20388 20352 20382  
(kweJ.Cbsa2iCama3

.2224 .2987 .2892

.0709 2192 .2743

.0187 .1598 .2343

20242 .1006 .1587

20589 .0455 .0842

20863 20036 .0210

21071 20452 20317

21221 20786 20744

21375 21202 21344

20860 20896 21084

20339 20271 20356
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TABLE 3.1-3

Asymptotic Bias of MDE in ARFIMA(l,d.,0)

[do = 0.4, ¢ = 0.4]

GLS (F1)
 

n=1. 1r=3 n=5 n=10
 

<
\

y
—
s

O
O
O
O
Q
O
N
U
I
-
b
W
N
O

“
N

O

Casel Chse2.Chme3

.4902 .4902 .4902

.0483 .0483 .0483

20568 20568 20568

21010 21010 21010

21067 21067 21067

20941 20941 20941

20761 20761 20761

20593 20593 20593

20355 20355 20355

20072 20072 20072

20032 20032 20032

Case] Chsa2.Case3

.2560 .4415 .4378

20365 .0105 20062

20882 20741 20805

21001 21014 21019

20923 20976 20960

20765 20819 20800

20603 20646 20630

20468 20498 20487

20287 20300 20295

20065 20066 20066

20030 20030 20030

Casel Cam12,Cas&3

.1221 4208 .4061

20621 20040 20297

20869 .0774 .0854

20874 20964 20954

20764 20890 20851

20621 20729 20690

20489 20568 20537

20382 20436 20454

20241 20265 20255

20060 20061 20061

20028 20028 20028

Casel Case2.Came3

.0228 .3937 .3658

20555 20184 20458

20626 20756 20796

20588 20848 20790

20502 20742 20664

20409 20548 20522

20326 20451 20401

20260 20344 20310

20172 20211 20195

20050 20053 20052

20024 20025 20025
 

Ratios (F1)
 

n=fl. n=3 1r=5 n=10
 

o
o
~
q
a
x
n
n
.
n
b
a
b
J
<
D

"
s

10

20

30

Casel Chm224Casa3

.0671 .0671 .0671

20143 20143 20143

20196 20196 20196

20173 20173 20173

20132 20132 20132

20096 20096 20096

20070 20070 20070

20050 20050 20050

20030 20030 20030

20005 20005 20005

20000 20000 20000

Camel Caae2.Cama3

.0574 .0937 22947

20164 .0047 20145

20176 20324 20194

20143 20245 20160

20106 20148 20114

20077 20099 20081

20055 20067 20057

20041 20048 20041

20024 20026 20024

20006 20000 20006

20000 .0000 20000

Camel Cam22lCmm23

.0547 .0932 22981

20156 20007 20180

20157 20388 20226

20124 20287 20173

20091 20179 20118

20066 20108 20080

20048 20072 20054

20036 20049 20039

20022 20025 20023

20004 20000 20005

20000 .0000 20002

Casal Chse2.Cama3

.0529 .0926 22092

20139 20080 20320

20133 20489 20330

20102 20371 20237

20073 20234 20151

20053 20149 20094

20038 20088 20060

20029 20058 20041

20018 20028 20022

20004 20000 20004

20000 .0000 20000
 

Common Denominator Ratios (F3)
 

n=1. 1r=3 1F=5 n=10
 

 c
>
o
o
~
q
O
\
L
n
-
h
u
n
b
a
c
a

"
a

N
v
—
o

O

30 
Canal Chat2,Cbse3

.0671 .0671 .0671

20143 20143 20143

20196 20196 20196

20173 20173 20173

20132 20132 20132

20096 20096 20096

20070 20070 20070

20050 20050 20050

20030 20030 20030

20005 20005 20005  20000 20000 20000

Casel case2.Came3

.0526 .0996 .0834

20164 .0039 20023

20180 20268 20335

20148 20186 20296

20111 20124 20189

20080 20084 20117

20058 20062 20075

20044 20046 20050

20026 20027 20027

20006 20003 20005  20001 20000 20000

Camel Chme2<Cama3

.0451 .0996 .0838

20160 .0010 20165

20162 20338 20440

20129 20204 20408

20096 20126 20277

20069 20086 20166

20051 20056 20099

20038 20042 20062

20023 20025 20030

20006 20000 20006 20003 .0000 20000

ChseJ_Chse2.Case3

.0366 .0997 .0839

20140 20060 20284

20132 20470 20466

20102 20303 20430

20075 20158 20326

20054 20098 20221

20040 20065 20142

20030 20043 20091

20019 20019 20041

20005 20003 20006

20002 20000 20000
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TABLE 3.2-1

Asymptotic Bias of MDE in ARFIMA(O,d.,1)

[d. = 0.2, 0 = -0.4]

GLS (F11
 

n=1. 1r=3 n=5 n=10

 

 

N
O
O
O
O
Q
Q
m
-
b
W
N
O

30 

Case] ChasZwCase3

.6103 .6103 .6103

21285 21285 21285

20624 20624 20624

20376 20376 20376

20253 20253 20253

20182 20182 20182

20138 20138 20138

20108 20108 20108

20072 20072 20072

20019 20019 20019

20007 20007 20007 

CuelCanCwe3

20153 .5947 .4591

20761 21061 20957

20471 20513 20480

20270 20311 20297

20191 20212 20204

20143 20154 20150

20111 20118 20116

20089 20093 20092

20061 20063 20062

20018 20018 20018

20008 20008 20008 

CwelCmeZCue3

20291 .5640 .4070

20544 20929 20797

20314 20445 20402

20211 20270 20251

20154 20185 20175

20117 20136 20130

20093 20104 20101

20075 20083 20081

20053 20057 20055

20016 20017 20017

20008 20008 20008 

CuelCueZCae3

20222 .5178 .3548

20318 20753 20610

20195 20353 20305

20137 20213 20191

20103 20146 20134

20081 20107 20100

20066 20083 20078

20055 20067 20063

20040 20046 20044

20014 20014 20014

20007 20007 20007
 

Ratios (F2)
 

n=1 1r=3 1r=5 n=10
 

  

Casel CbseZ,Chse3

.1575 .1575 .1575

20411 20398 20409

20182 20176 20178

20104 20059 20102

20068 20029 20059

20046 20020 20036

20035 20014 20011

20027 20008 20009

20011 20008 20007

20000 20084 20001

20000 20200 20000 

CuelCue2Cue3

.0754 .2162 .3050

20283 20328 20298

20133 20145 20135

20079 20066 20080

20053 20008 20051

20039 20004 20038

20029 20002 20029

20023 20001 20015

20015 20009 20006

20000 .0000 20000

20000 .0102 20000 

Casel Chm321Came3

20678 .2192 .2981

20240 20297 20265

20113 20129 20117

20068 20059 20067

20046 20022 20045

20034 20004 20033

20026 20002 20026

20020 20001 20020

20014 20000 20006

20000 20000 .0000

20002 .0074 .0000 

CuelCanCae3

.0628 .2193 .2853

20202 20224 20250

20093 20099 20103

20056 20049 20057

20038 20010 20038

20027 20004 20027

20021 20002 20021

20017 20001 20017

20011 .0000 20006

20000 .0000 20000

20002 .0000 .0000 
 

Common Denominator Ratios (F’)
 

n=1. 1r=3 1r=5 n=10
 

  

CuelCueZCae3

.1575 .1575 .1575

20411 20405 20409

20182 20176 20178

20104 20083 20102

20068 20009 20059

20046 20005 20036

20035 20003 20025

20024 20001 20009

20011 20008 20000

20000 .0114 .0001

20000 .0200 .0000 

CaelCueZCae3

.0957 .2015 .2026

20310 20344 20376

20142 20144 20149

20084 20083 20082

20056 20023 20054

20041 20012 20038

20031 20005 20029

20024 20002 20017

20016 .0003 20011

20004 .0006 20002

20002 .0168 .0005  

(kwe1.Chse2LCama3

.0801 .2021 .2028

20263 20310 20399

20122 20123 20145

20073 20069 20075

20049 20046 20048

20036 20033 20033

20027 .0006 20025

20022 .0003 20015

20015 .0000 20013

20004 .0012 20002

20002 .0259 .0003 

(kwel.Came21Cam33

.0656 .1985 .2011

20209 20274 20422

20097 20107 20154

20059 20052 20076

20040 20026 20044

20029 20011 20029

20023 20004 20019

20018 20009 20014

20012 20003 20009

20004 .0024 20002

20002 .0018 20003  
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TABLE 3.2-2

Asymptotic Bias of MDE in ARFIMA(O,d.,1)

[d. = 0.2, 0 = -0.8]

GLS (F’)
 

n=1. 1r=3 n=5 n=10

 

 

N

.
.
.
-
a

O
O
O
O
Q
Q
U
I
-
h
U
J
N
O

N

30  

CmelCueZCae3

.8469 .8469 .8469

21513 21513 21513

20745 20745 20745

20451 20451 20451

20304 20304 20304

20220 20220 20220

20166 20166 20166

20130 20130 20130

20086 20086 20086

20023 20023 20023

20011 20011 20011  

(kwel CameZlCaae3

.0403 .9504 .6385

20903 21318 21127

20500 20639 20573

20325 20386 20356

20230 20261 20246

20172 20190 20181

20134 20145 20139

20107 20114 20111

20073 20077 20075

20021 20021 20022

20010 20010 20010 

CmelCmeZCme3

.0002 .9867 .5670

20647 21151 20939

20377 20569 20480

20254 20342 20301

20185 20232 20210

20142 20169 20156

20112 20129 20121

20091 20102 20097

20064 20069 20067

20020 20020 20020

20009 20010 20009 

CwelCueZCme3

200911 0164 .4956

20379 21004 22768

20234 20465 20366

20165 20276 20230

20124 20186 20161

20098 20136 20121

20080 20104 20095

20066 20083 20077

20048 20057 20054

20017 20017 20017

20008 20008 20008
 

Ratios (F2)
 

n=d, 1r=3 1r=5 n=10
 

 

c
>
o
o
~
q
O
\
\
h
-
h
u
a
r
o
<
3

N
:

30

CuelCanCae3

.1970 .1970 .1970

20494 20479 20493

20219 20213 20218

20125 20082 20125

20082 20023 20078

20056 20014 20056

20043 20010 20042

20033 20007 20033

20015 20012 20011

20000 .0083 20000 20000 .0058 20000

casel Chm32<Came3

.1110 .2656 .4270

20340 20428 20359

20161 20186 20164

20096 20086 20097

20065 20037 20063

20047 20013 20046

20036 20009 20035

20028 20006 20028

20019 20004 20019

20001 .0080 20001

20000 .0056 20000

Case 1 Case 2 Case 3

.1012 .2714 .4125

20289 20410 20322

20137 20172 20144

20082 20079 20083

20056 20034 20056

20041 20012 20041

20031 20008 20031

20025 20006 20025

20017 20003 20017

20001 .0000 20001  20000 .0000 .0000

case] case2,Chse3

.0945 .2740 .3973

20243 20398 20312

20113 20157 20130

20067 20069 20072

20046 20030 20047

20033 20011 20034

20025 20007 20026

20020 20005 20020

20014 20003 20014

20001 20000 20001

20000 .0000 20000 
 

Common Denominator Ratios (F’)
  n=1. 1r=3 1r=5 n=10
 

 o
o
~
q
O
x
t
n

$
>
t
»

5
9
¢
:

“
5

10

20

3()  

CuelCueZCwe3

.1970 .1970 .1970

20494 20494 20493

20219 20213 20218

20125 20103 20125

20082 20065 20081

20056 20015 20056

20043 20010 20042

20033 20007 20033

20015 20012 20015

20000 .0113 20000

20000 .0078 20000 

CuelCueZCue3

.1191 .2712 .2405

20372 20444 20557

20172 20186 20201

20102 20105 20107

20068 20052 20068

20049 20022 20048

20037 20013 20036

20029 20007 20024

20019 20001 20016

20005 .0005 20003

20002 .0080 20004 

CaelCme2Cue3

.0995 .2894 .2414

20316 20424 20602

20148 20173 20217

20088 20092 20108

20060 20060 20065

20043 20042 20044

20033 .0001 20031

20026 .0005 20025

20018 .0008 20016

20005 .0010 20003

20002 .0009 20002 

CuelCueZCue3

.0814 .2963 .2410

20252 20399 20585

20118 20148 20234

20071 20074 20119

20048 20043 20070

20035 20022 20045

20027 20017 20033

20022 20010 20023

20015 20007 20014

20004 .0022 20003

20002 .0018 20001
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TABLE 3.3-1

Asymptotic Bias of MDE in ARFIMA(1,d.,0) in GLS (F')

¢=o.4

[n=1]

 

d. -0.49 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.24 0.25 0.3 0.4 0.49
 

6 = 0

I .6359 .6262 .6144 .6014 .5872 .5541 .5348 .5266 .5245

II .6359 .6262 .6144 .6014 .5872 .5541 .5348 .5266 .5245

III .6359 .6262 .6144 .6014 .5872 .5541 .5348 .5266 .5245

.5137 .4902 .4668

.5137 .4902 .4668

.5137 .4902 .4668

 

6 = 2

I 1.908 4.009 -5.974 -l.282 25697 21362 20466 20207 20149

I] 1.908 4.009 -5.974 -l.282 25697 21362 20466 20207 20149

III 1.908 4.009 -5.974 -l.282 25697 21362 20466 20207 20149

.0107 .0483 .0707

.0107 .0483 .0707

.0107 .0483 .0707

 

€= 5

I .1688 .2654 .4174 .7338 2.489 25301 22838 22301 22188

H .1688 .2654 .4174 .7338 2.489 25301 22838 22301 22188

111 .1688 .2654 .4174 .7338 2.489 25301 22838 22301 22188

21713 21067 20687

21713 21067 20687

21713 21067 20687
 

(=10

I 21633 21264 20907 20542 .0051 21210 20721 20617 20595

11 21633 21264 20907 20542 .0051 21210 20721 20617 20595

II] 21633 21264 20907 20542 .0051 21210 20721 20617 20595

20499 20355 20259

20499 20355 20259

20499 20355 20259
 

(=20

I 20355 20314 20272 20235 20200 20141 20115 20106 20103

II 20355 20314 20272 20235 20200 20141 20115 20106 20103

HI 20355 20314 20272 20235 20200 20141 20115 20106 20103

20092 20072 20056

20092 20072 20056

20092 20072 20056

 

(=30

I 20147 20131 20115 20100 20086 20061 20050 20046 20045

I] 20147 20131 20115 20100 20086 20061 20050 20046 20045

HI 20147 20131 20115 20100 20086 20061 20050 20046 20045 20040 20032 20025

20040 20032 20025

20040 20032 20025

 

Note: I (=Case 1), II (=Case 2) and HI (=Case 3).
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TABLE 3.3-1, CONTINUED

[n = 10]

 

do -0.49 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.24 0.25 0.3 0.4 0.49}
 

E
n
v
— .1721 .5791 22207 2.714 -1.448

.9486 -L457 .5816 .5671 .5260

.6779 .6236 .4388 .8594 .2579

(=0

.2075 20748 20453 20391 20128 .0228 .0430

.4506 .4287 .4211 .4192 .3837 .3937 .3793

.3985 .3920 .3878 .3866 .3657 .3658 .3504

 

.2630 .5569 22777 2.646 -l.517

.6601 .6371 1.464 27537 22933

.8593 1.562 29605 .6082 -3.122

€= 2

23017 21467 21304 21237 20953 20555 20314

22613 21395 21058 20984 20658 20184 20109

23478 21825 21427 21342 20975 20458 20149
 

20903 20441 .0119 .0945 .3993

21095 .0156 .0932 .2102 .4810 23674 21889 21534 21461 21154 20742 20497

21027 20142 .0615 .1812 .6322

Z: 5

22136 21173 20973 20931 20752 20502 20348

23039 21620 21330 21269 21014 20664 20452
 

20892 20740 20594 20455 20277

21095 20895 20706 20526 20289

21027 20847 20676 20514 20306

(=10

20452 20311 20275 20267 20231 20172 20130

20579 20387 20341 20331 20285 20211 20159

20518 20354 20313 20304 20262 20195 20146
 

20237 20211 20184 20159 20136

20253 20224 20196 20169 20146

20247 20220 20192 20166 20142

[=20

20096 20079 20073 20071 20063 20050 20038

20102 20084 20077 20075 20067 20053 20041

20100 20082 20075 20074 20066 20051 20040
 

 20112 20101 20089 20077 20066

20116 20104 20091 20079 20068

20115 20103 20090 20078 20067

(=30

20047 20039 20035 20035 20031 20024 20019

20048 20040 20037 20036 20032 20025 20020

20048 20039 20036 20035 20032 20025 20019 
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TABLE 3.3-2

Asymptotic Bias of MDE in ARFIMA(1,d.,0) in Ratios (F2)

 

 

 

 

 

 

 

 

o = 0.4

[n = 1]

d. on -o.4 .03 .02 .0.1 0.1 0.2 0.24 0.25 0.3 0.4 0.49!

e: o

I .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069

II .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069

III .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069

e: 2

I .7322 .8796 1.258 20700 -2.120 22401 21126 20813 20747 20474 20143 20008

II .7322 .8796 1.258 20700 -2.120 22401 21126 20813 20747 20474 20143 20008

III .7322 .8796 1.258 20700 -2.120 22401 21126 20813 20747 20474 20143 20008

e: 5

I 20106 .0401 .0986 .1803 .3999 22030 20864 20623 20574 20378 20132 20010

II 20106 .0401 .0986 .1803 .3999 22030 20864 20623 20574 20378 20132 -.0010

[II 20106 .0401 .0986 .1803 .3999 22030 20864 20623 20574 20378 20132 20010

2:10

I 20900 20694 20509 20347 20171 .0062 20142 20107 20101 20074 20030 20001

II 20900 20694 20509 20347 20171 .0062 20142 20107 20101 20074 20030 20001

III 20900 20694 20509 20347 20171 .0062 20142 20107 20101 20074 20030 20001

2:20

I 20168 20148 20102 20077 20038 .0001 20013 20020 .0020 20014 20005 20001

H 20168 20148 20102 20077 20038 .0001 20013 20020 .0020 20014 20005 20001

III 20168 20148 20102 20077 20038 .0001 20013 20020 .0020 20014 20005 20001

e=3o

I 20060 20037 20018 .0008 20006 .0010 20000 20009 20009 20006 20000 -.0001

II 20060 20037 20018 .0008 20006 .0010 20000 20009 20009 20006 20000 2000]

III 20060 20037 20018 .0008 20006 .0010 20000 20009 20009 20006 20000 20001  
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TABLE 3.3-2, CONTINUED

 

 

 

 

 

 

 

 

[n=10]

d. -0.49 -0.4 -0.3 -0.2 -O.1 0.1 0.2 0.24 0.25 0.3 0.4 0.49

(=0

I .9485 28312 .2217 -L$12 .5731 .0842 .1101 .1063 .1046 .0921 .0529 .0057

II .4357 .4807 .5512 27021 .1923 .2620 .2213 .2021 .1970 .1678 .0926 .0099

III .3767 .3708 .3692 9999 .2847 .3865 .3627 .3395 .3331 .2992 22092 .0094

(=2

I .2955 .4097 .6994 2TZ40 .L640 22135 20954 20696 20642 20419 20139 20009

I] .3775 .4229 .3904 .3860 .4067 22247 21053 20768 20724 20472 20080 .0064

III .3573 .4301 .6850 9999 1 819 22320 21216 20940 20878 20664 20320 20009

€=5

I 20741 20399 20044 .0380 .1316 20986 20431 20319 20296 20200 20073 20006

11 - 0682 20257 .0011 .0524 .1460 20951 20494 20394 20374 20292 20234 .0038

III .0317 .0281 20076 .0262 .1033 20938 20495 20384 20359 20275 20151 20008

[=10

I 20526 20422 20326 20241 20155 20133 20079 20064 20059 20043 20018 20001

11 -20154 .0055 20033 20090 .0060 .0107 20040 20066 20063 20049 20028 20003

III .0600 20066 20024 20089 20082 20116 20075 20066 20060 20046 20022 20002

(=20

I 20125 20106 20086 20068 20054 20025 20018 20016 20015 20010 20004 20001

I] .0600 20300 .0300 .0400 20094 .0103 20000 20038 20015 20011 20000 20000

III .0600 20300 20068 20008 20021 20024 20008 20016 20015 20010 20004 20000

€=30

I 20058 20049 20038 20026 20014 20012 20005 20008 20007 20005 20000 20000

I] .0600 20300 .0300 20700 20700 .0079 20000 20007 20007 20005 20000 20000

.0600 20300 .0300 .0008 .0002 20012 20001 20008 20007 20005 20000 20000
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TABLE 3.3-3

Asymptotic Bias of MDE in ARFIMA(1,d.,0)

in Common Denominator Ratios (1‘4)

 

 

 

 

 

 

 

 

¢==041

ln= 1]

d. 4149 .02: -03 412 -01 (11 02 (124 025 (13 011 049

e==o

I .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069

II .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069

III .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069

e==2

I .7322 .8796 1.258 20700 -2.120 22401 21126 20813 20747 20474 20143 -.0008

II .7322 .8796 1.258 20700 -2.120 22401 21126 20813 20747 20474 20143 20008

III .7322 .8796 1.258 20700 -2.120 22401 21126 20813 20747 20474 20143 20008

e==5

I 20106 .0401 .0986 .1803 .3999 22030 20864 20623 20574 20378 20132 20010

II 20106 .0401 .0986 .1803 .3999 22030 20864 20623 20574 20378 20132 20010

III 20106 .0401 .0986 .1803 .3999 22030 20864 20623 20574 20378 20132 20010

3:10

I 20900 20694 20509 20347 20171 .0062 20142 20107 20101 20074 20030 20001

II 20900 20694 20509 20347 20171 .0062 20142 20107 20101 20074 20030 20001

HI 20900 20694 20509 20347 20171 .0062 20142 20107 20101 20074 20030 20001

e=2o

I 20168 20148 20102 20077 20038 .0001 20019 20020 .0020 20014 20005 20001

I] 20168 20148 20102 20077 20038 .0001 20019 20020 .0020 20014 20005 20001

1]] 20168 20148 20102 20077 20038 .0001 20019 20020 .0020 20014 20005 20001

3:30

I 20060 20037 20018 .0008 20006 .0010 20007 20009 20009 20006 20000 20001

II 20060 20037 20018 .0008 20006 .0010 20007 20009 20009 20006 20000 20001

III 20060 20037 20018 .0008 20006 .0010 20007 20009 20009 20006 20000 20001
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TABLE 3.3-3, CONTINUED

[n= 10]

 

d. -0.49 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.24 0.25 0.3 0.4 0.49
 

E = 0

I .4018 .3596 .3109 .2624 .2159 .1360 .1023 .0894 .0862 .0700 .0366 .0038

II .3124 .2997 .2849 .2692 .2528 .2181 .2128 .1964 .1944 .1795 .0997 .0100

III .3892 .3756 .3594 .3412 .3200 .2816 .2397 .2110 .2036 .1652 .0839 .0084
 

€= 2

I .4114 .4653 .5960 -24.45 -2.189 22458 21031 20736 20676 20432 20140 20000

II .3197 .3594 .4121 .2500 -l.468 22426 21081 20791 20731 21179 20060 .0076

III .4321 .4180 .5319 -14.88 -1.496 22718 21384 21055 20982 20686 20284 -9999
 

€= 5

I 20673 20282 .0109 .0562 .1525 21164 20469 20341 20315 20209 20075 .0006

II 20733 20334 .0016 .0490 .0859 21057 20520 20395 20368 20264 20158 .0044

III .0600 .0107 .0018 .0351 .1090 21662 20902 20711 20670 20541 20326 20021
 

(=10

I 20627 20492 20371 20269 20170 20150 20086 20069 20065 20047 20019 20000

II 20347 20034 20277 .0216 .0219 20122 20056 20068 20054 20043 20019 20000

H] .0600 .0700 20271 20088 20024 20128 20091 20077 20075 20063 20041 20000
 

[=20

I 20137 20116 20094 20075 20059 20031 20021 20017 20016 20012 20005 -.0000

II .0600 .0700 20300 20700 20700 .0251 20000 20016 20011 20003 20003 20000

III .0600 .0700 20300 20023 .0181 20004 20000 20015 20011 20012 20006 20000
 

 €=30

I 20062 20052 20043 20034 20027 20015 20010 20008 20007 20006 20002 20000

H .0600 .0700 20300 20700 20700 .0699 .0000 .0000 .0002 .0002 20000 20000

III .0600 .0700 20300 .0398 .0141 20004 .0001 20001 20004 .0001 20000 20000  



80

TABLE 3.4

Asymptotic Bias of MDE in ARFIMA(I,d.,0)

 

 

 

 

 

d. = 0.2

[n = 5]

Q -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0.9

GLS (F‘)

K = 20

I 22849 .0016 .0011 .0000 20025 20096 20461 23100 .0113

H 20652 .0016 .0011 .0000 20026 20098 20483 23112 .0283

III -.0813 .0016 .0011 .0000 20026 20097 20471 23113 .0163

6 = 30

I 20042 .0008 .0005 20000 20012 20044 20165 21947 22147

11 .0002 .0008 .0005 20000 20012 20045 20168 21996 22065

111 20006 .0008 .0005 20000 20012 20045 20166 21964 22128

Ratios (F2)

2 = 20

I 20057 .0000 .0000 20000 20000 20016 20092 20937 21261

11 20000 .0000 .0000 .0000 .0000 20000 .0017 20816 20876

III -.0000 .0000 .0000 .0000 .0000 20009 20092 20941 21267

8 = 30

I .0000 .0000 .0000 .0000 20001 20000 20028 20363 -.1411

II .0000 .0000 .0000 .0000 20000 20000 .0000 20217 -.1182

III .0000 .0000 .0000 .0000 20000 20001 20033 20373 -. 1433

Common Denominator Ratios (F’)

l? = 20

I 20071 .0004 .0003 .0000 20006 20023 20097 20972 21242

11 .0000 .0000 .0000 .0000 .0000 20000 20030 20872 2 1062

III .0000 .0000 .0000 .0000 .0000 20019 20092 21000 21199

E = 30

I .0001 .0001 .0000 .0000 20003 20011 20038 20388 21436

11 .0000 .0000 .0000 .0000 .0000 20000 .0000 20352 2 1290

III .0000 .0000 .0000 .0000 .0000 20009 20030 20382 21440
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TABLE 3.4, CONTINUED

[n = 10]

4. -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0.9

GLS (F’)

6 = 20

I -. 1208 .0013 .0009 .0000 20021 20079 20357 22174 20535

11 20168 .0014 .0010 .0000 20022 20084 20398 22995 20035

III -.0095 .0014 .0010 .0000 20022 20082 20373 22952 20389

2 = 30

I 20015 .0007 .0005 20000 20011 20039 20142 -. 1641 22461

II .0006 .0007 .0005 20000 20011 20040 20148 21774 22247

111 .0006 .0007 .0005 20000 20011 20039 20145 21687 22419

Ratios (F2)

8 = 20

I 20030 20000 .0000 20000 20004 20018 20077 20799 21310

H -.0000 .0000 .0000 .0000 20000 20000 20017 20729 -.0862

HI .0000 .0000 .0000 .0000 20000 20008 20077 20804 -. 1137

2 = 30

I .0000 .0000 .0000 20000 20000 20005 20025 20307 21356

H -.0000 .0000 .0000 .0000 .0000 20000 .0000 20184 21164

[H -.0000 .0000 .0000 .0000 .0000 20001 20029 20316 21377

Common Denominator Ratios (F3)

6 = 20

I 20038 .0004 .0002 .0000 20006 20021 20084 20860 -. 1310

II 20000 20000 20000 .0000 .0000 20000 .0007 20896 21032

111 .0000 .0000 .0000 .0000 20000 20010 20084 21084 21136

I? = 30

I .0002 .0002 .0001 20000 20003 20010 20035 20339 21401

11 .0000 .0000 20000 .0000 20000 20000 .0000 20271 -. 1342

III .0000 .0000 .0000 .0000 20000 20001 20029 20356 21444
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1. INTRODUCTION

It is now well established that many economic time series contain a unit root.

Such series are I(l) in the sense that they are nonstationary but their first difference is

stationary. Such series can move in random directions over arbitrarily long time

periods. However, in some cases economic theory indicates that certain pairs of

series are related and should not diverge too much from each other. This may be

reasonable because, when certain economic variables begin to diverge, market forces

or government intervention may reestablish their long run relationship.

Suppose that {in} and {y} are nonstationary unit root processes where y. is a

scalar but 1:. may be a vector. Consider a linear combination ofthose processes:

zt = Yt ‘ ng ,

where A is a nonrandom vector. Generally such a linear combination 2, will also be a

unit root process. As long as z. is a unit root process, whether A is zero or not does

not make much difl‘erence (as we will see later) and we need first-differencing to‘deal

with such cases.

However, when a linear combination of the unit root processes y. and x; is an

I(d) process with d <1, it is said that {xi} and {yt} are ‘cointegrate ’ and A is a

cointegrating vector Lot coefficient); see Engle and Granger (1987). An alternative

definition of cointegration is that a linear combination ofthe unit root processes y. and

x. is stationary. This would rule out the case 1/2 S d < l. CointegLation implies that

although there are permanent changes in the individual series x and y over time, there
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is some long-run equilibrium relationship tying them together, which is represented by

the linear combination 2,.

There are several standard examples of cointegration relationships. Davidson,

Hendry, Srba and Yeo (1978) show that even though both consumption and income

are unit root processes, in the long run the difference between the log of consumption

and the log of income appears to be a stationary process. Kremers (1989) proposes

that the difi‘erence between the log of government debt and the log of GNP is a

stationary process even though each is not stationary. Also, although many empirical

studies show significant deviations from the Purchasing Power Parity (PPP)

hypothesis in the short run, it is argued that the PPP hypothesis works in the long run,

in the sense that a cointegration relationship exists among the foreign price index, the

domestic price index and the nominal exchange rate; alternatively between a relative

price index and the nominal exchange rate. For further details, see Cheung and Lai

(1993) and Baillie and Selover (1987).

The standard statistical treatments of cointegration deal with the case of a

short memory error; i.e., a linear combination of nonstationary I(l) processes

becomes a stationary 1(0) process. Under short memory error, the properties of

cointegrating coemcient estimates are well known. OLS is consistent and converges

in probability at the rate of T rather than the usual rate of Tm. However, in general

OLS is asymptotically biased, and it does not lead to asymptotically valid inference.

There are many other emcient estimates of cointegrating coefficients. For example,

see Johansen (1988, 1991), Stock and Watson (1988, 1993), Phillips and Hansen
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(1990), Saikkonen (1991) and Park (1992). These methods also lead to

asymptotically valid inference.

However, it is possible that the linear combination of nonstationary unit root

processes may be an I(d) process with 0< (I <1. This case is referred to as fi'actional

cointegration in Baillie and Bollerslev (1994) and Cheung and Lai ( 1993). Ifthe error 

in the cointegrating relationship is I(d) with 0< d <1/2, it is still stationary but it has

more persistent autocorrelations than in the usual short memory case. If 1/2< (1 <1,

the error in the cointegrating relationship is not stationary but it is mean-reverting, so

that a shock in a given time period will finally disappear in the long run.

Therefore, in this chapter our interest is in the case that the error in a

cointegrating relationship is I(d) with 0< d <1, rather than in the usual model of

cointegration with errors that are 1(0). For this case, we derive the asymptotic

distribution of the least squares estimator. Least squares is consistent, and has a rate

of convergence to its asymptotic distribution that depends on d. This can be

compared to least squares in differences, which is not consistent if the errors and

regressors are correlated, and which converges at the usual T”2 rate for all values of d

in the range 0< <1 <1. We also provide some simulations that support the relevance of

these asymptotics in samples ofmoderate size.

2. COINTEGRATION

First we define cointegration in a way similar to that in Engle and Granger

(1987)
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Definition ofCointegration: The components of an le vector 24 are said to be

cointegrated of order a, b, i.e. 2. ~ CI(a,b), if

(i) z. is 1(a) for a >1/2 and

(ii) there exists a non-zero vector (1 such that (it’zt ~ I(a-b), a 2 b > 0.

If 2. has more than 2 components (N 2 2), then we may have more than one

cointegrating vector. When there exist h linearly independent cointegrating vectors

with h S N—l, we can combine them to make a cointegrating matrix C (Nxh). The

rank of C is h and is called as the cointegrating rank.

There are at least two reasons why cointegration is important. First, in a

regression with nonstationary variables, cointegration is a useful way of distinguishing

a meaningful regression from a ‘nonsense’ (Yule (1926)) or ‘spurious’ (Granger and

Newbold (1978)) regression. In a spurious regression the error is [(1) and least

squares does not have useful properties. Second, the Error Correction Representation

(ECR) exists only when the nonstationary variables are cointegrated. This is

important since the ECR provides a sensible way of combining the information

contained both in levels and differences. The ECR models the dynamics of both

short-run changes and the long-run adjustment process simultaneously.

In the short memory case (i.e., a = b =1), the problem of estimation of the

cointegrating vector has been studied by many economists. OLS is consistent and

converges at rate T, which is faster than the usual T“2 rate; see Stock (1987) and

Phillips and Durlauf (1986). Phillips and Park (1988) showed that when the error in

cointegrating relationship follows a stationary AR process, OLS and Generalized
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Least Square (GLS) are asymptotically equivalent. There are many asymptotically

emcient estimates, which also lead to asymptotically valid inference. Johansen (1988)

derived a maximum likelihood estimator of the dimension of the space of the

cointegrating vectors and tests of linear hypotheses on those vectors. Phillips and

Hansen (1990) suggested a ‘fully modified’ least squares estimator. The method of

adding leads and lags was suggested by Saikkonen (1991), Phillips and Loretan

(1991) and Stock and Watson (1993). Park (1992) proposed an OLS procedure after

transforming both regressors and dependent variables.

There are many usefiil ways of representing cointegrated variables, including

the ECR The Vector Autoregressive Representation (VAR) is a basic tool for

analyzing nonstationary variables by making them stationary through first-

difl‘erencing. For details, see Engle and Yoo (1987) and Ogaki and Park (1992).

Johansen (1988) provided the Interim Multiplier Representation (IMR) by modifying

the error correction representation. The Triangular Representation (TR) by Phillips

(1991) divides the cointegrated system into exactly cointegrated variables and other

non-cointegrated variables. The Common Trend Representation (CTR) in Stock and

Watson (1988) decomposes the cointegrated nonstationary system into a stationary

component plus linear combinations of common deterministic trends and common

random walk variables. The Granger Representation Theorem in Engle and Granger

(1987) and Johansen (1991) gives several interesting results on the representation of

the cointegrated system.
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3. ASYMPTOTICS FOR OLS ESTIMATES OF COINTEGRATING

COEFFICIENTS

We consider the following data generating process:

(1) yt =XtB+ut, t=1,2,ooo,T,

(2) xt = xt-I +vta

(3) (1— L)“u. = 8..

where {x.} and {y.} are the observed unit root series and {Vt} and {at} are assumed to

be short memory processes. For simplicity we consider the case that x. is a scalar;

thus there is at most one cointegrating relationship between y. and x.. In general, the

error process {u.}, which is a linear combination of unit root processes, may be

another unit root process. However, when B is not zero and {m} is an I(d) process

with 0S. (1 <1, {x.} and {y.} are cointegrated as in Engle and Granger (1987). This

model does not include intercept or deterministic time trend. To do so is a feasible

but non-trivial extension ofthis analysis.

A. Short Memory Case ((1 = 0)

We first consider the case that d =0 in (3) above. Therefore u. = a. in (3)

above, and we have the standard case of cointegration considered in the literature.

We will give a brief summary of the results for this case, for purposes of comparison

with our results for the case of fractional cointegration.



89

For simplicity, and to ensure comparability with our treatment of the fractional

case, we consider the special case in which the errors {v1} and {at} are only

2

8‘} iid(0, 2) with 2=[°8 9.2.].contemporaneously correlated; i.e., [

Vt ve 0v

We begin with the following lemma which can be obtained from Phillips (1988) and

Phillips and Durlauf (1986):

LEMMA 1:

T l

(i) $12.12.: [1310193201
t 0

.. 1 T 1

(n) 72x? => IBi(r)dr,
T t o

1T

(111) 'T‘thst _p)0ve’

t

Br“)
where B(r) E [B (r)

2

]= Brownian motion with covariance matrix 2.

We note that, in a more general setting, the Brownian motion B(r) would have

as its covariance matrix the “long-run covariance matrix” ofv. and 8., defined as:

1

T

1

S
I

Q = 1iHIT—>00 E

   

r

2‘“

i

2‘4

t

fi
l

T
b —- —
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However, because we have assumed that v. and a. are iid, the long-run covariance

matrix Q and the contemporaneous covariance matrix 2 are equal.

The OLS estimate of the cointegrating coefiicient B is:

T T‘

Zxtyt 12,1 xtut

(4) fi=%—=B+ "T

2th 2x3
t=1 t=1

T

thSt

= B+——‘=I .

2x3
t=1

Thus

 

T‘1ZXt_18t + T—1thst

T4222 T4222 ’

since th8. =th_lat+2vte,. Then, using LEMMA 1, one obtains the

(5) T(B-B)=

following asymptotic result:

 

l

. [Bitrnazunow

(6) T(B-l3)=> ° ,

IBimdr

0

Therefor 8-3 is Op(l/T) when the error 11. is short memory. OLS is

consistent whether or not v. and e. are correlated (i.e., whether or not (so, = 0), but

there is a bias in the asymptotic distribution when 0., ¢ 0. These are well-known,

standard results.

B. Spurious Regression Case (d =1)
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We next consider the case of a spurious regression, as defined in Granger and

Newbold (1978), for which a rigorous asymptotic analysis was given by Phillips

(1986). This is the case in which the error process u. in (1) above is I(d) with d = 1;

i.e., a unit root process. Thus we write:

“1 = ut—1 + Tlt ,

where 11. is 1(0). We will consider that {Vt} and {m} are only contemporaneously

2
0' o

correlated, so that [m]~ iid (0, £1), 21 = 11 v2" .

Vt Onv 0v

Then the following lemma can be obtained from Philips (1986):

Br“)
LEMMA 2: Define

B3(r)

]= Brownian motion with covariance matrix 21.

Then

1 T 1
Fthut 3 IB1(I)B3(I)dI .

t 0

Again, in a more general setting the Brownian motion in LEA/[114A 2 would have as its

covariance matrix of v. and 1]., say (21 defined as

I_ T _

sl
— T
Tth

9]: 1iInT—MO E 1T;

lez
t   3

|

- d-

However, in the iid case 01 and 21 are the same.

Using LEMMA 1 and LEMMA 2, we obtain Phillips’ result:



92

1 T 1
. .1322... IB1(r)B3(r)dr

(7) (B-B)=--l—‘T—=>°l

sztz IBIUW

t o

 

This result implies that B is not consistent, since (B —- B) is 0,,(1) and therefore does

not diminish as T—)oo.

The case discussed difi‘ers slightly from the spurious regression in Granger and

Newbold (1978), in that B is not necessarily zero. However, this is not important,

since the asymptotic distribution of (B - B) does not depend on B.

C. Stationary Long Memory Error Case (0< d <1l2)

We now turn to the case that the error 11. is I(d) 0< d <1/2, so that it is a

stationary, long memory process. This is the leading case of fractional cointegration.

An asymptotic analysis of: OLS or other methods of estimation of the cointegrating

vector B has not previously been done.

As above, we consider the case that the innovations (v., at)' are iid (0, X),

with 2 as in section 3.A above. We have the following (standard) result for the joint

convergence of partial sums ofv. and st:

(til ‘
Vt

[trI‘l] =B(r)=[Bl(r)].(3)

B20)
8

a
l
~
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where B(r) is a Brownian motion with covariance matrix 2. The basic result that we

need, however, is an expression for the joint limit ofthe partial sums of v. and u.. The

problem is the need for a joint limit. The marginal limiting distributions follow from

existing results in the literature. For v., we have

[11']
I

(9) 7—,]? évt 3 B10'),

where Bl(r) is a Brownian motion with variance 0%,; this is the marginal statement

corresponding to (8) above. For u., we have convergence to a fractional Brownian

motion, as given by equation (27) of Chapter 1:

[le

(10) WZut => mdwd“),

t=1

where of, = aim —- 2d) / [(1+ 2d)F(1+ d)F(1— d)] and mm is the solution to

l

(11) Wd(f)=l.(d+l)
 [(r — s)d dW(s),

0

with W(s) a standard Wiener process.

With these marginal results in hand, the only question is how to express the

joint result so that it properly reflects the covariance between the two limiting

processes. This covariance is also reflected in the covariance between B1(r) and B2(r)

in (8) above. Thus the standard Wiener process W(d) is in (1 1) above should in fact

be the specific process ong2(r), to capture this covariance. More specifically,

define
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(12) F.(r)=——MI(r-s>dd32(s1
I‘(1+d)0

where 1(a) = of, /o§ = m- 2d)/[(1+2d)F(1— d)F(1+ <1)]. Then we have the joint

convergence result as given in the following lemma.

LEMMA 3: Suppose that (vt, at)' are iid (0, 2), that [B1(r), B2(r)]’ is a

Brownian motion with covariance matrix 2, that Fd(r) is the fractional

Brownian motion defined in (12), and that the model (1)-(3) above holds with

O< d <l/2. Then

 

— V

T :> .

1 [r ] Fd(1’)

d+1l2 Zut

-T t=1 . 

Perhaps surprisingly, the joint convergence result ofLEMMA 3 for a vector of

ordinary and fractional Brownian motions does not seem to exist in the statistical

literature. Our argument leading to LEMMA 3 was somewhat heuristic, but we

believe that it captures the essential ideas that would be part of a more rigorous proof.

In any case, with LEMMA 3 in hand we can proceed to the analysis of least squares

for the fractionally integrated model with 0< d <1/2.

LEMMA 4: Let the same conditions hold as in LEMMA 3. Then

1 T 1

Fthut => jBr(T)dFd(f)-

t 0

Proof: See Appendix. I
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Therefore,under the conditions of LEMMA 3, we have (using LEMMA 1, part

(ii), and LEMMA 4) the following result for the asymptotic distribution of the OLS

estimate B in (1):

1 T 1
...,; 2...... I Bi(r)dFs(r)

(14) T“*"(B—B)= T ; => 0
1 1

$32th jBimdr

t o

  

Thus, for the case that the errors in the cointegrating relationship are I(d) with 0< d

<l/2, B- B is CPU/TN) = Op(T""). In particular, the value of d affects the order in

probability ofthe OLS estimate.

D. Nonstationary Long Memory Error Case (1/2< (I <1)

We now suppose that u., the error in the cointegrating relationship (1), is I(d)

with 1/2< d <1. Define d* = d-l, so -1/2< d* <0. Then Aut 2 pt is I(d*). Let the

innovations be represented by a. as in (3) above, so that

(15) (1— L)‘u. =(1—L)“p. = 2..

As in section C, we assume that the innovations (vt, at)' are iid (0, 2), so that the

partial sums of v. and e. converge jointly to [Bl(r), Bz(r)]' as in (8) above. We

define:

m

(16) Fd*(r)=I‘—_(l(+(““0I(f J5)(132(5)

corresponding to (12) above. Then



96

 

    

" X 1 — 1 [IT]

[1’1“] _‘th

(17) fi = fi,=, 3 Bio)

u[rT] 1 [EP Fat-(f)

”our/w LTow/2 H t—

which is similar to the result ofLEMMA 4.

LEMMA 5: Under the assumptions listed above in this section,

1 T 1 T 1

d*+2 thut = d+1 thut 2) I B1(r)Fd‘(r)dr'
T t T t 0

Proof: See Appendix. I

From LEMMA 1 and LEMMA 5, we therefore have the following result for the

asymptotic distribution of the OLS estimate B:

   

1 T
I

~ 1 .. sztut jBr(f)Fd*(f)df

08) T““"(B—B)=Td.(B—B
)=

1 15 =0 1

p222 [Bfmdr

‘ 0

Thus, for the case that the errors in the cointegrating relationship are I(d) with 1/2< (I

<1, B— s is o,(1/T"") = 0,0“).

E. Remarks

We have considered the regression of y. on x., where y. and x. are 1(1), and

where the error is I(d). We have considered the cases: (1 = 0, d = 1, 0< d <1/2, and

1/2< d < 1. These correspond to all values of d in [0, 1] except d = 1/2, for which the
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necessary convergence result for partial sums of an I(d) process is apparently not

available. While the form of the asymptotic distribution varies across cases, we have

the interesting result that B— B is CPU/T”) for all d in [0, 1] (except perhaps d=1/2).

Our findings can be compared with the result of Cheung and Lai (1993). They

showed that T(1_d_5)(B— B) converges in probability to 0 for all 8 >0. Our findings

confirm their results and provide the exact asymptotics of the OLS estimates in

fractional cointegration relationships.

It is interesting to compare these results to those for another simple estimator;

namely, least squares in first differences. Thus suppose that (1) is difi‘erenced to yield

(19) Ayt = AxtB + Aut

and a least-squares estimator

T T

ZAxtAyt ZAxtAut

" _L.. i:2__.__.___
(20) B - T — B + T °

2Ax,2 Z Ax,2

t=2 =2

If u. is I(d) with 0< (1 <1, then Aut is I(d*) with -1< d* <0. From Odaki (1993), this

is a stationary and invertible process. Since Axt is also a stationary and invertible

process, standard results indicate the following. First, TTIZAth converges in

probability to yxx a B(Axtz). Second, if qu a E(AxtAut), then TTIZAxtAut

converges in probability to y x“ , and TTUZZMXtAut — Tim) is asymptotically normal

with zero mean. This implies that B converges in probability to B»: E B +qu / Yxxa
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and JT(B— B.) is asymptotically normal with zero mean. Thus B-B. is 0,,(T'm).

Thus, unlike the OLS estimator in levels (B), B is inconsistent when x. and u. are

correlated. Also unlike B, the rate of convergence of B does not depend on d. B

converges faster than B when d >l/2 (since 1/2> l-d) but slower than B when d

<l/2. Thus difi‘erencing is a poor idea when d <1/2, but it may be a good idea when d

>1/2.

4. SIMULATION RESULTS

In this section we provide some simulation results that support the relevance of

our asymptotic results of the previous section. The data are generated according the

equations (1)-(3) above. We choose B = 1 but this choice is not substantive. We also

choose (5‘,8 = 0 so that the v. and a. processes are not correlated, even

contemporaneously. The sample sizes considered are T = 50, 100, 250, 500, 1000

and 1500. The number of iterations in the simulation was 10000. The computations

were done in FORTRAN, using the normal random number generator

GASDEV/RAN3 as in Chapter 2.

Table 4.1 gives results for the OLS estimator of B. It presents the mean, the

standard deviation, and the standard deviation multiplied by T”. Since

asymptotically the least squares estimator has estimation error that is Op (Td'l), we

expect the normalized standard deviation to approach a limit as T increases. This

appears to be true in Table 4.1, and in fact the normalized standard deviation does not
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change much over the range from T = 100 to T = 1500. This supports the relevance

of our asymptotic theory, even for only moderate sample sizes. All of the estimates

are essentially unbiased, as would be expected given the strict exogeneity of the

regressors. As d increases with T fixed, the standard deviation of the estimate

increases and the normalized standard deviation ofthe estimate decreases.

Table 4.2 gives similar results, for a smaller set ofvalues of d, for the estimate

of B obtained by least squares in differences. Once again the estimates are essentially

unbiased. Now the normalized standard deviation is the standard deviation multiplied

by Tm, since asymptotically least squares in differences has an estimation error that is

OP(T""2). The relevance of the asymptotic theory is supported again, since the

normalized standard deviation is more or less constant over difi‘erent values of T for

any given d. For given T, the standard deviation of the estimate does not depend

strongly on d.

Comparing results in Tables 4.1 and 4.2, we see that, in terms of the standard

deviation of the estimates, least squares in levels dominates least squares in

difl‘erences for d < .5, while the opposite is true for d > .5. The estimators have

similar variability when d is close to .5, but the difference between them increases as (1

moves away from .5 in either direction. This result is also as expected fiom the

asymptotics, based on the differing rates of convergence ofthe two estimators.

5. CONCLUDING REMARKS
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This section has considered the case of fractional cointegration, defined as the

case in which a set of variables is I( l) but the regression error is I(d), d <1. This case

is empirically relevant, and very little is previously known about the properties of

estimates of the regression. We have derived the asymptotic distribution of the

ordinary least squares estimate, under a fairly strong set of assumptions, and

performed simulations that support the relevance ofthe asymptotic theory.

We assume that similar results would hold under weaker assumptions. In

particular, it would be worthwhile to extend these results to a more general model in

which there are multiple regressors, possibly including intercept and trend, and in

which the innovations are a general short memory process rather than white noise.

The results that we have derived are similar to the results for the usual

cointegration model, in that least squares is consistent, but the asymptotic distribution

is not necessarily centered at zero, and there is no reason to think that the estimator is

efficient or that it leads to asymptotically valid inference. In the cointegration

literature, these findings for the least squares estimator were followed by a large

volume of research that established asymptotically efiicient estimators and

asymptotically valid methods of inference. The same considerations should apply to

the case of fractional cointegration, and this would appear to be a valuable firture line

of research.
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TABLE 4.1

Mean and Standard Deviation of OLS

Mean
 

d=.0 d=.1 d=.3 d=.49 d=.51 d=.7 d=.9 d=l.0
 

 

T=50 1 .0000 l .0019 .9998 .9992 1.0008 .9934 .9992 .9998

T=100 1.0000 1.0005 .9999 1.0000 .9994 1.0036 .9997 1.0037

T=250 .9999 1.0001 .9997 1.0002 1.0009 1.0022 .9970 1.0010

=500 1.0000 1.0001 1.0001 .9998 .9993 1.0013 1.0005 .9873

T=1000 1.0001 1.0001 1.0001 .9999 .9994 .9993 .9995 .9942

T=1500 1.0000 1.0000 1.0001 .9996 1.0002 .9994 .9957 .9982    

 

 

 

Standard Deviation

d=.0 d=.1 d=.3 d=.49 d=.51 d=.7 d=.9 d=l.0

T=50 .0668 .0757 .1092 .1612 .1703 .2703 .4694 .6517

T=100 .0326 .0411 .0675 .1125 .1197 .2181 .4339 .6295

T=250 .0130 .0177 .0350 .0705 .0766 .1658 .3989 .6230

T=500 .0066 .0094 .0216 .0494 .0546 .1335 .3689 .6255

T=1000 .0033 .0052 .0133 .0345 .0389 .1081 .3356 .6355

T=1500 .0022 .0036 .0098 .0282 .0319 .0972 .3298 .6341    

T“- Standard Deviation
 

d=.0 d=.l d=.3 d=.49 d=.51 d=.7 d=.9 d=1.0
 

 

T=50 3.34 2.56 1.69 1.19 1.16 .874 .694 .652

T=100 3.26 2.59 1.70 1.18 1.14 .868 .688 .630

T=250 3.25 2.55 1.67 1.18 1.15 .869 .693 .623

T=500 3.30 2.52 1.67 1.18 1.15 .861 .687 .626

T=1000 3.30 2.61 1.67 1.17 1.15 .859 .670 .636

T=1500 3.30 2.60 1.64 1.18 1.15 .872 .685 .634    
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TABLE 4.2

Mean and Standard Deviation of OLS in Differences

 

 

  
 

 

 

  
 

 

 

 

Mean

d=.l d=.3 d=.49 d=.51 d=.7 d=.9 d=1.0

T=50 1.0029 1.0072 1.0000 1.0007 1.0028 1.0004 1.0003

T=100 1.0016 1.0012 1.0012 .9987 1.0016 1.0007 1.0008

T=250 .9997 1.0003 1.0005 .9999 .9991 1.0014 .9999

T=500 .9989 .9997 .9998 1.0001 1.0006 1.0002 .9995

T=1000 .9996 .9997 1.0009 1 .0002 .9996 1 .0002 .9995

T=1500 .9995 .9999 .9997 1.0003 1.0006 1.0001 .9999

Standard Deviation

d=.l d=.3 d=.49 d=.51 d=.7 d=.9 d=1.0

=50 .1992 .1828 .1694 .1690 .1560 .1505 .1470

T=100 .1394 .1260 .1156 .1160 .1091 .1033 .1017

T=250 .0856 .0773 .0717 .0715 .0666 .0644 .0638

T=500 .0614 .0545 .0508 .0503 .0468 .0453 .0447

T=1000 .0432 .0390 .0360 .0356 .0340 .0318 .0316

T=1500 .0350 .0320 .0296 .0292 .0274 .0258 .0259

Tm- Standard Deviation

d=.l d=.3 d=.49 d=.51 d=.7 d=.9 d=1.0

T=50 1.41 1.29 1.20 1.20 1.10 1.06 1.04

T=100 1.39 1.26 1.16 1.16 1.09 1.03 1.02

T=250 1.35 1.22 1.13 1.13 1.05 1.02 1.01

T=500 1.37 1.22 1.14 1.12 1.05 1.01 1.00

T=1000 1.37 1.23 1.14 1.13 1.08 1.01 1.00

T=1500 1.36 1.24 1.15 1.13 1.06 1.00 1.00 
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APPENDIX

Proof ofLEMMA 4: Note that x. is the partial sum ofthe innovations v.. Define Zt to

t

be the partial sum ofthe u.: Zt = Zuj . For re[0, 1], define the sample version of

i=1

the processes B.(r) and Fd(r) as follows:

 

 

[ 0, r<l

x (r)—__l_x —4__1_x _t_<r<.t:].

T JT [rT] fl ta T— T

I

—XT, 1' I

NT

1
0, r<l

I I 1 1+1

ZT(T)=WZM] =1 Flt, $ST<—T-

1

—Z , r=l.

NT T

Then

[Xr(f)] [BAD]
3

Zr“) Fa“)

1 1

I xs(r)dzs(r) 2 IBi(r)dF.(r>.

o 0

Thus,

1 T 1 1 . .
{XTUWZHU = §(—JTMAX-{3:13 ut) (e.g., Phillips (1986’ 9327))
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1 T 1
= Tmszu, :s I B1(r)dFd(r).

t 0

But ill—+12%“: = #ZxHut#thut. So we need to show that

t , t t

l .

Wthut —) 0. To do so, we write

t

2

l l 2 l 2

— vu S — v — x

(T; ‘ ‘I (T; ‘IIT; ‘I

as in Cheung and Lai (1993, p106). Then %th2 —> 03,, %Zuf -> 0,2,, where the

t t

first result is standard and the second result follows from Hosking (1995). So

%thut is bounded in probability and T—rlfifzvtut —-> 0 for d >0. I

t 1

Proof ofLEMMA 5: Define xT(r) as above, and

1

UT“) = mum]-

Then

1 1

I xT(r)UT(r)dr :> I B1(r)Fds(r)dr

0 0

because ofthe joint convergence result (17). But

1 '1' t/T

ij(T)Ur(f)df = Z ij(T)UT(T)dI

0 t=l(t—1)/T



105

Hi __1__,,
MTxt Tour/2 t

1

=> I Bl(r)Fds(r)dr
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This dissertation considered the ARFIMA(p,d,q) process, which can apply to

many economic time series. The long-run characteristics of an ARFIMA(p,d,q)

process, such as stationarity, mean-reversion and persistence of autocorrelations, are

determined by the differencing parameter value (1. We consider the case that the value

ofd is in the range -l< d _<_1. Ifd = 1 such a series is a unit root process and if-l< d

<1 and d at 0 it is a fractionally integrated process or long memory process. When

d=0, it is a usual stationary short memory process.

In this dissertation we showed how the KPSS unit root test works in

distinguishing long memory processes from unit root processes. Our asymptotic

findings indicate that the KPSS unit root test is consistent against stationary long

memory alternatives with -1/2< d <1/2, but it is not consistent against nonstationary

long memory alternatives with 1/2< d <3/2. This implies that the KPSS statistic can

consistently distinguish between short memory processes, stationary long memory

processes and nonstationary processes. Dickey-Fuller type tests can consistently

distinguish a unit root from an I(d) process with -1/2< (1 <1 but not from an I(d)

process with l< d< 3/2. Further work is needed on ways to distinguish unit root

processes fi'om nonstationary (but mean-reverting) long memory processes.

The estimation of the difl‘erencing parameter d is an interesting problem, and

there are many difl‘erent estimators, such as the GPH estimator, the maximum

likelihood estimator, the CSS estimator and the MDE. The MDE does not require

distributional assumptions and is relatively simple in computation. We considered

MDES including the AMDE of Chung and Schmidt (1995) for the general ARFIMA
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model. In applying the MDES, we can estimate the model by letting short-run

dynamics follow an ARMA model, or we can estimate the pure I(d) model but omit

the first 8 low-order autocorrelations, which is a nonparametric approach. In this

nonparametric method we can expect some bias, especially when the ARMA

parameters have extreme values, due to misspecifying the short-run dynamics. We

compute the asymptotic bias that results from ignoring a fixed number (3 ) of low-

order autocorrelations in the case of simple ARFIMA(1,d,0) and ARFIMA(O,d,l)

processes. The asymptotic bias of the AMDE or the MDE is small when Z is large.

A derivation of the asymptotic properties of the MDE when E grows with T is an

important future task.

Fractional cointegration, defined as the case in which a set of variables is [(1)

but the regression error is I(d) with (1 <1, is empirically important but little is known.

We found that OLS is consistent and derived its asymptotic distribution. Its order in

probability and asymptotic distribution are afi‘ected by the value of d. The asymptotic

distribution of the OLS estimate in the case of fractional cointegration is not

necessarily centered at zero and there is no reason to think that OLS is eflicient or

that it leads to asymptotically valid inference. Finding an emcient estimate that leads

to asymptotically valid inference is another important topic for further research.
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