

1 .s to certify that the

dissertation entitled

Analysis of Economic Time Series with Long Memory

presented by

Hyung Seung Lee

has been accepted towards fulfillment of the requirements for

Ph.D degree in Economics

Major professor

Date July 27, 1995

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE

MSU is An Affirmative Action/Equal Opportunity Institution

ANALYSIS OF ECONOMIC TIME SERIES WITH LONG MEMORY

By

Hyung Seung Lee

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Economics

ABSTRACT

ANALYSIS OF ECONOMIC TIME SERIES WITH LONG MEMORY

By

Hyung Seung Lee

This dissertation focuses on economic time series that follow a general ARFIMA(p,d,q) process with 0< d <1, which is intermediate between short memory (d =0) and unit root (d =1). Chapter 2 considers the unit root test proposed by Kwiatkowski, Phillips, Schmidt and Shin (KPSS, 1992) against I(d) alternatives. We show that the KPSS unit root test is consistent against stationary long memory processes (d <1/2) but is not consistent against nonstationary long memory processes (d >1/2). Therefore, the KPSS test only can distinguish short memory processes (d=0), stationary long memory processes and nonstationary processes. Simulation results are provided to support our asymptotic findings.

Chapter 3 considers the non-parametric estimation of the differencing parameter in the ARFIMA(p,d,q) process using the Adjusted Minimum Distance Estimator (AMDE) of Chung and Schmidt (1995). We compute the asymptotic bias of the AMDE and the MDEs that occur if we ignore short-run dynamics and estimate the (0,d,0) model. Our computational results for the ARFIMA(1,d,0) and

ARFIMA(0,d,1) models show that the asymptotic bias is larger when the short-run dynamics are stronger and when the number of ignored low-order autocorrelations is smaller.

Chapter 4 considers the estimation of the cointegrating coefficient in the case of fractional cointegration. We derive the asymptotic distribution of the OLS estimator under fairly strong assumptions and find that its order in probability is T^{d-1} , for -1/2 < d < 3/2 except d = 1/2. Also we derive the asymptotic distribution of OLS in differences and find that it is not consistent unless the error and the regressor are uncorrelated. We provide simulation results that support our asymptotic findings.

ACKNOWLEDGMENTS

This dissertation can be finished by guidance, support and encouragement from many people around me. Especially, the wonderful guidance from Professor Peter Schmidt makes it possible for me to complete the dissertation smoothly and quickly. His careful comments and advice, which are essential to improve this dissertation from the beginning to the end, are highly appreciated. I also wish to thank my other committee members, Professor Richard Baillie, Professor Ching-Fan Chung and Professor Jeffrey Wooldridge for their useful comments.

The financial support from Korean government allowed me to start this program and I thank everyone who involved it. I am grateful to many people who are important to me during the whole process and would like to name some of them who are special. The aid from Dr. Jaeyoun Hwang, Dr. Dongin Lee and Dr. Kyungso Im is valuable in studying econometrics. The friendship with Inkyo Cheong, Youngmin Kwon and Hailong Qian has made the sailing enjoyable.

Lastly, I express thanks to encouragement and support from my grandma, parents, parents-in-law, aunts, brothers and sister, brother and sister-in-law, and Maeng's family. The love from my wife, Jeongeun, and two daughters, Jimin and Jiwon is always with me and I am indebted to them forever.

TABLE OF CONTENTS

LIST OF TABLES	viii
CHAPTER 1. INTRODUCTION	1
CHAPTER 2. CONSISTENCY OF THE KPSS UNIT ROOT TEST AGAINST	
FRACTIONALLY INTEGRATED ALTERNATIVES	
1. INTRODUCTION	14
2. THEORETICAL RESULTS	
A. The KPSS Test Under Short Memory and Unit Root	19
B. Asymptotics and Consistency of the KPSS Unit Root Test Under I(d).	
3. SIMULATION RESULTS	
4. CONCLUSION	31
APPENDIX	43
CHAPTER 3. ASYMPTOTIC BIAS OF THE MDE WHEN SHORT-RUN	
DYNAMICS ARE IGNORED	
1. INTRODUCTION	52
2. MOMENT CONDITIONS FOR MDE	57
3. CALCULATION OF ASYMPTOTIC BIAS	63
4. RESULTS	65
5. CONCLUDING REMARKS	
CHAPTER 4. REGRESSION IN FRACTIONAL COINTEGRATION	
1. INTRODUCTION	83
2. COINTEGRATION	85
3. ASYMPTOTICS FOR OLS ESTIMATES OF COINTEGRATING	
VECTORS	
A. Short Memory Case (d = 0)	88
B. Spurious Regression Case (d = 1)	
C. Stationary Long Memory Case (0< d <1/2)	92
D. Nonstationary Long Memory Case (1/2 < d < 1)	
E. Remarks	
4. SIMULATION RESULTS	
5. CONCLUDING REMARKS	

LIST OF TABLES

TABLE 2.1	Power of KPSS Short Memory Test against I(d), d∈[0.0, 1.5)	33
TABLE 2.2-1	Power of KPSS Lower Tail Unit Root Test against I(d), d∈[0.0, 1/2)	36
TABLE 2.2-2	Power of KPSS Lower Tail Unit Root Test against I(d), d∈[1/2, 3/2)	37
TABLE 2.3-1	Power of KPSS Two Tail Unit Root Test against I(d), d∈[0.0, 1/2)	39
TABLE 2.3-2	Power of KPSS Two Tail Unit Root Test against I(d), d∈[1/2, 3/2)	40
TABLE 2.4	Power Comparison with Dickey-Fuller Type Tests	42
TABLE 3.1-1	Asymptotic Bias of MDE in ARFIMA(1,d ₀ ,0), [d ₀ = 0.2, ϕ = 0.4] .	69
TABLE 3.1-2	Asymptotic Bias of MDE in ARFIMA(1, d_0 ,0), [d_0 = 0.2, ϕ = 0.8] .	70
TABLE 3.1-3	Asymptotic Bias of MDE in ARFIMA(1,d ₀ ,0), [d ₀ = 0.4, ϕ = 0.4] .	71
TABLE 3.2-1	Asymptotic Bias of MDE in ARFIMA(0,d ₀ ,1), [d ₀ = 0.4, θ = -0.4]	72
TABLE 3.2-2	Asymptotic Bias of MDE in ARFIMA(0,d ₀ ,1), [d ₀ = 0.4, θ = -0.8]	73
TABLE 3.3-1	Asymptotic Bias of MDE in ARFIMA(1,d ₀ ,0) in GLS (F ¹), $\phi = 0.4$	74
TABLE 3.3-2	Asymptotic Bias of MDE in ARFIMA(1,d ₀ ,0) in Ratios (F^2), $\phi = 0.4$	76
TABLE 3.3-3	Asymptotic Bias of MDE in ARFIMA(1, d_0 ,0) in Common Denominator Ratios (F ³), $\phi = 0.4$	78
TABLE 3.4	Asymptotic Bias of MDE in ARFIMA(1, d_0 ,0), $d_0 = 0.2$	80

TABLE 4.1	Mean and Standard Deviation of OLS	102
TABLE 4.2	Mean and Standard Deviation of OLS in Differences	103

CHAPTER 1

INTRODUCTION

Classical methods of time series analysis assume stationarity, so that the series fluctuates around its mean level (or a trend) without changes in its autocovariance structure over time. Stationary series are often assumed to follow an ARMA process, which implies that the series has short memory in the sense that its autocorrelations and impulse response weights decay at a geometric rate. Models which can deal with time series that are more persistent than a short memory process have focused primarily on the existence of a unit root process.

However, the classification of time series into either unit root or stationary ARMA processes is too extreme and restrictive. Between these two types of processes, a long memory process can be considered to cover intermediate cases which are not well fit by either short memory or unit root models. In the data, when the sample autocorrelations do not decay quickly for long lags and yet the low order autocorrelations are not close to unity, we can suspect a long memory process. That is, a long memory process displays autocorrelations that are too small at low orders for a unit root, but too persistent at long lags for a stationary ARMA process.

There are many cases of long memory models in the physical sciences. Data with hyperbolically decaying autocorrelations and impulse response weights were firstly observed by Hurst (1951, 1956) and Mandelbrot and Wallis (1968) in hydrology and climatology. In economics, many financial data, such as forward premiums, interest rate differentials and inflation rates, have recently been found to display long memory characteristics. Baillie (1995) provides a survey of the application of long memory models in economics.

There are several possible definitions of the concept of long memory. McLeod and Hipel (1978) defined a stochastic process to be long memory if the autocorrelation function is not summable; that is, with $\rho_j = j$ -th autocorrelation,

(1)
$$\lim_{T\to\infty} \sum_{j=-T}^{T} |\rho_j| \neq \text{ finite }.$$

A more specific definition of long memory is that the process has autocorrelations that decline hyperbolically at large lags:

(2)
$$\gamma_k \sim \lambda k^{-\alpha}$$
, $(\lambda > 0, 0 < \alpha < 1)$, as $k \rightarrow \infty$.

(Here $a_k \sim b_k$ means $a_k / b_k \to 1$ as $k \to \infty$.) In (1) above, λ can be a constant, or more generally it can be a function of k that is slowly varying at infinity (i.e., $\lambda(ck)/\lambda(k) \to 1$, as $k \to \infty$, for any c > 0). Long memory can be defined equivalently in terms of the behavior of the spectral density as one approaches the zero frequency. A long memory process has infinite spectral density at zero frequency, as does a unit root process; however, unlike a unit root process, the spectral density at zero of the first difference of a long memory process vanishes.

Rosenblatt (1956) has defined long memory based on the dependence between two points of a process. Mandelbrot and Van Ness (1968) and Mandelbrot (1970) formalized Hurst's empirical findings and defined fractional Gaussian noise which is designed to account for the long run behavior of a long memory time series. Granger and Joyeux (1980) and Hosking (1981) proposed an alternative long memory process, the fractionally integrated process. Geweke and Porter-Hudak (1983) proved that the

definition of fractional Gaussian noise by Mandelbrot and Van Ness and the fractionally integrated process are equivalent.

We will consider in detail the fractionally integrated process of Granger (1980), Granger and Joyeux (1980) and Hosking (1981). A time series $\{y_t\}$ is a fractionally integrated process of order d, I(d), if

$$(3) \qquad (1-L)^{\mathbf{d}} \, \mathbf{y_t} = \mathbf{\varepsilon_t} \,,$$

where L is the lag operator, d is the differencing parameter and $\{\epsilon_t\}$ is a white noise process with zero mean and finite variance σ_{ϵ}^2 . For any d > -1, y_t is invertible (Odaki (1993)) and $(1-L)^d$ can be expressed via the binomial expansion:

(4)
$$(1-L)^d = \sum_{j=0}^{\infty} (-1)^j \binom{d}{j} = \sum_{j=0}^{\infty} \pi_j L^j = F(-d,1;1;L),$$

where for j = 0, 1, 2, ...,

(5A)
$$\binom{d}{j} = \frac{d(d-1)\cdots(d-j+1)}{j!}$$
,

(5B)
$$\pi_j = \frac{\Gamma(j-d)}{\Gamma(j+1)\Gamma(-d)} = \prod_{0 < k \le j} \frac{k-1-d}{k},$$

(5C)
$$\Gamma(x) = \text{gamma function} = \begin{cases} \int_{0}^{\infty} t^{x-1} e^{-t} dt, & x > 0, \\ \\ \infty, & x = 0, \end{cases}$$
$$\frac{\Gamma(1+x)}{x}, \quad x < 0,$$

(5D) F(a,b;c;z) = hypergeometric function

$$= 1 + \frac{ab}{c \cdot 1} z + \frac{a(a+1)b(b+1)}{c(c+1) \cdot 1 \cdot 2} z^2 + \cdots$$

$$= \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{i=0}^{\infty} \frac{\Gamma(a+j)\Gamma(b+j)}{\Gamma(c+j)\Gamma(j+1)} z^j.$$

Therefore, the infinite AR representation is the following:

(6)
$$y_t = \sum_{j=1}^{\infty} \phi_j y_{t-j} + \varepsilon_t$$
, where $\phi_j = -\pi_j$.

 y_t is a stationary process for d <1/2. Its infinite MA representation can be expressed as follows:

(7)
$$y_t = \sum_{j=0}^{\infty} \theta_j \varepsilon_{t-j},$$

where

(8)
$$\theta_{j} = \frac{\Gamma(j+d)}{\Gamma(j+1)\Gamma(d)}, j = 0, 1, 2,...$$

Its variance-covariance structure is as follows:

(9)
$$\sigma_y^2 = \frac{\sigma_\varepsilon^2 \Gamma(1-2d)}{\Gamma^2(1-d)},$$

(10)
$$\rho_{j} = \frac{\Gamma(j+d)\Gamma(1-d)}{\Gamma(d)\Gamma(j-d+1)} = \prod_{k=1}^{j} \frac{k-1+d}{k-d}, \ j=1, 2, 3, \dots$$

Thus for $-1 \le d \le 1/2$, y_t is a stationary and invertible fractionally integrated process. Since θ_j represents the impact of ϵ_{t-j} on y_t , the cumulative impulse response (= $\theta(1)$) which is the total effect of a unit innovation can be obtained by summation of θ_j :

(11)
$$\theta(1) = \sum_{j=0}^{\infty} \theta_j = \lim_{N \to \infty} \sum_{j=0}^{N} \theta_j = \lim_{N \to \infty} \frac{N^d}{\Gamma(1+d)} = \begin{cases} 0, & d < 0 \\ \infty, & d > 0. \end{cases}$$

For more details, see Sowell (1990).

The AR weights, MA weights and autocorrelations all decay hyperbolically, though at different hyperbolic rates:

(12A)
$$\pi_j \sim \frac{1}{\Gamma(-d)} j^{-d-1} \text{ as } j \to \infty,$$

(12B)
$$\theta_j \sim \frac{1}{\Gamma(d)} j^{d-1} \text{ as } j \to \infty,$$

(12C)
$$\rho_j \sim \frac{\Gamma(1-d)}{\Gamma(d)} j^{2d-1} \text{ as } j \to \infty.$$

This is in contrast to the case of a stationary ARMA process, for which the autocorrelations decrease rapidly (at an exponential rate rather than at the hyperbolic rate for an I(d) process). Since θ_j is close to zero for large j as long as d < 1, an I(d) process with $1/2 \le d < 1$ is still mean-reverting, even though it is not stationary. Baillie (1995) showed this result using the cumulative impulse response functions of the first difference of an I(d) process. For further details see Chung (1994b).

The spectral density at zero frequency is another measure of persistence in a time series. The spectral density of an I(d) process is: for $-\pi \le \omega \le \pi$,

(13)
$$f(\omega) = \frac{\sigma_{\varepsilon}^2}{2\pi} \left| 1 - e^{-i\omega} \right|^{-2d} = \frac{\sigma_{\varepsilon}^2}{2\pi} \left| 2\sin(\omega/2) \right|^{-2d}.$$

The spectral density at $\omega = 0$ is infinite for d > 0, finite for d = 0, and zero for d < 0. More specifically, because $\sin \omega \sim \omega$ as $\omega \to 0$, $f(0) \sim (\sigma^2/2\pi)\omega^{-2d}$ as $\omega \to 0$. Thus

(14)
$$f(0) = \begin{cases} 0, d < 0, \\ \infty, d > 0. \end{cases}$$

(15)
$$\mathbf{f}'(0) = \begin{cases} 0, & d \le -1/2, \\ -\infty, & -1/2 < d < 0, \\ \infty, & d > 0. \end{cases}$$

Therefore, the differencing parameter d is not identified by the level or derivative of its spectral density at zero frequency (Sowell, 1992b).

An I(d) process can be extended to cover more general economic time series models when ε_t in (3) is allowed to follow a general stationary ARMA process. A time series $\{y_t\}$ is an autoregressive fractionally integrated moving average process of order p, d, q, or ARFIMA(p,d,q), if it satisfies:

(16)
$$(1-L)^{\mathbf{d}} y_t = \varepsilon_t = \Phi(L)^{-1} \Theta(L) u_t \quad [so \ \Phi(L) \varepsilon_t = \Theta(L) u_t];$$

(17)
$$\Phi(L) = 1 + \phi_1 L + \phi_2 L^2 + \dots + \phi_p L^p \text{ and } \Theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q;$$

where all the roots of $\Phi(L)$ and $\Theta(L)$ lie outside the unit circle, Φ and Θ have no common roots, and $\{u_t\}$ is white noise. For -1< d <1/2 the ARFIMA(p,d,q) process is stationary and invertible. For the general ARFIMA(p,d,q) process, Sowell (1992a) and Chung (1994a) show how to compute the autocovariance and autocorrelation functions. In a stationary and invertible ARFIMA(p,d,q) model the autocorrelations decay at the same hyperbolic rate as in the corresponding I(d) process; the rate of decay is independent of the ARMA parameters. Specifically, if ρ_k *, k = 0, 1, ..., represent the autocorrelations of the ARFIMA(p,d,q) process,

(18)
$$\rho_k^* \sim Ck^{2d-1}$$
, as $k \rightarrow \infty$.

Here $C\neq 0$ is a constant that depends on the ARMA parameters.

Since the ARFIMA process is an I(d) process with ARMA error or an ARMA process with an I(d) error, its spectral density function is:

(19)
$$f^*(\omega) = \frac{\left|\Theta(e^{-i\omega})\right|^2}{\left|\Phi(e^{-i\omega})\right|^2} f(\omega)$$

$$= \frac{\sigma_{\varepsilon}^2}{2\pi} \frac{\left|\Theta(e^{-i\omega})\right|^2}{\left|\Phi(e^{-i\omega})\right|^2} \left|1 - e^{-i\omega}\right|^{-2d}$$

$$= \frac{\sigma_{\varepsilon}^2}{2\pi} \frac{\left|\Theta(e^{-i\omega})\right|^2}{\left|\Phi(e^{-i\omega})\right|^2} \left[2|1 - \cos(\omega)|\right]^{-2d}, -\pi < \omega < \pi.$$

At zero frequency the spectral density is similar to the expression for the I(d) case:

(20)
$$f^*(0) \sim \frac{\sigma_{\varepsilon}^2}{2\pi} \left[\frac{\Theta(1)}{\Phi(1)} \right]^2 \omega^{-2d} \text{ as } \omega \to 0$$
.

The asymptotic distribution for many statistics based on data generated by an I(d) process will be established using a functional central limit theorem involving the fractional Brownian motion of Mandelbrot and Van Ness (1968):

(21)
$$W_{d}(r) = \frac{1}{\Gamma(d+1)} \int_{0}^{r} (r-s)^{d} dW(s), r \in [0, 1],$$

where W(s) is the standard Brownian motion. To state this functional central limit theorem, suppose that v_t is an I(d) process and V_t is its cumulation:

(22)
$$V_t = \sum_{i=1}^t v_j$$
.

Thus $(1-L)^d v_t = u_t$ where u_t is short memory. We follow Lee and Schmidt (1995) in assuming the following (Assumption A):

(A1)
$$v_t$$
 is $I(d)$ with $|d| < 1/2$.

(A2)
$$u_t$$
 is iid $N(0, \sigma^2_u)$.

This assumption is somewhat stronger than others have made, and probably stronger than necessary; see Sowell (1990), Lo (1991) and Hosking (1984).

Define the variance of the partial sum process as in Sowell (1990):

(23)
$$\sigma_T^2 = Var(V_T) = Var(\sum_{i=1}^T v_i).$$

Then when v_t follows Assumption A, Sowell (1990) shows that:

(24)
$$\sigma_{\mathrm{T}}^{2} = \sigma_{\mathrm{u}}^{2} \frac{\Gamma(1-2\mathrm{d})}{\Gamma(1+2\mathrm{d})\Gamma(1+\mathrm{d})\Gamma(1-\mathrm{d})} \left[\frac{\Gamma(1+\mathrm{d}+\mathrm{T})}{\Gamma(\mathrm{T}-\mathrm{d})} - \frac{\Gamma(1+\mathrm{d})}{\Gamma(-\mathrm{d})} \right]$$

and, as $T \rightarrow \infty$,

(25)
$$\frac{\sigma_T^2}{T^{1+2d}} \rightarrow \sigma_u^2 \frac{\Gamma(1-2d)}{(1+2d)\Gamma(1+d)\Gamma(1-d)} \equiv \omega_d^2.$$

Furthermore, under Assumption A and using results of Davydov(1970), Sowell (1990, p.498) shows the following invariance principle, for $r \in [0,1]$:

(26)
$$\frac{V_{[rT]}}{\sigma_{T}} \Rightarrow W_{d}(r),$$

or, equivalently,

(27)
$$\frac{\mathbf{V}_{[rT]}}{\mathbf{T}^{\mathbf{d}+\mathbf{l}/2}} \Rightarrow \omega_{\mathbf{d}} \mathbf{W}_{\mathbf{d}}(\mathbf{r}).$$

The discussion above has focused on the case of a stationary long-memory process, and specifically on the I(d) process with |d| < 1/2. However, we will be interested primarily in positive values of d, because an I(d) process with d <0 is antipersistent, which is not of empirical relevance. In some cases it may be useful, theoretically and empirically, to consider nonstationary long memory processes. A specific type of nonstationary long memory process is the I(d) process with 1/2 < d < 1. An I(d) process with 1/2 < d < 1 is nonstationary but still mean-reverting. This contrasts with a stationary long memory process, which is stationary and mean-reverting; also with a unit root process, which is nonstationary and not mean-reverting. The discussion above applies to such series after differencing, since " y_1 is I(d) with 1/2 < d < 1" is equivalent to " Δy_1 is I(d) with -1/2 < d < 0."

In this dissertation we will investigate how we can distinguish among three different kinds of processes, namely short memory, long memory and unit root processes. This is empirically relevant because for some data one can reject both the null hypothesis of a unit root and the null hypothesis of short memory. It is possible that such series may follow a long memory process, and we need to test this possibility. Also we will review estimation of the differencing parameter which determines the main stochastic properties of a long memory process. Lastly the case that the error in a cointegrating relationship of unit root series is I(d) will be considered.

The plan of this dissertation is as follows. In Chapter 2 we will check whether

The KPSS test, introduced by Kwiatkowski, Phillips, Schmidt and Shin (1992), is

useful in distinguishing short memory, long memory and unit root processes. We will show that the KPSS test can not consistently distinguish a unit root from a nonstationary long memory process, since the order in probability of the KPSS statistic is equivalent under these two processes. However, the KPSS statistic can distinguish consistently between short memory, stationary long memory, and either unit root or nonstationary long memory. We provide simulation results which support our asymptotic results and we compare our results with other results of Diebold and Rudebusch (1991) and Hassler and Wolters (1994) for Dickey-Fuller type tests.

In Chapter 3 we will consider the problem of Minimum Distance Estimation (MDE) of the differencing parameter of a fractionally integrated long memory process. The simple MDE proposed by Tieslau, Schmidt and Baillie (1995), which minimizes the difference between sample and population autocorrelations, is useful because it does not require a distributional assumption and it is easy to compute, which is also true in the Adjusted MDE of Chung and Schmidt (1995). Furthermore in the general ARFIMA model it provides a way to estimate the differencing parameter separately from the ARMA parameters which determine short-run dynamics. However, such a non-parametric treatment of short-run dynamics will cause asymptotic bias, and we investigate ways of decreasing the bias due to ignored short-run dynamics. We investigate how the size of the bias is affected by the value of d and of the ARMA parameters, the number of moment conditions used, and the order of autocorrelations considered. Our computations show that, for certain methods of expressing the moment conditions suggested by Chung and Schmidt

(1995), the asymptotic bias becomes small when only high-order autocorrelations are used or the short-run dynamics are not strong.

In Chapter 4 we consider the estimation of the cointegrating vector in the case that the error in a cointegrating relationship is I(d) with 0 < d < 1, rather than in the usual case with I(0) errors. We find that OLS in this case is still consistent and its order in probability depends on the value of d. Specifically, for 0 < d < 1 OLS is $O_p(T^{1-d})$. For comparison we also consider OLS in differences. We find that it is not consistent if the errors and regressors are correlated, and it converges at the usual rate $T^{1/2}$ for all values of $d \in [0, 1]$. We provide some simulation results that support these asymptotic results.

Finally in Chapter 5 we summarize our results and make some suggestions for future research.

CHAPTER 2

CONSISTENCY OF THE KPSS UNIT ROOT TEST AGAINST FRACTIONALLY INTEGRATED ALTERNATIVES

1. INTRODUCTION

Since Nelson and Plosser (1982), there has been an enormous body of theoretical and empirical work seeking to distinguish whether economic time series are trend stationary or have a unit root. This distinction is important for both economic and statistical reasons. For a survey, see Diebold and Nerlove (1992).

There are two main approaches to this problem. The most traditional approach is to test the null hypothesis of a unit root against the alternative hypothesis of trend stationarity. For this problem, the Dickey-Fuller tests were introduced by Dickey (1976), Fuller (1976), and Dickey and Fuller (1979). The standard Dickey-Fuller tests are extended to allow general ARMA error processes by Said and Dickey (1984), Phillips (1987) and Phillips and Perron (1988). Dejong, Nankervis, Savin and Whiteman (1992) found that the standard Dickey-Fuller tests and the extensions of Said-Dickey, Phillips-Perron, and Choi-Phillips (1991) have trouble distinguishing unit root processes with substantial short-run dynamics from trend stationary alternatives.

Conversely, a more recent approach is to test the null hypothesis of stationarity against the alternative of a unit root. Tests of the null of stationarity have been suggested by Park and Choi (1988), Kwiatkowski, Phillips, Schmidt, and Shin (1992) (hereafter, KPSS), Saikkonen and Luukkonen (1993) and Leybourne and McCabe (1994). In this chapter we will consider the KPSS test, which is a test of the null hypothesis of stationarity around a deterministic trend, and which controls for shortrun dynamics using a non-parametric correction similar to those used by Phillips and Perron (1988) or Schmidt and Phillips (1992). Since many simulation results show

that the traditional Dickey-Fuller tests are not reliable in the presence of MA errors whose coefficient is not close to zero [for details see Agiakloglou and Newbold (1992), Schwert (1989), Pantula (1991)], Saikkonen and Luukkonen (1993) and Leybourne and McCabe (1994) suggest tests of the stationary null hypothesis that are similar to KPSS, but which differ from KPSS in the way they deal with autocorrelation under the null hypothesis.

The asymptotic analysis of the Dickey-Fuller type unit root tests, including those extended versions which allow error autocorrelation, shows that those tests are consistent against stationary alternatives. Also, the KPSS stationarity test is consistent against unit root alternatives. Although the KPSS test was originally intended as a test of the null of stationarity against the unit root alternative, it can also be used as a test of the unit root null against the alternative of stationarity. This has been suggested by Shin and Schmidt (1992) and Stock (1990). Shin and Schmidt (1992) show that the KPSS unit root test is consistent against the alternative hypothesis of stationarity.

A common empirical puzzle is what to conclude when one rejects both the null of a unit root (e.g., using the Dickey-Fuller tests) and the null of stationarity (e.g., using the KPSS test). To understand this outcome, suppose that z_t (t = 1, 2, ...) is the series in question and that Z_t is its cumulation (partial sum), i.e.,

$$Z_t = \sum_{i=1}^t z_j.$$

Then we follow Lee and Schmidt (1995) in saying that z_i is a <u>short memory</u> process if it satisfies the following two requirements (<u>Assumption B</u>):

(B1)
$$\sigma^2 = \lim_{T\to\infty} T^{-1}E(Z_T^2)$$
 exists and is non-zero.

(B2)
$$\forall r \in [0,1], T^{-l/2}Z_{[rT]} \Rightarrow \sigma W(r).$$

Here [rT] denotes the integer part of rT, \Rightarrow denotes weak convergence, and W(r) is the standard Wiener process (Brownian motion). The concept of short memory is important because the asymptotic analysis of the KPSS test actually assumes that under the null the series is short memory, and the asymptotic analysis of unit root tests actually assumes that under the null the first difference of the series is short memory. Thus we can rationalize rejections of both null hypotheses by postulating series that are not short memory either in levels or in first differences.

These arguments lead to the consideration of long memory processes that are more persistent than a short memory process, but less persistent than a unit root process. Accordingly, they are not short memory either in levels or in first differences. The consideration of such long memory time series has mostly taken place in the physical sciences. They have been applied extensively in hydrology (Hurst, 1951, 1956) and have also been used to model data on temperatures and growth of tree rings (Seater, 1993). The Beveridge wheat price index from 1500 through 1869 (Beveridge, 1921) and U.S. monthly consumer price index inflation rates are examples of economic data that exhibit typical long memory features. There are also studies of long memory in a spatial context; e.g., Whittle (1956) and Beran

(1992). A good survey of long memory from the point of view of economics and econometrics is given by Baillie (1995).

We will use the fractionally integrated process defined by Granger (1980), Granger and Joyeux (1980) and Hosking (1981), and considered by Lee and Schmidt (1995), which is introduced in Chapter 1:

$$(1) \qquad (1-L)^{\mathbf{d}} y_{\mathbf{t}} = \varepsilon_{\mathbf{t}}$$

where L is the lag operator, d is the differencing parameter and $\{\epsilon_t\}$ is a short memory process with zero mean and finite variance σ_{ϵ}^2 .

There has been some recent research on tests related to the fractionally integrated long memory process. Lo (1991) finds that his "rescaled range" test, for which the null hypothesis is short memory, is consistent against I(d) processes with $d \in (-1/2, 1/2)$. Cheung (1993) investigated the finite sample performance of the GPH test, the modified rescaled range test and two LM type tests of the null of short memory against the alternative of fractional integration. Lee and Schmidt (1995) show that the KPSS "stationarity" test is actually a test of the null hypothesis of short memory, and that it is consistent against stationary long memory alternatives (I(d) for -1/2 < d < 1/2 and $d \ne 0$). They also provide simulation results on the power of the KPSS test. They found the power of the KPSS short memory test in finite samples to be comparable to that of Lo's rescaled range test. Their results suggest that the KPSS test can be used to distinguish a short memory and stationary long memory processes but a rather large sample size is required to do so reliably.

There are several studies on the power of unit root tests against fractionally integrated alternatives. Diebold and Rudebusch (1991) give Monte Carlo evidence of the low power of the Dickey-Fuller test against fractionally integrated alternatives with d >1/2; that is, nonstationary long memory alternatives. Sowell (1990) derives the asymptotic distribution of the Dickey-Fuller tests under the hypothesis of an I(d) process with 1/2< d <3/2 and shows the consistency of these tests against nonstationary long memory alternatives. Hassler and Wolters (1994) show that the Dickey-Fuller type tests, including the Said-Dickey and Phillips-Perron extensions, have low power in finite samples against I(d) alternatives with 0< d <1, and especially that the augmented Dickey-Fuller test works poorly.

The purpose of this chapter is to investigate whether the KPSS test is useful in distinguishing short memory, long memory and unit root processes. Specifically, we want to ask whether the KPSS test can distinguish the following four types of processes: (i) short memory (d = 0); (ii) stationary long memory (d = 1); and (iv) unit root (d = 1). Asymptotics for the KPSS statistic are previously known for cases (i), (ii) and (iv), but not for (iii). Therefore we need to derive the asymptotic distribution of the KPSS statistic when 1/2 < d < 1.

In the following it will be shown that the asymptotic distribution of the KPSS statistic in the case of a nonstationary long memory process (1/2< d <1) is different from the other cases, but its order in probability is the same as in the case of a unit root. Therefore, the KPSS unit root test is inconsistent against nonstationary long

memory alternatives. More generally, the KPSS test can not consistently distinguish a unit root from a nonstationary long memory process. Using the KPSS statistic we can only distinguish consistently between the following three cases: (i) short memory; (ii) stationary long memory; and (iii) either nonstationary long memory or unit root.

Some Monte Carlo evidence on finite sample power is also provided. It is generally in agreement with the asymptotic results.

2. THEORETICAL RESULTS

A. The KPSS Test Under Short Memory and Unit Root

We consider the data generating process:

(2)
$$y_t = \phi + \xi t + \varepsilon_t, t = 1, 2, ..., T,$$

where $\{y_t\}$ is the observed series and $\{\epsilon_t\}$ is the deviation from deterministic linear trend. Let e_t be the residuals from a regression of y_t on intercept and trend (t), and let S_t be the partial sum of the e_t :

$$S_t = \sum_{i=1}^t e_j.$$

Let σ^2 be the long-run variance of the ϵ_t , as in (B1) above and let $s^2(\ell)$ be the Newey-West estimator of σ^2 :

(3)
$$s^{2}(\ell) = \frac{1}{T} \sum_{t=1}^{T} e_{t}^{2} + \frac{2}{T} \sum_{s=1}^{\ell} w(s, \ell) \sum_{t=s+1}^{T} e_{t} e_{t-s}.$$

Here w(s, ℓ) = 1- $\frac{s}{\ell+1}$, and ℓ is chosen so that $\ell \to \infty$ but $\ell/T \to 0$ as $T \to \infty$. We will later also consider the case that $\ell = 0$, in which case the second term on the right hand side of (3) is set to zero and $s^2(0) = \frac{1}{T} \sum_{t=1}^{T} e_t^2$.

The KPSS statistic is then defined as:

(4)
$$\hat{\eta}_{\tau}(\ell) = \frac{T^{-2} \sum_{t=1}^{T} S_{t}^{2}}{s^{2}(\ell)}.$$

The KPSS statistic $\hat{\eta}_{\mu}(\ell)$ is defined similarly except that we set $\xi=0$ in (2), which implies use of the residuals $e_t=y_t-\overline{y}$ in defining S_t and $s^2(\ell)$.

Under the hypothesis that ε_t is a short-memory process, KPSS show that

$$T^{-2}\sum_{t=1}^{T}S_t^2 \Rightarrow \int_0^1 V_2(r)^2 dr$$
,

where $V_2(r)$ is a second-level Brownian bridge, as defined by KPSS, equation (16). Also $s^2(\ell)$ is a consistent estimator of σ^2 . Therefore,

$$\hat{\eta}_{\tau}(\ell) \Rightarrow \int_0^1 V_2(r)^2 dr$$

Similar statements hold for $\hat{\eta}_{\mu}(\ell)$, with $V_2(r)$ replaced by the standard Brownian bridge, $V_1(r)=W(r)-rW(1)$. For the purpose of the present chapter, the important result is that $\hat{\eta}_{\tau}(\ell)$ and $\hat{\eta}_{\mu}(\ell)$ are $O_p(1)$ when ϵ_t is short memory.

Next consider the case that ϵ_t is a unit root process, in the sense that $\Delta\epsilon_t$ is short-memory. In this case KPSS show that

(5)
$$T^{-4} \sum_{t=1}^{T} S_{t}^{2} \Rightarrow \sigma^{2} \int_{0}^{1} \left(\int_{0}^{a} W^{*}(s) ds \right)^{2} da,$$

where W*(s) is a demeaned and detrended Wiener process, as defined in Park and Phillips (1988, p.474), and σ^2 is the long run variance of $\Delta \epsilon_t$. Furthermore,

(6)
$$\frac{s^2(\ell)}{\ell T} \Rightarrow \sigma^2 \int_0^1 W^*(s)^2 ds.$$

This implies that

(7)
$$(\ell/T)\hat{\eta}_{\tau}(\ell) \Rightarrow \frac{\int_{0}^{1} \left(\int_{0}^{a} W^{*}(s)ds\right)^{2} da}{\int_{0}^{1} W^{*}(s)^{2} ds}.$$

Therefore $\hat{\eta}_{\tau}(\ell)$ is $O_p(T/\ell)$ when ϵ_t is a unit root process. If we set $\xi=0$ in (2), then $\hat{\eta}_{\mu}(\ell)$ is also $O_p(T/\ell)$: in fact, we have the same result as in (7) except that W*(s) is replaced by the demeaned Brownian motion, W(s):

$$\underline{\mathbf{W}}(\mathbf{s}) = \mathbf{W}(\mathbf{s}) - \int_{0}^{1} \mathbf{W}(\mathbf{r}) d\mathbf{r} .$$

The KPSS unit root test suggested by Shin and Schmidt (1992) sets $\ell=0$, since the distribution in (7) is independent of the nuisance parameter σ^2 for all values of ℓ , including $\ell=0$, under the unit root hypothesis. Then $T^{-1}\hat{\eta}_{\tau}(0)$ has the same distribution as on the right hand side of (7) above, and $\hat{\eta}_{\tau}(0)$ is $O_p(T)$ under the hypothesis that ϵ_t is a unit root process.

These results are easy to summarize. (1) When $\ell=0$, $\hat{\eta}_{\tau}(0)$ and $\hat{\eta}_{\mu}(0)$ are $O_p(1)$ if ϵ_t is short memory and $O_p(T)$ if ϵ_t has a unit root. (2) If $\ell\to\infty$ but $\ell/T\to 0$ as $T\to\infty$, $\hat{\eta}_{\tau}(\ell)$ and $\hat{\eta}_{\mu}(\ell)$ are $O_p(1)$ if ϵ_t is short memory and $O_p(T/\ell)$ if ϵ_t has a unit root. Thus, in either case, the KPSS statistic distinguishes consistently (correctly with probability one as $T\to\infty$) between short memory and unit root processes.

B. Asymptotics and Consistency of the KPSS Unit Root Test Under I(d)

First we will show the consistency of the lower tail KPSS unit root test against the stationary long memory alternative hypothesis (-1/2< d <1/2). Thus we suppose that $(1-L)^d \varepsilon_t = u_t$, with -1/2< d <1/2, and with Assumption B satisfied. Under these assumptions, Lee and Schmidt (1995) derive the asymptotic distribution of the KPSS statistics. In the level stationary case ($e_t = y_t - \overline{y}$), from their Lemma 1, Theorem 1 and Theorem 3:

(8A)
$$T^{-(2d+1)} \sum_{t=1}^{T} S_t^2 \Rightarrow \omega_d^2 \int_0^1 B_d(r)^2 dr$$
, where $B_d(r) = W_d(r) - rW_d(1)$;

(8B)
$$s^{2}(0) \xrightarrow{p} \sigma_{\varepsilon}^{2} = Var(\varepsilon_{t}) = \sigma_{u}^{2} \frac{\Gamma(1-2d)}{\{\Gamma(1-d)\}^{2}} \quad (\ell = 0);$$

(8C)
$$\frac{s^2(\ell)}{\ell^{2d}} \xrightarrow{p} \omega_d^2 \quad (\ell \to \infty \text{ but } \ell/T \to 0 \text{ as } T \to \infty).$$

Therefore, the asymptotic distributions of the KPSS statistics in the level stationary case, when ε_t is I(d) with -1/2< d <1/2, are as follows:

(9A)
$$\frac{1}{T^{2d}}\hat{\eta}_{\mu}(0) \Rightarrow \frac{\omega_{d}^{2}}{\sigma_{\epsilon}^{2}}\int_{0}^{1} B_{d}(r)^{2} dr \quad (\ell = 0)$$

(9B)
$$(\frac{\ell}{T})^{2d} \hat{\eta}_{\mu}(\ell) \Rightarrow \int_{0}^{1} B_{d}(r)^{2} dr \quad (\ell \to \infty \text{ but } \ell / T \to 0 \text{ as } T \to \infty).$$

Furthermore, $\hat{\eta}_{\tau}$ has the same orders in probability as $\hat{\eta}_{\mu}$, and its asymptotic distribution is exactly the same as in (9) except that $B_d(r)$ should be replaced by $V_d(r)$, defined as:

(10)
$$V_d(r) = W_d(r) + (2r - 3r^2)W_d(1) + (-6r + 6r^2)\int_0^1 W_d(s)ds.$$

Thus the KPSS statistics $\hat{\eta}_{\mu}$ and $\hat{\eta}_{\tau}$ are $O_p(T^{2d})$ for $\ell=0$ and $O_p((T/\ell)^{2d})$ for $\ell\to\infty$ under the stationary long memory alternative, while they are respectively $O_p(T)$ and $O_p(T/\ell)$ under the null hypothesis of a unit root.

This implies the following result.

THEOREM 1:

Suppose that ε_t is I(d) with $d \in (-1/2, 1/2)$ and Assumption B is satisfied. Then

$$\begin{split} &\frac{1}{T}\hat{\eta}_{\mu}(0) \xrightarrow{p} 0, \quad \frac{1}{T}\hat{\eta}_{\tau}(0) \xrightarrow{p} 0 \quad (\ell = 0) \\ &\frac{\ell}{T}\hat{\eta}_{\mu}(\ell) \xrightarrow{p} 0, \quad \frac{\ell}{T}\hat{\eta}_{\tau}(\ell) \xrightarrow{p} 0 \quad (\ell \to \infty \text{ but } \ell/T \to 0 \text{ as } T \to \infty). \end{split}$$

Proof: The KPSS test statistics $(1/T)\hat{\eta}_{\mu}$ and $(\ell/T)\hat{\eta}_{\mu}$ (also, $(1/T)\hat{\eta}_{\tau}$ and $(\ell/T)\hat{\eta}_{\tau}$) are each $O_p(T^{2d-1})$ and $O_p((T/\ell)^{2d-1})$, and 2d is less than 1 because |d| < 1/2.

Theorem 1 implies that the lower tail KPSS unit root test is consistent against the stationary long memory alternative hypothesis. However, as d approaches 1/2, the order in probability of the KPSS statistic under the I(d) alternative approaches the same order in probability as under the unit root null hypothesis. This suggests that when d is close to 1/2 the power of KPSS unit root test would be small. There is also an issue of the continuity of the power of the KPSS test against I(d) alternatives as d $\rightarrow 1/2$.

We now turn to the main theoretical contribution of this chapter, which is the derivation of the asymptotic distribution of the KPSS statistics when ϵ_t is a nonstationary long memory process. Thus we wish to consider the case that ϵ_t is I(d) with 1/2 < d < 3/2.

Define $d^* = d-1$, so that $\Delta \epsilon_t$ is $I(d^*)$ with $|d^*| < 1/2$; that is, $\Delta \epsilon_t$ is a stationary long memory process. We assume that Assumption A in Chapter 1 holds with $v_t = \Delta \epsilon_t$. Then ϵ_t is the cumulation of the stationary $I(d^*)$ variables $\Delta \epsilon_t$, and we have the invariance principle:

(11)
$$\frac{\varepsilon_{[rT]}}{T^{d^*+1/2}} \Rightarrow \omega_{d^*} W_{d^*}(r).$$

Note that this is really the same invariance principle as equation (27) in Chapter 1, with d^* replacing d because 1/2 < d < 3/2 and $|d^*| < 1/2$.

We will first consider the $\hat{\eta}_{\mu}$ test. Thus we consider $e_t = y_t - \overline{y} = \epsilon_t - \overline{\epsilon}$ and $S_t = \sum_{j=1}^t e_j$. Then we can derive the following results.

LEMMA 1:

Suppose $(1-L)^d \epsilon_t = u_t$ for $1/2 \le d \le 3/2$, $d^*=d-1$, and $\Delta \epsilon_t$ satisfies Assumption

A in Chapter 1. Then

(i)
$$\frac{1}{T^{d^*+3/2}} \sum_{t=1}^{[rT]} \epsilon_t \Rightarrow \omega_{d^*} \int_0^r W_{d^*}(a) da;$$

(ii)
$$\frac{1}{T^{d^*+3/2}} S_{[rT]} \Rightarrow \omega_{d^*} \int_0^r \underline{W_{d^*}}(a) da$$
, where $\underline{W_{d^*}}(a) = W_{d^*}(a) - \int_0^1 W_{d^*}(b) db$;

(iii)
$$\frac{1}{T^{2d^*+4}} \sum_{t=1}^{T} S_t^2 \Rightarrow \omega_{d^*}^2 \int_0^1 \left[\int_0^r \underline{W_{d^*}}(a) da \right]^2 dr.$$

Proof: See Appendix.

THEOREM 2:

Under the same assumptions as in LEMMA 1,

(i) When
$$\ell = 0$$
, then $\frac{1}{T^{1+2d^*}} s^2(0) \Rightarrow \omega_{d^*}^2 \left\{ \int_0^1 \frac{W_{d^*}}{(a)^2} (a)^2 da \right\}$

(ii) When $\ell \rightarrow \infty$ and $\ell/T \rightarrow 0$ as $T \rightarrow \infty$, then

$$\frac{s^2(\ell)}{\ell T^{1+2d^*}} \Rightarrow \omega_{d^*}^2 \left\{ \int_0^1 \underline{W_{d^*}}(\mathbf{a})^2 d\mathbf{a} \right\}.$$

Proof: See Appendix.

Then we can prove the following theorem.

THEOREM 3:

Under the same assumptions as in LEMMA 1,

$$\frac{1}{T}\hat{\eta}_{\mu}(0) \Rightarrow \frac{\int_{0}^{1} \left\{\int_{0}^{r} \underline{W_{d^{*}}}(\mathbf{a}) d\mathbf{a}\right\}^{2} d\mathbf{r}}{\left\{\int_{0}^{1} \underline{W_{d^{*}}}(\mathbf{a})^{2} d\mathbf{a}\right\}} \quad \text{(for } \ell = 0\text{)}$$

$$\frac{\ell}{T}\hat{\eta}_{\mu}(\ell) \Rightarrow \frac{\int_{0}^{1} \left\{\int_{0}^{T} \underline{W_{d^{*}}(a)da}\right\}^{2} dr}{\left\{\int_{0}^{1} \underline{W_{d^{*}}(a)^{2}da}\right\}} \quad \text{(when } \ell \to \infty \text{ and } \ell/T \to 0 \text{ as } T \to \infty\text{)}$$

Proof: Since
$$\frac{1}{T}\hat{\eta}_{\mu}(0) = \frac{T^{-(2d^*+4)}\sum_{t=1}^{T}S_t^2}{T^{-(2d^*+1)}s^2(0)}$$
 and $\frac{\ell}{T}\hat{\eta}_{\mu}(\ell) = \frac{T^{-(2d^*+4)}\sum_{t=1}^{T}S_t^2}{\ell T^{-(2d^*+1)}s^2(\ell)}$, the

asymptotic distribution of the numerator is given by part (iii) of *LEMMA* 1 and that of each denominator is given by part (i) and (ii) of *THEOREM* 2.

The analysis of $\hat{\eta}_{\tau}$ is very similar. We just need the generalization of *LEMMA*1 for the case of the residuals from OLS of y_t on constant and t, t = 1, 2, ..., T.

LEMMA 3: Let e_t be the residuals from an OLS regression of y_t on (1, t), t = 1, 2, ..., T. Then, under the same assumptions as in LEMMA 1,

$$T^{-(d^*+3/2)}S_{[rT]} \Rightarrow \omega_{d^*} \int_0^r W_{d^*}^*(a)da$$
,

where
$$W_{d^*}^*(a) = W_{d^*}(a) + (6a - 4) \int_0^1 W_{d^*}(b) db + (-12a + 6) \int_0^1 bW_{d^*}(b) db$$
.

Proof: See Appendix.

Given LEMMA 3, it is easy to establish the same asymptotic results for the KPSS $\hat{\eta}_{\tau}$ statistic under the nonstationary long memory process as are given for $\hat{\eta}_{\mu}$ in THEOREM 2 and 3. All that is necessary is to replace the demeaned fractional Brownian motion, $\underline{W_{d^*}}(a)$, with the demeaned and detrended fractional Brownian motion, $W_{d^*}(a)$, in THEOREM 2 and 3.

Those theorems have several interesting implications. First, even though the KPSS unit root test is consistent against stationary long memory alternatives, I(d) for -1/2 < d < 1/2, the KPSS unit root test is not consistent against nonstationary long memory alternatives, I(d) for 1/2 < d < 3/2, because the KPSS statistics have the same orders in probability under both the null and alternative hypothesis. This is the main theoretical result of this chapter. Second, Lee and Schmidt (1995) show that the KPSS short memory test is consistent against a stationary long memory process (-1/2 < d < 1/2), and here we can now see that it is also consistent against a nonstationary long memory process (1/2 < d < 3/2). Below we will show higher power in finite samples against nonstationary long memory alternatives than against stationary long memory alternatives, as we should expect. Third, under the hypothesis of a non-stationary long memory process, the orders in probability of the KPSS statistics are independent of the value of d, even although the form of their asymptotic distributions

are affected by the value of d. This is in contrast to the case of a stationary long memory process, where both the order in probability and the form of the asymptotic distribution depends on d. Also by way of contrast, the order in probability of the Dickey-Fuller statistics depends on d for d <1 but not for 1< d <3/2; see Sowell (1990).

3. SIMULATION RESULTS

In this section we provide simulation evidence on the power of the KPSS stationarity (short memory) and unit root tests. The computations are done in FORTRAN using the normal random number generator GASDEV/RAN3 of Press, Flannery, Teukolsky and Vetterling (1989), as in Lee and Schmidt (1995). The data on an I(d) process for d <1/2 are generated using the Levinson algorithm [Levinson (1947), Durbin (1960), Whittle (1963), Brockwell and Davis (1991)]. For a nonstationary long memory process (1/2< d <3/2) the data are generated by cumulating I(d*) random variates, where d* =d-1. Given the I(d) process ϵ_t , data on the observable series y_t are generated according to equation (2) with $\phi = \xi = 0$. The value of ϕ and ξ do not matter for the power of any of the tests that we consider, except that the $\hat{\eta}_{\mu}$ test requires $\xi = 0$.

We have considered only positive values of d because we are primarily interested in testing unit roots against nonstationary long memory processes. The lag truncation parameters are chosen as $\ell 0 = 0$, $\ell 4 = \text{integer} \left[4(T/100)^{1/4}\right]$, and $\ell 12 = \text{integer} \left[12(T/100)^{1/4}\right]$ as in Schwert (1989), KPSS (1992) and Lee and Schmidt

(1995). We consider sample sizes 50, 150, 250, 500 and 1000, and the number of iterations is 10000. All of our tests are based on the 5% significance level.

Table 2.1 gives the powers of the 5% upper tail KPSS short memory tests against the alternatives d =0.0, .1, .2, ..., .9, 1.0, and also d =.45 and .499. These are similar to the values considered by Lee and Schmidt (1995), except that we add some cases with d >1. Where they overlap, our results are very similar to those of Lee and Schmidt. There are no surprise in these results, so we will not discuss them in detail. Power increases with T for fixed d or with d for fixed T.

Table 2.2-1 gives the power of the lower-tail KPSS unit root test against I(d) for $0 \le d < 1/2$, and Table 2.3-1 does the same for the two-tailed KPSS unit root test. Basically these results are as we would expect from our asymptotics and from the previous limited simulations of Shin and Schmidt (1992). (i) The lower tail tests are more powerful than the corresponding two-tailed tests. (ii) For a given d, power increases with T. This reflects the consistency of the tests against stationary long memory alternatives. (iii) Power is largest when $\ell = 0$ and smallest when $\ell = \ell$ 12. (There are a few exceptions, for small values of T, due to large size distortions.) Again, this is consistent with the relevant asymptotics, which indicate that power depends on ℓ/T , even asymptotically, for d < 1/2. (iv) Power is larger when d is farther from unity. (v) The power of $\hat{\eta}_{\mu}$ and $\hat{\eta}_{\tau}$ are similar.

Table 2.2-2 gives the power of the lower tail KPSS unit root test against I(d) processes with $1/2 \le d < 3/2$, while Table 2.3-2 does the same for the two tailed test. The most important result is that, with d fixed, power does not approach one as T

increases. This is a reflection of our theoretical result that the KPSS unit root test is not consistent against nonstationary long memory processes. For example, for d=.7 and $\ell=0$, and for the one-tailed test, power grows from .169 with T=50 to only .256 with T=1000, and would not be expected to approach one even for arbitrarily large values of T.

Some other results in Tables 2.2-2 and 2.3-2 are as follows. (i) For the lower tail test, power is always lower when ℓ is larger, and is very small for ℓ 12 for T \leq 250. This is due to the large size distortion of the test (too few rejections) for $T \le 250$. For example, the size of the lower tail test based on $\hat{\eta}_{\mu}(\ell 12)$ is zero for T=50, and still only .026 for T = 250. However, for the two tail test, power first decreases as the number of lags grows ($\ell 4$), and then increases with more lags ($\ell 12$). Again, this is due to large size distortions in the two tail test. (ii) The lower tail $\,\hat{\eta}_{\,\mu}$ and $\hat{\eta}_{\,\tau}\,$ tests have similar powers against I(d) for any d in the range (1/2, 3/2). However, the two tail tests have similar powers only against I(d) with d < 1. If d is greater than 1 there is a distinct difference in the powers of two statistics. The $\hat{\eta}_{\mu}$ test is generally more powerful. (iii) For a given sample size and number of lags, power increases monotonically with |1-d| for both the lower and two tail tests for d < 1, and the lower tail test has little power against d > 1. The power of two tail test is asymmetric around d=1, as in Diebold and Rudebusch (1991) and Lee (1994).

Lastly, our results can be compared with the previous results of other authors for Dickey-Fuller type unit root tests against I(d) alternatives. These comparisons are given in Table 2.4. Diebold and Rudebusch (1991) show that Dickey-Fuller test is not

very powerful against I(d) alternatives for d >0.6. This is despite the fact that Sowell has proved that the test is consistent against such alternatives. Lee (1994) gives the power of Dickey-Fuller tests against I(d), and finds it to be small for d > 1/2; essentially, his results are the same as those of Diebold and Rudebusch. He also found a discontinuity of the power function of the simple (no constants and no trends) Dickey-Fuller tests at d = 1/2. Hassler and Wolters (1994) show that the Phillips-Perron and Dickey-Fuller tests have similar power against I(d) processes but the augmented Dickey-Fuller test is not powerful; they argue that it is inconsistent. Our results are not directly comparable with the others because our data is demeaned while the others' are not. However, two statements seem correct. First, the KPSS unit root test has lower power than Dickey-Fuller tests (except the augmented Dickey-Fuller tests) against nonstationary long memory processes. unsurprising implication of all of these results is that it is very difficult to distinguish between a unit root and nonstationary long memory. This is unfortunate, because these two types of series differ in fundamental ways, notably their degree of mean reversion.

4. CONCLUSION

In this chapter we have asked whether the KPSS unit root test can be used to distinguish long memory processes from unit root processes. We have shown that the KPSS unit root test is consistent against stationary long memory alternatives, namely I(d) processes for $d \in (-1/2, 1/2)$; but it is not consistent against nonstationary long

memory alternatives, I(d) for $d \in (1/2, 3/2)$. This implies that the KPSS statistic can not distinguish nonstationary long memory processes from unit root processes, even though it can consistently distinguish between short memory processes, stationary long memory processes, and nonstationary processes. Also, we have provided the simulation results on power in finite samples. These support the relevance of our asymptotic results.

Dickey-Fuller tests can consistently distinguish a unit root from an I(d) process with 1/2 < d < 1, but not from an I(d) process with 1 < d < 3/2; see Sowell (1990). Thus distinguishing a unit root from nonstationary long memory is a difficult and not completely solved problem that is worthy of further attention.

TABLE 2.1 Power of KPSS Short Memory Test against I(d), $d \in [0.0, 1.5)$

33

			η̂μ	Test .					η̂τΊ	est		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=0.0												
ℓ0	.044	.053	.050	.046	.052	.053	.051	.052	.052	.053	.052	.051
<i>l</i> 4	.036	.047	.046	.044	.051	.051	.041	.045	.048	.053	.050	.050
ℓ12	.012	.033	.039	.041	.049	.048	.044	.034	.040	.044	.048	.050
d=.1												
ℓ0	.124	.165	.195	.216	.262	.323	.140	.185	.215	.265	.331	.409
<i>l</i> 4	.072	.100	.119	.131	.169	.195	.071	.098	.122	.145	.196	.226
ℓ12	.020	.055	.075	.085	.117	.141	.049	.055	.071	.092	.121	.152
d=.2												İ
ℓ0	.240	.356	.402	.485	.592	.693	.267	.380	.461	.577	.722	.839
ℓ4	.123	.182	.221	.265	.348	.418	.121	.166	.224	.280	.407	.488
ℓ12	.032	.093	.121	.158	.211	.282	.060	.086	.113	.149	.218	.295
d=.3												1
ℓ0	.387	.542	.631	.730	.845	.928	.418	.608	.714	.829	.932	.983
ℓ4	.193	.281	.351	.413	.555	.636	.168	.267	.361	.444	.625	.735
ℓ12	.047	.139	.193	.251	.343	.425	.064	.115	.159	.226	.345	.473
d=.4												ľ
ℓ0	.543	.707	.801	.884	.958	.990	.574	.775	.870	.941	.991	.999
ℓ4	.278	.384	.468	.549	.714	.797	.235	.362	.490	.600	.794	.877
<i>ℓ</i> 12	.072	.198	.255	.329	.455	.576	.072	.154	.219	.316	.476	.626
d=.45												
ℓ0	.613	.773	.858	.930	.981	.997	.639	.837	.921	.972		1.000
<i>l</i> 4	.320	.431	.531	.621	.775	.850	.259	.417	.559	.661	.848	.919
<i>ℓ</i> 12	.088	.224	.297	.381	.515	.645	.077	.168	.257	.352	.536	.685
d=.49												
<i>l</i> 0	.664	.833	.893	.951	.989	.999	.687	.880	.944	.986		1.000
<i>l</i> 4	.357	.466	.572	.669	.821	.887	.293	.467	.599	.717	.886	.945
<i>ℓ</i> 12	.101	.245	.324	.419	.556	.680	.078	.192	.267	.389	.578	.737
d=.499	650	006	000	050	000		5 00	00.5	0.40	000	000	
<i>l</i> 0	.659	.826	.902	.959	.990	.999	.700	.885	.949	.988		1.000
<i>l</i> 4	.352	.479	.589	.663	.819	.850	.289	.470	.606	.721	.893	.947
<i>l</i> 12	.095	.250	.336	.416	.559	.697	.083	.192	.275	.388	.597	.742
d=.5	667	027	001	060	001	000	704	000	051	004	000	1 000
<i>l</i> 0	.667	.837	.901	.960	.991	.999	.704	.888	.951	.984		1.000
<i>l</i> 4	.356	.476	.588	.680	.826	.898	.306	.465	.616	.721	.891	.951
<i>ℓ</i> 12	.101	.254	.333	.433	.570	.696	.088	.187	.278	.392	.593	.748

TABLE 2.1, CONTINUED

			$\hat{\eta}_{\mu}$	Test					η̂,	Test		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=.51					-		_					
ℓ0	.688	.845	.910	.962	.992	.999	.711	.901	.954	.990	.999	1.000
<i>l</i> 4	.370	.493	.602	.690	.833	.905	.315	.483	.617	.723	.898	.953
ℓ12	.103	.268	.343	.439	.579	.713	.086	.196	.282	.410	.604	.752
d=.6												
ℓ0	.778	.908	.961	.987	.999	1.000	.807	.951	.983	.998	1.000	1.000
<i>l</i> 4	.437	.560	.689	.771	.900	.951	.379	.556	.709	.812	.949	.984
ℓ12	.134	.315	.414	.509	.661	.791	.791	.101	.234	.340	.484	.681
d=.7												
ℓ0	.848	.952	.981	.997	1.000	1.000	.872	.976	.995	1.000	1.000	1.000
ℓ4	.507	.643	.766	.835	.946	.975	.450	.645	.792	.882	.978	.994
ℓ12	.171	.384	.491	.583	.737	.855	.121	.283	.392	.564	.776	.897
d=.8												
ℓ0	.905	.978	.992	.999	1.000	1.000	.924	.992	.999	1.000	1.000	1.000
<i>l</i> 4	.586	.714	.823	.891	.967	.991	.511	.714	.849	.928	.990	.998
ℓ12	.229	.455	.553	.644	.806	.907	.131	.335	.461	.636	.825	.936
d=.9												
ℓ0	.935	.990	.996			1.000	.953	.997		1.000		
<i>l</i> 4	.652	.776	.865	.928	.984	.995	.574	.771	.892	.950	.995	1.000
<i>ℓ</i> 12	.286	.523	.609	.713	.861	.938	.150	.365	.514	.692	.876	.963
d=.95	i											
ℓ0	.946	.992			1.000		.967			1.000		
<i>l</i> 4	.676	.800	.892	.942	.990	.997	.606	.810	.908	.961		1.000
ℓ12	.310	.548	.636	.739	.884	.951	.169	.400	.545	.717	.896	.972
d=.99												
<i>l</i> 0	.960	.994			1.000		.971			1.000		
<i>l</i> 4	.701	.823	.906	.948	.991	.998	.623	.814	.922	.969		1.000
<i>ℓ</i> 12	.341	.574	.666	.751	.892	.962	.173	.414	.561	.732	.905	.975
d=1.0												
<i>l</i> 0							.973					
<i>l</i> 4		.821			.992						.998	
<i>l</i> 12	.346	.583	.669	.766	.898	.960	.177	.421	.570	.746	.911	.977
d=1.1												
ℓ0							.987					
<i>l</i> 4	.759	.871	.934		.995		.685			.982	.999	
<i>ℓ</i> 12	.421	.648	.732	.808	.933	.974	.205	.451	.616	.783	.933	.985

TABLE 2.1, CONTINUED

			$\hat{\eta}_{\mu}$	Test					η̂,	Test		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=1.2												
10	.985	.999	1.000	1.000	1.000	1.000	.991	1.000	1.000	1.000	1.000	1.000
<i>l</i> 4	.810	.903	.960	.982	.999	1.000	.685	.859	.946	.982	.999	1.000
ℓ12	.504	.706	.784	.854	.952	.985	.205	.451	.616	.783	.933	.985
d=1.3												
ℓ0	.991	1.000	1.000	1.000	1.000	1.000	.996	1.000	1.000	1.000	1.000	1.000
<i>l</i> 4	.851	.932	.970	.988	.999	1.000	.768	.917	.971	.992	1.000	1.000
ℓ12	.598	.771	.828	.891	.967	.991	.265	.561	.707	.856	.968	.995
d=1.4												
ℓ0	.995	1.000	1.000	1.000	1.000	1.000	.996	1.000	1.000	1.000	1.000	1.000
<i>l</i> 4	.902	.958	.983	.994	1.000	1.000	.809	.939	.983	.995	1.000	1.000
ℓ12	.719	.846	.887	.931	.982	.995	.304	.598	.744	.881	.979	.997
d=1.45												
ℓ0	.997	1.000	1.000	1.000	1.000	1.000	.998	1.000	1.000	1.000	1.000	1.000
<i>l</i> 4	.933	.972	.991	.995	1.000	1.000	.809	.939	.983	.995	1.000	1.000
ℓ12	.805	.887	.925	.954	.989	.997	.304	.598	.744	.881	.979	.997
d=1.499												
ℓ0	1.000	1.000	1.000	1.000	1.000	1.000	.999	1.000	1.000	1.000	1.000	1.000
<i>l</i> 4	.991	.997	.999	1.000	1.000	1.000	.834	.948	.986	.996	1.000	1.000
ℓ12	.975	.988	.991	.993	.998	1.000	.353	.629	.774	.903	.984	.999

TABLE 2.2-1

Power of KPSS Lower Tail Unit Root Test against I(d), d∈ [0.0, 1/2)

36

			$\hat{\eta}_{\mu}$	Test					η̂τ	Test		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=0.0												
ℓ0	.964	.996	1.000	1.000	1.000	1.000	.969	.999	1.000	1.000	1.000	1.000
<i>l</i> 4	.623	.799	.915	.964	.998	1.000	.286	.708	.910	.969	1.000	1.000
ℓ12	.000	.156	.395	.617	.851	.954	.000	.000	.013	.333	.815	.964
d=.1												
ℓ0	.890	.976	.993	.999	1.000	1.000	.903	.990	.999	1.000	1.000	1.000
ℓ4	.514	.695	.816	.886	.975	.989	.222	.585	.808	.898	.990	.997
ℓ12	.000	.114	.305	.504	.735	.865	.000	.000	.010	.248	.667	.878
d=.2												
ℓ0	.780	.896	.945	.977	.997	1.000	.790	.942	.977	.996	1.000	1.000
 	.425	.553	.694	.761	.897	.929	.170	.467	.682	.784	.942	.975
ℓ12	.000	.087	.234	.390	.602	.725	.000	.000	.010	.173	.514	.744
d=.3												
ℓ0	.640	.751	.804	.867	.934	.963	.656	.831	.890	.944	.982	.996
<i>l</i> 4	.338	.449	.558	.615	.748	.798	.124	.344	.537	.630	.824	.877
<i>l</i> 12 <i>l</i>	.000	.071	.176	.294	.459	.585	.000	.000	.006	.119	.386	.574
d=.4												
ℓ0	.486	.579	.637	.694	.757	.806	.499	.666	.730	.798	.877	.922
<i>l</i> 4	.260	.351	.435	.478	.591	.622	.091	.261	.406	.477	.658	.714
ℓ12	.000	.051	.127	.223	.346	.432	.000	.000	.005	.085	.263	.419
d=.45												
ℓ0	.412	.502	.537	.587	.647	.690	.435	.572	.617	.693	.777	.832
<i>l</i> 4	.226	.304	.372	.404	.509	.525	.083	.223	.343	.414	.569	.618
ℓ12	.000	.045	.111	.182	.298	.362	.000	.000	.004	.070	.225	.355
d=.49												
ℓ0	.361	.435	.474	.498	.554	.608	.380	.488	.551	.608	.680	.738
ℓ4	.201	.269	.334	.358	.448	.477	.073	.191	.307	.355	.502	.537
ℓ12	.000	.041	.102	.162	.260	.328	.000	.000	.004	.057	.191	.299
d=.499												
ℓ0	.365	.424	.451	.503	.548	.570	.374	.478	.533	.589	.661	.719
<i>l</i> 4	.205	.266	.319	.362	.443	.452	.069	.182	.297	.351	.481	.532
ℓ12	.000	.037	.095	.161	.256	.312	.000	.000	.004	.052	.186	.297

TABLE 2.2-2

Power of KPSS Lower Tail Unit Root Test against I(d), d∈[1/2, 3/2)

37

			$\hat{\eta}_{\mu}$	Γest]			η̂, Ί	l'est		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=.5					-							
<i>l</i> 0	.358	.426	.450	.485	.535	.576	.360	.499	.528	.590	.647	.714
 	.197	.259	.327	.346	.430	.454	.073	.186	.291	.347	.481	.523
<i>ℓ</i> 12	.000	.037	.097	.155	.252	.310	.000	.000	.004	.057	.182	.290
d=.51												I
ℓ0	.338	.397	.433	.465	.515	.549	.350	.456	.510	.566	.634	.687
<i>l</i> 4	.189	.248	.310	.336	.420	.434	.068	.173	.286	.339	.469	.509
ℓ12	.000	.035	.090	.155	.243	.293	.000	.000	.004	.054	.180	.283
d=.6												1
<i>l</i> 0	.243	.295	.298	.322	.347	.364	.250	.328	.351	.379	.430	.456
<i>l</i> 4	.147	.195	.230	.252	.309	.315	.046	.130	.209	.242	.344	.359
<i>ℓ</i> 12	.000	.027	.063	.113	.180	.214	.000	.000	.003	.038	.125	.195
d=.7												
ℓ0	.169	.190	.193	.207	.213	.223	.169	.209	.212	.226	.240	.256
l 4	.112	.139	.166	.183	.212	.213	.035	.094	.138	.160	.220	.228
<i>ℓ</i> 12	.000	.021	.048	.084	.121	.148	.000	.000	.002	.021	.076	.125
d=.8												
ℓ0	.108	.119	.126	.125	.129	.127	.107	.122	.130	.130	.144	.150
<i>l</i> 4	.080	.099	.124	.125	.145	.134	.026	.062	.100	.104	.151	.151
<i>l</i> 12 <i>l</i>	.000	.012	.037	.054	.082	.096	.000	.000	.001	.015	.052	.081
d=.9												
ℓ0	.072	.074	.082	.075	.078	.078	.068	.073	.076	.075	.078	.077
<i>l</i> 4	.059	.070	.088	.083	.093	.091	.018	.041	.066	.072	.095	.092
<i>ℓ</i> 12	.000	.009	.025	.037	.055	.064	.000	.000	.001	.010	.035	.047
d=.95												l
ℓ0	.063	.059	.061	.059	.058	.059	.049	.056	.058	.060	.055	.057
<i>l</i> 4	.053	.059	.069	.068	.072	.071	.013	.034	.055	.060	.073	.072
<i>ℓ</i> 12	.000	.008	.021	.030	.042	.051	.000	.000	.000	.007	.025	.037
d=.99												l
<i>l</i> 0	.048	.050	.049	.050	.049	.045	.043	.044	.044	.046	.048	.049
<i>l</i> 4	.043	.051	.059	.060	.066	.055	.013	.028	.045	.049	.067	.062
ℓ12	.000	.006	.017	.028	.038	.040	.000	.000	.001	.006	.025	.033
d=1.0												
<i>l</i> 0	.048	.049	.045	.044	.045	.048	.042	.040	.042	.044	.041	.044
<i>l</i> 4	.042	.049	.056	.055	.061	.059	.011	.026	.043	.047	.057	.056
<i>ℓ</i> 12	.000	.006	.016	.026	.036	.042	.000	.000	.000	.007	.019	.030

		1

d=

TABLE 2.2-2, CONTINUED

			$\hat{oldsymbol{\eta}}_{\mu}$]	Γest					$\hat{\eta}_{\tau}$	Γest		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=1.1												
ℓ0	.030	.028	.029	.030	.028	.029	.022	.026	.026	.024	.025	.025
ℓ4	.029	.032	.038	.037	.039	.040	.006	.020	.030	.029	.040	.036
ℓ12	.000	.005	.010	.017	.023	.028	.000	.000	.000	.005	.013	.019
d=1.2												
ℓ0	.019	.017	.017	.015	.015	.017	.014	.015	.013	.013	.015	.013
ℓ4	.021	.022	.025	.021	.024	.023	.005	.013	.018	.019	.025	.021
ℓ12	.000	.003	.006	.010	.014	.017	.000	.000	.000	.003	.009	.011
d=1.3												ı
ℓ0	.011	.008	.012	.010	.010	.010	.008	.009	.010	.009	.008	.008
ℓ4	.013	.012	.019	.015	.016	.013	.004	.009	.015	.012	.015	.013
ℓ12	.000	.001	.006	.007	.009	.010	.000	.000	.000	.002	.005	.007
d=1.4												
ℓ0	.006	.005	.006	.004	.005	.005	.006	.004	.005	.005	.005	.005
ℓ4	.007	.007	.009	.008	.009	.008	.003	.005	.008	.009	.009	.008
ℓ12	.005	.001	.002	.003	.004	.005	.000	.000	.000	.001	.003	.004
\d=1.45												
ℓ0	.004	.004	.003	.003	.003	.003	.004	.003	.004	.004	.005	.003
ℓ4	.006	.005	.005	.006	.005	.005	.002	.004	.006	.007	.009	.006
ℓ12	.000	.001	.001	.002	.003	.003	.000	.000	.000	.001	.003	.003
d=1.499												
ℓ0	.000	.000	.001	.000	.000	.000	.003	.003	.004	.004	.003	.003
ℓ4	.001	.000	.001	.001	.000	.001	.002	.004	.007	.006	.007	.004
ℓ12	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.002	.002

39 **TABLE 2.3-1**

Power of KPSS Two Tail Unit Root Test against I(d), d∈[0.0, 1/2)

		. 	$\hat{\eta}_{\mu}$	Test					$\hat{\eta}_{\tau}$	Test		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=0.0												
ℓ0	.919	.989	.999	1.000	1.000	1.000	.932	.998	1.000	1.000	1.000	1.000
ℓ4	.456	.679	.843	.916	.991	.998	.119	.556	.833	.933	.998	1.000
<i>ℓ</i> 12	.011	.034	.228	.469	.753	.903	.472	.006	.000	.169	.702	.922
d=.1							1					
ℓ0	.808	.940	.975	.997	1.000	1.000	.828	.974	.994	1.000	1.000	1.000
l 4	.358	.551	.709	.800	.938	.971	.090	.423	.700	.825	.972	.991
ℓ12	.017	.024	.164	.353	.608	.771	.464	.011	.004	.119	.530	.790
d=.2												
ℓ0	.672	.817	.887	.946	.985	.998	.689	.894	.951	.987	.998	1.000
<i>l</i> 4	.276	.421	.571	.647	.819	.862	.064	.317	.549	.676	.891	.943
ℓ12	.027	.020	.116	.256	.467	.610	.484	.019	.001	.082	.379	.632
d=.3												
ℓ0	.518	.649	.712	.788	.877	.932	.536	.738	.820	.901	.958	.988
<i>l</i> 4	.211	.323	.427	.493	.639	.706	.045	.220	.410	.505	.730	.800
<i>ℓ</i> 12	.042	.017	.082	.176	.332	.452	.481	.028	.002	.052	.260	.442
d=.4												
ℓ0	.367	.468	.520	.586	.656	.719	.379	.553	.619	.707	.802	.870
<i>l</i> 4	.150	.239	.312	.359	.471	.508	.029	.158	.287	.352	.542	.606
ℓ12	.063	.013	.059	.125	.231	.321	.501	.045	.007	.034	1.67	.302
d=.45												
ℓ0	.301	.391	.426	.463	.537	.582	.320	.455	.507	.590	.680	.752
<i>l</i> 4	.130	.199	.260	.291	.396	.413	.027	.127	.237	.301	.454	.507
ℓ12	.019	.014	.049	.100	.194	.255	.504	.053	.010	.027	.136	.244
d=.49												
ℓ0	.254	.326	.360	.390	.446	.497	.271	.381	.436	.497	.579	.639
<i>l</i> 4	.108	.169	.231	.255	.335	.362	.025	.107	.202	.243	.391	.421
ℓ12	.089	.014	.042	.089	.161	.223	.510	.065	.014	.020	.114	.203
d=.499												
ℓ0	.257	.318	.335	.391	.434	.465	.262	.367	.423	.480	.547	.619
<i>l</i> 4	.112	.170	.216	.251	.327	.344	.022	.106	.197	.236	.366	.416
ℓ12	.084	.014	.040	.084	.163	.211	.506	.069	.013	.020	.108	.199

40
TABLE 2.3-2

Power of KPSS Two Tail Unit Root Test against I(d), d∈[1/2, 3/2)

	-		$\hat{\eta}_{\mu}$	Γest					η̂τ]	Γest	-	
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=.5												
ℓ0	.245	.311	.344	.372	.422	.466	.257	.364	.415	.480	.548	.613
<i>l</i> 4	.110	.163	.223	.239	.322	.343	.026	.097	.193	.243	.369	.414
ℓ12	.092	.013	.040	.081	.160	.212	.517	.066	.011	.022	.107	.191
d=.51												ľ
ℓ0	.237	.291	.322	.358	.403	.439	.251	.347	.403	.459	.526	.582
<i>l</i> 4	.106	.154	.211	.232	.311	.320	.021	.098	.188	.236	.357	.397
<i>ℓ</i> 12	.093	.015	.038	.082	.154	.197	.521	.072	.015	.022	.104	.191
d=.6												į
ℓ0	.162	.199	.206	.228	.251	.267	.164	.233	.258	.283	.325	.354
<i>l</i> 4	.079	.115	.143	.163	.214	.217	.012	.065	.133	.157	.245	.265
ℓ12	.121	.019	.025	.054	.106	.138	.538	.091	.025	.016	.067	.122
d=.7												!
ℓ0	.105	.121	.122	.135	.139	.146	.105	.138	.144	.153	.166	.183
<i>l</i> 4	.059	.077	.098	.110	.135	.139	.009	.046	.080	.095	.144	.155
ℓ12	.155	.029	.021	.038	.067	.091	.573	.122	.039	.020	.037	.072
d=.8												
ℓ0	.063	.073	.077	.073	.076	.077	.064	.076	.079	.078	.088	.097
<i>l</i> 4	.038	.052	.072	.070	.084	.082	.007	.028	.052	.057	.091	.093
ℓ12	.212	.055	.028	.027	.045	.054	.581	.156	.068	.027	.028	.046
d=.9												
<i>l</i> 0	.046	.047	.051	.047	.046	.049	.046	.050	.051	.053	.051	.051
	.025	.035	.047	.043	.052	.049	.004	.017	.033	.038	.055	.048
$ \ell 12 $.267	.088	.043	.030	.030	.033	.604	.191	.094	.048	.030	.035
d=.95												
<i>l</i> 0	.046	.042	.047	.045	.041	.044	.044	.047	.048	.048	.047	.046
<i>l</i> 4	.023	.027	.037	.034	.037	.037	.003	.013	.026	.030	.038	.038
$ \ell_{12} $.291	.111	.053	.035	.024	.030	.617	.219	.110	.060	.036	.034
d=.99	0.50	0.50	0.51	0.40	0.4.6		=		0.40	=		
$\ell 0$.050	.050	.051	.049	.046	.044	.047	.047	.048	.047	.050	.049
<i>l</i> 4	.016	.023	.030	.030	.032	.027	.002	.013	.021	.022	.035	.033
$ \ell 12 $.324	.135	.072	.043	.023	.025	.622	.233	.127	.074	.040	.038
d=1.0	0.40	050	051	0.40	0.40		0.45	A 4 ==	0.45	021	0.45	0.50
$\ell 0$.049	.053	.051	.049	.049	.047	.047	.047	.045	.051	.047	.053
<i>l</i> 4	.017	.024	.026	.027	.032	.029	.002	.009	.018	.022	.029	.030
ℓ12	.325	.144	.076	.042	.025	.027	.625	.239	.133	.076	.043	.043

TABLE 2.3-2, CONTINUED

			$\hat{\eta}_{\mu}$]	Γest					η̂ ,]	Γest		
T	50	100	150	250	500	1000	50	100	150	250	500	1000
d=1.1												
ℓ0	.082	.086	.084	.086	.085	.081	.066	.071	.070	.072	.071	.070
ℓ4	.012	.014	.017	.017	.019	.018	.001	.008	.013	.014	.018	.020
ℓ12	.403	.213	.129	.083	.047	.042	.661	.275	.175	.113	.066	.059
d=1.2												
ℓ0	.146	.154	.150	.150	.146	.147	.100	.104	.105	.098	.103	.102
ℓ4	.006	.009	.011	.010	.010	.011	.001	.005	.007	.007	.011	.014
ℓ12	.487	.304	.213	.148	.086	.081	.684	.332	.217	.143	.096	.086
d=1.3												
ℓ0	.249	.248	.252	.248	.250	.253	.141	.147	.145	.141	.143	.149
ℓ4	.003	.003	.008	.005	.006	.005	.001	.003	.006	.006	.006	.019
ℓ12	.582	.415	.321	.251	.175	.166	.693	.381	.261	.185	.132	.125
d=1.4												
ℓ0	.409	.417	.417	.413	.414	.414	.190	.197	.193	.195	.190	.191
ℓ4	.003	.002	.003	.002	.003	.003	.001	.002	.003	.006	.004	.030
ℓ12	.708	.574	.500	.417	.332	.316	.722	.422	.311	.239	.179	.162
d=1.45												
ℓ0	.556	.551	.554	.560	.553	.561	.213	.212	.215	.218	.218	.219
ℓ4	.002	.002	.001	.002	.002	.002	.001	.002	.002	.006	.004	.036
<i>l</i> 12	.796	.698	.628	.573	.477	.462	.739	.434	.327	.259	.204	.193
d=1.499												
ℓ0	.936	.931	.928	.932	.931	.934	.242	.239	.238	.237	.234	.241
 	.000	.000	.000	.000	.000	.000	.000	.001	.003	.000	.003	.044
ℓ12	.973	.958	.942	.934	.917	.913	.747	.465	.348	.283	.222	.210

TABLE 2.4

Power Comparison with Dickey-Fuller Type Tests

		(1))	(2))		(3)		(4)Lo	wη̂μ	(5)Tw	/ο η̂ μ
d	T	τ	ρ	τ	ρ	τ_0	ADF	PP	ℓ0	<i>ℓ</i> 12	ℓ0	<i>ℓ</i> 12
d=.45	100	.88	.86	.88	.87	.999	.111	.999	.502	.045	.391	.014
	250	.99	.99	.99	.99	1.00	.336	1.00	.587	.182	.463	.100
d=.6	100	.71	.71	.71	.71	.927	.069	.926	.295	.027	.199	.019
	250	.90	.90	.90	.90	.999	.186	.996	.322	.113	.228	.054
d=.9	100	.10	.10	.09	.09	.138	.038	.136	.074	.009	.047	.088
	250	.14	.14	.13	.14	.199	.060	.173	.075	.037	.047	.030
d=1.0	100	.05	.05	.04	.04	.051	.045	.053	.049	.006	.053	.144
İ	250	.06	.05	.05	.05	.046	.045	.050	.044	.026	.049	.042
d=1.3	100	.54	.22	.54	.21				.008	.010	.248	.415
	250	.62	.25	.62	.25				.001	.007	.248	.251

- (1) Lee's dissertation (1994): two tail D-F test (5%)
- (2) Diebold and Rudebusch (1991): two tail D-F test (5%)
- (3) Hassler and Wolters (1994): one-sided (5%)

 τ_0 = t-type simple D-F test

ADF = t-type Augmented D-F test with lags (ℓ 12)

PP = t-type Phillips-Perron test with lags (ℓ 12)

- (4) KPSS unit root test: lower tail (5%)
- (5) KPSS unit root test: two tail (5%)

APPENDIX

Proof of LEMMA 1: Using equation (11),

$$\begin{split} &\frac{1}{T^{d^*+3/2}} \sum_{t=1}^{[rT]} \epsilon_t = \frac{1}{T} \sum_{t=1}^{[rT]} \left(\frac{\epsilon_t}{T^{d^*+1/2}} \right) \Rightarrow \omega_{d^*} \int_0^r W_{d^*}(a) da \,, \\ &\frac{1}{T^{d^*+3/2}} S_{[rT]} = \frac{1}{T} \sum_{t=1}^{[rT]} \frac{1}{T^{d^*+1/2}} (\epsilon_t - \bar{\epsilon}) = \frac{1}{T} \sum_{t=1}^{[rT]} \left(\frac{\epsilon_t}{T^{d^*+1/2}} \right) - \frac{[rT]}{T} \sum_{t=1}^{T} \left(\frac{\epsilon_t}{T^{d^*+1/2}} \right) \\ &\Rightarrow \omega_{d^*} \left[\int_0^r W_{d^*}(a) da - r \int_0^t W_{d^*}(a) da \right] = \omega_{d^*} \int_0^r \left[W_{d^*}(a) - \int_0^t W_{d^*}(b) db \right] da \,, \end{split}$$

which proves parts (i) and (ii). For part (iii),

$$\frac{1}{T^{2d^*+4}} \sum_{t=1}^{T} S_t^2 = \frac{1}{T} \sum_{t=1}^{T} \left[\frac{S_t}{T^{d^*+3/2}} \right]^2 \Rightarrow \omega_{d^*}^2 \int_0^1 \int_0^r \underline{W_{d^*}}(a) da \right]^2 dr, \text{ by (ii) and the}$$

continuous mapping theorem.

Proof of *THEOREM* 2: For the proof we use the following Lemmas. In each, we make the same assumptions as in *LEMMA* 1 of the main text, and results are as $T\rightarrow\infty$.

LEMMA 2.1:

$$\frac{1}{T^{2+2d^*}} \sum_{t=1}^{T} \varepsilon_{t-1} \Delta \varepsilon_t \xrightarrow{p} 0.$$

Proof: Since $\sum_{t=1}^{T} \varepsilon_{t-1} \Delta \varepsilon_{t} = \frac{1}{2} (\varepsilon_{T}^{2} - \varepsilon_{0}^{2} - \sum_{t=1}^{T} (\Delta \varepsilon_{t})^{2})$

$$\frac{1}{T^{2+2d^*}} \sum_{t=1}^{T} \varepsilon_{t-1} \Delta \varepsilon_{t} = \frac{1}{2} \frac{1}{T} \left[\frac{\varepsilon_{T}}{T^{d^*+1/2}} \right]^{2} - \frac{1}{2} \frac{1}{T} \left[\frac{\varepsilon_{0}}{T^{d^*+1/2}} \right]^{2} - \frac{1}{2} \frac{1}{T^{1+2d^*}} \left[\frac{1}{T} \sum_{t=1}^{T} (\Delta \varepsilon_{t})^{2} \right]$$

$$\xrightarrow{p} 0$$

becau

where

Proc

sinc

bec

usir

(501

$$because \left[\frac{\epsilon_T}{T^{d^*+1/2}}\right]^2 \Rightarrow \omega_{d^*}^2 W_{d^*}(1)^2, \left[\frac{1}{T}\sum_{t=1}^T (\Delta\epsilon_t)^2\right] \xrightarrow{\quad p \quad} \gamma_0 \text{ and } \epsilon_0 \text{ is } O_p(1),$$

where γ_i is the j-th autocovariance of $\Delta \epsilon_i$.

LEMMA 2.2:

$$\frac{1}{T^{2+2d^*}} \sum_{t=1}^{T} \epsilon_{t-1} \Delta \epsilon_{t+s} \xrightarrow{p} 0 \text{ for any nonnegative integer s.}$$

Proof: LEMMA 2.1 is the special case of s =0. For any given positive integer s,

$$\sum_{t=1}^{T} \epsilon_{t-1} \Delta \epsilon_{t+s} = \sum_{t=1}^{T} \epsilon_{t+s-1} \Delta \epsilon_{t+s} - \sum_{j=0}^{s-1} \sum_{t=1}^{T} \Delta \epsilon_{t+j} \Delta \epsilon_{t+s} ,$$

since $\varepsilon_{t-1} = \varepsilon_{t+s-1} - (\Delta \varepsilon_{t+s-1} + \Delta \varepsilon_{t+s-2} + \dots + \Delta \varepsilon_{t})$. Then,

$$\frac{1}{T^{2+2d^*}} \sum_{t=1}^{T} (\varepsilon_{t-1} \Delta \varepsilon_{t+s}) = \frac{1}{T^{2+2d^*}} \sum_{t=1}^{T} (\varepsilon_{t+s-1} \Delta \varepsilon_{t+s}) - \frac{1}{T^{1+2d^*}} \sum_{j=0}^{s-1} (\frac{1}{T} \sum_{t=1}^{T} \Delta \varepsilon_{t+j} \Delta \varepsilon_{t+s})$$

$$\xrightarrow{p} 0$$
,

because
$$\frac{1}{T^{2+2d^*}} \sum_{t=1}^{T} \epsilon_{t+s-l} \Delta \epsilon_{t+s} \xrightarrow{p} 0$$
 by LEMMA 2.1 and

$$\frac{1}{T^{1+2d^*}} \sum_{j=0}^{s-1} \left(\frac{1}{T} \sum_{t=1}^{T} \Delta \varepsilon_{t+j} \Delta \varepsilon_{t+s} \right) \xrightarrow{p} \frac{1}{T^{1+2d^*}} \left(\sum_{j=0}^{s-1} \gamma_{s-j} \right) \to 0,$$

using
$$\sum_{j=0}^{s-1} \gamma_{s-j} = \sum_{j=0}^{s} \gamma_j = \left[\frac{\Gamma(1-2d^*)}{\Gamma(d^*)\Gamma(1-d^*)} \sigma_u^2 \right] \sum_{j=1}^{s} \left(\frac{\Gamma(d^*+j)}{\Gamma(1-d^*+j)} \right)$$

$$= \left[\frac{\Gamma(1-2d^*)}{\Gamma(d^*)\Gamma(1-d^*)}\sigma_u^2\right] \left\{\frac{1}{2d^*} \left[\frac{\Gamma(1+d^*+s)}{\Gamma(1-d^*+s)} - \frac{\Gamma(1+d^*)}{\Gamma(1-d^*)}\right]\right\},$$

(Sowell, 1990).

LEMMA 2.3:

$$\frac{1}{T^{2+2d^*}} \sum_{j=0}^{s-1} \sum_{t=s+1}^{T} \epsilon_{t-s} \Delta \epsilon_{t-j} \xrightarrow{\quad p \quad} 0 \ \ \text{for any nonnegative integer s.}$$

Then,
$$\frac{1}{T^{2+2d^*}} \sum_{t=s+1}^{T} \left[\epsilon_{t-s} \Delta \epsilon_t + \epsilon_{t-s} \Delta \epsilon_{t-1} + \dots + \epsilon_{t-s} \Delta \epsilon_{t-s+2} \right] \xrightarrow{p} 0 \text{ by } LEMMA 2.2 \text{ and}$$

$$\frac{1}{T^{2+2d^*}} \sum_{t=s+1}^{T} \left[\varepsilon_{t-s} \Delta \varepsilon_{t-s+1} \right] \xrightarrow{p} 0 \text{ by } LEMMA 2.1.$$

LEMMA 2.4:

$$\frac{1}{T^{2+2d^*}} \sum_{t=s+l}^T \epsilon_t \epsilon_{t-s} \Rightarrow \omega_{d^*}^2 \int_0^1 W_{d^*}(a)^2 da.$$

$$Proof: \ \ \frac{1}{T^{2+2d^*}} \sum_{t=s+1}^{T} \!\! \epsilon_t \epsilon_{t-s} = \frac{1}{T^{2+2d^*}} \sum_{t=s+1}^{T} \!\! \epsilon_{t-s}^2 + \frac{1}{T^{2+2d^*}} \sum_{j=0}^{s-1} \sum_{t=s+1}^{T} \!\! \epsilon_{t-s} \Delta \epsilon_{t-j} \, ,$$

because $\varepsilon_t = \varepsilon_{t-s} - (\Delta \varepsilon_{t-s} + \Delta \varepsilon_{t-s+1} + \dots + \Delta \varepsilon_t)$. Also,

$$\frac{1}{T^{2+2d^*}} \sum_{j=0}^{s-1} \sum_{t=s+1}^{T} \varepsilon_{t-s} \Delta \varepsilon_{t-j} \xrightarrow{p} 0 \text{ by } LEMMA 2.3.$$

LEMMA 2.5:

For any nonnegative integer ℓ ,

$$\frac{1}{\ell}\left[1+2\sum_{s=1}^{\ell}(1-\frac{s}{\ell+1})\right]=\frac{\ell+1}{\ell}.$$

Proof:

$$\frac{1}{\ell(\ell+1)} [(\ell+1) + 2(\ell+(\ell-1) + \dots + 2 + 1)] = \frac{1}{\ell(\ell+1)} [(\ell+1) + 2\frac{1}{2}\ell(\ell+1)] = \frac{\ell+1}{\ell}.$$

We now will use Lemmas 2.1-2.5 to prove Theorem 2. First consider part (i), with $\ell = 0$. Then,

$$\begin{split} s^2(0) &= \frac{1}{T} \sum_{t=1}^T (\epsilon_t - \bar{\epsilon})^2 = \frac{1}{T} \sum_{t=1}^T \epsilon_t^2 - \left(\frac{1}{T} \sum_{t=1}^T \epsilon_t\right)^2 \text{ and} \\ &\frac{1}{T^{2d^*+1}} s^2(0) = \frac{1}{T} \sum_{t=1}^T \left(\frac{\epsilon_t}{T^{d^*+1/2}}\right)^2 - \left(\frac{1}{T} \sum_{t=1}^T \frac{\epsilon_t}{T^{d^*+1/2}}\right)^2 \\ &\Rightarrow \omega_{d^*}^2 \left\{ \int_0^1 W_{d^*}(a)^2 da - \left[\int_0^1 W_{d^*}(b) db\right]^2 \right\} \\ &= \omega_{d^*}^2 \left\{ \int_0^1 W_{d^*}(a)^2 da \right\} \end{split}$$

since
$$\int_{0}^{1} \frac{W_{d^*}}{(a)^2} (a)^2 da = \int_{0}^{1} \left[W_{d^*}(a) - \int_{0}^{1} W_{d^*}(b) db \right]^2 da = \int_{0}^{1} W_{d^*}(a)^2 da - \left[\int_{0}^{1} W_{d^*}(b) db \right]^2$$
.

For proving part (ii), from (3) and $e_t = \varepsilon_t - \bar{\varepsilon}$,

$$s^2(\ell) = \frac{1}{T} \sum_{t=1}^T (\epsilon_t - \overline{\epsilon})^2 + \frac{2}{T} \sum_{s=1}^\ell w(s,\ell) \sum_{t=s+1}^T (\epsilon_t - \overline{\epsilon}) (\epsilon_{t-s} - \overline{\epsilon})$$

$$= \left\{ \frac{1}{T} \sum_{t=1}^{T} \epsilon_t^2 - \left(\frac{1}{T} \sum_{t=1}^{T} \epsilon_t \right)^2 \right\} + 2 \sum_{s=1}^{\ell} w(s,\ell) \left\{ \frac{1}{T} \sum_{t=s+1}^{T} (\epsilon_t \epsilon_{t-s} - \epsilon_t \overline{\epsilon} - \overline{\epsilon} \epsilon_{t-s} - \overline{\epsilon}^2) \right\}.$$

Thus,

$$\begin{split} \frac{s^2(\ell)}{T^{1+2d^*}} &= \left\{ \frac{1}{T} \sum_{t=1}^T \left(\frac{\epsilon_t}{T^{d^*+1/2}} \right)^2 - \left(\frac{1}{T} \sum_{t=1}^T \frac{\epsilon_t}{T^{d^*+1/2}} \right)^2 \right\} + 2 \sum_{s=1}^\ell w(s,\ell) \times \\ &\left\{ \sum_{t=s+1}^T \left[\left(\frac{\epsilon_t \epsilon_{t-s}}{T^{2+2d^*}} \right) - \left(\frac{\epsilon_t \overline{\epsilon}}{T^{2+2d^*}} \right) - \left(\frac{\overline{\epsilon} \epsilon_{t-s}}{T^{2+2d^*}} \right) + \left(\frac{\overline{\epsilon}^2}{T^{2+2d^*}} \right) \right] \right\} \\ &= (A) + 2 \sum_{s=1}^\ell w(s,\ell) \times (B) \,. \end{split}$$

Part (A) is the same as $s^2(0)$ above. For fixed ℓ , (B) equals

$$\left(\sum_{t=s+1}^T \frac{\epsilon_t \epsilon_{t-s}}{T^{2+2d^*}}\right) - \frac{1}{T} \left(\sum_{t=s+1}^T \frac{\epsilon_t}{T^{d^*+1/2}}\right) \left(\frac{\overline{\epsilon}}{T^{d^*+1/2}}\right) - \frac{1}{T} \left(\sum_{t=s+1}^T \frac{\epsilon_{t-s}}{T^{d^*+1/2}}\right) \left(\frac{\overline{\epsilon}}{T^{d^*+1/2}}\right) + \left(\frac{\overline{\epsilon}}{T^{d^*+1/2}}\right)^2.$$

From LEMMA 2.4,
$$\frac{1}{T^{2+2d^*}} \sum_{t=s+1}^{T} \epsilon_t \epsilon_{t-s} \Rightarrow \omega_{d^*}^2 \int_0^1 W_{d^*}(a)^2 da,$$

$$\frac{1}{T}\Biggl(\sum_{t=s+1}^T \frac{\epsilon_t}{T^{d^*+1/2}}\Biggr) \Biggl(\frac{\overline{\epsilon}}{T^{d^*+1/2}}\Biggr) = \Biggl(\frac{1}{T}\sum_{t=s+1}^T \frac{\epsilon_t}{T^{d^*+1/2}}\Biggr) \Biggl(\frac{1}{T}\sum_{t=s+1}^T \frac{\epsilon_t}{T^{d^*+1/2}}\Biggr)$$

$$\Rightarrow \omega_{d^*}^2 \left(\int_0^1 W_{d^*}(b) db \right)^2,$$

$$\frac{1}{T} \Biggl(\sum_{t=s+1}^T \frac{\epsilon_{t-s}}{T^{d^*+1/2}} \Biggr) \Biggl(\frac{\overline{\epsilon}}{T^{d^*+1/2}} \Biggr) = \Biggl(\frac{1}{T} \sum_{t=s+1}^T \frac{\epsilon_{t-s}}{T^{d^*+1/2}} \Biggr) \Biggl(\frac{1}{T} \sum_{t=s+1}^T \frac{\epsilon_t}{T^{d^*+1/2}} \Biggr)$$

$$\Rightarrow \omega_{d^*}^2 \left(\int_0^1 W_{d^*}(b) db \right)^2,$$

and
$$\left(\frac{\overline{\epsilon}}{T^{d^*+1/2}}\right)^2 = \left(\frac{1}{T}\sum_{t=s+1}^T \frac{\epsilon_t}{T^{d^*+1/2}}\right) \Rightarrow \omega_{d^*}^2 \left(\int_0^1 W_{d^*}(b)db\right)^2$$
.

Therefore, (B)
$$\Rightarrow \omega_{d^*}^2 \int_0^1 \left\{ W_{d^*}(a)^2 - \left[\int_0^1 W_{d^*}(b) db \right]^2 \right\} da$$
.

Since $\ell \to \infty$ and $(\ell/T) \to 0$, as $T \to \infty$,

$$\frac{s^2(\ell)}{\ell T^{1+2d^*}} \Rightarrow \omega_{d^*}^2 \int_0^1 \left\{ W_{d^*}(a)^2 - \left[\int_0^1 W_{d^*}(b) db \right]^2 \right\} da \text{, by the above argument and}$$

LEMMA 2.5. ■

Proof of LEMMA 3: Let $\hat{\phi}$ and $\hat{\xi}$ be the coefficients of intercept and trend in the OLS regression of y_t on (1, t). Then

$$\begin{bmatrix} \hat{\phi} - \phi \\ \hat{\xi} - \xi \end{bmatrix} = \begin{bmatrix} T & \sum t \\ \sum t & \sum t^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum \varepsilon_t \\ \sum t \varepsilon_t \end{bmatrix}$$

and by the same algebra as in Lee and Schmidt (1994) we can show the following:

$$(\hat{\phi} - \phi) = \left(\frac{4}{T} + \frac{2}{T^2}\right) \sum_{t=1}^{1} \varepsilon_t - \frac{6}{T^2} \sum_{t=1}^{1} t \varepsilon_t + o_p(1), \text{ then}$$

$$\frac{(\hat{\phi} - \phi)}{T^{d^* + 1/2}} = \left(4 + \frac{2}{T}\right) \frac{1}{T} \sum_{t=1}^{T} \left(\frac{\varepsilon_t}{T^{d^* + 1/2}}\right) - \frac{6}{T} \sum_{t=1}^{T} \left(\frac{t}{T} \frac{\varepsilon_t}{T^{d^* + 1/2}}\right) + \frac{o_p(1)}{T^{d^* + 1/2}}$$

$$\Rightarrow \omega_{d^*} \left\{4 \int_{0}^{1} W_{d^*}(a) da - 6 \int_{0}^{1} a W_{d^*}(a) da\right\}$$

$$= \omega_{d*} \left\{ -2 \int_0^1 W_{d*}(a) da + 6 \int_0^1 \left(\int_0^a W_{d*}(b) db \right) da \right\},$$

since
$$\int_{0}^{1} aW_{d^{*}}(a)da = \int_{0}^{1} W_{d^{*}}(a)da - \int_{0}^{1} \left(\int_{0}^{a} W_{d^{*}}(b)db\right)da$$
.

Also,
$$(\hat{\xi} - \xi) = \frac{-6}{T^2} \sum_{t=1}^{T} \epsilon_t + \frac{12}{T^3} \sum_{t=1}^{T} t \epsilon_t + o_p(1)$$
,

$$\frac{(\hat{\xi} - \xi)}{T^{d^* - 1/2}} = -6\frac{1}{T} \left(\frac{\sum_{t=1}^{T} \varepsilon_t}{T^{d^* + 1/2}} \right) + \frac{12}{T} \left(\sum_{t=1}^{T} \frac{t}{T} \frac{\varepsilon_t}{T^{d^* + 1/2}} \right) + \frac{o_p(1)}{T^{d^* - 1/2}}$$

$$\Rightarrow \omega_{d^*} \left\{ -6 \int_0^1 W_{d^*}(a) da + 12 \int_0^1 a W_{d^*}(a) da \right\}$$

$$= \omega_{d*} \left\{ 6 \int_0^1 W_{d*}(a) da - 12 \int_0^1 \left(\int_0^a W_{d*}(b) db \right) \right\}.$$

Then
$$S_{[rT]} = \sum_{t=1}^{[rT]} (\epsilon_t - \hat{\epsilon}_t) = \sum_{t=1}^{[rT]} \epsilon_t - [rT](\hat{\phi} - \phi) - \frac{1}{2}[rT]([rT] + 1)(\hat{\xi} - \xi),$$

$$\frac{S_{\left[rT\right]}}{T^{d^*+3/2}} = \frac{1}{T} \sum_{t=1}^{\left[rT\right]} \frac{\epsilon_t}{T^{d^*+1/2}} - \frac{\left[rT\right]}{T} \left(\frac{\hat{\varphi} - \varphi}{T^{d^*+1/2}}\right) - \frac{1}{2} \frac{\left[rT\right]}{T} \frac{\left(\left[rT\right] + 1\right)}{T} \left(\frac{\hat{\xi} - \xi}{T^{d^*-1/2}}\right)$$

$$\Rightarrow \omega_{d^*} \left\{ \int_0^r W_{d^*}(a) da - r \left(4 \int_0^1 W_{d^*}(a) da - 6 \int_0^1 a W_{d^*}(a) da \right) \right\}$$

$$-\frac{1}{2}r^{2}\left(-6\int_{0}^{1}W_{d^{*}}(a)da+12\int_{0}^{1}aW_{d^{*}}(a)da\right)$$

$$=\omega_{d*}\int_{0}^{r}W_{d*}^{*}(a)da,$$

which is similar to the result of Shin and Schmidt (1992, p.388).

CHAPTER 3

ASYMPTOTIC BIAS OF THE MDE WHEN SHORT-RUN DYNAMICS ARE IGNORED

1. INTRODUCTION

Suppose that an observed series $\{y_t\}$ follows an ARFIMA(p,d,q) process:

(1)
$$(1-L)^d y_t = \varepsilon_t, \quad \phi(L)\varepsilon_t = \theta(L)u_t,$$

where $\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p$, $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$, all of the roots of $\phi(L)$ and $\theta(L)$ lie outside the unit circle, $\phi(L)$ and $\theta(L)$ have no common roots, and $\{u_t\}$ is white noise. This is the same model and the same notation as in Chapter 1. When ϵ_t itself is white noise, y_t is a fractionally integrated white noise, or ARFIMA(0,d,0), process, also called an I(d) process. In the ARFIMA model, the differencing parameter d determines the long run properties of the series, such as its persistence and the persistence of its autocorrelations, while θ and ϕ influence shortrun dynamics. In this chapter we will consider the estimation of d, with particular attention to whether we can estimate d separately from the ARMA parameters that determine short-run dynamics.

The first systematic treatment of estimation of d was by Geweke and Porter-Hudak (1983), hereafter GPH, who suggested a simple semi-parametric two step procedure for estimating d. Their estimator is based on a spectral regression and linear filter theory. If $\{y_i\}$ follows the ARFIMA process (1), its spectral density is:

$$(2) \qquad f_{y}(\omega) = \frac{\sigma^{2}}{2\pi} \left| 1 - e^{-i\omega} \right|^{-2d} f_{\epsilon}(\omega) = \frac{\sigma^{2}}{2\pi} \left\{ 4 \sin^{2}(\frac{\omega}{2}) \right\}^{-d} f_{\epsilon}(\omega),$$

where $f_{\epsilon}(\omega)$ is the spectral density of ϵ_t , which is finite, bounded away from zero and continuous on the interval $[-\pi, \pi]$. Taking logarithms,

(3)
$$\log \left\{ f_{y}(\omega) \right\} = \log \left\{ \frac{\sigma^{2}}{2\pi} f_{\varepsilon}(0) \right\} - d \log \left\{ 4 \sin^{2}(\frac{\omega}{2}) \right\} + \log \left\{ \frac{f_{\varepsilon}(\omega)}{f_{\varepsilon}(0)} \right\}.$$

Then GPH suggested an OLS regression based on $I(\omega_j)$, which denotes the periodogram at the harmonic ordinate, $\omega_j = 2\pi j/T$ for j = 1, ..., m, where T is the sample size. The number of ordinates used is m = g(T), where $g(T) \to \infty$ but $g(T)/T \to 0$ as $T \to \infty$. The regression model is:

(4)
$$\log \left\{ I(\omega_j) \right\} = \alpha - d \log \left\{ 4 \sin^2 \left(\frac{\omega_j}{2} \right) \right\} + v_j,$$

where $\alpha = constant$ and

$$v_j = log \left\{ \frac{I(\omega_j)}{f_y(\omega_j)} \right\}.$$

This implies that $E(v_j) = 0$, $var(v_j) = \pi^2/6$, j = 1, 2, ..., m, and that $cov(v_i, v_j) = 0$, $i \neq j$. The GPH estimator, say \hat{d} , is then defined as the OLS estimator of d in (4). GPH show that \hat{d} is consistent, for d < 0, and Robinson (1990) shows consistency for $0 \le d < 1/2$. Under the further condition $\lim_{T \to \infty} \left\{ (\log(T)^2) / g(T) \right\} = 0$, \hat{d} is asymptotically normal. However it is not \sqrt{T} -consistent; asymptotically its variance is of order m^{-1} , not T^{-1} . The important features of the GPH estimator is that we can disregard the last term in (3), which involves the unknown short-run dynamics parameters (ϕ 's and θ 's), because it is asymptotically nearly constant for sufficiently low frequencies.

However, the GPH estimator can be badly biased even for moderately large sample sizes, especially when there is substantial autocorrelation in the ε_t process.

Agiakloglou, Newbold and Wohar (1993) show that the GPH estimator of d under AR(1) or MA(1) errors with quite large short-run dynamics, is seriously biased when $m = T^{1/2}$. They conclude that tests based on the GPH estimator are significantly misleading and we may need joint estimation of d and short-run dynamics. A further difficulty is that the sampling distribution of the estimated ARMA parameters after d is replaced with the GPH estimator is currently unknown.

Maximum Likelihood Estimation (MLE) under the assumption of normality has been suggested by a number of authors, apparently starting with Hosking (1984). Sowell (1992) suggested the exact MLE of the general ARFIMA(p,d,q) process with normal disturbances. This estimator maximizes the log likelihood function:

(5)
$$\log L = -\frac{T}{2}\log(2\pi) - \frac{1}{2}\log|\Omega| - \frac{1}{2}Y'\Omega^{-1}Y$$
,

where $\Omega_{ij} = \gamma_{[i-j]}$ (with $\gamma_j = j$ -th order autocovariance of $\{y_t\}$), and Y is the Tx1 vector of observations. In the MLE any ARMA parameters in $\theta(L)$ and $\phi(L)$ must be estimated jointly with d. The exact MLE is computationally difficult, and probably not feasible for sample sizes larger than 1000 or so, because of the need to invert the TxT covariance matrix Ω . Several approximate MLEs which do not require the inversion of the covariance matrix Ω have been suggested. A conditional sum-of-squares estimator (CSS) was proposed by Li and McLeod (1986). It truncates the infinite sum in $(1-L)^d$ to a finite sum for estimation. Chung and Baillie (1993) investigated the small sample performance of the CSS estimator and showed that for the I(d) process the CSS estimator is very close to Sowell's exact MLE, even for

T<100. They show that the estimation of the mean can make a considerable difference to the small sample bias. Fox and Taqqu (1986) and Dalhaus (1989) used an approximation formula for the spectral density given by Whittle (1951, 1953), where the autocovariance matrix is diagonalized by transforming the {y_t} process into the frequency domain and the asymptotic properties of Toeplitz matrices and an equicontinuity property of quadratic forms are used to show consistency and asymptotic normality. The approximate log likelihood is as follows:

(6)
$$\log L = \sum_{i=1}^{T-1} \log \left\{ 2\pi \cdot f(\omega_j) \right\} + \sum_{i=1}^{T-1} \frac{I(\omega_j)}{f(\omega_j)},$$

where $I(\omega_i)$ is the periodogram and $f(\omega_i)$ is a spectral density of y as above.

The main focus of this chapter will be on minimum distance estimation (MDE).

Let

(7)
$$\rho = [\rho_1, \rho_2, ..., \rho_n]'$$

be the vector of the first n population autocorrelations, and let $\hat{\rho}$ be the corresponding vector of estimated (sample) autocorrelations. Tieslau, Schmidt, and Baillie (1994), hereafter TSB, suggest minimizing the distance between ρ and $\hat{\rho}$. More precisely, let

(8)
$$\lambda = [d, \phi_1, ..., \phi_p, \theta_1, ..., \theta_q]'$$

so that ρ depends on λ . TSB suggest minimization of a criterion function $\left\{\hat{\rho}-\rho(\lambda)\right\}'W\left\{\hat{\rho}-\rho(\lambda)\right\}$, where W is a positive definite matrix. This estimator is

consistent, and it is \sqrt{T} -consistent for -1/2< d <1/4. A similar GMM estimator is suggested by Dueker and Startz (1992).

Chung and Schmidt (1995) provide a modification of the TSB estimator, "adjusted MDE" (AMDE), to achieve \sqrt{T} -consistency for -1/2< d <1/2, not just for -1/2< d <1/4. Define the vector

(9)
$$\delta = [\delta_1, \delta_2, ..., \delta_n]'$$

where $\delta_1 = 1 - \rho_1$, $\delta_2 = \rho_1 - \rho_2$, ..., $\delta_n = \rho_{n-1} - \rho_n$. The information in δ is the same as in ρ and the MDE based on δ is asymptotically the same as the MDE based on ρ . However, Chung and Schmidt suggest an MDE based on (n-1) functions of ratios of elements of δ . More specifically, they consider ratios of the form

(10)
$$r_i = a'_i \delta / b'_i \delta, j = 1, 2, ..., n-1,$$

where a_j and b_j are vectors of known constants; they also allow general differentiable functions of these ratios. Using results from Hosking (1995), they show that such an MDE, which they call an AMDE, is \sqrt{T} -consistent for -1/2 < d < 1/2. Its asymptotic variance does not depend on the choice of a_j , b_j , nor on which function of the ratios (10) are taken. For d < 1/4, the AMDE is less efficient than TSB's MDE because it does not use information on the levels of the δ 's (or ρ 's).

Now consider the problem of estimating the differencing parameter d separately from the ARMA parameters that determine short-run dynamics. Every element of δ (or ρ) depends on a non-trivial way on the ARMA parameters. However, ratios like δ_j/δ_{j-1} (or ρ_j/ρ_{j-1}) depend only on d, in the limit as $j \to \infty$. This

suggests that we could ignore short-run dynamics by considering ratios of sufficiently high-order autocorrelations, and this is easy to do in the AMDE of Chung and Schmidt. Let n be the number of δ 's considered, and let ℓ be the number of elements of δ that are not considered, so that we consider only

(11)
$$\delta_{\mathbf{n},\ell} \equiv \left[\delta_{\ell+1}, \, \delta_{\ell+2}, \, ..., \, \delta_{\ell+\mathbf{n}}\right]'.$$

We will consider the AMDE based on $\delta_{n,\ell}$, ignoring short-run dynamics; that is, the AMDE assuming the I(d) or ARFIMA(0,d,0) model. When the data are generated by the ARFIMA(p,d,q) model, the AMDE based on the (0,d,0) model will yield asymptotically biased (inconsistent) estimates. However, we expect this asymptotic bias to be small when ℓ is large. In this chapter we will calculate this asymptotic bias, as a function of n, ℓ and the parameters. The idea is to see whether approximately unbiased estimates of d can be obtained, without the need to model short-run dynamics. The idea of doing so using high-order autocorrelations obviously is similar to the GPH idea of using the periodogram at low frequencies. Lobato and Robinson (1993) used the same idea.

2. MOMENT CONDITIONS FOR MDE

In this section, we give the explicit form of the functions of δ that are used in the AMDE estimators that we will consider. To do so, we first need to give a little more detail on the TSB and Chung-Schmidt procedures. Consider the case of an I(d)

process; that is, a fractionally integrated white noise. The MDE of d, say \hat{d} , is defined as the value which minimizes the following criterion function:

(12)
$$S(d) = \{F[\hat{\rho}] - F[\rho(d)]\}^{\prime} W \{F[\hat{\rho}] - F[\rho(d)]\},$$

where $\rho(d) = \left[\rho_1(d), \, \rho_2(d), \, ..., \, \rho_n(d)\right]'$ is a vector of population autocorrelations that depends on the value of d, $\hat{\rho}$ is the corresponding vector of sample autocorrelations, F is a m-dimensional vector of transformation functions of the autocorrelations (m < n), and W is a symmetric and positive-definite weighting matrix. The asymptotically optimal weighting matrix is as follows:

(13)
$$W = AV(F(\hat{\rho}))^{-1} = [PCP']^{-1}$$
.

Here $P = \partial F/\partial \rho'$ (mxn). C is the asymptotic variance-covariance matrix of the sample autocorrelations (nxn). For -1/2< d <1/4 it can be defined by Bartlett's formula,

(14)
$$C_{i,j} = \sum_{s=1}^{\infty} (\rho_{s+i} + \rho_{s-i} - 2\rho_i \rho_s)(\rho_{s+j} + \rho_{s-j} - 2\rho_j \rho_s), j = 1, 2, ..., n,$$

from Hosking (1995, 1984) and Brockwell and Davis (1991). Define $D = \partial \rho / \partial d$ (nx1). Then the asymptotic variance of the MDE \hat{d} defined in (12) above is:

(15)
$$AV(\hat{d}) = \left\{ [D'P'WPD]^{-1}D'P'W(PCP')WPD[D'P'WPD]^{-1} \right\}.$$

When $W = [PCP']^{-1}$, this simplifies to

(16)
$$AV(\hat{\mathbf{d}}) = \left[D'P'(PCP')^{-1}PD\right]^{-1}.$$

We can note that P cancels if it is nonsingular, which will be the case if n = m and the elements of F are functionally independent. In this case the transformation F is asymptotically irrelevant. However, F clearly matters when m < n.

This MDE is similar to the GMM estimator introduced by Hansen (1982). The GMM estimator of a parameter, say β (hx1), is based on conditions of the form:

$$E[g_i(y_t, \beta)] = 0, i = 1, 2, ..., k (h \le k).$$

The GMM estimator minimizes a criterion function:

$$\min S(\beta) = \{\overline{g}(\beta)'W \overline{g}(\beta)\}\$$

where $\overline{g}_i(\beta) = \frac{1}{T} \sum_{t=1}^{T} g_i(y_t, \beta)$. Therefore, the above MDE of d is not a GMM estimator because $F(\hat{\rho})$ is not an average, but it still has the basic properties of a GMM estimator.

TSB (1995) introduced the simplest case of the MDE using the trivial transformation $F\{\rho(d)\} = \rho(d)$, so that m = n. Then the criterion in equation (12) can be simplified as:

(17)
$$S(d) = \{\hat{\rho} - \rho(d)\}^{\prime} W \{\hat{\rho} - \rho(d)\}.$$

The optimal weighting matrix is $W = C^{-1}$ since P = I. The asymptotic distribution of $\sqrt{T}(\hat{d}-d)$, for -1/2 < d < 1/4, is $N(0, [D'CD]^{-1})$. For d = 1/4, \hat{d} converges to a normal distribution, but at a rate of $(T/\ln T)^{1/2}$; for 1/4 < d < 1/2, the MDE converges to a non-normal asymptotic distribution at a rate of $T^{(1-2d)}$. Thus for $d \ge 1/4$ convergence is slower than the usual $T^{1/2}$ rate.

These asymptotic results basically depend on the asymptotic distribution of $\hat{\rho}$ (for details, see Hosking (1995)). However, even for $d \in [1/4, 1/2)$, Hosking (1995) has shown that the following normalized differences of the sample autocorrelations are \sqrt{T} -consistent and asymptotically normal:

(18)
$$\sqrt{T} \left[\frac{\hat{\rho}_{\mathbf{k}} - \rho_{\mathbf{k}}}{1 - \rho_{\mathbf{k}}} - \frac{\hat{\rho}_{\ell} - \rho_{\ell}}{1 - \rho_{\ell}} \right].$$

Therefore, TSB (1995) suggested an MDE based on such normalized differences of the sample autocorrelations, which is \sqrt{T} -consistent for the whole stationary and invertible range (-1< d <1/2) of the long-memory process.

Also, Chung and Schmidt (1995) introduced an AMDE that is also \sqrt{T} -consistent for the entire range -1< d <1/2. The MDE based on the quantity in (18) is an AMDE. More generally, Chung and Schmidt rely on Hosking's result that differences of sample auto<u>covariances</u> are \sqrt{T} -consistent: $\sqrt{T}[(\hat{\gamma}_i - \hat{\gamma}_j) - (\gamma_i - \gamma_j)]$ is asymptotically normal with variance given by Hosking (1995, equation (16)). Ratios of differences of autocovariances; for example, $(\rho_3 - \rho_2)/(1 - \rho_1) = (\gamma_3 - \gamma_2)/(\gamma_0 - \gamma_1)$. With δ as defined in (9) above, the ratios $r_j = a'_j \delta / b'_j \delta$ given in (10) above are ratios of differences of autocorrelations and provide the basis for a \sqrt{T} -consistent AMDE.

Chung and Schmidt (1995) provide several different but asymptotically equivalent forms of the AMDE. They correspond to different choices of the constants a_j , b_j , and different functions of the ratios r_j . Formally, they also correspond to

choices of the function F in (12) above. In all cases, if ρ (or δ) has n elements, F is of dimension

(n-1). The formulas given earlier in this section depend on the matrix C, which is defined only for d < 1/4, but Hosking (1995) and Chung and Schmidt (1995) give the necessary modifications that are well-defined for d in the entire range -1 < d < 1/2.

We will discuss three different specializations of F. Because we will be interested in the general ARFIMA(p,d,q) process, we will take the parameter vector as:

(19)
$$\lambda = [d, \phi_1, ..., \phi_p, \theta_1, ..., \theta_q]' = [d, \Theta']'$$

as in (8) above, with $\Theta = [\phi_1, ..., \phi_p, \theta_1, ..., \theta_q]'$; hence we distinguish the differencing parameter d from the ARMA parameters Θ .

The GLS estimator introduced by Chung and Schmidt (1995) is based on the function \mathbf{F}^1 defined by:

(20)
$$F_i^1[\rho(d, \Theta)] = 1 - j \cdot b_i(d, \Theta), j = (\ell+1), (\ell+2), ..., (\ell+n).$$

where

(21)
$$b_j(\mathbf{d}, \Theta) = \frac{\delta_j(\mathbf{d}, \Theta) - \delta_{j+1}(\mathbf{d}, \Theta)}{\delta_j(\mathbf{d}, \Theta) + \delta_{j+1}(\mathbf{d}, \Theta)}$$
, with $\delta_j(\mathbf{d}, \Theta) = \rho_{j-1}(\mathbf{d}, \Theta) - \rho_j(\mathbf{d}, \Theta)$.

Thus $b_j(d, \Theta) = [\rho_{j-1}(d, \Theta) - 2\rho_j(d, \Theta) + \rho_{j+1}(d, \Theta)]/[\rho_{j-1}(d, \Theta) - \rho_{j+1}(d, \Theta)]$. As in the previous section, ℓ is the lowest-order autocorrelation used in the calculation; $(n+\ell+1)$ is the highest-order autocorrelation used; and estimation is based on n moment conditions, derived from n ratios of linear combinations of $\delta_{n+1,\ell}$ as defined

in (11) above. Chung and Schmidt (1995) consider only the case $\ell=0$ (which is well defined, with the convention $\rho_0=1$). For this pure I(d) process without short-run dynamics (i.e., $\Theta=0$), $F_j^1[\rho(d,0)]=1-j\cdot b_j(d,0)=d$ for all j, and the MDE is expressible as a GLS regression of F^1 on a vector of ones. See Chung and Schmidt (1995) for more detail. They refer to this as the GLS version of the AMDE.

A second possibility is to use the following transformation F²:

(22)
$$F_j^2[\rho(\mathbf{d}, \Theta)] = \frac{\rho_j(\mathbf{d}, \Theta)}{\rho_{j-1}(\mathbf{d}, \Theta)}, j = (\ell+1), (\ell+2), ..., (\ell+n).$$

For the pure I(d) process without short-run dynamics we have:

(23)
$$F_j^2[\rho(d)] = \frac{(j-1)+d}{j-d}$$
.

A third possibility is similar to the second, but uses the same denominator for each ratio. That is, the function F^3 is defined by:

(24)
$$F_j^3[\rho(d, \Theta)] = \frac{\rho_j(d, \Theta)}{\rho_\ell(d, \Theta)}, j = (\ell+1), (\ell+2), ..., (\ell+n).$$

For the pure I(d) process without short-run dynamics we have:

$$F_j^3[\rho(d)] = \prod_{k=\ell+1}^j \frac{(k-1+d)}{(k-d)}.$$

There is presumably an efficiency loss from ignoring low-order autocorrelations, so that the asymptotic variances of the AMDE or the MDE grow with ℓ . However, larger values of ℓ are useful to avoid the asymptotic bias that

results from ignoring or misspecifying short-run dynamics. We now turn to the calculation of this asymptotic bias.

3. CALCULATION OF ASYMPTOTIC BIAS

Suppose that $\{y_i\}$ follows an ARFIMA(p,d,q) process as in (1) above. Let $\lambda = [d, \phi_1, ..., \phi_p, \theta_1, ..., \theta_q]' = [d, \Theta']'$ as above. We can apply the MDE or AMDE estimators described in the previous section to obtain a consistent estimator of λ . However, we now consider the case that we assume (incorrectly) that $\{y_i\}$ follows a pure I(d), or ARFIMA(0,d,0), process and we calculate the MDE or AMDE estimator of d. This estimate will in general be inconsistent. Let \overline{d} represent the probability limit of the estimate \hat{d} , so that the asymptotic bias is $(\overline{d} - d_0)$, where d_0 is the true (population) value of d. We wish to evaluate this asymptotic bias.

The MDE based on the assumed (0,d,0) model minimizes the criterion function:

(26) min
$$S(d) = \{F[\hat{\rho}] - F[\rho(d, 0)]\}^{\prime} W \{F[\hat{\rho}] - F[\rho(d, 0)]\}.$$

We can calculate $\overline{d} = \operatorname{plim} \hat{d}$ by invoking the general principle that \overline{d} should minimize in the population the same criterion that \hat{d} minimizes in the sample. Since $\operatorname{plim} \hat{\rho} = \rho(d_0, \Theta)$, \overline{d} minimizes the criterion function:

$$(27) \quad \min S(\overline{d}) = \left\{ F[\rho(d_0, \Theta_0)] - F[\rho(\overline{d}, 0)] \right\}' W \left\{ F[\rho(d_0, \Theta_0)] - F[\rho(\overline{d}, 0)] \right\}.$$

Thus we can calculate \overline{d} by a numerical minimization of the criterion (27), and from it calculate the asymptotic bias (\overline{d} - d_0). This will depend on the function F, the weighting matrix W, the differencing parameter d_0 , and the ARMA parameters Θ .

The transformation $F[\rho] = \rho$ defined the (ordinary) MDE of TSB. Suppose that the MDE is based on $(\rho_{\ell}, ..., \rho_{\ell+n})$, where the standard case of TSB is $\ell=1$. For this MDE there is no reason to expect the asymptotic bias to decrease when ℓ increases, since every autocorrelation $\rho_j(d, \Theta)$ depends on Θ , no matter how large j is. However, ratios like $\rho_j(d, \Theta)/\rho_{j-1}(d, \Theta)$ depend only on d, not on Θ , for sufficiently large j. Thus, for the AMDE based on the function F^1 or the MDE based on F^2 and F^3 of the previous section, each of which involves ratios, we do expect the asymptotic bias to decrease as ℓ increases.

For the MDE based on F^2 or F^3 , defined in equations (22) and (24) above, \overline{d} must be calculated by a numerical minimization. For the GLS version of the AMDE, based on F^1 defined in equation (20), there is a closed form (GLS) solution for \overline{d} :

(28)
$$\overline{\mathbf{d}} = \mathbf{i}_{\mathbf{n}}' \mathbf{W} \mathbf{F}^{\mathbf{l}} [\rho(\mathbf{d}_{0}, \Theta)] / [\mathbf{i}_{\mathbf{n}}' \mathbf{W} \mathbf{i}_{\mathbf{n}}],$$

where in is a vector of ones, of dimension n.

Finally, we need to discuss the relevant form of the weighting matrix, W. The optimal weighting matrix, $(PCP')^{-1}$ above, depends on population quantities and would typically be estimated using the results of some initial estimation. Since the initial estimates will also generally be biased when short-run dynamics are misspecified, there is some ambiguity in how we should handle the weighting matrix

W in our bias calculations. Therefore we will consider three different cases corresponding to different treatment of the weighting matrix. In Case 1, we use the identity matrix as the weighting matrix, so W = I_n. In Case 2, we use the weighting matrix in which P and C are evaluated using the true autocorrelations, $\rho(d_0, \Theta_0)$. This is unambiguous, but does not correspond to any feasible method of estimation that misspecifies Θ as zero. In Case 3, we assume that the weighting matrix is evaluated in the sample based on the initial estimate $\tilde{d} = \hat{\rho}_1/(1+\hat{\rho}_1)$, which would be consistent if the (0,d,0) model were true. When the (p,d,q) model is true, $\tilde{d} \to d^* \equiv \rho_1(d_0,\Theta)/[1+\rho_1(d_0,\Theta)]$ and we evaluate P and C using $d=d^*$.

4. RESULTS

In this section, we provide the results of our calculations of the asymptotic bias of the MDE of d, when we ignore short-run dynamics in the true ARFIMA(p,d₀,q) process. We consider three forms of transformation functions F^1 , F^2 , and F^3 , and three cases that differ in the evaluation of the weighting matrix, as described at the end of last section. The minimization problem (27) that defined \overline{d} was solved (for the MDE based on F^2 and F^3) using the optimization procedure in GAUSS 2.0. For simplicity we consider only ARFIMA(1,d₀,0) and ARFIMA(0,d₀,1) processes, where just one short-run parameter exists (ϕ or θ).

Tables 3.1-1, 3.1-2 and 3.1-3 give the asymptotic bias of the AMDE and the MDE for the case of an ARFIMA(1,d₀,0) process, for three parameter values: $(d_0 =$

.2, $\phi = .4$), $(d_0 = .2, \phi = .8)$ and $(d_0 = .4, \phi = .4)$. Tables 3.2-1 and 3.2-2 do the same for the case of an ARFIMA(0,d₀,1) process, for two parameter values $(d_0 = .2, \theta = .4)$ and $(d_0 = .2, \theta = .8)$. We consider numbers of moment conditions (n) equal to 1, 3, 5 and 10. We consider lags (ℓ , equal to the lowest order autocorrelation used) equal to 0, 2, 3, 4, 5, 6, 7, 8, 10, 20 and 30. We consider the AMDE based on F^1 and the MDE based on F^2 , and F^3 , and three cases corresponding to the treatment of the weighting matrix, as we discussed previously.

Table 3.1 and 3.2 give us some clear and interesting results. (1) For fixed n. the asymptotic bias of the AMDE or the MDE that ignore short-run dynamics decreases and becomes close to zero as we use higher order of autocorrelations (larger ℓ). This is as expected given the characteristics of autocorrelations of our long memory process. This is our main result. It essentially implies that semiparametric estimation of d through the MDE principle is possible, if we choose an appropriate form of transformation function of the autocorrelations and use high order autocorrelations. (2) The three different transformations (F¹, F², F³) show similar results for larger values of ℓ . This especially true for F^2 and F^3 , for which the results are quite similar even when ℓ is not very large. The absolute bias for the estimator based on F¹ is generally larger than for F² or F³. (3) The choice of method of evaluating the weighting matrix (Case 1, 2 or 3) does not usually make much difference. It matters more for F¹ that for F² or F³. (4) The asymptotic bias depends more on the order of autocorrelations used (ℓ) than on the number of moment

conditions (n). Thus increasing n with fixed ℓ does not decrease asymptotic bias very much. Especially for large ℓ it has almost a negligible effect.

Tables 3.3-1, 3.3-2 and 3.3-3 give the asymptotic bias for many values of d_0 (= -.49, -.4, -.3, -.2, -.1, .1, .2, .24, .25, .3, .4, .49) and two different values of n (= 1, 10), with ϕ = .4. For n =1 the estimation problem is "exactly identified" in the sense that the number of moment conditions equals the number of parameters estimated. Therefore the choice of weighting matrix does not matter, and the results are the same for Cases 1, 2 and 3. For n =10, however, the choice of weighting matrix matters.

These results show that the asymptotic bias decreases as ℓ increases, as expected. The pattern of absolute bias as a function of d, holding constant n and ℓ , is complicated when ℓ is small. For larger values of ℓ (and both values of n), absolute bias decreases as d increases.

Table 3.4 provides the opposite comparison as in Table 3. It gives the asymptotic bias for many values of ϕ (= -.6, -.4, -.2, .2, .4, .6, .8, .9) for two different values of n (= 5, 10), with d_0 = .2. Results are given only for two relatively large values of ℓ , ℓ =20 and ℓ =30. The asymptotic bias is generally larger in absolute value when ϕ is larger in absolute value, as we would expect. For large $|\phi|$ (i.e., strong short-run dynamics), the asymptotic bias is discouragingly large even for ℓ =30. For example, for ϕ =.9 the asymptotic bias is about -0.1 or -0.2 with ℓ =30 (and d_0 = .2). This reflects the fact that any non-parametric treatment of short-run dynamics will have problems if they are strong enough; it is intrinsically difficult to distinguish long-run properties of the model from very strong short-run dynamics.

5. CONCLUDING REMARKS

In this chapter we have considered the MDE including the adjusted MDE (AMDE) estimator of Chung and Schmidt (1995) for the differencing parameter in the general ARFIMA model. In applying the MDE, one can estimate the ARFIMA model, which amounts to modeling short-run dynamics with an ARMA model; or one can estimate the pure I(d) model, but not using low-order autocorrelations, which is a non-parametric treatment of short-run dynamics. This non-parametric treatment is similar in spirit to the frequency-domain approach of Geweke and Porter-Hudak, based on the periodogram at low frequencies only. We expect a non-parametric treatment of short-run dynamics to have some cost in terms of efficiency, and Chung and Schmidt's results show that this is so. We also expect a non-parametric treatment to lead to finite sample bias, especially when the nuisance parameters (ARMA) parameters) take on extreme values; i.e., when short-run dynamics are very strong. In this chapter, we do not evaluate finite samples biases, but we evaluate the asymptotic bias that results from ignoring a fixed number (ℓ) of low-order autocorrelations. The asymptotic bias is larger when short-run dynamics are stronger and when ℓ is smaller. This is as expected. It supports the conjecture of Tieslau, Schmidt and Baillie (1995) and Chung and Schmidt (1995) that a consistent nonparametric estimate of the differencing parameter results from letting ℓ grow with the sample size. A rigorous proof of this conjecture, and a derivation of the asymptotic properties of the estimate when ℓ grow with T, are important topics for future research.

TABLE 3.1-1

Asymptotic Bias of MDE in ARFIMA(1,d₀,0) [$d_0 = 0.2$, $\phi = 0.4$]

GLS (F¹)

		n=1			n=3			n=5			n=10	
l	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3
0	.5348	.5348	.5348	.2323	.4798	.4788	.0399	.4573	.4418	0748	.4287	.3920
2	0466	0466	0466	1813	0997	1307	2137	1203	1668	1467	1395	1825
3	2123	2123	2123	2604	2376	2491	2416	2401	2509	1611	2292	2229
	2851											
5	2838	2838	2838	2370	2561	2491	1894	2314	2163	1173	1889	1620
_	2410											
7	1863	1863	1863	1408	1536	1487	1096	1321	1229	0690	1006	0871
8	1371	1371	1371	1027	1111	1079	0806	0948	0888	0520	0715	0630
10	0721	0721	0721	0556	0588	0576	0452	0506	0483	0311	0387	0354
20	0115	0115	0115	0104	0106	0105	0096	0098	0097	0079	0084	0082
30	0050	0050	0050	0047	0047	0047	0044	0045	0045	0039	0040	0039
						D - 42.	/E ² \					

Ratios (F²)

		n=1			n=3			n=5			n=10	
l	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3
0	.1861	.1861	.1861	.1372	.2209	.3642	.1200	.2211	.3701	.1101	.2213	.3627
2	1126	1126	1126	1204	1072	1199	1113	1058	1159	0954	1053	1216
3	1355	1355	1355	1184	1252	1207	1034	1181	1101	0847	1092	1072
4	1166	1166	1166	0936	1005	0952	0790	0904	0830	-0628	0780	0755
5	0864	0864	0864	0665	0690	0674	0553	0593	0572	0431	0494	0495
	0593											
7	0403	0403	0403	0308	0277	0329	0254	0234	0259	0198	0182	0210
	0275											
10	0142	0142	0142	0115	0068	0115	0099	0057	0093	0079	0040	0075
20	0013	0013	0013	0015	0000	0011	0016	0000	0009	0018	0000	0008
30	0000	0000	0000	0002	.0000	.0000	0000	.0000	0001	0005	.0000	0001

	n=1	n=3	n=5	n=10
ℓ	Case.1 Case.2 Case.3	Case.1 Case.2 Case.3	Case.1 Case.2 Case.3	Case.1 Case.2 Case.3
0	.1861 .1861 .1861	.1449 .2072 .2378	.1244 .2055 .2394	.1023 .2128 .2397
2	112611261126	119711281092	115911061242	103110811384
3	135513551355	123612191419	111811901600	092211121680
4	116611661166	098910081115	086309231243	068308081371
5	086408640864	070606940757	060506380792	046905200902
6	059305930593	048104700487	041003980482	031603390531
7	040304030403	032603140319	027902680194	021602240314
8	027602760276	022501680216	019401850101	015201540195
10	014201420142	012000740115	010600330099	008600560091
20	001900190019	002500000023	002300000019	002100000010
30	000700070007	0011 .0000 .0000	0010 .00000009	0010 .00000001

TABLE 3.1-2

Asymptotic Bias of MDE in ARFIMA(1,d₀,0) $[d_0=0.2,\,\phi=0.8]$

GLS (F¹)

							GES (I)					
		n=1			n=3			n=5			n=10	
ℓ	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case.1	Case.2	Case.3	Case. 1	Case.2	Case.3
0	.8472	.8472	.8472	.7435	.8204	.8246	.6468	.8078	.8079	.4300	.7908	.7780
2	.6419	.6419	.6419	.5484	.5986	.5857	.4603	.5749	.5409	.2659	.5428	.4557
3	.5471	.5471	.5471	.4576	.5014	.4863	.3737	.4752	.4363	.1909	.4390	.3413
4	.4563	.4563	.4563	.3709	.4096	.3937	.2962	.3820	.3415	.1209	.3430	.2422
5	.3695	.3695	.3695	.3883	.3229	.3069	.2132	.2946	.2544	.0558	.2540	.1544
6	.2869	.2869	.2869	.2101	.2411	.2254	.1398	.2125	.1739	0040	.1713	.0761
7	.2085	.2085	.2085	.1365	.1641	.1491	.0714	.1360	.0992	0583	.0952	.0060
8	.1349	.1349	.1349	.0679	.0920	.0785	.0082	.0648	.0313	1070	.0253	0554
10	.0026	.0026	.0026	0534	0349	0462	1016	0588	0861	1872	0934	1567
20	3129	3129	3129	3138	3136	3139	3100	3112	3113	2174	2995	.2952
30	2228	2228	2228	2085	2104	2092	1947	1996	1964	1641	1774	.1687
						D	(E ²)					

Ratios (F²)

		n=1			n=3			n=5			n=10	
	Cose 1		Coso 3	Case. 1		Coso 3	Cose 1		Coso 2	Cose 1		Coco 2
ľ	Case. 1											
0	.2783	.2783	.2783	.2677	.2955	0841	.2616	.2955	1472	.2535	.2954	2293
2	.1623	.1623	.1623	.1269	.2256	0011	.1030	.2243	4822	.0697	.2235	8270
3	.1062	.1062	.1062	.0702	.1790	.0419	.0455	.1778	0807	.0117	.1768	5908
4	.0549	.0549	.0549	.0210	.1292	.0095	0022	.1284	0415	0330	.1278	1879
5	.0094	.0094	.0094	0210	.0783	0264	0415	.0782	0586	0673	.0778	1184
6	0299	0299	0299	0561	.0288	0587	0731	.0292	0813	0931	.0291	1142
7	0628	0628	0628	0843	0171	0860	0979	0165	1020	1117	0166	1209
8	0896	0896	0896	1065	0575	1074	1167	0570	1185	1245	0572	1283
10	1261	1261	1261	1344	1121	1348	1379	1149	1385	1360	1143	1361
20	1040	1040	1040	-1.003	0856	1008	0937	0816	0941	0799	0729	0804
30	0371	0371	0371	0394	0074	0404	0363	0217	0373	0307	0184	0316

	T											
		n=1			n=3			n=5			n=10	
l	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3
0	.2783	.2783	.2783	.2617	.2968	.2890	.2480	.2968	.2892	.2224	.2987	.2892
2	.1623	.1623	.1623	.1318	.2209	.2513	.1090	.2207	.2672	.0709	2192	.2743
3	.1062	.1062	.1062	.0764	.1122	.1928	.0544	.1617	.2238	.0187	.1598	.2343
4	.0549	.0549	.0549	.0275	.1030	.1235	.0074	.1025	.1586	0242	.1006	.1587
5	.0094	.0094	.0094	0149	.0476	.0585	0324	.0472	.0906	0589	.0455	.0842
6	0299	0299	0299	0508	0016	.0020	0654	0021	.0293	0863	0036	.0210
7	0628	0628	0628	0801	0435	0445	0917	0442	0232	1071	0452	0317
8	0896	0896	0896	1033	0778	0804	1120	0784	0653	1221	0786	0744
10	1261	1261	1261	1331	1227	1260	1365	1221	1219	1375	1202	1344
20	1040	1040	1040	1025	0953	1023	0972	0872	1000	0860	0896	1084
30	0371	0371	0371	0412	0243	0407	0388	0352	0382	0339	0271	0356

TABLE 3.1-3

Asymptotic Bias of MDE in ARFIMA(1,d₀,0) $[d_0 = 0.4, \phi = 0.4]$

GLS (F¹)

		n=1			n=3			n=5			n=10	
ℓ	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3
Ιo	.4902	.4902	.4902	.2560	.4415	.4378	.1221	4208	.4061	.0228	.3937	.3658
2	.0483	.0483	.0483	0365	.0105	0062	0621	0040	0297	0555	0184	0458
3	0568	0568	0568	0882	0741	0805	0869	.0774	.0854	0626	0756	0796
4	1010	1010	1010	1001	1014	1019	0874	0964	0954	0588	0848	0790
5	1067	1067	1067	0923	0976	0960	0764	0890	0851	0502	0742	0664
6	0941	0941	0941	0765	0819	0800	0621	0729	0690	0409	0548	0522
7	0761	0761	0761	0603	0646	0630	0489	0568	0537	0326	0451	0401
8	0593	0593	0593	0468	0498	0487	0382	0436	0454	0260	0344	0310
10	0355	0355	0355	0287	0300	0295	0241	0265	0255	0172	0211	0195
20	0072	0072	0072	0065	0066	0066	0060	0061	0061	0050	0053	0052
30	0032	0032	0032	0030	0030		0028	0028	0028	0024	0025	0025

Ratios (F²)

_												
		n=1			n=3			n=5			n=10	
ℓ	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3
0	.0671	.0671	.0671	.0574	.0937	2947	.0547	.0932	2981	.0529	.0926	2092
2	0143	0143	0143	0164	.0047	0145	0156	0007	0180	0139	0080	0320
3	0196	0196	0196	0176	0324	0194	0157	0388	0226	0133	0489	0330
4	0173	0173	0173	0143	0245	0160	0124	0287	0173	0102	0371	0237
5	0132	0132	0132	0106	0148	0114	0091	0179	0118	0073	0234	0151
6	0096	0096	0096	0077	0099	0081	0066	0108	0080	0053	0149	0094
7	0070	0070	0070	0055	0067	0057	0048	0072	0054	0038	0088	0060
8	0050	0050	0050	0041	0048	0041	0036	0049	0039	0029	0058	0041
10	0030	0030	0030	0024	0026	0024	0022	0025	0023	0018	0028	0022
20	0005	0005	0005	0006	0000	0006	0004	0000	0005	0004	0000	0004
30	0000	0000	0000	0000	.0000	0000	0000	.0000	0002	0000	.0000	0000

		$\mathbf{n} = 1$			n=3			n=5			n=10	
l	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3	Case. 1	Case.2	Case.3
0	.0671	.0671	.0671	.0526	.0996	.0834	.0451	.0996	.0838	.0366	.0997	.0839
2	0143	0143	0143	0164	.0039	0023	0160	.0010	0165	0140	0060	0284
3	0196	0196	0196	0180	0268	0335	0162	0338	0440	0132	0470	0466
4	0173	0173	0173	0148	0186	0296	0129	0204	0408	0102	0303	0430
5	0132	0132	0132	0111	0124	0189	0096	0126	0277	0075	0158	0326
6	0096	0096	0096	0080	0084	0117	0069	0086	0166	0054	0098	0221
7	0070	0070	0070	0058	0062	0075	0051	0056	0099	0040	0065	0142
8	0050	0050	0050	0044	0046	0050	0038	0042	0062	0030	0043	0091
10	0030	0030	0030	0026	0027	0027	0023	0025	0030	0019	0019	0041
20	0005	0005	0005	0006	0003	0005	0006	0000	0006	0005	0003	0006
30	0000	0000	0000	0001	0000	0000	0003	.0000	0000	0002	0000	0000

TABLE 3.2-1

Asymptotic Bias of MDE in ARFIMA(0,d₀,1) [d₀ = 0.2, θ = -0.4]

						GLS	5 (F ¹)					
		n=1			n=3			n=5			n=10	
ℓ	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
lo	.6103	.6103	.6103	0153	.5947	.4591	0291	.5640	.4070	0222	.5178	.3548
2	1285	1285	1285	0761	1061	0957	0544	0929	0797	0318	0753	0610
3	0624	0624	0624	0471	0513	0480	0314	0445	0402	0195	0353	0305
4	0376	0376	0376	0270	0311	0297	0211	0270	0251	0137	0213	0191
5	0253	0253	0253	0191	0212	0204	0154	0185	0175	0103	0146	0134
6	0182	0182	0182	0143	0154	0150	0117	0136	0130	0081	0107	0100
7	0138	0138	0138	0111	0118	0116	0093	0104	0101	0066	0083	0078
8	0108	0108	0108	0089	0093	0092	0075	0083	0081	0055	0067	0063
10	0072	0072	0072	0061	0063	0062	0053	0057	0055	0040	0046	0044
20	0019	0019	0019	0018	0018	0018	0016	0017	0017	0014	0014	0014
30	0007	0007	0007	0008	0008	0008	0008	0008	0008	0007	0007	0007
						Ratio	os (F²)					
		n=1			n=3			n=5			n =10	
l	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
0	.1575	.1575	.1575	.0754	.2162	.3050	0678	.2192	.2981	.0628	.2193	.2853

		7/8/1		
	n=1	n=3	n=5	n=10
l	Case 1 Case 2 Case	Case 1 Case 2 Case 3	Case 1 Case 2 Case 3	Case 1 Case 2 Case 3
o	.1575 .1575 .157	.0754 .2162 .3050	0678 .2192 .2981	.0628 .2193 .2853
2	041103980409	028303280298	024002970265	020202240250
3	01820176017	013301450135	011301290117	009300990103
4	01040059010	007900660080	006800590067	005600490057
5	006800290059	005300080051	004600220045	003800100038
6	00460020003	003900040038	003400040033	002700040027
7	00350014001	002900020029	002600020026	002100020021
8	002700080009	002300010015	002000010020	001700010017
10	00110008000	001500090006	001400000006	0011 .00000006
20	00000084000	0000 .00000000	00000000 .0000	0000 .00000000
30	00000200000	0000 .01020000	0002 .0074 .0000	0002 .0000 .0000

	n=1	n=3	n=5	n=10
ℓ	Case 1 Case 2 Case	3 Case 1 Case 2 Case 3	Case 1 Case 2 Case 3	Case 1 Case 2 Case 3
0	.1575 .1575 .157	5 .0957 .2015 .2026	.0801 .2021 .2028	.0656 .1985 .2011
2	04110405040	9031003440376	026303100399	020902740422
3	01820176017	8014201440149	012201230145	009701070154
4	01040083010	2008400830082	007300690075	005900520076
5	00680009005	9005600230054	004900460048	004000260044
6	00460005003	6004100120038	003600330033	002900110029
7	00350003002	5003100050029	0027 .00060025	002300040019
8	00240001000	9002400020017	0022 .00030015	001800090014
10	00110008000	00016 .00030011	0015 .00000013	001200030009
		10004 .00060002		
30	0000 .0200 .000	00002 .0168 .0005	0002 .0259 .0003	0002 .00180003

TABLE 3.2-2

Asymptotic Bias of MDE in ARFIMA(0,d₀,1) $[d_{\bullet} = 0.2, \theta = -0.8]$

	GLS (F ¹)										
	n=1			n=3			n=5			n=10	
ℓ	Case 1 Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
o	.8469 .8469	.8469	.0403	.9504	.6385	.0002	.9867	.5670	0091	1.0164	.4956
2	15131513	1513	0903	1318	1127	0647	1151	0939	0379	1004	2768
	07450745										
4	04510451	0451	0325	0386	0356	0254	0342	0301	0165	0276	0230
	03040304										
	02200220		1			1					
	01660166								1		
	01300130										
	00860086								t e		
	00230023										
30	00110011	0011	0010	0010			0010	0009	0008	0008	0008
					Ratio	os (F ²)					
	n=1			n=3			n=5			n=10	
ℓ	Case 1 Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
0	.1970 .1970	.1970	.1110	.2656	.4270	.1012	.2714	.4125	.0945	.2740	.3973
2	04940479										
3	02190213	0218	0161	0186	0164	0137	0172	0144	0113	0157	0130
1	01250082					l .					
	00820023										
	00560014										
	00430010										
	00330007										
	00150012					l .					
	0000 .0083										
30	0000 .0058	0000							0000	.0000	0000
	Common Denominator Ratios (F ³)										
	n=1			n=3			n=5			n=10	
ℓ	Case 1 Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
0						i .					.2410
2	04940494					l.					
3											
	01250103										
	00820065										
	00560015								L.		
7	00430010	0042	0037	0013	0036	0033	.0001	0031	0027	0017	0033

8 -.0033 -.0007 -.0033 -.0029 -.0007 -.0024 -.0026 ..0005 -.0025 -.0022 -.0010 -.0023 10 -.0015 -.0012 -.0015 -.0019 -.0001 -.0016 -.0018 .0008 -.0016 -.0015 -.0007 -.0014 20 -.0000 .0113 -.0000 -.0005 .0005 -.0003 -.0005 .0010 -.0003 -.0004 .0022 -.0003 30 -.0000 .0078 -.0000 -.0002 .0080 -.0004 -.0002 .0009 -.0002 -.0002 .0018 -.0001

TABLE 3.3-1

Asymptotic Bias of MDE in ARFIMA(1,d₀,0) in GLS (F¹) $\phi = 0.4$

[n = 1]

d.	-0.49	-0.4	-0.3	-0.2	-0.1	0.1	0.2	0.24	0.25	0.3	0.4	0.49
							$\ell = 0$					
I	.6359	.6262	.6144	.6014	.5872	.5541	.5348	.5266	.5245	.5137	.4902	.4668
П	.6359	.6262	.6144	.6014	.5872	.5541	.5348	.5266	.5245	.5137	.4902	.4668
Ш	.6359	.6262	.6144	.6014	.5872	.5541	.5348	.5266	.5245	.5137	.4902	.4668
					-				-			
							$\ell = 2$					
I	1.908	4.009	-5.974	-1.282	5697	1362	0466	0207	0149	.0107	.0483	.0707
П	1.908	4.009	-5.974	-1.282	5697	1362	0466	0207	0149	.0107	.0483	.0707
Ш	1.908	4.009	-5.974	-1.282	5697	1362	0466	0207	0149	.0107	.0483	.0707
									-			
							$\ell = 5$					
I	.1688	.2654	.4174	.7338	2.489	5301	2838	2301	2188	1713	1067	0687
П	.1688		.4174								1067	
Ш	.1688	.2654									1067	
												
							<i>ℓ</i> =10					
ī	1633	- 1264	- 0907	- 0542	0051	- 1210		- 0617	- 0595	- 0499	- 0355	- 0259
п			0907								0355	
	1633										0355	
			.0707		.0031	.1210	.0721	.0017	.0373	.0477	.0333	0257
							<i>ℓ</i> =20					
T	0355	- 0314	0272	0225	0200	0141		0106	0103	0002	0072	0056
П			0272									
												- 1
ш	0355	0314	0272	0233	0200	0141	0113	0106	0103	0092	0072	0036
							4 00					
	01.45	0121	0115	0100	0001	0061	<i>ℓ</i> =30	0045	0045	0040	0000	000
	0147											
П			0115									
Ш	0147	0131	0115	0100	0086	0061	0050	0046	0045	0040	0032	0025

Note: I (=Case 1), II (=Case 2) and III (=Case 3).

TABLE 3.3-1, CONTINUED

[n = 10]

de	-0.49	-0.4	-0.3	-0.2	-0.1	0.1	0.2	0.24	0.25	0.3	0.4	0.49
										· · · · · · · · · · · · · · · · · · ·		
							$\ell = 0$					
I	.1721	.5791	2207	2.714	-1.448	.2075	0748	0453	0391	0128	.0228	.0430
П		-1.457						.4211			.3937	.3793
Ш	.6779	.6236	.4388	.8594	.2579	.3985	.3920	.3878	.3866	.3657	.3658	.3504
							-					
							$\ell = 2$					
I	.2630	.5569	2777	2.646	-1.517	3017	1467	1304	1237	0953	0555	0314
П	.6601										0184	
Ш	.8593	1.562	9605	.6082	-3.122	3478	1825	1427	1342	0975	0458	0149
							$\ell = 5$					
	0903											1
	1095		.0932								0742	
	1027	0142	.0013	.1812	.0322	3039	1020	1330	1209	1014	0664	0432
							<i>ℓ</i> =10					
ı	0892	- 0740	- 0594	- 0455	- 0277	- 0452	-	- 0275	- 0267	- 0231	- 0172	- 0130
_	1095											
	1027											1
							-					
							<i>ℓ</i> =20					
I	0237	0211	0184	0159	0136	0096	0079	0073	0071	0063	0050	0038
П	0253	0224	0196	0169	0146	0102	0084	0077	0075	0067	0053	0041
Ш	0247	0220	0192	0166	0142	0100	0082	0075	0074	0066	0051	0040
							<i>ℓ</i> =30					
I		0101										1
П		0104										
Ш	0115	0103	0090	0078	0067	0048	0039	0036	0035	0032	0025	0019

TABLE 3.3-2

Asymptotic Bias of MDE in ARFIMA(1,d₀,0) in Ratios (F^2) $\phi = 0.4$

[n = 1]

d _e	-0.49	-0.4	-0.3	-0.2	-0.1	0.1	0.2	0.24	0.25	0.3	0.4	0.49
!							$\ell = 0$					
I	.4613	.4353	.4033	.3671	.3289	.2382	.1861	.1639	.1582	.1291	.0671	.0069
П	.4613	.4353		.3671	.3289	.2382	.1861	.1639	.1582	.1291	.0671	.0069
Ш	.4613	.4353	.4033	.3671	.3289	.2382	.1861	.1639	.1582	.1291	.0671	.0069
l												
1							$\ell = 2$					
I	.7322	.8796									0143	
П	.7322	. 87 96									0143	
Ш	.7322	.8796	1.258	0700	-2.120	2401	1126	0813	0747	0474	0143	0008
							$\ell = 5$					
I	0106	.0401	.0986	.1803	.3999	2030	0864	0623	0574	0378	0132	0010
П	0106	.0401	.0986	.1803	.3999	2030	0864	0623	0574	0378	0132	0010
Ш	0106	.0401	.0986	.1803	.3999	2030	0864	0623	0574	0378	0132	0010
							<i>ℓ</i> =10					
I	0900	0694	0509	0347	0171	.0062	0142	0107	0101	0074	0030	0001
П	0900	0694	0509	0347	0171						0030	
Ш	0900	0694	0509	0347	0171	.0062	0142	0107	0101	0074	0030	0001
							<i>ℓ</i> =20					
I	0168	0148	0102	0077	0038	.0001	0013	0020	.0020	0014	0005	0001
П	0168	0148	0102	0077	0038	.0001	0013	0020	.0020	0014	0005	0001
Ш	0168	0148	0102	0077	0038	.0001	0013	0020	.0020	0014	0005	0001
							<i>ℓ</i> =30					
I	0060	0037	0018	.0008	0006	.0010	0000	0009	0009	0006	0000	0001
П	0060	0037	0018		0006	.0010	0000	0009	0009	0006	0000	0001
Ш	0060	0037	0018	.0008	0006	.0010	0000	0009	0009	0006	0000	0001

TABLE 3.3-2, CONTINUED

[n = 10]

d∙	-0.49	-0.4	-0.3	-0.2	-0.1	0.1	0.2	0.24	0.25	0.3	0.4	0.49
							$\ell = 0$					
I	.9485	8312	.2217	-153.2	.5731	.0842	.1101	.1063	.1046	.0921	.0529	.0057
П	.4357	.4807	.5512	7021	.1923	.2620	.2213	.2021	.1970	.1678	.0926	.0099
Ш	.3767	.3708	.3692	9999	.2847	.3865	.3627	.3395	.3331	.2992	2092	.0094
							ℓ = 2					
I	.2955	.4097	.6994	-37.40	1.640	2135	0954	0696	0642	0419	0139	0009
П	.3775	.4229	.3904	.3860	.4067	2247	1053	0768	0724	0472	0080	.0064
Ш	.3573	.4301	.6850	9999	1.819	2320	1216	0940	0878	0664	0320	0009
							<i>ℓ</i> = 5					
I	0741	0399	0044	.0380	.1316	0986	0431	0319	0296	0200	0073	0006
П	0682	0257	.0011	.0524							0234	
Ш	.0317	.0281	0076	.0262	.1033	0938	0495	0384	0359	0275	0151	0008
ŀ												
							$\ell = 10$					
I		0422										
П		.0055										
Ш	.0600	0066	0024	0089	0082	0116	0075	0066	0060	0046	0022	0002
_							<i>ℓ</i> =20					
I		0106										ľ
П		0300										
Ш	.0600	0300	0068	0008	0021	0024	0008	0016	0015	0010	0004	0000
	0050	0040	0000	0001	0011	0010	<i>ℓ</i> =30	0000	0005	0005	0000	0000
I		0049										
П		0300										
Ш	.0600	0300	.0300	.0008	.0002	0012	0001	0008	0007	0005	0000	0000

TABLE 3.3-3

Asymptotic Bias of MDE in ARFIMA(1,d₀,0) in Common Denominator Ratios (F^3) $\phi = 0.4$

[n=1]

d.	-0.49	-0.4	-0.3	-0.2	-0.1	0.1	0.2	0.24	0.25	0.3	0.4	0.49
							$\ell = 0$					
I	.4613	.4353	.4033	.3671	.3289	.2382	.1861	.1639	.1582	.1291	.0671	.0069
П	.4613	.4353	.4033	.3671	.3289	.2382	.1861	.1639	.1582	.1291	.0671	.0069
Ш	.4613	.4353	.4033	.3671	.3289	.2382	.1861	.1639	.1582	.1291	.0671	.0069
							$\ell = 2$					
I	.7322	.8796							0747			
П	.7322	.8796							0747			
Ш	.7322	.8796	1.258	0700	-2.120	2401	1126	0813	0747	0474	0143	0008
							$\ell = 5$					
I	0106	.0401	.0986	.1803	.3999	2030	0864	0623	0574	0378	0132	0010
II	0106	.0401	.0986	.1803					0574			
Ш	0106	.0401	.0986	.1803	.3999	2030	0864	0623	0574	0378	0132	0010
							$\ell = 10$					
I	0900	0694	0509	0347	0171	.0062	0142	0107	0101	0074	0030	0001
П			0509			.0062	0142	0107	0101	0074	0030	0001
Ш	0900	0694	0509	0347	0171	.0062	0142	0107	0101	0074	0030	0001
							<i>ℓ</i> =20					
I	0168	0148	0102	0077	0038	.0001	0019	0020	.0020	0014	0005	0001
П	0168	0148	0102	0077	0038		0019			0014	0005	0001
Ш	0168	0148	0102	0077	0038	.0001	0019	0020	.0020	0014	0005	0001
l												
							$\ell = 30$					
I			0018		0006				0009			
II			0018		0006				0009			
Ш	0060	0037	0018	.0008	0006	.0010	0007	0009	0009	0006	0000	0001

TABLE 3.3-3, CONTINUED

[n= 10]

d.	-0.49	-0.4	-0.3	-0.2	-0.1	0.1	0.2	0.24	0.25	0.3	0.4	0.49
							-					
							$\ell = 0$					
I	.4018	.3596	.3109	.2624	.2159	.1360	.1023	.0894	.0862	.0700	.0366	.0038
П	.3124	.2997	.2849	.2692	.2528	.2181	.2128	.1964	.1944	.1795	.0997	.0100
Ш	.3892	.3756	.3594	.3412	.3200	.2816	.2397	.2110	.2036	.1652	.0839	.0084
							$\ell = 2$					ŀ
I	.4114										0140	1
П	.3197				-1.468							.0076
Ш	.4321	.4180	.5319	-14.88	-1.496	2718	1384	1055	0982	0686	0284	-9999
							0 5					
,	0672	0282	0100	0562	1626	1164	$\ell = 5$	0241	0215	0200	0075	0006
П		0282 0334	.0109 .0016	.0562 .0490				0341 0395				.0006
Ш		.0107	.0018	.0351							0136	
		0107	.0010	.0331	.1070	1002	0702	0711	0070	0341	0320	0021
							<i>ℓ</i> =10					
1	0627	0492	0371	0269	0170	0150		0069	0065	0047	0019	0000
П			0277									
Ш	.0600	.0700	0271	0088	0024	0128	0091	0077	0075	0063	0041	0000
							<i>ℓ</i> =20					
I	0137	0116	0094	0075	0059	0031	0021	0017	0016	0012	0005	0000
П	.0600	.0700	0300	0700	0700	.0251	0000	0016	0011	0003	0003	0000
Ш	.0600	.0700	0300	0023	.0181	0004	0000	0015	0011	0012	0006	0000
												I
							<i>ℓ</i> =30					
I			0043									
П	.0600		0300									
Ш	.0600	.0700	0300	.0398	.0141	0004	.0001	0001	0004	.0001	0000	0000

TABLE 3.4

Asymptotic Bias of MDE in ARFIMA(1,d₀,0) $d_0 = 0.2$

[n = 5]

ф	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.9
				(GLS (F ¹)				
					$\ell = 20$				
I	2849	.0016	.0011	.0000	0025	0096	0461	3100	.0113
II	0652	.0016	.0011	.0000	0026	0098	0483	3112	.0283
Ш	0813	.0016	.0011	.0000	0026	0097	0471	3113	.0163
ļ					ℓ = 30				
I	0042	.0008	.0005	0000	0012	0044	0165	1947	2147
II	.0002	.0008	.0005	0000	0012	0045	0168	1996	2065
III	0006	.0008	.0005	0000	0012	0045	0166	1964	2128
				R	atios (F²	⁽¹⁾			
					$\ell = 20$				
I	0057	.0000	.0000	0000	0000	0016	0092	0937	1261
II	0000	.0000	.0000	.0000	.0000	0000	.0017	0816	0876
III	0000	.0000	.0000	.0000	.0000	0009	0092	0941	1267
					ℓ = 30				
I	.0000	.0000	.0000	.0000	0001	0000	0028	0363	1411
II	.0000	.0000	.0000	.0000	0000	0000	.0000	0217	1182
III	.0000	.0000	.0000	.0000	0000	0001	0033	0373	1433
							•		
			Com	non Den		r Ratios	(F ³)		
					ℓ = 20				
I	0071	.0004	.0003	.0000	0006	0023	0097	0972	1242
II	.0000	.0000	.0000	.0000	.0000	0000	0030	0872	1062
Ш	.0000	.0000	.0000	.0000	.0000	0019	0092	1000	1199
					4				
_	0001	0000	0000	0000	$\ell = 30$	0000	0000	0005	
I	.0001	.0001	.0000	.0000	0003	0011	0038	0388	1436
II	.0000	.0000	.0000	.0000	.0000	0000	.0000	0352	1290
III	.0000	.0000	.0000	.0000	.0000	0009	0030	0382	1440

81 **TABLE 3.4, CONTINUED**

[n = 10]

ф	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.9
					GLS (F ¹))		-	
					<i>ℓ</i> = 20				
I	1208	.0013	.0009	.0000	0021	0079	0357	2174	0535
II	0168	.0014	.0010	.0000	0022	0084	0398	2995	0035
III	0095	.0014	.0010	.0000	0022	0082	0373	2952	0389
					$\ell = 30$				
I	0015	.0007	.0005	0000	0011	0039	0142	1641	2461
II	.0006	.0007	.0005	0000	0011	0040	0148	1774	2247
III	.0006	.0007	.0005	0000	0011	0039	0145	1687	2419
						_			
				R	atios (F	')			
					ℓ = 20				
I	0030	0000	.0000	0000	0004	0018	0077	0799	1310
II	0000	.0000	.0000	.0000	0000	0000	0017	0729	0862
III	.0000	.0000	.0000	.0000	0000	0008	0077	0804	1137
l _					<i>ℓ</i> = 30				
I	.0000	.0000	.0000	0000	0000	0005	0025	0307	1356
II	0000	.0000	.0000	.0000	.0000	0000	.0000	0184	1164
III	0000	.0000	.0000	.0000	.0000	0001	0029	0316	1377
İ			_	_			-3.		
ļ			Comi	mon Den		or Kat ios	s (F°)		
	0000	0004	0000	0000	$\ell = 20$	0001	0004	0060	1010
I	0038	.0004	.0002	.0000	0006	0021	0084	0860	1310
II	0000	0000	0000	.0000	.0000	0000	.0007	0896	1032
III	.0000	.0000	.0000	.0000	0000	0010	0084	1084	1136
					a – 20				ļ
.	0003	0003	0001	0000	$\ell = 30$	0010	0025	0220	1401
I	.0002	.0002	.0001	0000	0003	0010	0035	0339	1401
II	.0000	.0000	0000	.0000	0000	0000	.0000	0271	1342
III	.0000	.0000	.0000	.0000	0000	0001	0029	0356	1444

CHAPTER 4

REGRESSION IN FRACTIONAL COINTEGRATION

1. INTRODUCTION

It is now well established that many economic time series contain a unit root. Such series are I(1) in the sense that they are nonstationary but their first difference is stationary. Such series can move in random directions over arbitrarily long time periods. However, in some cases economic theory indicates that certain pairs of series are related and should not diverge too much from each other. This may be reasonable because, when certain economic variables begin to diverge, market forces or government intervention may reestablish their long run relationship.

Suppose that $\{x_t\}$ and $\{y_t\}$ are nonstationary unit root processes where y_t is a scalar but x_t may be a vector. Consider a linear combination of those processes:

$$\mathbf{z}_{\mathsf{t}} = \mathbf{y}_{\mathsf{t}} - \mathbf{x}_{\mathsf{t}}' \mathbf{A} \,,$$

where A is a nonrandom vector. Generally such a linear combination z will also be a unit root process. As long as z is a unit root process, whether A is zero or not does not make much difference (as we will see later) and we need first-differencing to deal with such cases.

However, when a linear combination of the unit root processes y_t and x_t is an I(d) process with d < 1, it is said that $\{x_t\}$ and $\{y_t\}$ are 'cointegrated' and A is a cointegrating vector (or coefficient); see Engle and Granger (1987). An alternative definition of cointegration is that a linear combination of the unit root processes y_t and x_t is stationary. This would rule out the case $1/2 \le d < 1$. Cointegration implies that although there are permanent changes in the individual series x and y over time, there

is some long-run equilibrium relationship tying them together, which is represented by the linear combination z_t.

There are several standard examples of cointegration relationships. Davidson, Hendry, Srba and Yeo (1978) show that even though both consumption and income are unit root processes, in the long run the difference between the log of consumption and the log of income appears to be a stationary process. Kremers (1989) proposes that the difference between the log of government debt and the log of GNP is a stationary process even though each is not stationary. Also, although many empirical studies show significant deviations from the Purchasing Power Parity (PPP) hypothesis in the short run, it is argued that the PPP hypothesis works in the long run, in the sense that a cointegration relationship exists among the foreign price index, the domestic price index and the nominal exchange rate; alternatively between a relative price index and the nominal exchange rate. For further details, see Cheung and Lai (1993) and Baillie and Selover (1987).

The standard statistical treatments of cointegration deal with the case of a short memory error; i.e., a linear combination of nonstationary I(1) processes becomes a stationary I(0) process. Under short memory error, the properties of cointegrating coefficient estimates are well known. OLS is consistent and converges in probability at the rate of T rather than the usual rate of T^{1/2}. However, in general OLS is asymptotically biased, and it does not lead to asymptotically valid inference. There are many other efficient estimates of cointegrating coefficients. For example, see Johansen (1988, 1991), Stock and Watson (1988, 1993), Phillips and Hansen

(1990), Saikkonen (1991) and Park (1992). These methods also lead to asymptotically valid inference.

However, it is possible that the linear combination of nonstationary unit root processes may be an I(d) process with 0 < d < 1. This case is referred to as <u>fractional</u> <u>cointegration</u> in Baillie and Bollerslev (1994) and Cheung and Lai (1993). If the error in the cointegrating relationship is I(d) with 0 < d < 1/2, it is still stationary but it has more persistent autocorrelations than in the usual short memory case. If 1/2 < d < 1, the error in the cointegrating relationship is not stationary but it is mean-reverting, so that a shock in a given time period will finally disappear in the long run.

Therefore, in this chapter our interest is in the case that the error in a cointegrating relationship is I(d) with 0 < d < 1, rather than in the usual model of cointegration with errors that are I(0). For this case, we derive the asymptotic distribution of the least squares estimator. Least squares is consistent, and has a rate of convergence to its asymptotic distribution that depends on d. This can be compared to least squares in differences, which is not consistent if the errors and regressors are correlated, and which converges at the usual $T^{1/2}$ rate for all values of d in the range 0 < d < 1. We also provide some simulations that support the relevance of these asymptotics in samples of moderate size.

2. COINTEGRATION

First we define cointegration in a way similar to that in Engle and Granger (1987).

Definition of Cointegration: The components of an Nx1 vector z_i are said to be cointegrated of order $a, b, i.e. z_i \sim CI(a,b)$, if

- (i) z_i is I(a) for a > 1/2 and
- (ii) there exists a non-zero vector α such that $\alpha' z_t \sim I(a-b)$, $a \ge b > 0$.

If z_i has more than 2 components (N \geq 2), then we may have more than one cointegrating vector. When there exist h linearly independent cointegrating vectors with $h \leq N-1$, we can combine them to make a cointegrating matrix C (Nxh). The rank of C is h and is called as the cointegrating rank.

There are at least two reasons why cointegration is important. First, in a regression with nonstationary variables, cointegration is a useful way of distinguishing a meaningful regression from a 'nonsense' (Yule (1926)) or 'spurious' (Granger and Newbold (1978)) regression. In a spurious regression the error is I(1) and least squares does not have useful properties. Second, the Error Correction Representation (ECR) exists only when the nonstationary variables are cointegrated. This is important since the ECR provides a sensible way of combining the information contained both in levels and differences. The ECR models the dynamics of both short-run changes and the long-run adjustment process simultaneously.

In the short memory case (i.e., a = b = 1), the problem of estimation of the cointegrating vector has been studied by many economists. OLS is consistent and converges at rate T, which is faster than the usual $T^{1/2}$ rate; see Stock (1987) and Phillips and Durlauf (1986). Phillips and Park (1988) showed that when the error in cointegrating relationship follows a stationary AR process, OLS and Generalized

Least Square (GLS) are asymptotically equivalent. There are many asymptotically efficient estimates, which also lead to asymptotically valid inference. Johansen (1988) derived a maximum likelihood estimator of the dimension of the space of the cointegrating vectors and tests of linear hypotheses on those vectors. Phillips and Hansen (1990) suggested a 'fully modified' least squares estimator. The method of adding leads and lags was suggested by Saikkonen (1991), Phillips and Loretan (1991) and Stock and Watson (1993). Park (1992) proposed an OLS procedure after transforming both regressors and dependent variables.

There are many useful ways of representing cointegrated variables, including the ECR. The Vector Autoregressive Representation (VAR) is a basic tool for analyzing nonstationary variables by making them stationary through first-differencing. For details, see Engle and Yoo (1987) and Ogaki and Park (1992). Johansen (1988) provided the Interim Multiplier Representation (IMR) by modifying the error correction representation. The Triangular Representation (TR) by Phillips (1991) divides the cointegrated system into exactly cointegrated variables and other non-cointegrated variables. The Common Trend Representation (CTR) in Stock and Watson (1988) decomposes the cointegrated nonstationary system into a stationary component plus linear combinations of common deterministic trends and common random walk variables. The Granger Representation Theorem in Engle and Granger (1987) and Johansen (1991) gives several interesting results on the representation of the cointegrated system.

3. ASYMPTOTICS FOR OLS ESTIMATES OF COINTEGRATING COEFFICIENTS

We consider the following data generating process:

(1)
$$y_t = x_t \beta + u_t, t = 1, 2,..., T,$$

(2)
$$x_t = x_{t-1} + v_t$$
,

$$(3) \qquad (1-L)^d u_t = \varepsilon_t,$$

where $\{x_t\}$ and $\{y_t\}$ are the observed unit root series and $\{v_t\}$ and $\{\epsilon_t\}$ are assumed to be short memory processes. For simplicity we consider the case that x_t is a scalar; thus there is at most one cointegrating relationship between y_t and x_t . In general, the error process $\{u_t\}$, which is a linear combination of unit root processes, may be another unit root process. However, when β is not zero and $\{u_t\}$ is an I(d) process with $0 \le d < 1$, $\{x_t\}$ and $\{y_t\}$ are cointegrated as in Engle and Granger (1987). This model does not include intercept or deterministic time trend. To do so is a feasible but non-trivial extension of this analysis.

A. Short Memory Case (d = 0)

We first consider the case that d = 0 in (3) above. Therefore $u_t = \varepsilon_t$ in (3) above, and we have the standard case of cointegration considered in the literature. We will give a brief summary of the results for this case, for purposes of comparison with our results for the case of fractional cointegration.

For simplicity, and to ensure comparability with our treatment of the fractional case, we consider the special case in which the errors $\{v_t\}$ and $\{\epsilon_t\}$ are only contemporaneously correlated; i.e., $\begin{bmatrix} \epsilon_t \\ v_t \end{bmatrix} \sim \text{iid}(0, \Sigma) \text{ with } \Sigma = \begin{bmatrix} \sigma_\epsilon^2 & \sigma_{v\epsilon} \\ \sigma_{v\epsilon} & \sigma_v^2 \end{bmatrix}$.

We begin with the following lemma which can be obtained from Phillips (1988) and Phillips and Durlauf (1986):

LEMMA 1:

(i)
$$\frac{1}{T} \sum_{t}^{T} x_{t-1} \varepsilon_{t} \Rightarrow \int_{0}^{1} B_{1}(r) dB_{2}(r),$$

(ii)
$$\frac{1}{T^2} \sum_{t}^{T} x_t^2 \Rightarrow \int_{0}^{1} B_1^2(r) dr$$
,

(iii)
$$\frac{1}{T} \sum_{t}^{T} v_{t} \varepsilon_{t} \xrightarrow{p} \sigma_{v \varepsilon}$$
,

where $B(r) = \begin{bmatrix} B_1(r) \\ B_2(r) \end{bmatrix}$ = Brownian motion with covariance matrix Σ .

We note that, in a more general setting, the Brownian motion B(r) would have as its covariance matrix the "long-run covariance matrix" of v_t and ε_t , defined as:

$$\Omega = \lim_{T \to \infty} E \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t}^{T} v_{t} \\ \frac{1}{\sqrt{T}} \sum_{t}^{T} \varepsilon_{t} \\ \frac{1}{\sqrt{T}} \sum_{t}^{T} \varepsilon_{t} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t}^{T} v_{t} \\ \frac{1}{\sqrt{T}} \sum_{t}^{T} \varepsilon_{t} \end{bmatrix}'.$$

However, because we have assumed that v_t and ε_t are iid, the long-run covariance matrix Ω and the contemporaneous covariance matrix Σ are equal.

The OLS estimate of the cointegrating coefficient β is:

(4)
$$\hat{\beta} = \frac{\sum_{t=1}^{T} x_t y_t}{\sum_{t=1}^{T} x_t^2} = \beta + \frac{\sum_{t=1}^{T} x_t u_t}{\sum_{t=1}^{T} x_t^2} = \beta + \frac{\sum_{t=1}^{T} x_t \epsilon_t}{\sum_{t=1}^{T} x_t^2}.$$

Thus

(5)
$$T(\hat{\beta} - \beta) = \frac{T^{-1} \sum x_{t-1} \epsilon_t}{T^{-2} \sum x_t^2} + \frac{T^{-1} \sum v_t \epsilon_t}{T^{-2} \sum x_t^2},$$

since $\sum x_t \varepsilon_t = \sum x_{t-1} \varepsilon_t + \sum v_t \varepsilon_t$. Then, using *LEMMA* 1, one obtains the following asymptotic result:

(6)
$$T(\hat{\beta} - \beta) \Rightarrow \frac{\int_{0}^{1} B_{1}(r)dB_{2}(r) + \sigma_{ve}}{\int_{0}^{1} B_{1}^{2}(r)dr}.$$

Therefor $\hat{\beta} - \beta$ is $O_p(1/T)$ when the error u_t is short memory. OLS is consistent whether or not v_t and ϵ_t are correlated (i.e., whether or not $\sigma_{v\epsilon} = 0$), but there is a bias in the asymptotic distribution when $\sigma_{v\epsilon} \neq 0$. These are well-known, standard results.

B. Spurious Regression Case (d =1)

We next consider the case of a spurious regression, as defined in Granger and Newbold (1978), for which a rigorous asymptotic analysis was given by Phillips (1986). This is the case in which the error process u_t in (1) above is I(d) with d=1; i.e., a unit root process. Thus we write:

$$\mathbf{u}_{t} = \mathbf{u}_{t-1} + \mathbf{\eta}_{t},$$

where η_t is I(0). We will consider that $\{v_t\}$ and $\{\eta_t\}$ are only contemporaneously correlated, so that $\begin{bmatrix} \eta_t \\ v_t \end{bmatrix} \sim \text{iid } (0, \Sigma_1), \ \Sigma_1 = \begin{bmatrix} \sigma_\eta^2 & \sigma_{v\eta} \\ \sigma_{\eta v} & \sigma_v^2 \end{bmatrix}$.

Then the following lemma can be obtained from Philips (1986):

LEMMA 2: Define $\begin{bmatrix} B_1(r) \\ B3(r) \end{bmatrix}$ = Brownian motion with covariance matrix Σ_1 .

Then

$$\frac{1}{T^2} \sum_{t}^{T} x_t u_t \Rightarrow \int_{0}^{1} B_1(r) B_3(r) dr.$$

Again, in a more general setting the Brownian motion in LEMMA 2 would have as its covariance matrix of v_t and η_t , say Ω_1 defined as

$$\Omega_{1} = \lim_{T \to \infty} E \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t}^{T} v_{t} \\ \frac{1}{\sqrt{T}} \sum_{t}^{T} \eta_{t} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t}^{T} v_{t} \\ \frac{1}{\sqrt{T}} \sum_{t}^{T} \eta_{t} \end{bmatrix}'.$$

However, in the iid case Ω_1 and Σ_1 are the same.

Using LEMMA 1 and LEMMA 2, we obtain Phillips' result:

(7)
$$(\hat{\beta} - \beta) = \frac{\frac{1}{T^2} \sum_{t}^{T} x_t u_t}{\frac{1}{T^2} \sum_{t}^{T} x_t^2} \Rightarrow \frac{\int_{0}^{1} B_1(r) B_3(r) dr}{\int_{0}^{1} B_1^2(r) dr}.$$

This result implies that $\hat{\beta}$ is not consistent, since $(\hat{\beta} - \beta)$ is $O_p(1)$ and therefore does not diminish as $T \rightarrow \infty$.

The case discussed differs slightly from the spurious regression in Granger and Newbold (1978), in that β is not necessarily zero. However, this is not important, since the asymptotic distribution of $(\hat{\beta} - \beta)$ does not depend on β .

C. Stationary Long Memory Error Case (0< d <1/2)

We now turn to the case that the error u_t is I(d) 0< d <1/2, so that it is a stationary, long memory process. This is the leading case of fractional cointegration. An asymptotic analysis of OLS or other methods of estimation of the cointegrating vector β has not previously been done.

As above, we consider the case that the innovations $(v_t, \varepsilon_t)'$ are iid $(0, \Sigma)$, with Σ as in section 3.A above. We have the following (standard) result for the joint convergence of partial sums of v_t and ε_t :

(8)
$$\frac{1}{\sqrt{T}} \begin{bmatrix} \sum_{t=1}^{[rT]} v_t \\ \sum_{t=1}^{[rT]} \varepsilon_t \\ \sum_{t=1}^{[rT]} \varepsilon_t \end{bmatrix} \Rightarrow B(r) = \begin{bmatrix} B_1(r) \\ B_2(r) \end{bmatrix},$$

where B(r) is a Brownian motion with covariance matrix Σ . The basic result that we need, however, is an expression for the joint limit of the partial sums of v_t and u_t . The problem is the need for a joint limit. The marginal limiting distributions follow from existing results in the literature. For v_t , we have

(9)
$$\frac{1}{\sqrt{T}}\sum_{t=1}^{[rT]}v_t \Rightarrow B_1(r),$$

where $B_1(r)$ is a Brownian motion with variance σ_v^2 ; this is the marginal statement corresponding to (8) above. For u_t , we have convergence to a fractional Brownian motion, as given by equation (27) of Chapter 1:

(10)
$$\frac{1}{T^{d+1/2}} \sum_{t=1}^{[rT]} u_t \Rightarrow \omega_d W_d(r),$$

where $\omega_d^2 = \sigma_\epsilon^2 \Gamma(1-2d)/[(1+2d)\Gamma(1+d)\Gamma(1-d)]$ and $W_d(r)$ is the solution to

(11)
$$W_d(r) = \frac{1}{\Gamma(d+1)} \int_0^r (r-s)^d dW(s)$$
,

with W(s) a standard Wiener process.

With these marginal results in hand, the only question is how to express the joint result so that it properly reflects the covariance between the two limiting processes. This covariance is also reflected in the covariance between $B_1(r)$ and $B_2(r)$ in (8) above. Thus the standard Wiener process W(d) is in (11) above should in fact be the specific process $\sigma_{\epsilon}^{-1}B_2(r)$, to capture this covariance. More specifically, define

(12)
$$F_d(r) = \frac{\sqrt{k(d)}}{\Gamma(1+d)} \int_0^r (r-s)^d dB_2(s),$$

where $k(d) = \omega_d^2 / \sigma_\epsilon^2 = \Gamma(1-2d)/[(1+2d)\Gamma(1-d)\Gamma(1+d)]$. Then we have the joint convergence result as given in the following lemma.

LEMMA 3: Suppose that $(v_t, \, \epsilon_t)'$ are iid $(0, \, \Sigma)$, that $[B_1(r), \, B_2(r)]'$ is a Brownian motion with covariance matrix Σ , that $F_d(r)$ is the fractional Brownian motion defined in (12), and that the model (1)-(3) above holds with 0 < d < 1/2. Then

$$\begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t=1}^{[rT]} v_t \\ \frac{1}{T^{d+1/2}} \sum_{t=1}^{[rT]} u_t \\ \end{bmatrix} \Rightarrow \begin{bmatrix} B_1(r) \\ F_d(r) \end{bmatrix}.$$

Perhaps surprisingly, the joint convergence result of LEMMA 3 for a vector of ordinary and fractional Brownian motions does not seem to exist in the statistical literature. Our argument leading to LEMMA 3 was somewhat heuristic, but we believe that it captures the essential ideas that would be part of a more rigorous proof. In any case, with LEMMA 3 in hand we can proceed to the analysis of least squares for the fractionally integrated model with 0 < d < 1/2.

LEMMA 4: Let the same conditions hold as in LEMMA 3. Then

$$\frac{1}{T^{1+d}}\sum_{t}^{T}x_{t}u_{t} \Rightarrow \int_{0}^{1}B_{1}(r)dF_{d}(r).$$

Proof: See Appendix.

Therefore, under the conditions of *LEMMA* 3, we have (using *LEMMA* 1, part (ii), and *LEMMA* 4) the following result for the asymptotic distribution of the OLS estimate $\hat{\beta}$ in (1):

(14)
$$T^{(1-d)}(\hat{\beta} - \beta) = \frac{\frac{1}{T^{1+d}} \sum_{t}^{T} x_{t} u_{t}}{\frac{1}{T^{2}} \sum_{t}^{T} x_{t}^{2}} \Rightarrow \frac{\int_{0}^{1} B_{1}(r) dF_{d}(r)}{\int_{0}^{1} B_{1}^{2}(r) dr}.$$

Thus, for the case that the errors in the cointegrating relationship are I(d) with 0 < d < 1/2, $\hat{\beta} - \beta$ is $O_p(1/T^{1-d}) = O_p(T^{d-1})$. In particular, the value of d affects the order in probability of the OLS estimate.

D. Nonstationary Long Memory Error Case (1/2< d <1)

We now suppose that u_t , the error in the cointegrating relationship (1), is I(d) with 1/2 < d < 1. Define $d^* = d-1$, so $-1/2 < d^* < 0$. Then $\Delta u_t = p_t$ is $I(d^*)$. Let the innovations be represented by ε_t as in (3) above, so that

(15)
$$(1-L)^d u_t = (1-L)^{d^*} p_t = \varepsilon_t$$

As in section C, we assume that the innovations $(v_t, \varepsilon_t)'$ are iid $(0, \Sigma)$, so that the partial sums of v_t and ε_t converge jointly to $[B_1(r), B_2(r)]'$ as in (8) above. We define:

(16)
$$F_{d*}(r) = \frac{\sqrt{k(d*)}}{\Gamma(1+d*)} \int_{0}^{r} (r-s)^{d*} dB_2(s),$$

corresponding to (12) above. Then

$$(17) \quad \begin{bmatrix} \frac{\mathbf{x}_{[rT]}}{\sqrt{T}} \\ \frac{\mathbf{u}_{[rT]}}{T^{\mathbf{d}^*+1/2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t=1}^{[rT]} \mathbf{v}_t \\ \frac{1}{T^{\mathbf{d}^*+1/2}} \sum_{t=1}^{[rT]} \mathbf{p}_t \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{B}_1(\mathbf{r}) \\ \mathbf{F}_{\mathbf{d}^*}(\mathbf{r}) \end{bmatrix},$$

which is similar to the result of LEMMA 4.

LEMMA 5: Under the assumptions listed above in this section,

$$\frac{1}{T^{d^*+2}} \sum_{t}^{T} x_t u_t = \frac{1}{T^{d+1}} \sum_{t}^{T} x_t u_t \Rightarrow \int_{0}^{1} B_1(r) F_{d^*}(r) dr.$$

Proof: See Appendix.

From LEMMA 1 and LEMMA 5, we therefore have the following result for the asymptotic distribution of the OLS estimate $\hat{\beta}$:

(18)
$$T^{(1-d)}(\hat{\beta} - \beta) = \frac{1}{T^{d^*}}(\hat{\beta} - \beta) = \frac{\frac{1}{T^{d^*+2}} \sum_{t}^{T} x_t u_t}{\frac{1}{T^2} \sum_{t}^{T} x_t^2} \Rightarrow \frac{\int_{0}^{1} B_1(r) F_{d^*}(r) dr}{\int_{0}^{1} B_1^2(r) dr}.$$

Thus, for the case that the errors in the cointegrating relationship are I(d) with 1/2 < d < 1, $\hat{\beta} - \beta$ is $O_n(1/T^{1-d}) = O_n(T^{d-1})$.

E. Remarks

We have considered the regression of y_t on x_t , where y_t and x_t are I(1), and where the error is I(d). We have considered the cases: d = 0, d = 1, 0 < d < 1/2, and 1/2 < d < 1. These correspond to all values of d in [0, 1] except d = 1/2, for which the

necessary convergence result for partial sums of an I(d) process is apparently not available. While the form of the asymptotic distribution varies across cases, we have the interesting result that $\hat{\beta} - \beta$ is $O_p(1/T^{1-d})$ for all d in [0, 1] (except perhaps d=1/2). Our findings can be compared with the result of Cheung and Lai (1993). They showed that $T^{(1-d-\delta)}(\hat{\beta} - \beta)$ converges in probability to 0 for all $\delta > 0$. Our findings confirm their results and provide the exact asymptotics of the OLS estimates in fractional cointegration relationships.

It is interesting to compare these results to those for another simple estimator; namely, least squares in first differences. Thus suppose that (1) is differenced to yield (19) $\Delta y_t = \Delta x_t \beta + \Delta u_t$

and a least-squares estimator

(20)
$$\widetilde{\beta} = \frac{\sum_{t=2}^{T} \Delta x_t \Delta y_t}{\sum_{t=2}^{T} \Delta x_t^2} = \beta + \frac{\sum_{t=2}^{T} \Delta x_t \Delta u_t}{\sum_{t=2}^{T} \Delta x_t^2}.$$

If u_t is I(d) with 0 < d < 1, then Δu_t is $I(d^*)$ with $-1 < d^* < 0$. From Odaki (1993), this is a stationary and invertible process. Since Δx_t is also a stationary and invertible process, standard results indicate the following. First, $T^{-1}\sum \Delta x_t^2$ converges in probability to $\gamma_{xx} \equiv E(\Delta x_t^2)$. Second, if $\gamma_{xu} \equiv E(\Delta x_t \Delta u_t)$, then $T^{-1}\sum \Delta x_t \Delta u_t$ converges in probability to γ_{xu} , and $T^{-1/2}\sum (\Delta x_t \Delta u_t - \gamma_{xu})$ is asymptotically normal with zero mean. This implies that $\widetilde{\beta}$ converges in probability to $\beta_* \equiv \beta + \gamma_{xu} / \gamma_{xx}$,

and $\sqrt{T}(\widetilde{\beta} - \beta_*)$ is asymptotically normal with zero mean. Thus $\widetilde{\beta} - \beta_*$ is $O_p(T^{-1/2})$. Thus, unlike the OLS estimator in levels $(\hat{\beta})$, $\widetilde{\beta}$ is inconsistent when x_t and u_t are correlated. Also unlike $\hat{\beta}$, the rate of convergence of $\widetilde{\beta}$ does not depend on d. $\widetilde{\beta}$ converges faster than $\hat{\beta}$ when d >1/2 (since 1/2> 1-d) but slower than $\hat{\beta}$ when d <1/2. Thus differencing is a poor idea when d <1/2, but it may be a good idea when d >1/2.

4. SIMULATION RESULTS

In this section we provide some simulation results that support the relevance of our asymptotic results of the previous section. The data are generated according the equations (1)-(3) above. We choose $\beta=1$ but this choice is not substantive. We also choose $\sigma_{v\epsilon}=0$ so that the v_t and ϵ_t processes are not correlated, even contemporaneously. The sample sizes considered are $T=50,\ 100,\ 250,\ 500,\ 1000$ and 1500. The number of iterations in the simulation was 10000. The computations were done in FORTRAN, using the normal random number generator GASDEV/RAN3 as in Chapter 2.

Table 4.1 gives results for the OLS estimator of β . It presents the mean, the standard deviation, and the standard deviation multiplied by T^{1-d} . Since asymptotically the least squares estimator has estimation error that is O_p (T^{d-1}), we expect the normalized standard deviation to approach a limit as T increases. This appears to be true in Table 4.1, and in fact the normalized standard deviation does not

change much over the range from T = 100 to T = 1500. This supports the relevance of our asymptotic theory, even for only moderate sample sizes. All of the estimates are essentially unbiased, as would be expected given the strict exogeneity of the regressors. As d increases with T fixed, the standard deviation of the estimate increases and the normalized standard deviation of the estimate decreases.

Table 4.2 gives similar results, for a smaller set of values of d, for the estimate of β obtained by least squares in differences. Once again the estimates are essentially unbiased. Now the normalized standard deviation is the standard deviation multiplied by $T^{1/2}$, since asymptotically least squares in differences has an estimation error that is $O_p(T^{-1/2})$. The relevance of the asymptotic theory is supported again, since the normalized standard deviation is more or less constant over different values of T for any given d. For given T, the standard deviation of the estimate does not depend strongly on d.

Comparing results in Tables 4.1 and 4.2, we see that, in terms of the standard deviation of the estimates, least squares in levels dominates least squares in differences for d < .5, while the opposite is true for d > .5. The estimators have similar variability when d is close to .5, but the difference between them increases as d moves away from .5 in either direction. This result is also as expected from the asymptotics, based on the differing rates of convergence of the two estimators.

5. CONCLUDING REMARKS

This section has considered the case of fractional cointegration, defined as the case in which a set of variables is I(1) but the regression error is I(d), d < 1. This case is empirically relevant, and very little is previously known about the properties of estimates of the regression. We have derived the asymptotic distribution of the ordinary least squares estimate, under a fairly strong set of assumptions, and performed simulations that support the relevance of the asymptotic theory.

We assume that similar results would hold under weaker assumptions. In particular, it would be worthwhile to extend these results to a more general model in which there are multiple regressors, possibly including intercept and trend, and in which the innovations are a general short memory process rather than white noise.

The results that we have derived are similar to the results for the usual cointegration model, in that least squares is consistent, but the asymptotic distribution is not necessarily centered at zero, and there is no reason to think that the estimator is efficient or that it leads to asymptotically valid inference. In the cointegration literature, these findings for the least squares estimator were followed by a large volume of research that established asymptotically efficient estimators and asymptotically valid methods of inference. The same considerations should apply to the case of fractional cointegration, and this would appear to be a valuable future line of research.

101

TABLE 4.1

Mean and Standard Deviation of OLS

Mean

	d =.0	d=.1	d =.3	d =.49	d =.51	d=.7	d =.9	d=1.0
T=50	1.0000	1.0019	.9998	.9992	1.0008	.9934	.9992	.9998
T=100	1.0000	1.0005	.9999	1.0000	.9994	1.0036	.9997	1.0037
T=250	.9999	1.0001	.9997	1.0002	1.0009	1.0022	.9970	1.0010
T=500	1.0000	1.0001	1.0001	.9998	.9993	1.0013	1.0005	.9873
T=1000	1.0001	1.0001	1.0001	.9999	.9994	.9993	.9995	.9942
T=1500	1.0000	1.0000	1.0001	.9996	1.0002	.9994	.9957	.9982

Standard Deviation

	d =.0	d =.1	d =.3	d =.49	d =.51	d=.7	d =.9	d =1.0
T=50	.0668	.0757	.1092	.1612	.1703	.2703	.4694	.6517
T=100	.0326	.0411	.0675	.1125	.1197	.2181	.4339	.6295
T=250	.0130	.0177	.0350	.0705	.0766	.1658	.3989	.6230
T=500	.0066	.0094	.0216	.0494	.0546	.1335	.3689	.6255
T=1000	.0033	.0052	.0133	.0345	.0389	.1081	.3356	.6355
T=1500	.0022	.0036	.0098	.0282	.0319	.0972	.3298	.6341

T¹⁻⁴· Standard Deviation

	d =.0	d=.1	d=.3	d =.49	d =.51	d=.7	d =.9	d =1.0
T=50	3.34	2.56	1.69	1.19	1.16	.874	.694	.652
T=100	3.26	2.59	1.70	1.18	1.14	.868	.688	.630
T=250	3.25	2.55	1.67	1.18	1.15	. 869	.693	.623
T=500	3.30	2.52	1.67	1.18	1.15	.861	.687	.626
T=1000	3.30	2.61	1.67	1.17	1.15	. 85 9	.670	.636
T=1500	3.30	2.60	1.64	1.18	1.15	.872	.685	.634

TABLE 4.2

Mean and Standard Deviation of OLS in Differences

Mean

	d=.1	d =.3	d=.49	d=.51	d=.7	d =.9	d =1.0
T=50	1.0029	1.0072	1.0000	1.0007	1.0028	1.0004	1.0003
T=100	1.0016	1.0012	1.0012	.9987	1.0016	1.0007	1.0008
T=250	.9997	1.0003	1.0005	.9999	.9991	1.0014	.9999
T=500	.9989	.9997	.9998	1.0001	1.0006	1.0002	.9995
T=1000	.9996	.9997	1.0009	1.0002	.9996	1.0002	.9995
T=1500	.9995	.9999	.9997	1.0003	1.0006	1.0001	.9999

Standard Deviation

	d=.1	d =.3	d =.49	d =.51	d=.7	d =.9	d =1.0
T=50	.1992	.1828	.1694	.1690	.1560	.1505	.1470
T=100	.1394	.1260	.1156	.1160	.1091	.1033	.1017
T=250	.0856	.0773	.0717	.0715	.0666	.0644	.0638
T=500	.0614	.0545	.0508	.0503	.0468	.0453	.0447
T=1000	.0432	.0390	.0360	.0356	.0340	.0318	.0316
T=1500	.0350	.0320	.0296	.0292	.0274	.0258	.0259

T^{1/2}· Standard Deviation

	d=.1	d =.3	d=.49	d =.51	d=.7	d =.9	d=1.0
T=50	1.41	1.29	1.20	1.20	1.10	1.06	1.04
T=100	1.39	1.26	1.16	1.16	1.09	1.03	1.02
T=250	1.35	1.22	1.13	1.13	1.05	1.02	1.01
T=500	1.37	1.22	1.14	1.12	1.05	1.01	1.00
T=1000	1.37	1.23	1.14	1.13	1.08	1.01	1.00
T=1500	1.36	1.24	1.15	1.13	1.06	1.00	1.00

APPENDIX

Proof of LEMMA 4: Note that x_t is the partial sum of the innovations v_t . Define Z_t to be the partial sum of the u_t : $Z_t = \sum_{j=1}^t u_j$. For $r \in [0, 1]$, define the sample version of the processes $B_1(r)$ and $F_d(r)$ as follows:

$$x_{T}(r) = \frac{1}{\sqrt{T}} x_{[rT]} = \begin{cases} 0, & r < \frac{1}{T} \\ \frac{1}{\sqrt{T}} x_{t}, & \frac{t}{T} \le r < \frac{t+1}{T} \\ \frac{1}{\sqrt{T}} x_{T}, & r = 1 \end{cases}$$

$$Z_{T}(r) = \frac{1}{T^{d+1/2}} Z_{[rT]} = \begin{cases} 0, & r < \frac{1}{T} \\ \frac{1}{\sqrt{T}} Z_{t}, & \frac{t}{T} \le r < \frac{t+1}{T} \\ \frac{1}{\sqrt{T}} Z_{T}, & r = 1. \end{cases}$$

Then

$$\begin{bmatrix} x_{T}(r) \\ Z_{T}(r) \end{bmatrix} \Rightarrow \begin{bmatrix} B_{1}(r) \\ F_{d}(r) \end{bmatrix}$$

$$\int_{0}^{1} x_{T}(r) dZ_{T}(r) \Rightarrow \int_{0}^{1} B_{1}(r) dF_{d}(r).$$

Thus,

$$\int_{0}^{1} x_{T}(r) dZ_{T}(r) = \sum_{t=1}^{T} \left(\frac{1}{\sqrt{T}} x_{t-1} \right) \left(\frac{1}{T^{d+1/2}} u_{t} \right) \quad \text{(e.g., Phillips (1986, p327))}$$

$$=\frac{1}{T^{1+d}}\sum_{t}^{T}x_{t-1}u_{t} \Rightarrow \int_{0}^{1}B_{1}(r)dF_{d}(r).$$

But $\frac{1}{T^{1+d}} \sum_{t} x_t u_t = \frac{1}{T^{1+d}} \sum_{t} x_{t-1} u_t \frac{1}{T^{1+d}} \sum_{t} v_t u_t$. So we need to show that

 $\frac{1}{T^{1+d}} \sum_t v_t u_t \to 0. \text{ To do so, we write}$

$$\left(\frac{1}{T}\sum_{t} v_{t} u_{t}\right)^{2} \leq \left(\frac{1}{T}\sum_{t} v_{t}^{2}\right) \left(\frac{1}{T}\sum_{t} x_{t}^{2}\right)$$

as in Cheung and Lai (1993, p106). Then $\frac{1}{T}\sum_t v_t^2 \to \sigma_v^2$, $\frac{1}{T}\sum_t u_t^2 \to \sigma_u^2$, where the

first result is standard and the second result follows from Hosking (1995). So

$$\frac{1}{T} \sum_{t} v_{t} u_{t} \text{ is bounded in probability and } \frac{1}{T^{1+d}} \sum_{t} v_{t} u_{t} \to 0 \text{ for } d > 0.$$

Proof of LEMMA 5: Define $x_T(r)$ as above, and

$$U_T(r) = \frac{1}{T^{d^*+1/2}} u_{[rT]}.$$

Then

$$\int_{0}^{1} x_{T}(r)U_{T}(r)dr \Rightarrow \int_{0}^{1} B_{1}(r)F_{d*}(r)dr$$

because of the joint convergence result (17). But

$$\int_{0}^{1} x_{T}(r)U_{T}(r)dr = \sum_{t=1}^{T} \int_{(t-1)/T}^{t/T} x_{T}(r)U_{T}(r)dr$$

$$\begin{split} &= \sum_{t=1}^{T} \frac{1}{T} \cdot \frac{1}{\sqrt{T}} x_t \cdot \frac{1}{T^{d^* + 1/2}} u_t \\ &= \frac{1}{T^{d^* + 2}} \sum_{t=1}^{T} x_t u_t \end{split}$$

$$\Rightarrow \int_{0}^{1} B_{1}(r) F_{d^{*}}(r) dr$$

CHAPTER 5

CONCLUSIONS

This dissertation considered the ARFIMA(p,d,q) process, which can apply to many economic time series. The long-run characteristics of an ARFIMA(p,d,q) process, such as stationarity, mean-reversion and persistence of autocorrelations, are determined by the differencing parameter value d. We consider the case that the value of d is in the range $-1 < d \le 1$. If d = 1 such a series is a unit root process and if -1 < d < 1 and $d \ne 0$ it is a fractionally integrated process or long memory process. When d=0, it is a usual stationary short memory process.

In this dissertation we showed how the KPSS unit root test works in distinguishing long memory processes from unit root processes. Our asymptotic findings indicate that the KPSS unit root test is consistent against stationary long memory alternatives with -1/2 < d < 1/2, but it is not consistent against nonstationary long memory alternatives with 1/2 < d < 3/2. This implies that the KPSS statistic can consistently distinguish between short memory processes, stationary long memory processes and nonstationary processes. Dickey-Fuller type tests can consistently distinguish a unit root from an I(d) process with -1/2 < d < 1 but not from an I(d) process with 1 < d < 3/2. Further work is needed on ways to distinguish unit root processes from nonstationary (but mean-reverting) long memory processes.

The estimation of the differencing parameter d is an interesting problem, and there are many different estimators, such as the GPH estimator, the maximum likelihood estimator, the CSS estimator and the MDE. The MDE does not require distributional assumptions and is relatively simple in computation. We considered MDEs including the AMDE of Chung and Schmidt (1995) for the general ARFIMA

model. In applying the MDEs, we can estimate the model by letting short-run dynamics follow an ARMA model, or we can estimate the pure I(d) model but omit the first ℓ low-order autocorrelations, which is a nonparametric approach. In this nonparametric method we can expect some bias, especially when the ARMA parameters have extreme values, due to misspecifying the short-run dynamics. We compute the asymptotic bias that results from ignoring a fixed number (ℓ) of low-order autocorrelations in the case of simple ARFIMA(1,d,0) and ARFIMA(0,d,1) processes. The asymptotic bias of the AMDE or the MDE is small when ℓ is large. A derivation of the asymptotic properties of the MDE when ℓ grows with T is an important future task.

Fractional cointegration, defined as the case in which a set of variables is I(1) but the regression error is I(d) with d <1, is empirically important but little is known. We found that OLS is consistent and derived its asymptotic distribution. Its order in probability and asymptotic distribution are affected by the value of d. The asymptotic distribution of the OLS estimate in the case of fractional cointegration is not necessarily centered at zero and there is no reason to think that OLS is efficient or that it leads to asymptotically valid inference. Finding an efficient estimate that leads to asymptotically valid inference is another important topic for further research.

LIST OF REFERENCES

REFERENCES

- Agiakloglou, C. and P. Newbold (1992), Empirical Evidence on Dickey-Fuller-Type Test, <u>Journal of Time Series Analysis</u>, 13, 471-483.
- Agiakloglou, C., P. Newbold and M. Wohar (1993), Bias in an Estimator of the Fractional Difference Parameter, <u>Journal of Time Series Analysis</u>, 14, 235-246.
- Andrews, D.W.K. (1991), Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation, <u>Econometrica</u>, 59, 817-858.
- Baillie, R.T. (1995), Long Memory Processes and Fractional Integration in Econometrics, <u>Journal of Econometrics</u>, forthcoming.
- Baillie, R.T. and T. Bollerslev (1994), Cointegration, Fractional Cointegration and Exchange Rate Dynamics, <u>Journal of Finance</u>, 49, 737-745.
- Baillie, R.T. and D.D. Selover (1987), Cointegration and Models of Exchange Rate Determination, International Journal of Forecasting, 3, 43-51.
- Beran, J.A. (1992), Statistical Methods for Data with Long-Range Dependence, Statistical Science, 7, 404-427.
- Beveridge, W.H. (1921), Weather and Harvest Cycles, Economic Journal, 31, 429-452.
- Boes, D.C., R.A. Davis and S.N. Gupta (1989), Parameter Estimation in Low Order Fractionally Differenced ARMA Models, <u>Stochastic Hydrology and Hydrolics</u>, 3, 97-110.
- Brockwell, P.J. and R.A. Davis (1991), <u>Time Series: Theory and Methods</u>, 2nd edition, Springer-Verlag, New York.
- Campbell, J.Y. and N.G. Mankiw (1987), Are Output Fluctuations Transitory?, Quarterly Journal of Economics, 102, 857-880.
- Cheung, Y.-W. (1993), Tests for Fractional Integration: A Monte Carlo Investigation, Journal of Time Series Analysis, 14, 331-345.
- Cheung, Y.-W. and F.X. Diebold (1994), On Maximum Likelihood Estimation of the Differencing Parameter of Fractionally Interated Noise with Unknown Mean, <u>Journal of Econometrics</u>, 62, 301-316.

- Cheung, Y.-W. and K.S. Lai (1993), A Fractional Cointegration Analysis of Purchasing Power Parity, <u>Journal of Business and Economic Statistics</u>, 11, 103-112.
- Choi, I and P.C.B. Phillips (1993), Testing for a Unit Root by Frequency Domain Regression, <u>Journal of Econometrics</u>, 59, 263-286.
- Chung, C.-F. (1994a), A Note on Calculating the Autocovariances of Fractionally Integrated ARMA Models, Economic Letters, 45, 293-297.
- Chung, C.-F. (1994b), Calculating and Analyzing Impulse Responses and Their Asymptotic Distributions for the ARFIMA and VARMA Models, unpublished manuscript, Michigan State University.
- Chung, C.-F. and R.T. Baillie (1993), Small Sample Bias in Conditional Sum of Squares Estimators of Fractionally Integrated ARMA models, Empirical Economics, 18, 791-806.
- Chung, C.-F. and P. Schmidt (1995), The Minimum Distance Estimator for Fractionally Integrated ARMA Models, unpublished manuscript, Michigan State University.
- Cox, D.R. (1984), Long-Range Dependence: A Review, Statistics: An Appraisal, Proceedings 50th Anniversary Conference (Iowa State Statistical Laboratory).
- Dalhaus, R. (1989), Efficient Parameter Estimation for Self Similar Processes, <u>Annals of Statistics</u>, 17, 1749-1766.
- Davidson, J.E.H., D.F. Hendry, F. Srba and S. Yeo (1978), Econometric Modelling of the Aggregate Time-series Relationship between Consumer's Expenditure and Income in the United Kingdom, <u>Economic Journal</u>, 88, 661-692.
- Davydov, Y.U. (1970), The Invariance Principle for Stationary Processes, <u>Theory of Probability and Its Applications</u>, 15, 487-498.
- Dejong, D.N., J.C. Nankervis, N.E. Savin and C.H. Whiteman (1992), The Power Problems of Unit Root Tests in Time Series with Autoregressive Errors, <u>Journal of Econometrics</u>, 53, 323-343.
- Dickey, D.A. (1976), Estimation and Hypothesis Testing in Nonstationary Time Series, Ph.D. dissertation (Iowa State University, Ames, IA).
- Dickey, D.A. and W.A. Fuller (1979), Distribution of the Estimators for Autoregressive Time Series with a Unit Root, <u>Journal of the American Statistical Association</u>, 74, 427-431.

- Diebold, F.X. and M. Nerlove (1990), Unit Roots in Economic Time Series: A Selective Survey, Advances in Econometrics, 8, 3-69.
- Diebold, F.X. and G.D. Rudebusch (1991), On the Power of Dickey-Fuller Type Tests against Fractional Alternatives, <u>Economics Letters</u>, 35, 155-160.
- Durbin, J. (1960), The Fitting of Time Series Models, <u>Review of the International</u>
 <u>Statistical Institute</u>, 28, 233-243.
- Engle, R.F. and C.W.J. Granger (1987), Co-integration and Error Correction: Representation, Estimation, and Testing, <u>Econometrica</u>, 55, 251-276.
- Engle, R.F. and B.S. Yoo (1987), Forecasting and Testing in Co-integrated Systems, Journal of Econometrics, 35, 143-159.
- Fox, R. and M.S. Taqqu (1986), Large Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series, <u>Annals of Statistics</u>, 14, 517-532.
- Fuller W.A. (1976), Introduction to Statistical Time Series, Wiley, New York.
- Geweke, J. and S. Porter-Hudak (1983), The Estimation and Application of Long Memory Time Series Models, Journal of Time Series Analysis, 4, 221-238.
- Granger, C.W.J. (1980), Long Memory Relationships and the Aggregation of Dynamic Models, Journal of Econometrics, 14, 227-238.
- Granger, C.W.J. and R. Joyeux (1980), An Introduction to Long-Memory Time Series Models and Fractional Differencing, <u>Journal of Time Series Analysis</u>, 1, 115-129.
- Granger, C.W.J. and P. Newbold (1974), Spurious Regressions in Econometrics, Journal of Econometrics, 2, 111-120.
- Hansen, L.P. (1982), Large Sample Properties of Generalized Method of Moments Estimators, Econometrica, 50, 1029-1054.
- Hassler, U. and J. Wolters (1994), On the Power of Unit Root Tests against Fractional Alternatives, Economics Letters, 45, 1-5.
- Hauser, M.A. (1992), Long Range Dependence in International Output Series: A Reexamination, unpublished manuscript, University of Economics and Business Administration, Vienna, Austria.

- Hosking, J.R.M. (1981), Fractional Differencing, Biometrika, 68, 165-176.
- Hosking, J.R.M. (1984), Modeling Persistence in Hydrological Time Series Using Fractional Differencing, <u>Water Resources Research</u>, 20, 1898-1908.
- Hosking, J.R.M. (1995), Asymptotic Distributions of the Sample Mean,
 Autocovariance and Autocorrelations of Long-memory Time Series, <u>Journal of Econometrics</u>, forthcoming.
- Hurst, H.E. (1951), Long-term Storage Capacity of Reservoirs, <u>Transactions of the American Society of Civil Engineers</u>, 116, 770-779.
- Hurst, H.E. (1956), Methods of Using Long Term Storage in Reservoirs, <u>Proceedings</u> of the Institute of Civil Engineers, 1, 519-543.
- Johansen, S. (1988), Statistical Analysis of Cointegrating Vectors, <u>Journal of Economic Dynamics and Control</u>, 12, 231-254.
- Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models, <u>Econometrica</u>, 59, 1551-1580.
- Kremers, J.J.M. (1989), U.S. Federal Indebtness and the Conduct of Fiscal Policy, Journal of Monetary Economics, 23, 219-238.
- Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992), Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: How Sure Are We that Economic Time Series Have a Unit Root?, <u>Journal of Econometrics</u>, 54, 159-178.
- Lee, D. (1994), <u>Asymptotic Theory for Long-Memory Time Series</u>, Ph.D. dissertation (Michigan State University, East Lansing, MI).
- Lee, D. and P. Schmidt (1995), On the Power of the KPSS Test of Stationarity against Fractionally-Integrated Alternatives, <u>Journal of Econometrics</u>, forthcoming.
- Levinson, N. (1947), The Wiener RMS Criterion in Filter Design and Prediction, Journal of Mathematics and Physics, 25, 261-278.
- Leybourne, B.J. and B.P.M. McCabe (1994), A Consistent Test for a Unit Root, Journal of Business and Economic Statistics, 12, 157-166.
- Li, W.K. and A.I. McLeod (1986), Fractional Time Series Modeling, <u>Biometrika</u>, 73, 217-221.

- Lo, A.W. (1991), Long-Term Memory in Stock Market Prices, <u>Econometrica</u>, 59, 1279-1313.
- Lobato, I. and P.M. Robinson (1993), Averaged Periodogram Estimation of Long Memory, unpublished manuscript, London School of Economics.
- Mandelbrot, B.B. (1971), A Fast Fractional Gaussian Noise Generator, Water Resources Research, 7, 543-553.
- Mandelbrot, B.B. and J.W. Van Ness (1968), Fractional Brownian Motions, Fractional noises and Applications, SIAM Review, 10, 422-437.
- Mandelbrot, B.B. and J. Wallis (1968), Noah, Joseph and Operational Hydrology, Water Resources Research, 4, 909-918.
- McLeod, A.I. and K.W. Hipel (1978), Preservation of the Rescaled Adjusted Range 1: A Reassesment of the Hurst Phenomenon, <u>Water Resources Research</u>, 14, 491-508.
- Nelson, C.R. and C.I. Plosser (1982), Trends Versus Random Walks in Macroeconomic Time Series: Some Evidence and Implications, <u>Journal of Monetary Economics</u>, 10, 139-162.
- Newey, W.K. and K.D. West (1987), A Simple Positive Semi-Definite Heteroskedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica, 55, 703-708.
- Odaki, M. (1993), On the Invertibility of Fractionally Differenced ARIMA Processes, Biometrika, 80, 703-709.
- Ogaki, M. and J.Y. Park (1992), A Cointegration Approach to Estimating Preference Parameters, unpublished manuscipt, University of Rochester.
- Pantula, S.G. (1991), Asymptotic Distributions of Unit-Root Tests When the Process is Nearly Stationary, <u>Journal of Business and Economic Statistics</u>, 9, 63-71.
- Park, J.Y. (1992), Canonical Cointegrating Regressions, Econometrica, 60, 119-143.
- Park, J.Y. and B. Choi (1988), A New Approach to Testing for a Unit Root, Working paper No. 88-23 (Center for Analytical Economics, Cornell University, Ithaca, NY).
- Park, J.Y. and P.C.B. Phillips (1989), Statistical Inference in Regressions with Integrated Processes: Part 2, Econometric Theory, 5, 95-131.

- Phillips, P.C.B. (1986), Understanding Spurious Regressions in Econometrics, <u>Journal of Econometrics</u>, 33, 311-340.
- Phillips, P.C.B. (1987), Time Series Regression with a Unit Root, <u>Econometrica</u>, 55, 277-301.
- Phillips, P.C.B. (1988a), Weak Convergence of Sample Covariance Matrix to Stochastic Integrals via Martingale Approximations, Econometric Theory, 4, 528-533.
- Phillips, P.C.B. (1988b), Weak Convergence to the Matrix Stochastic Integral $\int_0^1 BdB'$, Journal of Multivariate Analysis, 24, 252-264.
- Phillips, P.C.B. (1991), Optimal Inference in Cointegrated Systems, Econometrica 59, 283-306
- Phillips, P.C.B. and S.N. Durlauf (1986), Multiple Time Series Regression with Integrated Porcesses, Review of Economic Studies, 53, 473-495.
- Phillips, P.C.B. and B.E. Hansen (1990), Statistical Inference in Instrumental Variables Regression with I(1) Processes, <u>Review of Economic Studies</u>, 57, 99-125.
- Phillips, P.C.B. and J.Y. Park (1988), Asymptotic Equivalence of Ordinary Least Squares and Generalized Least Squares in Regressions with Integrated Regressors, Journal of the American Statistical Association, 83, 111-115.
- Phillips, P.C.B. and M. Loretan (1991), Estimating Long-Run Economic Equilibria, Review of Economic Studies, 58, 407-436.
- Phillips, P.C.B. and P. Perron (1988), Testing for a Unit Root in Time Series Regression, Biometrika, 75, 335-346.
- Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling (1989), <u>Numerical</u>
 Recipes: the Art of Scientific Computing, Cambridge University Press.
- Robinson, P.M. (1994), Time Series with Strong Dependence, <u>Advances in</u>
 Econometrics, 6th World Congress, vol. I, Cambridge University Press.
- Rosenblatt, M (1956), A Central Limit Theorem and a Strong Mixing Condtion, Proceedings of the National Academy of Sciences, 42, 43-47.
- Said, S.E. and D.A. Dickey (1984), Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order, <u>Biometrika</u>, 71, 599-608.

- Saikkonen, P (1991), Asymptotically Efficient Estimation of Cointegrating Regression, Econometric Theory, 7, 1-21.
- Saikkonen, P. and R. Luukkonen (1993), Testing for a Moving Average Unit Root in Autoregressive Integrated Moving Average Models, <u>Journal of the American Statistical Association</u>, 88, 596-601.
- Schmidt, P. and P.C.B. Phillips (1992), LM Tests for a Unit Root in the Presence of Deterministic Trend, Oxford Bulletin of Economics and Statistics, 54, 257-287.
- Schwert, G.W. (1989), Tests for Unit Roots: A Monte Carlo Investigation, <u>Journal of Business and Economic Studies</u>, 7, 147-159.
- Seater, J.J. (1993), World Temperature-Trend Uncertainties and Their Implications for Economic Policy, <u>Journal of Business and Economic Studies</u>, 11, 265-277.
- Shin, Y. and P. Schmidt (1992), The KPSS Stationary Test as a Unit Root Test, Economics Letters, 38, 387-392.
- Sowell, F. (1990), The Fractional Unit Root Distribution, Econometrica, 58, 495-505.
- Sowell, F. (1992a), Maximum Likelihood Estimation of Stationary Univariate
 Fractionally Integrated Time Series Models, <u>Journal of Econometrics</u>, 53, 165188.
- Sowell, F. (1992b), Modelling Long-run Behavior with the Fractional ARIMA model, Journal of Monetary Economics, 29, 2770302.
- Stock, J.H. (1987), Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors, <u>Econometrica</u>, 55, 1035-1056.
- Stock, J.H. (1990), A Class of Tests for Integration and Cointegration, unpublished manuscript, Harvard University.
- Stock, J.H. and M.W. Watson (1988), Testing for Common Trends, <u>Journal of the American Statistical Association</u>, 83, 1097-1107.
- Stock, J.H. and M.W. Watson (1993), A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems, <u>Econometrica</u>, 61, 783-820.
- Tieslau, M.A., P. Schmidt and R.T. Baillie (1995), A Minimum-Distance Estimator for Long Memory Processes, <u>Journal of Econometrics</u>, forthcoming.

- Whittle, P. (1951), <u>Hypothesis Testing in Time Series Analysis</u>, Almquist and Wiksells, Uppsala, Sweden.
- Whittle, P. (1956), Variation of Yield Variance with Plot Size, <u>Biometrika</u>, 43, 337-343.
- Whittle, P. (1963), On the Fitting of Multivariate Autoregressions, and the Approximate Canonical Factorization of a Spectral Density Matrix, Biometrika, 50, 129-134.
- Yule, G.U. (1926), Why Do We Sometimes Get Nonsense Correlations Between Time Series? A Study in Sampling and the Nature of Time Series, <u>Journal of the Royal Statistical Society</u>, 89, 1-64.

