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ABSTRACT

Psychoacoustical Theory and Experiments on Human Auditory

Organization of Complex Sounds and the Critical Bandwidth

by

Jian-Yu Lin

Conventional ways of determining the critical bandwidth use masking experiments.

Those methods are difficult and inaccurate at low frequencies, since equal loudness

contours change dramatically at low frequencies. My experiment uses roughness to

determine the critical bandwidth. Data for Maximum Rough Rate (MRR) are collected

and used to determine the critical bandwidth at low frequencies. In our model, the

MRR is determined by two things: the temporal modulation transfer function (TM'I‘F)

and the critical bandwidth. The data could be fitted with a model in which fluctuation is

summed over all auditory filters. The data require the critical bandwidth parameter to

continue to decrease with decreasing frequency below 500 Hz so that it becomes

considerably narrower than critical bands from bark scale, and is even narrower than

Moore and Glasberg’s formula (1985).

The second chapter discusses a fundamental auditory perception phenomenon - pitch

perception. If a single harmonic of a complex tone is mistuned it can be heard as a



separate entity. Pitch matching experiments show that the pitch of a mistuned harmonic

is an exaggeration of the frequency mistuning. The differential pitch shift (the amount

of exaggeration), for positive vs. negative mistuning, is called the “split.” There are

some local-interaction models (Terhardt, 1979; Hartmann and Doty, 1996) which

explain the splits. Experiments here measure splits for complex tones having spectral

gaps and other anomalies to see whether local-interaction models are correct. The

results show that the split may be part of the segregation process instead of a simple

local spectral interaction. This means the interaction is at high levels of the auditory

system, which in turn tells us that the pitch formation is at high levels of the auditory

system.

The last chapter combines the two phenomena in the previous chapters, and applies

them to the Duifhuis effect. When a high harmonic of a slow periodic train of narrow

pulses is canceled, the absent harmonic is heard. This is the Duifliuis effect. The

explanation for the effect by Duifhuis is that when the frequency spacing between

harmonics is considerably less than the bandwidth of relevant auditory filters, the

auditory system can be said to be broadband. The study first extends the effect to a

variety of different conditions. Then, Duifhuis’s explanation for the phenomenon is

tested. The test is done by narrowing the bandwidth of the stimulus so that the

components whose frequencies are far away from the anomalous harmonic are

eliminated. Results show that the Duifhuis effect goes away by this manipulation of the

spectrum of the stimuli. which means that Duifhuis’s explanation originating from a

single peripheral filter is not right.
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CHAPTER 1

Roughness

and w

the Critical Bandwidth at Low Frequency



Introduction

A. The Critical Bandwidth Concept in Psychoacoustics

It is known that the periphery of our auditory system has the ability to analyze an in-

coming acoustic waveform into a spectrum. It functions as a frequency analyzer. We

take advantage of this ability when we listen to and separate several simultaneous

sounds which are in different frequency ranges. Since it is so important, a lot of re-

search is done in this area. The critical bandwidth concept is a way to describe the

resolution of the frequency analyzer of our auditory system. The idea is that stimuli

which are separated by more than a critical bandwidth have less interference upon each

other than sounds within a critical bandwidth. Zwicker and Fastl (1990) summarized

five main methods of determining the critical bandwidth.

Method 1: Measure the threshold and determine the critical bandwidth. A pure tone’s,

say 920 Hz, threshold level is measured first. Add another tone which is close to the

first tone, say, 20 Hz higher. Now the sound contains two components which have the

same amplitude. Measure the level of one component when the two-component stimu-

lus is at the hearing threshold. Since the two components fall into the same critical

band, the threshold level of the two-component stimulus should be the same as the

threshold level of the one-component stimulus. Thus the level of each component goes

down by ME. More components are added until the level of each component does not

change. For example, for 920 Hz, this happens after eight components are added. If

more components are added, the threshold level does not change. That means those

extra components are outside the critical bandwidth. Therefore, the critical bandwidth

at about 1000 Hz is 8x20 Hz=160 Hz.



Method 2: Use masking in frequency gaps to determine the critical bandwidth. Two

sine tones spaced by (If Hz are used as masker. A narrow band noise is located at the

average frequency of the two sine tones. The threshold of the narrow band noise is

measured as a function of df, the frequency difference between the two sine tones. For

df less than some value, the threshold is a constant. When df is greater than the value,

the threshold decreases as df increases. That means that the two components have less

and less effect on the narrow band noise. They are separated by more than a critical

band. The df value at which the threshold begins to fall is taken as the critical band-

width.

Method 3 is based on the detectability of phase changes, particularly the difference

between AM and FM. A waveform of the form A(l+mcosw,,,t)cos(wct) is an ampli-

tude modulated signal or AM, where m is the index of amplitude modulation. There are

three spectral components in the AM spectrum, the carrier and the two side-bands. A

waveform of the form Acos(coct +flcoswmt) is a frequency modulated signal or PM,

where ,B is the index of frequency modulation. Usually, the spectrum of FM is very

complicated and has a wide band. However, if ,6 is very small ( < < n/Z), the FM signal

becomes “narrow band” FM, and the power spectrum of the FM has two side-bands

just like AM. The only difference of the two spectra is that the two side-bands have

different phases for AM and FM. The detection thresholds of the two modulations AM

and narrow band FM, which are expressed as ,6, and m, , are compared at the same

modulation frequency fm . As the modulation frequency increases, the widths of the

two power spectra consisting of the three components increases. For a modulation fre-

quency fm less than some value, the two thresholds are different, i.e. ,6, at me or the

side-bands of the two signals at their thresholds have different amplitudes. For larger

fm , the two thresholds merge to one, i.e. fl, = m, or the side-bands of the two signals



at their thresholds are equal in amplitude. This means that for fm less than some value

called the critical modulation frequency (CMF), the auditory system is phase sensitive.

It is assumed that the components of the sound must be in one critical band in order to

get phase sensitivity. Accordingly, twice the value of the modulation frequency at

which AM and FM threshold merge is taken as the critical bandwidth because that is

the point where the three components could just go into one critical band. Zwicker and

Fastl pointed out that this method was effective in determining critical bandwidth at

low frequency.

Method 4 is based on the loudness of a constant sound pressure noise. A noise of some

bandwidth is presented at a constant sound pressure level. The loudness of the noise is

measured as a function of the bandwidth. If the bandwidth of the noise is less than

some value, the loudness does not change with the bandwidth. If the bandwidth of the

noise exceeds that value, the loudness becomes larger as the bandwidth increases, al-

though the sound pressure level is kept constant. That may be explained as the noise

excites more critical bands. Therefore, the bandwidth of the noise at which the loud-

ness begins to increase is taken as the critical bandwidth.

Method 5 stems from binaural hearing. The just-noticeable delay between the envelope

of the two tone bursts, each to one ear, is measured. The hearing system is sensitive to

the envelope delay as long as the two tone bursts are of high frequency and of nearly

the same frequency. The sensitivity decreases if the frequency difference between the

two tone bursts becomes larger than the critical bandwidth. This characteristic is used

to determine the critical bandwidth.

According to Zwicker and Fastl the critical bandwidth can be approximated as 100 Hz

for center frequency below 500 Hz, and 20% of the center frequency for center fre-



quency higher than 500 Hz. That means for frequencies higher than 500 Hz, auditory

filters are of constant Q value. For the frequency range 0-16000 Hz, there are ap-

proximately" 24 adjacent critical bands, which is also called the Bark scale. Moore and

Glasberg (1985) disagree with the approximation. They gave a different formula for the

bandwidth of peripheral filters as a function of the their center frequencies. The main

difference is at low frequency. Figure R1 gives the two different critical bands.

B. The Shape of the Peripheral Filters, ERB and the Gammatone Filter

In the previous discussion, there is an assumption about the shape of the peripheral fil-

ter, i.e. the shape of the filter is rectangular and has infinitely sharp edges. This, of

course, is not true. We know realistic filters cannot have infinitely sharp edges, they all

have some shape, and the shape of filters is a very important factor in describing fre-

quency analyzing characteristic of our auditory system. There were several different

experiments done to determine the filter shape. The basic assumption is that at the

threshold the power of the signal is proportional to the portion of masker’s power

which goes into a single filter.

The first method is Houtgast's (1972, 1974) rippled noise method. It makes use of the

masking of a sine tone in a rippled noise. When a white noise is comb filtered, its

spectrum is rippled. The power density of this rippled noise (rippled spectrum noise)

has symmetric peaks and valleys. In fact, the pattern is a DC plus or minus a cosine

wave. If a constant phase shift n/2 is introduced to every frequency of the noise, the

power spectrum becomes a DC plus or minus a sine wave. When the delay of the comb

filter is small, the peaks are sparse. When the delay of the comb filter is large, the

peaks are dense. If a pure tone is put in the valley, it is masked by the neighboring two
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peaks. The denser the peaks, the more masking is obtained, since more noise goes into

the filter centered at the signal. By changing the delay of the comb filter, the amount of

masking is controlled. The threshold of the signal gives information about the masking

and thus about shape of the filter. To calculate the shape of the filter, the transfer func-

tion is expanded in trigonometric functions (a Fourier series expansion). Since the

power spectnun of the input noise is also a trigonometric function, by the orthogonality

property of the trigonometric functions, the coefficients of the Fourier series can be

determined by thresholds and the spectra of the noise. Thus the shape of the filter is

determined.

The second method is to use notched noise (Patterson 1976). The spectrum of notched

noise is constant except at the notch where it is zero. The probe tone is placed in the

middle of the notch. The width of the notch is controlled. The threshold of the probe

tone is measured as a function of the width of the notch. By the assumption that at the

threshold the power of the signal is proportional to the portion of masker’s power

which goes into a single filter, the amount of masking noise leaked into the filter

around the probe is determined. Since the spectrum of the noise is flat, it is not difficult

to get the relationship that IH(f)l2 is proportional to the negative derivative of the

threshold with respect to the width of the notch.

To parameterize the shape of the filter, Patterson et al. (1982) suggested what they

called rounded-exponential or Roex filter. A typical two-parameter RoexW» r) filter is

expressed as:

W(g)==(1'-r)(l+ivg)e""’+r ,



where g :1f - fcl/fc . The relationship between the transfer function and W(g) is

1H(f)|= W(lf - fcl/fc). As the exponential parameter decreases, the function broad-

ens. Parameter r is intended to approximate the shallow tail section of the filter shape

outside the passband.

Now that the shape of the filter is not a rectangle, the critical bandwidth needs to be

redefined. One common definition is the width of the filter at which the response has

fallen by a factor of two, i.e. by 3dB. An alternative definition is the equivalent rectan-

gular bandwidth, or ERB (Moore, 1982). The ERB of a given filter is equal to the

bandwidth of a perfect rectangular filter which has a transmission in its passband equal

to the maximum transmission of the specified filter and transmits the same power of

white noise as the Specified filter.

A realistic filter cannot be perfectly rectangular, because the filter must be causal, i.e.

it must have a causal impulse response. Patterson et al. (1987) designed a causal im-

pulse response for what they called the gammatone filter to model the peripheral audi-

tory filters. The impulse response is given as:

gt(t) at t"" exp(-21r bt)cos(2 rrfct + ¢) (t 2 0) (1)

The corresponding transfer function is:

GT0”) °C [1+j(f-f.)/b]‘"+[1+J'(f+f.)/bl'" (-°°<f<°°) (2)

There are two parameters in the gammatone filter, n and b. It is not difficult to see that

n is related to the slope of the filter and b is proportional to the critical bandwidth of



the filter. The second term in Equation (2) can be ignored when fC / b is sufficiently

large - which is always the case when modeling the human auditory filter.

According to Patterson et al. , the physiological impulse response of a particular audi-

tory nerve fiber is somewhat like the gammatone filter impulse response. If a psy-

choacoustic tuning curve is obtained at very low level, i.e. just a few fibers are con-

cerned, the two kinds of impulse response may be similar. As Patterson pointed out,

the gammatone filter has one notable disadvantage: the amplitude of the transfer func~

tion is symmetric. However, the peripheral filters are asymmetric. The comparison of

Roex filter and the gammatone filter is also given in Patterson et al. ( 1987). They

could make very good fit of the two filters.

Moore et al. (1990) used the notched noise method to measure the filter’s shape at low

frequencies. The improvement of their experiment compared with Patterson’s was that

they measured the asymmetry of the filter. They did this by putting the probe tone off

the center of the notch. They fitted their data by Roex filters. They used different p ’s

for the lower and upper side so that the filter is asymmetric. The experiment was done

at frequencies: 100 Hz, 200 Hz, 400 Hz, and 800 Hz. The ERBs averaged over all the

listeners were listed. The normalized ERB for the center frequency of 100 Hz was 0.36

and for 200 Hz was 0.42, which gives the ERBs at those center frequencies as 36 Hz

and 84 Hz respectively. The results from Moore’s experiment shows that the critical

bandwidths at low frequencies are not constant. This conflicts with Zwicker’s theory

that the critical bandwidth below 500 Hz is a constant of about 100 Hz, which is the

critical bandwidth determined by critical modulation frequency (CMF) method.

C. LOW-Frequency Critical Bandwidth



10

As mentioned before, the CMF can be used to estimate the CB (critical bandwidth).

The idea is: when the modulation frequency is low, the thresholds for detecting FM

and AM are different. As the modulation frequency increases, the two thresholds

merge at some point. That means the auditory system can not distinguish the two

modulations any more. Therefore, it is phase insensitive. Schorer (1986) suggested that

the CMF corresponded to half the value of the CB. Zwicker and Fastl (1990) men-

tioned that the CMF was a good way to determine the critical bandwidth at low fre-

quencies. However, as shown by Figure R1, the result from Moore et al. (1990) defers

a lot from Zwicker’s. Later, Sek and Moore (1994) disagreed with the idea of using the

CMF to determine the CB at low frequency. Their argument comes from Hartmann and

Hnath’s theory (1982) that side-band detection task followed a “No Summation

Model ”.

Hartmann and Hnath’s work was done with mixed modulation or MM. Mixed modula-

tion is the case in which both AM and FM exist. The advantage of using mixed modu-

lation is that the amplitudes of the lower component and the upper component can be

changed independently. This is because in AM the sum of the lower component phasor

and the upper component phasor is in phase with the carrier, whereas in FM the sum of

the lower component phasor and the upper component phasor is not in phase with the

carrier. The variability of the relative level of the lower component and the upper com-

ponent was used by Hartmann and Hnath (1982) to test the theories of modulation de-

tection.

Hartmann and Hnath suggested and confirmed the No Summation Model for detection

of MM. The idea of the model is that modulation is detected by the detection of the

most detectable side~band and the other side-band has no effect. For example, suppose

at some carrier frequency, the thresholds for detecting lower component and the higher



component are 19 dB and 40 dB separately. According to the model, one would detect

the modulation if either the lower side-band is not lower than 19 dB or the higher side-

band is not lower than 40 dB. In other words, the threshold for detecting MM is the

threshold of detecting the lower side-band if the upper side-band is less than 40 dB; the

threshold for detecting MM is the threshold of detecting the upper side-band if the

lower side-band is less than 19 dB.

According to the results of Hartmann and Hnath (1982) the auditory system first de-

tects the lower side-band of the modulated signal, which is consistent with masking

theory. Now the question arises at low frequency. At low frequencies, the absolute

threshold changes very rapidly with frequency. Therefore, the absolute threshold is

much higher for the lower component than for the upper component if the carrier fre-

quency is low. Then, its possible that at low frequency the upper side-band is first de-

tected, since its absolute threshold is lower. Sek and Moore (1994) did two experiments

to check whether this was true.

The first experiment was to compare the masking thresholds at lower side and upper

side of a sine tone masker with the detection thresholds of an AM sine tone. The

masker was same as the carrier. The sine tone signal to be detected for the masking

thresholds is separated from the masker by the frequency which was the modulation

frequency in modulation detection task. What they found was that at low frequencies

125 Hz, 160 Hz, the masking thresholds on the lower side of the masker were much

higher (10-40 dB) than the thresholds of modulation detection, whereas the masking

thresholds on the upper side of the masker were the same as the thresholds of the

modulation detection. That is obviously evidence that at low frequency one first detects

the upper side-band of a modulated tone.
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The second experiment was a mixed modulation experiment. In mixed modulation, the

threshold is determined by three parameters. By manipulating the parameters, they

could show that at 125 Hz, the detection threshold was determined by the upper-band

side; and at 500 Hz, the detection threshold was determined by the lower-band side.

This causes a problem in using the CMF to measure the CB. Since at high frequency

the auditory system uses the lower side-band and at low frequency the auditory system

uses the upper side-band, there must be a transition region. Sek and Moore (1994)

concluded that the transition region is at 200 - 250Hz. That means that below 200 Hz

the CB would be overestimated if the CMF method is used provided that the CB con-

tinues to go down at low frequencies. The ERB formula of Moore and Glasberg (1985)

continues to go down below 500 Hz. Therefore Sek and Moore (1994) claimed that

difference between the ERB and Zwicker’s CB at low frequencies came from the over-

estimation by Zwicker’s CMF method.

There may also be some problem with Moore and Glasberg’s formula. First, we did a

calculation which showed that the overestimation is much smaller than the difference

between the Zwicker’s CB and the ERB (See Appendix R1). Second, as we mentioned

before, Moore and Glasberg used notched noise to determine their ERB. We know that

the hearing threshold changes dramatically at low frequency. Therefore, it is difficult to

determine the amount of noise leaked into a peripheral filter, which directly affects the

results. It seems that both the CMF method and the notched noise method are affected

by the hearing threshold at low frequencies. A better method would depend less upon

the hearing threshold at low frequency. To use a maximizing task instead of a detecting

task would give us more signal, and thus depend less on the hearing threshold. That

was our motivation to use maximum roughness (a sensation from rapid beats) to de-

termine the critical bandwidth at low frequencies. In fact, Plomp and Levelt (1965)
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suggested that the maximum roughness of two simple tones occurs when the frequency

difference is a quarter of critical bandwidth, which is a connection between the critical '

bandwidth and the maximum roughness. However, it seems difficult to use this relation

to cover the whole frequency range, as will be noted in the conclusion. Thus we de-

termined to do further investigations on this issue.

I. The Model of Roughness

A. Roughness: Phenomenon and Model

If the amplitude of a tone, say 1000 Hz, is modulated with a low frequency, say 5 Hz,

the amplitude fluctuations are easily recognized as corresponding fluctuations of loud-

ness. This is the first stage of perception of an amplitude modulated tone as the modu-

lation frequency changes from low to high frequency. If the modulation frequency is

changed to 10 Hz or higher, another sensation, roughness, starts to increase. At this

stage, it is hard to follow the fluctuations of the loudness; rather, some unpleasant beats

are perceived. This sensation continues to increase until the modulation frequency

reaches 70 Hz. If the modulation frequency increases further, the tone becomes

smoother, and the separated components become clearer and clearer. Finally, the

roughness is completely gone, and the three spectral components are separately heard.

Zwicker and Fastl (1990) explored the dependence of the roughness on the modulation

frequency as a function of the carrier frequency. They used 100% AM tones. Their re-

sults showed that, for carriers lower than 1000 Hz, maximum roughness is a function

of carrier frequency: A 125 Hz carrier corresponds to about 30 Hz; a 250 Hz carrier

corresponds to about 45 Hz; a 500 Hz carrier corresponds to about 55 Hz. For carriers
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higher than 1000 Hz, the peaks remain unchanged, i.e. the maximum roughness occurs

at about 70 Hz independent of the carrier frequency.

Terhardt (1974) explored the parameters which affected the roughness. The first one

was the modulation depth of a AM tone. The method he used in his experiment was as

follows: Pairs of AM tones were presented. For each pair of tones, there was a pause

in between. The subjects were asked to judge whether the second tone was more or less

than half (or twice) rough as the first tone. From the response data, he got the point

where more and less had equal probability. That point corresponded to half roughness

(or twice roughness). In this way, he got the formula: roughness at m2 , where m is the

modulation index.

The second parameter he studied was sound pressure level. In the experiment, he pre-

sented AM tone pairs. The first tone was a standard tone with m=1. The second tone

was 20 or 40 dB higher, with its m randomly chosen between 0.2 and l. The subjects

were than asked to judge whether the second tone produced more or less roughness.

The results showed that high level tones were rougher. However, his results depended

upon the order of stimuli presented, and thus could be unreliable. Zwicker and Fastl

(1990) mentioned that roughness had only weak dependence on sound level.

Terhardt investigated threshold of roughness as a function of modulation frequency.

His experiments showed that high modulation frequency had higher threshold. He

compared roughness of FM with that of AM. Results showed that big differences only

occurred when the modulation frequency was small compared with the Bark scale,

Which agreed with Zwicker and Fastl’s (1990) CMF method for determining the CB.

He also compared the roughness of AM tones with that of beating tones composed of
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only two components. He found that roughness was determined by the fundamental

component of the envelope, as described Hartmann (1996).

Zwicker and Fastl (1990) gave a model for the roughness phenomenon. They used two

factors in their model: the temporal resolution of intensity fluctuation factor and the

fluctuation speeding factor, fluctuation factor and speeding factor for short. Roughness

was the product of the value of the two factors. The main idea was that at low modula-

tion frequencies, our auditory system could follow the change of intensity very well,

i.e. the value of the fluctuation factor was large. However, at low modulation frequen-

cies the change was too slow to be rough, so the value of the speeding factor was

small. The value of the product of the two factors was small. For very high modulation

frequencies, the value of the speeding factor was large, but the value of the fluctuation

factor was small resulting in a small roughness also. A peak of the product of the two

factors occurred somewhere between high frequency and low frequency, which corre-

sponded to the modulation frequency for maximum roughness.

It is understandable that the fluctuation factor of an AM sine tone becomes small when

the modulation frequency is high because the three spectral components are resolved.

They are in different peripheral auditory filters. However, if the auditory filter is the

only parameter that can make the AM tone smoother, maximum roughness should oc-

cur at higher modulation frequencies for higher carrier frequencies rather than being

limited by a 70-Hz modulation frequency no matter how high the carrier frequency is.

Therefore, there must be some additional effective parameter. That is the pure temporal

constraint, the TMTF parameter. In other words, there are actually three things which

affect the maximum roughness, l) the speeding factor; 2) the CB and 3) the TMTF,

which determines the fluctuation factor.
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B. Temporal Modulation Transfer Function

The Temporal Modulation Transfer Function was introduced by Viemeister (1979) to

describe the ability of the auditory system to resolve pure temporal changes. Viemeister

assumed that the Temporal Modulation Transfer Function (TMTF) was an attenuation

characteristic of the auditory system. He also assumed linearity of the auditory system

in perceiving temporal changes.

The TMTF can be measured using a sine-tone amplitude-modulated sine tone. The

threshold of the modulation depth is measured as a function of the modulation fre-

quency. This threshold was supposed to be a measure of the TMTF. However, there is

a problem with the stimulus. As the modulation frequency becomes higher, the side-

bands of the signal are resolved. This spectral resolution puts a limit to the validity of

the stimulus, since the side-bands may be heard before the fluctuation is heard.

Viemeister (1979) improved the stimulus by using a wideband noise as a carrier and

thus eliminated the possible spectral cues, since the power spectrum of a sinusoidal AM

noise is flat.

Viemeister pointed out that TMTFs displayed a lowpass characteristic. That is reason-

able, since we expect the auditory system to resolve a temporal change better when the

change is slower. He plotted the AM threshold, which is displayed by -log(m), as a

function of the modulation frequency f,,. He expected to see the attenuation character-

istic of the TMTFs from the plot. The results showed that the modulation threshold was

constant up to about 10 Hz, which is consistent with the fact that the auditory system

follows the change of intensity to about 10 Hz as mentioned before. The sensitivity to

modulation was reduced by 3 dB at approximately 50 Hz. From 50 Hz to 800 Hz the

sensitivity decreased at a rate of 3-4 dB/oct. Viemeister said that at high modulation
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frequency (fm >1000 Hz), the cues for temporal changes, such as “roughness” or

“buzziness” could not be detected.

Viemeister also investigated other properties of the TMTFs. One of the investigations

varied the intensity of the stimulus. The results showed that for different intensities the

thresholds curves were similar. So he concluded that the characteristics of the temporal

processing were intensity independent at least over the range of the levels he investi-

gated, 20 dB SPL to 50 dB SPL.

The TMTF can be modeled as a lowpass filter. A simple IOWpass filter can be ex-

pressed by its amplitude response:

1

|H(w.. )l= ----—--

1+co,2,,,z'2

. (3)

where a)m is the modulation frequency, and r is the time constant of the lowpass filter.

According to Viemeister, the time constant is in the range of 2 to 3 ms.

C. Quantifying the Fluctuation Factor in the Roughness Model

The model given by Zwicker and Fastl must be quantified to compare with the data.

There are two factors, the fluctuation factor and the speeding factor. The speeding

factor is a sensation that does not have much to do with CB or TMTF, because there is

no direct relation. Furthermore, it is difficult to use an experiment to measure the

Speeding factor. Therefore, the speeding factor is completely unknown. We want to

avoid this factor in our calculation, because the CB is an unknown that we are inter-

ested in, and we want to have as few unknowns as possible.



Since we want to avoid the speeding factor, we define a new term - the maximum

rough rate (MRR) as the rate of the most rapid beats without a dramatic decrease in

fluctuations of the beats. The “most rapid” and the “without a dramatic decrease”

make the two factors, fluctuation and speeding, large. On the other hand, from this

definition we can drop the speeding factor in our calculation. If we plot the fluctuation

as a function of modulation rate (beat rate), a dramatic decrease would correspond to

the maximum slope (absolute value) of the curve, since the curve is monotonically de-

creasing. Therefore, we choose the modulation rate of maximum slope as MRR. Thus,

the speeding factor is avoided, only one factor, the fluctuation factor, is needed in our

calculation.

The fluctuation factor describes the ability to follow the change of the intensity, or it

describes the perceived sound intensity fluctuations. The common ways of producing

beats are by AM and Two-Tone Beats (Beats for short). Our model for calculating the

perceived fluctuation for AM and Beats is given in Figure R2.

The incoming sound waveform first goes through the filters of the peripheral filter

bank. The output of a filter, which forms a channel of signal, has three spectral com-

ponents for AM and two spectral components for Beats with a certain ratio of ampli-

tudes. The waveforms of the output have certain envelopes. The envelopes are:

 

EaU) = \[[ac + (a, +a,,)cosAo)t]2 +[(a, -a,,)sin Amt]2 (4)

for AM, and

 

55(1) = Jalz + a: + 2a,a2 cos(Atot) (5)
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for Beats, where a, , ac and a, are amplitudes of the three spectral components from

AM output, and a1 and a, are amplitudes of the two spectral components from Beats

output, Aw is the frequency spacing between the components. The amplitudes of the

spectral components at the output of a peripheral auditory filter depends on the CB of

the filter. The envelopes, which are determined by the amplitudes of spectral compo-

nents, describe the fluctuation of the output and are supposed to be extracted by the

auditory system. Then, the TMTF puts a high frequency limit to the fluctuations. It

puts the extracted envelopes (4) or (5) as signals through the lowpass filter (3). We

know that the auditory system cannot follow the fine structure of the envelope change.

From Aures’s data (Aures, 1985; Hartmann, 1996), the roughness is determined by the

fundamental component of the envelope. This assumption was confirmed by comparing

the roughness of AM and the roughness of the Beats. So in our model, only the DC

value and the fundamental frequency component of the filtered envelope are used to

determine the fluctuation of this channel. The amplitude of the fundamental frequency

component is a measure of the absolute fluctuation in this channel. The DC level plays

two roles: I) it acts as a smoothing source; 2) it is an approximate measure of the aver-

age power in the channel. Therefore, the fluctuation in the channel is assumed to be the

ratio of the power of the fundamental component to the power of the DC component

E "4‘12;- /c§j), where F,- is the fluctuation of the channel, cu is the amplitude of the

fundamental of the envelope, and cw is the amplitude of the DC. Finally, the fluctua-

tions from all channels are weighed by the average power of their channel and summed

up as the fluctuation perceived:

6:. fl 1 fl 2
F='ZE[-;’I-) =(—P—) ECU-Cg,- (6):
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where P is the total power of the signal, ,6 is the energy weighting index, and a=2,6-2.

Power P is used as a normalizing factor so as to make F a unitless variable. However, in

our calculation, we do not have a way to determine the number of filters we should use,

i.e. we can not determine how wide the frequency spacing between the adjacent filters.

But when the number is larger than a certain number (20/oct), the curve ofF converges to

a certain shape. Therefore, we just choose a large number. So, the values of the calculated

F are relative to each other, and it is not necessary to put the P in the calculation.

II. Experiment

A. Method

1. Pr0cedure

At the beginning of a run, the listener was seated in a sound-treated room and given a

response box with which to control the experiment. The listener pushed a green button

to start a trial. After the green button was pushed, a beating stimulus either an AM or a

Beats was presented. The fluctuation rate could be adjusted by a ten-tum potentiometer.

Turning the potentiometer changed the modulation frequency in the AM stimulus, or

changed the frequency of one sine tone in the Beats stimulus so that the beating rate

was changed. The listener was asked to adjust the potentiometer toW

m ... .,-. .-.-.. ,1. ul -...~ vi a.” . a. Forthe

AM stimulus, the listener just had one frequency to tune. For the Beats stimulus, there

were two, low and high. Since one component had fixed frequency, beats could be

produced if the adjustable component was either higher or lower in frequency than the

fixed component. When the listener made his decision, be pressed the green button
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again to fuiish the trial. The frequency chosen by the listener was recorded, and then

the next trial with a different AM carrier or a different fixed frequency for Beats be-

gan. The whole process was controlled by a 486 computer through the TDT H system.

There was no feedback to the listener.

Trials were blocked into runs. Each experimental run included 15 trials for the AM, or

30 trials for the Beats (high and low for each fixed frequency). It took about 7 minutes

to do an AM run, and 15 minutes to do a Beats run. After a run was completed, the

listener could come out to rest. In the results reported below, the data from the final

eight runs were used for each data point. The experiment was done at two levels, 60

dB and 80 dB.

2. Stimuli

There were two kinds of stimuli in the experiment, AM and Beats. For the AM stimu-

lus, the sine-tone carrier was generated by the WGl waveform generator of the TDT II

system. The modulation tone was generated by a Wavetek VCGl 16 function generator.

The frequency of the modulation tone was controlled by a control voltage. The two

tones were multiplied by a multiplier to generate the AM signal. The modulation per-

centage was 100%.

The Beats stimulus was generated more easily. The fixed sine tone was generated by

the WGl at the same frequencies as the carrier in AM. The other frequency-changeable

sine tone was generated by the Wavetek function generator like the modulation tone in

the AM. The two equal-amplitude sine tones went through a mixer to form the Beats.
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When the listener made his decision in each trial, the chosen frequency for the AM

modulation tone or for the frequency-changeable sine tone in Beats were read by the

computer through a Metrabyte CTM5 card. There were altogether 15 frequencies for

the AM carrier and the Beats fixed frequency. They were: 70, 85, 100, 150, 200, 300,

400, 500, 600, 700, 800, 900, 1000, 1500 and 2000 Hz. Since we were interested in

low frequency, eight frequencies were less than or equal to 500 Hz, which were con-

sidered to be low frequencies.

3. Listeners

Three male listeners SB, SD, SJ participated in the experiment. Their ages were 56, 20

and 34 respectively. All of them had negative otological histories and had some train-

ing as performers of musical instruments.

B. Results

The data from the experiment are listed in Tables R1 to R6. To make them easier to

see, plots of the data are shown in Figures R3, R4 and R5, each for one subject. There

are two plots in each figure, one for the 60 dB experiment and one for 80 dB. The

horizontal axis, “center frequency, ” represents the carrier frequency in the AM ex-

periment, and the fixed frequency in the Beats experiment. The vertical axis,

“modulation rate, ” is the beat rate of the stimuli, i.e. it is the modulation frequency for

the AM stimulus, and is the frequency spacing of the two sine tones for the Beats

stimulus. The points plotted in a graph are the MRR’s the listener chose at different

frequencies. There were two data points for each center frequency in the Beats experi-

ment, low and high. As shown by Tables R1 - R6, they are usually different. We aver-

age the two data points to get one data point, which is the plotted data point.
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There were similarities among the three listeners. The overall patterns are the same al-

though there are individual differences. First, the MR increases with the center fre-

quency. The value increases faster at low center frequencies than at high center fre-

quencies. At center frequencies higher than 1000 Hz, it increases very slowly around

70 Hz as if it entered a saturated region. This is consistent with Zwicker and Fastl

(1990). Second, it seems that there is no obvious level effect. Third, at low frequen-

cies, it seems that the MR for AM is larger than that for Beats.

III. Computation and Conclusion

A. Fitting the Model to Data

To fit the data, there are three parameters in our model. First, we can change the criti-

cal bandwidth of the peripheral filter. The CB is the parameter we are interested in. In

our calculation we use the gammatone filter (with n=4) mentioned in the introduction

as our model peripheral filter bank. Second, the time constant r for the TMTF in equa-

tion (3) is another parameter in our calculation. Third, we can change the energy

weighting index ,6 in equation (6).

Next, how many comtraints are there on our calculation? First, we need to fit the MR

for AM and Beats, which are our data. Second, according to Aures (1985) and Zwicker

and Fastl (1990), there is a quantitative relationship between the roughness (fluctuation

in our calculation) of AM and Beats at a particular modulation rate. Aures (1985) did

an experiment showing that at 1000 Hz, the roughness of a equal-amplitude Beats

stimulus was equal to the roughness of an partially modulated AM stimulus with
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modulation percentage m=2/3. Zwicker and Fastl (1990) showed that at 1000 Hz an

AM with m=2/3 is about 1/2 as rough as the completely modulated AM (m=1). In our

experiment, we used 100% modulation for AM, and equal-amplitude components for

Beats. Therefore, our AM stimulus should be twice as rough as the Beats stimulus at

1000 Hz at the same modulation rate. If we extend the Aures and Zwicker-Fastl results

to other frequencies, AM should be twice as rough as Beats at the same modulation

rate. That is our second constraint. The third constraint, which is also from the data, is

that the roughness is independent of level. This constraint is automatically satisfied by

our model.
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MRR of Beats (Hz) MRR of AM (Hz)

fc (Hz) Lower Upper

Avg. Sd. Avg. Sd. Avg. Sd.

2000 92.1 10.2 94.8 18.4 56.6 9.0

1500 82.4 12.5 78.2 9.1 65.1 10.5

1000 69.4 7.9 74.2 11.5 52.8 3.0

900 76.2 10.7 73.6 9.1 61.5 12.0

800 66.9 5.0 79.8 4.7 57.4 4.2

700 61.6 13.7 70.5 4.9 59.8 10.4

600 58.4 8.5 70.2 5.1 50.9 4.9

500 50.8 4.0 59.6 6.1 47.6 7.4

400 41.1 4.2 45.2 3.8 40.1 4.9

300 30.5 3.0 39.8 4.5 30.9 2.4

200 24.0 2.0 26.1 2.7 24.9 2.0

150 20.1 1.5 21.5 2.1 23.2 2.8

100 14.8 1.9 18.0 1.9 18.0 2.4

85 12.6 0.7 17.1 2.8 17.0 1.3

70 12.5 1.3 15.0 2.6 16.0 2.5      
 

Table R1: Experimental results of SB at 60 dB.
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MRR of Beats (Hz) MRR of AM (Hz)

fc (Hz) Lower Upper

Avg. Sd. Avg. Sd. Avg. Sd.

2000 60.4 18.2 62.6 14.7 65.2 8.1

1500 62.4 11.2 57.4 11.9 60.8 11.0

1000 58.5 11.6 59.2 17.8 53.8 10.6

900 60.2 7.4 56.8 10.4 55.8 11.1

800 55.9 17.0 59.8 13.3 ‘ 55.9 11.6

700 50.5 13.0 56.6 18.5 55.2 8.8

600 52.4 9.8 48.6 11.7 50.6 7.3

500 44.9 10.9 46.8 11.4 49.8 5.3

400 34.2 8.6 37.2 7.9 38.2 3.9

300 28.4 4.1 31.6 8.3 31.9 4.4

200 23.1 3.1 23.4 2.4 24.9 2.8

150 20.0 3.1 21.4 3.3 24.0 2.0

100 15.1 1.6 16.9 1.9 19.9 1.9

85 13.8 2.1 16.0 2.4 20.2 1.0

70 12.2 1.3 13.4 1.8 18.1 2.6       
Table R2: Experimental results of SB at 80 dB.
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MRR of Beats (Hz) MRR of AM (Hz)

fc (HZ) Lower Upper

Avg. Sd. Avg. Sd. Avg. Sd.

2000 60.6 11.4 69.4 12.1 63.9 11.5

1500 61.6 r 16.9 64.4 15.5 65.5 6.2

1000 60.5 8.6 60.9 8.2 63.6 6.0

900 59.0 10.5 58.6 10.7 61.1 5.8

800 68.1 10.9 58.3 11.9 60.8 5.8

700 53.1 11.1 61.3 9.6 58.2 5.5

600 55.0 14.3 64.0 16.3 57.7 5.5

500 46.2 8.9 53.8 9.2 55.1 5.2

400 39.9 4.6 47.7 3.8 49.1 4.7

300 42.6 3.4 37.0 4.2 40.0 3.8

200 36.0 3.5 31.4 3.0 31.4 3.0

300 31.7 3.0 26.3 3.0 25.1 2.4

100 18.5 1.7 19.5 1.9 21.9 2.1

80 16.6 1.6 17.0 1.6 17.7 1.7

70 13.8 1.5 15.0 1.5 17.4 1.7       
Table R3: Experimental results of SD at 60 dB.
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MRR of Beats (Hz) MRR of AM (Hz)

fc (Hz) Lower Upper

Avg. Sd. Avg. Sd. Avg. Sd.

2000 60.5 12.7 63.5 12.1 59.7 8.5

1500 57.5 11.7 64.5 18.7 56.5 5.8

1000 60.0 7.3 61.3 9.2 46.3 3.3

900 57.5 10.9 62.0 11.3 47.7 6.2

800 66.8 12.4 59.5 14.7 47.2 9.0

700 53.8 11.0 52.5 5.7 46.7 7.0

600 53.5 . 7.9 55.5 6.4 43.0 3.1

500 50.0 5.2 50.0 6.1 46.7 11.1

400 40.5 6.5 47.2 3.8 38.0 4.6

300 38.0 6.6 41.5 8.1 35.7 3.1

200 33.7 6.5 33.7 6.9 32.7 3.9

150 25.8 5.8 32.2 4.7 30.0 1.8

100 16.3 1.8 21.7 4.9 26.2 2.8

80 10.2 2.3 24.0 4.9 17.0 3.2

70 10.8 2.5 17.0 3.6 20.3 3.4       
Table R4: Experimental results of SD at 80 dB.
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MRR of Beats (Hz) MRR of AM (Hz)

fc (Hz) Lower Upper

Avg. Sd. Avg. Sd. Avg. Sd.

2000 72.8 9.6 71.2 7.2 66.1 11.3

1500 65.1 19.7 63.8 11.5 54.6 11.5

1000 52.4 11.1 60.2 14.4 49.0 8.9

900 48.1 10.3 54.2 12.2 48.8 8.1

800 42.4 9.8 47.9 10.0 46.2 3.4

700 40.4 10.8 44.5 8.6 38.9 8.9

600 36.4 7.9 38.8 12.3 38.5 4.8

'500 37.4 5.7 38.9 7.3 36.6 4.0

400 35.1 2.6 36.9 2.7 34.6 2.7

300 32.4 4.2 33.2 3.4 31.1 3.6

200 29.8 3.8 28.4 3.2 26.4 3.1

150 25.8 1.8 30.8 3.7 27.4 2.8

100 17.0 1.6 22.4 1.7 20.0 3.2

85 13.8 1.8 19.0 1.9 14.9 3.0

70 9.2 1.6 17.5 I.8 14.9 2.5       
Table R5: Experimental results of SJ at 60 dB.
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MRRofBeats (Hz) MRRofAM(Hz)

fc (Hz) Lower Upper

Avg. Sd. Avg. Sd. Avg. Sd.

2000 72.0 18.0 72.5 13.3 51.6 9.2

1500 59.8 8.3 62.1 10.3 44.6 12.6

1000 48.8 9.3 55.8 14.9 47.8 6.7

900 52.1 12.0 56.6 7.7 47.4 9.5

800 52.9 20.5 53.1 14.4 42.6 5.1

700 50.1 13.7 54.0 21.6 39.4 5.3

600 43.6 9.7 49.2 13.2 38.0 5.4

500 36.6 6.0 38.8 5.8 . 35.1 3.3

400 35.6 6.1 41.1 8.0 33.8 3.5

300 29.9 4.5 32.9 4.1 31.9 4.2

200 28.0 6.1 29.4 7.5 26.1 4.1

150 21.9 3.1 24.8 4.5 25.2 2.9

100 14.8 0.7 18.0 2.1 19.2 3.9

85 13.0 1.8 16.9 2.0 18.5 3.0

70 11.9 1.7 14.4 2.3 16.6 2.5      
 

Table R6: Experimental results of SI at 80 dB.
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figure R3: Results of the experiment for SB. The upper panel is the results at 60 dB. and the

lower panel is the results at 80 dB. The open circle is for the Beats. Each point represents an MRR

at one center frequency. The upper point and the lower point at each center frequency from Tables

1 and 2 are averaged to make this plot. Therefore. there is only one point at each frequency for the

Bears. The filled circle is for AM.
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Figure R5: Results of the experiment for SI.
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The calculation was done using a C-program. The purpose was to fit the model MRR

to the measured MRR averaged over subjects and levels. The averaged measured MR

and the fitted model MRR are listed in Table R7. The fitted model MRR is also plotted

in Figure R8. Figure R6 shows plots of fitted fluctuation or roughness curves at each

center frequency.

The fitting procedure is determined by the functions of the parameters. The energy

weighting parameter B changes the alignment of the MRR’s for AM and Beats, it also

changes the relative sizes of the two fluctuation curves. For smaller B, the alignment of

MRR’s for AM and Beats at low center frequencies is closer to the data, i.e. the MR

for AM is larger than that for the Beats. However, for smaller B the roughness

(fluctuation in our calculation) at a particular modulation rate for AM and Beats does

not follow the constraint that AM is about twice as rough as Beats (Beats is too small).

For this constraint, larger B makes a better fit. It seems that B=O.5 is a good com-

promise between the two constraints. This result weights the fluctuation with the square

root of the power in a channel, which happens to agree with a maximum-likelihood es-

timator.

The other two parameters, the CB and the r of the -TMTF, determine how fast the

fluctuation curve drops. Therefore, they determine the modulation rate at which the

maximum slopes of the fluctuation curves occur. Those are the calculated MRR’s.

Narrowing the TMTF filter or narrowing the CB results in a faster drop of the fluctua-

tion curves and thus smaller MRR’s.

According to Viemeister (1979), the time constant r is about 2 to 3 ms, which means

the cut off frequency of the TMTF filter is about 100 Hz or so. Therefore the TMTF

does not have much influence on the calculated fluctuation at low modulation rate (say
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below 40. Hz). Since the MR for low center frequencies always occurs at low modu-

lation rates, the TMTF does not have much influence on the fitting results at low fre-

quencies, i.e. errors in r do not affect much the fitting results at low center frequen-

cies. Thus the CB is the dominant parameter at low frequencies and can be “well de-

termined by the MRR from this model. This is an excellent result, since we are pri-

marily interested in the critical band at low frequencies.

At high frequencies, the MRR occurs at high modulation rate. In the frequency range

600 - 2000 Hz, both the TMTF and the CB influence the calculated MRR in a similar
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Averaged MRR (Hz) Model MRR (Hz)

fc (Hz) Beats AM Beats AM

Avg. Sd. Avg. Sd.

2000 71.0 11.9 60.5 5.7 68.65 71.98

1500 64.9 7.7 57.8 7.8 63.93 67.04

1000 60.1 6.6 52.2 6.3 55.45 58.15

900 59.6 8.2 53.7 6.6 52.88 56.78

800 59.3 9.7 51.7 7.3 50.43 52.88

700 54.1 7.7 49.7 9.3 48.10 50.43

600 52.1 9.5 46.4 7.9 44.79 46.97

500 46.1 7.0 45.2 7.8 41.72 42.72

400 40.2 3.9 39.0 5.5 37.83 38.73

300 34.8 4.2 33.6 3.6 33.60 36.07

200 28.9 4.3 27.7 3.4 27.08 27.73

150 25.2 4.0 25.8 2.5 23.26 23.26

100 17.8 1.7 20.1 2.9 18.79 18.35

85 15.8 1.0 18.0 2.5 16.76 16.37

70 13.6 0.6 16.5 1.9 14.89 14.54    
Table R7: Averaged MRR over listeners and levels, and the predicted MRR from

  
the model.
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way. Thus we cannot determine the two unknowns, r of the TMTF and the CB, at the

same time by fitting the MR. However, our goal is to check the CB at low frequen-

cies since the main disagreement on CB is at low frequencies. So we assume that the

CB is the ERB for frequencies higher than 500 Hz. Thus, we first fit our data at high

frequencies to determine the time constant 1 of the TMTF, and then use the obtained 1

to do fittings at low frequencies to determine the CB at low frequencies.

With this procedure, 1 was determined to be 2 ms. Figure R6 shows plots of the fit-

tings, one plot for each center frequency. The curve with a star is the fluctuation curve

for AM. The star marks the maximum s10pe of the curve, and hence the MR. The

curve with a circle is for Beats. The circle labels the MR. Figure R7 is a plot of the

CB’s used to make these fittings at low frequency. The dotted line is the Bark scale.

The dashed line is the ERB from Moore and Glasberg (1985). The solid line is our fit-

ting. Figure R8 is the plot of the fitted MRR’s, i.e. the fifteen star-circle pairs from the

fifteen plots in Figure R6.

B. Conclusion and Discussion

Figure R7 is the plot of the results of using the MRR to determine the CB (mainly at

low frequencies). As we can see, for center frequency of 300, 400 and 500 Hz our fit-

ted critical bandwidths agree with the ERB of Moore and Glasberg (1985). For center

frequency below 300 Hz (70300 Hz) our fitted critical bandwidths are smaller than

Moore and Glasberg’s ERB.

It seems that our data do not agree with Plomp and Levelt’s (1965) 1/4 critical band-

width rule. For example, at 1000 Hz, the MRR’s is about 60 Hz, which gives CB=240

Hz, larger than the Bark scale, Moore-Glasberg’s ERB and the prediction of our
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model. At 100 Hz, the MR is about 20 Hz, which gives CB=80 Hz. This is close to

the Bark scale, but differs from Moore-Glasberg’s ERB and the prediction from our

model.

There are some problems with our fitting. First, we cannot align well the MRR of the

two stimuli and at the same time adjust the relative roughness (fluctuation) of the two

stimuli to reasonable values. The compromise is to choose B=O.5. Figure R8 is a plot

of fitted MRR’s at different frequencies. As shown in the Figure and Table 7, at low

frequencies the alignment does not agree with the data in that the data show that the
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MRR for AM is larger than that for the Beats whereas the model predicts that the two

MRR’s are about the same. This is probably something that cannot be solved within

this model.

The second problem is that the fitted fluctuation curve decreases too slowly. It seems

that the listeners could perceive a sharper turning point than that shown in Figure R6.

Consider the 70-Hz plot in the figure. The MR for Beats is about 15 Hz. From the

same plot, the fluctuation of Beats at MRR is the same as the fluctuation of the AM at a

modulation rate of about 23 Hz. This seems to be unlikely, because at modulation

rate=23 Hz almost no fluctuation could be perceived for the 70-Hz AM stimulus. This

shows that the curve for AM does not drop fast enough. Since the curve for Beats is

not steeper than that for AM, it also drops too slowly. With those existing problems,

we cannot say that our results from this model are very reliable. It is the best we can

do at this stage. There may be some other mechanism which we do not understand very

well at this time.
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Appendix R1

According to Sek and Moore (1994), the CMF is determined by the lower side-band at
high frequency and by the upper side-band at low frequency, thus confounding the

CMF as a measure of the critical bandwidth. The transition region is around 200-250

Hz. They claimed that this was the reason that CB obtained from Zwicker’s CMF

method flattens out at low frequency while the ERB still goes down to small values at

low frequencies.

Based upon this idea, we calculated the influence of the transition of the side-band on

the CMF. We chose carrier frequencies from 50 Hz to 500 Hz. We calculated the CMF

in two conditions: 1) the CMF determined by the lower side-band; 2) The CMF de-

termined by the upper side-band. The equations used to determine the two CMF’s are

as follows:

1
f -f = —ERB(/ )
u c 12 u for the upper side-band,

CMF“ = 5 ERIN/u)

l
f -f = —ERB(f )
C 1 12 I for the lower side-band,

C4417] = 5 ERB(f1)

where ERB(f) = 6.23f2 +9339f +2852 (Moore and Glasberg, 1985), fu , f, and fc

are in kHz; CMF“ , CMF] and ERB are in Hz.

As shown in Figure R9, the two CMF’s are close together. That means that the flat

region due to the CMF transition is very small and the effect suggested by Sek and  
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Moore would seem to be very small. In fact, from the figure, it is much easier to see

the ERB (=2xCMF) go down either above the transition region or below the transition

region.

It is also notable that Zwicker’s critical band results, which are flat at low frequency

are self-consistent. They are undisturbed by the transition between side-bands because
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the bandwidth evaluated at low side-band frequency is the same as the bandwidth

evaluated at the upper side-band frequency.
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CHAPTER 2

Pitches of Mistuned Harmonics
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Introduction

Our auditory system has the ability of integrating the components of a complex tone

into a single entity. It is a good thing that we have this ability, because all the compo-

nents of a complex tone come from one sound source. If we did not have this ability,

we would have trouble in our daily life, since almost all the sound sources in nature are

complex. We would perceive individual harmonics, which very likely would cause in-

formation overload.

The pitch associated with a complex sound is the product of the process in which our

auditory system integrates the harmonic components coming from the single source.

Therefore, a good way to study pitch perception of a complex tone might be to study

how our auditory system integrates the harmonic components. In other words, it is im-

portant to study the relationship, which is built in our auditory system, between the

complex tone as an entity and its harmonic components. The mistuned harmonic ex-

periment is a very good experiment in this respect.

When a harmonic of a complex tone is mistuned, it is heard separately from the com-

plex tone as if there are two sound sources: the complex tone and a sine tone (the mis-

tuned harmonic). Moore et al. (1986) measured the thresholds of mistuning for mis-

tuned harmonics. In the Mistuned Harmonic Matching Experiment (Hartmann et al.,

1990), subjects were asked to match the pitch of the mistuned harmonic with a pure

tone. The data showed significant pitch shifts. For example, if the third harmonic of a

200 Hz fundamental was mistuned +8% so that its frequency was 648 Hz (mistuned

+48 Hz away from its original frequency 600 Hz), a typical matching would be around

655 Hz instead of around 648 Hz, resulting in a pitch shift of + 1.1%; if the harmonic

was mistuned —8% so that its frequency was 552 Hz, a typical matching would be
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around 545 Hz, resulting in a pitch shift of -1.3%. The sign of the pitch shift was

generally correlated with the sign of the mistuning of the mistuned harmonics, i.e.

positive mistuning made positive pitch shifts and negative mistuning made negative

pitch shifts. In other words, pitch shifts exaggerate the mistuning. The differential pitch

shift, for positive vs. negative mistuning, will be called the “split.” Splits describe the

exaggeration. In the example above, the split for the third harmonic of the 200 Hz fun-

damental mistuned at 18% is [+1.1 — (—1.3)] = 2.4%. Figure M1 shows the example.
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Figure Ml: Example of a split.
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In 1979 Terhardt presented a semi-empirical algorithm for calculating the pitch shifts of

the harmonics of a complex tone (see also Terhardt et al., 1982b). It is mainly based

on the concept of the excitation pattern. When a sine tone is partially masked by a

sound having lower frequency, its pitch will be shifted higher. Similarly, maskers

having higher frequency than the sine tone will tend to shift the sine tone pitch lower.

Thus, the excitation of a harmonic would mask the neighboring harmonics, and thus

“push away” the adjacent harmonics in pitch. Therefore, the algorithm predicts a

negative pitch shift for the fundamental of a complex tone and positive pitch shifts for

the rest of the harmonics regardless of their mistunings, since for the fundamental

masking can only come from higher harmonics (mainly the 2nd) and for the other har-

monics more masking comes from the adjacent lower harmonic than from the higher

harmonic because of the asymmetry of the excitation pattern (Terhardt et al., 1982b).

Terhardt’s theory can also be used to predict the pitch shifts for inharrnonic compo-

nents, since it is mainly a place theory. For example, Terhardt et al., (1982a) used the

algorithm to predict the pitch of church-bell tones. However, in applying Terhardt’s

algorithm to the plus-minus mistuning pair mentioned above, it always predicted posi-

tive pitch shifts no matter whether the mistuning was positive or negative. It even gives

splits with wrong sign in most conditions, i.e. instead of exaggerating the mistuning it

compensates the mistuning (see Hartmann and Doty, 1996). Obviously, this algorithm

does not agree with data and cannot explain the splits phenomenon. Therefore,

Hartmann and Doty (1996) developed an alternative theory based upon timing.

The model began with the idea that pitch should be determined by. the peaks of the in-

terspike interval (ISI) histogram, as suggested by Goldstein and Srulovicz (1977).

Pitches were shifted when excitation corresponding to neighboring harmonics appeared

in the same auditory filter, leading to a complicated temporal pattern. In general terms,
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the effect of such interaction on the ISI histogram was to cause a harmonic to be at-

tracted in pitch to its nearest neighbors, one higher and one lower than the harmonic.

The higher neighbor tends to make a positive pitch shift, and the lower neighbor tends

to make a negative pitch shift, an “attraction” effect which is opposite to the Terhardt’s

“repulsion” effect. Decreasing the spacing in frequency between the harmonic and a

neighbor will result in a increasing of attraction between them. Now consider a i8%

mistuned 3rd pair. The +8% mistuned 3rd harmonic is closer in frequency to the

higher neighbor - the 4th harmonic than the -8% mistuned 3rd. Therefore, the +8%

mistuned 3rd gets more attraction from the 4th than the -8% mistuned 3rd, a tendency

of making more positive pitch shift to the +8% mistuned 3rd. Similarly, the -8% mis-

tuned 3rd is more attracted by the 2nd than the +8% mistuned 3rd, a tendency of

making more negative pitch shift to the -8% mistuned 3rd. The differential pitch shift

for $893 mistuned pair - the split, is thus produced.

The model predictions agreed well with data for all harmonics, but there was one glar-

ing exception, the mistuned fundamental. The model said that the pitch shifts should be

unusually small and opposite in sign to the mistuning (positive mistuning for the

fundamental leads to negative pitch shift). Experiment showed, without question, that

the pitch shifts are just like any other harmonic, namely substantial and in the same

direction.

This crisis leads us to rethink the theory anew. Both the Terhardt Model and the timing

model of Hartmann and Doty are local-interaction models in that the split depends al-

most entirely on neighboring harmonics. The two closest neighbors are especially irn-

portant. A problem with a local-interaction model is that it gives no recognition to the

role of the entire spectrum in integrating a correctly tuned harmonic into a complex

tone. In fact, we know a harmonic stands out if it is mistuned. It is reasonable to say
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that this prominence is caused by the relationship between the mistuned harmonic and

the whole complex tone, which is composed of the other correctly tuned harmonics as

an entity. It is reasonable to conjecture that the split is related to this prominence, in

other words, the split might be related to the whole complex tone instead of to only

neighboring harmonics. The complex tone may produce some periodic “framework” or

pattern to make the frequencies of the harmonics special in the brain. In other words,

whether a harmonic exists or not in those frequencies, the frequencies are special in the

brain once the “framework” is formed by a background complex tone. In fact, there

are several pitch perception models that suggest a template. For example, the DWS

pitch meter uses a harmonic pattern recognizer to extract a periodicity pitch (Duifhuis

et al., 1982; Scheffers, 1983). Terhardt (1974) suggested that a tone would tend to one

all its sub-harmonics, i.e. making possible places for a pattern. If we think of a

complex tone with a mistuned harmonic as a perfectly-tuned complex tone which omits

that mistuned harmonic and a sine tone which has the mistuned harmonic frequency,

then the picture in frequency domain is more like the sine tone dr0pped into the

“framework” of the complex tone. An exaggeration of the mistuning in pitch results in

a contrast between the two sounds: the complex tone and the sine tone (the mistuned

harmonic), which may make it easier for us to segregate one sound source from the

other. Having those thoughts in mind, we did a line of experiments to see whether a

pervasive frame-like periodicity can be supported.

I. Experiments

A. METHOD

1. Procedure
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The listener was seated in a sound-treated enclosure, holding a response box that con-

trolled the events of an experimental trial. When the listener pressed a yellow button

there was a pause of 300 ms, and then there was an 800 ms complex tone, with one of

its harmonics mistuned. When the listener pressed an orange button there was a pause

of 300 ms, and then there was an 800 ms sine tone with a frequency that could be ad-

justed by means of a ten-turn potentiometer on the box. The potentiometer allowed the

listener to make the pitch match. The listener could call up the complex tone or the

matching tone in any sequence, as often as he liked. When the listener was satisfied

with his match he pressed the green button to finish the trial. The stimulus and match-

ing frequencies were then recorded, and then the next trial with a different complex

tone (either with different mistuning of the mistuned harmonic, or different fundamen-

tal of the complex tone, or a different number of the mistuned harmonic) began. There

was no feedback to the listener.

There were many different experiments with different stimuli and different numbers of

stimuli. In any experiment, there were as few as three or as many as six complex spec-

tra. Each experimental run included one or two presentations of each with mistuned

harmonic mistuned at +8% and -8%. Therefore a run included 6 to 12 trials. After a

run was completed, the listener could come out to rest. It took about 10 to 20 minutes

for a listener to finish a run. The data from the last 12 matches for each data point were

used.

2. Stimuli
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There were two kinds of stimuli in the experiment, complex tones and sine tones. The

complex tones contained 8 to 16 partials of equal amplitude. The fundamental fre-

quency varied from 150 Hz to 800 Hz for different complex tones.

Complex tones were generated by sound files which were specific as to the fundamental

frequency, the mistuned harmonic, the harmonic content and the percentage of mistun-

ing - either plus or minus 8%. For a given trial, the appropriate sound file was loaded

into a digital buffer 16k (16384) samples long and was converted by a 16-bit DAC at a

normal sample rate of 16k/s. Therefore, the period of the signal was Is. To prevent the

listener from using his memory for pitch to do the task, the sample rate was actually

different on every trial. It was randomized over a range of +10% to -10%, with a

rectangular distribution.

The analog signal was low-pass filtered at 7KHz, -115dB/octave. The complex tone, as

presented to the listener, was shaped by computer-controlled amplifier to give it an en-

velope with a 10 ms raised-cosine onset and offset and a full-on duration of 1 sec. The

electrical signal was presented to the listener via SENNHEISER HD480 headphones at

a level of 58dB per component. For instance, a l6-component complex tone would be

at 70dB SPL.

The matching tone was generated through repeatedly cycling a buffer using fractional-

addressing technology. One cycle of a sine wave was loaded into a 16k buffer. It was

sampled at the rate of 32k/s. The fractional address increment was determined by the

potentiometer on the control box, as read by a 12-bit ADC. An exponential frequency

control law was applied in software, leading to a frequency resolution of 0.06%. The

matching tone was filtered and enveloped like the complex tone. The matching tone

was at 55dB, i.e, 3dB lower than the mistuned component. As a result, the matching
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tone was approximately equally as loud as an individual component. It was expected

that equal loudness would make the pitch matching task easier.

3. Listeners

There were four listeners, three male, B, J, T, and one female, C. The ages ranged

from 19 to 54. All of them could perform accurate pitch-matching in the range 150 to

1000 Hz. All the listeners had negative otological histories and had some training as

performers of musical instruments.

B. EXPERIMENT I

1. Spectra of the Complex Tones

The spectra of the two complex tones in this experiments are shown in Figure M2. The

idea is to create a complex tone which is composed of a perfectly-tuned part with three

of its successive components omitted, the so called “gap,” and a mistuned harmonic in

the gap. In the upper panel, harmonics 1, 2, 3 are omitted. Then we do experiments

with mistuned harmonic 1 (fundamental), 2, and 3 separately. We use the notation “-

8M2” to denote a mistuned second harmonic, mistuned by -8%. There is only one

mistuned harmonic in any stimulus. We call this experiment “mistuned 1/2/3 in a gap.”

Therefore, there are six matches to the six different stimuli for the “mistuned 1/2/3/ in

a gap.” The lower panel of Fig. 2 is the same as the upper one except that the gap is

created by omitting harmonics 2, 3 , and 4. The corresponding mistuned components

are harmonics 2, 3 , and 4. We call this experiment “mistuned 2/3/4 in a gap.”
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2. Results - The Zigzag Effect

Figure M3 shows the results for mistuned 1/2/3 and mistuned 2/3/4. Each panel shows

results from one subject. There are several observations to be made. Firstly, there is a

split for each plus-minus-mistuning pair of mistuned harmonics. There are overall

shifts for some of the mistuning pairs. The overall shift differs from subject to subject.

It might be caused by individual differences and the excitations of other harmonics.

Secondly, the sizes of the splits differ from subject to subject, but there is a general

tendency for low mistuned harmonics to give bigger splits. This is due to some other

effects: the frequency effect and the harmonic number effect (see F. and 0.).

Finally, the pitch shifts are not monotonic as a function of frequency. Since the mis-

tuned harmonic is in a gap, it can be viewed in another way. We can organize the six

stimuli in the following way (for mistuned 1/2/3 in a gap): -8Ml, +8Ml, —-8M2,

+8M2, ~8M3, +8M3. The frequency domain picture now is a component moving in

several steps from low frequency (—8M1) to high frequency (+8M3) in the gap. If a
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Figure M2: Spectra for Experiment 1. Spectral lines are represented by verti-

cal solid lines. A vertical dashed line represents a mistuned harmonic. A dot is

put on the horizontal axis if a harmonic is omitted.
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Figure M3: Results of Experiment 1 (Zigzag Effect). There are four panels for experiment “mistuned

MB in a gap” and four panels for “mistuned 2/3/4 in a gap” separately. Each panel shows results from

one subject. There are three pairs of data in each panel representing the three t8% mistuned pairs in each

sub-experiment. A pair is connected with a solid line so that one can compare the split of the pair with

the split of anather pair by comparing the slopes of the two solid lines. The end of a harmonic pair is

connected to the beginning of the following harmonic pair by a dashed line so that one can see the zigzag

pattern, which is the important result of the experiment.
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local-interaction model is valid, the shifts of the six matches should be a monotonic

function of frequency. However, a zigzag pattern is formed. The zigzag pattern shows

that a local-interaction model is not appropriate. It suggests that a split can only occur

when the pair straddles the special position where a harmonic is supposed to be. In the

gap there are three of these special positions, therefore, three splits occur. This is evi-

dence that the complex tone forms a template in the frequency domain.

C. EXPERIMENT 2

1. Spectra of the Complex Tones

The spectra of the complex tones in this experiment are shown in Figure M4. We want

to compare the two conditions (a) and (b). The idea here is to create the same local

structures but different frameworks in the frequency domain. For condition (a),the

components of the complex tone are perfectly tuned with three successive harmonics 3,

4, 5 omitted creating a gap as in experiment 1. The fundamental frequency is 200 Hz,

and the highest harmonic is the 16th. Then we do an experiment with mistuned 3rd

harmonic in this gap, i.e. two matches for i8% mistunings separately, whose frequen-

cies are 552 and 648 Hz. For condition (b), the complex tone is an octave higher with

fundamental frequency at 400 Hz. The second harmonic is omitted. A component

whose frequency is the same as the mistuned 3rd harmonic in condition (a) i.e. 552 Hz

or 648 Hz is added to the complex tone spectrum. We may call the component a mis-

tuned “1.5,” since the fundamental frequency is twice that in condition (a). Now the

local frequency structure for the mistuned 3rd harmonic in case (a) is the same as that

for mistuned harmonic “1.5” in case (b). Notice that the 2nd harmonic and the 6th
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harmonic in condition (a) correspond to the fundamental and the 3rd harmonic in con-

dition (b).

2. Results - The Integer Effect

The results are shown in Figure M5. Each panel is for one subject. As we can see,

there are substantial splits for condition (a), and negligible splits for condition (b) com-

pared to (a). And that is true for all subjects. In condition (a) the pair straddles har-

monic 3 whereas in condition (b) the pair is on the low side of harmonic 2. In other

words, condition (b) is a mistuned “1.5,” but there is no such thing as a 1.5 harmonic.
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Figure M4: Spectra for Experiment 2.
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Figure M5: Results of Experiment 2 (Integer Effect). As before, each panel is for one

subject. There are two pairs in each panel, one for one condition.
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Therefore the effect is called the integer effect (a split occurs only if the mistuning pair

straddles a harmonic). This clearly shows that there is a template formed by the com-

plex tone.

For local interaction models, the pitch shifts of a mistuned harmonic are mainly de-

termined by the closest components. For example, for the masking model of Terhardt,

the pitch shift of the mistuned harmonic is mainly from the masking of the neighboring

two components. Therefore, the model would predict approximately the same pitch

shifts for both conditions (a) and (b), since the local spectra for both cases are the

same. The same thing can be expected to happen for any other local-interaction models

(including the timing model), because nearest neighbors are likely to be dominant.

Thus, the integer effect cannot be explained by local-interaction models.

D. EXPERIMENT 3

1. Spectra of the Complex Tones

The main purpose of this experiment is to see whether spectrally distant harmonics

make contributions to splits of the mistuned harmonics. The spectra of the five complex

tones are shown in Figure M6. They are: (a) 16-component complex tone with its fun-

damental mistuned. The fundamental frequency is 200 Hz; (b) same as (a) except that

the 2nd harmonic is omitted; (c) same as (a) except that harmonics 2, 3 are omitted;

(d) same as (a) except that harmonics 2, 3, 4 are omitted; (e) 3-component complex

tone with its fundamental mistuned.

2. Results - The Proximity Effect
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The results are shown in Figure M7. All the subjects show the same effect. As the

neighboring harmonics 2, 3, 4 are omitted one by one, the split becomes smaller and

smaller. But some split is still there. This means that the far-away components do cre-

ate a splitting effect. For conditions (b), (c), (d), the mistuned fundamental and the

complex tone are very far apart. They are definitely in different peripheral auditory

filters, since the critical bandwidth at the fundamental is much less than the spacing.

Excitation interactions between them should be negligible compared to condition (a),

which therefore, predicts much smaller pitch shifts compared to (a). But that is not the
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Figure M6: Spectra for Experiment 3.



Figure M7: Results of Experiment 3(The Proximity Effect).
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case. The existence of splits for conditions (b), (c), (d) implies that the interaction is at

a high level of the auditory system, which indicates that the formation of pitch is at

high level of our auditory system. Somehow, the outputs of the peripheral filters are

combined at high levels of the auditory system to form the pitch.

On the other hand, if we compare the split in (c) and (d) with the split in (e), we find

the neighboring harmonic(s) are much more important in making the split. In other

words, the closer the harmonic, the more contribution it makes to the framework.

E. EXPERIMENT 4

1. Spectra of the Complex Tones

In this experiment spectral asymmetries are created for the mistuned harmonic. There

are two purposes of the experiment. One is to see the importance of the neighboring

harmonics in producing the Splits. The other is to see whether the local—interaction

models can explain the data for the asymmetric conditions. The spectra used here are

shown in Figure M8. There are four conditions: (a) 16-component complex tone with

its 3rd harmonic +8% or -8% mistuned; (b) same as condition (a) except that the 4th

harmonic, which is a neighboring harmonic of the mistuned component, is omitted; (c)

same as condition (a) except that the 2nd harmonic is omitted; (d) same as condition

(a) except that both the 2nd and the 4th harmonics are omitted. There are eight matches

in the experiment, a pair (21:8% mistuning) for each condition.

2. Results - The Local Asymmetry Effect
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The data are shown in Figure M9. As before, each panel is for one subject. For all the

four conditions, splits are observed. For two subjects, SB and ST, removing the near-

est harmonics dramatically reduces the size of the split, a proximity effect. All the

subjects show that the lower neighboring harmonic (in this case the 2nd harmonic)

leads to a larger split than the higher harmonic (in this case the 4th harmonic).

One observation is to be made. In conditions (b) and (c), the neighboring harmonics of

the mistuned harmonic are asymmetric. For a symmetric condition, say (a), the mis-

tuned component is at the center of the gap between the two neighbors - 2nd and 4th.
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75

N
r
°
r
r
 
v
j
v
v
a
v
a
fi
‘
v
v
v
v
t
v
'
V
v

o
I

o
g

‘

I

i
t
)

 

.(n)........ .(h)..........(e).......

 

 

 
 

.(e).......(d)....(b).......

 

...(e).... ..

 
Q

I
I

I

-
A
I
-
A
-
A
I
A
-
A
-
I
A
-
A
-
1
-
A
A
A  
 

-
°
r
r

(
a
t
)
a
r
m
s
H
a
n
d

0UIOIIO
D

O
I

O

.
I

‘
O

O
0

O
O

O
U

9
O

O

O
O

D

0
O

I
I

O

A
l
-
-
A
-
l
m
-
-
-
l
-
-
A
-
l
-
-
-
-
l
-

A3

.(bl.......(el.........(s)....... 
 

“
'
0
0

T

(
x
)
u
r
n
s
n
o
n
e

Figure M9: Results of Experiment 4 (Local Asymmetry Effect). Four conditions are labeled

for each panel.
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Once a neighbor is omitted, asymmetry is created, and the mistuned component is lo-

cated off the center of the gap between the two new neighbors. In a local-interaction

model, the pitch shift is almost entirely determined by the two neighbors. If a local-

interaction model is true, the asymmetry caused by omitting one neighbor (only lower

neighbor for the excitation model, since the excitation comes mostly from the lower

side) would dramatically change the balance between the attractions (or repulsion) from

high side and low side, because the pair is far from the center of the gap due to the

asymmetry. For example, in condition (c), the neighboring harmonics are lst (the fun-

damental) and 4th instead of 2nd and 4th, since the 2nd is omitted. This would cause a

large uni-directional pitch shift (compared to the split) for. the mistuned pair. For the

excitation model the shift should be negative, since there is now less “repulsion” from

below (the 2nd is replaced by the lst). For the timing model the shift should be posi-

tive, since there is now less “attraction” from below. However, that is not observed.

Except for their sizes, the splits are not changed by local asymmetry. That is because

the pair are still straddling the special position - the position where the 3rd harmonic is

supposed to be. There are no substantial uni-directional shifts compared to the sizes of

splits for the asymmetric pairs - condition (b) and (c). That is true for all four listeners.

Therefore, local-interaction models do not apply to this effect.

F. EXPERIMENT 5

1. Spectra of the Complex Tones

This experiment was done to see the how splits for the mistuned fundamental depended

upon frequency. The spectra of the three complex tones used in this experiment are

shown in Figure M10. All the complex tones here are 8—component complex tones with
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their fundamentals mistuned. The only difference among them is the fundamental fre-

quency: (a) 200 Hz; (b) 400 Hz; (c) 800 Hz.

2. Results - The Frequency Effect

Results are shown in Figure M11. The results for all the subjects are very similar and

obvious: The split decreases with increasing fundamental frequency of the complex

tone. The splits at 800 Hz are almost zero. Modern pitch perception models suggest

that the periodicity pitch is extracted by a harmonic pattern recognizer (e.g. the DWS
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Figure M10: Spectra for Experiment 5.
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figure M11: Results of Experiment 5 (The Frequency Effect).
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pitch meter, Scheffers 1983). The results of our experiment, that the framework is al-

most absent for a fundamental above 800 Hz, would imply that 800 Hz is the limitation

for the fundamental of the periodicity pitch. This is consistent with Ritsma’s results for

the existence region of the sensation of periodicity pitch (Ritsma, 1962). Therefore,

splits appear to be related to pitch formation of a complex tone.

G. EXPERIMENT 6

1. Spectra of the Complex Tones

The goal of this experiment is to explore the dependence of splits on harmonic number.

The idea is to create the same local spectral environment for two harmonics having dif-

ferent harmonic number. The spectra are shown in Figure M12. Condition (a): the sec-

ond harmonic of the complex tone is mistuned and its neighboring harmonics, the fun-

damental and the third harmonic, are omitted. The fundamental frequency is 200 Hz,

and the highest harmonic is the 12th. Condition (b): The stimulus in this condition is a

8-component complex tone with its fundamental mistuned. The fundamental frequency

of the complex tone is 400 Hz. The local structures in the frequency domain for the

mistuned harmonic in both cases are the same, but the harmonic number in (a) is one

(the fundamental) and the harmonic number in (b) is two ( the 2nd harmonic). The

power of the two stimuli is the same.

. 2. Results - The Harmonic Number Effect

Results are shown in Figure M13. All the subjects show that the lower harmonic num-

ber (in this case the fundamental) suffers the larger split. Visually, it seems that the
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effect is not as strong as other effects. Therefore, we did a one-tailed t-test on the dif-

ferences in each split. The test showed that at the a=0.01 level the lower harmonic

number has the bigger split.

H. EXPERIMENT 7

l. Spectra of the Complex Tones
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Previous experiments have indicated that the framework is important in the pitch of

mistuned harmonics. In this experiment, we try to control the framework based upon

the conjecture that if the 3rd is mistuned then the multiples of the 3rd will contribute

more to the framework than other harmonics. This conjecture comes from the idea that

the bases of a template may lie in the timing pattern of neural firing. Those harmonics

that are integral multiples of three will synchronize with the 3rd harmonic and there-

fore may form a more effective template. Note in this experiment only harmonics

higher than 3rd are considered since we know that lower harmonics are much more

important than the higher harmonics (see local asymmetry effect and the top-bottom

effect). The spectra of the stimuli in this experiment are shown in Figure M14. There

are four conditions. All of them are mistuned 3rd with harmonics higher than 3rd up to

21st. Conditions (a) and '(b) periodically omitted harmonics which are not multiples of

3rd. Conditions (c) and (d) omitted harmonics which are the multiples of the 3rd, i.e.

6th, 9th, 12th, etc.

2. Results - Controlling the framework

The data are shown in Figure M15. All the subjects except for SB show the effect that

(a) and (b) give a larger split than (c) and (d). This confirms our conjecture that multi-

ples of the harmonics leads to a stronger framework.

I. EXPERIMENT 8

1. Spectra of the stimuli
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The pitch shift made by the brain is an exaggeration of the mistuning. When there is no

mistuning, the exaggeration of 0% mistuning is expected to be zero. This may be a

“neutral” or “equilibrium” position. However, if this equilibrium point exists, it

should be an unstable equilibrium, because any deviation (perturbation) from the point

would be “amplified” by the brain, since the exaggeration of mistuning is a positive

feedback. This would result in a instability at 0% mistuning. In this experiment, we

want to check whether this kind of “instability” exists. Four conditions of stimuli

(Figure M16) are made to check the instability. All of them are mistuned fundamental.

The mistunings are: -8%, +8%, 0%. Condition (a) is mistuned fundamental with
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harmonics 2 to 5; (b) is mistuned fundaimntal with harmonics 3 to 6; (c) is mistuned
fundamental with harmonics 4 to 7; (d) is mistuned fundamental with hannonics 6 to 9.

2. Results - The Instability Check

A instability might be recognized by two effects. One would be a large error bar for

0% mistuning. The other effect would be that the pitch shift for 0% mistuning deviates

a lot from the center of pitch shifts of the corresponding i8% mistuning pair.

Figure M17 is the plot of the data. No larger error bars are observed for 0% mistuning

points. There do exists some 0% mistuning points whose pitch shifts are greatly off the

“center point.” However, there are also some points whose shifts are at the “center

point.” Therefore, it is hard to say whether a instability is observed or not. The data

from Hartmann and Doty (1996) showed no instability.

Another result from this experiment is that it gives additional evidence for the proxim-

ity effect. As we can see, the split decreases with increasing distance between the mis-

tuned harrnonic and the harmonics producing the framework.

J. EXPERIMENT 9

1. Spectra of the stimuli

The spectra are plotted in Figure M18. There are four conditions: (a) mistuned 3rd

harmonic as the top frequency, i.e. the complex tone has only 3 components harmonic

1 to harmonic 3; (b) mistuned 3rd harmonic as the bottom frequency, i.e. the complex
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tone has components 3 to 16; (c) mistuned 5th as the top frequency; (d) mistuned 5th as

the bottom frequency.

2. Results - The Top-Bottom Effect

Figure M19 shows the data for this experiment. There are three results: (1) Lower

harmonics makes larger splits than higher harmonics. It is easy to see that top condi-

tions, (a) and (c), give larger split than bottom conditions. (2) There are some masking

effects which. give some overall pitch shifts to each pair. As expected, this effect usu-

ally gives positive shifts to the top conditions and negative shifts to the bottom
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Figure M17: Results of Experiment 8 (Instability Check).
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Figure M19: Results of Experiment 9 (Top - Bottom effect).
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conditions - a “repulsion” effect. (3) The experiment is an additional case of the local

asymmetry effect. The data show again that local asymmetry does not destroy the split,

which conflicts with local-interaction models.

11. Discussion and Conclusion

This report gives details about the pitch shifts of mistuned harmonics for low harmon-

ics (harmonic number less than or equal to five) under various conditions. We choose

low harmonics, because we believe for harmonic number less than six the splits are

more stable and reproducible than for higher harmonics. The error bars are much

smaller for lower harmonics (Hartmann et al., 1990).

It is important to point out that in some of the experiments the results are a combina-

tion of many effects. For example, the effect of experiment 1 (the zigzag effect) is, in

fact, a combination of three effects: (1) the harmonic number effect; (2) the frequency

effect; (3) the (Terhardt’s) masking effect. The first two effects cause the splits to be-

come smaller for higher harmonics. The third effect causes an overall shift for each

split pair (see Figure M3). This can be seen by comparing the same mistuned harmonic

in different gaps: 1-2-3 gap vs. 2-3-4 gap. Also, this masking effect makes the last

split, i.e. , the one on the high frequency side of the gap, less obvious. Since the highest

mistuned components in the series are close to the high frequency edge of the gap, they

tend to be shifted lower by masking from higher components.

From experiment 2, we find that splits occur only when the two compared mistuned

components straddle the point where a harmonic is supposed to be (The integer effect).

When the mistuned component is in a gap (the case where three successive harmonics
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are omitted), the pitch shift of the mistuned component is not a monotonic function of

frequency. In other words, as the mistuned component starts from the low edge of the

gap, and continuously goes upwards toward the other end, its pitch shift changes di-

rection several times (The zigzag effect). Consistent with the previous argument, we

see splits where harmonics are supposed to be. Further, this zigzag feature shows that

local-interaction is probably not the main mechanism for the split. The split cannot be

mainly caused by masking. Both the integer effect and the zigzag effect strongly sug-

gest that a template is formed by a complex tone.

Right now, we think that the split is a perceptual contrast enhancement in the process

of segregation. When the component is perfectly tuned, it is a harmonic of the complex

tone. Therefore, it is integrated into the complex tone. When the component is

mistuned, it does not belong to the complex tone. It should come from a different

sound source. The exaggeration of the mistuning made by the brain enhances the con-

trast between the complex tone and the sine tone. It makes it easier for us to segregate

the two sounds.

It may be argued that although a mistuned harmonic can be heard out, it still makes a

contribution to the complex tone, since the mistuning of the component affects the pitch

of the complex tone (Moore and Glasberg 1985). We don’t think that is a problem.

First, we believe that there is no definite border to judge whether a component is a per-

fectly tuned harmonic or not. If cued, a perfectly tuned harmonic can be heard out.

Second, while the effects of the mistuned component on the complex tone can be

regarded as the contribution of the component to the complex tone, it can also be re-

garded as the interaction between the complex tone as an entity and the pure tone (the

mistuned harmonic) as another entity.
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The integration of a perfectly-tuned harmonic and the segregation of a mistuned har-

monic are directly related to the mechanism of pitch perception of complex tones. The

reason that the excitation masking model and the timing model cannot predict splits

perfectly is that they ignore the role of the entire spectrum in integrating a correctly-

tuned harmonic into the complex tone. Results of the experiments here show that inter-

actions between components and the complex tone are not local. At high levels of the

auditory system, a template, which is supposed to be related to the mechanism of pitch

perception, is formed by the complex tone. In order to explain the splits more appro-

priately, the mechanism of template formation at the high level must be understood. In

other words, in order to know how the contrast enhancement is made when a harmonic

is mistuned we must understand how our auditory system integrates the (correctly

tuned) harmonics to form a complex tone as an entity. At this time, there is no satisfac-

tory theory of pitch perception.

There is another phenomenon which may reflect the same mechanism: poststimulatory

pitch shifts for pure tones (Rakowski & Hirsh, 1980). When a long (500ms) pure tone

is followed by a short (25ms) pure tone whose frequency is close to the long pure tone

frequency, the pitch of the short tone is “pushed” away from the long tone’s pitch,

making a split around the long tone’s pitch. The pattern of pitch shifts (Rakowski &

Hirsh, 1980) is very similar to the pattern for the mistuned harmonics. The template in

a complex tone may play the same role as the pure tone leading-stimulus. The contrast

enhancement for distinguishing the two sources may make the split in both cases.
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CHAPTER 3

The Duifhuis effect -

New Measurements Require a Revised Explanation.
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Introduction

Duifliuis (1970, 1971) described an effect that might be called “the pitch of the tone

that is not there.” When we listen to a slow, periodic train of narrow pulses with its

period at, say 20ms, we hear a 50112 complex tone with a buzzy timbre. It is interest—

ing that when one of the high harmonics, for example the 19th, of the complex tone is

omitted, the absent harmonic is heard out. What is heard by listeners is exactly what is

not present in the signal. However, an oscillographic tracing of the waveform shows a

clear small sine-tone oscillations in the time gap (see Figure D1). This is understand-

able, because the signal now can be thought of as the sum of two signals: the complex

tone (periodic narrow pulse train) including the canceled harmonic and a cancellation

tone (180° out of phase with the canceled harmonic). Below, when we talk about a can-

cellation tone, we have this picture in mind, no matter how our signal is generated. In

our experiments, it is generated digitally by omitting one harmonic, and not by adding

a cancellation tone. But a cancellation tone can always be imagined to be there, and it

is useful to think of it that way.

Traditionally, the phenomenon is ascribed to the peripheral frequency analysis of our

auditory system (Duifliuis, 1970, 1971; Alcantara and Moore, 1995). The basic idea is

that the filters in the peripheral auditory filter bank are wide compared to the spacing

of the harmonics. Therefore, the small oscillations of the cancellation tone in time gaps

of the waveform result in some sine-tone-like output at the frequency of the cancella-

tion tone within some duration in each period. An equivalent way of saying this is that

the windowing time (the impulse response time of the filters) of the peripheral auditory

system is short compared to the period of the complex tone so that during a part of

each period the output of the peripheral auditory system comes mainly from the small
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oscillations of the cancellation tone, which of course results in a peak in the output

spectrum at the frequency of the cancellation tone. This is the concept of short-term

Fourier analysis (for short—term Fourier analysis, see Deller, 1993). These traditional

ideas will be thoroughly illustrated and discussed later. From informal experiments,

we found that the traditional way of explaining the phenomenon might not be correct.

Therefore, we explored the phenomenon and tested the traditional peripheral explana-

tion by experiments.
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(a)

                    .WWW, ”111111111-

Figure 01: Duifhuis effect: (a) A periodic narrow pulse train with a period of 20 ms; 11’) Spec-

trum of the waveform in (a); (c) The narrow pulse train with the 19th harmonic omitted; (d) Spec-

trum of the waveform in (c).
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1. Experiments Exploring the Duifhuis Effect

A. Method

1. Procedure

The listener was seated in a sound-treated room, holding a response box that controlled

the events of an experimental trial. When the listener pressed a yellow button there was

a pause of 200 ms, and then a complex tone, with one or more of its harmonics either

omitted or phase inverted. When the listener pressed an orange button there was a

pause of 200 ms, and then a sine tone with a frequency that could be adjusted by means

of a ten-tum potentiometer on the box. The potentiometer allowed the listener to make

the pitch match. The listener could call up the complex tone or the matching tone as

often as he liked. When the listener was satisfied with his match he pressed the green

button to finish the trial. The stimulus and the matching frequencies were recorded, and

then the next trial with different omitted or phase-inverted harmonic(s) began. There

was no feedback to the listener.

When level matching was not required in a experiment, the level of the matching tone

could be easily controlled through a knob. If level matching was required, as it was in

some experiments, the listener was asked to adjust the level through another box on

which there two buttons - one to increase the level, the other to decrease the level.

Every time one of the buttons was pushed the level of the sine tone was increased or

decreased by 1 dB.

Trials were blocked into runs. Each experimental run included four trials. After a run

was completed, the listener could come out to rest. It took about 1 to 5 minutes for a
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listener to finish a run. In the results to be reported below, the data from the final five

matches were used for each data point.

2. Stimuli

There were two kinds of stimuli in the experiments, complex tones and sine tones. The

complex tones were generated digitally by a TDT System 11. Sinusoidal waveforms of

the harmonics were summed up to produce the waveform of the complex tone. One of

the harmonics was omitted or phase inverted in order to produce the Duiflmis effect.

The high spectral ends of the stimuli are tapered to reduce edge pitches. The fundamen-

tal frequencies of all the complex tones in this paper were 50 Hz. The level of the

stimuli was at 45 dB/component for a flat—spectrum complex tone.

The matching tone was generated by a Wavetek function generator. The frequency was

controlled by a voltage from the listener’s control box and was read by the computer

through a Metrabyte CTM5 card. The matching tone went through the PA4 attenuator

of the TDT system so that the its level could also be controlled and read by the com-

puter.

3. Listeners

Three male listeners SB, SD, SJ participated in the experiments. Their ages were 56,

20 and 34 respectively. All of them could perform a pitch-matching task accurately. All

the listeners had negative otological histories and had some training as performers of

musical instruments. Audiograms in a crucial frequency range appear in Appendix A.

8. Experiment 1: The range of the Duifhuis efiect
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1. Spectrum

Experiment 1 is our baseline experiment. Instead of using periodic narrow pulse train,

we used a flat-spectrum complex tone as our baseline spectrum. The complex tone had

170 harmonics. Every harmonic had a cosine phase. To create the Duifhuis effect, one

harmonic, which could be as low as the 8th harmonic and as high as 145th harmonic,

was omitted from the complex tone spectrum. The purpose of this experiment was to

see how low and how high the Duifhuis effect exists for a 50-Hz complex tone.

There are some advantages to the flat spectrum. Firstly, the amplitude of each har-

monic is the same. Therefore, when different harmonics are canceled, the required

cancellation tones have the same amplitude. So for different harmonics the oscillations

of the cancellation tone in the time gaps of the waveform have the same amplitude.

This makes it easier to do a level experiment later. Secondly, with a flat spectrum it is

easier to make a more complicated phase manipulation, such as the Schroeder phase.

2. Results

The results are shown in Figure D2. There are three panels in the figure, one for each

subject. The y-axis of a panel is called “Ratio.” The ratio is defined as the listener’s

matching frequency divided by the frequency of the omitted harmonic (or the frequency

of the cancellation tone). Therefore, when the ratio is unity the listener has made a

perfect match. The symbol “h. . ” tells which harmonic is omitted in the complex tone.

The left four data points were tests of the listener’s low ends of Duifhuis effect. The

dot-dashed lines are the edges of the spectral gap created by omitting a harmonic. For
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example, when harmonic 10 is omitted, the edges of the spectral gap are harmonic 9

(corresponding to a ratio 0.9) and harmonic 11 (corresponding to a ratio 1.1). At very

low harmonics, listeners hear the edges and match them. Our criterion for the low end

of the effect is that the listener’s match is closer to the omitted harmonic than to one of

the edges. Thus we can see that three different listeners have different low ends.

Subject B seems to begin at harmonic 13. Subject D starts at about harmonic 15.

Subject J starts at about harmonic 19.

The middle four points test the performance of the listeners at the middle range. It

seems that all the listeners could do the task well except that there is a little systematic

positive pitch shift. From the descriptions by the listeners, this was the best range for

the phenomenon. The pitch was clear and loud, and there was no ambiguity.

The last four points are a test for the high end of the effect. There are big differences

among the three listeners. For SB, reliable matches occur only for harmonic numbers

lower than 87. For “h87” the error bar is huge. The “x” symbol for “h89” and “h92”

means that out of five trials there were only two or three trials in which the listener

could hear the pitch. In the other trials, the listener could not hear the pitch at all. We

can probably say that the high end of the effect for SB is at about harmonic 86, which

corresponds to frequency 4300 Hz.

For the other two listeners, it seems difficult to find their high ends using the matching

technique. Unlike SB, they could hear the pitch very clearly up to much higher har-

monics than shown in the figure. However, it is difficult to match a pitch higher than

5000 Hz. For SD, it makes the listener too slow for matching pitch higher than har-

monic 125 (6250 Hz) so that we could not use the task as our criterion. The same thing

happened for SJ at harmonics higher than 145. It is obvious that the criterion does not
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work at these high frequencies. It is limited by the pitch matching task. Pitch matching

becomes unreliable above 5000 Hz, probably because there is no neural timing at high

frequencies (Pickles, 1982; Moore, 1973). A sine tone match to a sine tone would re-

sult in the same difficulty. So we did not find the high end for SD and SJ. However,

from the data we get, we can at least conclude that SD and SJ have much higher high

ends than SB.

SB has normal hearing at low frequencies. However, there is tremendous difference

between SB and the other two listeners at high frequencies. In order to check whether

SB had some hearing loss, an audiogram was done by every listener (see Appendix 1).

Compared to the other listeners as standard normal hearing, SB does have some hear-

ing loss at high frequencies. Compared with SJ, SB has approximately 16 to 17 dB

losses in both ears at 4500 Hz, which is about his high-end frequency for the Duifhuis

effect. It is possible that this hearing loss caused the high-end limit for SB.

We want to point out that we did not use a two-interval forced-choice task to test the

high end, because we found in an informal experiment that listeners tend to use cues

from comparison of the two stimuli. For example, when a harmonic of a complex tone

with random phases is omitted, nothing is heard. Five trials for each listener were

done. It was impossible to match the omitted harmonics. There is no Duifhuis effect.

However, using two-interval forced-choice, one can easily hear the tone by comparison

of the two stimuli even if the interval between the two signals is as long as 700 ms.

C. Experiment 2: The level efl’ect

1. Spectrum of the stimuli
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In this experiment, we want to see whether the strength of the Duifhuis pitch is deter-

mined by the level of the cancellation tone. There are four conditions for comparison.

The illustrative waveforms are plotted in Figure D3. ((1) A 70-component complex tone

with one of its harmonics omitted. The power spectrum is flat and is tapered at the end

of the spectrum to reduce the edge pitch (Klein and Hartmann, 1981). The phases of all

harmonics are cosine. (b) Same as condition (a) except that the target harmonic is phase

inverted instead of omitted. Therefore, there is no spectral gap in the power spectrum.

Note that in this case, the cancellation tone’s level is 6 dB higher than condition (a).

This can be easily seen in the waveform. The oscillations between the pulses in (b)
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Figure D3: Waveforms for Experiment 2. (a) Waveform of a flat-spectrum complex tone with the

19th harmonic omitted; (to) Sawtooth waveform with 19th harmonic omitted; (c) Waveform of flat-

spectrum complex tone with 19th harmonic phase inverted; (d) Sawtooth waveform with 19th

harmonic phase inverted. The damped high frequency oscillations for flat spectrum cases (a) and

(c) are from the high-frequency end of the spectra (the edge effect). In fact, the high-frequency

ends of the spectra were tapered to reduce the effect.
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have twice the amplitude as in (a). (c) This is a sawtooth wave with one of its harrnon-

ics omitted. The highest harmonic is number 70. We know that the amplitude of the

harmonics of a sawtooth wave is inversely proportional to the harmonic number. For

example, the 10th harmonic has twice the amplitude as the 20th harmonic. So we hope

to see some perceived level effect with harmonic number, since the cancellation tone

for different harmonic numbers has a different amplitude. (d). Same as condition (c)

except that phase inversion replaces omission. We used a 70—component complex tone

in this experiment instead of 170, because we want to make the Duifhuis pitch as clear

as possible so that its level could be matched. The harmonics chosen were harmonic

25, 30, 35 and 40.

2. Results

The results are shown in Figure D4. There are three panels in the figure, one for each

subject. The listeners’ pitch matches were very consistent with the Duifhuis pitch. The

standard deviations were less than 1% of the matching frequency, and the pitch shifts

were less than 2%. However, only the results for level matches are plotted, because

we are interested only in the level effect. The level used in Figure D4 is a relative

level, and the reference is the level of one component in a flat-spectrum complex tone

i.e. 45 dB.

Let’s first look at the results from SJ. First, compare the harmonic—inverted case with

the harrnonic-omitted case. For the flat-spectrum, the inverted case is about 6 dB

higher than the omitted case. The same thing happens for the sawtooth waveform

condition. Note 180° phase inversion of a harmonic requires 6 dB higher cancellation

tone than omitting the harmonic. Therefore, it seems the strength of Duifhuis pitch is

consistent with the level of cancellation tone. Next, let’s look at the results for different
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harmonic in the sawtooth waveform condition. The observed level for harmonic 40 is

about 3.0 dB lower than the level for harmonic 25 in both the omission case and the

phase inversion case. Theoretically, the level of the cancellation tone for harmonic 40

should be 2010g(40/25)=4.1 dB lower than the level of the cancellation tone for har-

monic 25 in both harmonic-omitting and phase inversion cases. However, by examin-

ing the level changes in the two flat-spectrum cases, we find that harmonic 40 sounds

about 1 dB louder than harmonic 25 for flat spectrum cases. Therefore, making the

amplitude of the harmonics inversely proportional to harmonic number (sawtooth
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Figure D4: Results of Experiment 2.

Each panel is for one subjecr. Match-

ing levels of the Duifhuis pitch are

plotted as a function of the harmonic

number of the anomalous harmonic.

The open circle symbol is for an

omitted harmonic in a flat-spectrum

complex tone. The filled circle is for

a phase inverted harmonic in a flat-

spectrum complex tone. The Open tri-

angle is for an omitted harmonic in a

sawtooth wave. The filled triangle is

for a phase inverted harmonic in a

sawtooth wave.
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waveform). does make a corresponding perceived level change consistent with the level

of cancellation tone.

SD seems to have the same level effect as SJ except that there are differences in the

pattern. SB is different from the other two listeners in absolute levels perceived for the

Duifliuis pitch. He matched much higher levels. However, there are some similar level

effects in SB, but the level effects are not so strong as for the other two listeners.

Generally speaking, level seems to be determined by the level of the cancellation tone.

Informal experiments show that the level of the Duifhuis pitch can be matched by the

best beats method, in which the listener adjusts the level of a added sine tone to maxi-

mize beats. However, the level range for best beats is wide, especially in the omitted-

harmonic condition. So the result has a large variability (21:1 to 4 dB). It is significant

though that a real sine tone can form beats with the Duifhuis pitch, which implies that

the Duifhuis pitch is not something absent, it is a segregated sine tone, i.e. the cancel-

lation tone. The amplitudes of harmonics in a triangle wave are inversely proportional

to the square of the harmonic number. Informal experiment shows no Duifhuis pitch

can be heard.

D. Experiment 3: The efiect of harmonic phases

1. Spectra of the stimuli

In this experiment, we use four different phases for the complex tone to explore the

possible existence of the Duifhuis effect with different (waveforms. We have a 100-

component complex tone with four different phase conditions: (a) All the harmonics are

cosine phase. (b) All the harmonics are sine phase. (c) All the harmonics have a 45°
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initial phase. (d) Schroeder phase (Schroeder, 1970). For an equal-amplitude complex

tone Schroeder phases of the harmonics are given by: ti" = --7rn2 / N, where N is the

total number of harmonics in the complex tone, and n is the harmonic number.

We chose harmonics 40, 50, 60 and 70, i.e. in the best range of the effect, and the

Duifhuis effect was created by omitting one of the harmonics. Figure D5 shows the

waveforms for the four conditions.

2. Results
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 (a) ' (b)

 

 
(C) (d)

Figure D5: Illustrative waveforms for Experiment 3. (a) Flat-spectrum complex tone with all the

harmonics in cosine phase; (b) Flat-spectrum complex tone with all the harmonics in sine phase;

(6) Flat-spectrum complex tone with all the harmonics at 45° initial phase; (ii) Flat-spectrum com-

plex tone with Schroeder phase.
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The consistency in matching the pitch is used to determine whether the Duifhuis pitch

is heard or not. Figure D6 shows the results for the three listeners. The consistency of

matches to the Duifhuis pitch shows that all the three listeners can hear the tone equally

well in all four conditions, because none of them is special. It is interesting that, unlike

the other three waveforms, there is no time gap in the waveform of the complex tone

with Schroeder phase. So the cancellation tone cannot be seen in the waveform. Yet,

the effect does exist. (See part G. for a possible traditional explanation of the Duifhuis

effect with a Schroeder-phase complex tone.)

When all the harmonics had random phases, the three listeners agreed that no Duifliuis

pitch could be heard. In order to show this, SJ and SB tried to match a Duifhuis pitch

in a random phase complex tone. The results of their matches had wide distribution.

The standard deviation was about 0.15 of the stimulus spectral width, which is half of

the fraction 0.29 expected for random guessing.

E. Experiment 4: The missingfundamental pitch

1. Spectra of the stimuli

When harmonics 18, 24 and 30 are deleted, the spectrum of the cancellation tones re-

sembles the 3rd, 4th and the 5th harmonics of 300 Hz. Informal experiments showed

that this stimulus produced a pitch at 300 Hz. This experiment tests this phenomenon.

The complex tone used in the experiment was a loo-component equal-amplitude cosine-

phase complex tone. There were four conditions: (a) Phases of harmonic 18, 24 and 30

are inverted, which resembles the 3rd, 4th and the 5th harmonics of 300 Hz. (b) Phases

of harmonic 27, 36 and 45 are inverted, which resembles the 3rd, 4th and the 5th har-
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monies of 450 Hz. (c) Phases of harmonic 36, 48 and 60 are inverted, which resembles

the 3rd, 4th and the 5th harmonics of 600 Hz. (d) Phases of harmonic 42, 56 and 70

are inverted, which resembles the 3rd, 4th and the 5th harmonics of 700 Hz.

We used phase inversion in this experiment because we wanted to have a flat stimulus

spectrum for comparison with predictions of some contemporary pitch perception

models. In fact, the effect can also be produced by omitting the harmonics.

2. Results



119

 

 

1.031 T T 0.015 * ' ' *1

1.025L ‘ SB 1 SB

1.02'

1.015L 1

1.01 1

1.0051

0.01 i 1

R
a
t
i
o

\

0.0051 , ’

S
D
.

o
f
t
h
e
R
a
t
i
o

 

-
_
_
_
.
_
_
~
.
_
4

_

 

    0.995 ‘ * 4 ‘
- 40 SO 60 7O 40 50 60 70

Harmonic Number Harmonic Number

 

 

1.03

1.025?

1.02»

9111.015L

1.011

1.0051  
    
 

 0.995
40 50 50 70

Harmonic Number 
  

1.0251. 3.1 + . SJ

1.021 ‘ s 0.01? 1

81.015-
‘ 3

1.011 '

1.005»

1. .

0.995 - + e - o A
40 50 60 7O 40 50 60 70

Harmonic Number Harmonic Number

   
 
   

 

Figure D6: Results of Experiment 3. The lett three panels are plots of the matches. each for one subject. The right

three panels are plats of the standard deviation of the matches. The solid line represents cosine phase. The dashed line

represents sine phase. The dot-dashed line represents 45° initial phase. The dotted line represents Schroeder phase.
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Results from the three listeners are plotted in Figure D7, as before, one panel for each

subject. The “Ratio” for the y-axis is defined as the ratio of the matching frequency to

the frequency of the missing fundamental. The results show that all the listeners could

match the missing fundamental frequency. The matches of the listeners are flat, and SB

is especially flat. Compared with the result of Terhardt (1971) that the pitch of the

missing fundamental of a complex tone is about 2% flatter than the pitch of a sine tone

with the frequency of the fundamental, SJ and SD are less flat, SB is more flat.

One observation is to be made. In contemporary pitch perception theories, pitch is ex-

tracted only from the magnitude of spectral components. Among these theories are the

DWS pitch meter (Duifhuis et al. 1982) and Terhardt’s virtual pitch extraction algo-

rithm (Terhardt er al. 1982). In this experiment, every component has the same ampli-

tude, and the pitch is made entirely with phase inversion. Therefore, these models do

not apply directly.

F. Discussion

In the above experiments, the Duifliuis effect was extended to a variety of new condi-

tions. We want to emphasize that the effect we are interested in is a “steady state” ef-

fect. By steady state, we mean thatW

Wm. It is well known that changes in the spectrum or the waveform (turning

a harmonic on and off or suddenly shifting the phase of a harmonic) can cause a har-

monic to be heard out from a complex tone. (Pierce, 1960; Kubovy and Jordan, 1979;

McAdams, 1984; Hartmann, 1988; Moore and Glasberg, 1989; Alcantara and Moore

1995). Such effects occur both for harmonics that are spectrally resolved and for har-

monics that aren’t. They are “attention” effects caused by the contrast between
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“before” and “after” conditions, and are not the effect we are interested in. In our ex-

periment such temporal effects are not involved. Listeners heard only one single peri-

odic complex tone.

G. Traditional Explanation

The explanation for the effect by Duifliuis (1970, 1971) is that when the frequency

spacing between harmonics is considerably less than the bandwidth of relevant periph-

eral auditory filters, the peripheral filters can be said to be broad band. Generally
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speaking, a broad-band frequency analyzing system has a short impulse response time,

i.e. the windowing time for analyzing an incoming signal is short. For the broad-band

peripheral filter mentioned above, the window time is less than the period of the input

signal. Therefore, there is a portion of time in each period during which the peripheral

filter windows mainly the small oscillations of the cancellation tone, and hence the out-

put is the cancellation tone. That portion of output in each period is detected as a sine

tone. This is an effect from the short-term Fourier analysis of the peripheral auditory

filters due to their relatively broad band. Thus we call it the short-term Fourier analysis

explanation.

The idea is more understandable if we take an extreme as an example: If the 60th har-

monic of a lO-Hz periodic narrow pulse train is omitted, you will hear two sounds.

One is the pulses repeated at 10 Hz. The other is a sine tone at 600 Hz, which is the

cancellation tone. Because the bandwidths of the whole peripheral filter bank are wide

compared to the frequency spacing of the components of the signal (10 Hz), the win-

dow time for analyzing the spectrum is much less than the signal’s period (100 ms). In

fact, the pulses you perceive are resolved at this low frequency (10 Hz), which simply

means that you can even “feel” that the window time of your auditory system is less

than the period of the stimulus. Therefore, in each period (100 ms), most of the time

the window is on the cancellation tone, which results in an output of the cancellation

tone. In other words, the power spectrum has a peak at the frequency of the cancella-

tion tone for most of the time, or the corresponding region on the tonotopic axis is

excited. Thus for most of the time the brain receives a real sine tone output and hence

you hear the sine tone. The essence of short—term Fourier analysis is that although there

is a gap in the spectrum of the stimulus implying that there is no input signal at that

frequency, the output after a short-term Fourier analysis has a peak in the spectrogram,
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i.e. a real signal output at the frequency of the input spectral gap. Therefore, you are

not detecting something absent, you are detecting a real output.

Returning to our 50-Hz stimulus, there are similarities to the above extreme c0ndition.

Look at a filter centered at the omitted harmonic, say the 19th harmonic. When all the

harmonics are present, the response of the filter is just a ringing followed by a quiet

duration for each period (see Figure D8). The quiet duration exists because the filter is

wide compared to the frequency spacing of the components, or the impulse response

time is less than the period. When the harmonic is omitted, the quiet duration is re-

placed by the response to the small oscillations of the cancellation tone (Figure D8), a
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(a) (b)

       

(c) (d)

‘ ' ‘ ' form of a SO-Hz narrow pulseFigure D8: Illustrative plots of a filter s operation. (a) Input wave ' .

train. (b) Output of the waveform in (a) at a filter whose center frequency is 950 Hz. (c) The pen-

odic narrow pulse train with the 19th harmonic omitted. (4) Output of the waveform in (c) at the

same filter.
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real output of a sine tone (cancellation tone) which is same as the 10—Hz extreme con—

dition mentioned above. This similarity can be seen by a comparison of the two condi-

tions: 60th harmonic of the 10 Hz complex tone versus the 19th harmonic of the 50 Hz

complex tone. The signals and the outputs of the peripheral filters centered at the

omitted harmonics are given in Figure D9. The two outputs are very similar in that for

each period both have a response to the cancellation tone after the ringing part. The

only difference is that for the 50-Hz complex tone condition, the fraction, in each pe-

riod, of response time to the cancellation tone is much less. However, the short-term

Fourier analysis explanation suggests that the two conditions are basically equivalent.

The ringing part has a bigger amplitude than the response to the cancellation tone part.

Why does the part with small amplitude produce the dominant percept? It is important

to point out that the short-term Fourier analysis explanation is not based upon one sin-

gle filter. The time gap exists in the output of the entire filter bank. And the response

of the entire filter bank to the cancellation tone in the gap is the same as a response to a

sine tone, i.e. filters whose frequencies are close to the omitted harmonic are all re-

sponding to the cancellation tone.

To get a clearer picture of the idea of the short-term Fourier analysis, we implement

the idea with a realistic auditory filter bank - the gammatone filter bank (Patterson,

1987). Figure D10 is a three—dimensional plot of the output of a gammatone filter bank.

The bandwidth of the filter bank is determined by the ERB from Moore and Glasberg

(1987). The input to the filter bank is our 50-Hz complex tone. The complex tone has

harmonics from 1 to 45. The high-frequency end of the spectrum is tapered. The x-axis

is a time axis. Its unit is the period of the input signal, or 20 ms. Therefore the plot is

just one period of the output. The y-axis is the center frequency of a filter in the filter

bank. The unit is chosen to be 50 Hz so that at an integer number on the y-axis a har-
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monic of the input signal occurs and its harmonic number is equal to the integer. The

z-axis shows the amplitude of the output. It is normalized so that the maximum ampli-

tude has an output of one. The output of the filter bank is half-wave rectified to im-

prove the three-dirnensional impression in the figure.

Let’s analyze what we get from Figure D10. First, look at an output of a filter at a

particular center frequency, say 27 (50x27=1350 Hz). What we get is an impulse re-

sponse to the pulse (i.e. a ringing of the filter) followed by a quiet duration or a time

gap, which we are already familiar with. Next look at a filter with a lower center
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(10x60=-600 Hz); (b) The upper plot in (b) is a plot of the waveform of a SO-Hz narrow pulse train

with the 19th harmonic omitted. The lower plotin (b) is the output of a filter whose center frequency

is at the omitted harmonic (50xl9a950 l-Iz). All plots have the same time axis.
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frequency, say 19 (50xl9=950 Hz). We get a similar response pattern, with a lower

ringing frequency and a shorter time gap. The lower the center frequency of the filter,

the shorter the time gap. As we can see, for the filter whose center frequency is at 10

units, there is almost no time gap after the ringing. This is because the ERB increases

with the center frequency, i.e. the impulse response time (the ringing time) decreases

with increasing center frequency. Finally, we want to mention that the time gap exists

in the outputs of all the filters with high center frequency. So in the three-dimensional

plot of the output, we see a “ringing region” followed by a “quiet region” in the x-y

plane.

Figure D11 is a three-dimensional plot of the output of the filter bank with the 19th

harmonic (950 Hz) of the input complex tone omitted. It should be compared with

Figure D10 in which all harmonics are present. As we can see, a valley appears in the

ringing region of the output and a “ridge” appears in the previously quiet region. This

ridge is the same as the response of the filter bank to a sine tone. To see this the three-

dirnensional plot of the response to a sine tone, whose frequency is 950 Hz, is shown

in Figure D12.

Now it is very clear that the explanation of short-term Fourier analysis is that the

auditory system detects the response to the cancellation tone in the quiet region of the

response of the filter bank. In other words, the auditory system detects the sine tone

like “ridge” response in Figure D11.

The traditional explanation may also applied to the Schroeder-phase condition Duifliuis

pitch. The Schroeder phase leads to a frequency sweep with the duration of a period.

The sweep begins at the highest frequency in the band and moves continuously to the

lowest. Therefore, there exists some duration within which the instantaneous frequency
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(Schroeder, 1970) of the stimulus differs a lot from the center frequency of a filter in

the filter bank. Thus a “tilted” quiet region is produced in the output of the filter bank

by the Schroeder-phase complex tone (see Figure D13). When a harmonic is omitted, a

ridge appears across the quiet region (Figure D14).

H. Challenge to the Traditional Explanation

In the traditional explanation, a sine-tone-like ridge response is required in the quiet

region of the peripheral output in order to form the Duifhuis pitch. If the ridge is
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critical in detecting the sine tone, can we produce some other signal which produces the

same ridge and thus produce the same effect? For Figure D11, the input signal is a 45-

component complex tone with the 19th harmonic omitted. Examining Figure D11, we

can easily find that the ridge is mainly within a limited frequency range, approximately

harmonics 17 to 22. Therefore, harmonics whose frequency are far from this range

contribute little to the response of the filter bank in this range. In other words, deleting

those “distant” harmonics will not change the response of the filter bank in this region.

Figure D15 is a three-dimensional plot of the output of the filter bank with an input

complex tone which consists of harmonics from the 15th to the 24th with equal ampli-

tude. The 19th harmonic is omitted. All the present harmonics have a cosine phase.

Therefore, the input complex tone is a band-pass filtered version of the input signal in

Figure D11. The high and low edges of the spectrum are tapered. As we can see, the

sine-tone-like ridge does not change much from Figure D11. The major difference

from Figure D11 is that the ringing region is narrow band now. According to the short-

terrn Fourier analysis explanation, this narrow band complex tone will give the same

Duifhuis effect as the wide band complex tone, because the effect comes from the sine—

tone-like ridge. If no Duiflruis pitch can be detected in the narrow-band complex tone,

the traditional explanation cannot be correct. Therefore, we used this kind of stimulus

to test the explanation.

11. Experiments to Test the Short-term Fourier Analysis Explanation

A. Method

1. Procedure
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The procedure was the same as for previous experiments except for one difference.

That was that the listener could listen to the stimuli as many times as he wanted.

However, once he decided to do matching and listened to the sine tone to adjust its

pitch, he was not allowed to listen to the stimulus again. Therefore, he must first listen

to the stimulus and remember the pitch, and then do the pitch matching task from

memory. We did this to avoid a cueing effect, because the matching sine tone could cue

a sine tone out of a stimulus. In this experiment, we want to see whether the effect ex-

ists or not, therefore we do not want any cue. The sampling rate of the DA converter
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was randomized by t5% so that the listener could not expect the frequency of the com-

ponent from previous matching.

2. Stimuli and listeners

The stimuli and listeners were same as previous experiments.

B. Experiment 5: Narrowing the bandwidth of the stimulus

l. Spectra of the stimuli

There were seven stimuli. The high and low ends of the spectra of the complex tones

were tapered to reduce edge pitches, unless the low end was the fundamental of the

complex tone. Five stimuli were complex tone with 19th harmonic omitted: (a)

Stimulus one was a complex tone with harmonics from 1 to 18 and 20 to 45; (b)

Stimulus two was a complex tone with harmonics from 14 to 18 and 20 to 25; (c)

Stimulus three was a complex tone with harmonics 15 to 18 and 20 to 25; (d) Stimulus

four was a complex tone with harmonics 15 to 18 and 20 to 24; (e) Stimulus five was a

complex tone with harmonics 16 to 18 and 20 to 24. Two of the stimuli were complex

tones with 20th harmonic omitted: (f) Stimulus six was a complex tone with harmonics

from 1 to 19 and 21 to 45; (g) Stimulus seven was a complex tone with harmonics 17

to 19 and 21 to 25.

2. Results

The results are plotted in Figures D16, D17 and D18. Each figure is for one subject.

There were altogether 20 matches. The consistency of the matches is plotted by histo-
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grams, one panel for each stimulus. The left column is for conditions (a), (b), (c), (d)

and (e), which are all omitted 19th harmonic conditions. The right column is for con-

ditions (t) and (g), which are omitted 20th harmonic conditions. The variable “Ratio”

is defined as the matching frequency divided by the frequency of the omitted harmonic.

The bin width is 0.05 which is approximately the frequency spacing between harmonics

of the complex tone near harmonics l9 and 20. We use this bin size because we want

the central bin to allow a maximum pitch shift of half a harmonic spacing.
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The matches are plotted by histograms, each
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Figure D17: Results for experiment 5. SD.
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Figure D18: Results for experiment 5, SJ.
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From the first glance at the figures, we can easily see that all the listeners made perfect

matches with wide band stimulus (1-45 harmonics), and the matches became worse and

worse as bandwidth of the stimulus decreased. To determine whether a pitch is heard

or not, the percent of matches in the central bin, at ratio=1, for the omitted 19th is

plotted in Figure D19 as a function of stimulus bandwidth (marked by the number of

harmonics of the complex tone). As we can see, the percentage decreases as the band-

width decreases. For all the listeners the steepest slope occurs when the graph crosses

the 50% point. It is reasonable to use the steepest s10pe as our criterion for judging

whether the pitch is heard or not. Therefore, we use 50% as a boundary, i.e. if the

number of matches in the bin at ratio=l is less than 50% of the total matches, the pitch

is said to be “not heard.” Applying this criterion to our results, we find none of the

listeners could hear the pitch resulting from Duifhuis effect for conditions (d), (e) and

(g). This is consistent with the descriptions of the listeners that no sine tones were

heard for conditions (d), (e) and (g) and a very clear sine tone from the Duifliuis effect

was heard for conditions (a) and (f). This clearly shows that the short-term Fourier

analysis explanation is not correct, since the output of the auditory filter bank does not

differ much for the response to the cancellation tone for all the stimuli in our experi-

ment as we discussed earlier.

C. Experiment 6: Narrowing the phase-coherence region

1. Spectra of the stimuli

In Experiment 5 we showed that components that were spectrally distant from the

omitted harmonic were important for the existence of Duiflruis effect. In Experiment 6

we wanted to show that not only the amplitudes of those components were important

for the existence of the effect but also the phases of those components. Therefore the
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stimuli in this experiment had cosine phase for components spectrally close to the

omitted harmonic. The size of the cosine phase region was changed to see how big this

region must be to produce the Duiflruis effect.

There were seven stimuli. All of them were flat-spectrum 45-harmonic complex tones

with high spectral end tapered. Five stimuli were complex tones with the 19th har-

monic omitted: (a) Same as (a) in Experiment 5, i.e. all the remaining (the 19th was

omitted) 44 harmonics had cosine phase; (b) Harmonics 14 to 18 and 20 to 25 had co-

sine phase, the others had random phase; (c) Harmonics 15 to 18 and 20 to 25 had
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cosine phase, the others had random phase; ((1) Harmonics 15 to 18 and 20 to 24 had

cosine phase, the others had random phase; (e) Harmonics 16 to 18 and 20 to 24 had

cosine phase, the others had random phase. Two stimuli were complex tones with 20th

harmonic omitted: 09 All the harmonics had cosine phases; (g) Harmonics 17 to 19 and

21 to 25 had cosine phase, the others had random phase.

2. Results

The results are plotted in Figures D20, D21 and D22. Each figure is for one subject.

There were altogether 20 matches for each stimulus. The consistency of the matches is

plotted by histograms, one panel for each stimulus. As in Experiment 5, we choose

0.05 as our bin size. The left column is for conditions (a), (b), (c), (d) and (e), which

are all omitted-19th-harmonic conditions. The right column is for conditions (f) and

(g), which are omitted-20th-harmonic conditions.

The percent of matches in the central bin, at ratio=1, for the omitted 19th is plotted in

Figure D23 as a function of the bandwidth of the cosine region (marked by the number

of harmonics of the complex tone). The number in the bin decreases as the bandwidth

decreases. The steepest slope for all the listeners crosses the 50%. So we use 50% as a

boundary, i.e. if the number of matches in the bin at ratio=1 is less than 50% of the

total matches, the pitch is said to be “not heard.” Applying this criterion to our results,

we find none of the listeners could hear the pitch resulting from Duifhuis effect for

conditions (c), (d), (e) and (g). This shows that the phase information of the compo-

nents that are spectrally far from the omitted harmonic is needed for the Duifhuis ef-

fect.
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111. Discussion and Conclusion

A. Extensions of the Duifhuis Efiect

The Duifliuis pitch is a pitch created by a missing harmonic which is a simple spectral

gap. In section I of this chapter, it is extended to several new conditions including a lot

of interesting cases. Some of the extended cases might be explained by the traditional

explanation although the traditional explanation is strongly contradicted by the results

of our band-narrowing experiments (Experiments 5 and 6).
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The traditional explanation of the Duifhuis effect needs a relatively wide critical

bandwidth of the peripheral filter compared to the spacing of the spectral components

of the stimulus. It predicts a low frequency end for the effect, since at low frequencies

the critical bandwidth decreases. We did find a low frequency end for the effect.

The phase-inversion Duifhuis pitch in Experiment 2 makes no change to the power

spectrum and hence no change to the autocorrelation function. Thus the Duifltuis effect

cannot be explained by the autocorrelation function. Using the traditional explanation,

the level of the inverted Duifhuis pitch should be 6 dB higher than the omitted case,

since the height of the ridge in Figure 11 for the inverted case should be increased by a

factor of two. That prediction is consistent with data.

The Duifhuis effect using a Schroeder-phase complex tone makes it difficult to use the

time gaps from other channels (i.e. the outputs of other auditory filters) as a time-gap

cue to detect the cancellation tone, because the time gap of the output for different pe-

ripheral filters is at different times (refer to Figures D13 and D14 and see the “tilted”

quiet region). However, as mentioned before, it is possible to explain the effect using

the traditional explanation, because a sine-tone-like response is produced in the tilted

quiet region.

The virtual Duifhuis pitch phenomenon could also be explained by combining the tra-

ditional explanation for simple Duifhuis effect (one component case) and the existing

virtual pitch theory. The problem is that two separate processes, the peripheral fre-

quency analysis process (for segregating components) and the formation of the virtual

pitch process (synthesizing the segregated components), are involved in explaining this
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Duifhuis virtual pitch. Yet it is possible that the segregation and the pitch formation

process is just one single process.

B. Implications of the Duifhuis Efi‘ect

l. Duifhuis Effect and the Spectrum

The Duifl'iuis pitch might be called an “anomalous” pitch in that it cannot be explained

based upon the power spectrum - a usual way of describing pitch perception. The effect

seems anomalous because we are hearing something absent in the power spectrum.

People are very familiar with and attached to the commonly accepted mode of pitch

perception, i.e. analyzing the power spectrum, extracting spectral components and

combining them as harmonics to synthesize a pitch (for a sine tone the same procedure

just gets simpler). One of the criteria for extracting a spectral component for a pitch,

either the pitch of the component (sometimes called spectral pitch) or the pitch of the

complex tone, is that the larger the magnitude of the component, the bigger the contri-

bution of the component to the pitch. Now spectral gaps which are zero-magnitude

components cannot make any contribution to a pitch of any kind. This makes the

Duifliuis pitch abnormal to the traditional ways of thinking.

The traditional explanation tried to make the “anomalous” effect appear normal to our

commonly accepted mode of pitch perception. Thus the short-term Fourier analysis

process of the peripheral filters was invoked so that at the output of the filters a real

component (spectral peak) is made out within some duration by the process. However,

our band—narrowing experiments show that the explanation is not correct. Ihiflmplies

.. .- u 'a.’ -.- ' .. ...- -.- .... .- .A- ..-. ... ' tog-"u

e e e e e e e, e a I c

._ :1- h 0 . O 0‘ .H '1 I“ . OI . "-1 .1 01 O 0
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mam Now both the long-term spectrum (from long-term Fourier analysis) and the

short-term spectrum (from short-term Fourier analysis) cannot be used to explain the

effect. Therefore, I conjecture that the segregation of the Duifhuis pitch does not take

place in a spectral-like domain.

2. Duifhuis Effect and Segregation

In modern pitch perception theories, segregation of pitches is done by using only the

power spectrum of the stimulus. For example, the DWS pitch meter (Duifhuis et al.,

1982) is basically a sieve on the power spectrum. In Terhardt’s algorithm (Terhardt,

1982), calculations are also done by using only the power spectrum. No phase infor-

mation is concerned in their segregation process. The fatal problem is that zero ampli-

tude components cannot be segregated out by any of the above pitch theories unless

some other segregation process, such as the short-term Fourier analysis, is invoked. As

mentioned before, this means that the explanation of the Duifhuis effect consists of two

processes. Furthermore, from the main conclusion mentioned before, the short-term

Fourier analysis is not an appropriate explanation of the Duifhuis effect.

For the Duifhuis effect, listeners perceive two sound images that have two different

pitches andWWOne is the low buzzy complex tone, the other is a

sine tone - the cancellation tone. Therefore, the Duifhuis effect involves some kind of

segregation process to separate the two sounds. The segregation process and the pitch

formation process might just come from one single mechanism, since the two segre-

gated sounds form two pitches with two different timbres and in parallel the two differ-

ent pitches and the two different timbres might cause the segregation. It is not parsi-

monious to say that a Duifhuis pitch, which is from the cancellation tone, is formed

under a different pitch mechanism from that for a sine tone, because the segregation
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process is so common in everyday life and the cancellation tone is just a segregated

sine tone. This challenges the value of spectral analysis as a conceptual point of depar-

ture for the pitch of a normal sine tone.

It is shown in Experiment 4 that a virtual pitch can be fanned by the Duifhuis effect.

Provided that the mechanism for a simple Duifhuis effect (sine tone case) is not a spec-

tral component extracting process, the perception of the Duifhuis virtual pitch should

not involve any spectral component extracting process either (i.e. no sieve process or

sub-harmonic cueing process). Since segregation happens all the time in our daily life,

the virtual pitch of a single complex tone should be mediated by the same pitch

mechanism as the Duifhuis virtual pitch. This leads us to abandon the concept of spec-

tral component extracting and then pitch synthesizing - a traditional way of thinking

about pitch perception of normal complex tones.

. C. Conjecture on the Mechanism ofthe Duifhuis Efi'ect

How is the Duifhuis pitch formed? The band-narrowing experiment and the cos-phase

region narrowing experiment show that in order to segregate the cancellation tone,

both phase and amplitude information of distant spectral components is required. So the

information is equivalent to the information of the original waveform. Since we know

that there is a peripheral analysis, the result tells us two things. 1) Phase information

outside a critical band is not lost in this effect, which contradicts contemporary theories

(Zwicker and Fastl, 1990). 2) In order to get the equivalent information as the original

waveform, all the outputs of the peripheral filters must be recombined. We may call

this a “waveform-restoring-like” process. Therefore,WW1:

‘0' u h‘ . q‘o-‘. '0". "".et -1‘ _|.| 01;; . Ittlbt‘t "“.-

tion.
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How is the “restored waveform” (or the information equivalent to the original wave-

form) analyzed and segregated into two sound sources? At this time, we have no rigor-

ous explanation for the effect. However, our conjecture is that the segregation is done

by capturing different features of different sound sources. Take the cos-phase Duifhuis

pitch as an example. By “scrutinizing” the “restored waveform,” the brain decides that

the small oscillations and the sharp peaks come from different sound sources, since the

contrast between the two parts of the waveform is strong. See figure D24 (a) and (b)

for the waveforms in this case. For the narrow band condition (see Figure D24 (c) and

(d) ), like we had in Experiment 5, there are no sharp peaks any more. In this case,

although the small oscillations in the time gap are not changed much (in fact, it is diffi-

cult to say whether the small oscillations are weaker than those in the wide band

stimulus), the contrast of the two parts becomes much lower. Thus, the waveform can-

not be segregated into two sound sources. For other extended Duifliuis pitches, say the

Schroeder phase in Experiment 3. there may exist some features of the two segregated

waveforms which are not so obvious for us to see at this stage. Anyway, our naive ex-

planation of the effect is: waveform restoring plus feature capturing.

Two remarks are made here. 1) The abandonment of the spectral components concept

for the Duifhuis pitch, and by extension, for the pitch of a normal tone, is, in fact,

concomitant with the waveform restoring, analyzing and segregating. In other words,

the two arguments are actually of the same essence. The reason that we don’t have a

completely satisfactory pitch perception theory may lie in the fact that we need some

deeper understanding of the pitch mechanism, and perhaps need to abandon some old

ideas - such as the concept of assigning spectral components as harmonics. However, at

this stage, more evidence is required to make this assertion, although this study could

be the starting point. 2) On the other hand, the old ideas can be efficient in describing
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the pitch phenomenon in certain circumstances. For example, looking at the power

spectrum of a sine tone to determine its pitch is certainly very efficient. Similarly, the

present pitch perception theories, such as the sieve theory, are very efficient in describ-

ing and calculating pitch of complex tones under some circumstances. So those theories

are still very good theories.

Now this study shows that the original waveform or something equivalent can be

“restored” at some high level of the auditory system. What do our brains extract from

the waveform to produce a pitch? They must extract a common property whether the
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(a) (c)

  

(b) (d)

Figure D24: (a) Waveform of a flat-spectrum complex tone with harmonics 1 to 45. The high

spectral end is tapered. (b) The 19th harmonic of the stimulus in (a) is omitted. (c) Waveform of a

flat-spectrum complex tone with harmonics 15 to 24. Both high and low spectral ends are tapered.

(d) The 19th harmonic of the stimulus in (c) is omitted.
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pitch is from a single frequency stimulus (pure tone pitch), a missing fundamental

complex tone stimulus (virtual pitch), a comb«filtered noise (repetition pitch) or missing

high harmnd (the Duifhuis pitch). To search for other kinds of “anomalous” pitches

will certainly be helpful in finding the common property and in building up new theo-

ries in the pitch perception mechamsm and signal segregationmm of our audi-

tory system.
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Appendix 01. Audiograms of the listeners

Since there were differences in the frequency range of the effect among the three lis-

teners, audiograms were done to show their thresholds of hearing. The audiograms

were done by using a Bekesy tracking method.

Listeners were seated in a sound-treated room holding a box with a push button. The

listener pushed the button to start. Then BOO-ms tones with starting frequency (3000

Hz) and starting level (30 dB) were presented repeatedly with a 250-ms pause between

them. If the listener pushed the button again, the level of the tones started to decrease,

1 dB for each tone, and the frequency of the tones began to sweep. The level continued

to decrease until the listener released the button. Then the level began to increase, 1 dB

for each tone. The listener was instructed to push the button as long as he heard the

tones and to release the button as long as he could not hear the tone. The duration of

the whole sweep from 3000 to 6000 Hz took five minutes.

The whole procedure described above was controlled by a computer through a TDT II

system. The tones were generated by a WGl waveform generator of the TDT II sys-

tem. The level of the tones were changed by a PA4 attenuator of the TDT II system.

The tones were presented through Sennheiser 480 II headphones, the same headphones

used to run the main experiments of this chapter.

Figures D25 - D28 are results of four listeners (one more beside the three listeners).

The signal level is shown by a dashed line. The middle points of each line segment are

connected by solid lines, and the solid lines are assumed to be the thresholds.
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Figure DIS: Audiogram of SB.
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Figure 027: Audiogram of SH.
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