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ABSTRACT

ANALYSIS OF ECONOMIC TIME SERIES WITH LONG MEMORY

By

Hyung Seung Lee

This dissertation focuses on economic time series that follow a general
ARFIMA(p,d,q) process with 0< d <1, which is intermediate between short memory
(d =0) and unit root (d =1). Chapter 2 considers the unit root test proposed by
Kwiatkowski, Phillips, Schmidt and Shin (KPSS, 1992) against I(d) alternatives. We
show that the KPSS unit root test is consistent against stationary long memory
processes (d <1/2) but is not consistent against nonstationary long memory processes
(d >1/2). Therefore, the KPSS test only can distinguish short memory processes
(d=0), stationary long memory processes and nonstationary processes. Simulation
results are provided to support our asymptotic findings.

Chapter 3 considers the non-parametric estimation of the differencing
parameter in the ARFIMA(p,d,q) process using the Adjusted Minimum Distance
Estimator (AMDE) of Chung and Schmidt (1995). We compute the asymptotic bias
of the AMDE and the MDEs that occur if we ignore short-run dynamics and estimate

the (0,d,0) model. Our computational results for the ARFIMA(1,d,0) and



ARFIMA(0,d,1) models show that the asymptotic bias is larger when the short-run
dynamics are stronger and when the number of ignored low-order autocorrelations is
smaller.

Chapter 4 considers the estimation of the cointegrating coefficient in the case
of fractional cointegration. We derive the asymptotic distribution of the OLS
estimator under fairly strong assumptions and find that its order in probability is T*",
for -1/2< d <3/2 except d = 1/2. Also we derive the asymptotic distribution of OLS in
differences and find that it is not consistent unless the error and the regressor are

uncorrelated. We provide simulation results that support our asymptotic findings.
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INTRODUCTION
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Classical methods of time series analysis assume stationarity, so that the series
fluctuates around its mean level (or a trend) without changes in its autocovariance
structure over time. Stationary series are often assumed to follow an ARMA process,
which implies that the series has short memory in the sense that its autocorrelations
and impulse response weights decay at a geometric rate. Models which can deal with
time series that are more persistent than a short memory process have focused
primarily on the existence of a unit root process.

However, the classification of time series into either unit root or stationary
ARMA processes is too extreme and restrictive. Between these two types of
processes, a long memory process can be considered to cover intermediate cases
which are not well fit by either short memory or unit root models. In the data, when
the sample autocorrelations do not decay quickly for long lags and yet the low order
autocorrelations are not close to unity, we can suspect a long memory process. That
is, a long memory process displays autocorrelations that are too small at low orders
for a unit root, but too persistent at long lags for a stationary ARMA process.

There are many cases of long memory models in the physical sciences. Data
with hyperbolically decaying autocorrelations and impulse response weights were
firstly observed by Hurst (1951, 1956) and Mandelbrot and Wallis (1968) in
hydrology and climatology. In economics, many financial data, such as forward
premiums, interest rate differentials and inflation rates, have recently been found to
display long memory characteristics. Baillie (1995) provides a survey of the

application of long memory models in economics.
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There are several possible definitions of the concept of long memory. McLeod
and Hipel (1978) defined a stochastic process to be long memory if the
autocorrelation function is not summable; that is, with p; = j-th autocorrelation,

T
(1)  limp,, Z|pj\¢ finite .
=T
A more specific definition of long memory is that the process has autocorrelations that

decline hyperbolically at large lags:
(2) Yy ~Ak%, (A >0,0<a<1), as k—o.

(Here ay ~ b, means a, /by > 1 ask — «.) In (1) above, A can be a constant, or more

generally it can be a function of k that is slowly varying at infinity (i.e., A(ck)/A(k)

—1, as k - oo, for any ¢ >0). Long memory can be defined equivalently in terms of
the behavior of the spectral density as one approaches the zero frequency. A long
memory process has infinite spectral density at zero frequency, as does a unit root
process; however, unlike a unit root process, the spectral density at zero of the first
difference of a long memory process vanishes.

Rosenblatt (1956) has defined long memory based on the dependence between
two points of a process. Mandelbrot and Van Ness (1968) and Mandelbrot (1970)
formalized Hurst’s empirical findings and defined fractional Gaussian noise which is
designed to account for the long run behavior of a long memory time series. Granger
and Joyeux (1980) and Hosking (1981) proposed an alternative long memory process,

the fractionally integrated process. Geweke and Porter-Hudak (1983) proved that the
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definition of fractional Gaussian noise by Mandelbrot and Van Ness and the

fractionally integrated process are equivalent.
We will consider in detail the fractionally integrated process of Granger
(1980), Granger and Joyeux (1980) and Hosking (1981). A time series {y} is a

fractionally integrated process of order d, I(d), if

G)  (-L)ly, =e,,

where L is the lag operator, d is the differencing parameter and {€,} is a white noise
process with zero mean and finite variance cg . For any d > -1, y, is invertible (Odaki

(1993)) and (1-L)° can be expressed via the binomial expansion:

@ @-L¢= i(—l)j@ = f:n iU = F(-d,LLL),
=0

=0

where forj=0, 1,2, ...,

d) _d(d-1)y-(d-j+1)

(5A) ( -
] i

(5B) no=_L4-4d _ T k‘l_d,

TUTG+DI-d)  oqg; Kk
[o o]
[t=etat, x>0,
0
(5C) TI'(x)=gamma function = { 0
o, x=0,
M, X < 0’
L x

(5D) F(a,b;c;z) = hypergeometric function
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_ 1+£ +a(a+1)b(b+l)zz+
c-1 c(c+1)-1-2

__T) 2 C@+jro+j) ;.
F(@)r'(b) i T(c+)HI(G+1)

Therefore, the infinite AR representation is the following:

e}
(6) Yyt =2.0;yej+€,, where ¢;=-nx;.
i

y: is a stationary process for d <1/2. Its infinite MA representation can be

expressed as follows:
[o ]

(7) Yt = Zejet—j >
j=0

where

I'Gg+d)

® 9 =rGror@

=0,1,2,...

Its variance-covariance structure is as follows:

2
9 2 _0sI(1-2d)
® o r’ga-d -’
_TG+dra-4dy _ Jk—l+d i=1
(10) pJ—F(d)F(j—d+l) H ,j=1,2,3,....

Thus for -1< d <1/2, y, is a stationary and invertible fractionally integrated process.
Since 0; represents the impact of €, on y,, the cumulative impulse response (=0(1))

which is the total effect of a unit innovation can be obtained by summation of 0;:

(1) =3, =l %e I N° {0’ <0
= .= Hmy_yo = limy o ———— =
57 TR I+ e d>o



For more details, see Sowell (1990).
The AR weights, MA weights and autocorrelations all decay hyperbolically,

though at different hyperbolic rates:

1
12A ~— i
( ) T A d)J as j —o,

(12B) 9; ~—-J asj —00,
I'(d)

r(1-d) .pq- .
(12C) Pj~ir(w)12dl as j »o.

This is in contrast to the case of a stationary ARMA process, for which the
autocorrelations decrease rapidly (at an exponential rate rather than at the hyperbolic
rate for an I(d) process). Since ; is close to zero for large j as long as d <1, an I(d)
process with 1/2< d <1 is still mean-reverting, even though it is not stationary. Baillie
(1995) showed this result using the cumulative impulse response functions of the first
difference of an I(d) process. For further details see Chung (1994b).

The spectral density at zero frequency is another measure of persistence in a

time series. The spectral density of an I(d) process is: for -n< © <=,

2

c o o2 -2d
13) f(o)=—S[1-¢7 =—22sin(w /2
(13)  f(@)=2%f1-e™| " =t sin(o /2)

The spectral density at © =0 is infinite for d >0, finite for d =0, and zero for d <O0.
More specifically, because sino ~o0 as © -0, f(0) ~ (o2 /21:)(9 24 350 —> 0. Thus

0,d<0,



0, d=<-1/2,
(15)  £/(0)=4-c0, -1/2<d <0,
00, d>o0.

Therefore, the differencing parameter d is not identified by the level or derivative of
its spectral density at zero frequency (Sowell, 1992b).

An I(d) process can be extended to cover more general economic time series
models when ¢, in (3) is allowed to follow a general stationary ARMA process. A
time series {y:} is an autoregressive fractionally integrated moving average process of
order p, d, q, or ARFIMA(p,d,q), if it satisfies:

(16) (1-D)'y, =g, =HL)'OL)u, [so D(L)e, = B(L)u,];

(17)  ®(L)=1+¢,L+¢,L2 +--+¢,LP and (L) = 1+6,L +8,L%+--+8,L%;

where all the roots of ®(L) and ®(L) lie outside the unit circle, ® and ® have no
common roots, and {u,} is white noise. For -1< d <1/2 the ARFIMA(p,d,q) process is
stationary and invertible. For the general ARFIMA(p,d,q) process, Sowell (1992a)
and Chung (1994a) show how to compute the autocovariance and autocorrelation
functions. In a stationary and invertible ARFIMA(p,d,q) model the autocorrelations
decay at the same hyperbolic rate as in the corresponding I(d) process; the rate of
decay is independent of the ARMA parameters. Specifically, if p,*, k = 0, 1, ...,
represent the autocorrelations of the ARFIMA(p,d,q) process,

(18) p, ~Ck27! ask—rwo.

Here C=0 is a constant that depends on the ARMA parameters.
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Since the ARFIMA process is an I(d) process with ARMA error or an ARMA

process with an I(d) error, its spectral density function is:

-io |2
——)G(e )|2 f(o)

(19) f*(w)=
19 o ’(p(e—i@)'

e i@ )|2
= _—.2[2|1 - cos(® )|]_2d , T <O<T.
27[ (b(e—m)

At zero frequency the spectral density is similar to the expression for the I(d) case:

2 2
(20) f*(op%[%%] 0 as0 0.

The asymptotic distribution for many statistics based on data generated by an

I(d) process will be established using a functional central limit theorem involving the

fractional Brownian motion of Mandelbrot and Van Ness (1968):

1
rd+1)

1) Wy (1) = [r-9%aw(s), refo, 11,
0

where W(s) is the standard Brownian motion. To state this functional central limit

theorem, suppose that v, is an I(d) process and V., is its cumulation:

t
(22) V=2 v;.

=
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Thus (1- L)‘l v, = u, where u, is short memory. We follow Lee and Schmidt (1995)
in assuming the following (Assumption A):
(A1) vy is I(d) with |d|<1/2.
(A2) u, is iid N(0, 6%,).
This assumption is somewhat stronger than others have made, and probably stronger
than necessary; see Sowell (1990), Lo (1991) and Hosking (1984).

Define the variance of the partial sum process as in Sowell (1990):
(23) 6% = Var(Vy) = Van(iv i)
1

Then when v, follows Assumption A, Sowell (1990) shows that:

(24) 2 2 I'(1-2d) [F(1+d+T)_ r(1+d)]

Or =0y,
ra+2dr(+d)ra-d4d)| (-4 I'(-d)
and, as T—oo,

ol ) r'(1-2d)

(25) 724 % 1 2d)r(1+ (- d)

02,

Furthermore, under Assumption A and using results of Davydov(1970), Sowell (1990,

p-498) shows the following invariance principle, for re[0,1]:

V)

Ot

(26)

= Wy(1),

or, equivalently,

Virm)

= (ded(l').
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The discussion above has focused on the case of a stationary long-memory
process, and specifically on the I(d) process with |d|<1/2. However, we will be
interested primarily in positive values of d, because an I(d) process with d <0 is anti-
persistent, which is not of empirical relevance. In some cases it may be useful,
theoretically and empirically, to consider nonstationary long memory processes. A
specific type of nonstationary long memory process is the I(d) process with 1/2< d <1.
An I(d) process with 1/2< d <1 is nonstationary but still mean-reverting. This
contrasts with a stationary long memory process, which is stationary and mean-
reverting; also with a unit root process, which is nonstationary and not mean-
reverting. The discussion above applies to such series after differencing, since “y, is
I(d) with 1/2< d <1” is equivalent to “Ay, is I(d) with -1/2< d <0.”

In this dissertation we will investigate how we can distinguish among three
different kinds of processes, namely short memory, long memory and unit root
processes. This is empirically relevant because for some data one can reject both the
null hypothesis of a unit root and the null hypothesis of short memory. It is possible
that such series may follow a long memory process, and we need to test this
possibility. Also we will review estimation of the differencing parameter which
determines the main stochastic properties of a long memory process. Lastly the case
that the error in a cointegrating relationship of unit root series is I(d) will be
considered.

The plan of this dissertation is as follows. In Chapter 2 we will check whether

+he KPSS test, introduced by Kwiatkowski, Phillips, Schmidt and Shin (1992), is



11
useful in distinguishing short memory, long memory and unit root processes. We will

show that the KPSS test can not consistently distinguish a unit root from a
nonstationary long memory process, since the order in probability of the KPSS
statistic is equivalent under these two processes. However, the KPSS statistic can
distinguish consistently between short memory, stationary long memory, and either
unit root or nonstationary long memory. We provide simulation results which support
our asymptotic results and we compare our results with other results of Diebold and
Rudebusch (1991) and Hassler and Wolters (1994) for Dickey-Fuller type tests.

In Chapter 3 we will consider the problem of Minimum Distance Estimation
(MDE) of the differencing parameter of a fractionally integrated long memory
process. The simple MDE proposed by Tieslau, Schmidt and Baillie (1995), which
minimizes the difference between sample and population autocorrelations, is useful
because it does not require a distributional assumption and it is easy to compute,
which is also true in the Adjusted MDE of Chung and Schmidt (1995). Furthermore
in the general ARFIMA model it provides a way to estimate the differencing
parameter separately from the ARMA parameters which determine short-run
dynamics. However, such a non-parametric treatment of short-run dynamics will
cause asymptotic bias, and we investigate ways of decreasing the bias due to ignored
short-run dynamics. We investigate how the size of the bias is affected by the value
of d and of the ARMA parameters, the number of moment conditions used, and the
order of autocorrelations considered. Our computations show that, for certain

methods of expressing the moment conditions suggested by Chung and Schmidt
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(1995), the asymptotic bias becomes small when only high-order autocorrelations are
used or the short-run dynamics are not strong.

In Chapter 4 we consider the estimation of the cointegrating vector in the case
that the error in a cointegrating relationship is I(d) with 0< d <1, rather than in the
usual case with I(0) errors. We find that OLS in this case is still consistent and its
order in probability depends on the value of d. Specifically, for 0< d <1 OLS is
O,(T"®). For comparison we also consider OLS in differences. We find that it is not
consistent if the errors and regressors are correlated, and it converges at the usual rate
T'? for all values of de[0, 1]. We provide some simulation results that support these
asymptotic results.

Finally in Chapter 5 we summarize our results and make some suggestions for

future research.



CHAPTER 2

CONSISTENCY OF THE KPSS UNIT ROOT TEST AGAINST

FRACTIONALLY INTEGRATED ALTERNATIVES

13
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1. INTRODUCTION

Since Nelson and Plosser (1982), there has been an enormous body of
theoretical and empirical work seeking to distinguish whether economic time series
are trend stationary or have a unit root. This distinction is important for both
economic and statistical reasons. For a survey, see Diebold and Nerlove (1992).

There are two main approaches to this problem. The most traditional
approach is to test the null hypothesis of a unit root against the alternative hypothesis
of trend stationarity. For this problem, the Dickey-Fuller tests were introduced by
Dickey (1976), Fuller (1976), and Dickey and Fuller (1979). The standard Dickey-
Fuller tests are extended to allow general ARMA error processes by Said and Dickey
(1984), Phillips (1987) and Phillips and Perron (1988). Dejong, Nankervis, Savin and
Whiteman (1992) found that the standard Dickey-Fuller tests and the extensions of
Said-Dickey, Phillips-Perron, and Choi-Phillips (1991) have trouble distinguishing unit
root processes with substantial short-run dynamics from trend stationary alternatives.

Conversely, a more recent approach is to test the null hypothesis of stationarity
against the alternative of a unit root. Tests of the null of stationarity have been
suggested by Park and Choi (1988), Kwiatkowski, Phillips, Schmidt, and Shin (1992)
(hereafter, KPSS), Saikkonen and Luukkonen (1993) and Leybourne and McCabe
(1994). In this chapter we will consider the KPSS test, which is a test of the null
hypothesis of stationarity around a deterministic trend, and which controls for short-
run dynamics using a non-parametric correction similar to those used by Phillips and

Perron (1988) or Schmidt and Phillips (1992). Since many simulation results show



15
that the traditional Dickey-Fuller tests are not reliable in the presence of MA errors

whose coefficient is not close to zero [for details see Agiakloglou and Newbold
(1992), Schwert (1989), Pantula (1991)], Saikkonen and Luukkonen (1993) and
Leybourne and McCabe (1994) suggest tests of the stationary null hypothesis that are
similar to KPSS, but which differ from KPSS in the way they deal with
autocorrelation under the null hypothesis.

The asymptotic analysis of the Dickey-Fuller type unit root tests, including
those extended versions which allow error autocorrelation, shows that those tests are
consistent against stationary alternatives. Also, the KPSS stationarity test is
consistent against unit root alternatives. Although the KPSS test was originally
intended as a test of the null of stationarity against the unit root alternative, it can also
be used as a test of the unit root null against the alternative of stationarity. This has
been suggested by Shin and Schmidt (1992) and Stock (1990). Shin and Schmidt
(1992) show that the KPSS unit root test is consistent against the alternative
hypothesis of stationarity.

A common empirical puzzle is what to conclude when one rejects both the null
of a unit root (e.g., using the Dickey-Fuller tests) and the null of stationarity (e.g.,
using the KPSS test). To understand this outcome, suppose that z, (t = 1, 2, ...) is the

series in question and that Z, is its cumulation (partial sum), i.e.,

t
Z‘ = ZZJ
J=1
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Then we follow Lee and Schmidt (1995) in saying that z, is a short memory process if

it satisfies the following two requirements (Assumption B):
(B1) 6= limy_,, T'IE(Z%) exists and is non-zero.
(B2) Vre [0,1], TV?Zr; = oW(r).

Here [rT] denotes the integer part of rT, = denotes weak convergence, and W(r) is
the standard Wiener process (Brownian motion). The concept of short memory is
important because the asymptotic analysis of the KPSS test actually assumes that
under the null the series is short memory, and the asymptotic analysis of unit root
tests actually assumes that under the null the first difference of the series is short
memory. Thus we can rationalize rejections of both null hypotheses by postulating
series that are not short memory either in levels or in first differences.

These arguments lead to the consideration of long memory processes that are
more persistent than a short memory process, but less persistent than a unit root
process. Accordingly, they are not short memory either in levels or in first
differences. The consideration of such long memory time series has mostly taken
place in the physical sciences. They have been applied extensively in hydrology
(Hurst, 1951, 1956) and have also been used to model data on temperatures and
growth of tree rings (Seater, 1993). The Beveridge wheat price index from 1500
through 1869 (Beveridge, 1921) and U.S. monthly consumer price index inflation
rates are examples of economic data that exhibit typical long memory features. There

are also studies of long memory in a spatial context; e.g., Whittle (1956) and Beran
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(1992). A good survey of long memory from the point of view of economics and
econometrics is given by Baillie (1995).

We will use the fractionally integrated process defined by Granger (1980),
Granger and Joyeux (1980) and Hosking (1981), and considered by Lee and Schmidt

(1995), which is introduced in Chapter 1:

(1) (I‘L)d)'t =&y
where L is the lag operator, d is the differencing parameter and {¢,} is a short memory
process with zero mean and finite variance o.’.

There has been some recent research on tests related to the fractionally
integrated long memory process. Lo (1991) finds that his “rescaled range” test, for
which the null hypothesis is short memory, is consistent against I(d) processes with
de(-1/2, 1/2). Cheung (1993) investigated the finite sample performance of the GPH
test, the modified rescaled range test and two LM type tests of the null of short
memory against the alternative of fractional integration. Lee and Schmidt (1995)
show that the KPSS “stationarity” test is actually a test of the null hypothesis of short
memory, and that it is consistent against stationary long memory alternatives (I(d) for
-1/2< d <1/2 and d#0). They also provide simulation results on the power of the
KPSS test. They found the power of the KPSS short memory test in finite samples to
be comparable to that of Lo’s rescaled range test. Their results suggest that the
KPSS test can be used to distinguish a short memory and stationary long memory

processes but a rather large sample size is required to do so reliably.
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There are several studies on the power of unit root tests against fractionally
integrated alternatives. Diebold and Rudebusch (1991) give Monte Carlo evidence of
the low power of the Dickey-Fuller test against fractionally integrated alternatives
with d >1/2; that is, nonstationary long memory alternatives. Sowell (1990) derives
the asymptotic distribution of the Dickey-Fuller tests under the hypothesis of an I(d)
process with 1/2< d <3/2 and shows the consistency of these tests against
nonstationary long memory alternatives. Hassler and Wolters (1994) show that the
Dickey-Fuller type tests, including the Said-Dickey and Phillips-Perron extensions,
have low power in finite samples against I(d) alternatives with 0< d <1, and especially
that the augmented Dickey-Fuller test works poorly.

The purpose of this chapter is to investigate whether the KPSS test is useful in
distinguishing short memory, long memory and unit root processes. Specifically, we
want to ask whether the KPSS test can distinguish the following four types of
processes: (i) short memory (d =0); (ii) stationary long memory (|d| <1/2, d#0); (iii)
nonstationary long memory (1/2< d <1); and (iv) unit root (d =1). Asymptotics for
the KPSS statistic are previously known for cases (i), (ii) and (iv), but not for (iii).
Therefore we need to derive the asymptotic distribution of the KPSS statistic when
1/2<d <1.

In the following it will be shown that the asymptotic distribution of the KPSS
statistic in the case of a nonstationary long memory process (1/2< d <1) is different
from the other cases, but its order in probability is the same as in the case of a unit

root. Therefore, the KPSS unit root test is inconsistent against nonstationary long
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memory alternatives. More generally, the KPSS test can not consistently distinguish a

unit root from a nonstationary long memory process. Using the KPSS statistic we can
only distinguish consistently between the following three cases: (i) short memory; (ii)
stationary long memory; and (iii) either nonstationary long memory or unit root.

Some Monte Carlo evidence on finite sample power is also provided. It is

generally in agreement with the asymptotic results.

2. THEORETICAL RESULTS
A. The KPSS Test Under Short Memory and Unit Root
We consider the data generating process:
(2) ye=¢+&+e,t=12 .. T,
where {y.} is the observed series and {g,} is the deviation from deterministic linear
trend. Let e, be the residuals from a regression of y, on intercept and trend (t), and let

S: be the partial sum of the e;:
t
S= Zel .
Fl

Let o be the long-run variance of the €, as in (B1) above and let s2(¢) be the

Newey-West estimator of 6°:

(3) sz(é’)=lie2 +£iw(s 0 ie e
T t > t¥t-s -

t=1 T 1 t=s+1
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Here w(s, ¢) = l-é_j-—l’ and ¢ is chosen so that ¢ >oo but ¢//T—>0 as T—>c. We will
later also consider the case that ¢=0, in which case the second term on the right hand

T
side of (3) is set to zero and s2(0) = %Zef .
t=1

The KPSS statistic is then defined as:

T
T2Y 8}
4) () =———.
' s(#)
The KPSS statistic 7 u(€) is defined similarly except that we set £=0 in (2), which
implies use of the residuals e, =y, -y in defining S, and s?(¢).

Under the hypothesis that €, is a short-memory process, KPSS show that

T 1
T2Y 87 = [V,(0)dr,
t=1 0

where Vy(r) is a second-level Brownian bridge, as defined by KPSS, equation (16).

Also s2(£’) is a consistent estimator of 6>. Therefore,

()= [ Vo ()P dr.
Similar statements hold for 7 w(£), with Vy(r) replaced by the standard Brownian
bridge, Vi(r)=W(r)-tW(1). For the purpose of the present chapter, the important
result is that 0. (¢) and 1, (¢) are Oy(1) when &, is short memory.
Next consider the case that € is a unit root process, in the sense that Ag, is

short-memory. In this case KPSS show that
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T 1(a 2
(5) T*Ys? :ozj[jw‘(s)ds] da,
t=1 [T A

where W*(s) is a demeaned and detrended Wiener process, as defined in Park and

Phillips (1988, p.474), and o” is the long run variance of Ag,. Furthermore,

2 1

s“(£) 2 (aar®y 2
(6) W =0 {W (S) ds.
This implies that

M (4T () =22

J‘ W' (s)2ds
0

i Uw‘(s)ds] 2da

Therefore M, (¢) is O, (T/¢) when g, is a unit root process. If we set £=0 in (2), then
1 u(€) is also O, (T/ ¢): in fact, we have the same result as in (7) except that W*(s) is

replaced by the demeaned Brownian motion, W(s):
1
W(s) = W(s)- [W(r)dr.
0

The KPSS unit root test suggested by Shin and Schmidt (1992) sets ¢=0,
since the distribution in (7) is independent of the nuisance parameter o” for all values

of ¢, including ¢ =0, under the unit root hypothesis. Then T"'1,(0) has the same
distribution as on the right hand side of (7) above, and 7,(0) is O,(T) under the

hypothesis that €, is a unit root process.
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These results are easy to summarize. (1) When ¢=0, 1,(0) and ﬁ“(O) are

Oy(1) if & is short memory and Oy(T) if €, has a unit root. (2) If £— o but ¢/T—> 0
as T, N (¢) and 7, (¢) are Oy(1) if €, is short memory and O,(T/¢) if € has a

unit root. Thus, in either case, the KPSS statistic distinguishes consistently (correctly

with probability one as T—>) between short memory and unit root processes.

B. Asymptotics and Consistency of the KPSS Unit Root Test Under I(d)

First we will show the consistency of the lower tail KPSS unit root test against
the stationary long memory alternative hypothesis (-1/2< d <1/2). Thus we suppose
that (1- L)dt»:t =u,, with -1/2< d <1/2, and with Assumption B satisfied. Under
these assumptions, Lee and Schmidt (1995) derive the asymptotic distribution of the
KPSS statistics. In the level stationary case (e, = y; -y ), from their Lemma 1,

Theorem 1 and Theorem 3:

T 1
(8A) T DS S = 0] [By(r)2dr, where By(r) = W,(r) - 1tW,(1);

t=1 0

I'(1-2d)
8B sz(O —p>02=Var(s )=02—— (£=0);
( ) ) € t u {1"(l—d)}2 )
s*(9) 2

(8C) eT—L)md (£ —>c0 but ¢/T—>0 as T—Hw).

Therefore, the asymptotic distributions of the KPSS statistics in the level stationary

case, when g, is I(d) with -1/2< d <1/2, are as follows:
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21
(9A) TM —u(0)= —;‘IB (r)’dr (£=0)
Ce 0
(9B) (= )2"‘ (e):de(r)zdr (> o but £/T—>0asT— o).

Furthermore, 7. has the same orders in probability as 7,, and its asymptotic

distribution is exactly the same as in (9) except that B,(r) should be replaced by

V,(r), defined as:
(10) V,(r) = W, (1) +(2r - 3r*)W, (1) + (=61 + 61> )j[Wd(s)ds.

Thus the KPSS statistics 7, and 7, are Oy(T*) for ¢ = 0 and Oy( (T/£)*) for
¢ — o under the stationary long memory alternative, while they are respectively
O,(T) and O,( T/¢) under the null hypothesis of a unit root.

This implies the following result.
THEOREM 1:
Suppose that g, is I(d) with de(-1/2, 1/2) and Assumption B is satisfied. Then

—]‘:ﬁp(O)—'Ho, %ﬁ,«»—"»o (£=0)

l . ¢ .
¥nu(£’)—>0 ¥n1(€)——)0 (£ > obut 4/T —> 0 as THw).

Proof: The KPSS test statistics (I/T)n, and (¢/T)7, (also, (1/T)1, and (¢/T)7,)

are each OP(T“") and O,((T/¢)**"), and 2d is less than 1 because |d|<1/2. u
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Theorem 1 implies that the lower tail KPSS unit root test is consistent against
the stationary long memory alternative hypothesis. However, as d approaches 1/2, the
order in probability of the KPSS statistic under the I(d) alternative approaches the
same order in probability as under the unit root null hypothesis. This suggests that
when d is close to 1/2 the power of KPSS unit root test would be small. There is also
an issue of the continuity of the power of the KPSS test against I(d) alternatives as d
—>1/2.

We now turn to the main theoretical contribution of this chapter, which is the
derivation of the asymptotic distribution of the KPSS statistics when €, is a
nonstationary long memory process. Thus we wish to consider the case that ¢, is I(d)
with 1/2< d <3/2.

Define d* =d-1, so that Ag, is I(d*) with | a*| <1/2; that is, Ag, is a stationary
long memory process. We assume that Assumption A in Chapter 1 holds with v, =
Ag,. Then g, is the cumulation of the stationary I(d*) variables Ag,, and we have the
invariance principle:

enT
(11) ﬁ = u)d-:Wd.(r).

Note that this is really the same invariance principle as equation (27) in Chapter 1,
with d* replacing d because 1/2< d <3/2 and |d*| <1/2.

We will first consider the 7 u test. Thus we consider e, =y, -y=¢, —€ and

t
S = Ze j- Then we can derive the following results.
j=1
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Proof:
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LEMMA 1:
Suppose (1- L)‘l g, = u, for 1/2<d <3/2, d*=d-1, and Ag, satisfies Assumption

A in Chapter 1. Then

1 [+T] r
(l) Ty Zst = md‘IWd.(a)da 5
T t=1 0

L] f '
(i) g Spar) = O | Wys(a)da, where Wyx(a) = Wgs(a) - [ Wgs(b)db ;
0 0

2
I i
(ili) —5gog .St :mﬁ.j[jwd.(a)da] dr.
T olo

See Appendix. [

THEOREM 2:

Under the same assumptions as in LEMMA 1,
1 1
(i) When ¢= 0, then Ws2(0) = 031 [Wge(a)*da
0
(ii)) When ¢ —>o0 and ¢/T—0 as T—o, then
2 1
s°(6) 2 2
W—:md.{j\_vg(a) da;.
0

See Appendix. [ ]

Then we can prove the following theorem.
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THEOREM 3:

Under the same assumptions as in LEMMA 1,

f {f Ma)da}zdr

1.

olo _
¥n“(0)=> N (for ¢=0)
[ War ()’ da
0
1r 2
e | &(a)da} dr
?ﬁ“(f) =9 ol (when ¢ > and ¢/T—0 as T>w)
{I Ma)zda}
0
(2d*H) o 2 Q) o2
T S T S
Proof: Since lﬁ (0)= g : and ﬁﬁ (0= 'z;; : the
' T* T (24D g2 () T ¥ T2 )

asymptotic distribution of the numerator is given by part (iii) of LEMMA 1 and that of

each denominator is given by part (i) and (ii) of THEOREM 2. .

The analysis of 7, is very similar. We just need the generalization of LEMMA

1 for the case of the residuals from OLS of y; on constant and t,t=1,2, ..., T.
LEMMA 3: Let e, be the residuals from an OLS regression of y, on (1, t),

t=1,2,.., T. Then, under the same assumptions as in LEMMA 1,

r
T_(d*+3/2)sl rT] = md,ng.(a)da s
0
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1 1
where Wgx(a) = Wys(a) + (62 — 4) [ Wys (b)db + (~12a + 6) [ bWgs (b)db
0 0

Proof: See Appendix. [ ]

Given LEMMA 3, it is easy to establish the same asymptotic results for the

KPSS 7, statistic under the nonstationary long memory process as are given for ﬁp

in THEOREM 2 and 3. All that is necessary is to replace the demeaned fractional

Brownian motion, Wys(a), with the demeaned and detrended fractional Brownian

motion, Wy.(a), in THEOREM 2 and 3.

Those theorems have several interesting implications. First, even though the
KPSS unit root test is consistent against stationary long memory alternatives, 1(d) for
-1/2< d <1/2, the KPSS unit root test is not consistent against nonstationary long
memory alternatives, I(d) for 1/2< d <3/2, because the KPSS statistics have the same
orders in probability under both the null and alternative hypothesis. This is the main
theoretical result of this chapter. Second, Lee and Schmidt (1995) show that the
KPSS short memory test is consistent against a stationary long memory process (-1/2
< d <1/2), and here we can now see that it is also consistent against a nonstationary
long memory process (1/2< d <3/2). Below we will show higher power in finite
samples against nonstationary long memory alternatives than against stationary long
memory alternatives, as we should expect. Third, under the hypothesis of a non-
stationary long memory process, the orders in probability of the KPSS statistics are

independent of the value of d, even although the form of their asymptotic distributions
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are affected by the value of d. This is in contrast to the case of a stationary long
memory process, where both the order in probability and the form of the asymptotic
distribution depends on d. Also by way of contrast, the order in probability of the
Dickey-Fuller statistics depends on d for d <1 but not for 1< d <3/2; see Sowell

(1990).

3. SIMULATION RESULTS

In this section we provide simulation evidence on the power of the KPSS
stationarity (short memory) and unit root tests. The computations are done in
FORTRAN using the normal random number generator GASDEV/RAN3 of Press,
Flannery, Teukolsky and Vetterling (1989), as in Lee and Schmidt (1995). The data
on an I(d) process for d <1/2 are generated using the Levinson algorithm [Levinson
(1947), Durbin (1960), Whittle (1963), Brockwell and Davis (1991)]. For a
nonstationary long memory process (1/2< d <3/2) the data are generated by
cumulating I(d*) random variates, where d* =d-1. Given the I(d) process &,, data on
the observable series y, are generated according to equation (2) with ¢ = £ = 0. The
value of ¢ and £ do not matter for the power of any of the tests that we consider,

except that the 7, test requires & = 0.

We have considered only positive values of d because we are primarily
interested in testing unit roots against nonstationary long memory processes. The lag
truncation parameters are chosen as ¢0= 0, ¢4= integer [4(T/100)"*], and ¢12=

integer [12(T/100)"*] as in Schwert (1989), KPSS (1992) and Lee and Schmidt
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(1995). We consider sample sizes 50, 150, 250, 500 and 1000, and the number of

iterations is 10000. All of our tests are based on the 5% significance level.

Table 2.1 gives the powers of the 5% upper tail KPSS short memory tests against
the alternatives d =0.0, .1, .2, ..., .9, 1.0, and also d =.45 and .499. These are similar
to the values considered by Lee and Schmidt (1995), except that we add some cases
with d >1. Where they overlap, our results are very similar to those of Lee and
Schmidt. There are no surprise in these results, so we will not discuss them in detail.
Power increases with T for fixed d or with d for fixed T.

Table 2.2-1 gives the power of the lower-tail KPSS unit root test against 1(d) for
0< d <1/2, and Table 2.3-1 does the same for the two-tailed KPSS unit root test.
Basically these results are as we would expect from our asymptotics and from the
previous limited simulations of Shin and Schmidt (1992). (i) The lower tail tests are
more powerful than the corresponding two-tailed tests. (ii) For a given d, power
increases with T. This reflects the consistency of the tests against stationary long
memory alternatives. (iii)) Power is largest when /= 0 and smallest when ¢= ¢12.
(There are a few exceptions, for small values of T, due to large size distortions.)
Again, this is consistent with the relevant asymptotics, which indicate that power
depends on ¢/T, even asymptotically, for d <1/2. (iv) Power is larger when d is

farther from unity. (v) The power of ﬁu and 7, are similar.

Table 2.2-2 gives the power of the lower tail KPSS unit root test against I(d)
processes with 1/2< d <3/2, while Table 2.3-2 does the same for the two tailed test.

The most important result is that, with d fixed, power does not approach one as T
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increases. This is a reflection of our theoretical result that the KPSS unit root test is
not consistent against nonstationary long memory processes. For example, for d =.7
and ¢ = 0, and for the one-tailed test, power grows from .169 with T = 50 to only
.256 with T = 1000, and would not be expected to approach one even for arbitrarily
large values of T.

Some other results in Tables 2.2-2 and 2.3-2 are as follows. (i) For the lower tail
test, power is always lower when ¢ is larger, and is very small for ¢12 for T < 250.
This is due to the large size distortion of the test (too few rejections) for T < 250.

For example, the size of the lower tail test based on 1 . (£12) is zero for T = 50, and

still only .026 for T = 250. However, for the two tail test, power first decreases as
the number of lags grows (¢4 ), and then increases with more lags (£12). Again, this

is due to large size distortions in the two tail test. (ii) The lower tail 0, and 7, tests

have similar powers against I(d) for any d in the range (1/2, 3/2). However, the two
tail tests have similar powers only against I(d) with d <1. If d is greater than 1 there

is a distinct difference in the powers of two statistics. The ﬁp test is generally more

powerful. (iii) For a given sample size and number of lags, power increases

monotonically with |1 - d] for both the lower and two tail tests for d <1, and the lower

tail test has little power against d >1. The power of two tail test is asymmetric around
d =1, as in Diebold and Rudebusch (1991) and Lee (1994).

Lastly, our results can be compared with the previous results of other authors
for Dickey-Fuller type unit root tests against I(d) alternatives. These comparisons are

given in Table 2.4. Diebold and Rudebusch (1991) show that Dickey-Fuller test is not
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very powerful against I(d) alternatives for d >0.6. This is despite the fact that Sowell

has proved that the test is consistent against such alternatives. Lee (1994) gives the
power of Dickey-Fuller tests against I(d), and finds it to be small for d >1/2;
essentially, his results are the same as those of Diebold and Rudebusch. He also
found a discontinuity of the power function of the simple (no constants and no trends)
Dickey-Fuller tests at d =1/2. Hassler and Wolters (1994) show that the Phillips-
Perron and Dickey-Fuller tests have similar power against I(d) processes but the
augmented Dickey-Fuller test is not powerful; they argue that it is inconsistent. Our
results are not directly comparable with the others because our data is demeaned
while the others’ are not. However, two statements seem correct. First, the KPSS
unit root test has lower power than Dickey-Fuller tests (except the augmented
Dickey-Fuller tests) against nonstationary long memory processes. Second, the
unsurprising implication of all of these results is that it is very difficult to distinguish
between a unit root and nonstationary long memory. This is unfortunate, because
these two types of series differ in fundamental ways, notably their degree of mean

reversion.

4. CONCLUSION

In this chapter we have asked whether the KPSS unit root test can be used to
distinguish long memory processes from unit root processes. We have shown that the
KPSS unit root test is consistent against stationary long memory alternatives, namely

I(d) processes for de(-1/2, 1/2); but it is not consistent against nonstationary long
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memory alternatives, I(d) for de(1/2, 3/2). This implies that the KPSS statistic can

not distinguish nonstationary long memory processes from unit root processes, even
though it can consistently distinguish between short memory processes, stationary
long memory processes, and nonstationary processes. Also, we have provided the
simulation results on power in finite samples. These support the relevance of our
asymptotic results.

Dickey-Fuller tests can consistently distinguish a unit root from an I(d) process
with 1/2< d <1, but not from an I(d) process with 1< d <3/2; see Sowell (1990). Thus
distinguishing a unit root from nonstationary long memory is a difficult and not

completely solved problem that is worthy of further attention.



33

TABLE 2.1

Power of KPSS Short Memory Test against 1(d), d€[0.0, 1.5)

n, Test

N, Test

50

100

150 250

500 1000

50

100

150 250

500 1000

d=0.0
£0
44
£12

£0
/4
£12

€0
¢4
02

20
¢4
02

£0
44
£12
d=.45
£0
44
£12
d=.49
£0
44
212
d=.499
£0
44
212
=5
£0
/4
£12

.044
.036
.012

124
.072
.020

.240
123
.032

.387
.193
.047

.543
.278
.072

.613
320
.088

.664
357
.101

.659
352
.095

.667
.356
.101

.053
.047
.033

.165
.100
.055

.356
.182
.093

.542
.281
.139

.707
.384
.198

.773
431
224

.833
.466
.245

.826
.479
.250

.837
476
.254

.050
.046
.039

.195
119
.075

.402
221
121

.631
351
.193

.801
.468
255

.858
531
.297

.893
572
324

.902
.589
336

901
.588
.333

.046
.044
041

.216
131
.085

.485
.265
.158

.730
413
251

.884
.549
329

.930
.621
381

951
.669
419

.959
.663
416

.960
.680
433

.052
.051
.049

.262
.169
117

.592
.348
211

.845
555
.343

.958
.714
.455

.981
175
515

.989
.821
.556

.990
.819
.559

991
.826
.570

.053
.051
.048

323
.195
141

.693
418
.282

.928
.636
.425

.990
.797
.576

.997
.850
.645

.999
.887
.680

.999
.850
.697

.999
.898
.696

.051
.041
.044

.140
.071
.049

267
121
.060

418
.168
.064

574
.235
.072

.639
.259
.077

.687
.293
.078

.700
.289
.083

.704
.306
.088

.052
.045
.034

185
.098
.055

.380
.166
.086

.608
.267
115

775
.362
.154

.837
417
.168

.880
.467
.192

.885
.470
.192

.888
465
187

.052
.048
.040

215
122
.071

461
.224
113

714
361
.159

.870
.490
.219

921
.559
257

.944
.5399
.267

.949
.606
275

951
.616
.278

.053
.053
.044

.265
.145
.092

577
.280
.149

829
444
226

941
.600
316

972
.661
352

.986
717
.389

.988
721
.388

.984
721
.392

.052
.050
.048

331
.196
121

722
.407
.218

.932
.625
.345

991
.794
.476

.051
.050
.050

.409
.226
152

.839
.488
295

.983
735
.473

.999
.877
.626

.997 1.000
.848 919
.536 .685

.999 1.000
.886 .945
578 .737

.999 1.000
.893 .947
597 .742

.999 1.000
.891
.593 .748

951
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TABLE 2.1, CONTINUED

n, Test

N, Test

50

100 150 250 500 1000

50

100 150 250 500 1000

d=.51
£0
/4
£12

€0
¢4
02

40

¢4

£12

=8

£0

¢4

012

=.9

£0

44

£12
d=.95

£0

{4

£12
d=.99

£0

¢4

212
d=1.0

£0

44

£12
d=1.1

£0

44

£12

.688
.370
.103

.778
437
134

.848
.507
171

.905
.586
229

.935
.652
.286

.946
.676
310

.960
.701
341

.959
712
.346

975
.759
421

.845
.493
.268

.908
.560
315

.952
.643
384

978
714
455

.990
776
523

.992
.800
.548

.994
.823
574

.994
.821
.583

910
.602
.343

.962
.690
.439

.992
.833
.579

.999
.905
.713

961
.689
414

.987
M
.509

.999 1.000
.900 .951
.661 .791

981
.766
491

.997 1.000 1.000
.835 .946 .975
.583 .737 .855

.992
.823
.553

.999 1.000 1.000
.891 .967 .991
.644 .806 .907

.996 1.000 1.000 1.000
.865 .928 .984 .995
.609 .713 .861 .938

.998 1.000 1.000 1.000
.892 942 990 .997
.636 .739 .884 .951

.999 1.000 1.000 1.000
906 .948 .991 .998
.666 .751 .892 .962

.999 1.000 1.000 1.000
913 .954 992 .998
.669 .766 .898 .960

.997 1.000 1.000 1.000 1.000
.871
.648 .732 .808 .933 .974

934 967 .995 .999

711
315
.086

.807
.379
791

.872
.450
121

.924
S11
131

953
574
.150

967
.606
.169

971
.623
173

973
.628
177

.987
.685
.205

.901
.483
.196

951
.556
.101

.976
.645
.283

.992
714
335

.954
.617
.282

.990
.723
410

.999 1.000
.898 .953
.604 752

.983
.709
234

.998 1.000 1.000
.812 949 .984
340 .484 .681

.995 1.000 1.000 1.000
.792 882 978 .994
392 564 .776 .897

.999 1.000 1.000 1.000
.849 .928 .990 .998
461 .636 .825 .936

.997 1.000 1.000 1.000 1.000
771
365 .514 .692 .876 .963

.892 950 .995 1.000

.998 1.000 1.000 1.000 1.000
.810 .908 .961
.400 .545 .717 .896 .972

.998 1.000

.999 1.000 1.000 1.000 1.000
.814 922 .969 .998 1.000
414 .561

732 905 .975

.999 1.000 1.000 1.000 1.000
.824 925 .970 .998 1.000
421

570 .746 911 .977

.999 1.000 1.000 1.000 1.000
.859 .946 .982 .999 1.000
451

.616 .783 .933 .985
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TABLE 2.1, CONTINUED

n, Test

N, Test

50 100 150 250 500 1000

50 100 150 250 500 1000

d=1.2
£0
44
£12
d=1.3
£0
/4
£12
d=1.4
£0
/4
212
d=1.45
£0
44
£12
d=1.499
£0
44
£12

.985
.810
.504

.999 1.000 1.000 1.000 1.000
.903 .960 .982 .999 1.000
.706 .784 .854 .952 .985

.991
.851
.598

1.000 1.000 1.000 1.000 1.000
932 .970 .988 .999 1.000
771 .828 .891 .967 .991

.995 1.000 1.000 1.000 1.000 1.000
902 .958 .983 .994 1.000 1.000
719 .846 .887 .931 .982 .995

.997 1.000 1.000 1.000 1.000 1.000
933 .972 .991 .995 1.000 1.000
.805 .887 .925 .954 .989 .997

1.000 1.000 1.000 1.000 1.000 1.000

.997 .999 1.000 1.000 1.000
988 .991 .993 .998 1.000

991
975

.991 1.000 1.000 1.000 1.000 1.000
.685
.205 .451

.859 .946 .982 .999 1.000
.616 .783 .933 .985

.996 1.000 1.000 1.000 1.000 1.000
.768 917 .971
.265 .561

.992 1.000 1.000
.707 .856 .968 .995

.996 1.000 1.000 1.000 1.000 1.000
.809 .939 .983 .995 1.000 1.000
304 598 .744 .881

.979 .997

.998 1.000 1.000 1.000 1.000 1.000
.809 .939 .983 .995 1.000 1.000
304 .598 .744 .88l

979 .997

.999 1.000 1.000 1.000 1.000 1.000
.834 948 .986 .996 1.000 1.000
353 .629 .774 .903 .984 .999




36

TABLE 2.2-1

Power of KPSS Lower Tail Unit Root Test against 1(d), d<[0.0, 1/2)

n, Test

n, Test

50

100

150 250 500 1000

50

100

150 250 500 1000

d=0.0
£0
¢4
212

£0
44
£12

€0
4
012

£0
£4
£12
=4
£0
44
£12
d=.45
£0
44
212
d=.49
£0
44
£12
d=.499
£0
¢4
£12

.964
.623
.000

.890
514
.000

.780
425
.000

.640
338
.000

.486
.260
.000

412
.226
.000

.361
.201
.000

365
.205
.000

.976
.695
114

.896
.553
.087

751
.449
.071

.579
351
.051

.502
.304
.045

435
.269
.041

424
.266
.037

.996 1.
.799
.156

000 1.000 1.000 1.000

915
.395

.993
.816
.305

.945
.694
234

.804
.558
.176

.637
435
127

.537
372
111

.474
.334
.102

451
319
.095

977
.761
.390

.867
.615
.294

.694
478
.223

.587
.404
.182

.498
.358
.162

.503
.362
.161

.851

975
.735

997
.897
.602

.934
.748
.459

.7157
591
.346

.647
.509
.298

.554
.448
.260

.548
.443
.256

.964 .998 1.000
.617

.954

.999 1.000 1.000
.886
.504

.989
.865

1.000
.929
725

.963
.798
.585

.806
.622
432

.690
525
.362

.608
477
328

.570
.452
312

.969
.286
.000

.903
222
.000

.790
.170
.000

.656
124
.000

.499
.091
.000

435
.083
.000

.380
.073
.000

374
.069
.000

.708
.000

.990
.585
.000

.942
.467
.000

.831
344
.000

.666
.261
.000

572
223
.000

.488
191
.000

478
182
.000

.010

977
.682
.010

.890
.537
.006

.730
.406
.005

.617
.343
.004

551
.307
.004

.533
297
.004

.944
.630
.119

.798
477
.085

.693
414
.070

.608
355
.057

.589
351
.052

.942
514

.082
.824
.386

.877
.658
.263

177
.569
225

.680
.502
191

.661
.481
.186

.999 1.000 1.000 1.000 1.000
.910 .969 1.000 1.000
.013 .333 .815 .964

.999 1.000 1.000 1.000
.808 .898 .990 .997
.248 .667 .878

.996 1.000 1.000
.784
173

.975
.744

.996
.877
.574

.922
714
419

.832
.618
355

.738
537
.299

.719
.532
.297
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TABLE 2.2-2

Power of KPSS Lower Tail Unit Root Test against I(d), de[1/2, 3/2)

n, Test

n. Test

50

100

150

250

500

1000

50

100

150

250

500

1000

£12
d=.51

£12

£12

£12

£12
d=.95

20

¢4

£12
d=.99

€0

44

012
d=1.0

20

¢4

£12

358
197
.000

.338
.189
.000

.243
.147
.000

.169
112
.000

.108
.080
.000

.072
.059
.000

.063
.053
.000

.048
.043
.000

.048
.042
.000

.426
.259
.037

397
.248
.035

295
.195
.027

.190
139
.021

119
.099
.012

.074
.070
.009

.059
.059
.008

.050
.051
.006

.049
.049
.006

.450
327
.097

.433
310
.090

.298
.230
.063

.193
.166
.048

126
124
.037

.082
.088
.025

.061
.069
.021

.049
.059
.017

.045
.056
.016

.485
.346
155

.465
.336
155

322
252
113

.207
.183
.084

125
125
.054

.075
.083
.037

.059
.068
.030

.050
.060
.028

.044
.055
.026

.535
.430
252

515
420
.243

.347
.309
.180

213
212
121

129
.145
.082

.078
.093
.055

.058
.072
.042

.049
.066
.038

.045
.061
.036

.576
454
310

.549
434
.293

.364
315
214

.223
213
.148

127
134
.096

.078
.091
.064

.059
.071
.051

.045
.055
.040

.048
.059
.042

.360
.073
.000

.350
.068
.000

250
.046
.000

.169
.035
.000

.107
.026
.000

.068
.018
.000

.049
.013
.000

.043
.013
.000

.042
.011
.000

.499
.186
.000

.456
173
.000

328
.130
.000

.209
.094
.000

122
.062
.000

.073
.041
.000

.056
.034
.000

.044
.028
.000

.040
.026
.000

.528
291
.004

510
.286
.004

351
.209
.003

212
.138
.002

130
.100
.001

.076
.066
.001

.058
.055
.000

.044
.045
.001

.042
.043
.000

.590
.347
.057

.566
339
.054

.379
.242
.038

.226
.160
.021

130
.104
.015

.075
.072
.010

.060
.060
.007

.046
.049
.006

.044
.047
.007

.647
481
.182

.634
.469
.180

430
344
125

.240
.220
.076

144
151
.052

.078
.095
.035

.055
.073
.025

.048
.067
.025

.041
.057
.019

.714
523
.290

.687
.509
.283

.456
359
195

.256
228
125

.150
151
.081

.077
.092
.047

.057
.072
.037

.049
.062
.033

.044
.056
.030
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TABLE 2.2-2, CONTINUED

n, Test

n, Test

50

100

150

250

500

1000

50

100

150

250

500 1000

d=1.1
£0
44
£12
d=1.2
£0
/4
£12
d=1.3
£0
¢4
£12
d=1.4
£0
44
212
d4=1.45
£0
44
£12
d=1.499
£0
44
£12

.030
.029
.000

.019
.021
.000

.011
.013
.000

.006
.007
.005

.004
.006
.000

.000
.001
.000

.028
.032
.005

.017
.022
.003

.008
.012
.001

.005
.007
.001

.004
.005
.001

.000
.000
.000

.029
.038
.010

.017
.025
.006

.012
.019
.006

.006
.009
.002

.003
.005
.001

.001
.001
.000

.030
.037
.017

.015
.021
.010

.010
.015
.007

.004
.008
.003

.003
.006
.002

.000
.001
.000

.028
.039
.023

.015
.024
.014

.010
.016
.009

.005
.009
.004

.003
.005
.003

.000
.000
.000

.029
.040
.028

017
.023
.017

.010
.013
.010

.005
.008
.005

.003
.005
.003

.000
.001
.000

.022
.006
.000

.014
.005
.000

.008
.004
.000

.006
.003
.000

.004
.002
.000

.003
.002
.000

.026
.020
.000

.015
.013
.000

.009
.009
.000

.004
.005
.000

.003
.004
.000

.003
.004
.000

.026
.030
.000

.013
.018
.000

.010
.015
.000

.005
.008
.000

.004
.006
.000

.004
.007
.000

.024
.029
.005

.013
.019
.003

.009
.012
.002

.005
.009
.001

.004
.007
.001

.004
.006
.001

.025
.040
.013

.015
.025
.009

.008
.015
.005

.005
.009
.003

.005
.009
.003

.003
.007
.002

.025
.036
.019

.013
.021
.011

.008
.013
.007

.005
.008
.004

.003
.006
.003

.003
.004
.002
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Power of KPSS Two Tail Unit Root Test against I(d), de[0.0, 1/2)

n, Test

n. Test

50

100

150 250 500 1000

50

100

150 250 500 1000

d=0.0

£12

£12

£12

£12
d=.45
£0
¢4
£12
d=.49
20
44
212
d=.499
£0
44
£12

919
456
.011

.808
358
.017

.672
.276
.027

518
211
.042

.367
.150
.063

301
.130
.019

254
.108
.089

257
112
.084

.989
.679
.034

.940
551
.024

.817
421
.020

.649
323
.017

.468
.239
.013

391
.199
.014

.326
.169
.014

318
.170
.014

228

975
.709
.164

.887
571
.116

712
427
.082

.520
312
.059

426
.260
.049

.360
231
.042

335
.216
.040

.946
.647
.256

.788
493
.176

.586
.359
125

.463
291
.100

.390
255
.089

391
251
.084

.938
.608

.985
.819
.467

.877
.639
332

.656
471
231

537
.396
.194

.446
335
.161

434
327
.163

.999 1.000 1.000 1.000
.843 916 .991
.469 .753 .903

.998

.997 1.000 1.000
.800
353

971
171

.998
.862
.610

.932
.706
452

.719
.508
321

.582
413
255

497
.362
223

.465
344
211

.932
119
472

828
.090
464

.689
.064
.484

.536
.045
481

379
.029
501

320
.027
.504

271
.025
510

.262
.022
.506

.006

.974
423
.011

.894
317
.019

.738
220
.028

.553
.158
.045

.455
127
.053

.381
.107
.065

.367
.106
.069

.004

951
.549
.001

.820
410
.002

.619
.287
.007

.507
237
.010

.436
.202
.014

.423
197
.013

.998 1.000 1.000 1.000 1.000
.556 .833 .933 .998 1.000
.000

.169 .702 .922

.994 1.000 1.000 1.000
.700

.825 .972 .991

119

.987
.676
.082

901
.505
.052

.707
352
.034

.590
301
.027

497
.243
.020

.480
.236
.020

.530

.958
730
.260

.802
542

1.67

.680
454
.136

579
391
114

.547
.366
.108

.790

.998 1.000
.891
.379

.943
.632

.988
.800
.442

.870
.606
302

752
.507
244

.639
421
.203

.619
416
.199
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TABLE 2.3-2

Power of KPSS Two Tail Unit Root Test against I(d), de[1/2, 3/2)

n, Test

n. Test

50

100

150

250

500

1000

50

100

150

250

500 1000

/12
d=.51

20

/4

£12

£0
¢4
12

40
/4
£12

20
/4
£12

20

44

f12
d=.95

20

¢4

212
d=.99

20

/4

£12
d=1.0

20

44

012

.245
.110
.092

237
.106
.093

.162
.079
121

.105
.059
155

.063
.038
212

.046
.025
.267

.046
.023
.291

.050
.016
324

.049
.017
325

311
.163
.013

.291
.154
.015

.199
115
.019

121
.077
.029

.073
.052
.055

.047
.035
.088

.042
.027
111

.050
.023
135

.053
.024
.144

344
223
.040

322
211
.038

.206
.143
.025

122
.098
.021

.077
.072
.028

.051
.047
.043

.047
.037
.053

.051
.030
.072

.051
.026
.076

372
.239
.081

.358
.232
.082

.228
.163
.054

135
.110
.038

.073
.070
.027

.047
.043
.030

.045
.034
.035

.049
.030
.043

.049
.027
.042

422
322
.160

.403
311
.154

251
214
.106

139
135
.067

.076
.084
.045

.046
.052
.030

.041
.037
.024

.046
.032
.023

.049
.032
.025

.466
.343
212

439
.320
197

.267
217
.138

.146
139
.091

.077
.082
.054

.049
.049
.033

.044
.037
.030

.044
027
025

.047
.029
.027

.257
.026
517

251
.021
521

.164
.012
.538

.105
.009
573

.064
.007
581

.046
.004
.604

.044
.003
617

.047
.002
.622

.047
.002
.625

.364
.097
.066

.347
.098
.072

.233
.065
.091

.138
.046
122

.076
.028
.156

.050
.017
191

.047
.013
219

.047
.013
.233

.047
.009
.239

415
.193
011

.403
.188
.015

.258
133
.025

144
.080
.039

.079
.052
.068

.051
.033
.094

.048
.026
.110

.048
.021
127

.045
.018
.133

.480
.243
.022

.459
.236
.022

.283
157
.016

153
.095
.020

.078
.057
.027

.053
.038
.048

.048
.030
.060

.047
.022
.074

.051
.022
.076

.548
.369
.107

.526
357
.104

325
.245
.067

.166
144
.037

.088
.091
.028

.051
.055
.030

.047
.038
.036

.050
.035
.040

.047
.029
.043

613
414
191

.582
397
.191

354
.265
122

183
155
.072

.097
.093
.046

.051
.048
.035

.046
.038
.034

.049
.033
.038

.053
.030
.043
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TABLE 2.3-2, CONTINUED

n, Test

N, Test

50

100

150

250

500

1000

50

100

150

250

500 1000

d=1.1
£0
44
£12
d=1.2
20
44
£12
d=1.3
£0
44
£12
d=1.4
20
44
£12
d=1.45
£0
/4
212
d=1.499
£0
44
212

.082
.012
.403

.146
.006
.487

.249
.003
.582

.409
.003
.708

.556
.002
.796

.936
.000
.973

.086
.014
213

.154
.009
.304

.248
.003
415

417
.002
574

551
.002
.698

931
.000
.958

.084
.017
129

.150
.011
213

.252
.008
321

417
.003
.500

554
.001
.628

.928
.000
.942

.086
.017
.083

150
.010
.148

.248
.005
251

413
.002
417

.560
.002
573

.932
.000
.934

.085
.019
.047

.146
.010
.086

.250
.006
175

414
.003
332

553
.002
477

931
.000
917

.081
.018
.042

.147
.011
.081

253
.005
.166

414
.003
316

561
.002
.462

.934
.000
913

.066
.001
.661

.100
.001
.684

141
.001
.693

.190
.001
722

213
.001
.739

242
.000
.747

.071
.008
275

.104
.005
332

.147
.003
.381

.197
.002
422

212
.002
434

.239
.001
.465

.070
.013
175

105
.007
217

.145
.006
.261

.193
.003
311

215
.002
327

.238
.003
.348

.072
.014
113

.098
.007
.143

141
.006
185

195
.006
.239

218
.006
.259

237
.000
.283

.071
.018
.066

.103
.011
.096

.143
.006
132

.190
.004
179

218
.004
.204

.234
.003
222

.070
.020
.059

.102
.014
.086

.149
.019
125

191
.030
.162

219
.036
.193

.241
.044
.210
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TABLE 2.4

Power Comparison with Dickey-Fuller Type Tests

) @) 3) (4)Lowd, [(5)Twod,

d T T (Y T p 7o ADF PP 0 /412 20 /12
d=.45 100 .88 .86 .88 .87| .999 .111 .999| .502 .045| .391 .014
250 .99 99] 99 99 1.00 .336 1.00| .587 .182| .463 .100

=.6 100 g1 .71 .71 71 927 .069 .926] .295 .027| .199 .019
250 90 901 .90 .90( .999 .186 .996| .322 .113| .228 .054

=9 100 .10 .10] .09 .09| .138 .038 .136/ .074 .009| .047 .088
250 14 14 .13 14| .199 .060 .173| .075 .037| .047 .030

d=1.0 |100 .05 .05] .04 .04| .051 .045 .053| .049 .006| .053 .144
250 .06 .05 .05 .05| .046 .045 .050| .044 .026| .049 .042

d=1.3 100 54 221 54 21 - - --| .008 .010| .248 .415
250 .62 .25] .62 .25 - - --| .001 .007| .248 .251

(1) Lee’s dissertation (1994): two tail D-F test (5%)
(2) Diebold and Rudebusch (1991): two tail D-F test (5%)
(3) Hassler and Wolters (1994): one-sided (5%)

To

PP

= t-type simple D-F test
ADF = t-type Augmented D-F test with lags (£12)
= t-type Phillips-Perron test with lags ( £12)
(4) KPSS unit root test: lower tail (5%)

(5) KPSS unit root test: two tail (5%)
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APPENDIX

Proof of LEMMA 1: Using equation (11),

[T] (<T]
1 1 ( £¢

T
—— ) £, =— —— | > 04+ | Wys(a)da
d*+3/2 t Z d* 1/2) d* d >
T 4 T oNT '([

| rT]

P Sper) = Z W( §)= [Z (Td‘+l/2) ] Z(Td‘+ 2 J

r r 1
=4"rt [de. (8)d8 - rjl‘Wd.(a)da} = u)d-_‘-|:wd- (a) - de "'(b)db:|da
0

0 0 0

which proves parts (i) and (ii). For part (iii),

T Tr g 7 ) 1t 2
. 2 _—Z[ﬁ] = og[| [War(a)da | dr, by (ii) and the
T t=1 alT oLo
continuous mapping theorem. [ ]

Proof of THEOREM 2: For the proof we use the following Lemmas. In each, we
make the same assumptions as in LEMMA 1 of the main text, and results are as T—o.

LEMMA 2.1:

Zet Ae, —250.

]
T2+2d

T
Proof: Since ) g, ,Ag, = —(sT 80 Z(Ae,) )
t=1 t=1

€ lz 1 ]‘ € 1 1 1 '
ZE Ag ‘ _°T 0 I ‘ Z A 2
2 2d‘ t-185¢ = T d*+1/2 d*+1/2 2d* | T ( t)
T + T +V 2T T + 2 Tl+ t=1



fecau

where

Proc

sing

Usin

‘SOV



44

2 T
€T 2 2 1 2 P .
because [—T d‘+l/2:| = 0gWy ()7, [? tZzl(Ast) }—)yo and &, is Oy(1),

where y; is the j-th autocovariance of Ag,.

LEMMA 2.2:
;] T
perr > €4_1A8,,, —2>0 for any nonnegative integer s.

t=1
Proof: LEMMA 2.1 is the special case of s =0. For any given positive integer s,
s-1 T

Zst 188 = Zet+s—lAet+s Z ZAetﬂAswsa
t=1 t=1 J=0 t=1

since €, ) =€,,, | — (A€, | +AE 5+ ... +Ag,). Then,
1 < 1 <

1 2y
WZ(et—lAsus) = WZ(SHS—IASHS) - ?H—MTZ(‘T‘Z Aey, jAey,s)
t=1 t=1 =0 t=

_P_)o,

T
because 71312728”5_[138, +s—E2>0 by LEMMA 2.1 and
t=1

1 s—1 1 T 1 s—1
Tl+2d. Z( gAe”JAa”’)_)THZd' ZYB—J -0,

o= s T ora-2d%) ‘( l“(d*+j)]
using 3 ¥sj = 2.7] —I:F(d*)l"(l—d*)c“:lg T(1-d*+j)

=0 J=0

=|: I'(1-24*) 02] I[F(l+d*+s)_r(1+d*)]
F@*rQ-da* °[[2d*|T(1-d*+s) T(Q-d*%)|f’

(Sowell, 1990).
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LEMMA 2.3:
1 s-1 T
porrS > > €rsAe,j—L>0 for any nonnegaitve integer s.
j=0t=s+1
s-1 T l T
Proof: 2+2d, Zo D EsAE_j = e D [er-sBEr +&¢ Al +.....4E_AE gy ]
j=0t=s+1 t=s+l
} T
Then, e > [ersAEy +E(_AE +.....4E A"y (7] —E>0 by LEMMA 2.2 and
t=s+1

Z[et_sAet o+1]—E—>0 by LEMMA 2.1.

2+2d‘
T t=s+1

LEMMA 2.4:
1
o Zstst_s:md._[wd.(a) da.
t=s+1
T L s1 T
Proof: perery D EtEts = [ DEtst 2+2d. a5 O D Et-sAEej,

t=s+1 t=s+1 j=0t=s+1

because €, =€, — (Ag,_( +Ag(_¢, +......+Ag;). Also,

T 2 1
€¢_
Z €¢ g = Z (ﬁz—) :mﬁ.jwd.(a)zda and
T T 0

2 2d"‘
T t=s+1 t=s+1
1 s-1 T
— a5 2 O Et—sBej—E>0 by LEMMA 2.3,
T j=0t=s+1

LEMMA 2.5:
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For any nonnegative integer ¢,

;[sz(l__)]_.m

¢
Proof:
! [(e+D)+2(6+(2-D+....42+D)]= ! [(£+1)+2 e(z+1)] el
e+t T Y 0e+1)

We now will use Lemmas 2.1-2.5 to prove Theorem 2. First consider part (i), with

¢=0. Then,

T

N
s2(0) = %Z(at -g)? = Zst [—Z ] and
t=1

t=1

T 2 T 2
it 2()-'2(———?‘ )—(12 2 ]
p2d*+1 TS\ pd*+12 TS Td"12

1 1 2
= @2 j wd.(a)2da-[ J‘ Wd.(b)db]
0 0

1
= mﬁ.{j&(a)zda}
0

2

1 1 1 2 1 1

since [Ws(a)’da = | [Wd.(a)— [ (b)db] da = [Wy(a)?da- [ | Wd.(b)db] .
0 0 0 0 0

For proving part (ii), from (3) and e, = ¢, — ¢,

T
F(O=1 26 -7+ Zw(s,e)z:(et Xers —3)
t=1

t=s+1
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1%, (11X Y] . .¢ 1T — o =
= ?Zst _('T‘ Zet) +23§IW(S,Z){? 2(e8 s —88 88— ¢ )}

t=] t=1 t=s+1

Thus,

2 T 2 T 2 ¢
s7(¢) |1 €, 1 €
T2 fZ(Tduuz) _(¥2Td'+u2 +2§w(g€)x

t=1 t=1

|2 [ (5)

t=s+l

14
=(A)+2Zw(s, () x(B).

s=1

Part (A) is the same as s?(0) above. For fixed ¢, (B) equals

T T = T - - 2
Z €€ | 1 Z €¢ € 1 Z €4 s € + €
T2*24* | T Td*+V2 \pd*+v2) T d*+V2 )\ pd*+12 Td*+V2) -

t=s+1 t=s+1 t=s+l

T 1
From LEMMA 2.4, T2+2d Y ek = 04 [War(a)  da,
0

t=s+1

1{ & €, € 1 L €, 1 < €,
} Z a2 |\ qd*+12 - ? Zle*+u2 T Z d*+12

t=s+1 t=s+ t=s+l

2
1
=0 ‘2110 (I Wd‘(b)db] ,
0
() (Rl E o)
T Kot Td"‘+l/2 Td"‘+l/2 T Kot Td‘+l/2 T Nt Td‘+l/2

1 2
= (03# (IWd# (b)de s
0
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€ 2 1 T € 2 ! :
and (Td"+l/2) = (} 2 Td-:vz) :md‘(f wd‘(b)db] ‘
0

t=s+1

1 1 2
Therefore, (B) = o | Wd.(a)z—[jwd*(b)db} da.
0 0

Since ¢ —o0 and (¢/T)—0, as T—o0,

sS4

2
e = (Dd*_f Wye(a)? - [de:(b)db} da , by the above argument and

LEMMA 2.5. [

Proof of LEMMA 3: Let ¢ andé be the coefficients of intercept and trend in the OLS

regression of y; on (1, t). Then

S
§ - E., 2t th Ztet
and by the same algebra as in Lee and Schmidt (1994) we can show the following:

(4-0)= ( +—)Zet 2Zte,+op(1) then

@-4) g 6(t ¢ 0, (D)
d*+V2 ( _)¥§(Td'+uz) ?;(TTviuz)*’T:ﬁ»uz

1 1
=4Fr {4-“ Wd. (a)da - 6‘[ aWd. (a)da}
0 0
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= md.{ 2[ Wys(a)da +6[ U Wd.(b)db) }

(VAN )

since jl'awd.(a)da = iwd. (a)da - i(jwd.(b)deda
0 0

0NO

. -6 J T
Also, (£-§)= —22 =~ 23t +o,()

T

. D g
€-8) 1 i | 12fst g |, oD
Td“'—l/2 - T Td"'+l/2 T t=lTTd"‘+l/2 Td"'—llz

1 1
= W04 {—6J'Wd. (a)da + 12"' aWd. (a)da}
0 0

oNo

= md.{s [ Was(a)da - 12 ( | Wd.(b)dbj}

Th —[rT] . _[r’l‘] T R 1 TN+ 1 ~
en Sy = 2@ -8 = Ze, ~[iTké - ) - [TN[rT]+ 1) - ),

Sjer) _1[51 €, _[rT]($—¢)_1[rT]([rT]+l)( é—a}

Td*+3/2 TSd2 1 \(pd™2) 2 T T T4*-V2

r 1 1
= age { [Was(a)da - r[4 [ Was(a)da - 6 awd.(a)da]
0 0 0

; rz[—6 [ Was(a)da +12 aWd.(a)da}}
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r
= mdtjws.(a)da s
0

which is similar to the result of Shin and Schmidt (1992, p.388).



CHAPTER 3

ASYMPTOTIC BIAS OF THE MDE

WHEN SHORT-RUN DYNAMICS ARE IGNORED

51



52
1. INTRODUCTION

Suppose that an observed series {y,} follows an ARFIMA(p,d,q) process:
(1) (-L)'y, =¢,, ¢(L)e, =6(L)u,,
where ¢(L) =1-¢;L—,L7—.....~p,LP, 8(L)=1+0,L+0,L +.....+8,L%, all of the

roots of ¢(L) and O(L) lie outside the unit circle, ¢(L) and 6(L) have no common
roots, and {u,} is white noise. This is the same model and the same notation as in
Chapter 1. When ¢, itself is white noise, y; is a fractionally integrated white noise, or
ARFIMA(0,d,0), process, also called an I(d) process. In the ARFIMA model, the
differencing parameter d determines the long run properties of the series, such as its
persistence and the persistence of its autocorrelations, while 8 and ¢ influence short-
run dynamics. In this chapter we will consider the estimation of d, with particular
attention to whether we can estimate d separately from the ARMA parameters that
determine short-run dynamics.

The first systematic treatment of estimation of d was by Geweke and Porter-
Hudak (1983), hereafter GPH, who suggested a simple semi-parametric two step
procedure for estimating d. Their estimator is based on a spectral regression and

linear filter theory. If {y.} follows the ARFIMA process (1), its spectral density is:

o2

0‘2 —ip|~2d . (O -
@ fy@)=2—f1-e™| fs(m)=§{4sm2(;)} f.(0),

where f, (o) is the spectral density of &, which is finite, bounded away from zero and

continuous on the interval [-n, t]. Taking logarithms,
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2
©) ‘°8{fy(“’)}=108{§—nf5(0)} dlog{4sm2( )}+1 g{ ((0;))}

Then GPH suggested an OLS regression based on I(0;), which denotes the

periodogram at the harmonic ordinate, @ ;=2mj/T for j = 1, ..., m, where T is the

sample size. The number of ordinates used is m = g(T), where g(T) - o but g(T)/T

— 0 as T «. The regression model is:
8 1og{l(®;)} = a - dlog]4sin? (>
4 log{l(0;)} = o - dlogiasin® () +v,
where a = constant and
V; =log{f © _)}.
y\®j

This implies that E(v;) = 0, var(v;) = n/6,j =1, 2, ..., m, and that cov(vi, v;) = 0, i%j.

The GPH estimator, say a, is then defined as the OLS estimator of d in (4). GPH

show that d is consistent, for d <0, and Robinson (1990) shows consistency for 0< d

<1/2. Under the further condition limy_,, {(log(T)z)/g(T)} =0, d is asymptotically

normal. However it is not +'T -consistent; asymptotically its variance is of order m™,
not T'. The important features of the GPH estimator is that we can disregard the last
term in (3), which involves the unknown short-run dynamics parameters (¢’s and 0’s),
because it is asymptotically nearly constant for sufficiently low frequencies.

However, the GPH estimator can be badly biased even for moderately large

sample sizes, especially when there is substantial autocorrelation in the & process.
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Agiakloglou, Newbold and Wohar (1993) show that the GPH estimator of d under
AR(1) or MA(1) errors with quite large short-run dynamics, is seriously biased when
m = T2 They conclude that tests based on the GPH estimator are significantly
misleading and we may need joint estimation of d and short-run dynamics. A further
difficulty is that the sampling distribution of the estimated ARMA parameters after d
is replaced with the GPH estimator is currently unknown.

Maximum Likelihood Estimation (MLE) under the assumption of normality has
been suggested by a number of authors, apparently starting with Hosking (1984).
Sowell (1992) suggested the exact MLE of the general ARFIMA(p,d,q) process with

normal disturbances. This estimator maximizes the log likelihood function:
T 1 |
(5)  logL=-—log(2r)- —loglQ-—Y'Q"Y,
2 2 2
where Q;; = Y- ( with y; = j-th order autocovariance of {y:}), and Y is the Txl

vector of observations. In the MLE any ARMA parameters in 6(L) and ¢(L) must be
estimated jointly with d. The exact MLE is computationally difficult, and probably
not feasible for sample sizes larger than 1000 or so, because of the need to invert the
TxT covariance matrix 2. Several approximate MLEs which do not require the
inversion of the covariance matrix 2 have been suggested. A conditional sum-of-
squares estimator (CSS) was proposed by Li and McLeod (1986). It truncates the
infinite sum in (1-L)? to a finite sum for estimation. Chung and Baillie (1993)

investigated the small sample performance of the CSS estimator and showed that for

the I(d) process the CSS estimator is very close to Sowell’s exact MLE, even for



55

T<100. They show that the estimation of the mean can make a considerable
difference to the small sample bias. Fox and Taqqu (1986) and Dalhaus (1989) used
an approximation formula for the spectral density given by Whittle (1951, 1953),
where the autocovariance matrix is diagonalized by transforming the {y.} process into
the frequency domain and the asymptotic properties of Toeplitz matrices and an
equicontinuity property of quadratic forms are used to show consistency and
asymptotic normality. The approximate log likelihood is as follows:

T-1 T-1 o ;)
(6) logL= 2105{21: -f(mj)} + Z-f(mﬁ,

J=1 J=1
where I( ;) is the periodogram and f ® ;) is a spectral density of y as above.

The main focus of this chapter will be on minimum distance estimation (MDE).

Let

’

(7 p=[p1> P25 s Pu]
be the vector of the first n population autocorrelations, and let p be the
corresponding vector of estimated (sample) autocorrelations. Tieslau, Schmidt, and

Baillie (1994), hereafter TSB, suggest minimizing the distance between p and p.

More precisely, let
(8) x =[d9 ¢l’ ey d)p, 919 -",eq]'

so that p depends on A. TSB suggest minimization of a criterion function

{f)—p(l)} \ {6—p(l)}, where W is a positive definite matrix. This estimator is
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consistent, and it is JT -consistent for -1/2< d <1/4. A similar GMM estimator is
suggested by Dueker and Startz (1992).

Chung and Schmidt (1995) provide a modification of the TSB estimator,
“adjusted MDE” (AMDE), to achieve JT -consistency for -1/2< d <1/2, not just for -

1/2< d <1/4. Define the vector

’

(9 8=[8;,3,, ..., 8,]
where 8, =1-py, 6, =p; — P2, ... O3 =Pn_] —Pn- The information in 3 is the same
as in p and the MDE based on 3 is asymptotically the same as the MDE based on p.
However, Chung and Schmidt suggest an MDE based on (n-1) functions of ratios of
elements of 8. More specifically, they consider ratios of the form
(10) I = a38/b38, j=12,..,n-1,
where a; and b; are vectors of known constants; they also allow general differentiable
functions of these ratios. Using results from Hosking (1995), they show that such an
MDE, which they call an AMDE, is JT -consistent for -1/2< d <1/2. Its asymptotic
variance does not depend on the choice of a;, b;, nor on which function of the ratios
(10) are taken. For d <1/4, the AMDE is less efficient than TSB’s MDE because it
does not use information on the levels of the &’s (or p’s).

Now consider the problem of estimating the differencing parameter d
separately from the ARMA parameters that determine short-run dynamics. Every

element of & (or p) depends on a non-trivial way on the ARMA parameters.

However, ratios like 8;/3;.; (or pj/pj.1) depend only on d, in the limit as j — co. This
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suggests that we could ignore short-run dynamics by considering ratios of sufficiently
high-order autocorrelations, and this is easy to do in the AMDE of Chung and
Schmidt. Let n be the number of 8’s considered, and let ¢ be the number of elements

of  that are not considered, so that we consider only

(11) 84, =[8441, 8412, s Bpun] -
We will consider the AMDE based on 3, ,, ignoring short-run dynamics; that is, the

AMDE assuming the I(d) or ARFIMA(0,d,0) model. When the data are generated by
the ARFIMA(p,d,q) model, the AMDE based on the (0,d,0) model will yield
asymptotically biased (inconsistent) estimates. However, we expect this asymptotic
bias to be small when ¢ is large. In this chapter we will calculate this asymptotic bias,
as a function of n, ¢ and the parameters. The idea is to see whether approximately
unbiased estimates of d can be obtained, without the need to model short-run
dynamics. The idea of doing so using high-order autocorrelations obviously is similar
to the GPH idea of using the periodogram at low frequencies. Lobato and Robinson

(1993) used the same idea.

2. MOMENT CONDITIONS FOR MDE
In this section, we give the explicit form of the functions of 6 that are used in
the AMDE estimators that we will consider. To do so, we first need to give a little

more detail on the TSB and Chung-Schmidt procedures. Consider the case of an I(d)
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process; that is, a fractionally integrated white noise. The MDE of d, say &, is

defined as the value which minimizes the following criterion function:

’

(12)  s(d)={Fp]- Hp(d)]} W {Hp]- Fp(d)]}.

where p(d) = [pl(d), pa(d), ..., pn(d)] is a vector of population autocorrelations that
depends on the value of d, p is the corresponding vector of sample autocorrelations,

F is a m-dimensional vector of transformation functions of the autocorrelations (m<n),
and W is a symmetric and positive-definite weighting matrix. The asymptotically

optimal weighting matrix is as follows:

(13) W=AV(F@) ' =[pcP]".

Here P=0F/0p (mxn). C is the asymptotic variance-covariance matrix of the

sample autocorrelations (nxn). For -1/2< d <1/4 it can be defined by Bartlett’s

formula,
[ o]

(14) C;;= Z(Pm +Psi ~2PiPs NPs+j +Ps—j —2PiPs)> 1= 1,2, ..., m,
s=1

from Hosking (1995, 1984) and Brockwell and Davis (1991). Define D =0p/aod
(nx1). Then the asymptotic variance of the MDE d defined in (12) above is:

(15) AV@= {[DP'WPD] ' D'P'W(PCP)WPD[D'P'WPD] '}

When W =[PCP']™}, this simplifies to

(16) AV(@d)-= [D'P'(PCP’)"PD]—I.
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We can note that P cancels if it is nonsingular, which will be the case if n = m and the
elements of F are functionally independent. In this case the transformation F is
asymptotically irrelevant. However, F clearly matters when m < n.

This MDE is similar to the GMM estimator introduced by Hansen (1982). The
GMM estimator of a parameter, say 3 (hx1), is based on conditions of the form:

E[g;(y:, B)]=0,i=1,2, ...,k (h<k).
The GMM estimator minimizes a criterion function:

min S(B) = {2(B)'W &(B)}
T
where gi(B)=%Zgi(yt, ). Therefore, the above MDE of d is not a GMM
=1

estimator because F(p) is not an average, but it still has the basic properties of a

GMM estimator.
TSB (1995) introduced the simplest case of the MDE using the trivial

transformation F{p(d)} = p(d), so that m = n. Then the criterion in equation (12) can

be simplified as:

(1) S@~{p-p(d)} W {p-p(d)}.

The optimal weighting matrix is W = C”' since P = I. The asymptotic distribution of
ﬁ(&—d), for -1/2< d <1/4, is N(0, [D'CD]!). For d =1/4, d converges to a
normal distribution, but at a rate of (T/InT)"?; for 1/4< d <1/2, the MDE converges to

a non-normal asymptotic distribution at a rate of T"*®. Thus for d >1/4 convergence

is slower than the usual T"? rate.
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These asymptotic results basically depend on the asymptotic distribution of p

(for details, see Hosking (1995)). However, even for de[1/4, 1/2), Hosking (1995)

has shown that the following normalized differences of the sample autocorrelations

are /T -consistent and asymptotically normal:

(18) ﬁ[ﬁk‘f)k _5e-Pe:|_
l1-py  1-p,

Therefore, TSB (1995) suggested an MDE based on such normalized differences of
the sample autocorrelations, which is /T -consistent for the whole stationary and
invertible range (-1< d <1/2) of the long-memory process.

Also, Chung and Schmidt (1995) introduced an AMDE that is also JT-
consistent for the entire range -1< d <1/2. The MDE based on the quantity in (18) is
an AMDE. More generally, Chung and Schmidt rely on Hosking’s result that

differences of sample autocovariances are JT -consistent: VT [(fri -y P-(i-y j)] is

asymptotically normal with variance given by Hosking (1995, equation (16)). Ratios
of differences of autocorrelations are functions of differences of autocovariances; for
example, (p3 —p,)/(1-p)=(y3-72)/(yo—7;). With & as defined in (9) above,

the ratios r;=aj3/bjd given in (10) above are ratios of differences of

autocorrelations and provide the basis for a JT -consistent AMDE.
Chung and Schmidt (1995) provide several different but asymptotically
equivalent forms of the AMDE. They correspond to different choices of the constants

aj, b;, and different functions of the ratios r;, Formally, they also correspond to
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choices of the function F in (12) above. In all cases, if p (or 3) has n elements, F is of
dimension
(n-1). The formulas given earlier in this section depend on the matrix C, which is
defined only for d <1/4, but Hosking (1995) and Chung and Schmidt (1995) give the
necessary modifications that are well-defined for d in the entire range -1< d <1/2.

We will discuss three different specializations of F. Because we will be
interested in the general ARFIMA(p,d,q) process, we will take the parameter vector
as:

(19) A=[d, ¢;, .., ¢p, 0y, ..., 84]) =[d, O

as in (8) above, with ©@=[¢y, .., ¢,, 6y, ..., 04]’; hence we distinguish the

differencing parameter d from the ARMA parameters ©.
The GLS estimator introduced by Chung and Schmidt (1995) is based on the

function F' defined by:
(20)  Fj[p(d, ®)]=1-j-b;(d, ®), j=(£+1), (£+2), ..., (£+n).

where

5;(d, ®)-38;,,(d, ©)
8](d3 ®)+81+l(d7 ®) ’

(21) b;(d, ®)= with 3;(d, ®) =p;_1(d, ®)-p;(d, ©).

Thus b;(d, ©) =[p;1(d, ©)-2p;(d, ©)+pjs1(d, O))/[pj-1(d; ©)=pjr(d, ©)]. As
in the previous section, ¢ is the lowest-order autocorrelation used in the calculation;

(n+£+1) is the highest-order autocorrelation used; and estimation is based on n

moment conditions, derived from n ratios of linear combinations of 6,,;, as defined
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in (11) above. Chung and Schmidt (1995) consider only the case ¢ = 0 (which is well

defined, with the convention py =1). For this pure I(d) process without short-run
dynamics (i.e., ® =0), Fjl[p(d, 0)]=1-j-b;(d, 0)=d for all j, and the MDE is

expressible as a GLS regression of F' on a vector of ones. See Chung and Schmidt
(1995) for more detail. They refer to this as the GLS version of the AMDE.

A second possibility is to use the following transformation F*:

(22) F2[p(d @)] —ﬂ))— j=(€+1),(£+2), ..., (£+n).
pj-1(d, ©)°

For the pure I(d) process without short-run dynamics we have:

l +d
A third possibility is similar to the second, but uses the same denominator for

each ratio. That is, the function F° is defined by:

3 p;(d, ©)
@4 Fle(d, ©)] =" a—g5s = (04D, (£+2), ., (£+)
Pe

For the pure I(d) process without short-run dynamics we have:

F3 p(d) (k 1+d)
J[ ] kI;[+1 (k d)

There is presumably an efficiency loss from ignoring low-order
autocorrelations, so that the asymptotic variances of the AMDE or the MDE grow

with ¢. However, larger values of ¢ are useful to avoid the asymptotic bias that
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results from ignoring or misspecifying short-run dynamics. We now tumn to the

calculation of this asymptotic bias.

3. CALCULATION OF ASYMPTOTIC BIAS

Suppose that {y.} follows an ARFIMA(p,d,q) process as in (1) above. Let
A=[d, ¢y, ...; p, 01, ..., 8q] =[d, O] as above. We can apply the MDE or
AMDE estimators described in the previous section to obtain a consistent estimator of
A. However, we now consider the case that we assume (incorrectly) that {y,} follows
a pure I(d), or ARFIMA(0,d,0), process and we calculate the MDE or AMDE
estimator of d. This estimate will in general be inconsistent. Let d represent the
probability limit of the estimate d, so that the asymptotic bias is (d - do), where do is
the true (population) value of d. We wish to evaluate this asymptotic bias.

The MDE based on the assumed (0,d,0) model minimizes the criterion

function:

(26)  min S(d)= {F{p]- Fip(d, )} W {F[5]-Fip(d, 0)]}.

We can calculate d = plima by invoking the general principle that d should minimize

a

in the population the same criterion that d minimizes in the sample. Since

plimp = p(d,, ®), d minimizes the criterion function:

’

(27)  min S(d) = {F[p(do, ©0)]~Hp(@, )]} W {Flp(do, ©0)] - Hp(d, 0)]}.
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Thus we can calculate d by a numerical minimization of the criterion (27), and from it
calculate the asymptotic bias (d - do). This will depend on the function F, the
weighting matrix W, the differencing parameter d,, and the ARMA parameters ©.

The transformation F[p] = p defined the (ordinary) MDE of TSB. Suppose
that the MDE is based on (p,, ..., ps,n), Where the standard case of TSB is ¢=1.
For this MDE there is no reason to expect the asymptotic bias to decrease when ¢
increases, since every autocorrelation pj(d, ®) depends on ®, no matter how large j is.
However, ratios like p;j(d, ®)/p;..(d, ®) depend only on d, not on @, for sufficiently
large j. Thus, for the AMDE based on the function F' or the MDE based on F? and F°
of the previous section, each of which involves ratios, we do expect the asymptotic
bias to decrease as ¢ increases.

For the MDE based on F? or F°, defined in equations (22) and (24) above, d
must be calculated by a numerical minimization. For the GLS version of the AMDE,
based on F' defined in equation (20), there is a closed form (GLS) solution for d:
(28) d=iaW F'[p(dy, ©)]/[i,W i,],
where i, is a vector of ones, of dimension n.

Finally, we need to discuss the relevant form of the weighting matrix, W. The
optimal weighting matrix, (PCP’)™! above, depends on population quantities and
would typically be estimated using the results of some initial estimation. Since the

initial estimates will also generally be biased when short-run dynamics are

misspecified, there is some ambiguity in how we should handle the weighting matrix
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W in our bias calculations. Therefore we will consider three different cases
corresponding to different treatment of the weighting matrix. In Case 1, we use the
identity matrix as the weighting matrix, so W = I,. In Case 2, we use the weighting
matrix in which P and C are evaluated using the true autocorrelations, p(dy, ©,).
This is unambiguous, but does not correspond to any feasible method of estimation

that misspecifies ® as zero. In Case 3, we assume that the weighting matrix is
evaluated in the sample based on the initial estimate d = p,/(1+p,), which would be
consistent if the (0,d,0) model were true. When the (p,d,q) model is true,

do>d *=p(dg, ®)/[1+p;(dg, ®)] and we evaluate P and C using d = d*.

4. RESULTS

In this section, we provide the results of our calculations of the asymptotic
bias of the MDE of d, when we ignore short-run dynamics in the true
ARFIMA(p,do,q) process. We consider three forms of transformation functions F',
F?, and F?, and three cases that differ in the evaluation of the weighting matrix, as
described at the end of last section. The minimization problem (27) that defined d
was solved (for the MDE based on F* and F°) using the optimization procedure in
GAUSS 2.0. For simplicity we consider only ARFIMA(1,d,,0) and ARFIMA(0,d,,1)
processes, where just one short-run parameter exists (¢ or 0).

Tables 3.1-1, 3.1-2 and 3.1-3 give the asymptotic bias of the AMDE and the

MDE for the case of an ARFIMA(1,d,,0) process, for three parameter values: (do =
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2,60=.4),(do=.2,¢=.8)and (do = .4, ¢ = .4). Tables 3.2-1 and 3.2-2 do the same
for the case of an ARFIMA(0,do, 1) process, for two parameter values (do = .2, 6 =-.4)
and (do = .2, 6 = -.8). We consider numbers of moment conditions (n) equalto 1, 3, 5
and 10. We consider lags (¢, equal to the lowest order autocorrelation used) equal to
0,2,3,4,5 6,7, 8, 10, 20 and 30. We consider the AMDE based on F' and the
MDE based on F?, and F°, and three cases corresponding to the treatment of the
weighting matrix, as we discussed previously.

Table 3.1 and 3.2 give us some clear and interesting results. (1) For fixed n,
the asymptotic bias of the AMDE or the MDE that ignore short-run dynamics
decreases and becomes close to zero as we use higher order of autocorrelations
(larger ¢). This is as expected given the characteristics of autocorrelations of our
long memory process. This is our main result. It essentially implies that semi-
parametric estimation of d through the MDE principle is possible, if we choose an
appropriate form of transformation function of the autocorrelations and use high order
autocorrelations. (2) The three different transformations (F', F?, F*) show similar
results for larger values of ¢. This especially true for F* and F>, for which the results
are quite similar even when ¢ is not very large. The absolute bias for the estimator
based on F' is generally larger than for F* or F°. (3) The choice of method of
evaluating the weighting matrix (Case 1, 2 or 3) does not usually make much
difference. It matters more for F' that for F* or F’. (4) The asymptotic bias depends

more on the order of autocorrelations used (¢) than on the number of moment
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conditions (n). Thus increasing n with fixed ¢ does not decrease asymptotic bias very
much. Especially for large ¢ it has almost a negligible effect.

Tables 3.3-1, 3.3-2 and 3.3-3 give the asymptotic bias for many values of do (=
-49,-4, -3 -2 -1, .1, .2, .24, .25, .3, .4, .49) and two different values of n (= 1,
10), with ¢ = .4. For n =1 the estimation problem is “exactly identified” in the sense
that the number of moment conditions equals the number of parameters estimated.
Therefore the choice of weighting matrix does not matter, and the results are the same
for Cases 1, 2 and 3. For n =10, however, the choice of weighting matrix matters.

These results show that the asymptotic bias decreases as ¢ increases, as
expected. The pattern of absolute bias as a function of d, holding constant n and ¢, is
complicated when ¢ is small. For larger values of ¢ (and both values of n), absolute
bias decreases as d increases.

Table 3.4 provides the opposite comparison as in Table 3. It gives the
asymptotic bias for many values of ¢ (= -.6, -.4, -.2, .2, .4, .6, .8, .9) for two different
values of n (= 5, 10), with dyp = .2. Results are given only for two relatively large
values of ¢, ¢=20 and ¢=30. The asymptotic bias is generally larger in absolute
value when ¢ is larger in absolute value, as we would expect. For large |§| (i.e,
strong short-run dynamics), the asymptotic bias is discouragingly large even for
¢=30. For example, for ¢ =.9 the asymptotic bias is about -0.1 or -0.2 with £=30
(and do = .2). This reflects the fact that any non-parametric treatment of short-run
dynamics will have problems if they are strong enough; it is intrinsically difficult to

distinguish long-run properties of the model from very strong short-run dynamics.
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5. CONCLUDING REMARKS

In this chapter we have considered the MDE including the adjusted MDE
(AMDE) estimator of Chung and Schmidt (1995) for the differencing parameter in the
general ARFIMA model. In applying the MDE, one can estimate the ARFIMA
model, which amounts to modeling short-run dynamics with an ARMA model; or one
can estimate the pure I(d) model, but not using low-order autocorrelations, which is a
non-parametric treatment of short-run dynamics. This non-parametric treatment is
similar in spirit to the frequency-domain approach of Geweke and Porter-Hudak,
based on the periodogram at low frequencies only. We expect a non-parametric
treatment of short-run dynamics to have some cost in terms of efficiency, and Chung
and Schmidt’s results show that this is so. We also expect a non-parametric treatment
to lead to finite sample bias, especially when the nuisance parameters (ARMA
parameters) take on extreme values; i.e., when short-run dynamics are very strong. In
this chapter, we do not evaluate finite samples biases, but we evaluate the asymptotic
bias that results from ignoring a fixed number ( ¢) of low-order autocorrelations. The
asymptotic bias is larger when short-run dynamics are stronger and when ¢ is smaller.
This is as expected. It supports the conjecture of Tieslau, Schmidt and Baillie (1995)
and Chung and Schmidt (1995) that a consistent nonparametric estimate of the
differencing parameter results from letting ¢ grow with the sample size. A rigorous
proof of this conjecture, and a derivation of the asymptotic properties of the estimate

when ¢ grow with T, are important topics for future research.
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TABLE 3.1-1

Asymptotic Bias of MDE in ARFIMA(1,d,,0)
[de = 0.2, ¢ = 0.4]

GLS (F')

n=1

n=3

n=5

n=10

0N WUNhdE WO D

10
20,
30

Case.1 Case.2 Case.3
5348 .5348 .5348
-.0466 -.0466 -.0466
-.2123 -.2123 -.2123
-.2851 -.2851 -.2851
-.2838 -.2838 -.2838
-.2410 -.2410 -.2410
-.1863 -.1863 -.1863
-.1371 -.1371 -.1371
-.0721 -.0721 -.0721
-.0115 -.0115 -.0115
-.0050 -.0050 -.0050

Case.1 Case.2 Case.3

.2323 4798 .4788
-.1813 -.0997 -.1307
-.2604 -.2376 -.2491
-.2699 -.2790 -.2770
-.2370 -.2561 -.2491
-.1881 -.2057 -.1990
-.1408 -.1536 -.1487
-.1027 -.1111 -.1079
-.0556 -.0588 -.0576
-.0104 -.0106 -.0105
-.0047 -.0047 -.0047

Case.l1 Case.2 Case.3

.0399 4573 .4418
-.2137 -.1203 -.1668
-.2416 -.2401 -.2509
-.2266 -.2638 -.2541
-.1894 -2314 -.2163
-.1471 -.1802 -.1672
-.1096 -.1321 -.1229
-.0806 -.0948 -.0888
-.0452 -.0506 -.0483
-.0096 -.0098 -.0097
-.0044 -.0045 -.0045

Case.l Case.2 Case.3

-.0748 .4287 .3920
-.1467 -.1395 -.1825
-.1611 -.2292 -.2229
-.1432 -.2295 -.2032
-.1173 -.1889 -.1620
-.0912 -.1408 -.1205
-.0690 -.1006 -.0871
-.0520 -.0715 -.0630
-.0311 -.0387 -.0354
-.0079 -.0084 -.0082
-.0039 -.0040 -.0039

Ratios (F%)

n=1

n=3

n=5

n=10

W NOAUNHE WD

10
20
30

Case.l Case.2 Case.3

.1861 .1861 .1861
-.1126 -.1126 -.1126
-.1355 -.1355 -.1355
-.1166 -.1166 -.1166
-.0864 -.0864 -.0864
-.0593 -.0593 -.0593
-.0403 -.0403 -.0403
-.0275 -.0275 -.0275
-.0142 -.0142 -.0142
-.0013 -.0013 -.0013
-.0000 -.0000 -.0000

Case.1 Case.2 Case.3

13722209 .3642
-.1204 -.1072 -.1199
-.1184 -.1252 -.1207
-.0936 -.1005 -.0952
-.0665 -.0690 -.0674
-.0453 -.0434 -.0457
-.0308 -.0277 -.0329
-.0212 -.0172 -.0214
-.0115 -.0068 -.0115
-.0015 -.0000 -.0011
-.0002 .0000 .0000

Case.l Case.2 Case.3

.1200 .2211 .3701
-.1113 -1058 -.1159
-.1034 -.1181 -.1101
-.0790 -.0904 -.0830
-.0553 -.0593 -.0572
-.0375 -.0378 -.0383
-.0254 -.0234 -.0259
-.0171 -.0144 -.0180
-.0099 -.0057 -.0093
-.0016 -.0000 -.0009
-.0000 .0000 -.0001

Case.1 Case.2 Case.3

1101 2213 3627
-.0954 -.1053 -.1216
-.0847 -.1092 -.1072
-0628 -.0780 -.0755
-.0431 -.0494 -.0495
-.0290 -.0312 -.0318
-.0198 -.0182 -.0210
-.0139 -.0108 -.0144
-.0079 -.0040 -.0075
-.0018 -.0000 -.0008
-.0005_.0000 -.0001

Common Denominator Ratios (F)

n=1

n=3

n=5

n=10

0N WNDWNOD

10
20
30

Case.1 Case.2 Case.3
.1861 .1861 .1861
-.1126 -.1126 -.1126
-.1355 -.1355 -.1355
-.1166 -.1166 -.1166
-.0864 -.0864 -.0864
-.0593 -.0593 -.0593
-.0403 -.0403 -.0403
-.0276 -.0276 -.0276
-.0142 -.0142 -.0142
-.0019 -.0019 -.0019
-.0007 -.0007 -.0007

Case.1 Case.2 Case.3
.1449 2072 .2378
-.1197 -.1128 -.1092
-.1236 -.1219 -.1419
-.0989 -.1008 -.1115
-.0706 -.0694 -.0757
-.0481 -.0470 -.0487
-.0326 -.0314 -.0319
-.0225 -.0168 -.0216
-.0120 -.0074 -.0115
-.0025 -.0000 -.0023
-.0011 .0000 .0000

Case.1 Case.2 Case.3
.1244 2055 .2394
-.1159 -.1106 -.1242
-.1118 -.1190 -.1600
-.0863 -.0923 -.1243
-.0605 -.0638 -.0792
-.0410 -.0398 -.0482
-.0279 -.0268 -.0194
-.0194 -.0185 -.0101
-.0106 -.0033 -.0099
-.0023 -.0000 -.0019
-.0010 .0000 -.0009

Case.1 Case.2 Case.3
.1023 2128 .2397
-.1031 -.1081 -.1384
-.0922 -.1112 -.1680
-.0683 -.0808 -.1371
-.0469 -.0520 -.0902
-.0316 -.0339 -.0531
-.0216 -.0224 -.0314
-.0152 -.0154 -.0195
-.0086 -.0056 -.0091
-.0021 -.0000 -.0010
-.0010 .0000 -.0001
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TABLE 3.1-2

Asymptotic Bias of MDE in ARFIMA(1,d,,0)
[de = 0.2, ¢ = 0.8]

GLS (F))

n=1

n=3

n=5

n=10

0O WL H WK S

Case.1 Case.2 Case.3
.8472 8472 .8472
.6419 6419 .6419
5471 .5471 .5471
4563 .4563 .4563
.3695 .3695 .3695
.2869 .2869 .2869
.2085 .2085 .2085
.1349 1349 .1349
.0026 .0026 .0026
-.3129 -.3129 -.3129
-.2228 -.2228 -.2228

Case.1 Case.2 Case.3
.7435 .8204 .8246
.5484 .5986 .5857
4576 .5014 .4863
3709 .4096 .3937
.3883 .3229 .3069
2101 2411 2254
1365 .1641 .1491
.0679 .0920 .0785
-.0534 -.0349 -.0462
-.3138 -.3136 -.3139
-.2085 -.2104 -.2092

Case.1 Case.2 Case.3
.6468 .8078 .8079
.4603 .5749 .5409
3737 4752 .4363
2962 .3820 .3415
2132 2946 .2544
.1398 2125 .1739
.0714 .1360 .0992
.0082 .0648 .0313
-.1016 -.0588 -.0861
-.3100 -.3112 -.3113
-.1947 -.1996 -.1964

Case.1 Case.2 Case.3
.4300 .7908 .7780
.2659 .5428 .4557
.1909 4390 .3413
1209 3430 .2422
.0558 .2540 .1544
-.0040 .1713 .0761
-.0583 .0952 .0060
-.1070 .0253 -.0554
-.1872 -.0934 -.1567
-.2174 -.2995 .2952
-.1641 -.1774 .1687

Ratios (F?)

n=1

n=3

n=5

n=10

Case.1 Case.2 Case.3
.2783 .2783 .2783
1623 .1623 .1623
1062 1062 .1062
.0549 .0549 .0549
.0094 .0094 .0094
-.0299 -.0299 -.0299
-.0628 -.0628 -.0628
-.0896 -.0896 -.0896
-.1261 -.1261 -.1261
-.1040 -.1040 -.1040
-.0371 -.0371 -.0371

Case.1 Case.2 Case.3
2677 .2955 -.0841
1269 .2256 -.0011
.0702 .1790 .0419
.0210 .1292 .0095

-.0210 .0783 -.0264
-.0561 .0288 -.0587
-.0843 -.0171 -.0860
-.1065 -.0575 -.1074
-.1344 -.1121 -.1348
-1.003 -.0856 -.1008
-.0394 -.0074 -.0404

Case.1 Case.2 Case.3
.2616 .2955 -.1472
.1030 .2243 -.4822
.0455 .1778 -.0807
-.0022 .1284 -.0415
-.0415 .0782 -.0586
-.0731 .0292 -.0813
-.0979 -.0165 -.1020
-.1167 -.0570 -.1185
-.1379 -.1149 -.1385
-.0937 -.0816 -.0941
-.0363 -.0217 -.0373

Case.1 Case.2 Case.3
.2535 .2954 -.2293
.0697 .2235 -.8270
.0117 .1768 -.5908
-.0330 .1278 -.1879
-.0673 .0778 -.1184
-.0931 .0291 -.1142
-.1117 -.0166 -.1209
-.1245 -.0572 -.1283
-.1360 -.1143 -.1361
-.0799 -.0729 -.0804
-.0307 -.0184 -.0316

Common Denominator Ratios (F°)

n=1

=3

n=5

n=10

30

Case.1 Case.2 Case.3
2783 .2783 .2783
.1623 .1623 .1623
1062 .1062 .1062
.0549 .0549 .0549
.0094 .0094 .0094
-.0299 -.0299 -.0299
-.0628 -.0628 -.0628
-.0896 -.0896 -.0896
-.1261 -.1261 -.1261
-.1040 -.1040 -.1040
-.0371 -.0371 -.0371

Case.1 Case.2 Case.3
.2617 .2968 .2890
.1318 .2209 .2513
0764 .1122 .1928
.0275 .1030 .1235
-.0149 .0476 .0585
-.0508 -.0016 .0020
-.0801 -.0435 -.0445
-.1033 -.0778 -.0804
-.1331 -.1227 -.1260
-.1025 -.0953 -.1023
-.0412 -.0243 -.0407

Case.l Case.2 Case.3
2480 .2968 .2892
.1090 .2207 .2672
.0544 1617 .2238
.0074 .1025 .1586
-.0324 .0472 .0906
-.0654 -.0021 .0293
-.0917 -.0442 -.0232
-.1120 -.0784 -.0653
-.1365 -.1221 -.1219
-.0972 -.0872 -.1000
-.0388 -.0352 -.0382

Case.1 Case.2 Case.3
.2224 2987 .2892
.0709 2192 .2743
.0187 .1598 .2343
-.0242 .1006 .1587
-.0589 .0455 .0842
-.0863 -.0036 .0210
-.1071 -.0452 -.0317
-.1221 -.0786 -.0744
-.1375 -.1202 -.1344
-.0860 -.0896 -.1084
-.0339 -.0271 -.0356
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TABLE 3.1-3

Asymptotic Bias of MDE in ARFIMA(1,d,,0)
[de = 0.4, ¢ = 0.4]

GLS (F")

n=1

n=3

n=5

n=10

~

SO RNVNAWNHE WO

30

Case.1 Case.2 Case.3
4902 .4902 .4902
.0483 .0483 .0483
-.0568 -.0568 -.0568
-.1010 -.1010 -.1010
-.1067 -.1067 -.1067
-.0941 -.0941 -.0941
-.0761 -.0761 -.0761
-.0593 -.0593 -.0593
-.0355 -.0355 -.0355
-.0072 -.0072 -.0072
-.0032 -.0032 -.0032

Case.1 Case.2 Case.3
2560 .4415 .4378
-.0365 .0105 -.0062
-.0882 -.0741 -.0805
-.1001 -.1014 -.1019
-.0923 -.0976 -.0960
-.0765 -.0819 -.0800
-.0603 -.0646 -.0630
-.0468 -.0498 -.0487
-.0287 -.0300 -.0295
-.0065 -.0066 -.0066
-.0030 -.0030 -.0030

Case.l Case.2 Case.3
.1221 4208 .4061
-.0621 -.0040 -.0297
-.0869 .0774 .0854
-.0874 -.0964 -.0954
-.0764 -.0890 -.0851
-.0621 -.0729 -.0690
-.0489 -.0568 -.0537
-.0382 -.0436 -.0454
-.0241 -.0265 -.0255
-.0060 -.0061 -.0061
-.0028 -.0028 -.0028

Case.l Case.2 Case.3
.0228 .3937 .3658
-.0555 -.0184 -.0458
-.0626 -.0756 -.0796
-.0588 -.0848 -.0790
-.0502 -.0742 -.0664
-.0409 -.0548 -.0522
-.0326 -.0451 -.0401
-.0260 -.0344 -.0310
-.0172 -.0211 -.0195
-.0050 -.0053 -.0052
-.0024 -.0025 -.0025

Ratios (F%)

n=1

n=3

n=5

n=10

N
SOOI WNEHE WNO D

30

Case.2 Case.3
.0671 .0671
-.0143 -.0143
-.0196 -.0196
-.0173 -.0173
-.0132 -.0132
-.0096 -.0096
-.0070 -.0070
-.0050 -.0050
-.0030 -.0030
-.0005 -.0005
-.0000 -.0000

Case.1

.0671
-.0143
-.0196
-.0173
-.0132
-.0096
-.0070
-.0050
-.0030
-.0005
-.0000

Case.l Case.2 Case.3
.0574 .0937 -.2947
-.0164 .0047 -.0145
-.0176 -.0324 -.0194
-.0143 -.0245 -.0160
-.0106 -.0148 -.0114
-.0077 -.0099 -.0081
-.0055 -.0067 -.0057
-.0041 -.0048 -.0041
-.0024 -.0026 -.0024
-.0006 -.0000 -.0006
-.0000 .0000 -.0000

Case.1 Case.2 Case.3
.0547 .0932 -.2981
-.0156 -.0007 -.0180
-.0157 -.0388 -.0226
-.0124 -.0287 -.0173
-.0091 -.0179 -.0118
-.0066 -.0108 -.0080
-.0048 -.0072 -.0054
-.0036 -.0049 -.0039
-.0022 -.0025 -.0023
-.0004 -.0000 -.0005
-.0000 .0000 -.0002

Case.1 Case.2 Case.3
.0529 .0926 -.2092
-.0139 -.0080 -.0320
-.0133 -.0489 -.0330
-.0102 -.0371 -.0237
-.0073 -.0234 -.0151
-.0053 -.0149 -.0094
-.0038 -.0088 -.0060
-.0029 -.0058 -.0041
-.0018 -.0028 -.0022
-.0004 -.0000 -.0004
-.0000 .0000 -.0000

Common Denominator Ratios (F°)

n=1

n=3

n=5

n=10

~

O 0O nd WwWwbho

N e
[=]

30

Case.2 Case.3
.0671 .0671
-.0143 -.0143
-.0196 -.0196
-.0173 -.0173
-.0132 -.0132
-.0096 -.0096
-.0070 -.0070,
-.0050 -.0050
-.0030 -.0030 -.0030
-.0005 -.0005 -.0005
-.0000 -.0000 -.0000

Case. 1

.0671
-.0143
-.0196
-.0173
-.0132
-.0096
-.0070
-.0050

Case.1 Case.2 Case.3
.0526 .0996 .0834
-.0164 .0039 -.0023
-.0180 -.0268 -.0335
-.0148 -.0186 -.0296
-.0111 -.0124 -.0189
-.0080 -.0084 -.0117
-.0058 -.0062 -.0075
-.0044 -.0046 -.0050
-.0026 -.0027 -.0027
-.0006 -.0003 -.0005

-.0001 -.0000 -.0000

Case.l Case.2 Case.3
.0451 .0996 .0838
-.0160 .0010 -.0165
-.0162 -.0338 -.0440
-.0129 -.0204 -.0408
-.0096 -.0126 -.0277
-.0069 -.0086 -.0166
-.0051 -.0056 -.0099
-.0038 -.0042 -.0062
-.0023 -.0025 -.0030
-.0006 -.0000 -.0006

-.0003 .0000 -.0000

Case.1 Case.2 Case.3
.0366 .0997 .0839
-.0140 -.0060 -.0284
-.0132 -.0470 -.0466
-.0102 -.0303 -.0430
-.0075 -.0158 -.0326
-.0054 -.0098 -.0221
-.0040 -.0065 -.0142
-.0030 -.0043 -.0091
-.0019 -.0019 -.0041
-.0005 -.0003 -.0006
-.0002 -.0000 -.0000
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TABLE 3.2-1

Asymptotic Bias of MDE in ARFIMA(0,d,1)
[de = 0.2, 0 =-0.4]

GLS (F)

n=1

n=3

n=5

n=10

£
0
2
3
4
5
6
7
8

10

30

2

Case 1 Case 2 Case 3
| .6103 .6103 .6103
-.1285 -.1285 -.1285
-.0624 -.0624 -.0624
-.0376 -.0376 -.0376
-.0253 -.0253 -.0253
-.0182 -.0182 -.0182
-.0138 -.0138 -.0138
-.0108 -.0108 -.0108
-.0072 -.0072 -.0072
-.0019 -.0019 -.0019
-.0007 -.0007 -.0007

Case 1 Case 2 Case 3
-.0153 .5947 .4591
-.0761 -.1061 -.0957
-.0471 -.0513 -.0480
-.0270 -.0311 -.0297
-.0191 -.0212 -.0204
-.0143 -.0154 -.0150
-.0111 -.0118 -.0116
-.0089 -.0093 -.0092
-.0061 -.0063 -.0062
-.0018 -.0018 -.0018
-.0008 -.0008 -.0008

Case 1 Case 2 Case 3
-.0291 .5640 .4070
-.0544 -.0929 -.0797
-.0314 -.0445 -.0402
-.0211 -.0270 -.0251
-.0154 -.0185 -.0175
-.0117 -.0136 -.0130
-.0093 -.0104 -.0101
-.0075 -.0083 -.0081
-.0053 -.0057 -.0055
-.0016 -.0017 -.0017
-.0008 -.0008 -.0008

Case 1 Case 2 Case 3
-.0222 .5178 .3548
-.0318 -.0753 -.0610
-.0195 -.0353 -.0305
-.0137 -.0213 -.0191
-.0103 -.0146 -.0134
-.0081 -.0107 -.0100
-.0066 -.0083 -.0078
-.0055 -.0067 -.0063
-.0040 -.0046 -.0044
-.0014 -.0014 -.0014
-.0007 -.0007 -.0007

Ratios (F%)

n=1

n=3

n=5

n=10

Case 1 Case 2 Case 3
1575 1575 .1575
-.0411 -.0398 -.0409
-.0182 -.0176 -.0178
-.0104 -.0059 -.0102
-.0068 -.0029 -.0059
-.0046 -.0020 -.0036
-.0035 -.0014 -.0011
-.0027 -.0008 -.0009
-.0011 -.0008 -.0007
-.0000 -.0084 -.0001
-.0000 -.0200 -.0000

Case 1 Case 2 Case 3
.0754 .2162 .3050
-.0283 -.0328 -.0298
-.0133 -.0145 -.0135
-.0079 -.0066 -.0080
-.0053 -.0008 -.0051
-.0039 -.0004 -.0038
-.0029 -.0002 -.0029
-.0023 -.0001 -.0015
-.0015 -.0009 -.0006
-.0000 .0000 -.0000
-.0000 .0102 -.0000

Case 1 Case 2 Case 3
-.0678 .2192 .2981
-.0240 -.0297 -.0265
-.0113 -.0129 -.0117
-.0068 -.0059 -.0067
-.0046 -.0022 -.0045
-.0034 -.0004 -.0033
-.0026 -.0002 -.0026
-.0020 -.0001 -.0020
-.0014 -.0000 -.0006
-.0000 -.0000 .0000
-.0002 .0074 .0000

Case 1 Case 2 Case 3
.0628 .2193 .2853
-.0202 -.0224 -.0250
-.0093 -.0099 -.0103
-.0056 -.0049 -.0057
-.0038 -.0010 -.0038
-.0027 -.0004 -.0027
-.0021 -.0002 -.0021
-.0017 -.0001 -.0017
-.0011 .0000 -.0006
-.0000 .0000 -.0000
-.0002 .0000 .0000

Common Denominator Ratios (F*)

n=1

n=3

n=5

n=10

Case 1 Case 2 Case 3
1575 1575 .1575
-.0411 -.0405 -.0409
-.0182 -.0176 -.0178
-.0104 -.0083 -.0102
-.0068 -.0009 -.0059
-.0046 -.0005 -.0036
-.0035 -.0003 -.0025
-.0024 -.0001 -.0009
-.0011 -.0008 -.0000
-.0000 .0114 .0001
-.0000 .0200 .0000

Case 1 Case 2 Case 3
.0957 .2015 .2026
-.0310 -.0344 -.0376
-.0142 -.0144 -.0149
-.0084 -.0083 -.0082
-.0056 -.0023 -.0054
-.0041 -.0012 -.0038
-.0031 -.0005 -.0029
-.0024 -.0002 -.0017
-.0016 .0003 -.0011
-.0004 .0006 -.0002
-.0002 .0168 .0005

Case 1 Case 2 Case 3
.0801 .2021 .2028
-.0263 -.0310 -.0399
-.0122 -.0123 -.0145
-.0073 -.0069 -.0075
-.0049 -.0046 -.0048
-.0036 -.0033 -.0033
-.0027 .0006 -.0025
-.0022 .0003 -.0015
-.0015 .0000 -.0013
-.0004 .0012 -.0002
-.0002 .0259 .0003

Case 1 Case 2 Case 3
.0656 .1985 .2011
-.0209 -.0274 -.0422
-.0097 -.0107 -.0154
-.0059 -.0052 -.0076
-.0040 -.0026 -.0044
-.0029 -.0011 -.0029
-.0023 -.0004 -.0019
-.0018 -.0009 -.0014
-.0012 -.0003 -.0009
-.0004 .0024 -.0002
-.0002 .0018 -.0003
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TABLE 3.2-2

Asymptotic Bias of MDE in ARFIMA(0,d,,1)
[de = 0.2, 6 = -0.8]

GLS (F)

n=1

n=3

n=5

n=10

Case 1 Case 2 Case 3
.8469 .8469 .8469
-.1513 -.1513 -.1513
-.0745 -.0745 -.0745
-.0451 -.0451 -.0451
-.0304 -.0304 -.0304
-.0220 -.0220 -.0220
-.0166 -.0166 -.0166
-.0130 -.0130 -.0130
-.0086 -.0086 -.0086
-.0023 -.0023 -.0023
-.0011 -.0011 -.0011

Case 1 Case 2 Case 3
.0403 .9504 .6385
-.0903 -.1318 -.1127
-.0500 -.0639 -.0573
-.0325 -.0386 -.0356
-.0230 -.0261 -.0246
-.0172 -.0190 -.0181
-.0134 -.0145 -.0139
-.0107 -.0114 -.0111
-.0073 -.0077 -.0075
-.0021 -.0021 -.0022
-.0010 -.0010 -.0010

Case 1 Case 2 Case 3
.0002 .9867 .5670
-.0647 -.1151 -.0939
-.0377 -.0569 -.0480
-.0254 -.0342 -.0301
-.0185 -.0232 -.0210
-.0142 -.0169 -.0156
-.0112 -.0129 -.0121
-.0091 -.0102 -.0097
-.0064 -.0069 -.0067
-.0020 -.0020 -.0020
-.0009 -.0010 -.0009

Case 1 Case 2 Case 3
-.0091 1.0164 .4956
-.0379 -.1004 -.2768
-.0234 -.0465 -.0366
-.0165 -.0276 -.0230
-.0124 -.0186 -.0161
-.0098 -.0136 -.0121
-.0080 -.0104 -.0095
-.0066 -.0083 -.0077,
-.0048 -.0057 -.0054
-.0017 -.0017 -.0017
-.0008 -.0008 -.0008

Ratios (F%)

n=1

n=3

n=5

n=10

Case 1 Case 2 Case 3
.1970 .1970 .1970
-.0494 -.0479 -.0493
-.0219 -.0213 -.0218
-.0125 -.0082 -.0125
-.0082 -.0023 -.0078
-.0056 -.0014 -.0056|
-.0043 -.0010 -.0042
-.0033 -.0007 -.0033
-.0015 -.0012 -.0011
-.0000 .0083 -.0000
-.0000 .0058 -.0000

Case 1 Case 2 Case 3
1110 2656 .4270
-.0340 -.0428 -.0359
-.0161 -.0186 -.0164
-.0096 -.0086 -.0097
-.0065 -.0037 -.0063
-.0047 -.0013 -.0046
-.0036 -.0009 -.0035
-.0028 -.0006 -.0028
-.0019 -.0004 -.0019
-.0001 .0080 -.0001
-.0000 .0056 -.0000

Case 1 Case 2 Case 3
1012 2714 4125
-.0289 -.0410 -.0322
-.0137 -.0172 -.0144
-.0082 -.0079 -.0083
-.0056 -.0034 -.0056
-.0041 -.0012 -.0041
-.0031 -.0008 -.0031
-.0025 -.0006 -.0025
-.0017 -.0003 -.0017
-.0001 .0000 -.0001
-.0000 .0000 .0000

Case 1 Case 2 Case 3
.0945 .2740 .3973
-.0243 -.0398 -.0312
-.0113 -.0157 -.0130
-.0067 -.0069 -.0072
-.0046 -.0030 -.0047
-.0033 -.0011 -.0034
-.0025 -.0007 -.0026
-.0020 -.0005 -.0020
-.0014 -.0003 -.0014
-.0001 -.0000 -.0001
-.0000 .0000 -.0000

Common Denominator Ratios (F°)

n=1

n=3

n=5

n=10

0 JA WD WD

10
20
30

Case 1 Case 2 Case 3
.1970 .1970 .1970
-.0494 -.0494 -.0493
-.0219 -.0213 -.0218
-.0125 -.0103 -.0125
-.0082 -.0065 -.0081
-.0056 -.0015 -.0056
-.0043 -.0010 -.0042
-.0033 -.0007 -.0033
-.0015 -.0012 -.0015
-.0000 .0113 -.0000
-.0000 .0078 -.0000

Case 1 Case 2 Case 3
1191 2712 .2405
-.0372 -.0444 -.0557
-.0172 -.0186 -.0201
-.0102 -.0105 -.0107
-.0068 -.0052 -.0068
-.0049 -.0022 -.0048
-.0037 -.0013 -.0036
-.0029 -.0007 -.0024
-.0019 -.0001 -.0016
-.0005 .0005 -.0003
-.0002 .0080 -.0004

Case 1 Case 2 Case 3
.0995 .2894 .2414
-.0316 -.0424 -.0602
-.0148 -.0173 -.0217
-.0088 -.0092 -.0108
-.0060 -.0060 -.0065
-.0043 -.0042 -.0044
-.0033 .0001 -.0031
-.0026 .0005 -.0025
-.0018 .0008 -.0016|
-.0005 .0010 -.0003
-.0002 .0009 -.0002

Case 1 Case 2 Case 3
.0814 .2963 .2410
-.0252 -.0399 -.0585
-.0118 -.0148 -.0234
-.0071 -.0074 -.0119
-.0048 -.0043 -.0070
-.0035 -.0022 -.0045
-.0027 -.0017 -.0033
-.0022 -.0010 -.0023
-.0015 -.0007 -.0014
-.0004 .0022 -.0003
-.0002 .0018 -.0001
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TABLE 3.3-1

Asymptotic Bias of MDE in ARFIMA(1,d,,0) in GLS (F")

¢=0.4

[n=1]

de

-049 -04 -03 -0.2 -0.1 0.1 0.2 0.24 0.25

0.3

0.4

0.49

R~

£=0
.6359 .6262 .6144 .6014 .5872 .5541 .5348 .5266 .5245
.6359 .6262 .6144 .6014 .5872 .5541 .5348 .5266 .5245
.6359 .6262 .6144 .6014 .5872 .5541 .5348 .5266 .5245

5137
5137
5137

.4902
.4902
.4902

.4668
.4668
.4668

BHe-

£=2
1.908 4.009 -5.974 -1.282 -.5697 -.1362 -.0466 -.0207 -.0149
1.908 4.009 -5.974 -1.282 -.5697 -.1362 -.0466 -.0207 -.0149
1.908 4.009 -5.974 -1.282 -.5697 -.1362 -.0466 -.0207 -.0149

.0107
.0107
.0107

.0483
.0483
.0483

.0707
.0707
.0707

£=5
.1688 .2654 .4174 .7338 2.489 -.5301 -.2838 -.2301 -.2188
.1688 .2654 .4174 .7338 2.489 -.5301 -.2838 -.2301 -.2188
.1688 .2654 .4174 .7338 2.489 -.5301 -.2838 -.2301 -.2188

-.1713 -.1067 -.0687
-.1713 -.1067 -.0687
-.1713 -.1067 -.0687

£=10
-.1633 -.1264 -.0907 -.0542 .0051 -.1210 -.0721 -.0617 -.0595
-.1633 -.1264 -.0907 -.0542 .0051 -.1210 -.0721 -.0617 -.0595
-.1633 -.1264 -.0907 -.0542 .0051 -.1210 -.0721 -.0617 -.0595

-.0499 -.0355 -.0259
-.0499 -.0355 -.0259
-.0499 -.0355 -.0259

£=20
-.0355 -.0314 -.0272 -.0235 -.0200 -.0141 -.0115 -.0106 -.0103
-.0355 -.0314 -.0272 -.0235 -.0200 -.0141 -.0115 -.0106 -.0103
-.0355 -.0314 -.0272 -.0235 -.0200 -.0141 -.0115 -.0106 -.0103

-.0092 -.0072 -.0056
-.0092 -.0072 -.0056
-.0092 -.0072 -.0056

I
|
I

£=30
-.0147 -.0131 -.0115 -.0100 -.0086 -.0061 -.0050 -.0046 -.0045
-.0147 -.0131 -.0115 -.0100 -.0086 -.0061 -.0050 -.0046 -.0045
-.0147 -.0131 -.0115 -.0100 -.0086 -.0061 -.0050 -.0046 -.0045

-.0040 -.0032 -.0025
-.0040 -.0032 -.0025
-.0040 -.0032 -.0025

Note: I (=Case 1), II (=Case 2) and III (=Case 3).
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TABLE 3.3-1, CONTINUED

[n =10]

dy -049 -04 -03 -02 -0.1 0.1 02 024 025 03 04 0.49

£=0
1721 5791 -.2207 2.714 -1.448 .2075 -.0748 -.0453 -.0391 -.0128 .0228 .0430
.9486 -1.457 .5816 .5671 .5260 .4506 .4287 .4211 .4192 .3837 .3937 .3793
.6779 .6236 .4388 .8594 .2579 .3985 .3920 .3878 .3866 .3657 .3658 .3504

= = -

=2
I .2630 .5569 -.2777 2.646 -1.517 -3017 -.1467 -.1304 -.1237 -.0953 -.0555 -.0314
IO .6601 .6371 1.464 -.7537 -.2933 -.2613 -.1395 -.1058 -.0984 -.0658 -.0184 -.0109
I .8593 1.562 -.9605 .6082 -3.122 -.3478 -.1825 -.1427 -.1342 -.0975 -.0458 -.0149

£=5
I -.0903 -.0441 .0119 .0945 .3993 -.2136 -.1173 -.0973 -.0931 -.0752 -.0502 -.0348
O -.1095 .0156 .0932 .2102 .4810 -.3674 -.1889 -.1534 -.1461 -.1154 -.0742 -.0497
o -.1027 -.0142 .0615 .1812 .6322 -.3039 -.1620 -.1330 -.1269 -.1014 -.0664 -.0452

£=10
I -.0892 -.0740 -.0594 -.0455 -.0277 -.0452 -.0311 -.0275 -.0267 -.0231 -.0172 -.0130
IO -.1095 -.0895 -.0706 -.0526 -.0289 -.0579 -.0387 -.0341 -.0331 -.0285 -.0211 -.0159
III -.1027 -.0847 -.0676 -.0514 -.0306 -.0518 -.0354 -.0313 -.0304 -.0262 -.0195 -.0146

£=20
I -.0237 -.0211 -.0184 -.0159 -.0136 -.0096 -.0079 -.0073 -.0071 -.0063 -.0050 -.0038
I -.0253 -.0224 -.0196 -.0169 -.0146 -.0102 -.0084 -.0077 -.0075 -.0067 -.0053 -.0041
I -.0247 -.0220 -.0192 -.0166 -.0142 -.0100 -.0082 -.0075 -.0074 -.0066 -.0051 -.0040

£=30
I -0112 -.0101 -.0089 -.0077 -.0066 -.0047 -.0039 -.0035 -.0035 -.0031 -.0024 -.0019
O -.0116 -.0104 -.0091 -.0079 -.0068 -.0048 -.0040 -.0037 -.0036 -.0032 -.0025 -.0020
oI -.0115 -.0103 -.0090 -.0078 -.0067 -.0048 -.0039 -.0036 -.0035 -.0032 -.0025 -.0019
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TABLE 3.3-2

Asymptotic Bias of MDE in ARFIMA(1,d,,0) in Ratios (F?)

$=04
[n=1]
dye -049 -04 -03 -02 -0.1 0.1 0.2 024 025 03 04 049
£=0
I 4613 .4353 4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069
O .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069
M .4613 .4353 .4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069
£=2
I .7322 .8796 1.258 -.0700 -2.120 -.2401 -.1126 -.0813 -.0747 -.0474 -.0143 -.0008
O .7322 .8796 1.258 -.0700 -2.120 -.2401 -.1126 -.0813 -.0747 -.0474 -.0143 -.0008
I .7322 .8796 1.258 -.0700 -2.120 -.2401 -.1126 -.0813 -.0747 -.0474 -.0143 -.0008
£=35
I -.0106 .0401 .0986 .1803 .3999 -.2030 -.0864 -.0623 -.0574 -.0378 -.0132 -.0010
II -.0106 .0401 .0986 .1803 .3999 -.2030 -.0864 -.0623 -.0574 -.0378 -.0132 -.0010
III -.0106 .0401 .0986 .1803 .3999 -.2030 -.0864 -.0623 -.0574 -.0378 -.0132 -.0010

I -.0900 -.0694 -.0509
o -.0900 -.0694 -.0509
I -.0900 -.0694 -.0509

-.0347
-.0347
-.0347

-.0171
-.0171
-.0171

£=10
.0062 -.0142 -.0107 -.0101
.0062 -.0142 -.0107 -.0101
.0062 -.0142 -.0107 -.0101

-.0074 -.0030 -.0001
-.0074 -.0030 -.0001
-.0074 -.0030 -.0001

I -.0168 -.0148 -.0102
II -.0168 -.0148 -.0102
III -.0168 -.0148 -.0102

-.0077
-.0077
-.0077

-.0038
-.0038
-.0038

£=20
.0001 -.0013 -.0020 .0020
.0001 -.0013 -.0020 .0020
.0001 -.0013 -.0020 .0020

-.0014 -.0005 -.0001
-.0014 -.0005 -.0001
-.0014 -.0005 -.0001

I -.0060 -.0037 -.0018
I -.0060 -.0037 -.0018
I -.0060 -.0037 -.0018

.0008
.0008
.0008

-.0006
-.0006
-.0006

=30
.0010 -.0000 -.0009 -.0009
.0010 -.0000 -.0009 -.0009
.0010 -.0000 -.0009 -.0009

-.0006 -.0000 -.0001
-.0006 -.0000 -.0001
-.0006 -.0000 -.0001
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TABLE 3.3-2, CONTINUED

[n =10]

de -049 -04 -03 -02 -0.1 0.1 0.2 024 025 03 04 0.49
=0

I .9485 -.8312 .2217 -153.2 .5731 .0842 .1101 .1063 .1046 .0921 .0529 .0057

IO .4357 .4807 .5512 -.7021 .1923 .2620 .2213 .2021 .1970 .1678 .0926 .0099

I .3767 .3708 .3692 9999 .2847 .3865 .3627 .3395 .3331 .2992 -.2092 .0094
£=2

I .2955 .4097 .6994 -37.40 1.640 -.2135 -.0954 -.0696 -.0642 -.0419 -.0139 -.0009

O .3775 .4229 .3904 .3860 .4067 -.2247 -.1053 -.0768 -.0724 -.0472 -.0080 .0064

I .3573 .4301 .6850 9999 1.819 -.2320 -.1216 -.0940 -.0878 -.0664 -.0320 -.0009
£=S5

I -.0741 -.0399 -.0044 .0380 .1316 -.0986 -.0431 -.0319 -.0296 -.0200 -.0073 -.0006

I -.0682 -.0257 .0011 .0524 .1460 -.0951 -.0494 -.0394 -.0374 -.0292 -.0234 .0038

I .0317 .0281 -.0076 .0262 .1033 -.0938 -.0495 -.0384 -.0359 -.0275 -.0151 -.0008
£=10

I -.0526 -.0422 -.0326 -.0241 -.0155 -.0133 -.0079 -.0064 -.0059 -.0043 -.0018 -.0001

IO -.0154 .0055 -.0033 -.0090 .0060 .0107 -.0040 -.0066 -.0063 -.0049 -.0028 -.0003

III .0600 -.0066 -.0024 -.0089 -.0082 -.0116 -.0075 -.0066 -.0060 -.0046 -.0022 -.0002
£=20

I -.0125 -.0106 -.0086 -.0068 -.0054 -.0025 -.0018 -.0016 -.0015 -.0010 -.0004 -.0001

O .0600 -.0300 .0300 .0400 -.0094 .0103 -.0000 -.0038 -.0015 -.0011 -.0000 -.0000

I .0600 -.0300 -.0068 -.0008 -.0021 -.0024 -.0008 -.0016 -.0015 -.0010 -.0004 -.0000
£=30

I -.0058 -.0049 -.0038 -.0026 -.0014 -.0012 -.0005 -.0008 -.0007 -.0005 -.0000 -.0000

IO .0600 -.0300 .0300 -.0700 -.0700 .0079 -.0000 -.0007 -.0007 -.0005 -.0000 -.0000

.0600 -.0300 .0300 .0008 .0002 -.0012 -.0001 -.0008 -.0007

-.0005 -.0000 -.0000
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TABLE 3.3-3

Asymptotic Bias of MDE in ARFIMA(1,d,,0)
in Common Denominator Ratios (F*)

¢$=04
[n=1]
de -049 -04 -03 -02 -0.1 01 0.2 024 025 03 0.4 049
=0
I .4613 .4353 4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069
O .4613 .4353 4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069
I .4613 .4353 4033 .3671 .3289 .2382 .1861 .1639 .1582 .1291 .0671 .0069
£=2
I .7322 8796 1.258 -.0700 -2.120 -.2401 -.1126 -.0813 -.0747 -.0474 -.0143 -.0008
O .7322 .8796 1.258 -.0700 -2.120 -.2401 -.1126 -.0813 -.0747 -.0474 -.0143 -.0008
m .7322 .8796 1.258 -.0700 -2.120 -.2401 -.1126 -.0813 -.0747 -.0474 -.0143 -.0008
=5
I -.0106 .0401 .0986 .1803 .3999 -.2030 -.0864 -.0623 -.0574 -.0378 -.0132 -.0010
I -.0106 .0401 .0986 .1803 .3999 -.2030 -.0864 -.0623 -.0574 -.0378 -.0132 -.0010
I -.0106 .0401 .0986 .1803 .3999 -.2030 -.0864 -.0623 -.0574 -.0378 -.0132 -.0010
£=10
I -.0900 -.0694 -.0509 -.0347 -.0171 .0062 -.0142 -.0107 -.0101 -.0074 -.0030 -.0001
I -.0900 -.0694 -.0509 -.0347 -.0171 .0062 -.0142 -.0107 -.0101 -.0074 -.0030 -.0001
I -.0900 -.0694 -.0509 -.0347 -.0171 .0062 -.0142 -.0107 -.0101 -.0074 -.0030 -.0001
£=20
I -.0168 -.0148 -.0102 -.0077 -.0038 .0001 -.0019 -.0020 .0020 -.0014 -.0005 -.0001
I -.0168 -.0148 -.0102 -.0077 -.0038 .0001 -.0019 -.0020 .0020 -.0014 -.0005 -.0001
Il -.0168 -.0148 -.0102 -.0077 -.0038 .0001 -.0019 -.0020 .0020 -.0014 -.0005 -.0001
£=30
I -.0060 -.0037 -.0018 .0008 -.0006 .0010 -.0007 -.0009 -.0009 -.0006 -.0000 -.0001
O -.0060 -.0037 -.0018 .0008 -.0006 .0010 -.0007 -.0009 -.0009 -.0006 -.0000 -.0001
I -.0060 -.0037 -.0018 .0008 -.0006 .0010 -.0007 -.0009 -.0009 -.0006 -.0000 -.0001
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TABLE 3.3-3, CONTINUED

[n=10]

de -0.49 -04 -03 -02 -0.1 0.1 0.2 024 025 03 0.4 049

£=0
I .4018 .3596 .3109 .2624 .2159 .1360 .1023 .0894 .0862 .0700 .0366 .0038
I 3124 2997 .2849 .2692 .2528 .2181 .2128 .1964 .1944 .1795 .0997 .0100
I .3892 3756 .3594 .3412 .3200 .2816 .2397 .2110 .2036 .1652 .0839 .0084

£=2
I 4114 4653 .5960 -24.45 -2.189 -.2458 -.1031 -.0736 -.0676 -.0432 -.0140 -.0000
IO .3197 .3594 4121 .2500 -1.468 -.2426 -.1081 -.0791 -.0731 -.1179 -.0060 .0076
I 4321 .4180 .5319 -14.88 -1.496 -.2718 -.1384 -.1055 -.0982 -.0686 -.0284 -9999

£=5
I -.0673 -.0282 .0109 .0562 .1525 -.1164 -.0469 -.0341 -.0315 -.0209 -.0075 .0006
IO -.0733 -.0334 .0016 .0490 .0859 -.1057 -.0520 -.0395 -.0368 -.0264 -.0158 .0044
I .0600 .0107 .0018 .0351 .1090 -.1662 -.0902 -.0711 -.0670 -.0541 -.0326 -.0021

£=10
I -.0627 -.0492 -.0371 -.0269 -.0170 -.0150 -.0086 -.0069 -.0065 -.0047 -.0019 -.0000
II -.0347 -.0034 -.0277 .0216 .0219 -.0122 -.0056 -.0068 -.0054 -.0043 -.0019 -.0000
m .0600 .0700 -.0271 -.0088 -.0024 -.0128 -.0091 -.0077 -.0075 -.0063 -.0041 -.0000

£=20
I -.0137 -.0116 -.0094 -.0075 -.0059 -.0031 -.0021 -.0017 -.0016 -.0012 -.0005 -.0000
O .0600 .0700 -.0300 -.0700 -.0700 .0251 -.0000 -.0016 -.0011 -.0003 -.0003 -.0000
o .0600 .0700 -.0300 -.0023 .0181 -.0004 -.0000 -.0015 -.0011 -.0012 -.0006 -.0000

£=30
I -.0062 -.0052 -.0043 -.0034 -.0027 -.0015 -.0010 -.0008 -.0007 -.0006 -.0002 -.0000
O .0600 .0700 -.0300 -.0700 -.0700 .0699 .0000 .0000 .0002 .0002 -.0000 -.0000
I .0600 .0700 -.0300 .0398 .0141 -.0004 .0001 -.0001 -.0004 .0001 -.0000 -.0000
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TABLE 3.4

Asymptotic Bias of MDE in ARFIMA(1,d,,0)

d. =0.2
[n=3]
¢ -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0.9
GLS (F)
£=20
I -2849 .0016 .0011 .0000 -.0025 -.0096 -.0461 -.3100 .0113
II -.0652 .0016 .0011 .0000 -.0026 -.0098 -.0483 -.3112 .0283
I -.0813 .0016 .0011 .0000 -.0026 -.0097 -.0471 -.3113 .0163
£=30
I -.0042 .0008 .0005 -.0000 -.0012 -.0044 -.0165 -.1947 -.2147
I  .0002 .0008 .0005 -.0000 -.0012 -.0045 -.0168 -.1996 -.2065
III -.0006 .0008 .0005 -.0000 -.0012 -.0045 -.0166 -.1964 -.2128
Ratios (F)
£=20
I -.0057 .0000 .0000 -.0000 -.0000 -.0016 -.0092 -.0937 -.1261
I -.0000 .0000 .0000 .0000 .0000 -.0000 .0017 -.0816 -.0876
I -.0000 .0000 .0000 .0000 .0000 -.0009 -.0092 -.0941 -.1267
£=30
I .0000 .0000 .0000 .0000 -.0001 -.0000 -.0028 -.0363 -.1411
II .0000 .0000 .0000 .0000 -.0000 -.0000 .0000 -.0217 -.1182
III .0000 .0000 .0000 .0000 -.0000 -.0001 -.0033 -.0373 -.1433
Common Denominator Ratios (F°)
£=20
I -.0071 .0004 .0003 .0000 -.0006 -.0023 -.0097 -.0972 -.1242
II .0000 .0000 .0000 .0000 .0000 -.0000 -.0030 -.0872 -.1062
I .0000 .0000 .0000 .0000 .0000 -.0019 -.0092 -.1000 -.1199
£=130
I .0001 .0001 .0000 .0000 -.0003 -.0011 -.0038 -.0388 -.1436
II .0000 .0000 .0000 .0000 .0000 -.0000 .0000 -.0352 -.1290
III .0000 .0000 .0000 .0000 .0000 -.0009 -.0030 -.0382 -.1440
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TABLE 3.4, CONTINUED
[n =10]

& -06 -04 -02 0.0 0.2 0.4 0.6 0.8 0.9
GLS (F)
£=120

I -.1208 .0013 .0009 .0000 -.0021 -.0079 -.0357 -.2174 -.0535
II -.0168 .0014 .0010 .0000 -.0022 -.0084 -.0398 -.2995 -.0035
III -.0095 .0014 .0010 .0000 -.0022 -.0082 -.0373 -.2952 -.0389

£=30
I -.0015 .0007 .0005 -.0000 -.0011 -.0039 -.0142 -.1641 -.2461
II .0006 .0007 .0005S -.0000 -.0011 -.0040 -.0148 -.1774 -.2247
III  .0006 .0007 .0005 -.0000 -.0011 -.0039 -.0145 -.1687 -.2419

Ratios (F)
£=20
I -.0030 -.0000 .0000 -.0000 -.0004 -.0018 -.0077 -.0799 -.1310
II -.0000 .0000 .0000 .0000 -.0000 -.0000 -.0017 -.0729 -.0862
I .0000 .0000 .0000 .0000 -.0000 -.0008 -.0077 -.0804 -.1137

£=30
I .0000 .0000 .0000 -.0000 -.0000 -.0005 -.0025 -.0307 -.1356
II -.0000 .0000 .0000 .0000 .0000 -.0000 .0000 -.0184 -.1164
III -.0000 .0000 .0000 .0000 .0000 -.0001 -.0029 -.0316 -.1377

Common Denominator Ratios (F*)
£=20
I -.0038 .0004 .0002 .0000 -.0006 -.0021 -.0084 -.0860 -.1310
II -.0000 -.0000 -.0000 .0000 .0000 -.0000 .0007 -.0896 -.1032
III .0000 .0000 .0000 .0000 -.0000 -.0010 -.0084 -.1084 -.1136

£=30
I .0002 .0002 .0001 -.0000 -.0003 -.0010 -.0035 -.0339 -.1401
IIr .0000 .0000 -.0000 .0000 -.0000 -.0000 .0000 -.0271 -.1342
III .0000 .0000 .0000 .0000 -.0000 -.0001 -.0029 -.0356 -.1444
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1. INTRODUCTION

It is now well established that many economic time series contain a unit root.
Such series are I(1) in the sense that they are nonstationary but their first difference is
stationary. Such series can move in random directions over arbitrarily long time
periods. However, in some cases economic theory indicates that certain pairs of
series are related and should not diverge too much from each other. This may be
reasonable because, when certain economic variables begin to diverge, market forces
or government intervention may reestablish their long run relationship.

Suppose that {x,} and {y:} are nonstationary unit root processes where y, is a
scalar but x, may be a vector. Consider a linear combination of those processes:

zy =y —XtA,
where A is a nonrandom vector. Generally such a linear combination z will also be a
unit root process. As long as z is a unit root process, whether A is zero or not does
not make much difference (as we will see later) and we need first-differencing to deal
with such cases.

However, when a linear combination of the unit root processes y; and x; is an

I(d) process with d <1, it is said that {x,} and {y:} are ‘cointegrated’ and A is a

cointegrating vector (or coefficient); see Engle and Granger (1987). An alternative
definition of cointegration is that a linear combination of the unit root processes y, and
X, is stationary. This would rule out the case 1/2 < d < 1. Cointegration implies that

although there are permanent changes in the individual series x and y over time, there
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is some long-run equilibrium relationship tying them together, which is represented by

the linear combination z,.

There are several standard examples of cointegration relationships. Davidson,
Hendry, Srba and Yeo (1978) show that even though both consumption and income
are unit root processes, in the long run the difference between the log of consumption
and the log of income appears to be a stationary process. Kremers (1989) proposes
that the difference between the log of government debt and the log of GNP is a
stationary process even though each is not stationary. Also, although many empirical
studies show significant deviations from the Purchasing Power Parity (PPP)
hypothesis in the short run, it is argued that the PPP hypothesis works in the long run,
in the sense that a cointegration relationship exists among the foreign price index, the
domestic price index and the nominal exchange rate; alternatively between a relative
price index and the nominal exchange rate. For further details, see Cheung and Lai
(1993) and Baillie and Selover (1987).

The standard statistical treatments of cointegration deal with the case of a
short memory error; i.e., a linear combination of nonstationary I(1) processes
becomes a stationary I(0) process. Under short memory error, the properties of
cointegrating coefficient estimates are well known. OLS is consistent and converges
in probability at the rate of T rather than the usual rate of T"2. However, in general
OLS is asymptotically biased, and it does not lead to asymptotically valid inference.
There are many other efficient estimates of cointegrating coefficients. For example,

see Johansen (1988, 1991), Stock and Watson (1988, 1993), Phillips and Hansen
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(1990), Saikkonen (1991) and Park (1992). These methods also lead to

asymptotically valid inference.

However, it is possible that the linear combination of nonstationary unit root
processes may be an I(d) process with 0< d <1. This case is referred to as fractional
cointegration in Baillie and Bollerslev (1994) and Cheung and Lai (1993). If the error
in the cointegrating relationship is I(d) with 0< d <1/2, it is still stationary but it has
more persistent autocorrelations than in the usual short memory case. If 1/2< d <1,
the error in the cointegrating relationship is not stationary but it is mean-reverting, so
that a shock in a given time period will finally disappear in the long run.

Therefore, in this chapter our interest is in the case that the error in a
cointegrating relationship is I(d) with 0< d <1, rather than in the usual model of
cointegration with errors that are 1(0). For this case, we derive the asymptotic
distribution of the least squares estimator. Least squares is consistent, and has a rate
of convergence to its asymptotic distribution that depends on d. This can be
compared to least squares in differences, which is not consistent if the errors and
regressors are correlated, and which converges at the usual T'? rate for all values of d
in the range 0< d <1. We also provide some simulations that support the relevance of

these asymptotics in samples of moderate size.

2. COINTEGRATION
First we define cointegration in a way similar to that in Engle and Granger

(1987).
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Definition of Cointegration: The components of an Nx1 vector z are said to be
cointegrated of order a, b, i.e. z ~ CI(a,b), if
(i) z is I(a) for a >1/2 and

(ii) there exists a non-zero vector o such that o'z, ~ I(a-b), a>b > 0.

If z. has more than 2 components (N > 2), then we may have more than one
cointegrating vector. When there exist h linearly independent cointegrating vectors
with h < N-1, we can combine them to make a cointegrating matrix C (Nxh). The
rank of C is h and is called as the cointegrating rank.

There are at least two reasons why cointegration is important. First, in a
regression with nonstationary variables, cointegration is a useful way of distinguishing
a meaningful regression from a ‘nonsense’ (Yule (1926)) or ‘spurious’ (Granger and
Newbold (1978)) regression. In a spurious regression the error is I(1) and least
squares does not have useful properties. Second, the Error Correction Representation
(ECR) exists only when the nonstationary variables are cointegrated. This is
important since the ECR provides a sensible way of combining the information
contained both in levels and differences. The ECR models the dynamics of both
short-run changes and the long-run adjustment process simultaneously.

In the short memory case (i.e., a = b =1), the problem of estimation of the
cointegrating vector has been studied by many economists. OLS is consistent and
converges at rate T, which is faster than the usual T'? rate; see Stock (1987) and
Phillips and Durlauf (1986). Phillips and Park (1988) showed that when the error in

cointegrating relationship follows a stationary AR process, OLS and Generalized
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Least Square (GLS) are asymptotically equivalent. There are many asymptotically

efficient estimates, which also lead to asymptotically valid inference. Johansen (1988)
derived a maximum likelihood estimator of the dimension of the space of the
cointegrating vectors and tests of linear hypotheses on those vectors. Phillips and
Hansen (1990) suggested a ‘fully modified’ least squares estimator. The method of
adding leads and lags was suggested by Saikkonen (1991), Phillips and Loretan
(1991) and Stock and Watson (1993). Park (1992) proposed an OLS procedure after
transforming both regressors and dependent variables.

There are many useful ways of representing cointegrated variables, including
the ECR. The Vector Autoregressive Representation (VAR) is a basic tool for
analyzing nonstationary variables by making them stationary through first-
differencing. For details, see Engle and Yoo (1987) and Ogaki and Park (1992).
Johansen (1988) provided the Interim Multiplier Representation (IMR) by modifying
the error correction representation. The Triangular Representation (TR) by Phillips
(1991) divides the cointegrated system into exactly cointegrated variables and other
non-cointegrated variables. The Common Trend Representation (CTR) in Stock and
Watson (1988) decomposes the cointegrated nonstationary system into a stationary
component plus linear combinations of common deterministic trends and common
random walk variables. The Granger Representation Theorem in Engle and Granger
(1987) and Johansen (1991) gives several interesting results on the representation of

the cointegrated system.
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3. ASYMPTOTICS FOR OLS ESTIMATES OF COINTEGRATING
COEFFICIENTS

We consider the following data generating process:

(1) Ye =X B+u, t=1,2,., T,
(2) X = Xg1 HVy,
3) (1-L)%u, =¢,,

where {x;} and {y,} are the observed unit root series and {v,} and {€,} are assumed to
be short memory processes. For simplicity we consider the case that x, is a scalar;
thus there is at most one cointegrating relationship between y, and x,. In general, the
error process {u,}, which is a linear combination of unit root processes, may be
another unit root process. However, when f is not zero and {u,} is an I(d) process
with 0< d <1, {x,} and {y.} are cointegrated as in Engle and Granger (1987). This
model does not include intercept or deterministic time trend. To do so is a feasible

but non-trivial extension of this analysis.

A. Short Memory Case (d = 0)

We first consider the case that d =0 in (3) above. Therefore u, = ¢, in (3)
above, and we have the standard case of cointegration considered in the literature.
We will give a brief summary of the results for this case, for purposes of comparison

with our results for the case of fractional cointegration.
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For simplicity, and to ensure comparability with our treatment of the fractional

case, we consider the special case in which the errors {v,} and {&} are only

2
8‘]~ iid (0, =) with >:=[°= °V;].

contemporaneously correlated; i.e., [
A Ovwe Oy

We begin with the following lemma which can be obtained from Phillips (1988) and

Phillips and Durlauf (1986):

LEMMA 1:

T 1
() £ Xxci20 = [Bi@)B, (),
t 0

1 ‘
(i) — > x{ = [Bf (r)ar,
T 3 0

.

(1ii) ?the, — 50,
t

B,(1)

where B(r) = [B )
2

}= Brownian motion with covariance matrix X.

We note that, in a more general setting, the Brownian motion B(r) would have

as its covariance matrix the “long-run covariance matrix” of v, and €, defined as:

’

Lyv | S

NN NpNE

Q=limr_, E : T | I
"/—th:st ﬁ;st
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However, because we have assumed that v, and €, are iid, the long-run covariance

matrix O and the contemporaneous covariance matrix Z are equal.

The OLS estimate of the cointegrating coefficient B is:

T T
th)’t th“t
A t=1 _ =1
4 Bt —=p+tl—
> x? > xt
t=1 t=1

T
thet
- B+ t=1

-
X
t=1

Thus

T—l Z X¢-1€¢ + T—IZVtet

T(B-B) =
(5) B-B) R I =

since ) Xi€y = ) Xy_€ + D Vi€ . Then, using LEMMA 1, one obtains the

following asymptotic result:

1
. [Bi(r)By (1) + 0,
(6) TB-p)=>1—
[Bi(r)dr
0

Therefor ﬁ—B is O,(1/T) when the error u, is short memory. OLS is

consistent whether or not v; and &, are correlated (i.e., whether or not o, = 0), but

there is a bias in the asymptotic distribution when o,. # 0. These are well-known,

standard results.

B. Spurious Regression Case (d =1)
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We next consider the case of a spurious regression, as defined in Granger and
Newbold (1978), for which a rigorous asymptotic analysis was given by Phillips
(1986). This is the case in which the error process u, in (1) above is I(d) with d = 1;
i.e., a unit root process. Thus we write:

Up = U + Mg,

where n, is I(0). We will consider that {v,} and {n.} are only contemporaneously

2
correlated, so that [nt}~ iid (0, £,), T, = On cvz'q .
vt o"qv CV

Then the following lemma can be obtained from Philips (1986):

B,(r)

LEMMA 2: Define
B3(r)

]= Brownian motion with covariance matrix Z,.

Then

1 J ¢
T—zzxtut = [ B(r)B;(r)dr.
t 0

Again, in a more general setting the Brownian motion in LEMMA 2 would have as its

covariance matrix of v; and 1., say 2, defined as

’

— A% —— A%

. Tty et
Ql=hm-r__mE 1 {- 1 -;-
=2M || =2.M

NRA WA

However, in the iid case QQ, and X, are the same.

Using LEMMA 1 and LEMMA 2, we obtain Phillips’ result:
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1< 1
X [ Bi(0)B3(r)dr
M G-P=—7% =4
sztz IBf(r)dI
t 0

This result implies that § is not consistent, since (8—PB) is O,(1) and therefore does

not diminish as T—o.
The case discussed differs slightly from the spurious regression in Granger and

Newbold (1978), in that B is not necessarily zero. However, this is not important,

since the asymptotic distribution of (ﬁ —B) does not depend on .

C. Stationary Long Memory Error Case (0< d <1/2)

We now turn to the case that the error u, is I(d) 0< d <1/2, so that it is a
stationary, long memory process. This is the leading case of fractional cointegration.
An asymptotic analysis of: OLS or other methods of estimation of the cointegrating
vector B has not previously been done.

As above, we consider the case that the innovations (v,, €)' are iid (0, X),

with X as in section 3.A above. We have the following (standard) result for the joint

convergence of partial sums of v, and &,:

[T)
Z"t

1| & B,(1)
(8) —ﬁg;i', :B(r)=|:B:(r)]’

t=1

€¢
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where B(r) is a Brownian motion with covariance matrix . The basic result that we
need, however, is an expression for the joint limit of the partial sums of v; and u;. The
problem is the need for a joint limit. The marginal limiting distributions follow from

existing results in the literature. For v,, we have

[rT]

1
%) T‘T‘Evt = By(r),

where B(r) is a Brownian motion with variance 03; this is the marginal statement

corresponding to (8) above. For u,, we have convergence to a fractional Brownian
motion, as given by equation (27) of Chapter 1:

1 Ul
(10) qut :>(l)dwd(r),
t=1

where coﬁ = cgl"(l -2d)/[(1+2d)I'(1+d)['(1-d)] and W«(r) is the solution to

1

(1) Wy(r)= r@+

j (r-9)4dw(s),
0

with W(s) a standard Wiener process.

With these marginal results in hand, the only question is how to express the
joint result so that it properly reflects the covariance between the two limiting
processes. This covariance is also reflected in the covariance between B,(r) and By(r)

in (8) above. Thus the standard Wiener process W(d) is in (11) above should in fact

be the specific process c;le(r), to capture this covariance. More specifically,

define
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D [ gtdB,9),

1) RO=3005

0
where k(d) =03 /62 =T(1-2d)/[(1+2d)[(1-d)['(1+d)]. Then we have the joint
convergence result as given in the following lemma.
LEMMA 3: Suppose that (v, €)' are iid (0, Z), that [B(r), B5(r)]’ isa
Brownian motion with covariance matrix Z, that Fy(r) is the fractional
Brownian motion defined in (12), and that the model (1)-(3) above holds with

0<d <1/2. Then

LS
— v
TE | B
1 @ TR
Td+l/2 P

Perhaps surprisingly, the joint convergence result of LEMMA 3 for a vector of
ordinary and fractional Brownian motions does not seem to exist in the statistical
literature. Our argument leading to LEMMA 3 was somewhat heuristic, but we
believe that it captures the essential ideas that would be part of a more rigorous proof.
In any case, with LEMMA 3 in hand we can proceed to the analysis of least squares
for the fractionally integrated model with 0< d <1/2.

LEMMA 4: Let the same conditions hold as in LEMMA 3. Then
1 & ;
Tl—ﬂizxt“t = IBl(f)dFd(f)-
t 0

Proof: See Appendix.
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Therefore,under the conditions of LEMMA 3, we have (using LEMMA 1, part

(i), and LEMMA 4) the following result for the asymptotic distribution of the OLS
estimate ﬁ in (1):

1 & t
=Y xu,  [Bi(r)dFy(r)
14y TO@F-p-T ¢ 0

1 T ) 1 5
szt [ B} (r)ar
t 0

Thus, for the case that the errors in the cointegrating relationship are I(d) with 0< d
<1/2, B-P is Ox(1/T"%) = O,(T*"). In particular, the value of d affects the order in

probability of the OLS estimate.

D. Nonstationary Long Memory Error Case (1/2<d <1)

We now suppose that u,, the error in the cointegrating relationship (1), is 1(d)
with 1/2< d <1. Define d* = d-1, so -1/2< d* <0. Then Au, = p, is I(d*). Let the
innovations be represented by ¢, as in (3) above, so that
(15) (1-L)4u, =(1-L)¥p, =c¢,.

As in section C, we assume that the innovations (v, €,)’ are iid (0, X), so that the
partial sums of v, and & converge jointly to [B,(r), B,(r)]’ as in (8) above. We

define:

(16)  Fga(r)= Y5

r _ 4
Dsan] 97880,

0

corresponding to (12) above. Then
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VLAY

X[ — v
_ t

an | JT || YTE |S[BO
upT) 1 [’fp Fge(r) |’
d*+1/2 * t
T + _Td +1/2 o |

which is similar to the result of LEMMA 4.

LEMMA S: Under the assumptions listed above in this section,
1] T 1 J 1
gy > xquq = }mzx,ut = [ B (r)Fg(r)dr.
t t 0
Proof: See Appendix. [

From LEMMA 1 and LEMMA 5, we therefore have the following result for the

asymptotic distribution of the OLS estimate ﬁ :

1 T 1
~ 1 - sztut IBl(r)Fd:(r)dr
(18) T<H>(B—B)=Td.(B—B)= 1 : :>ol
2 X [B(ryar
t 0

Thus, for the case that the errors in the cointegrating relationship are I(d) with 1/2< d

<1, B-B is O(1/T"%) = O,(T*").

E. Remarks
We have considered the regression of y, on x,, where y, and x, are I(1), and
where the error is I(d). We have considered the cases: d =0, d = 1, 0< d <1/2, and

1/2< d <1. These correspond to all values of d in [0, 1] except d = 1/2, for which the
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necessary convergence result for partial sums of an I(d) process is apparently not

available. While the form of the asymptotic distribution varies across cases, we have
the interesting result that ﬁ— B is Op(l/T"d) for all d in [0, 1] (except perhaps d=1/2).
Our findings can be compared with the result of Cheung and Lai (1993). They
showed that T(l"d's)(ﬁ— B) converges in probability to 0 for all 8 >0. Our findings

confirm their results and provide the exact asymptotics of the OLS estimates in
fractional cointegration relationships.

It is interesting to compare these results to those for another simple estimator;
namely, least squares in first differences. Thus suppose that (1) is differenced to yield
(19) Ay, = AxB+Au,

and a least-squares estimator

T T
> Ax, Ay, > AxyAu,
(20) B=tF—— =B+ ——

T
ZAxtz ZAxtz
t=2 =2
If u, is I(d) with 0< d <1, then Au, is I(d*) with -1< d* <0. From Odaki (1993), this
is a stationary and invertible process. Since Ax, is also a stationary and invertible
process, standard results indicate the following. First, T"IZAxt2 converges in
probability to y,, = E(Axf). Second, if v,, = E(Ax,Au,), then T_IZAxtAut
converges in probability to v,, , and T’I/ZZ:(AxtAut — Y xu) is asymptotically normal

with zero mean. This implies that B converges in probability to B« =B +7v,, /¥ x>
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and VT(B-P.) is asymptotically normal with zero mean. Thus B —B. is Oy(T"?).

Thus, unlike the OLS estimator in levels (ﬁ), E is inconsistent when x, and u, are
correlated. Also unlike ﬁ, the rate of convergence of E does not depend on d. ﬁ

converges faster than ﬁ when d >1/2 (since 1/2> 1-d) but slower than ﬁ when d

<1/2. Thus differencing is a poor idea when d <1/2, but it may be a good idea when d

>1/2.

4. SIMULATION RESULTS

In this section we provide some simulation results that support the relevance of
our asymptotic results of the previous section. The data are generated according the
equations (1)-(3) above. We choose 3 = 1 but this choice is not substantive. We also

choose o,, =0 so that the v, and €& processes are not correlated, even

contemporaneously. The sample sizes considered are T = 50, 100, 250, 500, 1000
and 1500. The number of iterations in the simulation was 10000. The computations
were done in FORTRAN, using the normal random number generator
GASDEV/RANS as in Chapter 2.

Table 4.1 gives results for the OLS estimator of §. It presents the mean, the
standard deviation, and the standard deviation multipied by T Since
asymptotically the least squares estimator has estimation error that is O, (T*'), we
expect the normalized standard deviation to approach a limit as T increases. This

appears to be true in Table 4.1, and in fact the normalized standard deviation does not
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change much over the range from T = 100 to T = 1500. This supports the relevance

of our asymptotic theory, even for only moderate sample sizes. All of the estimates
are essentially unbiased, as would be expected given the strict exogeneity of the
regressors. As d increases with T fixed, the standard deviation of the estimate
increases and the normalized standard deviation of the estimate decreases.

Table 4.2 gives similar results, for a smaller set of values of d, for the estimate
of B obtained by least squares in differences. Once again the estimates are essentially
unbiased. Now the normalized standard deviation is the standard deviation multiplied
by T'?, since asymptotically least squares in differences has an estimation error that is
O,(T"?). The relevance of the asymptotic theory is supported again, since the
normalized standard deviation is more or less constant over different values of T for
any given d. For given T, the standard deviation of the estimate does not depend
strongly on d.

Comparing results in Tables 4.1 and 4.2, we see that, in terms of the standard
deviation of the estimates, least squares in levels dominates least squares in
differences for d < .5, while the opposite is true for d > .5. The estimators have
similar variability when d is close to .5, but the difference between them increases as d
moves away from .5 in either direction. This result is also as expected from the

asymptotics, based on the differing rates of convergence of the two estimators.

5. CONCLUDING REMARKS
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This section has considered the case of fractional cointegration, defined as the
case in which a set of variables is I(1) but the regression error is I(d), d <1. This case
is empirically relevant, and very little is previously known about the properties of
estimates of the regression. We have derived the asymptotic distribution of the
ordinary least squares estimate, under a fairly strong set of assumptions, and
performed simulations that support the relevance of the asymptotic theory.

We assume that similar results would hold under weaker assumptions. In
particular, it would be worthwhile to extend these results to a more general model in
which there are multiple regressors, possibly including intercept and trend, and in
which the innovations are a general short memory process rather than white noise.

The results that we have derived are similar to the results for the usual
cointegration model, in that least squares is consistent, but the asymptotic distribution
is not necessarily centered at zero, and there is no reason to think that the estimator is
efficient or that it leads to asymptotically valid inference. In the cointegration
literature, these findings for the least squares estimator were followed by a large
volume of research that established asymptotically efficient estimators and
asymptotically valid methods of inference. The same considerations should apply to
the case of fractional cointegration, and this would appear to be a valuable future line

of research.
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TABLE 4.1

Mean and Standard Deviation of OLS

Mean

d&=.0 d&=.1 &3 d&=49| d&=51 &=7 &9 d¢=1.0

T=50 1.0000 1.0019 9998  .9992| 1.0008 .9934 .9992| .9998
T=100 | 1.0000 1.0005 .9999 1.0000| .9994 1.0036 .9997| 1.0037
T=250 9999 1.0001  .9997 1.0002| 1.0009 1.0022 .9970( 1.0010
T=500 [ 1.0000 1.0001 1.0001 .9998| .9993 1.0013 1.0005| .9873
T=1000| 1.0001 1.0001 1.0001 .9999| .9994 .9993  .9995| .9942
T=1500| 1.0000 1.0000 1.0001 .9996| 1.0002 .9994 .9957| .9982

Standard Deviation
d&=.0 d=.1 &3 d&=49| d=51 &7 &9 d&=1.0
T=50 .0668 0757 .1092 .1612 .1703 .2703 .4694 .6517

T=100 .0326 .0411 .0675 .1125| .1197 .2181  .4339| .6295
T=250 .0130 0177 .0350 .0705| .0766 .1658 .3989| .6230
T=500 .0066 .0094 .0216 .0494| .0546 .1335 .3689| .6255
T=1000( .0033 .0052 .0133 .0345| .0389 .1081 .3356| .6355
T=1500| .0022 .0036 .0098 .0282] .0319 .0972  .3298| .6341

T'. Standard Deviation

d&=.0 d&=1 d&=3 d=49| d&=51 &=7 d&=9| d&=1.0

T=50 3.34 2.56 1.69 1.19 1.16 .874 .694 .652
T=100 3.26 2.59 1.70 1.18 1.14 .868 .688 .630
T=250 3.25 2.55 1.67 1.18 1.15 .869 .693 .623
T=500 3.30 2.52 1.67 1.18 1.15 .861 .687 .626
T=1000 3.30 261 1.67 1.17 1.15 .859 .670 .636
T=1500 3.30 2.60 1.64 1.18 1.15 .872 .685 .634
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TABLE 4.2

Mean and Standard Deviation of OLS in Differences

Mean

d&=.1 &3 &E49 d&51 d&=.7 d&=9 d&l1.0
T=50 1.0029 1.0072 1.0000 1.0007 1.0028 1.0004 1.0003
T=100 1.0016 1.0012 1.0012 9987 1.0016 1.0007 1.0008
T=250 9997 1.0003 1.0005 .9999 9991 1.0014 .9999
T=500 .9989 .9997 9998 1.0001 1.0006 1.0002 .9995
T=1000 | .9996 .9997 1.0009 1.0002 .9996 1.0002 .9995
T=1500 | 9995 9999 .9997 1.0003 1.0006 1.0001 .9999

Standard Deviation

&1 &3 &E49 d¢&.51 d&=7 &9 d&l1.0
T=50 .1992 .1828 .1694 .1690 .1560 .1505 .1470
T=100 .1394 .1260 1156 .1160 .1091 .1033 .1017
T=250 .0856 .0773 0717 0715 .0666 .0644 .0638
T=500 .0614 .0545 .0508 .0503 .0468 .0453 .0447
T=1000 .0432 .0390 .0360 .0356 .0340 .0318 .0316
T=1500 .0350 .0320 .0296 .0292 .0274 .0258 .0259

TV2. Standard Deviation
d=.1 d=3 =49 d¢&.51 d&=.7 d&=9 d&=1.0

T=50 141 1.29 1.20 1.20 1.10 1.06 1.04
T=100 1.39 1.26 1.16 1.16 1.09 1.03 1.02
T=250 1.35 1.22 1.13 1.13 1.05 1.02 1.01
T=500 1.37 1.22 1.14 1.12 1.05 1.01 1.00
T=1000 1.37 1.23 1.14 1.13 1.08 1.01 1.00
T=1500 1.36 1.24 1.15 1.13 1.06 1.00 1.00




103
APPENDIX

Proof of LEMMA 4: Note that x, is the partial sum of the innovations v,. Define Z, to

t
be the partial sum of the u;: Z; = Zu j- Forre[0, 1], define the sample version of
=1

the processes B(r) and F4(r) as follows:

[ 0, r<l
X (r)—ix —<—l—x t r<t—+1
T ﬁ [fT] ﬁ t> = T
1
—XxT, =1
VT
( 0, r<—
1 1 t t+1
ZT(T)=WZ[rT] =) ﬁzt, TST<T
1
—Z7, =1
VT
Then
[xT(r)] [Bl(f)]
=
Z1(r) Fy(r)
1 1
[ x1(r)4Z(r) = [ By (r)dFy ().
0 0
Thus,

d LI 1 -
{ xp(r)dZ(r) = E(ﬁ Xt ogpz %) (o8 Phillips (1986, p327))
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1
1 T
= 7 D Xe gty = [ By()dFy(r).
T t 0
1 1 1
ut }I—Nthut = szt—l“t TI—Mthut. So we need to show that
t
——= > veug > 0. To do so, we write

(%zt;vtu,Jz < [%;v,’)(%;xﬂ

as in Cheung and Lai (1993, p106). Then —th 02, Zut — 62, where the
t

Tlﬂi

first result is standard and the second result follows from Hosking (1995). So

Z}—thut is bounded in probability and TILMthut — 0 for d >0. [
t t

Proof of LEMMA 5: Define xt(r) as above, and

1
Ur(r)= W“my

Then
1 1
[xr(r)Ur(r)dr = [ By(1)Fye(r)dr
0 0

because of the joint convergence result (17). But

t/T

j xp(r)Ur(r)dr = Z [x(r)Ur(r)dr

t=1(t-1)/T



1
= [ By(r)Fg(r)dr
0
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This dissertation considered the ARFIMA(p,d,q) process, which can apply to

many economic time series. The long-run characteristics of an ARFIMA(p,d,q)
process, such as stationarity, mean-reversion and persistence of autocorrelations, are
determined by the differencing parameter value d. We consider the case that the value
of d is in the range -1< d <1. Ifd = 1 such a series is a unit root process and if -1< d
<1 and d # O it is a fractionally integrated process or long memory process. When
d=0, it is a usual stationary short memory process.

In this dissertation we showed how the KPSS unit root test works in
distinguishing long memory processes from unit root processes. Our asymptotic
findings indicate that the KPSS unit root test is consistent against stationary long
memory alternatives with -1/2< d <1/2, but it is not consistent against nonstationary
long memory alternatives with 1/2< d <3/2. This implies that the KPSS statistic can
consistently distinguish between short memory processes, stationary long memory
processes and nonstationary processes. Dickey-Fuller type tests can consistently
distinguish a unit root from an I(d) process with -1/2< d <1 but not from an I(d)
process with 1< d< 3/2. Further work is needed on ways to distinguish unit root
processes from nonstationary (but mean-reverting) long memory processes.

The estimation of the differencing parameter d is an interesting problem, and
there are many different estimators, such as the GPH estimator, the maximum
likelihood estimator, the CSS estimator and the MDE. The MDE does not require
distributional assumptions and is relatively simple in computation. We considered

MDE:s including the AMDE of Chung and Schmidt (1995) for the general ARFIMA



108
model. In applying the MDEs, we can estimate the model by letting short-run

dynamics follow an ARMA model, or we can estimate the pure I(d) model but omit
the first ¢ low-order autocorrelations, which is a nonparametric approach. In this
nonparametric method we can expect some bias, especially when the ARMA
parameters have extreme values, due to misspecifying the short-run dynamics. We
compute the asymptotic bias that results from ignoring a fixed number (¢) of low-
order autocorrelations in the case of simple ARFIMA(1,d,0) and ARFIMA(0,d,1)
processes. The asymptotic bias of the AMDE or the MDE is small when ¢ is large.
A derivation of the asymptotic properties of the MDE when ¢ grows with T is an
important future task.

Fractional cointegration, defined as the case in which a set of variables is I(1)
but the regression error is I(d) with d <1, is empirically important but little is known.
We found that OLS is consistent and derived its asymptotic distribution. Its order in
probability and asymptotic distribution are affected by the value of d. The asymptotic
distribution of the OLS estimate in the case of fractional cointegration is not
necessarily centered at zero and there is no reason to think that OLS is efficient or
that it leads to asymptotically valid inference. Finding an efficient estimate that leads

to asymptotically valid inference is another important topic for further research.
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