

fae W!IWFlllIII!HINW!HI!’l!NJIHHHII\HIWIHIHHI

3 1293 01413 7727

This is to certify that the

dissertation entitled

A SCALABLE ALGORITHM FOR
NON-SYMMETRIC EIGENVALUE PROBLEM

presented by

Xiaozhuo Yang

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Applied Mathematics
7
Major professor

Date Ma_y 2: 1996

MSU is an Affirmative Action/Equal Opportunity Institution 0-121

LIBRARY

Wichigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES retum on or before date due.

DATE DUE DATE DUE DATE DUE

MSU s An Affirmative Action/E qual Opportunity Institution
c\circ\kdiatedus.pm3-p. 1

A SCALABLE ALGORITHM FOR
NON-SYMMETRIC EIGENVALUE PROBLEM

By

Xiaozhuo Yang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1996

ABSTRACT

A SCALABLE ALGORITHM FOR NON-SYMMETRIC EIGENVALUE
PROBLEM

BY

Xiaozhuo Yang

This thesis is on iterative methods which find all the zeros of a monic complex

polynomial simultaneously and an application to the algebraic eigenvalue problems.

In Chapter One we investigate the convergence behavior of the Durand-Kerner
method on the real plane R? and characterize the convergence set completely in C2.
The Durand-Kerner method converges if and only if the initial approximations are in

the convergence set.

Chapter Two presents a modified Aberth method to find the multiple zeros of
a polynomial efficiently and accurately. We show that the modified Aberth method
converges cubically. We also describe the property of the original Aberth method
near a multiple zero and hence propose a scheme to dynamically detect the multiple

zeros and their multiplicities.

In Chapter Three we apply the Aberth method, along with homotopy method, to
the nonsymmetric eigenvalue problem. The algorithm has been implemented on the
Intel Touchstone Delta multicomputers. The result shows this algorithm is competi-
tive to HQR from EISPACK. A dynamical load-balancing technique is developed to
balance the load across the computing nodes. The load-balanced algorithm improves

the performance by up to 15%.

DEDICATION

To my wife, Ling Gao and sons, Pengling and Phillip, for their
understanding, support and patience.

i

ACKNOWLEDGEMENTS

I am most indebted to my dissertation advisor, Professor T.Y. Li, for his encourage-
ment, support adn advice during my graduate study at Michigan State University.

His deep insight into mathematics and persistence have always influenced me.

I also would like to thank my dissertation committee members, Professor Michael
Prazier, Professor Richard Hill, Professor John McCarthy, and Professor Zhengfang

Zhou, for their valuable suggestions and precious time.

v

Contents

LIST OF TABLES vi
LIST OF FIGURES e viii
Dynamics of the Durand-Kerner Method 1
1.1 Imtroduction e 1
1.2 The Derivation 2
1.3 Dynamics of the Durand-Kerner Method in R? 3
1.4 The Complex Case ineenin.. 15

A Modified Aberth Method of Finding All Roots of a Polynomial

with Multiple Roots 18
2.1 derivation e 18
2.2 Local Convergence uuunineenin.. 21
2.3 The Aberth Method at Multiple Zeros 28
2.4 Dynamic Estimation of Multiplicities 37
2.5 A Numerical Example 40
Nonsymmetric Eigenvalue Problem 44

3.1 Introduction e e e e e 44

3.2 Splitting Procedure and Homotopy 44
3.3 Hyman’s Method 47
3.4 [Initial Implementation 49
3.5 Load-Balancing 52
36 Conclusion. 56
BIBLIOGRAPHY 57

vi

List of Tables

3.1
3.2
3.3
3.4
3.5

Time on i860 with a 64 x 64 random matrix. 51
Time on i860 with a 128 x 128 random matrix. 51
Time on 1860 with a 256 x 256 random matrix. 52
Unbalanced Load Distribution 53
Balanced Load Distribution 54

vii

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1

3.1
3.2
3.3

The Convergence Set
The Decompositionof R?.
The First Iteration

Algorithm ABERTH

Unbalanced vs. Balanced Timing

Timing Info for 240 x 240 and 360 x 360 matrix

viii

Chapter 1

Dynamics of the Durand-Kerner
Method

1.1 Introduction

The Durand-Kerner method is an iterative method which approximates simultane-
ously all the n roots of a complex monic polynomial of degree n. It was first proposed
by Durand [11], and later, independently, by Kerner [20]. Since then, more work on

this method has appeared in the literature [17, 18, 21].

With a monic polynomial
p(z)=2"+a12" '+ + an1z + an, (1.1)

the Durand-Kerner iterations are

z
2 = 2k — == P(2k) , k=1,2,...,n. (1.2)
j=1,j;!:k(zk - 2;)
Here, {z1,22,...,2n} is a set of approximations to the n zeros of p(z). Empera-
tively, {21, z3,...,2,} forms a set of better approximations.

The method was shown to have convergence order two when the polynomial has

only simple roots (3, 20].

It was conjectured in [19] that this method converges for almost all initial approx-
imations in C™, when the initial approximations are viewed as a point (2, 22,. .., 25)
in C™. To the best of our knowledge, this conjecture remains open, except for the
case n = 2. It was mentioned in [19] that T. Terano gave a proof [33] for n = 2 in his

Ph.D. thesis.

In this chapter, we investigate the convergence behavior of the Durand-Kerner
method on the real plane R? and characterize the convergence set completely in C2.
The Durand-Kerner method converges if and only if the initial approximations are in

the convergence set.

After the derivation of the Durand-Kerner method in Section 1.2, we discuss
in Section 1.3 the convergence behavior of the Durand-Kerner method in R?. In
Section 1.4 we show that the Durand-Kerner method converges quadratically in its

convergence set in C2.

1.2 The Derivation

The Durand-Kerner method can be derived from different approaches [11, 13, 20].
Here, we give a simple derivation of the Durand-Kerner method following [2]. We

also discuss some properties of the Durand-Kerner method.

Suppose that z,,z,,...,z, are n simple roots of polynomial p(z) and 2, 25, ..., 2,
are n initial approximations. Let §x = z4 — 2x. Then, polynomial (1.1) can be written

as

n

p(z) = [(z = (2 +).

k=1

Expanding the right hand side in the powers of §; and dropping all higher powers
of & yield

ZOES | (ERENEDILY | (CEENE
k=1

k=1 i#k

For a fixed index k, plugging in z;x on both sides and solving for é; give the first

order approximation for &y,

p(zx)
O = ~ . 1.3
Hj;ek(zk - zj) (1.3)
This gives formula (1.2). Notice that the sum of the Durand-Kerner iterates z{, z3, .. ., 2],

is —a; [21].
1.3 Dynamics of the Durand-Kerner Method in R?

In this section, we consider the Durand-Kerner method in R?. All numbers considered
are real numbers except otherwise stated. We assume that the polynomial has degree

two with distinct real roots, having the following form

where a and b are two distinct real numbers.

For simplicity, let A(z,y) = (z’,y’) be the Durand-Kerner iteration, where

(o
L

Obviously, the Durand-Kerner method does not converge when the initial points are

f(z)
v

T

~—

(-
(1.4)
it
(y-z)

T
y

chosen from the set D = {(z,y) € R? : z = y}, which makes the denominators zero.

Let J = A~!(D). This set can be described in the following theorem.

Theorem 1.3.1 The set J has the following form

J={(z,y) : 2zy — (a + b)(z + y) + 2ab = 0}.

Moreover, the Durand-Kerner iteration maps all points in J into one single point

(5% %5°)-

Proof. Suppose (z,y) is in the set A~!(D), then

(z —a)(z - b) _y_(y—a)(y—b)_

T—y y—z
So,
zz—xy—x2+(a+b)x—ab= yi—zy—y?*+(a+by—ab
T—y y—c
Hence,
2zy — (a+ b)(z +y)+2ab=0. (1.5)

On the other hand, let (z,y) satisfy condition (1.5). If z # 5'—;“—", then y =

%. Bring it into the Durand-Kerner iteration (1.4), yielding

(:c—a)(:c—b)_a+b.

/ —
r=z- T — (a+b)z—2ab - 2
2z—(a+b)
Similarly,
r_, (y—a)y—-b) a+b
y=y- (a+b)y—2ab 92

Y= 3y=(atb)
Now, we show that z # 2£* when (z,y) € J.

If z = £ and (z,y) € J, then

a+b a+b

2 y—(a+d)(y+

)+2ab=0.

5

Consequently, —L“—+2bﬁ +2ab = 0. So, (a — b)?> = 0. Hence a = b. This contradicts

to our assumption that a and b are distinct.

Let P = ((a +b)/2,(a + b)/2), then the Durand-Kerner iteration A maps J onto
P. =

Let L = {(z,y) : ¢ + y = a + b}, a straight line on the real plane. The two fixed
points P; = (b,a) and P, = (a,b) of the Durand-Kerner iteration function (1.4) are

on L (See Figure 1.1).

Theorem 1.3.2 After one Durand-Kerner iteration, (z',y') in (1.4) satisfies '+y' =
a+b.

Proof. Choose any starting points ¢ and y such that z # y. By the Durand-

Kerner iteration (1.4),

: (z —a)(z - b)

r = zT-—
-y

—zy+ (a+b)z — ab

bl

z—y
and
- -b
PR
y—z
_ —zy+(a+by—ab
= -)
So,

g'4+y —a-b = 2'—a+y -b
—zy+ (a+ bz —a(r—y)—ab
-y

LTyt (atbly — by —z) —ab
y—<z

6

—zy+ bz +ay —ab+ zy — ay — bz + ab
-y

Pl

L

Figure 1.1: The Convergence Set

Theorem 1.3.1 and Theorem 1.3.2 show that the Durand-Kerner method maps
R? — D onto L and maps J onto point P. We will show next that R? — (JU D) is the
convergence set on the real plane where starting in which the Durand-Kerner method

converges.

For convenience, define

_ (a +b)z — 2ab
o) = S " avo)

We assume a > b. The graph of D is a straight line passing through the point
P = ((a +b)/2,(a +b)/2) in R? while the graph of d(z), the set J, has two branches

(see Figure 1.1).

The function y = d(z) has a horizontal asymptote and a vertical asymptote,

The graphs of J and D divide I, and I5 into eight regions:

o I)) ={(z,y) € I : y<zand y>d(z)}.
o I1,2={(z,y) €, : y >z and y > d(z)}.
o I13={(z,y)€L,:y>zand y <d(z)}.
o I1y={(z,y) €, :y<zand y<d(z)}
o I35y ={(z,y) € 3:y>zand y <d(z)}.
o I3, ={(z,y) € 3: y <z and y < d(z)}.
o Is3={(z,y) € 5:y <z and y > d(z)}.

o Iy ={(z,y) € I3: y >z and y > d(z)}.

Line y = a and line £ = b divide the regions I; and I, into eight regions:

o Irhy={(z,y)€ls:b<z<(a+b)/2and a < y}.

o Io={(z,y) € l4: 2 < band a < y}.

o [r5={(z,y) € 4:z<band (a+0b)/2<y<a}

o Ih,y={(z,y) € l4:b< z(a+b)/2 and (a +b)/2 < y < a}.

o Iy ={(z,y)€ly:z>aand b<y<(a+b)/2}.

o I, ={(z,y)€l4:(a+b)/2<z<aand b<y< (a+b)/2}.
o Iz={(z,y)€14:(a+b)/2>z <aandy < b}

o Iuy={(z,y) € Is:z>aand y < b}.

See Figure 1.2.

12 ‘\\\ I 1

121 112

122
Pl I In

123 |1, 114

131 | Ia2|p, 141
: 134T
32 ‘~
143 144
133 .

I3 I4

Figure 1.2: The Decomposition of R?

The behavior of the Durand-Kerner iterations is shown in the following lemmas.

Lemma 1.3.3 A(l};) C 4N L.

Proof. Suppose (z,y) € Iz, then y > z, y > d(z) and = > (a + b)/2. For

(z',y") = A(z,y), by Theorem 1.3.2, we only need to show z’ > (a + b)/2.

,_atb —zy+(atbr—ab a+b
2 - T—y 2
_ 2zy—2(a+b)z+2ab—(a+b)y+(a+b)z
2y — =)
_ 2zy—(a+b)z—(a+b)y+2ab
2(y — z) '

Since the denominator is positive by assumption, the numerator also needs to be

positive. Now,

0 < y—d(z)
(a +b)z — 2ab
2z — (a+)
2zy — (a+ b)y — (a + b)z + 2adb
2z — (a+b)
The denominator is positive, so is the numerator. this proves z’ — g"T’Lbl > 0. [

Lemma 1.3.4 A(L,4) C 4,N L.

Proof. Suppose the initial point (z,y) € Ii4, then y < z, y < d(z) and z >
(a+b)/2. The assertion can be proved by applying the same arguments as in Lemma

1.3.3. (]
Similarly, we can show that A(I;;) C I N L and A(l13) C I, N L.

By symmetry, similar results hold when the starting points are in I3, namely,
A(Ial) C 12 N L, A(I33) C 12 N L, A(Iaz) C 14 NL and A([34) C [4 N L (see
Figure 1.3).

10

N ¢ I
.
‘l : JUPOTE 34 Rhis l-!.z..‘\, 4
! \‘ {-» |
R I I
i 1145
*131
134 %
132 ot
.. o
SR T
»
L
I3 I4

Figure 1.3: The First Iteration

Next, we show that the Durand-Kerner iterations converge to P, = (a,b) and
P, = (b,a) when the starting points are in Iy and I3, respectively. By symmetry, we

only consider the case of I (see Figure 1.4).
Lemma 1.3.5 A(l4) C I4oN L.

Proof. Let (z,y) € I4. Notice that y < z, £ >a > (a+b)/2and b< y <

(a +b)/2. For («,y') = Az, y),

Mg = —zy+ (a+b)z — ab—a(z — y)

=y

_ —zy+brtay—ab

= P

_ (r —a)(b—u)

= p—

< 0,

and
, a+b —2zy+2(a+b)z—2ab—(a+b)z+ (a+bd)y

2 2(z —y)

11

—2zy + (a + b)z + (a + b)y — 2ab
2(z - y) '

Combining inequalities g“—’;bﬁ > 2aband z > a > $°T+bl, yields

(a +b)°

—2zy+(a+bz+(a+bdly—2ab > —2zy+ (a+b)z+ (a+by-— 5

= 0.5((a +b) —2y)(2z — (a + b))

> 0.

So, 2’ — 2t > 0. This proves our assertion.

Similarly, we can show that A(ly3) C 142N L.

; I
2 ™~

I3 144

Figure 1.4: The Second Iteration

When the starting points are chosen in I4; we have
Lemma 1.3.6 A(ly;) C IsiuN L.

Proof. Let (z,y) € Iy, then y < z, gzﬂ’ <z<aandb<y< 9—‘2L"

12

For (z',y') = A(z,y), we need to show z’ > a since (z’,y’) lies on L.

, —zy + (a + b)z — ab — a(z — y)

r —a =

z—y
_ (@—a)b-y)
z—y
> 0
=
For region I44, we have
Lemma 1.3.7 A(ly4) C IiauN L.
Proof. When (z,y) € Iy4, > a > b>y. Then,
M —a = —zy+ (a+b)z —ab—a(z —y)
r—Y
_ @-a)b-y)
r—y
> 0,
and
iy = —%yt(atbly—ab—by-—z)
y = y—
_ @-a)b-y)
y—=z
<0
So (2',y’') € I,uN L. [

We have shown that after at most two iterations the Durand-Kerner iterates lie

on the line L in either I44 or I3; (see Figure 1.4).

Next, we will show that the Durand-Kerner iterations converge monotonically on
the line L towards the points P, = (a,b) and P; = (b,a) when the initial approxima-

tions are in the region I44 N L and I; N L, respectively (see Figure 1.5).

13

I
122

Pl

AN

Figure 1.5: The Monotone Convergence
Theorem 1.3.8 If the starting point (z,y) € L N I, then the Durand-Kerner iter-

ations converge to (a,b) monotonically. Moreover, it converges quadratically.

Proof. Since (z,y) lieson L, we have £ + y = a + b. For (z',y’) = A(z,y), we

also have ' + y' = a + b. Hence,

y = a+b-z.
So,
. @-ab-y)
T-y
_ @—a)e-a)
T 2z —(a+b)
T—a
- 2(z aTer)(I a)

< %(x—a), (1.6)

14

Ir—a

since 0 < 75 <L
(J.'— 2)
Let (z%,y) = (A)*(z,y) = A((A)*"'(z,y)), then

1 1
0 <z _qg < §(z(k) —a)< (§)k+l(x —a)

inductively from (1.6). So, z(¥) converges to a monotonically. At the same time, y(*)

converges to b monotonically. Therefore, (z(*), y(¥)) converges to (a, b) monotonically.

Next, we consider the rate of convergence. Since

(=’ y") = (a,0)l2)* _ (¢ —a)’+ (v —b)?
(II(z,y) — (a,b)]|2)* ((z —a)® + (y — b)?)?
2 r—(‘;i;;’—b :

I

((z —a)* + (y — b)?)?

(z — a)*(z — a)?
(a+b—2z)22(x —a)t

< 1 1
4a-— “%b
_ 1
~ (a-b)7
The Durand-Kerner method converges quadratically.]

Similarly, we can prove the following

Theorem 1.3.9 If the starting point (z,y) € L N I5;, then the Durand-Kerner iter-

ations converge to (b,a). Moreover, it converges quadratically.

In summary, after at most two iterations the Durand-Kerner method starting at

15

a point in R? — (J U D) will converge to the solution monotonically along the line L

and the rate of convergence is two.

1.4 The Complex Case

This section discusses the Durand-Kerner method in C2. Let the two zeros a and b
as well as the starting points z and y be complex numbers. Similar to the previous
section, (a,b), (b,a) and (z,y) are viewed as points in two dimensional complex space
C? Let D = {(z,y) € C?: z =y}, J = {(z,y) € C*: 2zy—(a+b)(z+y)+2ab = 0}
and L = {(z,y) € C?: z +y = a + b}. Notice that Theorem 1.3.1 and Theorem
1.3.2 are still true in complex case. J is the pre-image of D and after one iteration all
points lie on the complex line L. We also notice that both J and D have Lebesgue

measure zero in C2.

Similar to the Durand-Kerner method on the real plane, we show that the Durand-
Kerner method converges for any starting points in the set C2 — (J U D U S), where

S is a set of Lebesgue measure zero in C2.

The line L can be parameterized as follows:

z = 4 ot
(1.7)
y= P+,

where t is a complex number. When ¢ = 0,—1 and 1 the corresponding points are
P=((a+0b)/2,(a+b)/2), P = (bya) and P; = (a,b).

Since the Durand-Kerner iterative function (1.4) maps C? — (JU D) onto L — P,
we assume, for the moment, that the starting points are chosen from L — P. These
points can be parameterized by (1.7) with complex parameter ¢t # 0. We will see that

Durand-Kerner method does not converge when the initial approximation is chosen

16

by (1.7) with an imaginary number ¢. Let S be the set of points in C? corresponding

to imaginary ¢, that is, S = S, U S,, where

S’={(z’y)esz(z—y)x—(-"?—a)(x—b)=(x—y)(a;bﬁLa;bri)}
and
2 a+b b—-a .
Sy={(z.¥) €C’: (y-2)y - (y—a)y-b) = (y - z)(—— + ——ri)},

where r is a real number and : = v/—1. It is easy to see that S is a geometric surface

in C? , hence it has Lebesgue measure zero.

Now, the Durand-Kerner iterative function (1.4) maps points in C2—(JUDUS) to
points on line L which can be parameterized by (1.7) with non-zero and non-imaginary

t. Let (z,y) be on L with parametric equation (1.7). For (2',y’) = A(z,y), we have

1 _ atb , (a=b) (14£3)
T =51

(b—a) (1+¢2
y1=#+ 2a ;:)‘

Therefore, the Durand-Kerner iterations are determined solely by the iterative

behavior of the complex iterative function

It is easy to see that f(z) is just the Newton iterative function for the quadratic

olynomial g(z) = 22—1. That is, f(z) = z— 2., The Newton iterations of quadratic
p q'(2)

functions are well understood [4]. We list some results in the following

Theorem 1.4.1 The iterations of the function f(z) have the following properties:

1. f*(z) converges to 1 if the real part of z is positive,

17
2. f™(z) converges to -1 if the real part of z is negative,

3. f™(z) does not converge if z is on the imaginary azis,
where f"(2) = f(f*7'(2)).

Therefore, the Durand-Kerner method converges when the starting points are

chosen from C? — (J U DU S). Since Newton’s method converges quadratically, so

does the Durand-Kerner method.

We conclude that the Durand-Kerner method converges if and only if the starting

points are in the set C> — (JUDUS).

Chapter 2

A Modified Aberth Method of
Finding All Roots of a Polynomial
with Multiple Roots

2.1 derivation

The Aberth method is a parallel iterative method for finding all roots of a monic
complex polynomial with simple roots simultaneously. This method was discovered

many times, see Aberth [2], Borsch-Supan [5], Docev [8], and Ehrlich [12].

For a monic complex polynomial

p(2)=2"+a;z2" '+t a2+ a, , (2.1)
with n distinct initial approximations z;, 2, ..., z,, the Aberth iterations are
z
2=z — P(z+) k=1,2,...,n (2.2)

P(zk) = p(2k) 25y iz ﬁ ,

It was shown [2] that the Aberth method converges cubically to the roots of p(z)
when it has only simple roots. It is also observed that this method converges to
the n roots simultaneously for almost all initial approximations. To be more precise,

considering the initial approximations (zy, 22,...,2,) as a point in C", the Aberth

18

19

method converges for all initial points in C™ — J, where J is a subset of C™ with
Lebesgue measure 0. At this stage, no proof for this observation is available.

The Aberth method is not suitable for finding the roots of a polynomial with

1
zx—2z,

multiple roots, since the quotient can be very large when two approximations
2x and z; converge to the same multiple root. Overflow would occur. To overcome this
difficulty, we propose a modified Aberth method which has the same convergence rate
as the original Aberth method and can find all roots of a polynomial with multiple
roots. This method reduces to the original Aberth method when the polynomial has

only simple roots. The modified method, like the original method, is parallel in nature

and is globally convergent in practice.

In this chapter, we first derive the modified Aberth method and describe its con-
vergence property. In later sections we show the convergence behavior of the original
Aberth method near multiple roots and discuss the issue concerning how to dynami-

cally detect the multiple roots.

The derivation of the modified Aberth method is based on the theory of electro-

statics. Let the polynomial in (2.1) have the following form

p(z) = (z — z1)" (2 — z2)"...(z2 — zf)"™, (2.3)
where z,,z,,..., T, are the m distinct roots of p(z) with multiplicities n,n,,...,nn,,
respectively, where n =) |* | nj .

Starting with m distinct initial approximations 2, 23, ..., 2, the modified Aberth

iterations are

nip(2k)
P(2) = P(2k) Ejtninn 5

2z =z — ,k=1,2,....m. (2.4)

We utilize the identification of complex numbers with vectors in the complex

plane C. If an ni unit plus charge is situated at the point zj, for each k, the resulting

20
electromagnetic vector field at a point z is

i L (’;—’((—55. (2.5)

1o (2 — k)

Given a polynomial p(z), we wish to locate a root of p(z) by sampling the field
defined by the right hand side of (2.5) at some point z; with multiplicity n,, and
finding the point where a single n; unit plus charge would be located if it were
causing this field. Sampling at this new point, the cycle then could be repeated.

Calling the new point 2} = z; + wx, and solving for wy in the equation

(or = (::+ we) (I;((j:))) ’

leads to the modified Newton’s method

o nip(zx)

z, =) (2.6)

Now, if we try to locate all roots of p(z) by simultaneously applying the modified
Newton’s method (2.6) to m different sampling points, some of them may converge
to the same (multiple) root. To avoid this, an nx unit minus charge is assigned at
the sampling point zx. The idea is that when a sampling point zj is near a (multiple)
root, the field from the minus charge at zx should counteract that field from the plus
charge at the root, preventing a second sampling point from converging to this root.

After taking conjugates, we have the iteration equation for the k-th sampling point,

Tk

_P(2) —n;
(2e — (2 +wi)) p(2) * ; -z

Solving for wy yields

B np(2x) _
P'(zx) — p(2k) Zj;ék Zn."z_,

This gives the modified Aberth iterative formula (2.4).

Wi =

(2.7)

21

The modified Aberth iteration correction (2.7) can also be derived algebraically.

Let Ri(z) = ﬁ;k—;(’g%r,‘ be a rational function, £ = 1,2,...,m. Then Rj has the

same root zj as p(z). The modified Newton’s method (2.6) applied to Ri(z) gives

wp = — e R (2x)
R} (zx)
i ey (Tl (2 = 23))?

- n (I, a2k =2,)™)’
P'(2k) l_I,-#(Zk — z;)™ — p(2k) nﬁ:;(z‘;-zj,) I

3 nep(zx)
P(z) = P(2k) Xjun sy

2.2 Local Convergence

In this section we discuss the local convergence property of the modified Aberth
method (2.4). We will show that it converges cubically. However, when the mul-
tiplicities are estimated incorrectly in practice, only linear convergence rate can be

reached.

For convenience, let

and

o nip(2x) _ m
FiZ) = 2= s P k=12, m,

Expanding Fi(Z) in the Taylor series at the point X = (z,,z,,...,2m,) yields

0F (X ?F (X
Fi(2) —“+Z 621 (=5 = t3 Z 62182k Tk =) F e (28)

22

One can show that all the first and second partial derivatives are zero, so the
successive iterates converge cubically. But this involves some tedious calculation of
the second derivatives. Instead, we give in this section another proof of the cubical
convergence. First, we calculate the first derivatives which reveal that the modified
Aberth method is only linearly convergent if the multiplicities are estimated incor-
rectly.

Lemma 2.2.1

. plak) _
ZEI-IE'& p’(zk) =0.

Proof. For simplicity, let k = 1.

i p(z1)

0 P(2)

21

(z1 = 21)" (21 — 22)™ -+ (21 — T)"™™

= lim
-z ny(zy — o) MY (zp —)2 - - 4 (21 — T1)Mng(2) — zp) (M2 e 4

li (21 —z1)(21 —)™ -+ - (21 — Tp)™™
= m
21T nl(zl — xz)nz(zl —_ zB)na cee _+. (zl —_ zl)nz(zl —_ z2)(n2—1) ene + ce

= 0.

Lemma 2.2.2 Suppose j # k, then

aDk(Z)]Z X n;
0z; 77 (zk—x;)?]
and
0D(Z) _ —ng
aZk |Z=X— Z; (xk — 171)2
Proof

23

and

aDk(Z) _ —ny _ —-ny
Oz 2-x= l;eZk (2 — 1)? l2=x= ; (zk — 1)’

Lemma 2.2.3

p(z) p?)(2) e, = ng—1
P(2) P(z) 7

Proof. Write p(z) = (z — zx)"g(z), where g(zx) # 0. Then

P(z) = ni(z—)™ 'g(2) + (2 — zi)™g'(2)
PA(z) = ni(nk —1)(z — zi)™*2g(2) + ni(z — z)™ "' g'(2)
+nx(z —2)™ 71 (2) + (2 — 2)™ g?)(2).

So,

Tz — 2™ g(z) + (2 — 2 g ()

ng—1_s

[nk(nk —1)(z — z)™*2g(2) + nu(z —)™ "' ¢'(2)
ni(z — zk)"*~1g(2) + (2 — zx)"*g'(2)

+

nk(z — zi)™ g (2) + (z — x)™*g?)(2)
nk(z — z)™*~1g(2) + (2 — zx)™* g'(2)

] o=z

_ 9(2) 9

neg(z) + (2 — zk)g'(2)

nu(ni —)g(2) + mi(z = z)g'(2) + iz = 21)g/(2) + (= — 24)%D(2)
nig(2) + (2 — 20)g'(2)

Z=Tj

g(zk)ni(nk — 1)g(zx)
nrg(zr)nrg(zx)

nk—l

L

24

Theorem 2.2.4 All the first derivatives of F(Z) with respect to z at the point X

are zero, namely,

0F(Z)
621

|Z= =03

fork,l=1,2,... ,m.

Proof. Notice that p(zx) = 0. For | # k,

nap(zi) [p(zi) 22242

0F(2) 0 l7—x
(¢ (2x) — p(2) Di(2))* 7

0z

lz=x =

n [!L(z_k)_r _ng

p'(zk) | (2x—2)?

1 - #2hpu2)

2 lZ:X

p’(2x)

For | = k,

OF(Z) o
sz -

natl () [P (24) = P26 De(2)] = rap(24) [p®)(2) = p(2x) 232 — p/(24) Du(2)] |

= 1-— _
(#'(2k) — p2x) Di(2))? 7=x
[1 _ p(zk) PP (k) | plax) plax) aDk(Z)]
P'(zk) p'(2x) p'(zk) p'(zk) Oz
= 1- N 3
p(zk)
[1 - p'(z'l)Dk(Z)]

(1-=2)
= l-m—"t
= 0.

Let the multiplicities ny,ng,...,n,, in the iteration formula (2.4) be replaced by

estimated multiplicities N1, Ny, ..., N,,. The modified Aberth iteration formula has

25

the following form:

Niep(2k) '
P/(2k) — p(2k) Z;’T:_-l,j;ék ﬁkz_]

2 =z —

We then have the following convergence result.

For | # k,
2
p(zk) N
O0FZ), _ _ N [p«zk)] Go-ai? ex=0
32; Z=X | _ ol ™ N (Z) 2 1Z=X)
p'(z) £i=15#k 24—z,
and
aZk Zz=X
m N,
1 — 2ex) PP () o plax) plan) PEsmiwk 525)
p'(2x) p'(zx) P'(z) P'(2k) Oz
= 1- Nk N 2 |Z=X
p(zk) m X
[1 - p'(z) Ej:l,j#k zk—zJ]
1 — 2=l
= 1—-N;] Tk
N,
= 1-—=.
Nk

By these results, the method converges linearly if the estimated multiplicities Nj

satisfy 0 <| ny — Ni |< ng, for k =1,2,...,m.

When the estimated multiplicities are close (but not equal) to true multiplici-
ties, like many other iterative methods [25], the modified Aberth method converges

linearly. In this case, it does not converge cubically.

When the estimated mutiplicities are the true multiplicities, we can show the

following theorem.

Theorem 2.2.5 The modified Aberth method (2.4) converges cubically.

26

Proof. Notice that 2 =3 ™4 ™ Now,

p(zk) j#k 2k —T, 2k =Tk
2 — Tk = 2xp— Tk .
k— - TR T P()
p(zx) Dk(Z)
Nk
= Zk— Tk — n; ng ny
EJ#I: 2%, Zp—Tk J#k 2k —2z,
o ni(zx — o)
= 2k — Tk _ z n,(z,—z,)(zx—zx)
Tk i#k " (2k—2,)(2k—2,)
E " ni(z,—z,)(zx—zk)
_ J (zk—z,)(2k—2,)
= (zk - zk) n,(z,—z,;)(zx—k)
Nk — Z

£k (2k-7,)(zk—2z,)

nj

ik (2x — 25)(2k — 2j) [nk — Ltk "(5:-1)22::;)]

(zx — zk)(2j — ;) (2K — zk) . (2.9)

It is easy to see that in the above sum ap-

bt]
n,(z,—z,)(zx—zg)
(zx—2;)(zk=2;) [nk =2 j 4k —{,—,‘J_TJW;J—;“]

LS|
(zk—z;)(zk—7;)nk

proaches and therefore is bounded by a positive number A as Z ap-

proaches X. Therefore, as | z — zx |< €, k = 1,2,...,n, for a small number ¢,

2, — 2k |< A(n = 1)€é3.
k

This shows the method converges cubically. [

Let M = A(n — 1) in the above proof. We shall estimate M in more details. Let
D(zk,ex) = {2 € C:| 2z — 2 |< &}, kK = 1,2,...,m, where €,¢€,,...,€, are chosen
for which the disks are pairwise disjoint. The separation of the disks is measured by

the minimum distance of those disks, that is,
p=min{| zk — z; |, 2k € D(z,), 2; € D(xj,¢;),k # 5}

At the r-th iteration, m disks D(’)(:cg),cf:)), k = 1,2,...,m, are generated by the

Aberth iterations (2.4), where efcr) =| z,(:)—:ck | and {z,(:)} are the new approximations.

27

Let p(") be the separation of those disks and p(® = p. Intuitively, when the initial
disks are chosen small enough and the initial approximations are in the initial disks,

the generated disks must be nested; that is, D('“)(:vf:“), ef:H)) C D(')(xy), ef:)) .

Based on the result of Theorem 2.2.5, we have the following

Theorem 2.2.6 Let T and t be the largest and smallest multiplicities respectively,
and egr) be the distance of the j-th root at the r-th approzimation z](-r) to the root z;.

Among which let ¢") be the largest one. Let K be an integer greater than or equal to
two. If initial disks satisfy e = € <, /KT(;_l)p, then

K(m-1)T
tp?

(k) < ()3,

Proof. We first estimate the coeflicient of (zx — zx)(z; — ;)(2x — zx) in (2.9).

Notice that .., "(E:__If)zz"__zf;‘) > ik %3 = ﬂmp—;l)‘—z. By the initial assump-

. — 2
tion, we have ﬂmp—Ql)‘— < t. So,

n.
| : E——
(25 — 32k — 25) i = 5, =2
T
S 2 T(m-1) 2\ °
p2(t — P)
Therefore,
1) T(m-1) (0)y/,(0)y2
€ < € €
fT (- (@)
T(m—-1) (0)y((0)y2
< ;@(f)€)
K(m-1)T
k=S
K(m-1)T
< A= DL ooy

tp?

28

< K(_m:_llZ(e(O)fg
tp?
Hence, e) < 5%;1)1(6(0))3.
Furthermore,
-1)T
& < Ko DT oo

tp?

< K(m - l)T tp2 (0)

- tp? K(m — 1)T€"
_ 0
=¢. .

Hence, each new disk is contained in the previous disk. Therefore,

K(m-1)T

€(k+l) <

(e

by induction. [

2.3 The Aberth Method at Multiple Zeros

Though we proved in the previous section that the modified Aberth method con-
verges cubically, no information is available in practice whether a given polynomial
has multiple roots and what the multiplicities of multiple roots are. With n initial
approximations for a polynomial of degree n, one can only start with the original
Aberth method. An effective program should be able to detect the multiplicities of
multiple roots of a polynomial in the process of execution. We first investigate the
behavior of the original Aberth method near a multiple root. In this section we show
that the approximations to a multiple root become equidistant on the circle centered
at the root. This information will be used to dynamically detect multiple roots and

their multiplicities.

We first investigate the convergence behavior of the Aberth iterations applied to

polynomial p(z) = z". Let rp = %, 1} = -‘;k =23,...,n,and 1y = 1,7} = 1.

29

Assume none of the approximations reaches the root of p(z) in the process. Dividing

both sides of (2.2) by z], we have

2% — P(2x) Y
.z P'(zk)=p(zk) Zic1 yk 75—,
s = = (21)
zl 2 — pP(21
P'(z1)-p(21))=, TLT,
2% _ P(zx)
2 al@)-pa) Dot ek s
- _ p(z1)
z21(p'(21)-p(21) X2 ,1 =)
2 ity
- =T
zy zi(nzg~ =z z;;:.;;!k ,k—l_',j)
= - =
21("’1 -z7 2,—2 - '1)
n
Tk - n—1 n rv,: 1
nry T ZJ=l.Ja“‘ k=",
R p——
n_21=2 l—rJ
1-— 1 :
n-=rk 2;‘ La#k rp—r,
)
= Tk

1-— —1—
Z} 21—1‘

Qk(rl, T2y eeey Tn) .

With Ql = 1’ let Q = (QhQ%"'aQn)' Forj = 132$-.-,n1 let w] = 62” n_l‘ be
the roots of the polynomial P(z) = 2" — 1, where ¢ = V=1. It is easy to see that

(wy,ws,...,wy,) is a fixed point of Q.

Theorem 2.3.1 Ifr = (ry,r2,...,7,) with no zero components is a fized point of Q,

then r = w.

Proof. Under the assumption, r; satisfies,

n—1
"k

-1 n n 1
nry” —rg 2; Ly#k T =7,
TR = Tk I LY. k=1,2,...,n. (2.10)
— —“_l’-
n-ZJ—Z T-r, -r;

30
Canceling r; on both sides of (2.10) yields

n-—1
Tk

=T 1
1 T =Tk Distask ipor,
= 1—___1_)
2—21 -1,

Therefore,

1 1
n 1 n 1 0
n— Tk D o1 kk re-r, i=2 1-r,

or

- 2; 1—1rj (2.11)
J=

—r;
=tk kT

fork=1,2,...,n

We want to show that ry,r,,...,r, are exactly the n roots of polynomial 2" — 1,
which are spaced equally on the unit circle. It is easy to see that the roots of 2™ — 1
satisfy (2.11), since 221# e = —p—((r'—“l for any polynomial with all its roots being
simple, where p' and p(? are the first and second derivatives of p.

The right hand side of (2.11) is a constant C for any k = 1,2,...,n. Summing up

both sides of (2.11) for k from 1 to n, the right hand side becomes nC.

Let the left hand side of (2.11) be f,, then

n n 1
foo= dome D
=1 j=l#k £ 7
n-—1 n-1 1 n-1 n-1 1
= Z Tk . + Tn Z + Tk
k=1 j=1,j#k Tk =T j=1 Tn =T k=1 Tk = Tn
= fa +n-—1. (2.12)

Since the first term of the recursive equation is f, = 1, the solution of the recursive

31

relation is f, = 2221 Therefore, nC = 3("2——11 Cancelling n on both sides gives

2
- 1 n—1
- E = (2.13)

T —T;
j=ly#k kT

or,

21y Z H (re —m)=(n—-1) I—I(r;c —r;). (2.14)

I=13#k l#k,; I#k

Let P(z) = [['_,(z — ;). Then (2.14) becomes

re P®(r) = (n — 1) P'(r4) (2.15)

for k = 1,2,...,n. However, the polynomials zP(®(z) and (n — 1)P’(z) on both sides
of (2.15) have the same degree n — 1 and the same leading coefficient (n — 1)(n — 2).
They are also identical at n distinct points r;,7,,...,7,. So those two polynomials

are identical. We have

PA(z) n-1
P(z) z
Integrating both sides, we obtain P’(z) = cz"~! for some constant c. Hence,
P(z) = 2™ —1 since P(z) is monic and r; = 1. Therefore, ry,73,...,r, are the n roots
of 2" — 1 = 0 and w is the only fixed point of Q. [

Based on Theorem 2.3.1, we can show,

Theorem 2.3.2 Applying the Aberth method (2.2) to p(z) = 2", when the iterations
converge to the n-ple root 0 and none of them reaches it, then they are eventually

equally spaced on a circle around 0 and the modulus of each correction is ;1%

Proof. The first part is a direct consequence of Theorem 2.3.1. For the second

part, assume the approximations are equally spaced on a circle around 0. Without

32

loss of generality, let the approximations 2y, 23, - -, z, be the n roots of 2" —r =0

for some positive number r. Then

n
2y = zk Zk
k.~ - n—-1 n 1
nz, — 2 Zj;ék -2,
2k
= zk —_ —
n(n-1)z;
n— 2k —h—
k
2k
= 2k — -
n — n21
2
= Zk 1 -
(n+ 1)
n—1
= zk
n+1
So,
sz =l o= P = — | 2]
n+1 n+1
That is, the modulus of each correction is %]

Similar result holds for the Aberth method applied to polynomial p(z) = (2 — z)"

for a complex number z.

For a general polynomial, when we analyze the behavior of the approximations
converging to multiple roots, we may assume the approximations which converge to
simple roots are the roots themselves, since these approximations converge to their

targets very fast (we will show this later).

Theorem 2.3.3 For a polynomial p(z) of degree n which has an m-ple root z,

(m < n) and simple roots z;, 3, ..., Tn_mt1, SUPPOSe approzimations z,, za, ...,

zm converge to z; and other approzimations zm41, ..., 2, take the roots of p(z) other

than z, as their initial values, then z,, z,, ..., z,, are eventually equally spaced on a
2

circle around z, and the modulus of each correction is =.

33

Proof. Since approximations zm41,..., 2, are roots of p(z): z2, Z3, ..., Tnom+1,
no iterations for them are needed. We want to show that the Aberth iterations for

21, 22, . - -, 2m applied to p(z) are equivalent to the Aberth iterations applied to 2™ —z,.
Let p(z) = (z — 1)™g(z), then the Aberth iterations applied to p(z) for z, 2,
oy Zm are

P p(Zk)n 1 b) k = 1, 2a
P'(2) — p(2x) J#kj=1 zp—z,

!
Zk=2k— .-.,m.

The denominators in the above iterations are

P'(zk) — p(2x) E

J#kg=1

2k — 25

= m(zx —z1)" ' g(zx) + (26 — 21)™g' (2k)
n—-m+1

jtkgam 2k T %
n-m+1 1 -|
+(2k — - |
(zk — 21)™ | 9'(2k) — 9(zk) Z: Zk_ij
1=2
r 1 1 m
= g(zx) |m(ze —)" = (zk—x)™ Y, ———| + (2 — z1)" [g'(2k) — ¢'(21)]
I i#kgem kT]
= o) |m(sm—)™ = (s Y —
1 k 0T 2. T 5|
L i#k,j<m
Hence,
z; = 2 — (zk—ml) g(zk)
9(zx) |m(zx — z1)™"! = (2k — 1) Ej;ek,jsm ﬁ]
= 2k — (Zk _ zl)m
m(zk —)™ = (26 = T1)™ X sk i<m ﬁ

34

This is exactly the Aberth method applied to z™ — z;,.]

Corollary 2.3.4 Under the same condition as in the above theorem, let wf:) be the

(r)
k

correction at the r-th iteration for the k-th approzimation z,’ which converges to an

m-ple root . Then,

(r+1)
. w m—1
lim | k |
roo | w'" I m+1
Proof. By Th 2.3.3, we h () 2, (=) g) ome1(rm1) g
. By Theorem 2.3.3, we have w, ' = =52, and zp4y = 57 % - D0
(r41) _ 2 (7)) _ _2 m-1,(r=1)
Wy = o31% T mfimt1’k "

The above results also show that the original Aberth method converges linearly if
the polynomial has multiple roots. That is, those approximations which converge to
multiple roots converge to their targets linearly. Next, we show that the approxima-

tions which converge to simple roots converge much faster.

Lemma 2.3.5 Let zx = a + ree? k= 0,1,2,....m — 1, wheret = /-1, a is a

complez number and v, > 0. Letr > rr and z € C with | z— a |> r. Then

m-1 1

m
DL
z2—2zr 22—«

k=0

with some (B satisfying | B |< (e

Proof.
1 1 1 1
22—z z—a z—a—rief z—a
rpedei
= r :
r(z —a—rief)(z —a)’
and
Bxi
TkE€ 1
| - <

r(z — a —reb)(z — a) (lz—a)(|z=—a]|-r)"

35

Let
m-—1 Oui
riLe’k
b= § r(z —a—reefs)(z —a)’

then, Z;_Olz—_lz—k— ™ =rfBand | B |<

—m
z—a (lz=al)(|z=al-r)"

Theorem 2.3.6 Suppose the Aberth approzimations applied to p(z) converges and

the approzimation starting at z; converges to a simple root z;, then, eventually,

| 20 — 2 < €&,

(r+1)

where z; is the approzimation at step (r + 1), C is a constant and

6:ma:x{|z§r) -z;|,7=12,...,n}.

Proof. Suppose p(z) = H;":l(z —z;)" , where z1,2,, ..., T,, are m distinct roots

with multiplicities n;,n2,...,n,. Then

Let € be a small number such that the distance of every Aberth approximation
to its target is decreasing as soon as all the approximations are within ¢ distance
from the roots. Let p be the minimum distance of any two distinct roots zx and z;.
Let € be far less than p, say 4e¢ < p. For simplicity, let n; = 1, z; approximates z,,
22y ..y Zn,+n, approximate a,...,Zn 4ny+..4nm_ys-- -+ 2n approximate z,,. Suppose
all the approximations are within € distance from their targets. From Lemma 2.3.5,

we have,
n,

E 1 _ n; —+—7‘J~ﬂj

=1 21 — Zny4.ony+k 2 — I

. n 8n .
with r; < e and | §; |< };J%—p = 32 SINCe Zn;4.tn, 1415+ - Zn +..4n, CONVerge to ;.

36

So,
, _ 1
A0 = ATt uh) "y
p(z1) 1=2 z1-z,
1
= a-n- m n, 1 m n,
Zj=2 21 -1, + 21 -1 - 2_7’:2 (21—1'] + rJ'BJ)
1
= 21— I — 1 m
z)—T) - Ej:Z rj'Bj
21— T
= 21 —I —
1 -3 (21 — 2)riB;
(21— m) |1 :
= zZ) — I -
1 - Z;-n:z(zl — z1)r5B;

Yoima(z1 = 21)r;B;

1= (2 —z)riB;

= (za1—m)
Hence, when r; < e we have

8(n-—-1
3

3
|21—Il IS “ﬁe .
— € _(_lsp

3p

16(n—1)" u

6(n— . el
Therefore, | 2, — z; |< 1—(;‘,—1163 when ¢ satisfies the extra condition €? <

This theorem does not imply that the rate of convergence for the approximations
which converge to simple roots is cubic. When ¢ is the largest error of all the errors
| z,(cr) —zr |, k =1,2,...,m, at step r, the conclusion of the theorem indicates the
error at step r + 1 for approximations converging to simple roots is less than Ce3,
for some fixed constant C. Apparently, it is much faster than the convergence rate
of the approximations which converge to multiple roots where the error at step r + 1
is less than Cje with C) < 1. In practice, the approximations converging to simple
roots converge to the roots very fast while the approximations converging to multiple

roots display a very slow convergence rate.

37

In [29] and [17], finding multiple roots of polynomials by Durand-Kerner method
is discussed. Like the Aberth method, the Durand-Kerner method can find all the
roots of a polynomial with simple roots very efficiently. It converges quadratically in

this case while it converges only linearly when multiple roots exist.

In [29] a result similar to Theorem 2.3.2 for the Durand-Kerner method is proved
without using the modified Durand-Kerner method to refine the approximations. In
[17] a different technique is used to handle the multiple roots and obtains superlinear
convergence rate. Their numerical results show that both approaches can not find

the multiple roots with high accuracy.

2.4 Dynamic Estimation of Multiplicities

For a given polynomial p(z) with no information in advance, one can only use the
original Aberth method (2.2) in the beginning. It is desirable that the multiplicities
of multiple zeros of p(z) can be dynamically detected in the process of execution.
The approximations can then be grouped into different groups according to the data
available concerning whether they converge to the same root. Then, the modified
Aberth method is applied. For a group of approximations converging to the same
root, the proposed algorithm takes the average value of all the members in the group.
This average value should be closer to the multiple root than any approximation
in this group as the approximations are spaced equally on a circle around the root
by Theorem 2.3.2 and Theorem 2.3.3. This average is used in the modified Aberth
iterations. The same approach can be found in [17] which uses these properties
without proof. Each z; takes a small random perturbation of the averaged value for
the next iteration since the same Durand-Kerner iteration functions are used and

the approximations must be distinct. While this approach provides a supper linear

38

convergence rate, it does not yield a high accuracy.

In [29], the correction
f(zx)
Hj;ék(zk - zj)

is multiplied by n, the estimated multiplicity, to be added to zx, since the modulus of

—WE = —

the correction is n‘—k for the Durand-Kerner method. In this way, quadratic convergence
is achieved theoretically. Again, this approach can not yield results with high accuracy
since no new formulae are used in the process of iterations. None of the remedies
can avoid the overflow problem because the reciprocals of small differences of close
approximations are too large. The modified Aberth method introduced in this chapter
can avoid the overflow problem because the approximations in the same group are
treated as a single value in the new formula. Consequently, the roots of the polynomial

can be obtained with high accuracy.

Our technique of dividing approximations into groups is based on the following

observations:

1. If the approximations to an m-ple root are sufficiently close, m approximations

are situated on a small circle centering around the root by an angle of 2;"

2. Every correction directs toward the center of the circle and has almost the same

magnitude.

3. In comparison with approximations of simple roots, the order of convergence is

slow, i.e., the value of the residual is relatively large.

4. The magnitudes of the residuals for m approximations are almost the same.

After some iterations we can group the approximations into different groups by
the following method. If the k-th and j-th approximations are in the same group,

they must satisfy the following conditions:

39

1. The corrections wy and w; should satisfy

| wi |

l—a<
| w; |

<l+a, (2.16)

for a small number a.

2. Let 0k, be the angle between vector z; — 2 and vector wi, and ;i be the angle

between vector zx — z; and vector w;. These angles should satisfy

| cos()k, - CO-SG.,Jc |< 5, (2.17)
for a small number 8. Notice that cosfy; = Z=%%) 5 0 and cosf; =
J |2 — 2k [|wi| J

(zk—zl.wl)
|3k-21”w1| > 0 ’

3. We can count the number of approximations satisfying the above two crite-
ria to find the multiplicity. To make sure this group contains all appropriate
approximations we check the criterion:

|wi™P]

~1
Wl m <7, (2.18)

for a small number ~.

In our implementation, we trace the rate of convergence of each approximation
by keeping track of each residual wj. At first few iterations, wi usually fluctuates

{r+1)
wildly. Then all wy start decreasing monotonically. By checking the ratio “ir

T

k

which converges to (m — 1)/(m + 1) by Corollary 2.3.4, one can tell which approx-
imations converge to simple roots. By Theorem 2.3.6 the ratios corresponding to
approximations which converge to simple roots converge to zero very fast. We ob-
served that as soon as all residuals start decreasing it takes at most 10 iterations
for those approximations which converge to simple roots to converge to their targets

within the chosen accuracy. Then the program begins to detect the multiplicities

40

and to execute the grouping process. At first, the residuals are sorted by their mag-
nitudes and the grouping process is invoked to group the approximations according
to criteria (2.16) and (2.17). The program checks criterion (2.18) for each group.
If it is satisfied, the program takes the average of the approximations in the group
and use it in the modified Aberth method. If criterion (2.18) is not satisfied the ap-
proximations in this group are used in the modified Aberth method instead of their
average. When the grouping process is successful it takes only a few iterations for the
modified Aberth method to converge since the averages are very close to the roots
and the method converges cubically. In our experiment, it usually takes less than 3
iterations for modified Aberth method to converge after the grouping. In practice,
the grouping process may include wrong approximations in a group. In this case, the
modified Aberth method will converge linearly. The program disbands the groups
with linear convergence rate and convert to the beginning with the newly computed
approximations as initial approximations. The flow chart of the program is given in

Figure 2.1.

2.5 A Numerical Example

We demonstrate our method by the following numerical example. Let
p(z) = (z = 1.1 = 1.13)%(z — 3.2 — 2.3i)%(z — 2.1 — 1.5).

This polynomial was also used in [29] with which we will compare our result. As
in [29], we choose the initial approximations zx = >/, k = 0,1,...,6. After 12

iterations the approximations and the residual | w; | are

real imaginary residual

1. 2.1000000000000 1.5000000000000 0.

In fact, the 1st approximation reaches the exact root at the 10-th iteration. The

4-th, 5-th, 6-th and the 7-th are grouped as one group with multiplicity 4. Their

3.2002858826098

3.1997141178405

1.0968596312555

1.0940624207372

1.1059206829313

1.1032928553054

average is

41

2.2998138134465

2.3001862562026

1.0941839385686

1.1031845106896

1.0967222422851

1.1060241399490

6.8221947921266D-04

6.8252015101818D-04

4.2572547041395D-03

4.4900998706488D-03

4.5441352406740D-03

4.7093618963726D-03

(1.1000338975574,1.10002287078731).

It is very close to the exact root (1.1,1.1).

Grouping the 2nd and 3rd in one group gives an average

which is also very close to the exact root (3.2,2.3). These demonstrate the effective-

(3.2000000002252, 2.3000000348246)

ness of Theorem 2.2.6.

Then the program switches to the modified Aberth method (2.4) . Only one

iteration gives all the exact roots.

1.

2.

3.

real

1.1000000000000

3.2000000000000

2.1000000000000

imaginary

1.1000000000000
2.3000000000000

1.5000000000000

42

In [29], the same groups are formed after 14 iterations. It took another 7 iterations
for the program to stop. The final results for the approximations converging to the

root (1.1,1.1) are listed below with accuracy to the 4-th digit.

real imaginary
1. 1.09914601 1.10078329
2. 1.10092914 1.09945021
3. 1.09931441 1.09917266
4. 1.10045233 1.10079471

The result is even far less accurate than our average.

In our experiments the approximations converge linearly until the modified Aberth
method is applied. Once the multiplicities are detected, the modified Aberth method

converges extremely fast.

43

Algorithm MODABERTH

Input: polynomial p(z) and its degree n
the initial approximations z;
Output: the roots of p(z)
begin
for i =1 to 2 do
for j =1 to n do
compute new approximations zg
compute residual ué, save old one as w;

for j =1 to n do
compute the ratio r; = w/w;
for i =1 to 2
for j=1ton
compute new approximation as before
compute residual as before
compute ratio as before and save old ones
! now we have 3 consecutive ratios for each approximation

! we want to check if the ratios are all decreasing monotonically

while not decreasing
do one iteration for each approximation
while there is an : such that r;< small; and w; > small,
! if there is an approximation converging to a simple root but

! it has not yet converged.
do one iteration for each approximation

while not done
sort residuals w;,wsz, ,Wy.
for i = 1 to n and w; > small,
for j = i+l ton
check if j should be in the same group as i
for each group, check criterion 3
if all groups satisfy criterion 3 set success = 1

if success =1
while not all convergent
use modified Aberth method once for each approx
if linear convergence is observed
break up groups and goto begin

done = 1 ! all approximations are convergent

else
use modified Aberth method once for each approx

end MODABERTH

Figure 2.1: Algorithm MODABERTH

Chapter 3

Nonsymmetric Eigenvalue Problem

3.1 Introduction

This chapter presents a parallel algorithm to solve the eigenvalues of non-symmetric
matrices. Both homotopy and divide-and-conquer strategies are used. The original
matrix is split into two or more submatrices, then a homotopy between the sub-
matrices and the original matrix is established such that the intermediate matrices
have only simple eigenvalues. The Aberth method is then applied to refine all the ap-
proximations simultaneously. Section 3.2 discusses the split-homotopy strategy, while
Section 3.3 introduces the Hyman method for computing the characteristic polyno-
mial and its derivative. In Section 3.4 we make a straightforward implementation on
Intel iPSC/860 and Intel Delta multicomputers. However, this initial approach did
not use the processors uniformly so we modify our technique in Section 3.5 to balance

the load for message-passing distributed systems.

3.2 Splitting Procedure and Homotopy

Since any real matrix A can be transformed to a similar matrix in upper Hessenberg
form by an orthogonal transformation, we shall assume throughout this chapter that

matrix A is an upper Hessenberg matrix, namely,

44

45

S *
—
8**
o
* ¥ *

0 An_1,n-2 *

ann-1

* *

For convenience we assume n is an even number. We further assume A is irre-
ducible, that is, none of the subdiagonal entries a;;_;, 2 < j < n, is zero, otherwise
we can consider the reduced matrices. Let k = n/2. Let D = (d;;) be the matrix

obtaining from A by making the subdiagonal entry a4y, = 0, namely,
_ [An An
D= (v) .
The eigenvalues of D is the union of the eigenvalues of smaller matrices A;; and

Aj,. It takes much less time to compute the eigenvalues of A;; and A;; and it can be

done in parallel. The following homotopy is established
H(\t) =c(1 —t)det(D — AI) + tdet(A —) (3.1)

where c is a random complex number and 0 < ¢t < 1.

For each t, since H(A,1) is a polynomial in A of degree n, there are n zeros: A;(t),
A2(t), ..., An(t) . They are called the eigenpaths of system (3.1). It is well known
[23] that the eigenpaths do not meet in the interval (0,1) for a randomly chosen c.
It implies that the zeros of H(A,t) at each ¢, 0 < ¢ < 1, are distinct. Our algorithm
does not depend heavily on this property, though it makes the algorithm easier to

implement and more efficient.

Notice that the zeros of H(\,0) are the eigenvalues of matrix D while the zeros of

H(A,1) are the eigenvalues of matrix A. We choose 0 =ty < t; <t < --- < t, =1

46

for some positive integer m. The idea is to use the zeros of H(A,t) at ¢; as the initial
approximations to the zeros of H(A,t) at ¢;;,. Aberth method or our modified Aberth
method may be applied to refine the approximations. It is also possible to use the
tangent line at A¢(¢;) to predict the initial approximation for Ax(¢;4+1). Our numerical
experiments show that the algorithm of the second approach is slower than that of
the first one because of the extra calculations of derivatives in the variable ¢ and the
global convergence property of the Aberth method in practice. Here, we only discuss

the first approach.

In the spirit of the Aberth method, approximations at each step must be distinct.
It is possible that some of the zeros are identical at ¢ = 0 that makes the Aberth
method not applicable. In such case, we simply make random perturbations to make
the initial approximations distinct. Notice that our goal is to find the zeros at ¢ = 1.
It is unnecessary to approximate the zeros with high accuracy at the intermediate
steps t; < 1. In our implementation, the algorithm is allowed to run for a fixed
number of iterations at the intermediate steps regardless of the convergence. The
global convergence property of the Aberth method in practice ensures the eventual

convergence at ¢t = 1.

The problem of finding the zeros at ¢ = 0, i.e., the eigenvalues of both A;; and
Aj, are solved by the fastest available serial codes or by applying the same splitting
and homotopy strategy. In the latter case, we keep dividing the matrices until certain
dimension then the fastest serial code is applied. For instance, suppose the dimension
of the original matrix A is n = 2!, the number of processing nodes is k = 2™, and
m < n. One can split matrix A into k£ small matrices, all of them have dimension

L = 2" ™, the serial algorithm is then applied to those small matrices.

47

3.3 Hyman’s Method

In order to extract the zeros of H(A,t) iteratively by Aberth method, H(A,t) and

OH(zx,t
)

[16] which is remarkably backward stable as pointed out by Wilkinson [34]. Notice

need to be evaluated efficiently. For this purpose, Hyman’s method is used

that det(D — AI) = det(A; — AI)det(Az; — AI). Differentiating equation (3.1) with
respect to A, we have,

OH (A1)
)

ddet(Ay, — M)
E))

Bdet(An - /\I)
oA

= c¢(l1-1)

det(Agz - /\I) + det(Au - /\I)

Odet(A — M)
+t —an

Since A;; and A;; have the same structure as A, we only need to address the
problem of computing det(A — AI) and “—“g‘i_—’\q in more details.
For A = (a;;) and z = (z4,22,...,7,)T, the system of equations (A — Al)z = 0

can be written as

((a1 —A)zy + arez2+ -+ ainz, =0
anzy+ (a2 — A)z2 + -+ + 2,2, =0

For given A, letting r, = 1 in the last equation, we can solve the last n — 1
equations recursively for z,_;,...,z2,z;. These values are then used to evaluate the

left-hand side of the first equation,
F(X) = (a1 = A)z1 + a2z + -+ + a1 Z5 .

It is clear that F'(A) = 0 if X is a eigenvalue of A.

48

To computer det(A — AI), we write matrix A — Al as

(au —-A a2 a3 ain \
az; az — A az3 Azn
as azz— A asn
0 Apn-1n-2 Qp-1n-1—)‘ An-1,n
k an,n—l Qnn — ’\

For j = 1,2,...,n the jth column is multiplied by z; as found above and added to

the last column, thereby yielding the matrix

(an—A ap a3 - e Q1 no1 F(X) \
az az — A az3 T c a2 n-1 0
asz asz3z — A e T azn-1 0
0 Ap_1n-2 Qn-1n-1—)‘ 0
\ Qnn-1 0 J
Therefore
n-1
det(A — M) = (=1)"'F(A) [] aj+1 -
J=1

To compute M%%ﬂl, we need to compute %f—. Differentiating (3.2) with respect to

A, taking into account that z;, j = 1,2,...,n — 1, are functions of (A, t), we have

3 3 3
((all_A)%\L_$1+al2é\2+...+alné\n_0
Sz Az dz
azlgl\l+(azz_A)§f._z2+...+a2nE\n 0

< AT T T 33
Gkt 2+ (@ — N — 2+ @ =0 (33)
\ Gnn-1 31?8"/_—1 + (ann - /\)63_1;\" — Tn = 0
With %’Aﬂ = 0, we solve (3.3) successively for axa,,/_, , 318"/\" yeens %L, using the previously
computed values of z,, z,...,z,. The value of the left-hand side of the first equation

in (3.3) is then 2%.

49

3.4 Initial Implementation

We implemented the algorithm on the Intel iPSC/860 gamma multicomputer and

Intel Touchstone Delta multicomputer.

Both iPSC/860 and Delta multicomputers are distributed memory MIMD ma-
chines [15]. They consist of a collection of computing nodes each of which has a
processor and a local memory. The nodes are inter-connected by networks. The
iPSC/860 system uses hypercube topology architecture while the Delta system uses
2 dimensional mesh. The computing nodes for both systems are the Intel :860 pro-

CESSsOors.

The 128 computing nodes of the iPSC/860 are networked as a 7 dimensional
hypercube. The 512 computing nodes of the Delta system are networked as a 16 by

32 mesh. Each row has 32 computing nodes and each column has 16 nodes.

The communication between processors for both systems are done by a library of
explicit message passing functions. It is the programmer’s responsibility to locate the
synchronization points of the program and specify the communication between the

processors by explicitly passing messages.

It is expected that the Delta multicomputer offers better performance since for
some applications 2-D mesh is a natural topology and the Delta multicomputer uses
faster switching techniques [1, 6]. In our application we have not observed any signif-
icant improvement of the Delta multicomputer over the iPSC/860 system since our
program doesn’t need extensive communication. On the other hand, the communica-
tion in our program is solely broadcasting in which the nodes broadcast the messages
in turn with no message contention. The special faster switching technique for the

Delta multicomputer lose advantage for our application.

50

Algorithm ABERTH

Input: the matrix A

the initial approximations X;, i =1,2,--- n.

the number of processors m, where n is a multiple of m
Output: the eigenvalues of A, A, :=1,2,---,n.
begin ABERTH

s=n/m ! my share of computation load
! begin computation
tam = mynode() ! system call, returns the id of this node

for t=iamx*s+1 to (iam+1)*s
update); ! use Aberth method

end for

! end of computation

! begin communication

for i=0 to m—1 ! the node counts from 0 to m—1
if (tam =1i) then
send Miamest1,° "3 A(iam+1)xs t0O all other nodes.
else
TECEIVE Migmastls” "y A(iam+1)ss TOM Node 1.
end if
end for
! end communication
end ABERTH

Figure 3.1: Algorithm ABERTH

Both systems support Fortran 77 with message passing libraries. Their main
differences are their inter-connection topologies and the switching techniques which
are invisible to the users. The programs written for one system are portable to the
other. In our implementation, programs were written for iPSC/860 multicomputer

first, then ported to the Delta multicomputer without modification.

The program has two phases. The first phase splits the matrix into two or more
submatrices. Then subroutine HQR in EISPACK is called to find the eigenvalues
of each submatrices. Those eigenvalues are used in the second phase as the initial

approximations to the eigenvalues of the target matrix. The Aberth method is then

51

used iteratively to find all the eigenvalues in parallel. The basic structure of the

program for one iteration in the second phase is shown in Figure 3.1.

When compared to the fastest available sequential code HQR in EISPACK run-
ning on one node, our parallel program was slower when less than eight nodes were
used, see Table 3.1, Table 3.2 and Table 3.3 for matrices with different dimensions.
For eight or more nodes, the parallel version was faster, by a factor of two on 16
nodes. Execution time improved as the number of nodes increased. As more nodes
are added the improvement flattens off due to the load imbalancing problem and the

communication overhead.

nodes | sec

1 2.72

2 1.55

4 0.97

8 0.67

HQR on 1 node || 16 0.52
0.75 sec 32 0.47

64 0.60

Table 3.1: Time on 1860 with a 64 x 64 random matrix.

nodes sec

1 18.96

2 10.61

4 6.63

8 4.23

HQR on 1 node || 16 2.83
4.56 sec 32 2.25

64 2.48

128 2.72

Table 3.2: Time on 1860 with a 128 x 128 random matrix.

52

nodes sec

1 149.45

2 84.54

4 51.22

8 30.29

HQR on 1 node || 16 17.87
32.24 sec 32 10.81

64 8.21

128 9.82

256 13.38

Table 3.3: Time on 1860 with a 256 x 256 random matrix.

3.5 Load-Balancing

In this section we consider the load-balancing problem. The Aberth method fits
parallel computers naturally. Suppose n nodes are used for the computation of the n
eigenvalues of an n X n matrix. Each node is responsible for finding one eigenvalue.
For direct implementation, every node has a copy of the complete information of
the matrix and all the n initial approximations. The nodes execute calculations
simultaneously so that one node updates only one approximation. Since all nodes
have the same amount of computation, they generally complete the calculation at
the same time. Then every node broadcasts the updated approximation to the other
nodes. This process continues until all the nodes find the expected eigenvalues. A
natural stopping criterion is, as soon as an approximation is good enough no further

iteration on that approximation is needed.

In Section 3.4 we have shown that the parallel algorithm can beat the best serial
algorithm, HQR in EISPACK, for a sufficiently large number of processors using an
Intel Delta multicomputer. However, if the number of nodes is far less than the num-

ber of eigenvalues, each node is responsible for finding more than one eigenvalue and

53

S1[S2[S3[S4][S5[S6[S7]S8([S9|[S10]S11[S12]S13|S14|S15[S16 |
NOJj10|10(10|10| 9 7| 7| 5| d) 3 2 1 1 1 0
Nijff1wo0f10f 9| 8| 6| 4| 3| 3| 2 2 2 1 1 1 0 0
N2j10f(10{10[10| 9] 9| 8| 8| 8 7 7 6 3 2 1 1
N3|10|10f{10| 9| 9| 8] 7| 5| 5 4 3 3 2 1 0 0
N4|10|10{10| 9| 9| 8| 7| 7] 6 6 6 4 4 3 1 1

Table 3.4: Unbalanced Load Distribution

some nodes may complete their jobs earlier. This difference causes load-imbalance.

To illustrate the load-imbalance, let’s compute the eigenvalues of a 50 x 50 matrix
whose eigenvalues and the initial approximations are randomly chosen in the region
{z € C,|z| < 1}. With 5 nodes, the program assigns the first 10 eigenvalues to the first
node, the second 10 eigenvalues to the second node, ..., and the last 10 eigenvalues
to the last node. Since it takes the same number of floating-point operations for any
node to update one approximation, we will count the amount of time to complete this
number of operations as one unit time. Table 3.4 lists the number of eigenvalues each
node computes at each step—each row represents a node and each column represents

a step. It takes 105 parallel time units for the program to complete.

The key for the load-balancing problem for the Aberth method is the observation
that if every node has a complete copy of the previous approximations, it can update
any approximation. The total number of eigenvalues is sufficiently small for each node
to have a copy. Based on the differences between the old approximations and the new
ones it received, each node can decide which approximations are good enough and
need no more updating. Once a node has complete information on which approxima-
tions need to be updated and the number of nodes involved in the computation, it

can determine the distribution of approximations to nodes. The number of approx-

o4

S1{S2|S3|S4|S5|S6|S7|S8|S9|S10|S11|S12|S13 |S14 |S15 | S16
NO|10|10{10|10| 9| 8| 7| 6| 6 S G} 4 3 2 1 1
N1|10|10(10| 9| 9| 7| 7| 6| 5 S 4 3 2 2 1 1
N2|{10|10(10| 9| 8| 7| 6| 6| 5 5 4 3 2 2 1 0
N3|[10|10 (10| 9f 8] 7| 6| 5| 5 5 4 3 2 1 0 0
N4| 10|10 9] 9| 8] 7| 6| 5| 5 4 4 3 2 1 0 0

Table 3.5: Balanced Load Distribution

imations can be evenly divided among nodes, and that determination is completely
distributed. Note that each node also knows the approximations other nodes are to

update. This information is required when a node broadcasts the updated approxi-

m
nnodes

mations later. Node i updates | | + ri consecutive approximations, where m is

the number of approximations to be updated at this step, nnodes is the number of

m
nnodes

nodes involved in the computation, r; = 1 if i < m — | | and r; = 0 otherwise.
For example, when there are 50 approximations to be updated and there are 5 nodes,
each node gets 10 consecutive approximations. If there are 33 approximations, then
node 0, node 1 and node 2 each gets 7 consecutive approximations while node 3 and
node 4 each gets 2 consecutive approximations. For this balanced program, at each
step every node computes the approximations it is responsible for. Table 3.5 lists the
number of approximations each node computes at each step for the above example.
The program takes 97 parallel time units to complete which represents a distinct

improvement over the 105 time units for the unbalanced example. Figure 3.2 shows

the corresponding timing information.

The unbalanced program uses static scheduling which assigns the i-th chunk of
approximations to the i-th node. The balanced program, on the other hand, assigns

the i-th share of approximations to the i-th node dynamically at each step. For this

%)

Node 0
H H H H H T Node |
e b Nese2

Node 0 " . .
Node i BB Nose>
Node 2 S —————— Node 4 T B B B R, Mo, of liermion
Node 3 *-h '- _ h 'p";fi ° e » © ® N « W WU BONSNI
o e i et
° ° » 0 “ o u :‘ " |; ;nmn:mm
(a) Unbalanced Timing (b) Balanced Timing

Figure 3.2: Unbalanced vs. Balanced Timing

seconds
s+ seconds
«) -
10+ 45 +
30 -
ST
15 1
t t t + + t + + t +
2 3 4 S 6 No. of Nodes 2 3 4 S 6 No. of Nodes

(a) Timing for 240 x 240 matrices (b) Timing for 360 x 360 matrices
Figure 3.3: Timing Info for 240 x 240 and 360 x 360 matrix

dynamical scheduling extra computation is needed to determine the shares for all
the nodes at every node. Fortunately, this computation takes only O(n) operations,
while one updating of an approximation takes O(n?) operations in Hyman’s method

to evaluate the polynomial and its derivative. This extra computation is negligible.

We implemented the balanced algorithm on a cluster of up to 6 DEC Alfa 3000
workstations running Message-Passing-Interface (MPI) with Fortran 77. MPI is a
widely used standard for writing message-passing programs. It is available for al-
most all existing high performance machines [27]. The test matrices are real upper

Hessenberg matrices whose entries are randomly generated in the range (—10,10).

56

The matrix is divided in the middle into two smaller real upper Hessenberg matrices.
Subroutine HQR in EISPACK is called to find the eigenvalues for each of the two
matrices. The eigenvalues for the two matrices are merged as the initial approxima-
tions to the original matrix. Aberth method is applied to refine the approximations.
We tested the matrices of degree up to 360 x 360. The results show that the balanced
program saves about 10% for the chosen class of matrices compared to the unbal-
anced program. Figures 3.3 shows the timing information for test matrices of degree

240 x 240 and degree 360 x 360.

3.6 Conclusion

In this chapter we describe a parallel algorithm to solve the eigenvalues of non-
symmetric matrices. The straightforward approach leads to an unbalanced utilization
of processors so a dynamically load balanced approach was developed and demon-
strated. At this time, only six processors were available so the gains are small. Since
the computations grow much faster than communication we expect significantly bet-

ter results on a larger machine, especially with respect to the fastest serial algorithm,

HQR.

Bibliography

[1] Aad J. wan der Steen, An overview of (almost) available parallel systems,

Publication of the NCF, December 1993.

(2] O. Aberth, Iteration Methods for Finding all Zeros of a Polynomial Simulta-
neously, Math. Comp., Vol.27,1973, pp. 339-344

[3] G. Alefeld and Herzberger, On the Convergence speed of Some algorithms
for simultaneous approzimation of polynomial roots, SIAM J. Num. Anal.,
11(1974), 237-243.

[4] Alan F. Beardon, Iteration of Rational Functions, Springer-Verlag, 1990.

[5] W. Borsch-Supan, A posteriori error bounds fro the zeros of polynomials, Nu-
mer. Math. 6(1963) pp. 380-398.

(6] Lionel M. Ni, Lecture Notes of CPS822, Computer Science Department, Michi-
gan State University, Spring, 1995.

[7] J.Cuppen, A divide and comquer method for the symmetric tridiagonal matri-
ces, Numer. Math., 36(1981), pp. 177-195.

[8] K. Docev, A modified Newton method for the simultaneous approzimation of
all roots of the given algebraic equations, Fiz. - Mat. Spis Bulgar. Akad. Nauk
5 (1962) pp. 136-139 (in Bulgarian).

[9] J. Dongarra, M. Sidani, A parallel algorithm for the nonsymmetric eigenvalue
problem, SIAM J. Sci. Comput. 5(1993), pp. 542-569.

[10] J. Dongarra, C. Sorensen, A fully parallel algorithm for the symmetric eigen-
value problem, SIAM J. Sci. Statist. Comput. 8(1978), pp. S139-@154.

[11] E. Durand, Solutions Numeriques des Equations Algebriques, T.I. Paris 1960.

[12] L.W. Ehrlich, A modified Newton method for polynomials, , Comm. ACM 10
(1967) pp. 107-108.

(13] M.R.Farmer,G. Loizou, A CLASS OF ITERATION FUNCTIONS FOR IM-
PROVING,SIMULTANEOUSLY, APPROXIMATIONS TO THE ZEROS OF
A POLYNOMIAL, BIT 15 (1975),pp. 250 - 158.

[14] Hamilton, A Type of Variation on Newton’s Method, Amer. Math. Monthly,
57, 517-522(1950).

57

58

[15] Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability, McGraw-Hill Inc. 1993.

[16] M. Hyman, Eigenvalues and Eigenvectors of general matrices, presented at the
12th National Meeting of the Association for Computing Machinary, Houston,
Texas, June 1957.

[17] Pierre Fraigniaud, The Durand-Kerner Polynomials Roots-Finding Method in
case of Multiple Roots, BIT 31(1991),112-123.

(18] T.L.Freeman, Calculating Polynomial zeros on a local memory parallel com-
puter, Paralle Computing 12(1989) 351-358.

[19] M.W. Green, A.J.Korsak and M.C.Pease, Simultaneous iteration towards all
roots of a complez polynomial, SIAM Rev. 18 (1976), pp. 501-502.

[20] I Kerner, Ein Gessamtschrittverfahren zur Berechung der Nullstellen von Poly-
nooem. Num. Math. 8(1966), 290-294.

[21] Goran Kjellberg, Two Observations on Durand-Kerner’s Root-Finding
Method, BIT 24(1984),556-559.

[22] K. Li and T.Y. Li, An Algorithm for Symmetric Tridiagonal Eigenproblems-
Divide and Conquer with Homotopy Continuation, SIAM J. Sci. Statist. Com-
put., 14(1993), pp. 735-751.

[23] T.Y. Li, T. Sauer, J. Yorke, The random product homotopy and deficient poly-
nomial systems, Numer. Math., 51, (1987), pp. 481-500.

[24] T.Y. Li , Zhonggang Zeng, Homotopy-determinant algorithm for solving non-
symmetric eigenvalue problems, Math. Comp. 10(1992), pp. 483-502.

[25] T.Y.Liand Zhonggang Zeng, The Laguerre Iteration in Solving the Symmetric
Tridiagonal Eigenproblem, Revisited, SIAM J. Sci. Comput. 9(1994), 1145-
1173.

[26] T.Y.Li, Z. Zeng, and L. Cong, Solving eigenvalue Problems of real nonsymmet-
ric matrices with real homotopies, SIAM J. Numer. Anal. 29(1992), 229-248.

[27] Message Passing Interface Forum, MPI: A Message-Passing Interface Stan-
dard, May 5, 1994.

(28] M. Marden, Geometry of Polynomials, Amer. Mathematical Soc., Providence,
RI, 2nd ed., 1966.

[29] Tsuyako MIYAKODA, Iterative method for multiple zeros of a polynomial by
clustering, J. Com. and App. Math. 28(1989),pp. 315-326.

[30) J.M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, 1970.

[31] B.N.Parlett, Laguerre’s Method Applied to Matriz Figenvalue Problem, Math.
Comp. 18(1965), pp. 464-485.

59

[32] L. Pasquini and D. Trigiante, Il metodo di continuazione e l’approssimazione
stmultanea degli zeri dk un polinomio, Monografie di Soft. Matem., N. 30,

Pubbl. dell’1AC, 1984.

[33] T. Terano, On a global algorithm for algebraic equationss, PhD Thesis, Uni-
versity of Tokyo, Information engineering course (1978).

[34] J.H. Wilkinson, Error Analysis of Floating-point Compuation, Numer. Math.
2 (1960), 319-340.

MICHIGAN STATE UNIV. LIBRARIE:

1IN IIIH||IMJ|\||IJIH“IINW\IWIHIIIW

