
1|
}!
le
WW
W“
)W
WI
WW
“M
IN
IM
UM

      12

2 0 N
0
1



'YHESlS

\ llllllllllMIIIIHIWWlllllllllllllllllllllllllllllllllllll
31293 01413 7727

This is to certify that the

dissertation entitled

A SCALABLE ALGORITHM FOR

NON-SYMMETRIC EIGENVALUE PROBLEM

presented by

Xiaozhuo Yang

has been accepted towards fulfillment

of the requirements for

 

 

 

Ph . D. degree in Applied Mathematics

7

r—Cvx' \7/:£L- 6’)

Major professor

Date May 2: 1996

MSU is an Affirmative Action/Equal Opportunity Institution
0- 12771



 

LIBRARY

M'Chigan State

’ University

 
  

PLACE IN RETURN BOXto remove thle checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

 

   

 

   

 
  

  

  

 
  

 
   
 

 
   

   

L_L__|

T—ll—TF—J
usu IeAn Affirmative Action/Ewe! Opportunity lnetltulon

W

 

m1



A SCALABLE ALGORITHM FOR

NON-SYMMETRIC EIGENVALUE PROBLEM

By

Xiaozhuo Yang

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1996



ABSTRACT

A SCALABLE ALGORITHM FOR NON-SYMMETRIC EIGENVALUE

PROBLEM

BY

Xiaozhuo Yang

This thesis is on iterative methods which find all the zeros of a monic complex

polynomial simultaneously and an application to the algebraic eigenvalue problems.

In Chapter One we investigate the convergence behavior of the Durand-Kerner

method on the real plane R2 and characterize the convergence set completely in C2.

The Durand-Kerner method converges if and only if the initial approximations are in

the convergence set.

Chapter Two presents a modified Aberth method to find the multiple zeros of

a polynomial efficiently and accurately. We show that the modified Aberth method

converges cubically. We also describe the property of the original Aberth method

near a multiple zero and hence propose a scheme to dynamically detect the multiple

zeros and their multiplicities.

In Chapter Three we apply the Aberth method, along with homotopy method, to

the nonsymmetric eigenvalue problem. The algorithm has been implemented on the

Intel Touchstone Delta multicomputers. The result shows this algorithm is competi-

tive to HQR from EISPACK. A dynamical load-balancing technique is developed to

balance the load across the computing nodes. The load-balanced algorithm improves

the performance by up to 15%.



DEDICATION

To my wife, Ling Gao and sons, Pengling and Phillip, for their

understanding, support and patience.

iii



ACKNOWLEDGEMENTS

I am most indebted to my dissertation advisor, Professor T.Y. Li, for his encourage-

ment, support adn advice during my graduate study at Michigan State University.

His deep insight into mathematics and persistence have always influenced me.

I also would like to thank my dissertation committee members, Professor Michael

Prazier, Professor Richard Hill, Professor John McCarthy, and Professor Zhengfang

Zhou, for their valuable suggestions and precious time.

iv



Contents

LIST OF TABLES . vi

LIST OF FIGURES .............................. viii

1 Dynamics of the Durand-Kerner Method 1

1.1 Introduction ................................ 1

1.2 The Derivation .............................. 2

1.3 Dynamics of the Durand—Kerner Method in R2 ............ 3

1.4 The Complex Case ............................ 15

2 A Modified Aberth Method of Finding All Roots of a Polynomial

with Multiple Roots 18

2.1 derivation ................................. 18

2.2 Local Convergence ............................ 21

2.3 The Aberth Method at Multiple Zeros ................. 28

2.4 Dynamic Estimation of Multiplicities .................. 37

2.5 A Numerical Example .......................... ' 40

3 Nonsymmetric Eigenvalue Problem 44



3.1 Introduction ................................ 44

3.2 Splitting Procedure and Homotopy ................... 44

3.3 Hyman’s Method ............................. 47

3.4 Initial Implementation .......................... 49

3.5 Load—Balancing .............................. 52

3.6 Conclusion ................................. 56

BIBLIOGRAPHY 57

vi



List of Tables

3.1 Time on i860 with a 64 x 64 random matrix............... 51

3.2 Time on i860 with a 128 x 128 random matrix. ............ 51

3.3 Time on i860 with a 256 x 256 random matrix. ............ 52

3.4 Unbalanced Load Distribution ..................... 53

3.5 Balanced Load Distribution ....................... 54

vii



List of Figures

 

1.1 The Convergence Set ........................... 6

1.2 The Decomposition of R2 ......................... 8

1.3 The First Iteration ............................ 10

1.4 The Second Iteration ........................... 11

1.5 The Monotone Convergence ....................... 13

2.1 Algorithm MODABERTH ......................... 43

3.1 Algorithm ABERTH ............................ 50

3.2 Unbalanced vs. Balanced Timing .................... 55

3.3 Timing Info for 240 x 240 and 360 x 360 matrix ........... 55

viii



Chapter 1

Dynamics of the Durand-Kerner

Method

1 . 1 Introduction

The Durand-Kerner method is an iterative method which approximates simultane-

ously all the n roots of a complex monic polynomial of degree n. It was first proposed

by Durand [11], and later, independently, by Kerner [20]. Since then, more work on

this method has appeared in the literature [17, 18, 21].

With a monic polynomial

19(2) =zn+alz"_l+~-+an_lz+an, (1.1)

the Durand—Kerner iterations are

 

z

zizzk— n Mk) , k=1,2,...,n. (1.2)

I—Ijzl,j¢k(zk _ 23')

Here, {21, 22, . . . , 2n} is a set of approximations to the n zeros of p(z). Empera-

tively, {21, 2;, . . . , 2;} forms a set of better approximations.

The method was shown to have convergence order two when the polynomial has

only simple roots [3, 20].



It was conjectured in [19] that this method converges for almost all initial approx-

imations in C", when the initial approximations are viewed as a point (21, 22, . . . , 2”)

in C". To the best of our knowledge, this conjecture remains open, except for the

case n = 2. It was mentioned in [19] that T. Terano gave a proof [33] for n = 2 in his

Ph.D. thesis.

In this chapter, we investigate the convergence behavior of the Durand-Kerner

method on the real plane 82 and characterize the convergence set completely in C2.

The Durand-Kerner method converges if and only if the initial approximations are in

the convergence set.

After the derivation of the Durand-Kerner method in Section 1.2, we discuss

in Section 1.3 the convergence behavior of the Durand-Kerner method in R2. In

Section 1.4 we show that the Durand-Kerner method converges quadratically in its

convergence set in C2.

1.2 The Derivation

The Durand-Kerner method can be derived from different approaches [11, 13, 20].

Here, we give a simple derivation of the Durand—Kerner method following [2]. We

also discuss some properties of the Durand-Kerner method.

Suppose that $1, $2, . . . , at” are n simple roots of polynomial p(z) and 21, 22, . . . , 2,,

are n initial approximations. Let 6;, = :51, — 2k. Then, polynomial (1.1) can be written

as

71

10(2) = 11(2 — (2;. + 61.)).
k=l

Expanding the right hand side in the powers of 6;, and dropping all higher powers

of 6;, yield



z)E’H(z—zk) 251,1]z—z,

k=1 k: 1 jyék

For a fixed index k, plugging in 2;, on both sides and solving for 6;, give the first

order approximation for 6k,

 

P(Zk)
6;, = — . (1.3)

Hj¢k(zk — 21')

This gives formula (1.2). Notice that the sum of the Durand-Kerner iterates z], 2;, . . . , 25,,

is —al [21].

1.3 Dynamics of the Durand-Kerner Method in R2

In this section, we consider the Durand-Kerner method in R2. All numbers considered

are real numbers except otherwise stated. We assume that the polynomial has degree

two with distinct real roots, having the following form

where a and b are two distinct real numbers.

For simplicity, let A(:L', y) = (:r’, y’) be the Durand-Kerner iteration, where

1:::
Obviously, the Durand-Kerner method does not converge when the initial points are

 

1
:
-

(1.4)

chosen from the set D = {(x, y) E R2 : a: = y}, which makes the denominators zero.

Let J = A’1(D). This set can be described in the following theorem.



Theorem 1.3.1 The set J has the following form

J:{(x,y):2xy—(a+b)(:r+y)+2ab=0}.

Moreover, the Durand-Kerner iteration maps all points in J into one single point

(new)
2’2 '

Proof. Suppose (:r,y) is in the set A‘1(D), then

  

  

_ (Iv-a)(-’L'-b) = _ (y-a)(y-b)

:c—y y—a: '

So,

xz—xy—a:2+(a+b):c—ab_ yz—xy—y2+(a+b)y—ab

x—y _ y—m '

Hence,

2xy—(a+b)(:c+y)+2ab=0. (1.5)

On the other hand, let (:r,y) satisfy condition (1.5). If :1: 7E 3%, then y =

W. Bring it into the Durand-Kerner iteration (1.4), yielding

 

  

,_ (:c—a)(a:—b) a+b

(I? ‘- (B _ ]a+b[.1:—2czb : 2 '

a: - 2x—(a+b)

Similarly,

,_ (y-a)(y-b)_a+b

y _ y — ]a+b]y-Zab - 2 '

y — 2y-(a+b)

Now, we show that :1: 52$ 9359 when (x,y) E J.

Ifx = 13:5 and (x,y) E J, then

2a+b
 

b

y—(a+b)(y+a—:—)+2ab=0.



5

Consequently, —L%§L2 + 2ab = 0. So, (a — b)2 = 0. Hence a = b. This contradicts

to our assumption that a and b are distinct.

Let P = ((a + b)/2, (a + b)/2), then the Durand-Kerner iteration A maps J onto

P. I

Let L = {(33, y) : r + y = a + b}, a straight line on the real plane. The two fixed

points P1 = (b,a) and P2 = (a,b) of the Durand-Kerner iteration function (1.4) are

on L (See Figure 1.1).

Theorem 1.3.2 After one Durand-Kerner iteration, (:r',y’) in (1.4) satisfies :r’+y’ =

a + b.

Proof. Choose any starting points a: and y such that a: 75 y. By the Durand-

Kerner iteration (1.4) ,

, (x-a)(~'v-b)
a: = :1:—

3‘31

 

—:ry+ (a+b)a: — ab
 

3

 

 

:r—y

and

, — —by I y_(y a)(y )
y—a:

_ -:I:y+(a+b)y—ab
_ y—at ,

So,

x'+y'—a—b = a"—a+y'—b

—a:y+(a+b)a:—a(x—y)—ab

:r—y

 

—:cy+(a+b>y—b<y—x>—ab

y—x

+
 



6

—:cy+b:c+ay—ab+:ry—ay—ba:+ab

3"?!

 

 

Pl

 

Lh

    
Figure 1.1: The Convergence Set

Theorem 1.3.1 and Theorem 1.3.2 show that the Durand-Kerner method maps

It2 —- D onto L and maps J onto point P. We will show next that R2 — (J U D) is the

convergence set on the rea1 plane where starting in which the Durand—Kerner method

converges .

For convenience, define

(a+b):c—2ab

2x—(a+b)'

 
d(a:) =

We assume a > b. The graph of D is a straight line passing through the point

P = ((a + b)/2, (a + b)/2) in R2 while the graph of d(a:), the set J, has two branches

(see Figure 1.1).

The function y = d(:c) has a horizontal asymptote and a vertical asymptote,



Lh= 3! = 99?,

Lu: :1: = gig—Q.

L}, and LU divide the plane into four regions:

II={(x,y):x>mandy> w}.

12={(:r,y)::r<9flandy>a—+b.

I3={(:r,y):.r<mandy<1fl.

I4 = 1193,31)”: 2 “-I-b and y S ELb}-

The graphs of J and D divide 11 and 13 into eight regions:

e 111={(:c,y)€ 11 : y < :1: and y > d(:c)}.

[12 = {(x,y) E 11 : y > a: and y > d(a:)}.

113 = {(x,y) E 11 : y > .r and y < d(a:)}.

[14 = {(a:,y) E II : y < a: and y < d(a:)}.

I31={(:c,y)6 13 : y > :1: and y < d(:r)}.

I32 : {(a:,y) 6 I3 : y < :1: and y < d(.r)}.

133 = {(x,y) E [3 : y < :1: and y > d(:c)}.

134 = {(a',y) E 13 : y > :1: and y > d(:z:)}.

Line y = a and line a: = b divide the regions 12 and 14 into eight regions:

0 [21={(:I:,y)€I4.b<:rS(a+b)/2 anda<y}.



122={(:v,y)€I4zx<banda<y}.

123={(a:,y)€ I4zx<band (a+b)/2Sy<a}.

124 = {($,y) 6 I4 : b < a:(a + b)/2 and (a + b)/2 < y < a}.

I41={(:c,y)€I4:r>aandb<yg(a+b)/2}.

I42={(a:,y)€ I4:(a+b)/2 <1: <aandb<y< (a+b)/2}.

I43={(:r,y)€ I4:(a+b)/2Z:r <aandy<b}.

I44={(:1:,y)6I4zr>aandy<b}.

See Figure 1.2.

 

12 \‘X 11

[21 112

122“.

“ .P' 11 “1

123 124‘ 114

 

  
 

I31 132‘ p2 141

13 ‘~

I32
144

I33 “

I43

 13 I4    
Figure 1.2: The Decomposition of R2

The behavior of the Durand-Kerner iterations is shown in the following lemmas.

Lemma 1.3.3 A(112)C 14 n L.



Proof. Suppose (x,y) E 112, then y > :r, y > d(a:) and a: > (a + b)/2. For

(x’, y’) = A(:c, y), by Theorem 1.3.2, we only need to show ar’ > (a + b)/2.

   

 

 

, a+b —:cy+(a+b).r—ab a+b

.r- = -

2 x—y 2

_ 25ry—2(a+b):r+2ab—(a+b)y+(a+b).r

2(y-arr)

_ 2:1:y—(a+b)a:—(a+b)y+2ab

2(y-as) '

Since the denominator is positive by assumption, the numerator also needs to be

positive. Now,

 

 

0 < y — d(.r)

(a + b):c — 2ab

2a: — (a + b)

_ 2xy—(a+b)y—(a+b)x+2ab

— 2:1: — (a + b)

The denominator is positive, so is the numerator. this proves cr’ — @ > 0. I

Lemma 1.3.4 A(114) C [4 O L.

Proof. Suppose the initial point (x,y) 6 114, then y < :L‘, y < d(:c) and :r >

(a + b) /2. The assertion can be proved by applying the same arguments as in Lemma

1.3.3. I

Similarly, we can show that A(111) C [2 O L and A(113) C 12 (1 L.

By symmetry, similar results hold when the starting points are in [3, namely,

A(I31) C [2 n L, A(I33) C [2 n L, A(I32) C 14 (1 L and A(I34) C 14 O L (see

Figure 1.3).



10

 

 

““.‘12

I]

If _____ r- ---l.!.2_:.i' ..

I, +..

4 ’ 11 Ill

l 114 e

l'131

I34 4 a";

132 I-." “

.‘I .r

...... 133-- .........

‘e

.‘ L

13 I4    
Figure 1.3: The First Iteration

Next, we show that the Durand-Kerner iterations converge to P2 = (a,b) and

P1 = (b,a) when the starting points are in I4 and 12, respectively. By symmetry, we

only consider the case of 1.; (see Figure 1.4).

Lemma 1.3.5 A([41) C [42 n L.

Proof. Let (x,y) E I41. Notice that y < 3:, a: > a > (a + b)/2 and b < y <

(a + b)/2. For (1", y’) = A(2:,y),

 

 

 

(III—a
: _$y+(a

+b)x_a
b_a($_

y)

13—3]

_. —$y+bx
+ay—ab

_
53—3,

_ (x—GXD
—u)

_ x—y

< O,

and

I a+b —2a:y+2(a
+b):z:—2a

b—(a+b)x+
(a+b)y

  

2 2(x - y)



11

—2xy + (a + b):c + (a + b)y — 2ab
 

2(x - y)

Combining inequalities w > 2ab and a: > a > Lag—bl, yields

—2a:y + (a + b)a: + (a + b)y — 2ab > —2a:y+(a+b):r+(a+b)y—
(a + b)’

2

 

= 0.5((a + b) — 2y)(2:1: — (a + b))

>0.

So, 93’ — $13 > 0. This proves our assertion.

Similarly, we can show that A(I43) C [42 n L.

 

12 “

11

 

13

 

\

\

‘ \

132,.-.

 

 

I43

 

-‘

¢’
.

-‘
--

 
 

Figure 1.4: The Second Iteration

When the starting points are chosen in 142 we have

Lemma 1.3.6 A(I42) C [44 0 L.

Proof. Let (a3,y) E [42, then y < :r, 91sz < a: g a and b S y < 9:39.



12

For (:r’, y’) = A(:c,y), we need to show 93’ Z a since (:r’,y’) lies on L.

, —:cy+(a+b)a:—ab—a(:r—y)
 

 

 

 

 

 

a: —a =

:1: — y

_ (x - a)(b - y)

33 ‘y

> 0

I

For region 144, we have

Lemma 1.3.7 AU“) C [44 0 L.

Proof. When (2:,y) E 144, cc 2 a > b 2 y. Then,

:c’—a : —:ry+(a+b)at—ab-a(.r—y)

I ”y

= (x —a)(b—y)

‘7" ‘y

2 0.

and

,_b _ -xy+(a+b)y-ab-b(y—w)
y — y —.’1:

= (m—a)(b-—y)

y—a:

S 0

SO ((13,, y’) E I44 (1 L. I

We have shown that after at most two iterations the Durand-Kerner iterates lie

on the line L in either 144 or 122 (see Figure 1.4).

Next, we will show that the Durand-Kerner iterations converge monotonically on

the line L towards the points P2 2 (a,b) and P1 = (b, a) when the initial approxima-

tions are in the region I44 (1 L and [22 {'1 L, respectively (see Figure 1.5).



13

 

‘2 ~. 11

122

“ Pl

 

\4

13 I4    
Figure 1.5: The Monotone Convergence

Theorem 1.3.8 If the starting point (:r,y) E L F1 144, then the Durand-Kerner iter-

ations converge to (a,b) monotonically. Moreover, it converges quadratically.

Proof. Since (2:,y) lies on L, we have a: + y = a + b. For (x’, y’) = A(:c,y), we

also have ar’ + y’ = a + b. Hence,

 

 

y = a+b—x.

So,

$I_a : ($—a)(b—y)

1'"?!

: (r—a)(:c—a)

2:c—(a+b)

= 2(2) Gib)”; a)



14

 

° x—a

Since 0 < 2(x—“—}9) < 1.

Let (34231”) = (A)“($.y) E A(fink—1016.11». then

1

0 < a:(k+1)— a < —(;r(k) — a) < (§)k+l(:r — a)

inductively from (1.6). So, .731") converges to a monotonically. At the same time, y”)

converges to b monotonically. Therefore, (2711‘), y‘kl) converges to (a, b) monotonically.

Next, we consider the rate of convergence. Since

  

(||(:v’. y’) - (a, b)|l2)2 = (50’ - (1)2 + (y’ - b)2

(”(23.11) - (a,b)II2)4 ((11 - a)2 + (y - WV

2 rug-1311? 2
 

((33 - a02 + (y - (9)2)?

(:13 - a)2(x - a)2

(a + b — 2x)22(:c -— a)4

 

l

(a +b— 2:22)2

 

1

(x - 11-1)?.
h
h
—
i

 

 

 

The Durand-Kerner method converges quadratically. I

Similarly, we can prove the following

Theorem 1.3.9 If the starting point (.r,y) E L (1 122, then the Durand-Kerner iter-

ations converge to (b,a). Moreover, it converges quadratically.

In summary, after at most two iterations the Durand-Kerner method starting at



15

a point in R2 — (J U D) will converge to the solution monotonically along the line L

and the rate of convergence is two.

1.4 The Complex Case

This section discusses the Durand-Kerner method in C2. Let the two zeros a and b

as well as the starting points :1: and y be complex numbers. Similar to the previous

section, (a, b), (b, a) and (3:, y) are viewed as points in two dimensional complex space

C2. Let D = {(x,y) 6 C2: 1: = y}, J = {(a:,y) 6 C2: 2:1:y—(a+b)(a:+y)+2ab = 0}

and L = {(a:,y) E C'2 : a: + y = a + b}. Notice that Theorem 1.3.1 and Theorem

1.3.2 are still true in complex case. J is the pre—image of D and after one iteration all

points lie on the complex line L. We also notice that both J and D have Lebesgue

measure zero in C2.

Similar to the Durand-Kerner method on the real plane, we show that the Durand-

Kerner method converges for any starting points in the set C2 — (J U D U S), where

S is a set of Lebesgue measure zero in C2.

The line L can be parameterized as follows:

a+b a-b

2+2t

 

a; :

(1.7)

y=%+%t 1

where t is a complex number. When t = 0, —l and 1 the corresponding points are

P = ((a + b)/2,(a + b)/2) , P1 = (b,a) and P2 = (a,b).

Since the Durand—Kerner iterative function (1.4) maps C2 — (J U D) onto L — P,

we assume, for the moment, that the starting points are chosen from L — P. These

points can be parameterized by (1.7) with complex parameter t # 0. We will see that

Durand-Kerner method does not converge when the initial approximation is chosen



16

by (1.7) with an imaginary number t. Let S be the set of points in 02 corresponding

to imaginary t, that is, .5' = 5,, U 5y, where

a+b a—b

2 + 2

 ri)} 

S.={(w.y)€02=(fv-y)$-($-a)($-b)=(iv-y)(

and

S.={(x.y)e C2:(y—x)y-(y—a)(y—b> =(y—x)(“',*b+ bgarm, 

where r is a real number and i = \/—1. It is easy to see that S is a geometric surface

in C2 , hence it has Lebesgue measure zero.

Now, the Durand-Kerner iterative function (1.4) maps points in C2 - (JUDUS) to

points on line L which can be parameterized by (1.7) with non-zero and non-imaginary

t. Let (:r,y) be on L with parametric equation (1.7). For (33’, y’) = A(a:,y), we have

I _ gfl [a-b]]1+t2]

a: — 2 + 2 2t

_ a+b (5-02 (1+9)

y' — '2— + 2 2t ‘

Therefore, the Durand—Kerner iterations are determined solely by the iterative

behavior of the complex iterative function

 

It is easy to see that f(z) is just the Newton iterative function for the quadratic

polynomial q(z) = 22—1. That is, f(z) = z—:—,(L:%. The Newton iterations of quadratic

functions are well understood [4]. We list some results in the following

Theorem 1.4.1 The iterations of the function f(z) have the following properties:

1. f"(z) converges to 1 if the real part ofz is positive,



17

2. f"(z) converges to -1 if the real part ofz is negative,

3. f"(z) does not converge ifz is on the imaginary axis,

where f”(2) = f(f“’l(2))-

Therefore, the Durand-Kerner method converges when the starting points are

chosen from 02 — (J U D U 5'). Since Newton’s method converges quadratically, so

does the Durand-Kerner method.

We conclude that the Durand-Kerner method converges if and only if the starting

points are in the set C'2 — (J U D U S).



Chapter 2

A Modified Aberth Method of

Finding All Roots of a Polynomial

with Multiple Roots

2.1 derivation

The Aberth method is a parallel iterative method for finding all roots of a monic

complex polynomial with simple roots simultaneously. This method was discovered

many times, see Aberth [2], Borsch-Supan [5], Docev [8], and Ehrlich [12].

For a monic complex polynomial

 

p(z)=z”-1-a12""1+---+a,,_lz+an , (2.1)

with n distinct initial approximations zl, 22, ..., zn, the Aberth iterations are

2

zfczzk— p( k) k=1,2,...,n. (2.2)

P’(Zk) - 19121:) zy=1g¢k 11—; ’

It was shown [2] that the Aberth method converges cubically to the roots of p(a:)

when it has only simple roots. It is also observed that this method converges to

the n roots simultaneously for almost all initial approximations. To be more precise,

considering the initial approximations (21,22, . ..,z,.,) as a point in C", the Aberth

18



19

method converges for all initial points in Cn — J, where J is a subset of C" with

Lebesgue measure 0. At this stage, no proof for this observation is available.

The Aberth method is not suitable for finding the roots of a polynomial with

1 
multiple roots, since the quotient can be very large when two approximations

2k and z, converge to the same multiple root. Overflow would occur. To overcome this

difficulty, we propose a modified Aberth method which has the same convergence rate

as the original Aberth method and can find all roots of a polynomial with multiple

roots. This method reduces to the original Aberth method when the polynomial has

only simple roots. The modified method, like the original method, is parallel in nature

and is globally convergent in practice.

In this chapter, we first derive the modified Aberth method and describe its con-

vergence property. In later sections we show the convergence behavior of the original

Aberth method near multiple roots and discuss the issue concerning how to dynami—

cally detect the multiple roots.

The derivation of the modified Aberth method is based on the theory of electro—

statics. Let the polynomial in (2.1) have the following form

p(z) = (z — 1:1)"1(z — $2)"2...(z — 17m)”"‘ , (2.3)

where 1:1, 1:2,. . . , mm are the m distinct roots of p(z) with multiplicities n1, n2, . . . , nm,

respectively, where n = 22;, nk .

Starting with m distinct initial approximations z1,22, . . . , 2",, the modified Aberth

iterations are

nkp(zk)

P’(Zk) — 11121:) Z?=1;j¢k Stu—127

 ,k=1,2,...,m. (2.4)ZLZZ/c—

We utilize the identification of complex numbers with vectors in the complex

plane C. If an 12;, unit plus charge is situated at the point 3],, for each It, the resulting



20

electromagnetic vector field at a point z is

i (7.42:: = 6%?) (2.5)

k=1 _ 33")

Given a polynomial p(z), we wish to locate a root of p(z) by sampling the field

defined by the right hand side of (2.5) at some point z;c with multiplicity nk, and

finding the point where a single nk unit plus charge would be located if it were

causing this field. Sampling at this new point, the cycle then could be repeated.

Calling the new point z]c = z), + wk, and solving for wk in the equation

(z,c — (2+ wk» : (211:3) ’

leads to the modified Newton’s method

  

 

 

I Z nkp(zk)

2k: k— p’(2k) . (2.6)

Now, if we try to locate all roots of p(z) by simultaneously applying the modified

Newton’s method (2.6) to m different sampling points, some of them may converge

to the same (multiple) root. To avoid this, an nk unit minus charge is assigned at

the sampling point 2),. The idea is that when a sampling point z)c is near a (multiple)

root, the field from the minus charge at 2;, should counteract that field from the plus

charge at the root, preventing a second sampling point from converging to this root.

After taking conjugates, we have the iteration equation for the k-th sampling point,

   
n). _ P'fZ) "n1

(2:. — (z). + UM) _ P12) + Z

 

#k 2" — 2"

Solving for wk yields

wk = — nkflzk) . . (2.7)

p,(zk) _ 19(2):) 21%]: zk—ZJ

This gives the modified Aberth iterative formula (2.4).



21

The modified Aberth iteration correction (2.7) can also be derived algebraically.

Let Rk(z)——- mfg—aw,— be a rational function, k-— 1,2,. ,m. Then 12;, has the

same root 3:), as p(z). The modified Newton’s method (2.6) applied to Rk(z) gives

nkRk(Zk)

32121:)

wk: —

 

le n]#k?::k-)zj)n1 (Hj¢
k(zk — 2.1.)"J )2

— (II (2 2)"J)’

P’1Zk) IIj¢k(zk ‘ 21')"’ “P120 ”1::(zZ—z:)nJ .

 

 

M10120

P'1Zk) _ 19121:) Eye): 27212;, .

 

2.2 Local Convergence

In this section we discuss the local convergence property of the modified Aberth

method (2.4). We will Show that it converges cubically. However, when the mul-

tiplicities are estimated incorrectly in practice, only linear convergence rate can be

reached.

For convenience, let

 

and

 

Expanding Fk(Z) in the Taylor series at the point X = (x1, x2, . . . ,xm) yields

 

6Fk(X 82Fk(X

w2...; 1..— Hi: We..1.._..)...-a.)



22

One can show that all the first and second partial derivatives are zero, so the

successive iterates converge cubically. But this involves some tedious calculation of

the second derivatives. Instead, we give in this section another proof of the cubical

convergence. First, we calculate the first derivatives which reveal that the modified

Aberth method is only linearly convergent if the multiplicities are estimated incor-

rectly.

Lemma 2.2.1

 
. P(Zk) _

ill-£31: P’(Zk) —

Proof. For simplicity, let k = 1.

1. P121)

‘33. pa.)

 

21

 

_ 1.... (21 — we. — .2)» ~12. - arm
zl—nl n1(zl — x1)("1“1)(zl — 332)"? - ~ - + (21 — $1)"1n2(zl — x2)("2'1) - - - +

1. (21 — $0121" 11311)"2 ' ' ' (21 — $m)n"'

= 1m

z1—>x1n1(zl— 2:2)"2(21- 9:3)"3 ---+ (21 — $1)n2(21 — $2)("2‘1)~-- + ---

=0.

 

Lemma 2.2.2 Suppose j 7i k, then

 

8Dk(Z) ] n,-

62y Z:X— (it;c — $J)2,

and

6015(2) _ —nk

82]: lZ=X— be; (13k _ 3302

Proof

 



23

 

and

8D,.(Z) _ n1 _ —n1

82" l —X (#1: (2k 21)2 |Z_X— #2]: (17k _ xl)2

Lemma 2.2.3

P12) Pm(2) n1. —1
   

Proof. Write p(z) = (z — xk)""g(z), where g(:1:k) # 0. Then

11(2) = no - x.)"~-‘g(z) + (z — arm's)

11212) = min. —1)(z — ark-29(2) + no - ark-1912)

+m<z — ark-1912:) + (z — xvmgrwz).

So,

17(2) 191212) | _

P’1Z)P'(Z) ”‘71"

 

: (z — mmge) X

nk(z - mk)("*‘1)912)+(z - $k)""g’(Z)

 

 

[nk1nk -1)(Z - $k)""'2912) + nk(z - $k)"“'lg'(Z)

...(z — wank-19(2) + (z — mime) +

”1:12 - $k)""'19'12)+12 — $k)""9(2)(z )

nk(z " wk)"*“g(2) + (Z — wk)"*g’(z) ] 12:“

 

= 9(2) X

721.9(2) + (Z - $0912)

 

”k0“: —1)9(Z)+ ”1:12 — $0912) + nk(z — Stick/(Z) +12 - $k)29(2)(z)

n19(3) + (Z - $0912)

 

2:1}

9(xk)nk(nk — 1)g($k)

nk9($k)nk9($k)

 

nk—l

 

nk



24

Theorem 2.2.4 All the first derivatives of Fk(Z) with respect to 2) at the point X

are zero, namely,

61712) I _ z 0
321 Z—X a
 

for k,l = 1,2,...,m.

Proof. Notice that p(:1:k) = 0. For 1 # k,

8Fk(Z) _ 0 nkp(zk) [p(2k) 62

32: |z=x _ _(P’(Zk)-P(Zk)Dk 2))212=x

nk [P(zk) ] 2 Ti);

 

A

 

 

 

_ P’(Zk) (am-21)?

_ p121.) 2 |Z=X

[1 _ p'(Zk)Dk(Z)l

= 0.

For I = k,

0F,.(Z) |
82k Z=X

nkP'(Zk) [P'(Zk) — P(Zk)Dk(Z)l - nkP(zk) [P(2)(Zk) - P(zk)a—%%Efl — P'(Zk)Dk(Z)
 

 

 

= 1..
f _

(#121) — P(zk)Dk(Z))2
IZ—X

[1_ p12.) My.) + pot) pa.) 60.42)]

_ 1— Tu: p’(zk) pit“) p’(zk)P'(zk) 32:;

_ 2

[1— new]

(1- m)
= 1 _ nk___’:__

1

= 0.

Let the multiplicities n1, n2, . . . , nm in the iteration formula (2.4) be replaced by

estimated multiplicities N1, N2,. . . , Nm. The modified Aberth iteration formula has



25

the following form:

NkP(Zk)

p’(zk) “ P(Zk) Z?=1,j¢k fig:

 

ZLZZk—

We then have the following convergence result.

 

 

 

 

For 175 k,

19(2):) 2 N

aFk(Z) I _ _ Nk [pr(zk)] (4-2,) I = 0

62'] Z:X 1_ p2‘: 2m N (Z) 2 Z=X a

P,(Zk)
3:1,j¢k

zit—z)

and

351(2) I

62k =

m N

1 — 1121M
+ P(zkl 19(2).) 6(21=1.1¢k 3;“3L)

p’(zk) P'(zk)
Pl(zk) pl(zk)

62k

= 1 — Nk

N 2
' IZ:X

P21:

[1— p’(zk) 23:1,j75k f5]

1 _ 2:;1

: 1 ._ NI: 1"):

N
_ 1 _ _£.

nk

By these results, the method converges linearly if the estimated multiplicities Nk

satisfyO <I nk —Nk |< nk, for k=1,2,...,m

When the estimated multiplicities are close (but not equal) to true multiplici-

ties, like many other iterative methods [25], the modified Aberth method converges

linearly. In this case, it does not converge cubically.

When the estimated mutiplicities are the true multiplicities, we can show the

following theorem.

Theorem 2.2.5 The modified Aberth method (2.4) converges cubically.



26

Proof. Notice that i855; "L + "I: .Now, 

 

 

 

 

 

 

P(Zk) 35“" Zk-l‘: Zk-l'k

’ a: - a: m
2k k -— 2k 1: p12,) _ Dk(Z)

P(Zk)

nk

: z“ _ x“ — Z ._"J_ J1:— _ _".z_

J75" zk—xj zk-rk i3“: zk-ZJ

_ _ x _ nk(zk — an.)
— 2k ‘6 n _ z m(zJ—xJ)(Zk-$k)

k 33““ (Zk-$J)(zk_z.1)

Z: '¢k nj(z£xszk-3k)

J 2 —$ 2 -2
= (Zia—33k) (k J)(k J)

_ n‘(z -$ )(zk-xk)
”1: 23¢]: izki$13(zk-zj)

le ,

(z. — at. — z.) [m - :2... "25:23:223’l
 

(2k — $k)(zj — 2:1)(21. — 3:1.) - (2-9)

”I

'
n-(z -- )(z -3: )

(Zk—IJ)(Zk—2J
)[nk—ZJ¢“ i’kJ-‘Jihkk-zjf

 It is easy to see that

 

] in the above sum ap-

"1

(2:11 --1:1 )(xk —:rJ' )nk

 proaches and therefore is bounded by a positive number A as Z ap-

proaches X. Therefore, as I z}, — :ck |< e, k = 1, 2, . . . , n, for a small number 6,

I 2;: —:ck |< A(n—1)c3.

This shows the method converges cubically. I

Let M = A(n — 1) in the above proof. We shall estimate M in more details. Let

D(xk,ek) = {z 6 C :| z — .rk |< ck}, k =1,2,...,m, where (1,62,...,€m are chosen

for which the disks are pairwise disjoint. The separation of the disks is measured by

the minimum distance of those disks, that is,

P = min“ 21: — Zj I, 21. E D($k,€k)a2j E DUB, Cilak 75 3'}-

At the r-th iteration, m disks D(’")(:I:Y),e§:)), k = 1,2, . . . ,m, are generated by the

Aberth iterations (2.4), where 65:) 2' zip—1:1. I and {zfcfl} are the new approximations.



27

Let pm be the separation of those disks and 10(0) = p. Intuitively, when the initial

disks are chosen small enough and the initial approximations are in the initial disks,

the generated disks must be nested; that is, D("+1)(:c):+1), 624-1)) C D(’")(:r):), 62)) .

Based on the result of Theorem 2.2.5, we have the following

Theorem 2.2.6 Let T and t be the largest and smallest multiplicities respectively,

(r) . . . . (r)

and 9- be the distance of the J-th root at the r-th approximation 23- to the root xj.

Among which let e“) be the largest one. Let K be an integer greater than or equal to

two. If initial disks satisfy 6 = 6(0) S , “117627139! then

C(k+1) S K(m _1)T(C(k))3 .

tp2

Proof. We first estimate the coefficient of (21C — :rk)(z,- — :rj)(zk — xk) in (2.9).

 Notice that 21%,: "f::1_:’)z::“_:;) Z 21%,: %Z = gm—‘EDE—z. By the initial assump-

- T —1 2
tion, we have _flp2_h < t. 80,

l ”j I

(2" — xi Mz" — 2,) ln" _ Em nili’41iiliiilii)l
 

 

 

S 92(t - 532—4162).

Therefore,

.5." s p,” _Tg;1(:(0,)2)(e<°’)<e§.°’)2

s aggwmxef’)?

= ————f(§\’?_‘11):,§(e<°>)(e§.°))2

s Mil—Tswmei”)?
tp2



IX/(m - 1)T(£(0))3

— tp2 .

Hence, 6(1) _<_ Wkwl)?

Furthermore,

.53) _ ————-—,p2wows. ’)

K(m — 1)T lpz (0)

<

_ tp2 K(m — 1)TC“

_ 6(0)__ k ,

 

Hence, each new disk is contained in the previous disk. Therefore,

K(m — 1)T
6("7+1) <

(4")?

by induction. I

2.3 The Aberth Method at Multiple Zeros

Though we proved in the previous section that the modified Aberth method con-

verges cubically, no information is available in practice whether a given polynomial

has multiple roots and what the multiplicities of multiple roots are. With n initial

approximations for a polynomial of degree n, one can only start with the original

Aberth method. An effective program should be able to detect the multiplicities of

multiple roots of a polynomial in the process of execution. We first investigate the

behavior of the original Aberth method near a multiple root. In this section we show

that the approximations to a multiple root become equidistant on the circle centered

at the root. This information will be used to dynamically detect multiple roots and

their multiplicities.

We first investigate the convergence behavior of the Aberth iterations applied to

polynomial 17(2) 2 2". Let rk = if, r; = %,k = 2,3,...,n, and r1 = l,r’l = 1.



29

Assume none of the approximations reaches the root of p(z) in the process. Dividing

both sides of (2.2) by 2;, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k — p(zk) 1

I z; p’(zk)-p(zn=)2?=1,,¢x 3:3

rk — '—,' —

21 21 _ P051) f

P’(z1)-P(21)2?=2 11—”:

51 _ PM)

21 21(P’(Zk)-P(zk)2;'=1,,¢k 371:3)

_ _ 13(21) T

21(P’(zi)-P(ZI)2?=2 3:37)

51 Z?
— —1

21 21012: ‘21? 23:1,];41: ,k—lgl

_ 1 z?

— —T
21(nz;1 —z{‘ :=2 fl)

,.
k

7'1: — 71—1 1: 1

"r1. "'2' 211:1 1w: 3:

l — ;——,,1—1—

- 1:2 l—rJ

1 — 1 1

""k 2;:.nek a:
_ J
_ Tl:

l— ——l—_r_—_

"-21:21—rj

Qk(7‘1, 7‘2, ..., Tn) .

With Q1 2 1, let Q : (Q1,Q2,...,Qn). Forj = 1,2,...,n, let w,- = 62195411 be

the roots of the polynomial P(z) = z" — 1, where i = \/—1. It is easy to see that

(w1,w2, . . . ,wn) is a fixed point of Q.

Theorem 2.3.1 Ifr = (r1,r2, . . . ,rn) with no zero components is a fixed point of Q,

then r = w.

Proof. Under the assumption, rk satisfies,

 

 

71-1

”A.
nrn—I_rn 2n: 1

k k ]= 1,);11: 'lc‘rj

rkzr;c ,kzl,2,...,n. (2.10)

1—n'_2:1=121—jr



3O

Canceling 7‘]; on both sides of (2.10) yields

 

__l__

nrk- -rk Z]: 1,J#k 'k—r)

l-n"8:21—11,

Therefore,

1 1

n 1 —' n 1 a

n 7* Zj=m¢k rk—r ” 21:2 l—r
J J

  

or

  n 23f221jm QJU

F
1': 1j¢k Tip

for k=1,2,. .,n

We want to show that r1,r2, ..., rn are exactly the n roots of polynomial z" — 1,

which are spaced equally on the unit circle. It is easy to see that the roots of z" — 1

satisfy (2.11), since 2 Zj¢k———”_rj —-'—’£,—)(,(,:—;l for any polynomial with all its roots being

simple, where p’ and pm are the first and second derivatives of p.

The right hand side of (2.11) is a constant C for any k = l, 2, . . . , n. Summing up

both sides of (2.11) for h from 1 to n, the right hand side becomes nC.

Let the left hand side of (2.11) be fn, then

fn = in. Z
 

   

— r

k=1 1':—1.j¢k rk J

n—1 n—1 1 n—1 n—1 1

= Th 7' r + T" Z r + Th- . — r r — r

k=1 J:1,j;ék " 3:1 " J k=1 " "

= fl4+n—l. (2H)

Since the first term of the recursive equation is f2 = l, the solution of the recursive



31

relation is fn = M. Therefore, nC = £33411. Cancelling n on both sides gives
2

" 1 — 1

Tk Z = n 2 , (2.13)

7' —T‘

j=1.j¢k " J

  

or,

2n, 2 H(rk—r1)=(n—1)H(rk—r,). (2.14)

j=l,j¢k l¢k.j 1'9“:

Let P(z) = n (z — Tj). Then (2.14) becomes

rkP(2)(rk) = (n — 1)P'(rk) (2.15)

for k = 1,2, ..., n. However, the polynomials zP(2)(z) and (n — 1)P'(z) on both sides

of (2.15) have the same degree n — 1 and the same leading coefficient (n — l)(n — 2).

They are also identical at n distinct points r1,r2, . . . ,rn. So those two polynomials

are identical. We have

  

P(2)(z) __ n — 1

P’(z) _ 2 °

Integrating both sides, we obtain P'(z) 2 c2:"‘1 for some constant c. Hence,

P(z) = z" —1 since P(z) is monic and r1 = 1. Therefore, r1, r2, . . . , rn are the n roots

of z" — 1 = 0 and w is the only fixed point of Q. I

Based on Theorem 2.3.1, we can show,

Theorem 2.3.2 Applying the Aberth method {2.2) to p(z) = 2", when the iterations

converge to the n-ple root 0 and none of them reaches it, then they are eventually

equally spaced on a circle around 0 and the modulus of each correction is ;1%.

Proof. The first part is a direct consequence of Theorem 2.3.1. For the second

part, assume the approximations are equally spaced on a circle around 0. Without



32

loss of generality, let the approximations 21, 22, - - - ,2n be the n roots of z" -— r = 0

for some positive number r. Then

T!

I zk

zk _ 2k — n l l- n

nzk — zk 2:5“: “—2,

 

 

 

 

  

2!:

: zk_ n(n-l)z"—2

" ‘ k—t—

Zk

= 2k —T
n “ T

2

= z 1—

A n+1)

n —1

= z

72 +1 k

So,

IZk—zll=lzk—n_lzkl= 2 Izkl.
n+1 n+1

That is, the modulus of each correction is $. I

Similar result holds for the Aberth method applied to polynomial p(z) = (z — 3:)"

for a complex number 1:.

For a general polynomial, when we analyze the behavior of the approximations

converging to multiple roots, we may assume the approximations which converge to

simple roots are the roots themselves, since these approximations converge to their

targets very fast (we will show this later).

Theorem 2.3.3 For a polynomial p(z) of degree n which has an m-ple root :31

(m < n) and simple roots x2, x3, ..., :rn_m+1, suppose approximations 21, 22, ...,

2m converge to $1 and other approximations 2...“, ..., 2,, take the roots ofp(z) other

than 3:1 as their initial values, then 21, 22, ..., 2,., are eventually equally spaced on a

circle around $1 and the modulus of each correction is #.



33

Proof. Since approximations zm+1,. . . ,2” are roots of p(z): 2:2, 3:3, ..., $n_m+1,

no iterations for them are needed. We want to show that the Aberth iterations for

21, 22, . . . , 2m applied to p(z) are equivalent to the Aberth iterations applied to 2'" —:1:1.

Let p(z) = (z — xl)mg(z), then the Aberth iterations applied to p(z) for 21, 22,

...,zm are

 zfczzk— p(z).) 1 ,k=1,2,...,m.

P'(Zk) " p(z).) Z?¢k,,-=1 27.3

The denominators in the above iterations are

P'(Zk) - PM) E l

j¢k.j=l

 

zk—zj

= m(2k - film-19(4) + (2k ‘ $llm9'(zkl

  

 

 

= mac—mm 19(2.)—(z.—x1)mg(zv Z kl,
J¢k,j<m J

m I n-m+l 1 -|

+(zk—1c1) 9(Zk)“g(zk) Z Zk—SF'J

 

 

, (2k - $1)’"g(2k)
zk = 2k —

9(Zk) m(2k — “film" — (2k — $1)?“ Enemy 21:2,

 

(2k ‘xllm

m(zlc — lily”.l _ (2k _ 331),“ ngthSm zk-l-zj .

 



34

This is exactly the Aberth method applied to 2'" — x1. I

Corollary 2.3.4 Under the same condition as in the above theorem, let 10):) be the

correction at the r-th iteration for the k-th approximation 2):) which converges to an

m-ple root . Then,

lim T——.

Proof B Th 233 h "l — J—z" 1’ d — z"1’. s. y eorem . . , we ave wk — m+12k an z,c+1 — m——+lz o

(r+1)_ (r)_ m- (r-l)
wk — milzk — mil'oTi 1: ° '

The above results also show that the original Aberth method converges linearly if

the polynomial has multiple roots. That is, those approximations which converge to

multiple roots converge to their targets linearly. Next, we show that the approxima-

tions which converge to simple roots converge much faster.

Lemma 2.3.5 Let 2k = a + rkee" ,-k— 0,1,2,” — 1, where i = \/—1, a is a

complex number and rk > 0. Let r 2 rk and z E C with | z — a |> 1‘. Then

  

 

  
 

 

 

  

1 m

k=0 2 — 2;, z — a

with some fl satisfying I ,6 |< (Iz- al)(|r:-_a|_r)

Proof.

1 1 _ 1 1

z-—z;c z—a — z—a—rkeek‘ z—a

”69,4

r(z — a — rkeak')(z — or),

and

ski
rke 1

I IS
r(2—a—rke9k‘)(z—a) (Iz—a|)(|z—a|—r)'



35

 

   

Let

m—l rkepk,‘

B = 0 3 ,

k=0 r(z — a — rke * )(z — a)

m—l l m m

then, 2,50 z_2k — z_a = 7‘2 and Ifl IS (|z-o|)(|z—o|—r)' I

Theorem 2.3.6 Suppose the Aberth approximations applied to p(z) converges and

the approximation starting at z, converges to a simple root x1, then, eventually,

I zlr+1)— :6.- IS 063,

("+1)
where z,- is the approximation at step (r + l), C is a constant and

e=max{|z§r)—xj |,j:1,2,...,n}.

Proof. Suppose p(z) = H2":I(z — xi)” , where x1,x2, ...,xm are m distinct roots

with multiplicities n1, n2, ..., nm. Then

  

Let c be a small number such that the distance of every Aberth approximation

to its target is decreasing as soon as all the approximations are within 6 distance

from the roots. Let p be the minimum distance of any two distinct roots x1. and x,.

Let c be far less than p, say 46 < p. For simplicity, let n1 2' 1, 21 approximates x1,

22, . . . ,zn,+n, approximate x2, . . . , Zn1+n2+...+nm_1 , . . . ,zn approximate xm. Suppose

all the approximations are within 6 distance from their targets. From Lemma 2.3.5,

  

we have,

"1

1 n-
J

E , = + 7351'
k=1 21 _ zn1+...+n]_1+k 21 _ xj

. n 8n -

Wltl’l r, < e and I 2, |< 17%; = 3;} SlIlCe Zn1+...+n,_1+1,. . -,Zn1+...+n, converge to x,.

4 4



36

 

 

 

 

 

 

So,

, 1

21—31 — Zi—iBl—p.(21)_z,, 1

p(zl) 3:2 7.1—2,

1

= 21 — .751 —

m _"J__+ _

21:2 zl—xJ-l- zl —1:l 2m:2 zl—xJ—l—+ rj/Bj

l

= 21— 171‘
1 m . .

z1-1731

2' 21—1‘1 —
 

1 "’ Z?=2(zl _ lerjflj

1

1— 21:2(21— $07351]

_ :71:2(31 ‘5cllrjflj

— (21 — 3:1)1 “ 2m=2(zl“ ‘31 )rjflj

Hence, when r,- < e we have

 = (zl—xl) l—

 

8 n-l

3p 3
z —x < ———e

3p

16
Therefore, | 7.1 — x1 |< 1_L;p;1_1€3 when 6 satisfies the extra condition 62 < ———33— I

16(n— 1)

This theorem does not imply that the rate of convergence for the approximations

which converge to simple roots is cubic. When 6. is the largest error of all the errors

| 2):) -- 23;. l, k = 1,2, . . . ,m, at step 7‘, the conclusion of the theorem indicates the

error at step r + 1 for approximations converging to simple roots is less than C63,

for some fixed constant C. Apparently, it is much faster than the convergence rate

of the approximations which converge to multiple roots where the error at step r + 1

is less than C16 with C1 < 1. In practice, the approximations converging to simple

roots converge to the roots very fast while the approximations converging to multiple

roots display a very slow convergence rate.



37

In [29] and [17], finding multiple roots of polynomials by Durand-Kerner method

is discussed. Like the Aberth method, the Durand-Kerner method can find all the

roots of a polynomial with simple roots very efficiently. It converges quadratically in

this case while it converges only linearly when multiple roots exist.

In [29] a result similar to Theorem 2.3.2 for the Durand-Kerner method is proved

without using the modified Durand-Kerner method to refine the approximations. In

[17] a different technique is used to handle the multiple roots and obtains superlinear

convergence rate. Their numerical results show that both approaches can not find

the multiple roots with high accuracy.

2.4 Dynamic Estimation of Multiplicities

For a given polynomial p(z) with no information in advance, one can only use the

original Aberth method (2.2) in the beginning. It is desirable that the multiplicities

of multiple zeros of p(z) can be dynamically detected in the process of execution.

The approximations can then be grouped into different groups according to the data

available concerning whether they converge to the same root. Then, the modified

Aberth method is applied. For a group of approximations converging to the same

root, the proposed algorithm takes the average value of all the members in the group.

This average value should be closer to the multiple root than any approximation

in this group as the approximations are spaced equally on a circle around the root

by Theorem 2.3.2 and Theorem 2.3.3. This average is used in the modified Aberth

iterations. The same approach can be found in [17] which uses these properties

without proof. Each 2;. takes a small random perturbation of the averaged value for

the next iteration since the same Durand-Kerner iteration functions are used and

the approximations must be distinct. While this approach provides a supper linear



38

convergence rate, it does not yield a high accuracy.

In [29], the correction

f(2k)

Hj¢k(zk ‘ ZJ‘)

is multiplied by 72],, the estimated multiplicity, to be added to 2],, since the modulus of

 

the correction is 771; for the Durand-Kerner method. In this way, quadratic convergence

is achieved theoretically. Again, this approach can not yield results with high accuracy

since no new formulae are used in the process of iterations. None of the remedies

can avoid the overflow problem because the reciprocals of small differences of close

approximations are too large. The modified Aberth method introduced in this chapter

can avoid the overflow problem because the approximations in the same group are

treated as a single value in the new formula. Consequently, the roots of the polynomial

can be obtained with high accuracy.

Our technique of dividing approximations into groups is based on the following

observations:

1. If the approximations to an m-ple root are sufficiently close, m approximations

are situated on a small circle centering around the root by an angle of 2;".

2. Every correction directs toward the center of the circle and has almost the same

magnitude.

3. In comparison with approximations of simple roots, the order of convergence is

slow, i.e., the value of the residual is relatively large.

4. The magnitudes of the residuals for m approximations are almost the same.

After some iterations we can group the approximations into different groups by

the following method. If the k-th and j—th approximations are in the same group,

they must satisfy the following conditions:



39

1. The corrections wk and w, should satisfy

lwkl
1—a<

lel

 <1+a, (am)

for a small number a.

2. Let 0].,- be the angle between vector 2, — 2;, and vector wk, and 0,]. be the angle

between vector zk — z,- and vector wj. These angles should satisfy

| cosflk, — €0.3ij |< B , (2.17)

for a small number ,8. Notice that cosfikj = W > 0 and 0050,}. =

(2:;.,—zz ,m,) > 0

lzk‘zjllel .

3. We can count the number of approximations satisfying the above two crite—

ria to find the multiplicity. To make sure this group contains all appropriate

approximations we check the criterion:

[W£r+l}]_m—1

— —< 2.1

wa’}| m+1| 7’ ( 8)

for a small number 7.

In our implementation, we trace the rate of convergence of each approximation

by keeping track of each residual wk. At first few iterations, wk usually fluctuates

{r-H}

wildly. Then all 11);, start decreasing monotonically. By checking the ratio 35-m—r

k

which converges to (m — 1) /(m + 1) by Corollary 2.3.4, one can tell which approx—

imations converge to simple roots. By Theorem 2.3.6 the ratios corresponding to

approximations which converge to simple roots converge to zero very fast. We ob-

served that as soon as all residuals start decreasing it takes at most 10 iterations

for those approximations which converge to simple roots to converge to their targets

within the chosen accuracy. Then the program begins to detect the multiplicities



40

and to execute the grouping process. At first, the residuals are sorted by their mag-

nitudes and the grouping process is invoked to group the approximations according

to criteria (2.16) and (2.17). The program checks criterion (2.18) for each group.

If it is satisfied, the program takes the average of the approximations in the group

and use it in the modified Aberth method. If criterion (2.18) is not satisfied the ap-

proximations in this group are used in the modified Aberth method instead of their

average. When the grouping process is successful it takes only a few iterations for the

modified Aberth method to converge since the averages are very close to the roots

and the method converges cubically. In our experiment, it usually takes less than 3

iterations for modified Aberth method to converge after the grouping. In practice,

the grouping process may include wrong approximations in a group. In this case, the

modified Aberth method will converge linearly. The program disbands the groups

with linear convergence rate and convert to the beginning with the newly computed

approximations as initial approximations. The flow chart of the program is given in

Figure 2.1.

2.5 A Numerical Example

We demonstrate our method by the following numerical example. Let

p(z) = (z —1.1—1.1z')4(z — 3.2 — 2.3i)2(z — 2.1—1.5).

This polynomial was also used in [29] with which we will compare our result. As

in [29], we choose the initial approximations 2;, = 627”"77, k = 0,1,. . . ,6. After 12

iterations the approximations and the residual | w,- I are

real imaginary residual

1. 2.1000000000000 1.5000000000000 0.

 



In fact, the lst approximation reaches the exact root at the 10—th iteration. The

4—th, 5-th, 6-th and the 7-th are grouped as one group with multiplicity 4. Their

3.2002858826098

3.1997141178405

1.0968596312555

1 .0940624207372

1.1059206829313

1.1032928553054

average is

41

2.2998138134465

2.3001862562026

1.0941839385686

1.1031845106896

1.0967222422851

1 . 1060241399490

6.8221947921266D—04

6.8252015101818D-04

4.2572547041395D-03

4.4900998706488D-03

4.5441352406740D-03

4.7093618963726D-03

(1.1000338975574, 1.10002287078731).

It is very close to the exact root (1.1, 1.1).

Grouping the 2nd and 3rd in one group gives an average

which is also very close to the exact root (3.2, 2.3). These demonstrate the effective—

(3.2000000002252, 2.3000000348246)

ness of Theorem 2.2.6.

Then the program switches to the modified Aberth method (2.4) . Only one

iteration gives all the exact roots.

1.

2.

3.

real

1 . 1000000000000

3.2000000000000

2.1000000000000

imaginary

1.1000000000000

2.3000000000000

1.5000000000000



42

In [29], the same groups are formed after 14 iterations. It took another 7 iterations

for the program to stop. The final results for the approximations converging to the

root (1.1,1.1) are listed below with accuracy to the 4—th digit.

real imaginary

1. 1.09914601 1.10078329

2. 1.10092914 1.09945021

3. 1.09931441 1.09917266

4. 1.10045233 1.10079471

The result is even far less accurate than our average.

In our experiments the approximations converge linearly until the modified Aberth

method is applied. Once the multiplicities are detected, the modified Aberth method

converges extremely fast.



 

43

 

Algorithm MODABERTH

Input: polynomial p(z) and its degree n

the initial approximations 2;

Output: the roots of p(z)

begin

for i = 1 to 2 do

for j = 1 to n do

compute new approximations z;

compute residual ué, save old one as an

for j = 1 to n do

compute the ratio Tj=3Ué/UU

for i = 1 to 2

for j = 1 to n

compute new approximation as before

compute residual as before

compute ratio as before and save old ones

now we have 3 consecutive ratios for each approximation

we want to check if the ratios are all decreasing monotonically

while not decreasing

do one iteration for each approximation

while there is an i such that r5< smalll and w,- > smallg

! if there is an approximation converging to a simple root but

! it has not yet converged.

do one iteration for each approximation

while not done

sort residuals un,um,~-,um.

for i = 1 to n and w; > small;

for j = i+1 to n

check if j should be in the same group as i

for each group, check criterion 3

if all groups satisfy criterion 3 set success = 1

if success = 1

while not all convergent

use modified Aberth method once for each approx

if linear convergence is observed

break up groups and goto begin

done = 1 ! all approximations are convergent

else

use modified Aberth method once for each approx

end MODABERTH  
 

Figure 2.1: Algorithm MODABERTH



Chapter 3

Nonsymmetric Eigenvalue Problem

3.1 Introduction

This chapter presents a parallel algorithm to solve the eigenvalues of non-symmetric

matrices. Both homotopy and divide-and-conquer strategies are used. The original

matrix is split into two or more submatrices, then a homotopy between the sub-

matrices and the original matrix is established such that the intermediate matrices

have only simple eigenvalues. The Aberth method is then applied to refine all the ap-

proximations simultaneously. Section 3.2 discusses the split-homotopy strategy, while

Section 3.3 introduces the Hyman method for computing the characteristic polyno-

mial and its derivative. In Section 3.4 we make a straightforward implementation on

Intel iPSC/860 and Intel Delta multicomputers. However, this initial approach did

not use the processors uniformly so we modify our technique in Section 3.5 to balance

the load for message-passing distributed systems.

3.2 Splitting Procedure and Homotopy

Since any real matrix A can be transformed to a similar matrix in upper Hessenberg

form by an orthogonal transformation, we shall assume throughout this chapter that

matrix A is an upper Hessenberg matrix, namely,

44



45

A = (as) = a3?

0 an—Ln—2 *

\
anm-l

  

*
*

\
;
_

For convenience we assume n is an even number. We further assume A is irre-

ducible, that is, none of the subdiagonal entries am-“ 2 < j < n, is zero, otherwise

we can consider the reduced matrices. Let k = 71/2. Let D 2 (did) be the matrix

obtaining from A by making the subdiagonal entry ah“). = 0, namely,

_ A11 A12
D _ ( 0 A22 ) .

The eigenvalues of D is the union of the eigenvalues of smaller matrices A11 and

A22. It takes much less time to compute the eigenvalues of A11 and A22 and it can be

done in parallel. The following homotopy is established

H(x\,t)=c(1—t)det(D—AI)+tdet(A—)\I) (3.1)

where c is a random complex number and 0 S t S 1.

For each t, since H(A, t) is a polynomial in A of degree 12, there are n zeros: A1(t),

A2(t), . .. , An(t) . They are called the eigenpaths of system (3.1). It is well known

[23] that the eigenpaths do not meet in the interval (0, 1) for a randomly chosen 0.

It implies that the zeros of H(A,t) at each i, 0 < t < 1, are distinct. Our algorithm

does not depend heavily on this property, though it makes the algorithm easier to

implement and more efficient.

Notice that the zeros of H(A, 0) are the eigenvalues of matrix D while the zeros of

H(/\, 1) are the eigenvalues of matrix A. We choose 0 = to < t1 < t2 < < tm = 1



46

for some positive integer m. The idea is to use the zeros of H(A, t) at t,- as the initial

approximations to the zeros of H(A, t) at ti“. Aberth method or our modified Aberth

method may be applied to refine the approximations. It is also possible to use the

tangent line at Ak(t,) to predict the initial approximation for Ak(t.-+1). Our numerical

experiments show that the algorithm of the second [approach is slower than that of

the first one because of the extra calculations of derivatives in the variable t and the

global convergence property of the Aberth method in practice. Here, we only discuss

the first approach.

In the spirit of the Aberth method, approximations at each step must be distinct.

It is possible that some of the zeros are identical at t = 0 that makes the Aberth

method not applicable. In such case, we simply make random perturbations to make

the initial approximations distinct. Notice that our goal is to find the zeros at t = 1.

It is unnecessary to approximate the zeros with high accuracy at the intermediate

steps t,- < 1. In our implementation, the algorithm is allowed to run for a fixed

number of iterations at the intermediate steps regardless of the convergence. The

global convergence property of the Aberth method in practice ensures the eventual

convergence at t = 1.

The problem of finding the zeros at t = 0, i.e., the eigenvalues of both A11 and

A22 are solved by the fastest available serial codes or by applying the same splitting

and homotopy strategy. In the latter case, we keep dividing the matrices until certain

dimension then the fastest serial code is applied. For instance, suppose the dimension

of the original matrix A is n = 2’, the number of processing nodes is k = 2’", and

m < n. One can split matrix A into I: small matrices, all of them have dimension

L = 2”“, the serial algorithm is then applied to those small matrices.



47

3.3 Hyman’s Method

In order to extract the zeros of H(A,t) iteratively by Aberth method, H(A,t) and

8H :r.t

8A

[16] which is remarkably backward stable as pointed out by Wilkinson [34]. Notice

need to be evaluated efficiently. For this purpose, Hyman’s method is used

that det(D — AI) = det(A“ — AI) det(A” — AI). Differentiating equation (3.1) with

respect to A, we have,

6H(A,t)

ax

(9det(A11— AI)

6A

0det(A22 — AI)

= c(1—t) 8A
 

det(A22 — A1) + det(A“ — AI)
 

8det(A — AI)

+t 6A .
 

Since A11 and A22 have the same structure as A, we only need to address the

problem of computing det(A — AI) and N—etaflxé—Q in more details.

For A = (a;,-) and J: = ($1,$2,...,xn)T, the system of equations (A — AI):r = 0

can be written as

(all — ”131+ 012132 + ° ° ° + a1n$n = 0

021151 + ((122 - ”$2 + ' ' ° + a2n$n = 0

For given A, letting 23,, = 1 in the last equation, we can solve the last n — 1

equations recursively for a:,._1, . . . , .132, :31. These values are then used to evaluate the

left-hand side of the first equation,

F”): (011— ”$1 + 012132 + ° ' ' + a1nl‘n-

It is clear that F(A) = 0 if A is a eigenvalue of A.



48

To computer det(A — AI), we write matrix A — AI as

  

(an—A (112 013 aln \

021 (122 — A 023 "' "° a2n

a32 033.. A ... ... as"

0 an—1,n—-2 an—lm-l " A art—1,11

\ an,n—l ann _ A

Forj = 1,2, . . . ,n the jth column is multiplied by 1:,- as found above and added to

the last column, thereby yielding the matrix

  

{ 011— A 012 013 al.n—l F(A) \

021 022 - A 023 "' "' C12,n—1 0

(132 033 — A ' ' ' (13.n—1 0

0 an—l,n—2 an—l,n—l — A 0

\ an,n—l 0 )

Therefore

n-l

det(A — AI) = (—1)"‘1F(A)H (1,11,.

i=1

To compute W, we need to compute 5%? Differentiating (3.2) with respect to

A, taking into account that 1:], j = 1,2, . . . ,n — 1, are functions of (A,t), we have

81? 8:1: :1:
(all._.A)_i%._.xl.+.a12_73_+.”..+.al %i?._.0

8x 8x 8x

axk_ 3r 8

ahk-l ‘ (akk-A)3f-$k+~°+akn-§f=0

(3.3)
 

8r"- 8

ann—l—__l 'l' (ann _ A)fil _mn : 0

. . a n_ a n_ . .

With 83”} = 0, we solve (3.3) success1vely for $8, ‘ , I8, 2 , . . . , %, usmg the prev1ously
  

computed values of 1:1, 3:2, . . . , at”. The value of the left-hand side of the first equation

in (3.3) is then $3.



49

3.4 Initial Implementation

We implemented the algorithm on the Intel iPSC/860 gamma multicomputer and

Intel Touchstone Delta multicomputer.

Both iPSC/860 and Delta multicomputers are distributed memory MIMD ma-

chines [15]. They consist of a collection of computing nodes each of which has a

processor and a local memory. The nodes are inter-connected by networks. The

iPSC/860 system uses hypercube topology architecture while the Delta system uses

2 dimensional mesh. The computing nodes for both systems are the Intel 2860 pro-

CCSSOI‘S .

The 128 computing nodes of the iPSC/86O are networked as a 7 dimensional

hypercube. The 512 computing nodes of the Delta system are networked as a 16 by

32 mesh. Each row has 32 computing nodes and each column has 16 nodes.

The communication between processors for both systems are done by a library of

explicit message passing functions. It is the programmer’s responsibility to locate the

synchronization points of the program and specify the communication between the

processors by explicitly passing messages.

It is expected that the Delta multicomputer offers better performance since for

some applications 2—D mesh is a natural topology and the Delta multicomputer uses

faster switching techniques [1, 6]. In our application we have not observed any signif—

icant improvement of the Delta multicomputer over the iPSC/860 system since our

program doesn’t need extensive communication. On the other hand, the communica—

tion in our program is solely broadcasting in which the nodes broadcast the messages

in turn with no message contention. The special faster switching technique for the

Delta multicomputer lose advantage for our application.



50

 

Algorithm ABERTH

Input: the matrix A

the initial approximations A5, i=1,2,---,n.

the number of processors m, where n is a multiple of m

Output: the eigenvalues of A, A5, i=1,2,---,n.

begin ABERTH

s = n/m ! my share of computation load

! begin computation

iam = mynode() ! system call, returns the id of this node

for i=iam=ks+1 to (iam+1)*s

update Ag! use Aberth method

end for

! end of computation

! begin communication

for £220 to n1-1 ! the node counts from 0 to nz—-1

if (iam = i) then

send Agam.,+1,°'°,/\(gam+1)" to all other nodes.

else

receive Aiam13+1,---,A(,am+1)., from node i.

end if

end for

! end communication

end ABERTH  
 

Figure 3.1: Algorithm ABERTH

Both systems support Fortran 77 with message passing libraries. Their main

differences are their inter-connection topologies and the switching techniques which

are invisible to the users. The programs written for one system are portable to the

other. In our implementation, programs were written for iPSC/860 multicomputer

first, then ported to the Delta multicomputer without modification.

The program has two phases. The first phase splits the matrix into two or more

submatrices. Then subroutine HQR in EISPACK is called to find the eigenvalues

of each submatrices. Those eigenvalues are used in the second phase as the initial

approximations to the eigenvalues of the target matrix. The Aberth method is then



51

used iteratively to find all the eigenvalues in parallel. The basic structure of the

program for one iteration in the second phase is shown in Figure 3.1.

When compared to the fastest available sequential code HQR in EISPACK run-

ning on one node, our parallel program was slower when less than eight nodes were

used, see Table 3.1, Table 3.2 and Table 3.3 for matrices with different dimensions.

For eight or more nodes, the parallel version was faster, by a factor of two on 16

nodes. Execution time improved as the number of nodes increased. As more nodes

are added the improvement flattens off due to the load imbalancing problem and the

communication overhead.

 
 

 

 

 

 

 

 

 

nodes sec

1 2.72

2 1.55

4 0.97

8 0.67

HQR on 1 node 16 0.52

0.75 sec 32 0.47

64 0.60        

Table 3.1: Time on i860 with a 64 x 64 random matrix.

 
 

 

 

 

 

 

 

 

       

nodes sec

1 18.96

2 10.61

4 6.63

8 4.23

HQR on 1 node 16 2.83

4.56 sec 32 2.25

64 2.48

128 2.72  
 

Table 3.2: Time on i860 with a 128 x 128 random matrix.



52

 
 

 

 

 

 

 

 

 

 

        

nodes sec

1 149.45

2 84.54

4 51.22

8 . 30.29

HQR on 1 node 16 17.87

32.24 sec 32 10.81

64 8.21

128 9.82

256 13.38
 
 

Table 3.3: Time on i860 with a 256 x 256 random matrix.

3.5 Load-Balancing

In this section we consider the load-balancing problem. The Aberth method fits

parallel computers naturally. Suppose n nodes are used for the computation of the n

eigenvalues of an n x 71 matrix. Each node is responsible for finding one eigenvalue.

For direct implementation, every node has a copy of the complete information of

the matrix and all the 11 initial approximations. The nodes execute calculations

simultaneously so that one node updates only one approximation. Since all nodes

have the same amount of computation, they generally complete the calculation at

the same time. Then every node broadcasts the updated approximation to the other

nodes. This process continues until all the nodes find the expected eigenvalues. A

natural stopping criterion is, as soon as an approximation is good enough no further

iteration on that approximation is needed.

In Section 3.4 we have shown that the parallel algorithm can beat the best serial

algorithm, HQR in EISPACK, for a sufficiently large number of processors using an

Intel Delta multicomputer. However, if the number of nodes is far less than the num-

ber of eigenvalues, each node is responsible for finding more than one eigenvalue and



53

 

 

 

 

 

 

] Si 82 S3 S4[85 S6 S7 S8 S9 810 811 S12 813 814 S15 S16]

N0 10 10 10 10 9 7 7 5 5 5 3 2 1 1 1 0

N1 10 10 9 8 6 4 3 3 2 2 2 1 1 1 0 0

N2 10 10 10 10 9 9 8 8 8 7 7 6 3 2 1 1

N3 10 10 10 9 9 8 7 5 5 4 3 3 2 1 0 0

N4 10 10 10 9 9 8 7 7 6 6 6 4 4 3 1 1                   
 

 

Table 3.4: Unbalanced Load Distribution

some nodes may complete their jobs earlier. This difference causes load-imbalance.

To illustrate the load-imbalance, let’s compute the eigenvalues of a 50 x 50 matrix

whose eigenvalues and the initial approximations are randomly chosen in the region

{2 E C, [2] < 1}. With 5 nodes, the program assigns the first 10 eigenvalues to the first

node, the second 10 eigenvalues to the second node, . . . , and the last 10 eigenvalues

to the last node. Since it takes the same number of floating-point operations for any

node to update one approximation, we will count the amount of time to complete this

number of operations as one unit time. Table 3.4 lists the number of eigenvalues each

node computes at each step—each row represents a node and each column represents

a step. It takes 105 parallel time units for the program to complete.

The key for the load-balancing problem for the Aberth method is the observation

that if every node has a complete copy of the previous approximations, it can update

any approximation. The total number of eigenvalues is sufficiently small for each node

to have a copy. Based on the differences between the old approximations and the new

ones it received, each node can decide which approximations are good enough and

need no more updating. Once a node has complete information on which approxima-

tions need to be updated and the number of nodes involved in the computation, it

can determine the distribution of approximations to nodes. The number of approx-



54

 

 

 

 

 

 

                  

SI 82 83 84 85 86 S7 88 89 810 S11 812 813 814 815 816]

N0 10 10 10 10 9 8 7 6 6 5 5 4 3 2 1 1

N1 10 10 10 9 9 7 7 6 5 5 4 3 2 2 1 1

N2 10 10 10 9 8 7 6 6 5 5 4 3 2 2 1 0

N3 10 10 10 9 8 7 6 5 5 5 4 3 2 1 0 0

N4 10 10 9 9 8 7 6 5 5 4 4 3 2 1 0 0  
 

 

Table 3.5: Balanced Load Distribution

imations can be evenly divided among nodes, and that determination is completely

distributed. Note that each node also knows the approximations other nodes are to

update. This information is required when a node broadcasts the updated approxi—

n1

nnodes

 mations later. Node i updates [ ] + 1‘.- consecutive approximations, where m is

the number of approximations to be updated at this step, nnodes is the number of

n1

nnodes
nodes involved in the computation, r,- = 1 if i < m — [ ] and r.- = 0 otherwise.

For example, when there are 50 approximations to be updated and there are 5 nodes,

each node gets 10 consecutive approximations. If there are 33 approximations, then

node 0, node 1 and node 2 each gets 7 consecutive approximations while node 3 and

node 4 each gets 2 consecutive approximations. For this balanced program, at each

step every node computes the approximations it is responsible for. Table 3.5 lists the

number of approximations each node computes at each step for the above example.

The program takes 97 parallel time units to complete which represents a distinct

improvement over the 105 time units for the unbalanced example. Figure 3.2 shows

the corresponding timing information.

The unbalanced program uses static scheduling which assigns the i-th chunk of

approximations to the i-th node. The balanced program, on the other hand, assigns

the i-th share of approximations to the i-th node dynamically at each step. For this



NodeO

Nothl

Nodal

Nodc3

Nod¢4

55

 

 

 

 
 

 

 

Nacho

i i I i i ' ' Nab!

. . —h h h h “I Noch

Lp—I—I-I-I-IIIJH New .

' 5* i—n Nodu ,, . . " "or

F*hh:_ h h :p?][ o 10 a no a o n u 10 nu “commun-

. m.___ III-I'l—ii
m 4 l 1 L11; No.0flt‘

0 I0 I! so co ‘9 5| U 7‘ I1 ” ”INIMWI”

(a) Unbalanced Timing (b) Balanced Timing

Figure 3.2: Unbalanced vs. Balanced Timing

seconds

601-

45 ~~

 

30 «—

 

   l
1

2 3 4 5 6 No. of Nodes 2 3 4 5 6 No. (I Nodes

(a) Timing for 240 x 240 matrices (b) Timing for 360 x 360 matrices

Figure 3.3: Timing Info for 240 X 240 and 360 x 360 matrix

dynamical scheduling extra computation is needed to determine the shares for all

the nodes at every node. Fortunately, this computation takes only 0(n) operations,

while one updating of an approximation takes 0(n2) operations in Hyman’s method

to evaluate the polynomial and its derivative. This extra computation is negligible.

We implemented the balanced algorithm on a cluster of up to 6 DEC Alfa 3000

workstations running Message-Passing-Interface (MPI) with Fortran 77. MPI is a

widely used standard for writing message-passing programs. It is available for al-

most all existing high performance machines [27]. The test matrices are real upper

Hessenberg matrices whose entries are randomly generated in the range (-10, 10).



56

The matrix is divided in the middle into two smaller real upper Hessenberg matrices.

Subroutine HQB. in EISPACK is called to find the eigenvalues for each of the two

matrices. The eigenvalues for the two matrices are merged as the initial approxima-

tions to the original matrix. Aberth method is applied to refine the approximations.

We tested the matrices of degree up to 360 x 360. The results show that the balanced

program saves about 10% for the chosen class of matrices compared to the unbal-

anced program. Figures 3.3 shows the timing information for test matrices of degree

240 x 240 and degree 360 x 360.

3.6 Conclusion

In this chapter we describe a parallel algorithm to solve the eigenvalues of non-

symmetric matrices. The straightforward approach leads to an unbalanced utilization

of processors 80 a dynamically load balanced approach was developed and demon-

strated. At this time, only six processors were available so the gains are small. Since

the computations grow much faster than communication we expect significantly bet-

ter results on a larger machine, especially with respect to the fastest serial algorithm,

HQR.



Bibliography

[1] Aad J. wan der Steen, An overview of (almost) available parallel systems,

Publication of the NCF, December 1993.

[2] O. Aberth, Iteration Methods for Finding all Zeros of a Polynomial Simulta-

neously, Math. Comp., Vol.27,1973, pp. 339-344

[3] G. Alefeld and Herzberger, 0n the Convergence speed of Some algorithms

for simultaneous approximation of polynomial roots, SIAM J. Num. Anal,

11(1974), 237-243.

[4] Alan F. Beardon, Iteration of Rational Functions, Springer-Verlag, 1990.

[5] W. Borsch-Supan, A posteriori error bounds fro the zeros of polynomials, Nu-

mer. Math. 6(1963) pp. 380-398.

[6] Lionel M. Ni, Lecture Notes of CPSSQQ, Computer Science Department, Michi-

gan State University, Spring, 1995.

[7] J .Cuppen, A divide and comquer method for the symmetric tridiagonal matri-

ces, Numer. Math., 36(1981), pp. 177-195.

[8] K. Docev, A modified Newton method for the simultaneous approximation of

all roots of the given algebraic equations, Fiz. - Mat. Spis Bulgar. Akad. Nauk

5 (1962) pp. 136-139 ( in Bulgarian ).

[9] J. Dongarra, M. Sidani, A parallel algorithm for the nonsymmetric eigenvalue

problem, SIAM J. Sci. Comput. 5(1993), pp. 542-569.

[10] J. Dongarra, C. Sorensen, A fully parallel algorithm for the symmetric eigen-

value problem, SIAM J. Sci. Statist. Comput. 8(1978), pp. Sl39—@154.

[11] E. Durand, Solutions Numeriques des Equations Algebriques, T.I. Paris 1960.

[12] L.W. Ehrlich, A modified Newton method for polynomials, , Comm. ACM 10

(1967) pp. 107-108.

[13] M.R.Farmer,G. Loizou, A CLASS OF ITERATION FUNCTIONS FOR IM-

PROVING,SIMULTANEOUSLY, APPROXIMATIONS TO THE ZEROS OF

A POLYNOMIAL, BIT 15 (1975),pp. 250 - 158.

[14] Hamilton, A Type of Variation on Newton’s Method, Amer. Math. Monthly,

57, 517-522(1950).

57

 



58

[15] Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability, Pro-

grammability, McGraw-Hill Inc. 1993.

[16] M. Hyman, Eigenvalues and Eigenvectors of general matrices, presented at the

12th National Meeting of the Association for Computing Machinary, Houston,

Texas, June 1957.

[17] Pierre Fraigniaud, The Durand-Kerner Polynomials Roots-Finding Method in

case of Multiple Roots, BIT 31(1991),112—123.

[18] T.L.Freeman, Calculating Polynomial zeros on a local memory parallel com-

puter, Paralle Computing 12(1989) 351-358.

[19] M.W. Green, A.J.Korsak and M.C.Pease, Simultaneous iteration towards all

roots of a complex polynomial, SIAM Rev. 18 (1976), pp. 501-502.

[20] I Kerner, Ein Gessamtschrittverfahren zur Berechung der Nullstellen von Poly-

nooem. Num. Math. 8(1966), 290-294.

[21] Gbran Kjellberg, Two Observations on Durand-Kerner’s Root-Finding

Method, BIT 24(1984),556—559.

[22] K. Li and T.Y. Li, An Algorithm for Symmetric Tridiagonal Eigenproblems—

Divide and Conquer with Homotopy Continuation, SIAM J. Sci. Statist. Com—

put., 14(1993), pp. 735-751.

[23] T.Y. Li, T. Sauer, J. Yorke, The random product homotopy and deficient poly-

nomial systems, Numer. Math., 51, (1987), pp. 481-500.

[24] T.Y. Li , Zhonggang Zeng, Homotopy-determinant algorithm for solving non-

symmetric eigenvalue problems, Math. Comp. 10(1992), pp. 483-502.

[25] T.Y. Li and Zhonggang Zeng, The Laguerre Iteration in Solving the Symmetric

Tridiagonal Eigenproblem, Revisited, SIAM J. Sci. Comput. 9(1994), 1145-

1173.

[26] T.Y.Li, Z. Zeng, and L. Cong, Solving eigenvalue Problems of real nonsymmet-

ric matrices with real homotopies, SIAM J. Numer. Anal. 29(1992), 229-248.

[27] Message Passing Interface Forum, MPI: A Message-Passing Interface Stan-

dard, May 5, 1994.

[28] M. Marden, Geometry of Polynomials, Amer. Mathematical Soc., Providence,

RI, 2nd ed., 1966.

[29] Tsuyako MIYAKODA, Iterative method for multiple zeros of a polynomial by

clustering, J. Corn. and App. Math. 28(1989),pp. 315-326.

[30] J .M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables, Academic Press, 1970.

[31] B.N.Parlett, Laguerre’s Method Applied to Matrix Eigenvalue Problem, Math.

Comp. 18(1965), pp. 464-485.



59

[32] L. Pasquini and D. Trigiante, Il metodo di continuazione e l’approssimazione

simultanea degli zeri dk un polinomio, Monografie di Soft. Matem., N. 30,

Pubbl. dell’IAC, 1984.

[33] T. Terano, On a global algorithm for algebraic equationss, PhD Thesis, Uni-

versity of Tokyo, Information engineering course (1978).

[34] J.H. Wilkinson, Error Analysis of Floating—point Compuation, Numer. Math.

2 (1960), 319-340.



"lllllllllllllllf  


